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representation  and even early number acquisition. Thus, we postulate that numerical and arith-
metic processing are not fully independent of linguistic processing. This is not to say, that in 
patients, magnitude processing cannot function independently of linguistic processing  we just 
suppose, these functions are connected in the functioning brain. So far, much research about 
linguistic influences on numerical cognition has simply demonstrated that language influences 
number without investigating the level at which a particular language influence operates. After 
an overview, we present new findings on language influences on seven language levels: 

•	 Conceptual:	Conceptual	properties	of	language
•	 Syntactic:	The	grammatical	structure	of	languages	beyond	the	word	level	influences
•	 Semantic:	The	semantic	meaning	or	existence	of	words
•	 Lexical:	The	lexical	composition	of	words,	in	particular	number	words
•	 Visuo-spatial-orthographic:	Orthographic	properties,	such	as	the	writing/reading	

direction of a language.
•	 Phonological:	Phonological/phonetic	properties	of	languages
•	 Other	language-related	skills:	Verbal	working	memory	and	other	cognitive	skills	related	to	

language representations

We hope that this book provides a new and structured overview on the exciting influences of 
linguistic processing on numerical cognition at almost all levels of language processing.
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The Editorial on the Research Topic

Linguistic Influences on Mathematics

For many years, an abstract, amodal semantic magnitude representation, largely independent
of verbal linguistic representations, has been viewed as the core numerical or mathematical
representation (Dehaene and Cohen, 1995). This assumption has been substantially challenged in
recent years (e.g., Miura and Okamoto, 2003; Nuerk et al., 2004, 2005; Dowker et al., 2008; Colomé
et al., 2010; Helmreich et al., 2011; Krinzinger et al., 2011; Pixner et al., 2011a,b; Göbel et al., 2014;
Imbo et al.; Klein et al.). Linguistic properties affect not only verbal representations of numbers
(Seron and Fayol, 1994; Zuber et al., 2009; Pixner et al., 2011a), but also numerical magnitude
representation (Nuerk et al., 2005; Pixner et al., 2011b), spatial magnitude representations (Shaki
et al., 2009; Helmreich et al., 2011), calculation (Colomé et al., 2010; Krinzinger et al., 2011; Göbel
et al., 2014), parity representation (Iversen et al., 2004, 2006; Nuerk et al., 2004), place-value
representation (Miura and Okamoto, 2003; for a review, see Nuerk et al.) and even early number
acquisition (Sarnecka, this issue). Thus, we postulate that numerical and arithmetic processing
are not fully independent of linguistic processing. This is not to say, that in patients, magnitude
processing cannot function independently of linguistic processing (e.g., Dehaene and Cohen, 1997),
we just suppose, these functions are connected in the functioning brain. So far, much research about
linguistic influences on numerical cognition has simply demonstrated that language influences
number without investigating the level at which a particular language influence operates. Here
we want to distinguish several linguistic levels at which numerical processing may be influenced,
according to which we group the articles in our special issue:

• Conceptual: Conceptual properties of language
• Syntactic: The grammatical structure of languages beyond the word level influences
• Semantic: The semantic meaning or existence of words
• Lexical: The lexical composition of words, in particular number words
• Visuo-spatial-orthographic: Orthographic properties, such as the writing/reading direction of a

language.
• Phonological: Phonological/phonetic properties of languages
• Other language-related skills: Verbal working memory and other cognitive skills related to

language representations

CONCEPTUAL INFLUENCES

Beyond single phonemes, graphemes, words and sentences, linguistic structures are also shaped
by linguistic concepts. The linguistic markedness concept suggests that for (almost) each adjective
pair, a ground (unmarked) form and a derived (marked) form exist (e.g., efficient and inefficient;
marked by “in”).

6
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We consider the markedness concept “conceptual” (see Nuerk
et al., 2004). However, many language models do not consider
a conceptual level as such and often the lexical or semantic
level is the highest level. Levelt et al. (1999), however, proposed
a conceptual level in the language production model. It is the
highest level in this model and is assumed to be involved in the
conceptual preparation of lexical concepts. In Nuerk et al. (2004,
p.859), we suggested that linguistic markedness could operate at
just such a conceptual level and that other verbal influences like
phonological ones will operate at a different (lower) level, e.g., the
phonological encoding in the mental lexicon.

Numbers possess several attributes, which can be
distinguished into unmarked ground form (large, even,
divisible) and marked form (small, odd, indivisible; Hines, 1990).
As regards spatial organization “right” is unmarked and “left” is
marked (Nuerk et al., 2004). Usually responses are faster, when
markedness of stimuli and responses are congruent (e.g., left-
odd, right-even). Schroeder and Pfister (this issue) investigated
SNARC and MARC effects on card distribution to fellow card
players. They observed markedness effects in that magnitude
and parity influence card distribution. However, in this natural
setting, the markedness effect is inverted to a normal parity
judgment task, extending earlier findings in deaf signers (Iversen
et al., 2004), and left-handers (Huber et al., 2015). This implies
that not only bodily, but also task-specific constraints need to
be taken into account, when linguistic effects on mathematical
cognition on the construct level are examined.

SYNTACTIC INFLUENCES

Number processing in real life situations occurs in natural
language and is described by grammatical number. (i.e., singular
for 1 and plural for numbers 2 and greater in English).
Languages differ substantially in their use of grammatical
number (see Overmann, 2015) analysis of 905 languages):
For instance, 7% of these languages lacked grammatical
number altogether despite having lexical numbers. Influences
of grammatical numbers on numerical cognition have been
shown in two effects. First, Roettger and Domahs (2014)
observed a grammatical SNARC effect: singular inflected words
elicited faster responses on the left hand side and plural
inflected words on the right Second, as beautifully outlined
by Sarnecka’s (this issue) review, the sheer existence of certain
grammatical number enhances development of number concepts
in children. In languages without differentiation between singular
and plural, the development of number understanding in
children is later. Moreover, grammatical distinction between
singular, dual (a grammatical form for “two”) and plural present
in several languages further enhances, yet partially hinders
number development in children. In some cases, the syntactic
structure of a language both influences development of numerical
understanding and spatial mappings of numbers.

SEMANTIC INFLUENCES

Word meanings also influence numerical or arithmetic
processing. Daroczy et al. reviewed text problems and

found that numerical properties and semantic properties
are often interacting. For example, the consistency effect
suggests that text problems are easier, when the required
operation is consistently associated with the semantics
of the words. For instance, addition is more associated
with “more,” “buy,” “get,” etc., while subtraction is more
associated with “less,” “sell,” “give,” etc. When text problems are
presented in a way that makes such associations misleading,
children and adults perform less well. This highlights an
interrelation between word meaning and preferred arithmetic
operations.

LEXICAL INFLUENCES

Most of the papers in our special issue as well as in the
literature are concerned with lexical influences, in particular
number words. In general, a transparent number word structure
seems to help numerical performance even for problems not
involving number words (Nuerk et al., 2015). Two types of
lexical influences are discussed in our special issue. The first
involves the inversion property. Some languages like Arabic,
Dutch and German invert the order of tens and units (“one-and-
twenty” for 21), which creates problems in several tasks. Moeller
et al. (this issue) compared transcoding (writing numbers
to dictation) skills in Japanese and German. The Japanese
children did much better. In particular, Japanese children make
far fewer inversion errors; but also fewer errors in general.
Xenidou-Dervou et al. (this issue) show that the inversion
property does not affect all numerical and arithmetic skills.
Dutch children (with inversion) lag behind English children in
symbolic but not non-symbolic arithmetic. A working memory
overload in Dutch was found in non-symbolic, but not symbolic
magnitude. However, as Bahnmueller et al. (this issue) show,
inversion effects do not even affect all aspects of symbolic
number processing. While children’s and adults’ two-digit Arabic
number comparison is influenced by inversion properties of
a language, adults’ three-digit Arabic number comparison is
not. Moreover, van Rinsveld et al. (this issue) found that
inversion affected complex but not simple symbolic arithmetic
in German-French bilingual secondary pupils. Finally, Prior
et al. (this issue) gave Hebrew-Arabic bilinguals oral arithmetic
problems, because Arabic but not Hebrew number words
possess the inversion property. Participants solved arithmetic
problems best when the language structure corresponded
to the arithmetic problem. This implies that—contrary to
earlier claims—L1 does not completely dominate arithmetic
processing, but that both L1 and L2 shape numerical and
arithmetic.

The second line of research at the lexical level is power
transparency. Unlike most European languages, most Asian
languages are extremely transparent with respect to the power
of a given number (e.g., “ten-two” for 12). From 11 on,
children and adults can derive the power of each number
directly from the number word. It has been argued that this
transparency may be responsible for Asians’ better skills at
counting, representing 2-digit numbers, and general arithmetic
(Miller et al., 1995; Miura and Okamoto, 2003). However, such
results are confounded by the many other educational and
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cultural differences between countries. One way of obtaining
more specific evidence of language effects is to compare
children studying in different languages in the same country and
educational system. For instance, the Welsh counting system,
unlike the English system, is transparent. Dowker et al. (2008)
found that children in Welsh-medium primary schools did not
do better in arithmetic overall, but showed specific advantages
in reading and comparing two-digit numbers. Extending those
results Dowker and Roberts observed that Welsh-medium
children give more precise and consistent representations of 2-
digit numbers on empty number line tasks. Mark and Dowker
studied children in Chinese and Englishmedium primary schools
in Hong Kong. The Chinese medium children were better at
some tasks but not others: e.g., they were better at counting
backwards but not forwards; and were not better at number
comparison. Thus, we can conclude that lexical influences
do affect arithmetic, but not as pervasively as sometimes
assumed.

VISUO-SPATIAL-ORTHOGRAPHIC

INFLUENCES

Visual-spatial-orthographic influences mostly involve the
reading/writing direction of a given script or its complexity.
Usually, space-number relations are associated with the
dominant reading/writing direction (for a review see Fischer
and Shaki, 2014). However, reading/writing direction already
influences spatial-numerical directionality, before children
can read or write (Patro and Haman, 2012; Nuerk et al.,
2015). Most studies so far have investigated visuo-spatial-
orthographic influences on the horizontal left/right dimension.
Göbel (this issue) showed that cultural influences on number-
space-relations also include the vertical dimension. Fischer
and Shaki (this issue) proposed two steps in the shaping
of directional space-number representations in adults: “the
spatial dimension selected for mapping of numbers reflects
the stimulus and response features of the current task”
and “the orientation of the SNA is influenced by spatial
experience.”

Relatedly, Rodic et al. examined whether learning spatially
complex scripts (e.g., Chinese) is related to mathematical
performance. They found no evidence that exposure to a spatially
complex script improves mathematics.

We conclude that visuo-spatial orthographic skills seem to
shape the direction of space-number relations, but not arithmetic
skills themselves.

PHONOLOGICAL INFLUENCES

Jordan et al. examined phonological skills in children with
difficulties in reading, mathematics or both and found minor
influences on phonology on mathematics. Pixner et al. (this
issue) examined children with cochlear implants (CI), who
usually have phonological (and also other) language deficits.
They found general deficits in such children in multiplication,
subtraction and number line estimation, but specific deficits in
(verbally mediated) place-value manipulation. We conclude that
phonological skills are not related to mathematical functioning
per-se, but to verbal representations/manipulations of number.

OTHER LANGUAGE-RELATED SKILLS:

VERBAL WORKING MEMORY AND OTHER

COGNITIVE SKILLS

Verbal working memory is associated with complex arithmetic
since Ashcraft and Stazyk (1981) seminal paper. Soltanlou
et al. (this issue) investigated whether verbal or spatial working
memory influences multiplication skill most strongly. They
observed an age-related shift from verbal WM to spatial WM
influences over time. Thus, working memory data from adults or
one children age-group are not representative for its influence in
different developmental stages.

SUMMARY

Linguistic influences on number processing are ubiquitous. They
occur at conceptual, semantic, syntactic, lexical, visuo-spatial-
orthographic, phonological, and other levels. Research should
now address more precisely which language characteristics at
which level influence particular numerical tasks at particular
ages.
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Converging evidence from controlled experiments suggests that the mere processing of
a number and its attributes such as value or parity might affect free choice decisions
between different actions. For example the spatial numerical associations of response
codes (SNARC) effect indicates the magnitude of a digit to be associated with a spatial
representation and might therefore affect spatial response choices (i.e., decisions between
a “left” and a “right” option). At the same time, other (linguistic) features of a number
such as parity are embedded into space and might likewise prime left or right responses
through feature words [odd or even, respectively; markedness association of response
codes (MARC) effect]. In this experiment we aimed at documenting such influences in a
natural setting. We therefore assessed number-space and parity-space association effects
by exposing participants to a fair distribution task in a card playing scenario. Participants
drew cards, read out loud their number values, and announced their response choice,
i.e., dealing it to a left vs. right player, indicated by Playmobil characters. Not only did
participants prefer to deal more cards to the right player, the card’s digits also affected
response choices and led to a slightly but systematically unfair distribution, supported by
a regular SNARC effect and counteracted by a reversed MARC effect. The experiment
demonstrates the impact of SNARC- and MARC-like biases in free choice behavior through
verbal and visual numerical information processing even in a setting with high external
validity.

Keywords: embodied cognition, numerical cognition, SNARC effect, MARC effect, and justice for all, linguistic
markedness, free choice

INTRODUCTION
Like nothing else, numbers are regarded as pure and objective.
They are the cornerstone of scientific progress in terms of mea-
surements and statistics and they similarly shape global business
in various ways—from defining monthly salaries to describing
trends at the stock market. But does this objectivity survive when
numbers come in contact with human agents? In fact, there
seems to be good reason for a positive answer to this question.
Numbers obviously allow for rule-based decisions between com-
peting options, and a decision that is based on numbers is readily
accepted as fair and impersonal (Porter, 1996). At the same time,
however, research on human decision making has documented
that numbers can systematically bias an agent’s choice behavior
via anchoring and adjustment heuristics (Mussweiler and Englich,
2003; Furnham and Boo, 2011). For instance, when asked to
estimate the value of a property, laymen and professionals alike
rated the price of a real estate higher when they were told a higher
listed price before (Northcraft and Neale, 1987). This anchoring
bias was found in numerous contexts and research in this domain
has shown that heuristic decisions might even integrate nominally
irrelevant anchors like telephone and social insurance numbers
(Tversky and Kahneman, 1974).

Such anchoring effects are of course driven by memory
processes rather than by the numbers themselves. Still, recent
research on numerical and embodied cognition suggests that
the mere presence of a number alone might be sufficient to
invoke biases in thoughts and actions (Barsalou, 1999; Fischer,
2006, 2012). These biases built on well-documented associations
between numerical magnitude and spatial locations that indicate
smaller numbers to be associated with left locations and larger
numbers to be associated with right locations [spatial numerical
associations of response codes (SNARC) effect; Dehaene et al.,
1993; Wood et al., 2008]. Most importantly for the present study,
such spatial-numerical associations also affect response choices
(Tschentscher et al., 2012; Shaki and Fischer, 2014). That is, when
being confronted with smaller numbers, participants showed a
preference for choosing a left vs. a right response key (Daar
and Pratt, 2008) and, similarly, such small numbers involuntarily
prompted left-oriented gaze directions (Ruiz Fernández et al.,
2011) and small numbers were produced more likely while turn-
ing or gazing to the left (Loetscher et al., 2008, 2010). These
automatic biases document that the mere presence of a number
is sufficient to bias choices and behavior. Sensory and motor
biases induced by the SNARC effect can be considered of high
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FIGURE 1 | Experimental setup. Participants started each trial by leaving
the central home key. They then drew a card, named its value and
announced to assign the card to either the left or the right player
(represented by two female Playmobil® characters). Card values were
predefined according to the rummy game rules and explicitly instructed to

the participants. A fair distribution was to be achieved without explicitly
counting the values assigned to each player. The experimenter coded each
announcement and we analyzed (i) how many cards and points were
distributed to each player and (ii) whether digit features (magnitude and
parity) affected single response choices.

diagnostic merit for the understanding of grounded, embodied,
and situated cognition (Fischer, 2012). Findings pertinent to this
point range from culture-dependent finger counting habits that
influence magnitude representations (Domahs et al., 2010) to
bodily postures (Eerland et al., 2011) or even “unusual bodies”
(Keehner and Fischer, 2012) that introduce peculiarities in spatial
tasks. Together, these studies indicate that numerical associations
reliably alter spatial response choices in deliberately employed
highly controlled settings where the agent does not pursue any
other goals except for deciding spontaneously for a spatially coded
response.

As a first aim, the present study investigated whether the
described bias would also occur in a more externally valid setting
such as in situations where the agent aims at fairly and objectively
distributing value among other people. We operationalized this
situation in terms of a card distribution task in which participants
were asked to deal cards of a given value to a player to the left or
to the right and additionally announce their value-space choice
(Figure 1). If spatial-numerical biases do indeed generalize to this
situation, participants should deal more cards with higher values
to the right player than to the left player.

Of course, these biases do not work in an all or none fashion,
but gradually. That is, even though participants prefer choices
that are congruent to a number’s spatial association (e.g., a left
response to a small number), they also tend to show a fair amount
of incongruent choices (e.g., a right response to a small number;
Daar and Pratt, 2008). In the natural card playing setting of this
study, however, both spatial-numerical associations and marked-
ness of parity and space [markedness association of response
codes (MARC) effect; Nuerk et al., 2004] might affect choice

probabilities for each single card, summing up to an overall biased
and therefore unfair bias in value distribution. As both, high and
even numbers (such as the target card value “8” or “10”) are
usually associated with right responses and with more points in
the rummy card setting at hand, our main hypothesis was that
participants would be biased to deal overall more points to the
right than to the left player.

MATERIALS AND METHODS
PARTICIPANTS AND APPARATUS
Twenty-five participants (19 females, mean age = 24.3, range:
18–52 years, 3 left-handed)1 were invited to participate in a
15-min experimental session. They were seated in front of the
apparatus displayed in Figure 1. This apparatus mainly consisted
of a 60 × 40 cm cardboard box, the surface of which was
covered with blue and white paper. Two Playmobil® characters
represented the players and were positioned at the rear edge of
the card box surface with an inter-player distance of 50 cm. The
players were matched for various attributes such as size, age,
beauty, and orientation toward the participant. A slot in front
of each player allowed the participants to insert a card in a box
beneath the surface of the apparatus, restricting visual feedback
of the current distribution. A central key was positioned at the
front edge to allow for a standardized trial procedure, and the

1As pointed out by a reviewer, individual variations of age, handedness or sex
might play a role in marked decisions about numbers (see the discussion for
an elaboration). However, also following the reviewer’s suggestion, fitting a
model on right-handed female participants aged 30 or less did not substan-
tially alter the results and only marginally improved the model fit.

Frontiers in Psychology | Developmental Psychology March 2015 | Volume 6 | Article 240 | 11

http://www.frontiersin.org/Developmental_Psychology
http://www.frontiersin.org/Developmental_Psychology
http://www.frontiersin.org/Developmental_Psychology/archive


Schroeder and Pfister Arbitrary numbers counter fair decisions

card deck was placed 10 cm from the key onto a predefined
mark. One participant decided to distribute cards by color and
thereby achieved a totally fair distribution; this participants’ data
was excluded from the analysis and we refer to the remaining
N = 24 participants in the following. The study was conducted
in accordance with the Declaration of Helsinki and the guidelines
of the ethics committee at the University of Würzburg.

PROCEDURE
The basic task of the participants was to draw a card and deal it to
either the left or the right player. Each participant received three
random training cards, then a complete 52 Anglo-American style
rummy card pack. We ensured that the card icons were printed in
all four corners of each card to avoid systematic influences origi-
nating from the specific stimulus set (Figure 1). Card values were
defined following standard rummy game rules, that is: number
cards (2–10) counted their printed value (i.e., two points for a
“2,” three points for a “3,” and so on), royal cards (jack, queen,
and king) counted 10 points, and aces counted 11 points. The
deck was professionally shuffled prior to the experiment. During
the instructions, we emphasized that participants should aim for a
fair distribution of values across players by intuition and without
using any explicit strategies (such as counting points across the
experiment).

To start a trial, participants pressed and released the start
button. They then drew the top card from the deck, read out
loud the card’s face (e.g., “Ace of Spades”), its value (“11”), and
announced the side they wanted to distribute it to (always in this
order). They then inserted the card into the right or left card
slot. The experimenter registered the information and also coded
invalid trials (i.e., illegal use of the left hand, reading out the
wrong number or value, or naming the card’s attributes and the
corresponding choice in the wrong order; 4.4% trials in total).

DATA TREATMENT
For the main analysis, both the number of cards and the resulting
scores for each player and participant were computed. Note that
although the two measures are confounded, they still allow for
distinct evaluation of choice preference and influences of the
SNARC or the MARC effect: Even without an overall preference
of one player in terms of the number of cards, a difference in
scores can arise from a SNARC-like distribution of high-value
cards to the right player and low-value cards to the left player.
Both measures were controlled for homogeneity and normal
distribution and subjected to one-tailed paired t-tests to assess our
main hypothesis of a preference for the right player.

In a second, exploratory analysis, we aimed at dismantling
underlying SNARC and MARC influences to the free, binary
choice at a trial-wise level. Therefore, we used generalized mixed-
effects models to predict the likelihood of a left response from the
two first-level fixed factors parity and magnitude.

RESULTS
SCORES AND NUMBER OF CARDS
Mean scores and number of cards for each player are depicted
in Figure 2. Tests for normal distribution (Kolmogorov Smirnov:
ps > 0.23) and homogeneity of the sample were conducted prior
to the analysis and showed the data to be suitable for analyses via
parametric tests.

Whereas 188 (SE = 3.33) points on average were assigned
to the right player, only 172 (SE = 3.76) points were assigned
to the left player, and this difference in scores was significant,
t(23) = 2.52, p = 0.010, d = 0.53 (Figure 2A). A similar effect
emerged for the number of cards dealt to the left and right player,
respectively, t(23)= 1.92, p= 0.034, d= 0.40 (Figure 2B), as par-
ticipants assigned about two cards more (dN = 1.71, SE = 0.48)
to the right player. The effects on points and card numbers were

FIGURE 2 | Mean scores and standard errors of paired difference (cf.
Pfister and Janczyk, 2013) in the card distribution task. Participants overall
preferred the right player which resulted in a significant difference in scores

(A), and a similar effect in overall card numbers (B). Note that both Playmobil
players acted earnest without any particular facial expression during the
experiment, unlike the displayed emotions in panel (A). *p < 0.05, **p < 0.01.
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Table 1 | Probabilities of left response choices as a function of target card value.

Single-digit cards Royal cards

Target card value 2 3 4 5 6 7 8 9 10 11
P(left) [%] 57.3 50.4 48.3 42.0 52.8 40.6 48.5 42.4 49.4 47.2

correlated significantly across participants, r = 0.85, p < 0.001,
indicating that the difference in cards accounted for about 71% of
the effect on distributed points.

EXPLORATORY ANALYSIS: SNARC AND MARC EFFECTS
More fine-grained analyses targeted the outcome of individual
decisions rather than the overall number of points or cards dealt
by each participant (Table 1). More precisely we aimed at ana-
lyzing the impact of magnitude and parity on the outcome of
a decision (i.e., the likelihood for a card to be dealt to the left
or to the right). To this end, we employed generalized linear
mixed-effects models to model the binary outcome of the choice.
Magnitude and parity were entered as fixed factors into the model
(first level predictors), which further included individual subjects
as random effects on the second level. The model was fitted
in R by using the glmer function of the lme4 package (Bates
et al., 2014; binomial family and logit link function). We further
restricted the analysis to single-digit values (2–9) due to the actual
different pictorial presentation of royal card values and possibly
different representational format of values that would imply a
two-digit numerical notation (Nuerk and Willmes, 2005; Nuerk
et al., 2011).

In a first step, we evaluated each predictor individually (each
being coded as centered variable). As suggested by the main analy-
ses above, higher magnitudes were indeed associated with a higher
preference for right responses (fixed effect estimate= 0.055/num-
ber, SE = 0.032), z = 1.70, p = 0.045, ppb = 0.036.2 Surprisingly,
even numbers were more likely to be dealt to the left side as com-
pared to odd numbers (fixed effect estimate= 0.281, SE= 0.147),
indicating a reliably reversed MARC effect, z =−1.91, p= 0.028,
ppb = 0.030.

For model comparisons, we fitted a null model including
only an intercept on the first level, an additive model with value
and parity as independent predictors, and a saturated model
with main effects as well as the two-way interaction. In a first
step, we compared the null model to the additive model. This
comparison yielded a marginally significant effect in favor of the
additive model χ2(2) = 5.42, p = 0.067, ppb = 0.069, indicating
that the two additional parameters did indeed add explanatory
value. Further including the interaction effect, however, did
not improve model fit significantly, χ2(1) = 0.01, p = 0.941,
ppb = 0.929.

DISCUSSION
We investigated the effects of different characteristics of numbers
(values of playing cards) on biases in fair distribution behavior.
Indeed, we found evidence for such systematic biases in a free

2Based on the comments of a reviewer, the model comparison was repeated
using parametric bootstrapping with 1000 simulations, using the PBmod-
comp() function of the R package pbkrtest (Halekoh and Højsgaard, 2014).

choice experiment: Participants read out loud a rummy card’s
value and announced their spatial assignment to a leftward or
rightward positioned player. Without applying explicit strategies,
participants failed to distribute cards in a statistically fair way and
assigned a mean benefit of two cards or 16 points to the right
player. In line with recent findings from the linguistic markedness
and spatial-numerical associations of response codes effects, we
hypothesized such a pattern to be partly driven by odd and
high numbers being associated with rightward oriented action
codes.

In the following exploratory analyses, we aimed at disman-
tling SNARC and MARC-like effects on response decisions at
an individual, trial-wise level. Indeed, we found some evidence
for the regular SNARC effect, but the data also indicated a
reversed MARC effect with odd numbers being more likely to
be distributed to the right player and even numbers being more
likely to be distributed to the left player. Although this latter
finding certainly comes unexpected, several recent studies cast
doubt on a stable left-right association of odd and even numbers.
Rather, the direction of the MARC effect seems to depend on task
rules, i.e., affirmative answers seem to be generally compatible
with right response codes and might override the parity-driven
code of an odd number (Cho and Proctor, 2007). Further, Nuerk
et al. (2005) observed the MARC effect to be altered by stimulus
and experimental settings: Whereas participants showed a usual
MARC effect for number words when the experiment started
with Arabic notation digits, this effect was reversed when the
experiment started with dice-dot patterns. In light of the apparent
similarity of dice patterns and the patterns printed on the play-
ing cards of the current experiment (see Figure 1), one might
speculate that such gambling-related stimuli might generally elicit
a reversed linguistic markedness of parity; however, Chang and
Gibson (2011) found a regular odd-even effect in Sudoku puzzles
and future studies are needed to clarify these speculations and
investigate the underlying mechanisms.

Such flexibility of the MARC effect further seems likely in
light of various findings on flexible coding of the related SNARC
effect. For instance, the SNARC effect is influenced by inter-
individual characteristics such as finger counting habits (Fischer,
2008), cultural aspects such as reading direction (Shaki et al.,
2009; Domahs et al., 2010) as well as sex (Bull et al., 2013) and
age (Wood et al., 2008). The MARC effect, similarly, was recently
found reversed for left-handers (Huber et al., 2014), which sup-
ports a body-specificity account (Casasanto, 2009) rather than a
linguistic markedness account (Nuerk et al., 2004). Furthermore,
the SNARC effect is also modulated by short-term, contextual
factors such as recently encountered episodes (sequence effects:
Pfister et al., 2013), number usage (number placement in text:
Fischer et al., 2010; on a ruler vs. clock face: Bächtold et al.,
1998) and current number range (Dehaene et al., 1993; Fias et al.,
1996).
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GENERAL PLACEMENT PREFERENCES
Of course, the overall preference for the right card slot of our
mostly right-handed participants also reminds of robust phe-
nomena unrelated to the processing of numerical stimuli such as
turning biases when confronted with a decision to take either a left
or a right turn (Liederman and Kinsbourne, 1980; Güntürkün,
2003; cf. Shaki and Fischer, 2014, for the interplay of number
processing and turning during walking). Furthermore, physical
positioning was shown to produce more positive attitudes for
rightward placed items (Nisbett and Wilson, 1977; Choi and
Myer, 2012). Vice versa, positive abstract concepts were associated
with right space for right-handed participants (Casasanto, 2009).
In fact, a vast amount of marketing literature is concerned with
devaluation of laterally placed items (Dittrich and Klauer, 2012),
which is at times confounded with a desirable perception of
magnitude (i.e., heaviness perception; Deng and Kahn, 2009) or
automatic price and quality inferences (i.e., expensive and high-
quality items on the right end; Valenzuela and Raghubir, 2009).
For free choice actions, goal keepers were found more likely to
dive to the right during shoot-outs and under pressure (Roskes
et al., 2011; but see Price and Wolfers, 2014), which was taken to
document approach motivation (Roskes et al., 2014).

HANDEDNESS-DEPENDENT PLACEMENT PREFERENCES
Already for spontaneous turning biases, stronger right-sided
head-turning was documented for right-handed than for left-
handed participants (Ocklenburg and Güntürkün, 2009). Sim-
ilarly, positive abstract concepts were associated with rightward
space for right-handers, but left-handed participants with similar
linguistic experience (i.e., use of metaphors) showed a reversed
association of abstract concepts and space (Casasanto, 2009),
suggesting that bodily experiences might shape valence-specific
placement preferences. In a large Moroccan sample that exhibited
strong taboos against the use of left hands, the implicit space-
valence association was found effectively identical compared to
a Spain sample (de la Fuente et al., 2014), but explicit measures
(i.e., good-is-right rating and ratio of right/left-handers) were
larger in the Arab population. Thus, handedness and according
interactions with the external world appear to be valid can-
didates in explaining general and explicit spatial mappings of
valence.

Given the data at hand, we cannot provide evidence for culture
or hand-experience specific modulations. However, valence-space
and value-space associations are not necessarily interchange-
able, despite a possible positive connotation of playing cards or
numbers in general. For mere numbers, reversing the polarity
of a response side through response eccentricity did not affect
spatial-numerical associations (Santiago and Lakens, 2014), sug-
gesting that the link between numbers and space is not (exclu-
sively) driven by their value-valence correspondence (i.e., polarity
correspondence; Proctor and Cho, 2006). Another study even
suggested magnitude to underlie spatial valence representations
(Holmes and Lourenco, 2011). Furthermore, number-space asso-
ciations are manifold regarding the number’s features (see Patro
et al., 2014, for a recent taxonomy proposal at an early age), and
we next discuss the possible interpretation of SNARC and MARC
effects in terms of linguistic markedness.

LINGUISTIC MARKEDNESS IN NUMBER PROCESSING?
It is widely accepted that number processing includes a verbal
component, as suggested by the triple-code model (Dehaene et al.,
1993; Klein et al., 2014). Semantic features of the number (parity
and magnitude) are activated automatically and can deteriorate
unrelated task processing already in children of 10 years of age
(Berch et al., 1999). As such, linguistic markedness of a verbal
number-code, i.e., in form of the non-marked even parity fea-
ture, might facilitate equally non-marked responses, i.e., right
actions (Nuerk et al., 2004). Arguably, in this experiment, the
number of cards dealt to a player can be regarded an unspecific
placement preference and explained a substantial proportion, but
not all variance of differences in scores. Rather, the results from
our exploratory analysis suggest that space-number associations
further biased the distribution outcome, and that reversed space-
parity associations supported but space-magnitude associations
counteracted the fair distribution.

For linguistic influences in the SNARC effect, instead of
assuming an oriented mental number line (i.e., Göbel et al.,
2001), it is similarly possible that magnitude is coded by opposed
small/large polar or linguistic representations (c.f. Nuerk et al.,
2004; Proctor and Cho, 2006). Facilitated left/right responses
can be accounted for by corresponding pairs of markedness:
The adjectives large and small are lexical opposites with large
as the non-marked adjective (Jakobson, 1931; see also: Lehrer,
2008). Similarly, the adjective right is linguistically non-marked
(Zimmer, 1964), and the correspondence of both non-marked
(i.e., large and right) and marked (i.e., small and left) pairs
would lead to the SNARC effect. Homogenous marked and non-
marked pairs should be responded to faster and they should
more often be selected in a free choice paradigm. Consequently,
with a decreasing marked property of small, the marked left
response side was chosen less frequently. However, it is not clear
how linguistic markedness can account for flexible magnitude-
space and reversed parity-space associations; instead, a flexible,
body-specific conceptual layer, i.e., in form of polarity or space,
seems more likely. Obviously, participants were more cautious in
distributing high-value (i.e., royal) cards more equally in order
to distribute the cards fairly; nevertheless, magnitude-response
correspondence, as indexed by the regular SNARC effect, could
have effectively led to the observed right-bias.

Crucially, the interpretation of the SNARC effect in terms
of polarity correspondence (Proctor and Cho, 2006) or verbal
codes (Gevers et al., 2010) does not exclude the possibility of
a visuo-spatial representation of magnitude. In line with the
dual-coding framework of Paivio (1986), non-verbal and verbal
representations can be processed referentially and activate each
other. The observed SNARC effect in verbal and following motor
responses can be attributed to such a referential activation. Pos-
sibly, a visuo-spatial representation was pronounced because our
participants performed actual hand movements in a well-defined
space, namely over a card-playing table.

We excluded two-digit and royal card stimuli from the mixed-
effects SNARC and MARC models as too little is known about
these indirectly magnitude-related stimuli at this time: Do they
extend the mental number line similar to 0 (Pinhas and Tzelgov,
2012)? How are nominal two-digit numbers processed when part
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of this specific number range (Dehaene et al., 1993; Nuerk and
Willmes, 2005; Nuerk et al., 2014) and does the pictorial presenta-
tion, i.e., of a king vs. a jack, trigger marked representations other
than the rule-based card value?

Notwithstanding these open issues, a range of recent papers
addressed the linkages of brain mechanisms devoted to language
and action, respectively, and elaborated these linkages in several
frameworks to accommodate for SNARC and MARC effects (e.g.,
Pulvermüller, 2005; Barsalou, 2008; Fischer, 2012). In case of
the SNARC effect, interestingly, language or number processing
is most likely only indirectly associated with motor system acti-
vations through magnitude processing (Fias et al., 1996) and
magnitude-related spatial codes (Gevers et al., 2006) or verbal
codes (Gevers et al., 2010). Still, this indirect loop was demon-
strated sufficient to modulate deliberate action selection (Daar
and Pratt, 2008; Ruiz Fernández et al., 2011). In this experiment,
we further show that this bias even transfers to a more natural card
playing scenario and is able to interfere with a fair distribution
task.

FAIR DECISIONS IN CARD DISTRIBUTION
Although statistically the goal of fair distribution was not met,
participants were mostly confident about their choices during
debriefing and reported to have achieved the goal by deciding
upon a subjective feeling of just distribution. This finding is in line
with results on the egocentric fairness bias (Tanaka, 1999), stating
that especially just world believers (Rubin and Peplau, 1975)
consider their own behavior as fairer than other people’s behavior.
In relation to these findings, the perception of fairness might
be considered biased by social demands (Blair, 2002), whereas
actual fair behavior was counter-acted here by automaticity, i.e.,
number-space associations.

Several alternative explanations might also account for the
observed general preference for the right player. In this regard,
some limitations of the study have to be considered: Both the table
coloring and the player characters were not counterbalanced and
could have implied unidentified response tendencies3. The study
sample was rather diverse regarding participants’ age, sex, and
handedness, which likely increased the variance of number-space
associations. Future studies should more closely examine these
characteristics’ interactions with number-driven action decisions.
By including the rummy card set, the stimuli used were, on one
hand, of high external validity and allowed for instructing and
investigating fair distribution behavior. On the other hand, the
stimulus set by nature included two-digit and pictorial cards and
thereby differs from previous studies. Nevertheless, we focused on
single digits only in the mixed effects models analysis and thereby,
the results of this analysis must be regarded exploratory and might
underestimate the SNARC effect for the entire number range.

A closer look at single digits in the exploratory analy-
sis pointed towards regular magnitude-space associations, but
reversed parity-space associations. As such, automatic number
magnitude processing emphasized a possible pre-existing pref-
erence bias by suggesting rightward (leftward) choices for high

3For effects of color on cognition, see Elliot and Maier (2014). We thank a
reviewer for drawing our attention to this point.

(low) value cards, resulting in higher scores. Given the full
standard rummy card set, a regular MARC effect would have
further emphasized responses favoring the right player. Placement
preferences were increasingly identified in the literature, and the
same is true for number-space associations. In a natural setting, it
is likely that both types of bias affect choices, and our analysis
confirms this view by the combination of identity-unspecific
results (number of cards) and number specific results (scores and
single-digit decision outcomes).

In conclusion, the results of our study support current views
of actions as being influenced by language processing. During
card distribution and while aiming at a fair and equal distribu-
tion, the participants’ choices were still affected by linguistic or
conceptual features of actual rummy cards, namely digit parity
and magnitude. A regular SNARC and a reversed MARC effect
emerged and ultimately supported the overall preference of a right
player avatar. The successful transfer of these effects to a more nat-
ural setting emphasizes the importance of further understanding
the (neural) mechanisms behind indirectly and directly action-
related linguistic and conceptual influences on number process-
ing. Understanding these mechanisms will allow for identifying
in which situations number associations can systematically bias
behavior and, consequently, a better understanding will allow for
countering these biases.
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This mini-review focuses on the question of how the grammatical number system of
a child’s language may help the child learn the meanings of cardinal number words
(e.g., “one” and “two”). Evidence from young children learning English, Russian,
Japanese, Mandarin, Slovenian, or Saudi Arabic suggests that trajectories of number-word
learning differ for children learning different languages. Children learning English,
which distinguishes between singular and plural, seem to learn the meaning of the
cardinal number “one” earlier than children learning Japanese or Mandarin, which
have very little singular/plural marking. Similarly, children whose languages have a
singular/dual/plural system (Slovenian and Saudi Arabic) learn the meaning of “two” earlier
than English-speaking children. This relation between grammatical and cardinal number
may shed light on how humans acquire cardinal-number concepts. There is an ongoing
debate about whether mental symbols for small cardinalities (concepts for “oneness,”
“twoness,” etc.) are innate or learned. Although an effect of grammatical number on
number-word learning does not rule out nativist accounts, it seems more consistent with
constructivist accounts, which portray the number-learning process as one that requires
significant conceptual change.

Keywords: cardinal, counting, language development, number, plural, grammatical number

There are different ways to convey numerical information in
language. Suppose you and I meet for the first time, and you
wonder whether I have children. (Of course you are too polite
to ask.) During our conversation, I say, “I thought that as a
developmental psychologist, I would find it easy to be a parent,
but I don’t.” Now you know that I have at least one child. If I
say, “I came to this conference to get away from my kids,” you
know that I have two or more children, because the English word
kids is plural, and must refer to sets of two or more. Finally,
if I say, “My kids can’t stop arguing; they both want the last
word,” you know that I have exactly two children, because the
English word both always refers to sets of exactly two. (A rare
example of dual marking in English.) Alternatively, you might
simply ask whether I have children, and I might say, “Yes. I have
two boys.”

As this example demonstrates, numerical information can be
communicated via cardinal number words (“one,” “two,” “three,”
etc.), but it can also be communicated via grammatical mor-
phology, such as the s on the English word kids. English is a
singular/plural language, meaning that it marks the difference
between sets of one and sets of two or more. But not all lan-
guages do this. Numeral classifier languages such as Japanese
and Mandarin have very little singular/plural marking (Downing,
1996). In these languages, saying “I have kid(s)” is like saying
in English, “I am a parent.” It conveys no information at all
about how many kids you have. Still other languages have sin-
gular/dual/plural marking systems, which pick out sets of one,

sets of two, and sets of three or more. In these languages, dual-
marked noun phrases refer to sets of exactly two, similar to the
English word both. A few languages go even further, marking
singular/dual/trial/plural for sets of one, two, three, and four or
more, respectively, or marking singular/dual/paucal/plural where
paucal marking picks out small sets (something like the English
phrase “a handful”) and plural marking picks out larger sets
(Corbett, 2000).

This mini-review focuses on the question of how of these two
systems (grammatical number and cardinal numbers) may be
related in development. There is some evidence that the gram-
matical number marking system of the language a child is learning
may influence that child’s learning of the cardinal number system.
Because cardinal number systems are functionally identical across
languages while grammatical number systems differ, we can look
at differences in children’s learning of cardinal numbers, and
see if that learning bears the signatures of particular languages’
grammatical number systems.

When we do this, we find evidence that indeed, a language’s
grammatical number system does seem to influence children’s
learning of cardinal number words in that language. Children
learning a language as English, which pervasively marks sin-
gular/plural, seem to learn the meaning of the number “one”
earlier than children whose languages do not mark singu-
lar/plural, such as Japanese (Sarnecka et al., 2007). Similarly,
children whose languages have a singular/dual/plural system
(Slovenian and Saudi Arabic) appear to learn the meaning of
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“two” earlier than English-speaking children (Almoammer et al.,
2013).

This is interesting, not because it tells us anything about how
adult number concepts in any language, but because it may shed
some light on how number concepts are acquired. There is an
ongoing debate about whether mental symbols for small cardinal-
ities (concepts for oneness, twoness, threeness, and the like) are
innate or learned. Some proposals argue that these concepts are
innate and shared with other animals (e.g., Gelman and Gallistel,
1978, 2004; Gelman and Butterworth, 2005; Butterworth et al.,
2008). On these accounts, the challenge for the child learning
language may just be to identify the words (i.e., cardinal num-
ber words) that match her innate concepts of oneness, twoness,
threeness, etc.

On the other side of the debate, it is argued that humans are
not born with concepts of oneness, twoness, threeness, etc., but
must construct them (Le Corre and Carey, 2007; Carey, 2009).
People in numerate societies construct these concepts during early
childhood, in the course of learning the meanings for the cardinal
number words “one,” “two,” “three,” and eventually the properties
of the cardinal number system: that each number has a successor,
that all sets of the same number can be put into one-to-one
correspondence with each other, etc. (Izard et al., 2008, 2014;
Sarnecka and Carey, 2008; Carey, 2009; Sarnecka and Wright,
2013; Sarnecka et al., in press).

THE QUESTION
The question of how grammatical number might be related to
cardinal number began with an observation about trajectories
of number-word learning in English. In the early 1990s, Wynn
(1990, 1992) first reported that children learn the meanings of
cardinal number words one at a time and in order. Wynn showed
this using the “Give-N” or “Give-a-number” task, in which she
asked children to give her a certain number of items (e.g., “Give
me one fish”; “Give me three fish,” etc.). She found that children’s
performance moved through a predictable series of levels.

At the earliest (“pre-number-knower”) level, children do not
distinguish among the different number words. Pre-number
knowers might give one object for every number requested, or
they might give a handful of objects for every number, but they
show no sign of knowing the exact meaning of any number word.
At the next level (called the “one-knower” level), children know
that “one” means 1. On the Give-N task, one-knowers give exactly
one object when asked for “one,” and they give two or more
objects when asked for any other number. After this comes the
“two-knower” level, where children give one object for “one,” and
two objects for “two,” but do not reliably produce larger sets. This
is followed by a “three-knower” level and (although Wynn didn’t
find it because she never asked children for four objects) a “four-
knower” level. After the four-knower level, children seem to learn
the meanings of the higher cardinal number words in a different
way—inferring their meanings from their place in the counting
list rather than learning them individually as they did with the
small numbers (Carey, 2009). Children who have done this (i.e.,
who have figured out how the counting system represents cardinal
numbers) are called “Cardinal-principle knowers.”

The age at which children master these knower levels differs
from one child to another, but in the most commonly studied
population (English-speaking children from relatively privileged
socioeconomic backgrounds), children typically reach the “one-
knower” level some time during their second or third year (i.e.,
between 24 and 47 months old) and reach the final, “cardinal-
principle-knower” level about 1 year later, between about 34 and
51 months (Sarnecka et al., in press).

As a graduate student reading Wynn’s work in the late 1990s, I
noticed a parallel between children’s number-word learning and
grammatical number systems. Both follow a rigid hierarchy: a
child who understands “two” always understands “one” as well,
just as a language that marks dual always marks singular as
well. There do not seem to be children who understand “three”
but not “one” and “two,” just as there are no languages that
grammatically mark trial but not singular and dual. In a way, pre-
number-knowers are like speakers of numeral classifier languages
(e.g., Japanese); one-knowers are like speakers of singular/plural
languages (e.g., English); and two-knowers were like speakers of
singular/dual/plural languages (e.g., Slovenian).

A striking feature of number-word learning in English is the
really long one-knower level. Wynn (1992) reported that children
seemed to spend many months at the one-knower level—much
longer than they spent as two-knowers or three-knowers. Why
should that be the case? One possible explanation is that because
English is a singular/plural language, English-speaking children
must pay special attention to the distinction between one and
other set sizes. English-speaking children show understanding
of singular/plural marking between 20 and 24 months of age
(Kouider et al., 2006); it is possible that this knowledge helps
children learn the meaning of “one” sooner than they would
if their language did not distinguish singular from plural. This
explanation can be tested by comparing number-word learning
in English to number-word learning in Japanese, which generally
does not distinguish singular from plural.

A different possibility is that “one” is learned earlier than
“two” simply because “one” is much more frequent in everyday
speech. Across languages, “one” is more frequent than “two”;
“two” is more frequent than “three,” and so on (Dehaene and
Mehler, 1992). The frequency of “one” is particularly high in
English, where it appears not only in counting, but also in
deictic and anaphoric contexts (e.g., “Look at that one” or, “I’m
making sandwiches—do you want one?”) This explanation can
be tested by comparing English-speaking children’s number-word
learning to that of children speaking Russian, a singular/plural
language where the cardinal number “one” does not appear in
non-numeric contexts.

THE EVIDENCE
My collaborators and I administered Wynn’s Give-a-number task,
as well as a counting task, to young children living in Ann Arbor,
MI, USA; St. Petersburg, Russia, and Kobe, Japan (Sarnecka et al.,
2007). Children in each group ranged in age from 2 years, 9
months to 3 years, 6 months, and the mean age for each group
was 3 years, 2 months.

We found that more English- and Russian-speakers knew
the meaning of “one” than did their Japanese counterparts,
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supporting the idea that speaking a language with singular/plural
marking helps children learn the meaning of “one.” Comparing
English to Russian, we found that Russian-speakers were actually
more likely to know “one” than English speakers, even though
the Russian word for “one” appears less frequently in everyday
speech than the English word “one.” Thus, the data did not
support the idea that the overall high frequency of “one” relative
to other numbers causes English-speaking children to reach the
one-knower level sooner. Rather, it seems to be the presence of
singular/plural marking in the language that makes the difference.

One question that arose about these findings was whether
Japanese was the best choice to represent non-singular/plural
marking languages. Number-word learning in Japanese is poten-
tially complicated by the presence of two count lists, which sound
nothing at all alike. (One of the lists begins ichi, ni, san, shi,
go… the other begins hitotsu, futatsu, mitsu, yotsu, itsutsu…)
Both of the lists are commonly used for numbers up to 10
(although only the ichi, ni, san list is used for numbers above 10),
so it is reasonable to ask whether Japanese children might take
longer to learn the number-word meanings, just because the input
they receive for each number is potentially divided between two
different word forms.

We addressed this question in the 2007 paper by arguing that
Russian-speaking children also have to deal with different word
forms, as numbers are declined for gender and case. For example,
the word one in Russian may take any of the following forms: odin,
odna, odno, odni, odnu, odnovo, odnikh, odnoy, odnom, odnomu,
odnim, odnimi. But this argument is not wholly convincing, first
because these forms of one are not as different from each other as
hitotsu and ichi, and second because when people actually count
in Russian, the number words are usually in the nominative case,
so the count list sounds the same every time. Japanese, on the
other hand, actually has two different counting lists, which could
be a serious confound. So it is important to note that the finding
of children learning “one” later in a non-singular/plural language
has not only been replicated in Japanese (Barner et al., 2009b) but
is also found in Mandarin, which very sensibly has only one count
list (Li et al., 2003).

Further evidence for a link between grammatical number and
cardinal number-word learning has recently come from a study
with young speakers of two languages with singular/dual/plural
systems: Slovenian and Saudi Arabic (Almoammer et al., 2013).
The study tested 2- to 4-year-old children in Slovenian, and 3- and
4-year-old children in Arabic. Significantly more children knew
the meaning of “two” in the dual-marking languages than in age-
matched groups of English speakers. Slovenian children learned
“two” sooner than English-speaking children despite not being
able to count as well as the English speakers, which is surprising
because counting ability would seem to indicate experience with
numbers. (No counting data were available for the Saudi Arabic-
speaking children.) In both Slovenian and Saudi Arabic, children’s
understanding of the grammatical dual forms was correlated with
their knowledge of the cardinal number “two.”

Moreover, just as English-speaking children seem to spend
a long time at the one-knower level, so do Slovenian-speaking
children spend a long time at the two-knower level. Although
they learn “two” earlier, they stay at the two-knower level for

longer, taking more time to learn “three” and higher numbers
than children in the other language environments studied. This
connection between grammatical dual marking and learning
“two” is interesting because it shows that the meaning of “two”
doesn’t follow automatically from “one,” but requires additional
inference, for which dual-marking languages provide additional
evidence. This pattern is consistent with Carey’s (2009) account,
in which the meanings of “one” through “four” are learned
individually, whereas the meanings of the higher numbers are
learned as a group, when the child comes to understand the
cardinal principle.

At least one qualification to these findings should be noted.
In our original paper, we speculated that children learning singu-
lar/plural languages like English may initially understand “one”
as meaning singular as opposed to plural (Sarnecka et al., 2007).
As an example, we suggested that children may treat “one” like
the indefinite article “a(n).” (In fact, the number “one” and the
indefinite article were originally the same word in English, as they
are today in languages such as Spanish and French.)

However, one study compared English-speaking children’s use
of “one” and “a(n),” and found that children sometimes treat
them differently. Children were shown a plate with two apples
on it, and were asked either, “Is there an apple on the plate?” or
“Is there one apple on the plate?” (Barner et al., 2009a). Children
generally agreed with the statement that there was “an apple” on
the plate, but disagreed with the statement that there was “one
apple,” indicating that they treated the number “one” as upper-
bounded (i.e., more than one is not one), but did not treat the
word “a(n)” that way. Thus, although grammatical number helps
children learn the meaning of “one,” they do not treat the words
as identical.

CONCLUSION
It does appear that the child’s learning of cardinal numbers is
affected by the grammatical number system of his or her native
language. Children whose languages mark singular/plural learn
the cardinal meaning of the counting word “one” sooner than
children whose languages do not mark the singular/plural distinc-
tion. Similarly, children whose languages distinguish dual from
both singular and plural seem to learn “two” earlier than children
in other language environments.

Even more interesting, perhaps, is the slight delay that chil-
dren seem to experience in learning the first number not gram-
matically marked by their language. That is, children speaking
singular/plural languages not only learn “one” a little sooner, but
also seem to stay at the one-knower stage a bit later than children
speaking other languages. Similarly, children whose languages
include dual marking not only learn “two” earlier, but also seem
to linger at the two-knower level longer than children in other
language environments.

This suggests that the process of learning numbers that are
grammatically marked (i.e., “one” for speakers of singular/plural
languages; “one” and “two” for speakers of singular/dual/plural
languages) may differ from the process of learning numbers
that are not so marked. Children may use different sources of
information to learn the meanings of grammatically marked vs.
unmarked numbers. When the information from grammar runs
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out (e.g., when English speakers move on to learning “two” or
Slovenian speakers to learning “three”), children must rely on
some other source of information to figure out the next number
word. This results in a slight delay in learning, relative to speakers
of languages such as Japanese where all numbers are learned
without the help of grammatical number marking1.

If number-word learning is affected by the child’s language
environment, what if anything does that tell us about the innate-
ness of number concepts? On balance, this evidence seems most
compatible with constructivist views, because it implies that
number-word learning requires significant conceptual change.

When a child’s language environment highlights certain
numerical distinctions (i.e., one/more than one, or one/two/more
than two), these distinctions become more salient to the child,
and therefore more available as candidate meanings for counting
words, speeding the number-acquisition process. Perhaps having
to distinguish between individuals and sets (or between individ-
uals, pairs, and larger sets), speeds number learning by making
concepts such as individual, pair, and set available as candidate
meanings for cardinal number words.

Similarly, children slow down a bit when they encounter the
first number whose meaning is not grammatically marked. This
implies that children learn grammatically marked and unmarked
numbers by different processes, which is also seems more consis-
tent with a constructivist than a nativist framework.

Of course, it is possible to hold a nativist position and still
allow that grammatical distinctions can help children map count-
ing words to innate number concepts. But overall, these effects of
environment on learning seem to support constructivist accounts,
where children build concepts of oneness, twoness, threeness,
etc. based on the particular evidence they have available. When
the grammatical number system of a language highlights dif-
ferent numerical distinctions, trajectories of cardinal number
learning differ in systematic and predictable ways. This implies
that becoming numerate involves something more than simply a
matching a verbal counting list to an innate, non-verbal counting
list. Numerate children, it implies, are made and not born.
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Word problems (WPs) belong to the most difficult and complex problem types that pupils
encounter during their elementary-level mathematical development. In the classroom
setting, they are often viewed as merely arithmetic tasks; however, recent research
shows that a number of linguistic verbal components not directly related to arithmetic
contribute greatly to their difficulty. In this review, we will distinguish three components
of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical
complexity of the arithmetic problem, and (iii) the relation between the linguistic and
numerical complexity of a problem. We will discuss the impact of each of these factors
on WP difficulty and motivate the need for a high degree of control in stimuli design for
experiments that manipulate WP difficulty for a given age group.

Keywords: word problems, linguistics complexity, numerical complexity, text properties, difficulty

Word Problems

Introduction
Word problems (WPs) are part of the school curriculum and are taught at all levels of education. In
WPs, relevant information is presented in the form of a short narrative rather than in mathemat-
ical notation (Verschaffel et al., 2000). Sometimes WPs specifically encode a quantitative relation
between objects (Boonen et al., 2013). Many children from kindergarten through adulthood have
severe difficulties in solving WPs (Nesher and Teubal, 1975; Riley et al., 1983; Lewis and Mayer,
1987; Hegarty et al., 1992; Verschaffel et al., 1992). Both linguistic and numerical complexity con-
tributes to the difficulty in solving WPs. However, researchers have so far often focused on the one
or the other aspect, depending on which field they come from. Even within the respective fields,
linguistics, and numerical cognition, some aspects have been studied extensively, while others have
been (strangely) neglected. For instance, we will see that semantics and discourse structures have
been frequently studied in the context of WP complexity, but systematic syntactic manipulations
are scarce. As regards numerical cognition, number properties like parity and magnitude as well
as the type of mathematical reasoning have often been studied, but the type and the form of oper-
ations (e.g., carry-over effects) have not been investigated thoroughly in WPs, although they play
an important role in current numerical cognition research (Moeller et al., 2011; Nuerk et al., 2011,
2015).

In this review, as researchers from the field of linguistics and the field of numerical cogni-
tion we have collaborated to provide a systematic overview of linguistic and numerical aspects
relevant to solving WPs as well as their interaction. To capture a broad range of relevant facets
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in the review, we extended our view of the relevant literature
with systematic keyword searches in several databases (Web
of Science, Ebsco, Google Scholar, ScienceDirect) including the
following terms: WPs, story problems in combination with sit-
uational model, performance, consistency hypothesis, language
processing, relational terminology, semantic influence, reword-
ing, semantic cues, number size and type, working memory, text
comprehension, computational errors, operations, position of
unknown. In Table 1, we present selected linguistic, mathemat-
ical and general factors investigated in previous studies.

Individual Differences and Social Factors
Individual differences and social factors must be also consid-
ered in WP research (Fite, 2002). For example, in the PISA
studies—often measured with WPs—, mathematics literacy is
a commonly used notion (Stacey, 2012). “It is defined as an
individual’s capacity to identify and understand the role that
mathematics plays in the world, to make well-founded judg-
ments and to use and engage with mathematics in ways that meet
the needs of that” (OECD, 2010). Unsuccessful WP solvers can
experience negative social health and life outcome (Schley and
Fujita, 2014). Even beyond social consequences, numerous stud-
ies focused on individual differences and group differences, such

as students with and without learning disabilities (Kingsdorf and
Krawec, 2014), and children with and without developmental
disabilities (Neef et al., 2003). Hegarty et al. (1995) distinguished
domain-specific strategies that successful and unsuccessful prob-
lem solvers develop with practice and how these strategies
account for individual differences in performance. Different stu-
dents – e.g., individuals with calculation difficulty, or WP diffi-
culty (Powell and Fuchs, 2014) –may struggle with different types
of WPs. Besides domain-general capabilities like IQ, the role of
domain specific knowledge and processes were investigated to get
a complete account of problem solving, basic cognitive abilities;
visual, reading skills, mathematical skills, and metacognitive abil-
ities involved in the solution process. For example Boonen et al.
(2014) and Oostermeijer et al. (2014) explored the role of spatial
ability and reading comprehension inWP solving, since goodWP
solvers do not select numbers and relational keywords but create
a visual representation (Boonen et al., 2013).

Social factors like schooling, teachers and peers also deserve
consideration because the way of responding [e.g., De Corte et al.
(1988)], the scoring criteria, the presence of illustrations next
to the text [e.g., Berends and van Lieshout (2009)], or solution
models used by the teachers influenceWP performance consider-
ably. School WPs also support stereotypical thinking: WPs do not

TABLE 1 | Selected linguistic, mathematical, and general factors investigated in previous studies.

Linguistic factors Mathematical factors General factors

Structure
Structural complexity of basic quantitative
properties
(e.g., Number of letters, word and sentence length,
proportion of complex words)
(Searle et al., 1974; Nesher, 1976; Lepik, 1990)
Vocabulary level
(e.g., polysemous words, prepositional phrases,
passive voice, clause structure; Spanos et al.,
1988; Abedi et al., 1997; Abedi and Lord, 2001;
Shaftel et al., 2006; Martiniello, 2008)
Question wording/placing (Cummins et al., 1988)

Property of numbers
Single digit (Lean et al., 1990)
Multi digit (Haghverdi et al., 2012)
Type of number [e.g., fraction: (Raduan,
2010), decimal number: problem size, role of
number (De Corte et al., 1988)]
Number magnitude [e.g., range of number
smaller than 100: (Nesher, 1976)]

Skills and social aspects
Social consequences (Schley and Fujita, 2014)
Learning disabilities (Kingsdorf and Krawec, 2014)
Successful/unsuccessful problem solvers (Hegarty et al.,
1995)
Calculation/word problem (WP) difficulties
(Powell and Fuchs, 2014)
Children/adults (De Corte et al., 1990; Hegarty et al., 1992)

Required operation
Addition subtraction (De Corte and
Verschaffel, 1987)
Multiplication division (De Corte et al., 1988)
Given number (De Corte et al., 1990; Vicente
et al., 2007)

Categorization
Semantic structure of arithmetic WPs (Riley et al., 1983)
Algebra textbook frequency
(Mayer, 1981)
Standard/non-standard WP
(Jimenez and Verschaffel, 2014)

Semantics
Linguistics verbal cues (van der Schoot et al., 2009)
Phrasing in cue words (LeBlanc and Weber-Russell,
1996)
Conceptual rewording (Vicente et al., 2007)
Semantic/Object relation (?)
Presence of distractor (Muth, 1992)

Mathematical solution strategy
Counting from larger number (De Corte and
Verschaffel, 1987)
Position of the unknown (Garcia et al., 2006)
Arithmetic fact retrieval
(Orrantia et al., 2010)
Number combination (Fuchs et al., 2009)
Situation/Mental arithmetic strategy (Brissiaud
and Sander, 2010)

Solution strategies
Algebra WP/arithmetic WP (Koedinger and Nathan, 2004)
WP solving theory-models (Kintsch and Greeno, 1985)
Translation strategies (Hegarty et al., 1995)
Spatial/visual representation (Boonen et al., 2013)
Situation model (Thevenot et al., 2007)

Relevance of information
(Terao et al., 2004)
Numerical processes and representation
(MacGregor and Price, 1999; Goebel et al.,
2014)

Other aspects
Pedagogical factors (Lean et al., 1990)
Socio-mathematics (Reusser, 1988)
Stereotypes thinking (Yee and Lee, 1997)
Real-word knowledge (Verschaffel et al., 1997)
Response mode (De Corte et al., 1988)

Consistency effect (Lewis and Mayer, 1987)
e.g., revisited: (Pape, 2003)

Computer tutors (Nathan et al., 1992)
Computer simulation (Dellarosa, 1986)

Basic linguistics influence on numerical cognition (Lachmair et al., 2014)

Working memory (Swanson et al., 1993)
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resemble problems in real-world situations (Yee and Lee, 1997).
In addition, there is a strong tendency among both students and
teachers to exclude real-world knowledge from their WP solution
(Verschaffel et al., 1997), which is consistent with the observation
that the problem solving process is also influenced by social cog-
nitive and epistemic behavior settings (Reusser, 1988). Linguistic
and pedagogical factors also affect children’s understanding of
arithmetic WPs (Lean et al., 1990). Students’ beliefs about what
doing and knowing mathematics means are rather different
from the ideals (Jimenez and Verschaffel, 2014) and shaped by
“socio-mathematical norms.” Resulting differences in motivation
seem to influence the strategies used to solve WPs (Gasco and
Villarroel, 2014). In sum, both individual differences and social
factors contribute toWP performance and deserve consideration.

Subcategories of Word Problems and
Solution Strategies
Several different types of WPs—e.g., in the underlying mathe-
matical structure or solvability— are often presented intermixed
in one study without acknowledging the problem type. This is
problematic. Different types of WPs are presented for various
student groups, in different schools or different age groups. For
example, Swanson et al. (2013) investigated the role of strategy
instruction and cognitive abilities on WP solving accuracy. The
mathematical WPs they used were: addition, subtraction, and
multiplication without any further description of the problem
type. However, the available literature has already shown that dif-
ferent categories of WPs may lead to different solution strategies
and different error types. For instance, different semantic prob-
lem types result in different errors (Vicente et al., 2007) and have
a different difficulty level (LeBlanc and Weber-Russell, 1996).
Obviously, different scientific studies reporting results for dif-
ferent student or age groups cannot be easily compared to one
another when they use different WP types; it cannot be deter-
mined whether differences should be attributed to group or study
manipulation or differences in the used stimulus material. In the
following, we outline the major distinctions discussed in the lit-
erature. Besides the difficulty level, WPs have been categorized
with regard to various other attributes. Based on standard alge-
bra text books, Mayer (1981) categorized WPs according to their
frequency. Riley et al. (1983) created four groups based on the
semantic structure of additive arithmetic WPs (change, compare,
combine, equalize) and 18 further subcategories. For instance, the
change problem –where there is a start, a change, and a result state
–can be subdivided into three subcategories depending on which
state is the unknown.

The mathematical content of WPs can also serve as a basis
for categorization. Algebra WPs typically require translation into
a mathematical formula, whereas arithmetic WPs are solvable
with simple arithmetic or even mental calculation. In contrast to
arithmetic WPs, algebraic reasoning WPs share the same numer-
als and signs (Powell and Fuchs, 2014) and the manipulation
of those numbers and signals differs based on the question or
expected outcome (Kieran, 1990). However, the distinction is
not that straightforward, as in some cases both methods can be
applied. For instance, in a study by Van Dooren et al. (2002),
future secondary school teachers preferred the use of algebra

even when an arithmetical solution seemed more evident, and
some future primary school teachers rather applied arithmetical
methods. Computer-aided environments have been introduced
for algebraic WPs (Reusser, 1993) to support learning on “getting
the formalism” and the “equation” (Nathan et al., 1992) and to
allow students to generate, manipulate, and understand abstract
formal expressions for WPs. However, solution approaches are
not easily dissociable between arithmetic and algebraic problems.
If a WP is intended to be solved with an equation, in some cases a
simple arithmetic approach is enough (Gasco et al., 2014). Under
some circumstances, it is even easier to solve WPs via alterna-
tive arithmetic strategies than by deriving algebraic equations. US
children perform better on a story problem if it is in a money
context and the numbers involve multiples of 25 (Koedinger and
Nathan, 2004). While the distinction between algebra and arith-
metic WPs is important for investigation and evaluation, in this
review we concentrate mainly on arithmetic WPs.

Standardized phrases and the idea that every problem is solv-
able are other important attributes of many, but not all WPs.
Textbooks generally suggest implicitly that every WP is solvable
and that every numerical information is relevant (Pape, 2003).
They usually provide standardized phrases and keywords that are
highly correlated with correct solutions (Hinsley et al., 1977; ?).
There are so-called non-standard WPs (Jimenez and Verschaffel,
2014) which can be non-solvable WPs or if they are solvable some
have multiple solutions and may contain irrelevant data. In the
recent literature, non-standard WPs are getting more and more
attention (Yeap et al., 2005; Csikos et al., 2011). Children give
a high level of incorrect answers to non-standard WPS because
these seem to contradict their mathematics-related beliefs learned
in the classroom. Reusser (1988) presented 97 first and second
graders with the following sentence: “There are 26 sheep and
10 goats on a ship. How old is the captain?” and 76 students
“solved” the problem using the numbers in the task. The rationale
behind such studies is that always-solvable textbook problems
with standardized phrases and including only relevant numerical
information are hardly ecologically valid. Real-life WPs are not
standardized, contain irrelevant information, and a solution may
not always exist.

The above subcategories, which essentially characterize spe-
cific sets of WP properties, have a direct impact on human
performance in WP. For space limitations, we cannot discuss
the impact of all subcategories in detail, but we illustrate their
impact on performance and strategies with two examples: (i) dif-
ferent subcategories can result in different errors, and involve
different representations and processes. For example, a famil-
iar misconception is that multiplication (Vergnaud, 2009) always
makes the result larger (which is not true for n < 1), that division
makes the results smaller, and that division always involves divi-
sion of the larger number by the smaller, (ii) addition problems
are strongly influenced (De Corte and Verschaffel, 1987) by the
semantic structure (change, compare, combine). Carpenter et al.
(1981) reported that the dominant factor in determining the chil-
dren’s solution strategy was this semantic structure. For instance,
Change problems [cf. the classification of Riley et al. (1983)]
require the child to find the difference between the two num-
bers given in the problem; their nature influences the strategies
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children adopt. Riley et al. (1983) illustrates this with the follow-
ing examples: Change 2: “Joe had eight marbles. Then he gave five
marbles to Tom. Howmanymarbles does Joe have now?” Change
3: “Joe had three marbles. Then Tom gave him some more mar-
bles. Now Joe has eight marbles. How many marbles did Tom
give him?” Almost all the children used a subtraction strategy
(e.g., counting up) to solve Change 2. For Change 3 almost all
the children used an addition strategy (e.g., counting down). In
sum, the subcategories introduced in this section influence both
performance and the choice of solution strategies.

Indeed, solution strategies have systematically been in the
focus of WP research and addressed the following questions: how
do children and adults solve WPs? Why do they make differ-
ent errors and at which level of the solution process they do
so? Which kind of semantic representation do they create of the
WP? Which skills are necessary for the solution process? The
first theories on WP solution processes (Kintsch and Greeno,
1985) have drawn on the text comprehension theories of Mayer
(1982) and Van Dijk and Kintsch (1983). When solving prob-
lems, the solver first integrates the textual information into an
appropriate situation model or a mental representation of the
situation being described in the problem, which then forms the
basis for a solution strategy. This approach was further applied
by (Thevenot and Oakhill, 2005; Jimenez and Verschaffel, 2014;
Kingsdorf and Krawec, 2014). An important foundation of those
approaches is that solving WPs is not a simple translation of
problem sentences into equations (Paige and Simon, 1966). Often
both WPs and the corresponding numerical problems are done
without language translation (Schley and Fujita, 2014). Several
researchers have focused on abstraction as a reductive process
involved in the translation process in the WPs. Nathan et al.
(1992) argue that WPs solving is an exercise in text processing
required for understanding the problem (Cummins et al., 1988),
which is highly dependent upon language comprehension skills.
Successfully solvingWPs has been argued to require at least three
distinct processes (Nesher and Teubal, 1975): (i) understanding
and constructing the relation between text and arithmetic task,
(ii) linguistic understanding of the WP itself, and (iii) solving the
arithmetic tasks. Typically only the latter process is assumed to
be shared with common arithmetic tasks. Many students can suc-
cessfully solve common arithmetic tasks and they show good text
comprehension skills. Yet they fail to solve WPs correctly. This
suggests that other factors like solution strategies and building
up a mental model of the task also play a major role for the WP
performance.

Linguistic Complexity and Linguistic
Studies

In linguistics, the notion of complexity is discussed under a range
of perspectives, with particularly fruitful definitions grounded
in research on language evolution (Nichols, 1990) and lan-
guage acquisition (Bulté and Housen, 2012). Following the latter,
it is useful to delineate linguistic complexity from proposi-
tional complexity (the amount of meaning to be expressed)
and discourse-interactional complexity (the interaction of

participants in discourse). This makes it possible to zoom in on
linguistic complexity as the degree to which a text at hand is elab-
orated and varied (Ellis, 2003, p. 340). Linguistic complexity can
be analyzed with respect to all aspects of the linguistic system:
from the words and their lexical and morphological aspects, via
the way these words can be combined in syntax to form sen-
tences, to the text structure, and overall discourse. Languages
differ with respect to where in the linguistic system complexi-
fication is supported. For example, English makes use of word
order to encode grammatical functions, whereas agglutinative
languages such as Hungarian or Turkish make use of a rich mor-
phological inventory for this and other uses. The implication of
linguistic encoding differences is twofold: first, the difficulty of
WPs is language-specific, thus linguistic manipulation leading to
increased WP complexity in one language may not have an effect
in another, more complex language. Second, the performance of
language learners onWPs presented in a foreign language may be
affected by the differences between the learner’s mother tongue
and the language of the problem presentation. In the following
two sections, we briefly summarize the main findings on aspects
of linguistic complexity that affect performance.

Structural Factors
Studies on the relation between linguistic structure and student
performance on WPs have considered complexity at the micro-
level of word and sentence forms as well as at the macro-level
of the discourse structure of the WP passage. Early approaches
addressed structural complexity in terms of basic quantitative
properties of the WP text, such as the number of letters, words,
sentences, mean word, and sentence length, or the proportion of
complex (long) words (Searle et al., 1974; Nesher, 1976; Lepik,
1990). More linguistically motivated variables have been inves-
tigated in the context of comprehension difficulties in WPs for
language learners, for the most part learners of English. At the
vocabulary level, comprehension difficulties which result in prob-
lem solving difficulties for English language learners may stem
from the presence of unfamiliar (low-frequency) words, polyse-
mous words, idiomatic or culturally specific lexical references. At
the sentence structure level, factors that have been shown to play
a role include noun phrase length, the number of prepositional
phrases and participial modifiers, the presence of passive voice
and complex clause structure such as relative, subordinate, com-
plement, adverbial, or conditional clauses (Spanos et al., 1988;
Abedi et al., 1997; Abedi and Lord, 2001; Shaftel et al., 2006;
Thevenot et al., 2007; Martiniello, 2008).

At the discourse structure level, specifically in terms of dis-
course ordering, the correspondence between the order in which
numerical data is presented in the WP and the order in which it
can be used to solve it has been shown to be a major predictive
variable. Order-consistent problems result in better performance
(Searle et al., 1974). Better performance has also been observed
for simpler question wording or placing the question before the
text results (Cummins et al., 1988).

Semantic Factors
A single factor that is straightforwardly related to WP difficulty
and that has been widely investigated is the presence or absence
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of explicit verbal cues whose semantics hint at the expected
operation and thus directly lead toward the solution. Verbal
cues include words and phrases of different categories: con-
junctions (“and” for addition), adverbs (“left,” “more than,” “less
than” for subtraction), or determiners (“each” for multiplica-
tion). Eye tracking studies have shown that subjects tend to focus
on linguistic verbal cues and perform translation directly to the
mathematical operation (e.g., Hegarty et al., 1992; van der Schoot
et al., 2009).

Because verbal cues so often lead to default mathematical
interpretation (Nesher, 1976), even small differences in phrasing
incuewordscancausesignificantchangesinperformance(LeBlanc
and Weber-Russell, 1996). This is especially relevant for young
children (Lean et al., 1990), who in the course of development
connect words such as “join,” “add,” “get,” “find,” or “take away”
with concepts such as putting together, separating, giving away,
or losing. A problem can thus be reworded by adding verbal
clues which make the semantic relations more salient so that the
underlying mathematical relation is more explicit. For example,
the WP “There are five marbles. Two of them belong to Mary.
How many belong to John?” can be reworded as “There are five
marbles. Two of them belong to Mary. The rest belong to John.
How many belong to John?” [from Cummins (1991)]. This kind
of conceptual rewording has been shown to be useful to improve
children’sperformanceonWPs(Vicenteetal., 2007).Thuschanges
in wording can influence representation (De Corte et al., 1985).

Semantic or object relations between the objects described in
the problem also relate to difficulty. Division problems usually
involve functionally related objects (e.g., tulips–vases) and rarely
categorically related objects (e.g., tulips–daisies; ?). By contrast,
addition for the most part involves categorically related objects.
The correlation between object relations and mathematical
operations has been argued to reflect a structural correspondence
between semantic and mathematical relations (Bassok et al.,
1998). For this reason, the semantic structure properties of a WP
have been emphasized as a more important factor contributing
to difficulty than the syntactic structure (Yeap and Kaur, 2001;
?). Interestingly, an effect related to information load has been
observed; the presence of content irrelevant to the core solution,
i.e., the presence of numerical or linguistic distractors, results
in higher error rates (Muth, 1992). De Corte and Verschaffel
(1987) found that the semantic structure of WPs influences
children’s choice of mathematical solution strategy. In terms
of the broader task context, the required or expected way of
responding to the WP has a big influence, especially for the
domain of multiplication and division with rational numbers as
argued in De Corte et al. (1988); for example, whether students
are expected to answer the problem numerically or if they only
have to indicate the required operation, or whether they respond
in an open way or with multiple choice.

Numerical Complexity and Numerical
Studies

Arithmetic WPs have to be usually transformed mentally into an
arithmetic problem and usually require an arithmetic solution

(?). This means transforming word and numbers into the
appropriate operation (Neef et al., 2003). Since the arithmetic
problem has to be solved in the end, numerical representations
and arithmetic processes will also play an important role in
the solution process. In numerical cognition, different models
and representations have been proposed (e.g., Dehaene and
Cohen, 1995; Nuerk et al., 2011). However, the problem here is
that the literature on WP often seems (with some exceptions)
to be largely in a parallel research universe to the literature on
numerical cognition and arithmetic processes, so that standard
models of numerical cognition are hard to apply on the existing
literature. What is more, WP research on numerical factors is
also affected by the scoring criteria; in some studies on WP
solving, computational errors are neglected, because in many
studies researchers consider a solution as correct as long as the
solver has chosen the correct mathematical model (Verschaffel
and De Corte, 1990). This is not the case in behavioral numerical
cognition research, where the correct result is usually essential
and RTs, accuracies, error types, and solution types are analyzed
based on the arithmetic problem and result.

Numerical complexity can influence WP performance via at
least three routes (see Figure 1):

(1) Direct route: WPs with more complex arithmetic structure
are more difficult independent of linguistic complexity.

(2) Cognitive load: more complex arithmetic problems involve
a higher cognitive load. For instance, carry problems are
supposed to require more working memory resources. If
the linguistic properties are also complex and the built-
up of a mental model also requires more working memory
resources, high arithmetic, and linguistic complexities could
lead to over additive difficulties which could neither be
explained by main effects of linguistic or numerical difficulty.

(3) Solution strategies: multi-digit numbers are harder to process
than single-digit numbers (Nuerk et al., 2011; for a review)
and arithmetic complexity usually increases with numbers of
digits. Thevenot and Oakhill (2005) compared the influence
of processing three-digit numbers and two-digit numbers
on WP solution strategies. They showed that processing
numerically more complex three-digit numbers facilitated
alternative strategies by the participants. The authors sug-
gested that higher work load and working memory led to
this facilitation. For our review and the model in the revised
manuscript, the important point is that they resort to less
effortful strategies. Similar results were observed by Brissiaud
and Sander (2010), who manipulated the size and order of
the numbers and operation thus resulting in two different
solution strategies: (i) situation-strategy WPs that are easy to
solve with informal strategies, e.g., double-counting, derived
number fact, or trial-error strategy, (ii) mental arithmetic-
strategy WPs are “easy to solve with mental calculation,
but only when the relevant arithmetic knowledge is used.”
Number magnitude and order determined which strategy
was used most likely. In this review, we suggest that resort-
ing to alternative easier strategies is not restricted to number
magnitude, but could be used with any numerical variable
that allows simpler solutions. For instance, if a number
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FIGURE 1 | This figure describes a possible theoretical process model of
world problem solving based on this article and dissociating numerical
and linguistic factors: Three general aspects are distinguished for
predicting individual WP performance. Stimulus Attributes (WP difficulty),
individual attributes (capabilities), and environmental factors (e.g., teaching). WP
difficulty comprises linguistic factors (such as linguistic complexity of the WP
text, Section 2 of this article), numerical factors (such as numerical difficulty of
the numerical problem, Section 3), and their interaction (such as the relation
between text and arithmetic problem, Section 4). Individual Capabilities can refer
to linguistic and numerical capabilities and domain- general abilities such as
individual working memory capacity. Stimulus attributes and individual attributes
influence individual WP performance both directly and over two mediator
variables. One mediator variable refers to domain-general attributes, such as

cognitive load. Complex linguistic and numerical stimulus attributes can
increase cognitive load and the impact of increased complexity may be
overadditive, especially when the joint linguistic and numerical complexity
exceeds the cognitive load of an individual. On the other hand, those domain-
general attributes are influenced by individual capability. Cognitive load for an
individual with high linguistic or numerical abilities may be lower for the same
problem than for an individual with low linguistic or numerical abilities. The
second mediator variable refers to specific solution strategies. If specific solution
strategies can be applied to a particular WP problem, because the problem type
allows this and because the individual knows the strategy, solution strategies
can facilitate WP solving. Finally, environmental factors (e.g.: teaching, scoring
system. . . etc.) influence individual capabilities, solution strategies, and also
directly individual WP Performance.

bisection task were used in a text problem, we would also sug-
gest that participants resort to easier strategies (e.g., checking
the parities of the outer number), when the bisection prob-
lem gets more complex (e.g., larger interval, decade crossing
etc.).

Nevertheless, some distinctions of numerical processes can be
made in our review of the WP literature and are therefore pro-
posed as an initial step in this review. Note that in our view this
is not the end of the integration of numerical cognitive research
and WP research, but rather just a beginning. For an overview of
the investigation of specific numerical processes in current WP
research, we suggest categorizing them into five categories:

(i) the property of numbers (parity, single digit/multi digit,
problem size, ties, type of number, role of the number,
number magnitude),

(ii) required operation (type, number)
(iii) mathematical solution strategies (larger number, place, auto-

matic fact retrieval, position of the unknown),
(iv) relevance of the information.
(v) other numerical processes and representations

Number Properties
While some studies have shown an effect of numerical com-
plexity, from a numerical cognition view it is surprising that

actually the arithmetic complexity has rarely been systematically
considered as an isolated factor in WPs, although it is frequently
examined in other arithmetic problems or simply the descrip-
tion of numbers is missing, e.g., De Corte et al. (1990). For
instance, parity attributes are rarely considered in WPs, although
in children it influences task performance and strategy choice in
arithmetic tasks. For instance, in the number bisection task (Is
the middle number Y the exact mean of X and Z in X_Y_Z?),
parity influences performance. Trials with unequal parities of X
and Z are easier to solve than trials with equal parities (Nuerk
et al., 2002). We suggested that this is due to a change in strategy.
In trials with unequal parity (e.g., 21_25_28), it is impossible that
the middle number is the mean, because the mean of numbers
with unequal parity is not an integer number (and only integers
were used in the experiment). Therefore, participants may change
their strategy after they discovered unequal parities and may not
compute further to find out whether the middle number is really
the mean. A later fMRI study (Wood et al., 2008) corroborated
this assumption. In the easier unequal parity (“impossible”) con-
dition, we observed more activation in the right ventrolateral
prefrontal cortex, which is activated in cognitive set changes or
when participants generate alternative solutions for a task. Thus,
parity can influence performance and solution strategies in arith-
metic. This seems not only the case in the bisection task, which
is to our knowledge rarely used in WP research, but also in
standard operations like addition and subtraction. A review by
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Hines (2013) suggests that parity influences the difficulty of addi-
tion and subtraction, but not multiplication, and tasks containing
odd numbers are more difficult than with even ones. Such par-
ity effects have received little attention in WP research so far.
Furthermore, it seems that most WPs, especially for children,
contain single-digit numbers; e.g., each answer was in the range of
1–9, e.g., in Lean et al. (1990), or Powell and Fuchs (2014), only
few use multi-digit numbers (Haghverdi et al., 2012). In Nesher
(1976) the range of numbers is smaller than 100, contained
division two-digit numbers into one-digit number.

Explanations why the studies have chosen specific numbers,
e.g., mentioning problem size, are rare. De Corte et al. (1990)
and Orrantia et al. (2010) controlled for the number of sen-
tences; the size of the numbers given in the problems. In the
study of van der Schoot et al. (2009) the final answers were
between 14 and 40, included no fraction, no negative number,
no numerical value twice, and none of the possible answers
resulted in another. However, different types of numbers were
presented in WPs in some more studies: (i) fraction (Raduan,
2010), (ii) whole number, (iii) decimal number (Haghverdi et al.,
2012); and their effect has been rarely investigated. Koedinger
and Nathan (2004) found an effect for decimal numbers: “how-
ever we also observed a smaller situation facilitation effect
whereby story performance was better than word equation per-
formance under certain conditions: namely dealing with decimal
numbers.”

The mixed use of single- and multi-digit numbers is problem-
atic because in the last 15 years, numerous numerical cognition
studies have shown that single-digit number processing can-
not easily be generalized to multi-digit number processing, e.g.,
Nuerk et al. (2001); for reviews see Nuerk and Willmes (2005)
and Nuerk et al. (2015). Nuerk et al. (2015) have identified 17
numerical effects linked to different numerical representation,
which are specific for multi-digit number processing and which
cannot be explained by single-digit number representations. Also
even the same effects are different for single- and multi-digit
numbers. For instance, Ashkenazi et al. (2009) have shown that
the distance effect for two-digit numbers differentiates between
dyscalculic and typically developing children. The sometimes
seemingly arbitrary mix of single-digit and multi-digit number
use in WP research is therefore not reasonable in our view given
the state of numerical cognition research and the major differ-
ences between processing those different number types. The role
of a number within an operation also influences WP complex-
ity (De Corte et al., 1988). For example, in the case of addition
the role means: addend, minuend or by multiplication: multipli-
cand, multiplier. One important finding from recent research on
multiplication WPs is that children’s performances are strongly
affected by the nature of the multiplier whether, e.g., it is an inte-
ger, decimal larger than 1 or a decimal smaller than 1. On the
other hand, the size of the multiplicand has little or no effect on
problem difficulty. De Corte et al. (1988) stated that “two mul-
tiplication problems with the same mathematical, semantic, and
surface structure but different in terms of the nature of the given
numbers can elicit very distinct levels of problems difficulty.”
Indeed, this corresponds to recent findings that relatedness and
consistency heavily influence the ease with which a multiplication

problem can be solved cf. for relatedness (Domahs et al., 2006,
2007) and for consistency Verguts and Fias (2005).

Despite the major role of number properties in numerical cog-
nition, number property has not been investigated extensively
in the WPs (Fuchs et al., 2009). Nevertheless, numbers seem
to play a major role. For instance, De Corte and Verschaffel
(1986) observed that in their eye tracking study there was a rela-
tively strong focus on the numbers in the problem. Twenty-five
percent of the total solution time was spent in the two small
number areas. However, major number properties of numerical
cognitions research such as number magnitude are rarely sys-
tematically considered in WP research. In our view, more dialog
between fields, – numerical cognition and WP research – seems
necessary.

Required Operation
Carrying out operations are necessary steps in solving arithmetic
WPs. Operations have been used extensively in WPs. Most errors
seem to originate from people’s failure to understand the language
of WPs, i.e., the linguistic embedding of the calculation prob-
lem (Schumacher and Fuchs, 2012), and arithmetic computation
errors themselves (Raduan, 2010; Kingsdorf and Krawec, 2014).
Some errors may result from correct calculation performed on
incorrect problem representation (Lewis and Mayer, 1987) and
different operations may lead to different solution strategies.
The most usual operation used in WP experiments are addition
and subtraction (Carpenter et al., 1984; De Corte et al., 1988;
Schumacher and Fuchs, 2012). Even the classification of Riley
et al. (1983) was made for elementary addition and subtraction.
Research in the 1980s and 1990s concentrated on how children
learn to do one step addition and subtraction problems involving
small whole numbers; see the review from Vicente et al. (2007).
Later, the focus was more on the multiplication WPs or mixed
WPs – e.g., Swanson (2004). Greer (1992) presented a frame-
work categorization of multiplication and division WPs on the
basis of the types of quantities involved (positive integers, frac-
tion, and decimals) as models of situation. The semantic problem
structure also influences the solution strategies for addition and
subtraction.

Choosing the correct operation strongly depends on the type
of the given numbers in the problem (De Corte et al., 1990). As
already shortly outlined in above subsection on problem types,
there is a huge body of research on what makes addition, subtrac-
tion, or multiplication problems difficult. Carry operations (e.g.,
28+ 47; the decade value 1 from the unit sum 15 has to be carried
over to the decade sum) have long been known to make multi-
digit addition more difficult in children and adults; see Nuerk
et al. (2015) for a review. However, solution strategies differ
between children and adults – eye movement data suggest that in
a choice reaction task elementary school children always compute
and search for the correct results, while adults seem to also decide
based on the rejection of the incorrect result. What is more, even
within the carry operations at least three different cognitive pro-
cesses can be identified for adults: unit sum calculation, carry
detection, and carry execution (Moeller et al., 2011). Inability to
execute one of these processes may lead to worse performance
in carry problems in particular. Carry addition problems seem to
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require larger working memory resources (Ashcraft, 1995; Furst
and Hitch, 2000). If cognitive load/working memory demand is
high, because both the linguistic and the numerical complexity
of the WP are large, this may lead to over additive problems in
the domain-general processing stages involved in WP solving —
see Figure 1, for an elaboration. For multiplication, we know that
relatedness, ties, whether a problem stems from the 0, 1, 2, 5, or 10
row (Josta et al., 2009), or consistency influence the difficulty of
a multiplication problem (Domahs et al., 2006, 2007). Although
such factors have been extensively studied in numerical cognition
research, they are – to the best of our knowledge – rarely consid-
ered in WP research. Since we know that these factors make the
arithmetic computation, which is part of the WP solution, this
lack of consideration is again problematic in our view.

Mathematical Solution Strategies
Mathematical solution strategy variations have been studied
extensively, and can be a function of linguistic factors like word-
ing, semantic categories and propositions. However, how indi-
viduals come up with mathematical solution strategies can be
also be influenced by numerical factors like number magni-
tude (Thevenot and Oakhill, 2005). Such variables, which are
independent of other factors, make WPs harder and/or influ-
ence numerical representations, have rarely been studied. The
position/place of the unknown variable has an effect on represen-
tation (Garcia et al., 2006). Even studies about working memory
also investigated the position of the unknown variable (Swanson,
2004). The strategy of counting on from larger is easier if the
bigger number is represented first (Wilkins et al., 2001). Even
for adults: 4 + 2 = 6, and 2 + 4 = 6, which are mathemati-
cally equivalent, may psychologically imply different meanings
(Kaput, 1979). The sequence of the numbers, e.g., whether a prob-
lem starts with the smaller or with the larger number (Verschaffel
and De Corte, 1990), the position of the numbers and partic-
ular words (Schumacher and Fuchs, 2012) influence children’s
solution of elementary addition and subtraction problems. For
example, in change problems children typically look for a specific
number to begin with, depending on task features, like the first
mentioned number (Lean et al., 1990; Wilkins et al., 2001), the
type of problem (start or change set), and the size of the numbers
(Verschaffel and De Corte, 1990).

Arithmetic fact retrieval is a well researched ubiquitous strat-
egy in numerical cognition but less so in the domain of WPs.
Orrantia et al. (2010) found that arithmetic fact retrieval is not
limited to simple addition, but also possible in other tasks, such
as single-digit arithmetic WPs. Fuchs et al. (2009) investigated
so called “Number combination.” This means simple arithmetic
problems that can be solved via counting or decomposition
strategies or committed to long term memory for automatic
retrieval. Here, arithmetic fact retrieval had to be differentiated
from other strategies on three levels: operational, items difficulty,
and individual differences. These numerical factors influence
solution strategies in arithmetic andWPs as well. Decomposition
and counting require more working memory and therefore leave
less resources for the built-up and maintenance of a text situa-
tions model. However, both individual and stimulus differences
should also be considered. For instance, Grabner et al. (2009)

showed in an fMRI study that not only problem but also individ-
ual strategy choice contributed to fact retrieval processes when
solving multiplications.

Information Relevance and Step-Wise
Problem Processing
One relatively extensively studied factor in WPs is the relevance
of the information. Individuals have to extract the relevant infor-
mation from the text in order to carry out the correct solution.
Secondary information distracts people from recognizing the
underlying mathematical relations (Schley and Fujita, 2014). This
extra information may also be presented in the form of an extra
number or an extra operational step – one-step (i.e., one cal-
culation step has to be performed) and two-step problems (i.e.,
two calculation steps have to be performed). Problem complexity
increases with the addition of steps (Terao et al., 2004), as well as
the addition of irrelevant information to the problem (Kingsdorf
and Krawec, 2014) Presence of extraneous information and the
need for an extra step reduced the accuracy of the students’ solu-
tions, because students believe that all of the numbers in a WP
should be used. All other factors being kept constant, two-step
problems are much more error-prone than one-step problems
(Muth, 1992). However, it cannot be concluded that the reason
for two-step problems being more difficult is arithmetic com-
plexity, because in two-step problems, the WP has also become
more difficult linguistically as it usually contains more phrases
and semantic distractors.

Other Numerical Processes and
Representation
Several other numerical processes and representations have not
been investigated inWPs. For instance, as shortly outlined above,
one major factor in simple calculation problems, which can be
studied in isolation, is the presence or absence of a carry oper-
ation. Children and adults take longer and commit more errors
when computing the solution to a sum for which adding the
units leads to a change in the number of 10s (e.g., 14 + 9 = 23;
Furst and Hitch, 2000; Deschuyteneer et al., 2005) than when it
does not (e.g., 11 + 12 = 23). This effect is known as the carry
effect; in carry problems, a one needs to be carried from the unit
slot to the decade slot. The carry effect is influenced by various
processes, but even by language structure (Goebel et al., 2014).
Language influences on the difficulty of the numerical compu-
tations within a WP have to our knowledge not been studied.
Other central topics of numerical cognition such as, e.g., num-
ber and symbol sense contribute to WP solving are also open
questions (MacGregor and Price, 1999). We have chosen some
selected variables/factors, which have been investigated in theWP
research.

Connecting Linguistic and
Mathematical Factors

There are so many linguistic influences on numerical cogni-
tion and arithmetic that this justifies a special issue like this.
For instance, number word structure seems to play an essential
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role. Children growing up with regular number word struc-
ture usually perform better in variety of numerical tasks from
basic verbal counting up to arithmetic, e.g., Miller et al. (1995)
or Dowker et al. (2008). In addition, the consistency of the
order of the number word system and the Arabic number influ-
ences transcoding (Zuber et al., 2009; Pixner et al., 2011a; Imbo
et al., 2014) number comparison (Nuerk et al., 2005; Pixner
et al., 2011b; Klein et al., 2013; Moeller et al., 2014) calculation
(Goebel et al., 2014); see also (Brysbaert et al., 1998; Colomé
et al., 2010). In addition, reading direction influences numerical
processes like the SNARC effect (Shaki et al., 2009; Fischer and
Shaki, 2014); see Goebel et al. (2011) for reviews. Finally, gram-
matical and syntactic properties of elementary number words
influence early number acquisition (Sarnecka, 2013) and spatial-
numerical representations (Roettger and Domahs, 2015). The
linguistic influence on numerical cognition is hardly debatable
any more. In fact, Lachmair et al. (2014) argue for a connection of
language and words, O´Neill (2013) states that the link between
language and mathematics might originate from the same roots,
and “required abilities are not that split up as we think,” and
MacGregor and Price (1999) also argue that between language
and mathematics in WPs there is deep connection: “that the
cognitive ability that drives symbol processing is the connection
between language and maths.” Nevertheless, systematic variation
of both linguistic and numerical factors inWPs is scarce – though
Bassok et al. (1998) already found that semantic relations between
objects in the text of mathematical WPs were highly positively
correlated with arithmetic operations that took these objects as
arguments. Neural correlates of visualization and verbalization
during arithmetic WP study also suggest that mental arithmetic
in WPs is influenced by language processing (Zarnhofer et al.,
2013).

Word problems require some connection between linguistic
and mathematical understanding by the very nature of the task,
because at least children do not have a repertoire of “highly
automatized schemata” for representing the different problem
types (Garcia et al., 2006). Therefore, it is not surprising that
children make more errors when solving WPs compared to
number problems (Geary, 1996; Koedinger and Nathan, 2004).
Children are able to solve several types of addition and subtrac-
tion problems before they start formal schooling (De Corte and
Verschaffel, 1987; Lean et al., 1990), and understand numerical
concepts before seeingWPs in their curricula (Garcia et al., 2006).
Therefore, most studies implicitly assume that problem solvers
always have the necessary basic arithmetic skills, even in the case
of children. This may lead to the misconception that numbers
may play a lesser role than they actually do and factors other than
computational skills are a major source of difficulty with WPs
(Nesher, 1976; Reusser, 1993). In this aspect, it is also impor-
tant to note that difficulties in solving WPs have been reported
that could be neither attributed to the lack of general reading
comprehension skills nor to the lack of general mathematical
skills (Hegarty et al., 1995). Nevertheless, linguistics and numer-
ical factors are usually not independently manipulated in WPs
and not even dissociated by other means (e.g., regressions). What
is more, their interaction is rarely studied [for an exception, see
Verschaffel and De Corte (1990)].

Lexical Consistency Effect
One of the few frequently studied factors examining the relation
between text and arithmetic problems is lexical inconsistency.
Some WPs contain linguistic markers as “less” or “more.” In the
direct translation strategy (Hegarty et al., 1995) students sim-
ply associate “less” with subtraction and “more” with addition.
They search for linguistic markers and keywords. In the problem
model strategy, they construct amental model of the problem and
plan their solution on the basis of this model. Successful learn-
ers are more likely to employ the problem model strategy; they
focus more on variables names and relational terms and success-
ful problem solvers re-read the text less frequently (Pape, 2003)
in the eye-tracking studies. Unsuccessful learners, on the other
hand, seem to rely on the direct translation strategy; they focus
on numerals and on relational terms, and linguistics marked-
ness in the (Hegarty et al., 1992) eyetracking study. This leads
to wrong solutions in lexically inconsistent texts, where “more”
is associated with subtraction and “less” with addition. To give
an example for lexical inconsistency, consider the following WP
adapted from Boonen et al. (2013) “At the grocery store, a bottle
of olive oil costs 7 €. That is 2 € more than at the supermarket.
How much will [a bottle of olive oil] cost in the supermarket?”
The anticipated difficulty in comprehension and finding the cor-
rect solution is due to the fact that the adverb “more” evokes the
concept of addition, but the correct solution is not 7 + 2 but
7− 2, given the way the text is organized. Verschaffel et al. (1992)
found such a reaction time consistency effect for children but not
for adults. Nesher (1976) and Lean et al. (1990) obtained similar
results in experiments with groups of non-disadvantaged chil-
dren and students, showing that linguistic semantic consistency
with respect to the required mathematical operation is an impor-
tant determinant of task difficulty. Inconsistent language results
in a high error rate and longer response time (Hegarty et al.,
1992), even in Verschaffel (1994) retelling one-step compared
WPs showed a strong evidence for the consistency hypothesis.
Students made ∼13% more reversal errors on inconsistent than
on consistent language problems and the difficulty of compre-
hending inconsistent-language problems were increased when
the correct arithmetic operation was an increase. However, the
literature is inconsistent if the consistency effect is present in
both students and children. Children find it easier to convert the
relation term “more than” into subtraction operation than the
relational term “less than” into an addition operation (Lewis and
Mayer, 1987; Verschaffel et al., 1992; Pape, 2003; van der Schoot
et al., 2009).

When neither reading comprehension nor arithmetic skills
alone can explain failure to solve WPs, a possible explanation
is that linguistic complexity and numerical complexity rely on
the same resources (e.g., working memory). The premise is
that there is not an absolute atomic concept of difficulty for
WPs. Rather; there are multiple linguistic and numerical fac-
tors which contribute to a problem’s complexity. It is a com-
bination of these factors that might make a problem additively
more or less difficult because they exert demands on more gen-
eral resources like working memory. Generally, problem solving
performance is related to the ability of reducing the accessi-
bility of no target and irrelevant information in the memory

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 348 | 30

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Daroczy et al. Word problems: linguistic & numerical factors

(Passolunghi and Siegel, 2001). Working memory contributes to
early arithmetic performance, and studies also show that this
extends to WP solving (Lee et al., 2004) due to semantic mem-
ory representation “less than” which is more complex than “more
than.” Changes in the structure of the text has more demand on
the working. It has been suggested thatWPs in general are related
to workingmemory (Swanson et al., 1993). This will probably also
be influenced by instruction specifying how participants have to
solve a WP, and the method of evaluation, and scoring system. In
Van Dijk and Kintsch’s (1983) model of reading comprehension,
working memory is used to keep a number of text propositions
active simultaneously. In particular, working memory has been
related to each single component mentioned above, such as text-
problem relation, the linguistic complexity, and the arithmetic
complexity.

Future Direction, Open Questions

Word problem difficulty is influenced by the complexity of lin-
guistic factors, numerical factors, and their interrelation. To
better understand the difficulty of WPs, it would be desirable
to manipulate such variables and their interaction following the
principle of isolated variation. To support a systematic investiga-
tion, the variables to be manipulated also need to be discussed
against the backdrop of the relevant conceptual and empirical
issues in the underlying fields, linguistics, and numerical cogni-
tion. This has too rarely been the case in the past. For instance,
in the earlier studies on algebra WPs, the linguistic cues are of
mixed categories (adverbs, verbs, nouns, etc.) and the effect of
the complexity of syntactic structures is not taken into account.
Similarly, numerical complexity like basic number properties
(e.g., magnitude, place-value processing for multi-digit numbers)
or the complexity of underlying arithmetic computations (e.g.,
carry effects for addition, relatedness, or consistency effects for
multiplication) are often neglected. WP research would be well
advised to take into account the foundational categories, prop-
erties and findings of both numerical cognition and linguistics
when it examines which WPs are difficult for which groups and
why. Not only the main effects of numerical and linguistic com-
plexity should be studied, but also their interaction. To make

the relevant aspects explicit, Figure 1 sketches an overall process
model of WP solving.

The joint investigation of linguistic and numerical processes
also needs to take into account joint moderator variables such
as working memory in order to explore the possible interactions
between them. Since working memory affects all components of
complexity of a WP, the difficulties triggered may not be sim-
ply additive, but also interactive. The resolution of linguistic and
numerical difficulties may rely on the same processing stages
and resources (Sternberg, 1969). To investigate this, more col-
laboration between linguists and numerical cognition researchers
would be desirable.

Finally, we suggest a differential-psychological approach to
WP research. Different students may have a problem with dif-
ferent types of WPs. Linguistically rather weak students may
have problems with linguistically complex WPs, and arithmeti-
cally rather weak students with arithmetically complex problems.
Undifferentiated presentation of WPs in experiments will not
provide sufficient information about which skills and processes
an individual child should practice. Only with such differen-
tiation on an item level (as regards linguistic and numerical
complexity and their interrelation) and on an individual level
(as regards linguistic and numerical skills and general cognitive
abilities) will it be possible to understand why a particular child
has its individual difficulties with particular WP types. Such an
understanding, however, is essential to promote tailored learning
of one of the most difficult arithmetic problem types that students
encounter in school.
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Superior early numerical competencies of children in several Asian countries have
(amongst others) been attributed to the higher transparency of their number word
systems. Here, we directly investigated this claim by evaluating whether Japanese
children’s transcoding performance when writing numbers to dictation (e.g., “twenty
five” → 25) was less error prone than that of German-speaking children – both
in general as well as when considering language-specific attributes of the German
number word system such as the inversion property, in particular. In line with this
hypothesis we observed that German-speaking children committed more transcoding
errors in general than their Japanese peers. Moreover, their error pattern reflected the
specific inversion intransparency of the German number-word system. Inversion errors
in transcoding represented the most prominent error category in German-speaking
children, but were almost absent in Japanese-speaking children. We conclude that
the less transparent German number-word system complicates the acquisition of the
correspondence between symbolic Arabic numbers and their respective verbal number
words.
Keywords: transcoding, German, Japanese, number-word system

Introduction

Recent years have witnessed increasing research interest in the impact of specific language
properties on numerical development. A large proportion of these studies focused on the
comparison of Western (mostly European and American English) and Asian (mostly Korean,
Japanese, and Chinese) children’s performance in mathematics. Contrasting these different
languages and their cultural backgrounds revealed impressive differences in favor of children
from those Asian countries (e.g., Stevenson et al., 1985; Stigler et al., 1987; Miura et al.,
1999). For example, Geary et al. (1992) found that Chinese first graders were faster and more
accurate in addition tasks than matched US children. Similarly, superiority in subtraction
performance of Korean children over US children was reported (Song and Ginsburg, 1987;
Fuson and Kwon, 1992). However, these differences are not restricted to more complex
mathematical tasks like mental calculation. Even in basic numerical tasks such as counting or
place-value understanding differences favoring Asian children were observed (mostly Chinese
children: Miura et al., 1988; Miller et al., 1995). Several reasons have been proposed to explain
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this superiority of children in several Asian countries. On the
one hand, various cultural differences have been mentioned,
including variations in home experiences (e.g., greater parental
expectations; Song and Ginsburg, 1987; Stevenson and Lee, 1990)
as well as differences of educational systems (e.g., quality and
quantity of mathematics instruction, rigor, or structure of the
mathematics curriculum; Stevenson et al., 1985, 1987; Stigler
et al., 1987; Chen and Stevenson, 1989; Hess and Azuma, 1991;
Perry et al., 1993; Stevenson and Nerison-Low, 2000). However,
it has to be considered that superior performance in basic
numerical tasks was already reported before schooling or formal
education starts (e.g., Stevenson et al., 1987), questioning the
influence of schooling as the only relevant factor (see Miller et al.,
2005 for a review).

As a consequence, it was also suggested that specific language
characteristics such as the higher transparency of the number
word systems of east-Asian languages, such as Japanese and
Chinese, and their consistent reflection of the place-value
structure of the Arabic number systemmight also have an impact
on mathematics performance (Miura et al., 1988; Geary et al.,
1992; Miller et al., 1995; Miura and Okamoto, 2003; see Ng
and Rao, 2010 for a recent review; but see Ackerman, 1988 for
limitations of this view).

In our view, two approaches may help to differentiate
influences of language from those of culture more generally.
First, language influences may be examined within the same
culture and educational system. For instance Imbo et al.
(2014) compared transcoding performance in Dutch- and
French-speaking children in Belgium and observed advantages
for French-speaking children (see also Dowker and Lloyd,
2005; Dowker et al., 2008; Colomé et al., 2010; Pixner
et al., 2011; Salillas and Carreiras, 2014 for studies following
this approach). Second, one might aim at considering the
specificities of certain languages. Rather than just showing
that Japanese or Chinese children are somehow and/or
generally better in basic numerical and/or arithmetic tasks
than their Western (e.g., German or English) peers, it
would be instructive to show that they perform specifically
better on those stimuli within the same task, for which
the transparency of their number word system gives them
a particular advantage. Vice versa, for stimuli for which the
Japanese or Chinese number word system provides no particular
advantage, differences should be smaller or non-existent at all.
Importantly, general cultural differences cannot easily explain
such differential effects, when differences between groups can be
observed exclusively or predominantly for stimuli which differ
with respect to specific attributes of the respective language
systems.

In the current study we pursued this second rationale by
investigating differences between Japanese and German children
attending first grade of primary school regarding basic numerical
abilities of transcoding and thus place-value processing. In
the following, we will first briefly describe recent evidence
concerning language influences on number processing before
elaborating on the specific differences between the Japanese
and German number word systems from which we derive our
hypotheses.

Language Influence on Numerical
Performance
In general, the idea of a language-specific influence on numerical
cognition is not new. Quite a few studies found that language-
specific features influence performance in numerical tasks.
For instance, Colomé et al. (2010) investigated influences of
differences in number word formation between Spanish and
Basque on adults’ addition performance. While Spanish number
words reflect the base-10 structure of the Arabic number system,
some Basque number words reflect a vigesimal base-20 structure.
This means that number words are formed by combining
multiples of 20 and units or teens (e.g., “36” is spoken as “hogeita
hamasei” literally meaning “twenty and sixteen”). The authors
observed that only Basque participants solved additions faster
when they were presented as a multiple of 20 and a teen (e.g.,
20 + 16) as compared to problems with the same results but
emphasizing a base-10 structure composition [e.g., 26 + 10,
see also Salillas and Carreiras (2014) for influences of Basque
number words on number processing]. Moreover, language-
specific influences on numerical performance have also been
reported for children. For example, Seron and Fayol (1994)
observed language influences comparing French- and Belgian-
French-speaking children. In Belgium, decade structures like
70 and 90 are composed regularly [“septante” (“seventy”) and
“nonante” (“ninety”)], whereas in French they are irregular
[“soixante-dix” (“sixty-ten”) and “quatre-vingt-dix” (“fourty-
twenty-ten”)]. When children were asked to write down numbers
to dictation (e.g., transcoding verbal number words to the
corresponding Arabic number), Belgian children committed
fewer errors on the respective decades than French children.
Moreover, for French-speaking children error types clearly
reflected the verbal lexical primitives used to express these
decades. For instance, “quatre-vingt-dix-sept” (“four-twenty-ten-
seven,” which is the corresponding French number word for
97 = 4 ∗ 20 + 17) was written as 4217, 42017, or 8017 (see
also Krinzinger et al., 2011, for a comparison of French, Dutch,
and German; Göbel et al., 2014 for language influences on
arithmetic).

Moreover, in several number-word systems (e.g., German,
Dutch, Arabic, Maltese, Malagasy, etc., Comrie, 2005) tens
and units are uttered in reversed order with respect to
their order in Arabic notation (e.g., in German “21” is
spoken as “einundzwanzig,” i.e., “one-and-twenty” translated
literally) – referred to as the inversion property of number
words. Interestingly, transcoding performance of German-
speaking children was found to be severely influenced by the
inversion property of German number words. In fact, about
50% of transcoding errors of German-speaking first-graders
were related to inversion (Zuber et al., 2009). In contrast,
transcoding studies in languages without inversion (except for
teen numbers, e.g., “thirteen” in English) did not specifically
report inversion errors (e.g., French: Barrouillet et al., 2004;
Camos, 2008; Italian: Power and Dal Martello, 1990, 1997).
Different studies replicated this observation (e.g., Imbo et al.,
2014, for a comparison of Dutch and French in Belgian children,
see also Pixner et al., 2011 for a comparison of inverted and
non-inverted number words in Czech). These findings provide
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first evidence that transcoding performance may somehow be
related to language-specific features. However, those studies
were restricted to a comparison among different European
cultures.

While there are, to the best of our knowledge, no translingual
studies directly contrasting transcoding in some Western and
Asian number-word systems, there are some studies investigating
the understanding of the base-10 place-value structure of the
Arabic number system. In a first approach, Miura et al. (1988,
1994; Miura and Okamoto, 1989, 2003) assessed whether Asian
(including Chinese, Japanese, and Korean) differed fromWestern
(including French, Swedish, and US) children with regard to
their representation of the base-10 place-value structure of
the Arabic number system. They asked children to construct
various numbers by using base-10-blocks. Indeed, children
considered how their specific languages reflect or translate
the place-value structure of the Arabic number system into
their number words. Miura et al. (1988, 1994) suggested
that better performance with regard to base-10 understanding
of these Asian children is due to a strong influence of
language, namely the more transparent correspondence of
number words to the place-value structure of Arabic numbers
in the respective languages. However, these findings were
questioned in subsequent studies. Towse and Saxton (1997)
demonstrated that English-speaking children showed similar
base-10 place-value understanding as compared to the Asian
samples investigated by Miura et al. (1988, 1994; including
Chinese, Japanese, and Korean children) when instructed
appropriately.

The current study picks up this argument and evaluates
the account of Miura et al. (1988) explicitly. If Japanese
children have better place-value understanding of the Arabic
number system due to higher transparency of their number
word system, they should commit less place-value related
errors when transcoding number words into Arabic numbers.
In particular, errors related to specific intransparencies in
comparison to another number word system without these
attributes should be examined. Therefore, the current study is
designed to compare Japanese- and German-speaking children’s
performance in a basic numerical transcoding task. Contrasting
children’s performance in these two disparate number word
systems should provide further insight into the extent to which
language influences the acquisition of fundamental numerical
abilities.

Before introducing our hypotheses in more detail, the
structure of the Japanese and German number word system will
be sketched briefly, to outline their peculiarities and their possible
impact on number processing.

Differences between the Japanese and the
German Number Word System
Number word systems all over the world can differ in several
aspects (e.g., base, order, etc.; Comrie, 2005). In several Asian
languages, such as Japanese, the number word systems are
very transparent. Japanese children only have to memorize the
number names from one to nine and the multipliers “juu”
(“ten”), “hyaku” (“hundred”), and “sen” (“thousand”), etc.; larger

numbers are then generated according to a set of rules. Decade
names are formed by multiplicative composition, e.g., 40 is
“yon-juu” (“four–ten”), larger numbers combine multiplicative
and additive composition, e.g., 48 is “yon-juu-hachi” (“four-ten-
eight”). So there is a consistent relationship between number
words and corresponding digits as well as the multiplier in
the place-value structure of the Arabic number system for all
multi-digit numbers. In Japanese, the order in which units, tens,
hundreds, etc. are named in number words thus follows the
corresponding order of Arabic digits in a multi-digit number.
However, this is different in some Western languages such
as German. Here, the order in which tens and units are
uttered is inverted in teens and all other two-digit number
words: e.g., 21 is pronounced as “one-and-twenty” (“twenty-
one”).

Furthermore, in Japanese Arabic digits are named identically
in number words irrespective of their position within the number
(e.g., 2 → “two”; 20 → “two-ten”). In contrast, Arabic digits
correspond to different number words at the tens position as
compared to the unit position in German number words (e.g.,
2 as the number word “two” vs. 2 in “twenty”). Finally, a third
difference refers to the name of the multiplier. In Japanese,
the multiplier is explicitly part of the spoken number word.
For instance, 40 (4 ∗ 10) is spoken “yon-juu” (“four-ten”),
and 400 (4 ∗ 100) is spoken “yon-hyaku” (“four-hundred”).
In German, the multiplier is only transparent from three-digit
numbers upward [e.g., 400 → “vier hundert” (“four-hundred”)],
but intransparent for two-digit numbers [e.g., 40 → “vierzig”
(“fourty”) instead of “vier-zehn” (“four-ten”) as in Japanese, see
Ng and Rao, 2010 for a review on the influence of Asian number
word systems].

However, there are also some intransparencies common to
both languages. These concern the role of the digits 0 and 1 in
three-digit number words. Both languages do not name “zero”
at the tens place (e.g., “207” is “two-hundred and seven” and
not “two-hundred-zero-ten-seven”). This intransparency might
cause additive composition errors where either zero is left out
(“two-hundred and seven”→ 27) or the overwriting rule of zeros
is ignored (“two-hundred and seven” → 2007). Similarly, “one”
is not named at the tens position in both languages (“217” is
named as “two-hundred-ten-seven” in Japanese and not “two-
hundred-one-ten-seven”). Thus, there is only a multiplier (“ten”)
for the tens digit, but no value for the digit itself. Therefore, the
value of the corresponding Arabic digit cannot be determined
from the number-word (e.g., no digit value named in a three-
digit number word might as well reflect the value “zero” or
“one”).

Taken together, these two number word systems differ in
several aspects with the Japanese number word system being
the more transparent one. If children’s errors are related to the
specificities of their number word system when they translate
one number format to another, this would be an indication that
language influences numerical performance. Because the German
number word system is rather intransparent compared to the
Japanese one due to its inversion property, it is expected that
German speaking children commit more errors reflecting their
problems with understanding the place-value structure of Arabic
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numbers. Generally, this refers to errors violating the syntactic
structure of the respective multi-digit number (see Materials
and Methods section for a taxonomy of transcoding errors)
such as additive and multiplicative composition errors (e.g.,
“two-hundred seven” → 2007) as well as inversion errors. As
described above there are commonalities and differences between
German and Japanese with respect to transparency in additive
and multiplicative composition. Nevertheless, because digits
correspond to specific number names at the tens position (e.g.,
2 → “twenty”) and the fact that the multiplier is not indicated in
German number words denoting the decades, we expected more
additive and multiplicative transcoding errors for German- as
compared to Japanese-speaking children. Importantly, however,
the inversion property and associated inversion errors are of
highest interest in this study because there is no number word
inversion in Japanese at all. In Contrast, German children’s
transcoding errors have been found to be inversion related in
50% of the cases [i.e., “twenty-five” (spoken as “five and twenty”)
→ 52, Zuber et al., 2009], thereby reflecting a number-word
specific intransparency. As no inversion of tens and units is
present in the Japanese number word system, no such errors
should occur in Japanese-speaking children. Thus, given an
influence of language on performance, error rates should not
only differ in general, but should also be differentially related to
specific attributes of the number word structure of the respective
languages.

Materials and Methods

Participants
In total, 40 children participated in the study. Twenty German-
speaking children (10 girls), were recruited from a German
elementary school, mean age was 7.32 years (SD = 0.36; range
6 years 7 months to 7 years 8 months). All children spoke
German as their native language, none of them had been noted
for having specific difficulties in mathematics or other school
problems. Additionally, twenty Japanese children (seven girls)
were recruited from a Japanese elementary school in Germany.
Their mean agewas 7.27 years (SD= 0.36; range 6 years 5 months
to 7 years 7 months). Japanese schools in Germany follow
the Japanese curricula and teaching is exclusively in Japanese.
Moreover, all children’s parents were both native speakers of
Japanese, and only Japanese was spoken at home. Additionally,
Japanese children did not speak any German nor had they
encountered German numbers, yet. According to the respective
school curricula the number of mathematics classes is equal for
both language groups. By the end of first grade, all children
should know the numbers up to 20 and be able to perform simple
additions and subtractions within this range. To furthermore
ensure an equal level of education, both groups were tested
toward the end of the academic year, this means German-
speaking children at the end of May and Japanese-speaking
children in February, because the Japanese academic year ends
in March.

The study was approved by the local school authorities and
carried out in line with the latest version of the Declaration of

Helsinki. Written informed consent was obtained from parents
of all participating children prior to the study.

Tasks and Stimuli
The transcoding task consisted of 67 stimuli (i.e., 9 single-digit, 36
two-digit, and 22 three-digit numbers), incorporating all lexical
primitives and different syntactic structures. Children had to
write them down as Arabic numbers to dictation. Numerical
structures not yet learned at school (i.e., three-digit numbers)
were presented in order to assess whether children were able to
apply and generalize rules they had already learned on simpler
forms (see Byrge et al., 2014 for kindergartner’s writing down
three-digit numbers). The order of the stimuli was randomly
assigned, but the task always started with a one-digit number.

There was also a block of items, in which children had to
read aloud Arabic numbers. However, as the results did not differ
substantially between these two conditions and the error analysis
of the reading aloud condition is less discriminating (e.g., no
child would name 324 as “thirty thousand twenty four” but when
instructed to write down “three hundred twenty four” in Arabic
notation 30024 is a quite common error) this article focuses on
the results of the writing to dictation condition.

Procedure
Children were tested individually in a quiet room during school
hours in one-on-one sessions. Children had to write down
numbers to dictation on a blank sheet, one below another. No
feedback was given as to the correctness of the results. The
critical 67 trials were preceded by two practice trials to familiarize
children with the task.

Transcoding Error Analysis
Errors were categorized according to the taxonomy used in
Zuber et al. (2009; extended and slightly modified from Deloche
and Seron, 1982). This categorization is used because it allows
classification of inversion errors; moreover, it is kept as general as
possible to enable its use in a variety of languages.

In general, this categorization distinguishes lexical from
syntactic errors (following Deloche and Seron, 1982, 1987).
Lexical errors concerned the substitution of one (or more) lexical
elements by another one with no modification of the syntactic
structure. This error category was subdivided into lexical value
errors being (a) zero dependent, e.g., “eighty” → 81; or (b)
zero independent, e.g., “thirty-four” → 35), and (c) lexical class
errors, where the primitive itself is correct but its class is not
(e.g., “eighty” → 18). Lexical errors that could not be classified
into one of these categories were coded as (d) other lexical
errors.

Errors were classified to be syntactic when they altered the
syntactic structure of the produced numeral compared to the
target form. This could either be due to violations of the (a)
additive composition rule e.g., “three hundred twenty” → 30020
(when twenty is appended in the composition rather than added)
and (b) multiplicative composition rule, e.g., “three hundred”
→ 3100 (when 100 is appended in the composition rather than
multiplied. Further, (c) inversion errors were also categorized as
syntactic errors as they mirror the understanding of syntactic
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rules (i.e., place-value structuring). Inversion errors could either
be due to disregard of inversion meaning that the to-be-inverted
digits were produced in the wrong order [e.g., “twenty-five” (“five
and twenty”) → 52], or reflecting wrong application of inversion,
this means, when hearing “three hundred,” children may wrongly
apply the inversion rule (e.g., “three hundred” → 103) reflecting
an overgeneralization of this rule. Again, errors that could not
be classified into these subcategories were coded as (d) other
syntactic errors.

Eventually, errors including both wrong lexical elements and
incorrect syntactic structures were coded as combination errors.

Finally, transcoding errors that could not be classified as
belonging to one of the categories specified above were coded as
other errors.

Results

Inferential statistics were conducted on arcsine-transformed
error proportions to approximate normal distributions. In case
the sphericity assumption was violated, the original degrees
of freedom together with the respective Greenhouse–Geisser
coefficients (GGs) are reported. One German-speaking child was
excluded from further analyses because 24 of the 25 transcoding
errors of this child were non-responses. For the remaining
participants there were 2.2% non-responses in German speaking
children and 0.3% in Japanese children, which were not included
in the analyses.

Overall Error Categories
To examine whether absolute error rates differed between
the languages a 2 (language) × 4 (error categories: lexical,
syntactic, combination errors, others) ANOVA was conducted.
The ANOVA revealed significant main effects for both factors
[language: F(1,37) = 31.72, p < 0.001, η2

P = 0.46; error category:
F(3,111) = 38.66, p < 0.001, η2

P = 0.51, GG = 0.86] and a
significant interaction [F(3,111) = 13.31, p < 0.001, η2

P = 0.27,
GG= 0.86]. German-speaking children committed reliably more

errors in general than their Japanese-speaking counterparts (7.2
vs. 1.4%, respectively). Additionally, the frequency of error
categories differed significantly: pairwise contrasts indicated that
syntactic errors were reliably more frequent than all other error
categories (10.0%; all p < 0.001, Bonferroni-corrected) whereas
there were no reliable differences between the remaining error
categories (lexical errors: 1.7%, combination errors: 2.9%, other
errors: 2.1%; all p > 0.9). The reliable two-way interaction
indicated that languages differed reliably for the respective profile
of error categories (seeTable 1A). To evaluate our hypothesis that
differences should be most pronounced for syntactic errors, we
conducted three additional two-way ANOVAs with the factors
language group and error category in which the latter reflected
all possible pairwise combinations of the syntactic and one of the
other error categories (i.e., syntactic vs. lexical errors; syntactic
vs. combination errors, syntactic vs. other errors). To account
for influences of multiple testing we reduced the alpha level
accordingly (significant when p < 0.05/3 = 0.017). The ANOVAs
consistently revealed reliable interactions of language group and
error categories for syntactic vs. lexical errors [F(1,37) = 29.65,
p < 0.001, η2

P = 0.45], syntactic vs. other errors [F(1,37) = 22.87,
p < 0.001, η2

P = 0.38] as well as the interaction of language
group and syntactic vs. combination errors [F(1,37) = 5.78,
p = 0.021, η2

P = 0.14]. Importantly, these interactions indicated
language differences for syntactic errors (14.0%; German: 17.4%
vs. Japanese: 3.4%) to be more pronounced than those for
lexical (1.8%; German: 2.7% vs. Japanese: 0.9%), other errors
(2.0%; German: 2.3% vs. Japanese: 0.3%), and combination errors
(6.0%; German: 6.1% vs. Japanese: 0.1%). Furthermore, simple
effects indicated that language differences were reliable for all
error categories with German-speaking children consistently
committing more transcoding errors [syntactic: t(37) = 6.41,
p < 0.001; combined [t(37) = 4.51, p < 0.001; lexical errors:
t(37) = 2.36, p < 0.05; other errors: t(37) = 2.44, p < 0.05]. In
sum, this corroborated our hypothesis that language differences
should be most pronounced for syntactic errors, as these include
inversion errors that should be specific to German-speaking
children.

TABLE 1 | Overview of absolute error rates for all error categories (A) as well as absolute and relative error rates for subcategories of syntactic (B) and
lexical errors (C) separated for German- and Japanese-speaking children, SEM given in parentheses.

Error categories German Japanese

(A) Absolute overall error rates

Syntactic errors 17.4% (1.9) 3.4% (1.9)

Lexical errors 2.7% (0.7) 0.9% (0.7)

Combination errors 6.1% (1.5) 0.1% (1.4)

Other errors 2.3% (0.7) 0.3% (0.7)

(B) Subcategories syntactic errors

Absolute Relative Absolute Relative

Additive composition errors 7.2% (1.7) 33.3% (8.6) 2.9% (6.0) 75.8% (12.4)

Multiplicative composition errors 1.3% (2.0) 6.2% (2.0) 0.2% (1.0) 1.8% (2.8)

Inversion errors 8.6% (6.7) 58.5% (8.8) 0.3% (0.7) 22.2% (12.7)

(C) Subcategories lexical errors

Lexical value errors 0.5% (0.3) 9.7% (8.4) 0.1% (0.1) 20.0% (13.0)

Lexical value errors incl. zero 0.6% (0.5) 13.3% (10.9) 0.4% (0.3) 36.0% (16.9)

Lexical class errors 0.9% (0.4) 31.7% (10.5) 0.1% (0.1) 4.0% (16.2)
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Error Subcategories
To investigate whether these different error distributions were
indeed specifically related to number word attributes the absolute
and relative error frequencies of the subcategories of syntactic and
lexical errors per child were evaluated in more detail.

We did not consider combination errors and other errors here
because we had no specific hypothesis for language effects on the
latter. Regarding combination errors, Japanese-speaking children
did not commit any error in three of the four categories of
combination errors we observed (i.e., combination of lexical and
inversion errors, lexical, syntactic and inversion errors, as well as
syntactic and inversion errors). For the remaining combination of
lexical and syntactic errors there was only one Japanese child who
committed one such error. Therefore, we refrained from further
analyzing frequencies of error subcategories of combination
errors.

To allow applicability of ANOVA methods for the patterns of
relative error frequencies, we excluded one subcategory of errors
each from the analyses to avoid complete dependency among
error categories in that they would always sum up to 100%. We
eliminated the categories ‘other syntactic errors’ and ‘other lexical
errors’ because they were of only marginal theoretical interest.
Thus, relative error frequencies do not add up to 100%. To
keep the analyses of absolute and relative error rates comparable
we also excluded the categories ‘other syntactic errors’ and
‘other lexical errors’ when analyzing the absolute rates of error
subcategories. This means that the analysis for syntactic errors
discerned the subcategories inversion errors, as well as additive
and multiplicative composition errors. On the other hand, the
analysis for lexical errors discerned the subcategories of lexical
class errors, lexical value errors not including and lexical value
errors including zero.

Moreover, for the analysis of relative frequencies all children
who did not commit at least one error were excluded from
analyses since they do not contribute to potential differentiation
between error subcategories. For syntactic errors, this affected
11 of the Japanese-speaking children and no German-speaking
child. For lexical errors this affected 15 Japanese- and 7 German-
speaking children. Because of this considerable reduction of
sample sizes and the generally low frequencies of lexical errors
the results for the specific evaluation of lexical error subcategories
need to be treated with caution.

Syntactic Errors
Absolute error rates
The 2 (language group) × 3 (error subcategory: additive
composition, multiplicative composition, inversion) ANOVA
revealed a reliable main effect of language group [F(1,37)= 37.34,
p < 0.001, η2

P = 0.34] indicating that German-speaking
children committed significantly more syntactic transcoding
errors across all subcategories than their Japanese-peaking peers
(5.7% vs. 1.1%, respectively). Additionally, the main effect of
error subcategory was reliable [F(2,74) = 10.47, p < 0.01,
GG = 0.69; η2

P = 0.22] suggesting that error rates were
not distributed equally across syntactic error subcategories.
Pairwise comparisons showed that multiplicative composition
errors were reliably less frequent (0.8%, both p < 0.05,

Bonferroni corrected) than both additive composition (5.1%)
and inversion errors (4.4%). This error pattern was further
qualified by language as indicated by the significant interaction
between language group and error subcategory [F(2,74) = 7.50,
p < 0.01, GG = 0.69, η2

P = 0.17, see Table 1B]. As we
hypothesized that language differences within the category
of syntactic errors should be driven by the specifically
increased frequencies of inversion errors in German-speaking
children, we conducted two additional two-way ANOVAs
with the factors language group and error subcategory. The
factor error subcategory reflected the pairwise combinations
of inversion errors with other syntactic error subcategories
(i.e., inversion vs. multiplicative composition errors; inversion
vs. additive composition errors). We reduced the alpha level
accordingly to control for influences of multiple comparisons
(i.e., significant when p < 0.05/2 = 0.025). The ANOVAs
revealed a marginally reliable interaction of language group
and error subcategories inversion vs. additive composition
errors [F(1,37) = 4.80, p < 0.05, η2

P = 0.12] whereas the
interaction for error subcategories inversion vs. multiplicative
composition errors was highly significant [F(1,37) = 30.44,
p < 0.001, η2

P = 0.45]. Importantly, the former interaction
indicated that the language difference for inversion errors (8.4%;
German: 8.6% vs. Japanese: 0.2%) tended to be more pronounced
than that for additive composition errors (4.3%; German:
7.2% vs. Japanese: 2.9%). Moreover, the language difference
was significantly more pronounced for inversion errors than
for multiplicative composition errors (1.1%, German: 1.3% vs.
Japanese: 0.2%).

Tests for simple effects indicated that absolute frequencies
of error subcategories were significantly higher for German-
speaking children for all error subcategories [inversion errors:
8.6% vs. 0.2%, t(37) = 8.55, p < 0.001; additive composition
errors: 7.2% vs. 3.0%, t(37) = 2.04, p < 0.05; multiplicative
composition errors: 1.3% vs. 0.2%, t(37) = 2.62, p < 0.05].

Relative error rates
As to be expected, the 2 (language group) × 3 (error subcategory:
additive composition, multiplicative composition, inversion)
ANOVA on relative error frequencies revealed no significant
main effect of language group [F(1,27) < 1]. However, the
main effect of error subcategory was reliable [F(2,52) = 10.96,
p < 0.001,; η2

P = 0.30, GG = 0.57] suggesting that syntactic error
subcategories were not distributed equally. Pairwise comparisons
showed that multiplicative composition errors were reliably
less frequent (4.0%, both p < 0.05, Bonferroni corrected)
than both additive composition (54.6%) and inversion errors
(40.4%). Importantly, however, this error pattern was qualified
by language as indicated by the reliable interaction between
language group and error subcategory [F(2,52) = 7.59, p < 0.01,
η2
P = 0.23, GG = 0.57, see Table 1B]. To evaluate whether

language differences within the category of syntactic errors
were indeed driven by the specifically increased frequencies of
inversion errors in German-speaking children, two additional
two-way ANOVAs with the factors language group and error
subcategory were carried out. The latter factor reflected the
pairwise combinations of inversion errors with other syntactic
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error subcategories (i.e., inversion vs. multiplicative composition
errors; inversion vs. additive composition errors). To account
for influences of multiple testing we reduced the alpha level
accordingly (significant when p < 0.05/2 = 0.025). The
ANOVAs revealed a reliable interaction of language group
and error subcategories inversion vs. additive composition
errors [F(1,26) = 8.00, p < 0.01, η2

P = 0.24] whereas the
interaction with error subcategories inversion vs. multiplicative
composition errors was not reliable [F(1,26) = 3.12, p = 0.09,
η2
P = 0.11]. Importantly, the former interaction indicated that

the language differences for inversion errors (36.3%; German:
58.5% vs. Japanese: 22.2%) were indeed more pronounced than
for additive composition errors (−42.6%; German: 33.3% vs.
Japanese: 75.8%).

Tests for simple effects substantiated that relative frequencies
of the error subcategories were significantly higher for German-
speaking children for inversion errors [t(26) = 2.56, p < 0.05],
whereas Japanese-speaking children committed relatively more
additive composition errors [t(26) = 3.02, p < 0.01]. There
was no reliable difference for multiplicative composition errors
[t(26) = 1.46, p = 0.16].

Taken together, the frequencies of absolute and relative
syntactic error subcategories mirrored the hypothesized language
specificities. The inversion property of German number words
led to a specific absolute but also relative increase of inversion
errors not present for Japanese-speaking children. However,
these data also indicate that additive composition errors were
relatively more prominent in Japanese-speaking children – even
though they were more prominent in absolute terms for German-
speaking children.

Lexical Errors
Absolute error rates
The 2 (language) × 3 (lexical errors: zero dependent, zero
independent, lexical class) ANOVA revealed no reliable effects
of the factors error subcategories [F(2,74) < 1] and language
group [F(1,37) = 2.86, p = 0.10, η2

P = 0.07, GG = 0.89] nor
a significant interaction of these two factors [F(2,74) = 1.06,
p = 0.35, η2

P = 0.03, GG = 0.89, see Table 1C].
Simple effects revealed that German-speaking children

committed significantly more lexical class errors than Japanese-
speaking children [0.9 vs. 0.07%, t(37) = 2.04, p < 0.05].
In contrast, there were no reliable language differences for
zero-independent [0.5 vs. 0.07%, respectively, t(37) = 1.30,
p = 0.21] and zero-dependent errors [0.6% vs. 0.4%, t(37) = 0.19,
p = 0.85].

Relative error rates
The 2 (language) × 3 (lexical errors: zero dependent, zero
independent, lexical class) ANOVA neither revealed reliable
effects of the factors error subcategories [F(2,30) < 1] and
language group [F(1,15) < 1] nor an interaction of these two
factors [F(2,30) = 1.48, p = 0.24, η2

P = 0.09, see Table 1C].
In summary, this pattern is in line with our specificity

hypothesis that language differences should be most prominent
for syntactic error categories reflecting differences of the number
word systems compared.

Discussion

The aim of this study was to investigate influences of language
on numerical development by means of contrasting German- and
Japanese-speaking children’s transcoding performance by the end
of first grade. We were particularly interested in whether there
were only general differences in the overall performance level
or rather specific error patterns for the two language groups,
reflecting the specific intransparencies of the respective number
word systems. In particular, we expected inversion errors to be
more prominent in German-speaking children.

In line with our expectations we observed strong indications of
language influences on transcoding performance. First, German-
speaking children, who have to learn the less transparent number
word system, committed reliably more transcoding errors in
general. However, and more importantly, more fine-grained
analyses corroborated our more specific hypothesis that the
distribution across error-types should not be arbitrary, but reflect
the specificities of the respective number word systems. German-
speaking children showed higher absolute rates of syntactic
transcoding errors in general and each subcategory of syntactic
errors (i.e., inversion, additive, and multiplicative composition)
in particular. This reflects less precise overall understanding of
the composition of multi-digit numbers out of their single-digit
components in German-speaking children. Additionally, within
the category of syntactic transcoding errors consideration of
absolute and relative error rates indicated that inversion errors
were not only the most prominent syntactic error subcategory in
German-speaking children but also reliably more prominent than
in Japanese-speaking children. The difficulty arising from the
inversion property of German number words is further illustrated
by the fact that inversion errors were not restricted to errors
associated with the order of tens and units and thus the to-be-
inverted digits (e.g., “twenty five” → 52). Instead, about 25%
of inversion errors in German-speaking children reflected an
overgeneralization of the inversion rule to hundreds (e.g., “nine
hundred” → 109). No such error was committed by Japanese-
speaking children. This clearly indicated the influence of the
inversion property (i.e., the inverted order in which tens and
units are named in number words) as a particular language
attribute, which is present in German but not in Japanese, on
children’s place-value understanding. In sum, these data clearly
corroborate the hypothesis that language influences numerical
abilities. This point and possible reasons for the higher specific
and unspecific error rates in German will be discussed in the
following.

Essentially, about half of the errors of German-speaking
children were related to the inconsistency of inversion, whereas
hardly any inversion errors were committed by Japanese-
speaking children. Therefore, the interpretation of these results
is straightforward. As there is no inversion in Japanese, almost
none of these errors occurred; whereas, once inversion is
present, the error distribution reflects this intransparency of
the number word system. This is in line with the results of
Pixner et al. (2011) who investigated transcoding in Czech-
speaking children. In Czech both non-inverted and inverted
number words for two-digit numbers are used commonly.
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Thus, Pixner et al. (2011) were able to directly evaluate the
influence of inversion on transcoding performance within the
same children. Similar to the present results, Pixner et al.
(2011) observed that Czech children committed inversion
related transcoding errors only when dictated number words
were in the inverted format. However, transcoding errors
of German-speaking children were not related exclusively to
the specific attribute of inversion in German number words.
Instead, error frequencies seemed to reflect the generally higher
intransparency of the German number word system with regard
to the reflection of the place-value structure of the Arabic
number system: absolute frequencies of all subcategories of
syntactic (place-value) errors were higher for German-speaking
children.

In this respect, it is important to note that the few
errors observed in Japanese children were often related to
the only intransparency of the Japanese number-word system,
such as the missing digit value for “one” (“one” is not
named in the decade position, e.g., 217 → “two-hundred-ten-
seven” and not “two-hundred-one-ten-seven”) or the missing
digit and multiplier values for zero (e.g., “207” is “two-
hundred and seven” and not “two-hundred-zero-ten-seven”).
These intransparencies are related to additive composition.
Accordingly, additive composition transcoding errors had a
higher relative frequency in Japanese-speaking than in German-
speaking children (even though German-speaking children
committed more additive composition errors in absolute terms).
Indeed, when examining the errors of Japanese children, it
appears that almost all errors were related to the inconsistency of
additive composition, whereas there were much fewer errors in
all other error categories. Similarly, German speaking children’s
additive composition errors constitute the major error subgroup
besides inversion errors. Taken together, this supports the
hypothesis of a language-specific influence of number word
formation on transcoding performance.

However, when comparing error rates for additive
composition rules between the two languages, one might wonder,
why the absolute error rates of German-speaking children
were about four times higher than those of Japanese-speaking
children, even though they reflect the same additive composition
principle. To account for these findings, the cognitive processes
necessary for transcoding should be considered. Generally,
the present pattern of results indicated that more transparent
number word structures are less error prone, when children
have to transcode numbers. But, additionally, another process
might be involved as well. Because the structure of Japanese
number words is simpler, it may require less working memory
(WM) capacity to correctly transcode numbers. Indeed, WM
was observed to be an influencing factor in several studies. For
instance, Barrouillet et al. (2004) found WM to reliably predict
transcoding performance (see also Camos, 2008). Moreover,
Zuber et al. (2009) found that WM capacity was specifically
important for transcoding in a language with inversion (see
also Imbo et al., 2014). Therefore, one might speculate that
an intransparent number word system requires more WM
capacity and might therefore be more error prone in general.
In contrast, a more transparent number word structure like the

Japanese would require less WM capacity and may thus be less
susceptible to WM capacity limitations. In this respect, WM
capacity limitations in children may be partially responsible
for our finding that German children committed more additive
composition errors than Japanese children, even though the
same principle has to be applied in the two languages.

Although this study revealed reliable influences of language
on children’s numerical performance, one cannot exclude the
possibility of other factors entirely. It should be acknowledged
that even if teaching curricula were the same in both groups,
school and home-related factors might have influenced children’s
performance as well. In Japan mathematics performance is
considered more important than in Western cultures (e.g.,
Stevenson and Lee, 1990) and children are trained and supported
to a greater extent by parents and teachers (e.g., Song and
Ginsburg, 1987; Stevenson and Lee, 1990). However, for first
grade children, our data indicated that these factors do not
seem to be the only ones to influence numerical performance
because they can only account for better overall performance
of Japanese children. Yet, we also observed specific differences
in the distribution of absolute and relative error patterns of the
two language groups, which corresponded very closely to the
specificities of the two number word systems: German children
did not only produced consistently more errors in absolute
terms, but also showed higher absolute and relative rates of
errors specifically related to the particular intransparencies of
their number-word system regarding place-value coding (i.e., the
inversion property). These specific effects cannot be explained by
an account stressing general differences in learning, education or
culture.

Finally, the impact of these language-specific influences on
the acquisition of more complex numerical and arithmetical
skills has to be considered. There is accumulating evidence that
the understanding of basic numerical concepts including the
place-value structure of the Arabic number system influences
basic numerical (e.g., Holloway and Ansari, 2009; Moeller
et al., 2009, 2015; Helmreich et al., 2011; Pixner et al.,
2011) but also arithmetic performance (e.g., Levine et al.,
1992; Kaufmann et al., 2003; Booth and Siegler, 2008; Göbel
et al., 2014). On a very basic level, Cankaya et al. (2014)
observed that the regular and transparent Turkish number
word structure led to faster acquisition of counting principles
and thus better counting performance in Turkish-speaking
kindergartners (but see Vasilyeva et al., 2015 for a diverging
account). For primary school children Moeller et al. (2011)
found specific longitudinal influences of early place-value
understanding (as assessed by transcoding performance amongst
others) on children’s numerical development. The authors
observed that children who committed more inversion-related
transcoding errors at the end of grade 1 not only showed
poorer addition performance at the end of grade 3 but also
had particular difficulties solving addition problems requiring
a carry and thus posing increased demands on their place-
value understanding. This is further corroborated by data of
Moura et al. (2013), who found that children with mathematical
difficulties in middle grades of primary school had particular
problems acquiring the syntactic transcoding rules allowing for
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correct place-value coding of multi-digit numbers. Additionally,
Imbo et al. (2014) observed that Dutch second graders who
experienced transcoding problems were also found to achieve
generally worse in math as indicated by their grades.

Given this strong influence of language on the understanding
of the place-value structure of the Arabic number system
and the observed relation of the latter with mathematics
performance more generally, the present results might also be
informative with regard to the repeatedly observed performance
difference in mathematical achievement between Western and
Asian children (e.g., Fuson and Kwon, 1992). The present data
suggest that it is more demanding for children to successfully
acquire the relation between symbolic Arabic numbers and
number words and thus to acquire place-value understanding in
languages with intransparent number word systems. However,
the studies described above indicated that such basic place-
value understanding is predictive for successful acquisition
of more complex arithmetic and mathematical competencies
(e.g., Moeller et al., 2011 for the specific case of transcoding).
Considering this state of affairs, the implications for teaching
are straightforward: for children having to learn an intransparent
and complex number word system it might be particularly
important to teach and train the correspondence of the
Arabic number system and number words more intensively,
until children successfully master this link (e.g., Link et al.,
2014).

Conclusion

This study showed that German-speaking children were
outperformed by Japanese-speaking children not only with
respect to overall transcoding performance, but also experienced
a particular disadvantage related to specific intransparencies of
the German number word system. German-speaking children
showed higher absolute error rates in general but also higher
absolute and relative error rates specifically reflecting the
inversion property of the German number word system. Such
a differential performance pattern cannot be explained easily
by general cultural accounts emphasizing the role of different
learning cultures and/or education. Instead, these results are well
in line with language accounts (Miller et al., 2005 for a review)
suggesting that transcoding performance should be affected most
where the respective number word system is most intransparent.

From this we conclude that the intransparency of the German
number word system hampers fast and accurate acquisition of
the correspondence between symbolic Arabic numbers and their
verbal number names, while the transparency of the Japanese
number word system leaves Japanese-speaking children at a
considerable advantage. In sum, a better understanding of the
difficulties imposed by the specificities of a particular number
word system may help to corroborate transcoding skills and thus
children’s place-value understanding, which – in turn – has been
shown to predict future numerical and arithmetic achievement.
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Symbolic (i.e., with Arabic numerals) approximate arithmetic with large numerosities is
an important predictor of mathematics. It was previously evidenced to onset before
formal schooling at the kindergarten age (Gilmore et al., 2007) and was assumed to
map onto pre-existing nonsymbolic (i.e., abstract magnitudes) representations. With a
longitudinal study (Experiment 1), we show, for the first time, that nonsymbolic and
symbolic arithmetic demonstrate different developmental trajectories. In contrast to
Gilmore et al.’s (2007) findings, Experiment 1 showed that symbolic arithmetic onsets in
grade 1, with the start of formal schooling, not earlier. Gilmore et al. (2007) had examined
English-speaking children, whereas we assessed a large Dutch-speaking sample. The
Dutch language for numbers can be cognitively more demanding, for example, due to
the inversion property in numbers above 20. Thus, for instance, the number 48 is named
in Dutch “achtenveertig” (eight and forty) instead of “forty eight.” To examine the effect
of the language of numbers, we conducted a cross-cultural study with English- and
Dutch-speaking children that had similar SES and math achievement skills (Experiment
2). Results demonstrated that Dutch-speaking kindergarteners lagged behind English-
speaking children in symbolic arithmetic, not nonsymbolic and demonstrated a working
memory overload in symbolic arithmetic, not nonsymbolic. Also, we show for the
first time that the ability to name two-digit numbers highly correlates with symbolic
approximate arithmetic not nonsymbolic. Our experiments empirically demonstrate that
the symbolic number system is modulated more by development and education than
the nonsymbolic system. Also, in contrast to the nonsymbolic system, the symbolic
system is modulated by language.

Keywords: numerical cognition, language, nonsymbolic approximate arithmetic, symbolic approximate
arithmetic, kindergarten children, number naming system, symbolic arithmetic development, cross-cultural
comparison

Introduction

Humans and animals seem to be born with an ability to estimate and manipulate abstract
magnitudes, namely, nonsymbolic quantities (Flombaum et al., 2005; McCrink and Wynn, 2007;
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Cantlon, 2012; Starr et al., 2013; for reviews Dehaene et al., 1998;
Feigenson et al., 2004; Dehaene, 2011). This ability has been
attributed to the so-called approximate number system (ANS), a
cognitive system where nonsymbolic numerosities are assumed
to be represented and manipulated (Feigenson et al., 2004;
Dehaene, 2011). It is a universal system, which is not affected by
cross-cultural differences (Pica et al., 2004). In humans, the pre-
cision of the ANS increases with age (Halberda and Feigenson,
2008). But, as humans, we also develop higher-order mathemati-
cal abilities, based on the use of arbitrary symbols for representing
quantities, for example, Arabic notations. In contrast to abstract
nonsymbolic representations, symbolic notations allow us to rep-
resent quantities precisely. The ANS is often assumed to be linked
with the development of our symbolic mathematical abilities (for
a review see Feigenson et al., 2013; but see also the review by
De Smedt et al., 2013). Symbolic arithmetic processing with large
numerosities in an approximate manner has been demonstrated
to onset at the age of 5, before the start of formal schooling
(Gilmore et al., 2007) and is often assumed to directly map onto
one’s readily accessible nonsymbolic representations (Lipton and
Spelke, 2005; Gilmore et al., 2007; Mundy and Gilmore, 2009).
But is this developmental onset of symbolic arithmetic processing
universal? Symbols carry with them their phonological represen-
tations, which in turn depend on the language one uses (Carey,
2004; Pica et al., 2004). Thus, even though Arabic symbols are
used widely, the way they are named varies significantly across
different languages (e.g., Pica et al., 2004; Dehaene, 2011). Early
symbolic processing skills have been consistently proven to be
significant predictors of math achievement (for a review see De
Smedt et al., 2013; see also Göbel et al., 2014b; Lyons et al., 2014),
even beyond general processing skills, such as working memory
(WM) abilities (Xenidou-Dervou et al., 2013). Therefore, a better
understanding of their developmental onset and factors affect-
ing them is rendered necessary. This manuscript investigates,
for the first time, the developmental trajectories of nonsymbolic
and symbolic arithmetic skills and the roles that development,
education and language play in this process.

We often find ourselves in a hurry looking at price tags and
making a quick estimation such as: “This package costs 38 euros
plus 17 for the extras; that’s more than the 50 euros I have with
me!” Gilmore et al. (2007) demonstrated that the ability to per-
form such type of symbolic arithmetic with large numerosities
starts at the age of 5, namely before starting primary school
instruction. Five years-old children could perform well above
chance level on symbolic arithmetic problems, which entailed
numbers from 5 to 58. These problems asked for abilities that
enable one to give an approximate response, otherwise known
as approximation skills (Xenidou-Dervou et al., 2013). Gilmore
et al.’s (2007) findings were surprising: this study suggested that
children are capable of a form of symbolic arithmetic without
needing formal schooling. Of course, the question that rose was
how could such young children solve these problems? An expla-
nation was derived from the finding that performance on this
type of symbolic arithmetic problems demonstrated exactly the
same signature effects as those appearing in corresponding ANS
measures, namely in the nonsymbolic versions (Gilmore et al.,
2007). It is often assumed that the ANS influences the symbolic

number system (Feigenson et al., 2013) and that symbolic repre-
sentations directly map onto readily accessible ANS representa-
tions (Lipton and Spelke, 2005; Mundy and Gilmore, 2009). The
primary signature effect of approximation skills (nonsymbolic
or symbolic), is the well-known ratio effect: the more the ratio
between two quantities or symbols deviates from 1, the easier it
is to compare them (Pica et al., 2004; Barth et al., 2005, 2006;
Gilmore et al., 2007, 2010; Xenidou-Dervou et al., 2013, 2014).
This is based on the assumption that we perceive numerosities
on the basis of a mental number line (Izard and Dehaene, 2008).
The further two quantities are from each other, the less their rep-
resentational overlap on this mental number line and thus the
easier it is to compare them. It has also been shown that approxi-
mate comparison performance is similar to approximate addition
performance (Gilmore et al., 2007).

Since Gilmore et al.’s (2007) study, few have examined the cor-
responding arithmetic processing skills in such young children.
Xenidou-Dervou et al. (2013) assessed kindergarteners’ nonsym-
bolic and symbolic approximation skills in addition and compar-
ison. Using structural equation modeling, Xenidou-Dervou et al.
(2013) demonstrated that at the kindergarten stage nonsymbolic
approximate addition and comparison load on a single nonsym-
bolic approximation latent factor, whereas symbolic approximate
addition, and comparison load on an distinct factor, that of
symbolic approximation. In this study, 5 years-old children per-
formed above chance in all nonsymbolic and symbolic approxi-
mation tasks without resorting to known alternative systematic
response strategies. They also demonstrated the characteristic
ratio effect in all approximation tasks with the exception of one:
kindergarteners performance in the symbolic approximate addi-
tion task did not demonstrate the ratio effect. Performance in this
task was relatively low and close to chance level (56.53%) indicat-
ing that the children had difficulties with this task. Furthermore,
the authors demonstrated that even though nonsymbolic and
symbolic arithmetic processing were related in kindergarten age,
they were two distinct abilities (Xenidou-Dervou et al., 2013).
These findings provided further proof that symbolic arithmetic,
as a linguistically mediated system, does not necessarily map only
onto nonsymbolic processing at the kindergarten age (see also
Sasanguie et al., 2014).

The fact that kindergarteners performed poorly in symbolic
approximate addition in Xenidou-Dervou et al.’s (2013) study
and demonstrated no ratio effect contradicted Gilmore et al.’s
(2007) findings. Xenidou-Dervou et al. (2013) claimed that this
difference might be attributed to task or sample characteristic
differences. The symbolic approximate arithmetic tasks used in
Gilmore et al. (2007) and Xenidou-Dervou et al.’s (2013) studies
differed on certain task-design characteristics. The latter entailed
a larger range of numerosities (6–70) and the numbers were not
read aloud to the children. They merely saw the displayed sym-
bols. These characteristics could have made the task harder and
thus might have not captured the onset of the skill in question.
Or perhaps the task’s design failed to capture the desired abil-
ity in general; if that were the case, then one would not expect
a ratio effect to appear in grade 1 either. An alternative explana-
tion though could be that the large sample in Xenidou-Dervou
et al. (2013) did not have adequate symbolic knowledge to be able
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to successfully solve these symbolic arithmetic problems even if
they only asked for an approximate response. This would imply
that with time and instruction – and thus the gradual automatiza-
tion of symbols, children’s performance would improve. In other
words, the onset of symbolic approximate arithmetic would be
expected to take place in grade 1.

Previous studies have shown that precision in nonsym-
bolic and symbolic magnitude comparison increases with age
(Halberda and Feigenson, 2008; Holloway and Ansari, 2009).
However, to our knowledge, no previous study has compared
the developmental trajectories of nonsymbolic and symbolic
arithmetic processing. Since symbolic processing necessitates
additional cognitive processes related to symbolic knowledge
beyond the simple underlying ANS representations, we expected
nonsymbolic and symbolic approximate arithmetic to demon-
strate different developmental trajectories. As children enter
grade 1, they receive formal school instruction and thus acquire
symbolic knowledge. Therefore, we hypothesized that symbolic
arithmetic would show greater developmental increase com-
pared to the corresponding nonsymbolic arithmetic processing
skills. Whereas the characteristic ratio effect in nonsymbolic
approximation would be evident across both kindergarten and
grade 1, we expected that in symbolic approximate addition it
would become significant only after the start of formal schooling,
namely in grade 1.

Experiment 1

Method
Participants
This experiment was part of a large-scale longitudinal project,
known as the MathChild project1. The project started with 444
kindergarteners (Mage = 5.59 years, SD = 0.35) from 25 schools
around the Netherlands (for more information, including SES
information, please see Participants in Xenidou-Dervou et al.,
2013). A year later – in grade 1 – 396 of these children were tested
again on the tasks presented in this study. Dropouts were primar-
ily due to changing schools. All dropouts were excluded from the
analyses. In grade 1 (Mage = 6.50 years, SD = 0.32), the sample
consisted of 221 boys and 175 girls. All children spoke Dutch and
95.96% of them had Dutch nationality. Legal guardians’ written
consents were received for all children.

Procedure
All children were tested individually in quiet settings within the
school facilities by trained experimenters, who used a detailed
protocol with written instructions. The data reported in this study
regard a subset of tasks from the MathChild project. At both time
points (kindergarten and grade 1), testing started in November
and ended in January of the given academic year. In grade 1,
testing included two sessions. The tasks reported in the present
study were part of the second session. The order of presenta-
tion of the tasks was controlled for by alternating the order of
the tasks. Children received small tokens after each session for

1http://vu.mathchild.nl/en/home/

encouragement. Kindergarten data have been previously reported
in Xenidou-Dervou et al. (2013).

Materials
Tasks used were computerized and presented in E-prime version
1.2 (Psychological Software Tools, Pittsburgh, PA, USA) with HP
Probook 6550b type laptops.

Nonsymbolic approximate addition
Children saw an image of a girl (Sarah) and a boy (Peter) on
the far top left side and right side of the screen correspondingly.
A trial entailed the following sequence of steps (see Figure 1A):
(1) Sarah got an amount of blue dots, (2) These were covered
up by a gray box, (3) Then she got some more blue dots, (4)
These were now all behind the gray box, (5) Lastly, Peter got some
red dots. The question they had to answer was: “Who got more
dots?” Participants were instructed to press the blue response box
in front of them, if they thought Sarah received more dots, or
the red response box, if they thought Peter received more dots.
Each animated event lasted 1300 ms and between them there was
a 1200 ms interval. Children were instructed to respond as cor-
rectly and as fast as possible. Once the red dots appeared on the
screen, the children had a maximum of 7000 ms to respond. If
they did not respond on time, the trial was automatically coded
as incorrect. The fast interchange of events and response process
prevented children from counting the dots. Between trials, there
was an interval of 300 ms.

Numerosities in this task ranged from 6 to 70. The sum of the
blue addends differed with the comparison red addend by three
ratios with eight trials in each ratio level: 4/7 (easy ratio), 4/6,
(middle), and 4/5 (difficult). Similar to previous studies (Barth
et al., 2006, 2008; Gilmore et al., 2010; Xenidou-Dervou et al.,
2013, 2014), trials were constructed in a manner that allowed
the post hoc examination of the use of possible alternative sys-
tematic response strategies not related to approximate addition,
for example, if children only pressed the red or blue button
without adding and comparing the addends (see Appendices in
Gilmore et al., 2010; Xenidou-Dervou et al., 2013, 2014). Dots
were constructed in MATLAB 7.5 R2007b. As in previous stud-
ies, to avoid children’s responses relying on the physical features
of the dots, we controlled for dot size, total surface area, total con-
tour length, and density (Barth et al., 2006; Gilmore et al., 2010;
Xenidou-Dervou et al., 2013, 2014).

In kindergarten, children received six practice trials in order
to optimally comprehend the task (see Barth et al., 2005, 2006;
Xenidou-Dervou et al., 2013). In grade 1, they received two prac-
tice trials to recall the task’s demands. The task included 24 test
trials (see Supplementary Material). No feedback was provided
during testing aside from occasional verbal encouragement when
necessary.

Symbolic approximate addition
As in previous studies (e.g., Xenidou-Dervou et al., 2013), this
task was identical to its nonsymbolic version with the key dif-
ference that the dots were now replaced with blue or red boxes
displaying the corresponding Arabic notation (see Figure 1B).
Children were asked to provide an approximate response, namely
they were asked to respond as correctly and as fast as possible to
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FIGURE 1 | Nonsymbolic (A) and symbolic (B) approximate addition example trials.

the question “Who got more stickers?” The child was asked to
estimate, which was more: the sum of the blue number of stickers
or the red. The fast interchange of the sequential events and the
fact that a response had to be produced within 7000msmaximum
encouraged an approximate response.

Results
Children performed above chance level (50%) in all tasks in

kindergarten: nonsymbolic addition [M = 63.56%, SD = 10.81,
t(392) = 24.88, p < 0.001], symbolic addition [M = 57.06%,
SD = 11.88, t(392) = 11.78, p < 0.001] and grade 1: nonsymbolic
addition [M = 67.76%, SD = 14.19, t(395) = 33.12, p < 0.001],

TABLE 1 | Correlations between the nonsymbolic and symbolic arithmetic
measures assessed in kindergarten and grade 1.

1 2 3

(1) Kindergarten nonsymbolic addition

(2) Kindergarten symbolic addition 0.24∗∗∗
(393)

(3) Grade 1 nonsymbolic addition 0.19∗∗∗
(394)

0.13∗∗
(394)

(4) Grade 1 symbolic addition 0.17∗∗∗
(394)

0.41∗∗∗
(394)

0.27∗∗∗
(396)

Parentheses include the N sample within the specific analysis. ∗∗p ≤ 0.01;
∗∗∗p ≤ 0.001.

symbolic addition [M = 67.07%, SD = 10.81, t(395) = 23.93,
p < 0.001]. Correlations between the assessed measures are
presented in Table 1.

To compare the developmental trajectories of nonsymbolic
and symbolic approximate addition, we conducted a 2 (Task:
nonsymbolic and symbolic) × 3 (Ratio: easy, middle, diffi-
cult) × 2 (Year: kindergarten and grade 1) repeated mea-
sures ANOVA. Mauchly’s test indicated that the assumption
of sphericity had been violated for Ratio, χ2(2) = 8.99,
p = 0.011, and the Task by Ratio by Year interaction,
χ2(2) = 12.39 p = 0.002. Therefore, we corrected the degrees
of freedom using Greenhouse–Geisser estimates. Results demon-
strated main effects of Task, F(1,392) = 37.33, p < 0.001,
η2
p = 0.09, Ratio, F(1.96,766.58) = 192.02, p < 0.001, η2

p = 0.33,
Year, F(1,392) = 178.72, p < 0.001, η2

p = 0.31, and the
expected significant interaction effect of Task by Ratio by Year,
F(1.94,760.29) = 3.41, p = 0.035, η2

p = 0.01 (see Figure 2). To
examine the simple effects two additional analyses were con-
ducted for each task (nonsymbolic and symbolic) separately.
For nonsymbolic addition, we found significant main effects
of Year, F(1,393) = 36.99, p < 0.001, η2

p = 0.09, and Ratio,
F(1.97,774.01) = 234.34, p < 0.001, η2

p = 0.37 but not their inter-
action. For symbolic addition, results showed significant main
effects of Year, F(1,393) = 196.49, p < 0.001, η2

p = 0.33, and
Ratio, F(2,392) = 18.47, p < 0.001, η2

p = 0.09, but for this
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FIGURE 2 | The developmental trajectories of nonsymbolic (A) and
symbolic (B) approximate addition in kindergarten and grade 1. In the
symbolic condition, the ratio effect became significant in grade 1.

task their interaction was also significant, F(1.95,767.78) = 7.29,
p = 0.001, η2

p = 0.02. For this interaction, further simple
effect analyses demonstrated that, as expected, in the symbolic
condition the ratio effect was only significant in grade 1,
F(2,394) = 25.17, p < 0.001, η2

p = 0.11, and not in kindergarten,
F(1.95,764.55) = 1.42, p = 0.244, η2

p = 0.00. Thus, as hypoth-
esized, nonsymbolic and symbolic approximate arithmetic pro-
cessing demonstrated different ratio effect developmental trajec-
tories. The ratio effect in symbolic approximate addition became
significant in grade 1, Figure 2B.

Discussion
Experiment 1 confirmed our hypothesis that nonsymbolic and
symbolic arithmetic processing demonstrate different develop-
mental trajectories. Nonsymbolic acuity increased steadily across
time (Halberda and Feigenson, 2008), however, symbolic process-
ing showed a larger increase with the start of formal schooling in
grade 1. In other words, symbolic arithmetic processing seemed
to be modulated by age and education more than nonsymbolic
arithmetic processing. This result also indicated that the sym-
bolic approximate arithmetic task did indeed tap the ability in
question: we found a significant ratio effect in symbolic approxi-
mate addition in grade 1. So, in this large Dutch sample symbolic
approximate arithmetic appeared to onset in grade 1, when

school instruction had started. However, the question remained:
why was performance in the symbolic approximate addition task
so low at the kindergarten level? Based on Gilmore et al.’s (2007)
results, the skill to conduct computations with large symbolic
quantities in an approximate manner should start already at the
age of 5 years. As described earlier, the difference in results with
Gilmore et al. (2007) could still be due to task-design differ-
ences. However, there is another, striking difference between the
present study and Gilmore et al.’s (2007) study. In Experiment
1, we examined Dutch-speaking children, whereas Gilmore et al.
(2007) examined English-speaking children.

There is compelling evidence across interdisciplinary litera-
ture demonstrating the importance of the ability to effectively add
and compare symbols for children’s mathematical achievement
(for a review see De Smedt et al., 2013). Given the significant role
that symbolic approximation plays in kindergarten math achieve-
ment (Xenidou-Dervou et al., 2013), it is imperative to identify
the language related factors that play a role in the developmental
onset of these skills.

Experiment 2

So far, the characteristic ratio effect in approximation tasks has
been considered universal even when symbols (Arabic numer-
als) are used. However, the level of transparency of a number
naming system has been demonstrated to influence performance
even in non-verbal symbolic tasks where the Arabic notation
is merely shown, not heard (Nuerk et al., 2005; Helmreich
et al., 2011; Göbel et al., 2014a). For example, an essential dif-
ference in naming numbers in English versus Dutch (as well
as German and other, see Comrie, 2005) is the fact that the
latter entail the so-called inversion property. In English, two-
digit numbers above 20, such as the number 48, are named
in the same order as they are written: first the decades and
then the units. In Dutch, however, it is the opposite: first, one
names the units and then the decades. So, the number “48” is
actually named “eight and forty” (in Dutch: “acht en veertig”).
The inversion property has been reported to negatively affect
children’s symbolic numerical processing. Specifically, Göbel
et al. (2014a) demonstrated that it hinders German-speaking
(inversion language) second graders’ complex two-digit sym-
bolic addition versus their Italian-speaking peers. Furthermore,
Helmreich et al. (2011) found German-speaking first graders’
number line skills to be less accurate compared to their Italian-
speaking peers. Therefore, it could be expected that Dutch-
speaking children, similar to German-speaking children would
have a disadvantage in their symbolic numerical processing
with large numbers due to the demanding Dutch number nam-
ing system. Symbolic approximate arithmetic tasks such as
those used in Gilmore et al.’s (2007) and the present study
entail many two-digit numerosities across their trials and the
response on these trials cannot be made by just judging on the
basis of the decade of a two-digit number (see Supplementary
Material).

Let us consider the cognitive process that could occur when
estimating a symbolic number above 20 in English and in
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Dutch. In English, the phonological representation of an Arabic
two-digit number could involve the following two steps: the
child (silently) can vocalize the decades, which he/she then can
approximately position on an assumed mental number line.
Then, the child can vocalize the units with which he or she
fine-tunes approximately the position on the mental number
line. In Dutch, the corresponding process appears more demand-
ing. The child first can (silently) vocalize the units but this
step would not allow him/her to make an approximate deci-
sion on the entire number’s position on a mental number line.
Instead, this action must be delayed till after the child has
vocalized the decades. Meanwhile, the child has to retain the
units in his/her WM. In other words, the number naming pro-
cess in Dutch appears to require more cognitive steps, which
will occupy more WM resources. As described earlier, the ratio
effect in approximation is assumed to occur because we esti-
mate on the basis of a mental number line where numerosi-
ties that are closer to each other have a larger representational
overlap and are thus harder to compare. Therefore, the lack
of a ratio effect in Dutch kindergarteners’ symbolic approx-
imate arithmetic could be due to their demanding number
naming system, which would manifest itself as a WM over-
load. Previous studies have shown that WM is highly related
to children’s inversion errors when transcoding, namely writ-
ing 48 when hearing “forty eight,” in German or Czech (Zuber
et al., 2009; Pixner et al., 2011). In particular, these studies found
that the Central Executive (CE) component of WM, on the
basis of to the multicomponent model of WM (Baddeley and
Hitch, 1974; Baddeley, 2012), was the most predictive compo-
nent of inversion-related errors. To our knowledge, the role of
WM in symbolic approximate addition in an inversion num-
ber naming system such as the Dutch has not been previously
addressed.

Cross-cultural studies on numerical skills, thus far, have
been conducted with primary school children. Early numer-
acy skills, however, have been shown to play a role in chil-
dren’s math achievement already from the kindergarten age
(e.g., Booth and Siegler, 2006; LeFevre et al., 2010; Mazzocco
et al., 2011; Geary et al., 2013; Xenidou-Dervou et al., 2013;
Bartelet et al., 2014; Hornung et al., 2014). Furthermore, pre-
vious cross-cultural studies did not account for the children’s
nonsymbolic skills. It could be argued that the groups com-
pared may differ on the basis of their general ability to estimate
magnitudes, namely their ANS, not symbolic notations per se.
We hypothesized that sample differences on the basis of the
number naming system children use significantly affects sym-
bolic arithmetic processing beyond their ANS skills. Drawing on
the aforementioned assumptions, three clear predictions could
be made: (1) Dutch-speaking kindergarteners would have sim-
ilar ANS skills with matched English-speaking children but
would demonstrate a disadvantage in symbolic approximate
arithmetic. (2) Dutch-speaking kindergarteners would demon-
strate a WM overload in symbolic approximate arithmetic,
but not nonsymbolic. (3) The ability to name two-digit num-
bers would only correlate with symbolic approximate pro-
cessing, not nonsymbolic. In order to address these hypothe-
ses, we extended our study with a second experiment in

which data was collected from an English-speaking comparison
group.

Method
Participants
In addition to the existing kindergarten Dutch sample, we tested
54 English-speaking children in the UK (Mage = 5.33 years,
SD = 0.49; 28 boys). Children, who spoke a second language that
entailed the inversion property in their number naming system
(n = 2) and those with missing data were excluded (n = 10).
We aimed at having two samples (English-speaking and Dutch-
speaking) that had comparable educational and SES backgrounds
in order to effectively examine their differences on the basis of
language.

With respect to SES, McNeil et al. (2011) have shown that it
can influence preschoolers’ approximate addition skills. In the
present study, SES background was indicated by the parents’ level
of education. Preliminary analyses in the Dutch sample (used
in Experiment 1) had shown that fathers’ level of education sig-
nificantly correlated with their children’s symbolic approximate
addition (r = 0.10, p = 0.045). Mothers’ level of education did
not correlate with the approximation measures. The large Dutch-
speaking sample’s fathers came from variable SES backgrounds
(Xenidou-Dervou et al., 2013). The relatively smaller English-
speaking sample, however, consisted of children whose fathers
had received higher levels of education. Thus, to control for
SES differences across the two samples (UK and NL), children
from the NL sample with fathers who had received low edu-
cational levels [below HAVO (Dutch educational system)] were
excluded from the analyses. The comparison of the two countries’
educational systems was based on the official education module
comparison developed by the Nuffic (2013), which resulted in
seven educational levels. On the basis of these exclusion criteria,
the two samples’ fathers’ SES no longer differed, t(47.81) = 0.18,
p = 0.811 (NL:M = 5.93, SD = 0.83, UK:M = 5.91, SD = 0.93).

It was also important that the two samples (UK and NL) had
similar educational background. The Dutch kindergarten sample
(see Experiment 1) had not received any formal math instruction.
Formal instruction in the NL starts in the third year of schooling
(“groep 3”). In the UK, however, formal math instruction starts
earlier. Therefore, we purposefully assessed younger children in
the UK, who had also not yet received formal math instruction.
Below the resulting samples from the two countries are described.

The Dutch-speaking sample used in this experiment’s analy-
ses consisted of 204 children (Mage = 5.58 years, SD = 0.35; 115
boys), 98.04% had Dutch nationality. All children spoke Dutch.
According to teacher reports 173 of these children did not speak
a second language, for 31 of these children, however, this infor-
mation was not available as they had moved and changed schools
before the time of inquiry. In the Dutch-speaking sample, 92.2%
of their fathers and 63.2% of their mothers held an undergradu-
ate or higher academic degree. All the Dutch-speaking children
already attended kindergarten (“groep 2” in the Dutch educa-
tional system). In this grade in the Netherlands children do not
receive structured educational instruction.

The English-speaking sample consisted of 42 children
(Mage = 5.31 years, SD = 0.53; 23 boys), 97.62% had a UK
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nationality. All children spoke English and two of them spoke
a non-inversion second language. In this sample, 76.2% of their
fathers and 78.6% of their mothers held an undergraduate or
higher academic degree. The UK children were tested before
the start of the school year during the summer period. At this
time the children had only completed 1 year in school. The
first year (Reception) is part of the Foundation Stage (age 0–
5) during which children learn through play-based activities.
In the UK, formal instruction begins during the second year
of schooling. As intended, the English-speaking sample was
significantly younger compared to the Dutch-speaking sample
(p = 0.003).

Procedure
The English-speaking sample was assessed subsequently to the
Dutch-speaking sample. Testing took place during the University
of Nottingham’s Summer Scientist Week2. This is an annual
research and outreach event during which parents and their chil-
dren visit the university, play games and take part in studies.
SES diversity for this event is highly promoted. Parents/legal
guardians provided written consent and SES information. The
children were tested in two 20-min sessions. After each session
they received tokens to sustain their motivation for participation.
For information on the procedure followed in the Dutch sample
see Experiment 1. Experimenters in both samples used the same
instruction and testing protocol.

Materials
All the tasks were presented with the same hardware and software
as in Experiment 1. The English-speaking sample was assessed
on measures that the Dutch sample had been previously tested
on (see Xenidou-Dervou et al., 2013). Additionally, the English-
speaking sample was also tested on the Naming Large Numbers
test.

Nonsymbolic and symbolic approximate addition
See Experiment 1 (see Materials). The Supplementary Material
demonstrates the trials included in this task. It should be noted
that in five of these trials (see Supplementary Material, trial num-
bers: 12, 13, 17, 21, 24) the naming process of their numbers did
not differ across English and Dutch on the basis of the inversion
property. Since the trials for this task have been stringently con-
structed based on several control dimensions (see for example
Xenidou-Dervou et al., 2013) and due to the comparison with
its nonsymbolic counterpart, we opted to keep these five trials.
Nevertheless, all trials in the “easy ratio” included two-digit num-
bers above 20, which are characterized by the inversion property
in the Dutch language and not in the English language.We, there-
fore, expected the difference between the UK and the NL children
to be primarily evident in this ratio.

Exact addition
The exact symbolic addition task (see Jenks et al., 2009; Xenidou-
Dervou et al., 2013) assesses children’s addition skills in the
familiar form of “a + b = c.” It entailed 15 addition problems,
where “a” and “b” were larger than 1 and never equal. The first

2www.summerscientist.org

10 problems were simple (c < 10) and the last five were harder
(10 < c < 16). The child saw each addition problem on the
screen and had to give as correctly and as fast as possible a verbal
response for the exact number of the sum. This task demon-
strates high levels of internal consistency (Xenidou-Dervou et al.,
2013).

Counting skills
The English and the Dutch version of four subscales from the
Early Numeracy Test – Revised (ENT-R, version A) were used
to assess children’s counting abilities (Van Luit and Van de Rijt,
2009). The subscales assessed (20 items) focused on the child’s
ability to: (1) use number words (counting forward and backward
up to maximum 20); (2) execute structured counting (count-
ing while pointing to objects); (3) conduct resultative counting
(counting without pointing to objects); (4), and their general
understanding of numbers and how to use the counting system
in everyday life.

Working memory
The English and Dutch versions of two widely known tasks (e.g.,
Alloway et al., 2004; Xenidou-Dervou et al., 2013) were used to
assess children’s WM capacity. We had hypothesized that the
Dutch number naming system would be phonologically more
demanding than the English one. Therefore, we focused on the
phonological loop (PL) of the WM construct and its interaction
with CE WM resources (Baddeley, 2002; Repovs and Baddeley,
2006).

The Word Recall Forward task taps children’s PL capacity,
namely, the ability to retain phonological information. The child
heard a series of recorded high frequency unrelated words and
had to repeat them in the same order. After four correct recalls,
the child was automatically advanced to the next level that
entailed one extra word. A response was registered as correct if
the child recalled the word(s) correctly and in the same order as
heard. The task would discontinue after three incorrect responses
within one level of difficulty.

The Word Recall Backward task taps children’s CE capacity,
specifically the ability to control, regulate and manipulate phono-
logical information. The task’s characteristics were identical to the
Word Recall Forward task, only now the child was asked to recall
the words he/she heard backwards. This task started with a string
of two words.

Naming large numbers test
This test assessed children’s ability to name numbers above 20.
The children saw a number on the screen, which remained
until they gave a verbal response. They were asked to name
each number as accurately and quickly as possible. The experi-
menter pressed a button the moment the child responded, which
registered their response time (RT). Nine numbers were used,
which are included within the trials of the symbolic approximate
arithmetic task and involve the inversion property in the Dutch
number naming system but not in the English: 25, 36, 52, 21,
49, 67, 48, 24, and 63 (see Supplementary Material). The order
of presentation of the numbers was randomized.
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Results
Descriptive Statistics
Table 2 presents the two groups’ descriptive statistics on the
control measures. ANOVAs were conducted to compare perfor-
mance across the two samples. As expected, they had similar
simple addition (in the form of “a + b = c”) and counting skills.
However, the Dutch-speaking children had higher WM skills, as
they were significantly older than the English-speaking children.
We, therefore, controlled for PL and CE WM skills within our
subsequent analyses.

Approximate Addition Comparisons
To examine our first and second hypotheses, we conducted a 3
(Ratio: easy, middle, difficult) × 2 (Country: NL and UK) × 2
(Task: nonsymbolic and symbolic) repeated measures ANCOVA
with PL and CE performance as centered covariates (see Thomas
et al., 2009). Since the sample sizes across the groups were
unequal, Type III sum of squares were used (Maxwell and
Delaney, 2004). Box’s M-test of equality of covariance matri-
ces in all analyses were not significant. As expected, we found
a significant Task by Ratio by Country by CE interaction effect,
F(2,239) = 4.89, p = 0.008, η2

p = 0.04 (see Figure 3). In accor-
dance to our hypothesis, CE WM resources appeared to modify
the interaction between Task, Country and Ratio. To clarify this
4-way interaction, simple effect analyses were conducted within
each task (nonsymbolic and symbolic). For nonsymbolic approx-
imate addition, only the expected main ratio effect was found,
F(1.89,452.92) = 49.81, p < 0.001, η2

p = 0.17. For the sym-
bolic condition, results demonstrated: a main effect of Ratio,
F(1.92,460.20) = 6.21, p = 0.003, η2

p = 0.03, a Ratio by Country
interaction, F(2,239)= 4.73, p= 0.010, η2

p = 0.04, and as expected
a Ratio by Country by CE interaction, F(2,239)= 5.37, p= 0.005,
η2
p = 0.04. Therefore, as hypothesized, the two groups did not dif-

fer on the basis of their nonsymbolic approximate skills but only
on their symbolic approximate addition performance. Pairwise
comparisons indicated that the English-speaking children per-
formed better on the easy ratio of the symbolic approximate
addition task (p = 0.008), where all trials included an “inversion
number.”

To identify the role of the CE component of WM in
this interaction, regression equations were constructed with
unstandardized regression coefficients on the basis of the param-
eter estimates derived from the ANCOVA:

TABLE 2 | Descriptives and comparisons a cross the two groups.

Tasks Country M SD Comparisons

Exact addition NL 6.22 4.55 ns

UK 5.12 5.01

Early numeracy NL 11.42 4.18 ns

UK 10.26 4.37

Phonological loop (PL) NL 13.29 2.55 p < 0.001

UK 11.64 3.54

Central executive (CE) NL 4.65 1.88 p = 0.001

UK 3.55 2.19

NL, Netherlands; UK, United Kingdom.

Yeasy ratio = 66.338 + 4.076XCE − 8.177Xcountry

− 2.939XCEXcountry

Ymiddle ratio = 56.114 − 0.641XCE + 0.931Xcountry

+ 2.494XCEXcountry

Ydifficult ratio = 55.186 + 2.575XCE + 1.721Xcountry

− 1.746XCEXcountry

We computed the Y values (% symbolic approximate addi-
tion performance in each ratio) for 1 SD (1.9779) above and
below (−1.9711) the mean (0) of the centered CE. In the formu-
las, Xcountry is a dummy variable with the values 0 (UK) and 1
(NL). As depicted in Figure 4, for the English-speaking sample,
as expected, one notices that with the hypothetical high or low
CE value, there are pronounced fluctuations in the ratio effect.
Comparing the UK children’s performance with the hypothetical
high CE in Figure 4A and their performance with the centered (0)
CE in Figure 3B, the regression equations suggest that the higher
their WM capacity, the better their performance was; particu-
larly on the easy ratio of the symbolic task. In the Dutch-speaking
sample, however, the ratio effect line remains almost flat no mat-
ter the changes in CE values: see Figures 3B and 4A,B. In other
words, we see that for the Dutch-speaking children, changes in
CE performance do not lead to fluctuations in ratio performance,
demonstrating the hypothesizedWMoverload. Extra CE capacity
did not appear to help the Dutch-speaking children; contrary to
the English-speaking children it did not appear to facilitate their
symbolic approximate addition due to the inversion effect.

Naming Two-Digit Numbers
To examine our third hypothesis, we had administered to the
whole English-speaking sample (n = 52) the “Naming Large
Numbers Test.” Results showed that nonsymbolic and sym-
bolic approximate arithmetic correlated significantly r = 0.38,
p = 0.005, but, as expected, the ability to name numbers above
20 correlated highly only with symbolic arithmetic r = 0.50,
p < 0.001 and not nonsymbolic r = 0.02, p = 0.908. Steiger’s Z-
test (Hoerger, 2013) indicated that these correlation coefficients
between the ability to name large numbers and the nonsymbolic
and symbolic arithmetic task differed significantly ZH = 3.24,
p = 0.001.

Accumulatively, our results indicated that number naming
characteristics, such as the inversion property entailed in the
Dutch number naming system could affect the onset of chil-
dren’s symbolic approximate arithmetic. We demonstrated that
English-speaking children perform better even at a younger age.
But can Dutch children even name numbers above 20 at 5 years
of age? To answer this question we administered the “Naming
Large Numbers Test” to a new Dutch-speaking sample (114 chil-
dren; 65 boys, Mage = 5.4 years, SD = 0.40) matched with the
English-speaking one on age (p = 0.30). The English-speaking
sample could name correctly significantly more two-digit num-
bers, F(1,167) = 7.70, p = 0.006, MUK (SD) = 5.63 (2.52); MNL
(SD) = 4.34 (2.41), and faster (ms), F(1,154) = 135.31, p < 0.001,
MUK (SD) = 2154.29 (1545.11);MNL (SD) = 10035.28 (4428.58),
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FIGURE 3 | Dutch-speaking and English-speaking children’s
nonsymbolic and symbolic approximate addition ratio performance.
Both samples had similar nonsymbolic approximation skills (A) but differed on
the easy ratio of symbolic approximate arithmetic (B).

than their Dutch-speaking peers. These results showed that at
5 years of age Dutch-speaking children are able to name correctly
almost half of the presented two-digit numbers but are worse
compared to their English-speaking peers.

Discussion
In this experiment, we compared English-speaking and Dutch-
speaking children’s symbolic approximate arithmetic perfor-
mance controlling for their nonsymbolic approximate arithmetic,
simple exact addition and counting skills, as well as WM abil-
ity. Also, the two samples did not differ with respect to SES
background. Results confirmed our hypotheses. We found that
language, specifically differences in the transparency of the num-
ber naming system such as the inversion property, can affect
the developmental onset of symbolic approximate arithmetic
performance. Dutch-speaking kindergarteners lagged behind
English-speaking children in symbolic approximate addition,
despite being older, and indirectly demonstrated a WM overload
in the ratio effect of this form of arithmetic. Furthermore, we
found that the ability to name two-digit numbers, which involves
the inversion property in Dutch, correlates significantly with
symbolic approximation and not nonsymbolic. English-speaking
children were better in naming two-digit numbers than their
Dutch-speaking peers.

FIGURE 4 | Children’s symbolic approximate addition performance (%)
using two hypothetical values in the centered CE WM measure [1 SD
above (A) and below (B) the mean] as substitutes in the regression
equations. For the English-speaking sample (UK), with changes in CE one
notices fluctuations in the symbolic approximate ratio performance. In the
Dutch-speaking sample (NL), however, changes in CE capacity seem to have
no effect, suggesting a WM overload.

Contrary to Gilmore et al. (2007), who had found the charac-
teristic ratio effect in English-speaking kindergarteners’ symbolic
approximate addition, Xenidou-Dervou et al. (2013) found no
ratio effect in Dutch-speaking kindergarteners’ symbolic approx-
imate addition. It should be noted that Gilmore et al.’s (2007)
study was conducted with small samples (n = 20) drawn from
a highly educated community, whereas Xenidou-Dervou et al.
(2013) assessed the approximation skills in a large sample,
which included a variety of SES backgrounds. But a more pro-
nounced sample difference between the two studies was the
language used. The Dutch number naming system involves the
cognitively demanding inversion property. Symbolic approxi-
mate arithmetic trials involve many two-digit numbers, which
entail the inversion property. Previous studies have shown that
the inversion property hinders older children’s mental number
line estimation ability (Helmreich et al., 2011) but had not
accounted for the children’s general ability to estimate abstract
quantities. Our results replicated Gilmore et al.’s (2007) findings,
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namely English-speaking 5 years-old performed above chance
level and demonstrated the characteristic ratio effect in sym-
bolic approximation. Dutch-speaking kindergarteners, who did
not differ with the English-speaking children on SES background
and math achievement, had similar nonsymbolic approximation
skills. However, as expected, the Dutch-speaking kindergarteners
lagged behind the English-speaking children in symbolic approx-
imate addition, even though they were older. Specifically, Dutch
children performed worse on the easy ratio, where all test trials
included a two-digit number above 20 that needs to be inversed
in Dutch (see Supplementary Material). The middle and the diffi-
cult ratio of the symbolic approximate addition task were difficult
for both the Dutch-speaking as well as the English-speaking chil-
dren (see Figure 3B). In the 4:7 ratio, on the other hand, which is
the easiest condition, one would expect that children would have
more cognitive resources left to use more effectiveWM strategies.
This was evident for the English-speaking children in Figure 4A.
For the Dutch-speaking children, however, that was apparently
not the case. The two-digit numbers, which need to be cognitively
inversed, increased the amount of cognitive resources needed and
therefore performance for the Dutch-speaking childrenwas lower
than the English-speaking children and the use of effective WM
strategies was not feasible (Figure 3B).

Nonsymbolic (Xenidou-Dervou et al., 2013, 2014) and sym-
bolic approximation (Caviola et al., 2012; Xenidou-Dervou et al.,
2013; Cragg and Gilmore, 2014) necessitate WM resources; espe-
cially the CE component of WM as defined by the well-known
multicomponent model of WM (Baddeley, 1996, 2002). We had
hypothesized that the demanding inversion property would affect
Dutch children’s symbolic approximation, which entails numbers
that are characterized by the inversion property (Zuber et al.,
2009; Pixner et al., 2011). When one hears “twenty eight” one
can first estimate the position of the number “twenty” on one’s
mental number line and then refine this position with the use of
the “eight.” However, when saying “acht en twintig” (eight and
twenty) in Dutch, no mental action can be taken with the “acht”;
this has to be retained in one’s WM and recalled later updating
the mental estimation of the “twintig.” The ratio effect in approx-
imation is assumed to occur because quantities that are closer to
each other have a larger representational overlap on an assumed
mental number line. Indeed our results verified that the differ-
ence between Dutch- and English-speaking children in symbolic
approximation – not nonsymbolic – appeared to be modified by
CE capacity. Contrary to the English-speaking children, examin-
ing changes in the ratio effect of symbolic approximate addition
when increasing CE capacity in the Dutch-speaking sample, one
notices no differences in their ratio performance. This demon-
strated a significant WM load. In other words, the English-
speaking children had room for change/improvement when their
CE capacity allowed it, whereas Dutch-speaking children did not.
The cognitive load induced by the demanding two-digit Dutch-
number naming system was too high at this young age, occu-
pying cognitive resources, which would otherwise allow room
for improvement in symbolic approximate addition. It should be
noted that in this study we focused on the PL component of WM
and its interaction with the CE due to the hypothesized WM load
derived from the phonological representations of the numbers.

It would be interesting for future studies, however, to examine
also the role of the visuospatial component of WM and its inter-
action with the CE. Furthermore, future studies should verify
our findings with more experimental manipulations in order to
demonstrate the causal role of WM within this context.

Furthermore, our results demonstrated for the first time, that
the ability to name two-digit numbers correlates highly with sym-
bolic approximation and not nonsymbolic. Previous studies have
indicated that the inversion property affects symbolic process-
ing even in non-verbal tasks (Helmreich et al., 2011; Göbel et al.,
2014a). It seems that the mere presentation of a number sym-
bol activates its phonological representation in arithmetic. When
symbolic approximation is being proven to be an important, con-
sistent predictor of children’s math achievement (De Smedt et al.,
2013; Xenidou-Dervou et al., 2013), we demonstrate that the
ability to name large numbers plays an important role in its devel-
opmental onset. Dutch kindergarteners are significantly worse
in naming such numbers compared to their English-speaking
peers.

The approximate addition tasks used in our experiments
entailed two-digit numerosities across all their trials (see
Supplementary Material). The trial construction level in this task
is stringently balanced across ratios, controlling for alternatives
to approximate addition strategy usage and continuous quan-
tity variables in the nonsymbolic condition (see Supplementary
Material, also Barth et al., 2006; Gilmore et al., 2010; Xenidou-
Dervou et al., 2013, 2014). The inversion effect could potentially
affect at any point within an arithmetic process, for example,
whenmerely seeing the numbers in the symbolic condition, when
adding them or when comparing the sum to the target quantity.
Therefore, in Experiment 2 we used again all trials in order to
not disturb the controlled balanced nature of the trials and exam-
ine the differences in effect on the basis of the ratio performance.
In essence, only two trials in the middle ratio and three trials
in the difficult ratio included numbers that do not need to be
inversed in Dutch (see Supplementary Material); both of these
ratios were hard for all children (see Figure 3B). However, all test
trials in the easy ratio included an “inversion number” and that
is precisely where we found the English-speaking children to out-
perform the Dutch-speaking children. Our findings cumulatively
provide a first indication for the negative effect that the inversion
property can have on the onset of symbolic arithmetic. However,
future studies should design more rigorous experiments (e.g.,
Göbel et al., 2014a) targeting specifically the inversion effect on
symbolic approximation.

Conclusion

Cumulatively, findings from both experiments present a clear
picture about the importance of education and the language of
numbers in developing symbolic arithmetic. Contrary to Gilmore
et al. (2007), the present study’s results demonstrate that sym-
bolic arithmetic does need instruction; it needs instruction of
numbers. We showed that development and education modulate
symbolic arithmetic more than the ANS. Furthermore, we
demonstrated that in contrast to the ANS; symbolic processing is
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modulated by language. In Experiment 1, testing a large Dutch
sample, we showed that nonsymbolic and symbolic approximate
addition have distinct developmental trajectories, with the lat-
ter demonstrating significant growth after the start of formal
schooling (primary school). In the Dutch-speaking population,
symbolic approximate arithmetic onsets in grade 1, not earlier.
In Experiment 2, we saw that for English-speaking children, this
ability can start earlier. That is because the Dutch number naming
system is cognitively more demanding: it involves the inver-
sion property. Our findings demonstrated that Dutch-speaking
kindergarteners: (1) Lagged behind English-speaking children in
symbolic arithmetic, not nonsymbolic; (2) Demonstrated a WM
overload in symbolic approximate arithmetic; not nonsymbolic,
and (3) Were significantly worse in naming large numbers com-
pared to their English-speaking peers. Furthermore, we showed
that the ability to name large numbers correlated with symbolic,
not nonsymbolic approximation. To our knowledge, this is the
first evidence for the effect of the inversion property on the
onset of symbolic approximation; a core system for the devel-
opment of mathematical achievement (De Smedt et al., 2013;
Xenidou-Dervou et al., 2013).

From a theoretical perspective, our findings demonstrate that
while the ANS may be linked with symbolic numerosity process-
ing (Feigenson et al., 2004, 2013; Libertus et al., 2011; Starr et al.,
2013; Xenidou-Dervou et al., 2013; Gilmore et al., 2014), devel-
oping solid symbolic processing skills goes beyond simple ANS
representations. The symbolic number system is modulatedmore
by education and development. Also, language plays an essen-
tial role in this process to create solid representations for large
exact numbers. Given the extensive research that indicates the
importance of symbolic processing skills in the development of
children’s math achievement (De Smedt et al., 2013; Xenidou-
Dervou et al., 2013; Lyons et al., 2014), future studies should
place more focus on the role that language plays in developing
these skills. From an educational perspective, our results sug-
gest that children who speak languages that entail the inversion
property in their number naming system, such as Dutch, German,

Arabic, and other (see Comrie, 2005; Göbel et al., 2011), should
place more focus in learning and automatizing two-digit num-
bers since they are cognitively more demanding compared to
other – more transparent – number naming systems. For Dutch-
speaking children, our findings suggest that it could potentially
be useful to start receiving formal school instruction on Arabic
numbers already from kindergarten. There is increasing evidence
in older children (Göbel et al., 2011, 2014a; Helmreich et al.,
2011) and even adults (Nuerk et al., 2005) on the negative effects
the inversion property can have on various mathematical abili-
ties. As a striking example of the importance of this issue, one
of our Dutch sample’s teachers reported that she overheard a
child telling another in class while doing arithmetic: “Just say
the numbers in English, it’s easier.” In times when the transfer
of knowledge and skills is prominent and international student
assessments prevail, improving early educational instruction is of
primary importance.
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The inversion of number words influences numerical cognition even in seemingly non-
verbal tasks, such as Arabic number comparison. However, it is an open question
whether inversion of decades and units also influences number processing beyond
the two-digit number range. The current study addresses this question by investigating
compatibility effects in both German- (a language with inverted) and English-speaking
(a language with non-inverted number words) university students (mean age 22 years)
in a three-digit number comparison task. We observed reliable hundred-decade as well
as hundred-unit compatibility effects for three-digit number comparison. This indicates
that, comparable two-digit numbers, three-digit numbers are processed in a parallel
decomposed fashion. However, in contrast to previous results on two-digit numbers
as well as on children’s processing of three-digit numbers, no reliable modulation of
these compatibility effects through language was observed in adults. The present data
indicate that inversion-related differences in multi-digit number processing are limited.
They seem to be restricted to the number range involving those digits being inverted
(i.e., tens and units in two-digit numbers) but do not generalize to neighboring digits.
Possible reasons for this lack of generalization are discussed.

Keywords: multi-digit number comparison, three-digit numbers, compatibility effects, language-moderated
effects, developmental changes

Introduction

Everyday life usually involves processing of multi-digit numbers. Nevertheless, much of the
research in numerical cognition has been devoted to single-digit number processing. However,
findings from single-digit number processing may not simply be transferred to multi-digit number
processing (Nuerk et al., 2011). Indeed, specific processes and representations (e.g., base-10 place-
value representation, the carry-process in addition) are exclusive to multi-digit number processing
(Nuerk et al., 2015). Importantly, suchmulti-digit number representations are not only of academic
interest but seem of particular relevance for numerical development. Moeller et al. (2011) showed
that the mastery of the place-value structure of the Arabic number system in first grade predicted
later calculation performance. In the following, we will first describe specificities of multi-digit
numbers before discussing language influences on multi-digit number processing essential for the
current study.
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The majority of studies investigating multi-digit number
processing focused on two-digit integer numbers (Nuerk et al.,
2011, 2015 for overviews). Even though earlier studies concluded
on holistic processing of two-digit numbers as integrated
entities (e.g., Dehaene et al., 1990; see also Zhang and Wang,
2005; Ganor-Stern et al., 2009) there is accumulating evidence
suggesting two-digit numbers to be processed in a decomposed
manner (i.e., separated into tens and units, e.g., Nuerk et al., 2001;
Ganor-Stern et al., 2007; Kallai and Tzelgov, 2012; Macizo and
Herrera, 2013; Moeller et al., 2013).

However, for numbers beyond the two-digit number range
empirical evidence is sparser and in contrast to what has been
observed for two-digit numbers, recent studies suggest that
higher multi-digit numbers are processed in a combined parallel-
sequential manner. In an eye-tracking study, Meyerhoff et al.
(2012) found that for four- to six-digit numbers processing of the
constituting digits becomes less parallel and more sequentially
clustered (see also Poltrock and Schwartz, 1984). On the other
hand, Korvorst and Damian (2008) observed that three-digit
numbers are primarily processed in parallel but with a left-to-
right gradient reflecting the relevance of hundreds, tens, and
units. Finally, Mann et al. (2012) showed that, for three-digit
numbers, parallel decomposed processing developed later and
in a less consistent way as compared to two-digit numbers.
Taken together, this indicates that results from two-digit numbers
cannot simply be transferred to higher multi-digit numbers.

It has long been reported that greater transparency of
the number word system facilitates number processing and
arithmetic performance at virtually all stages of development
(e.g., Miura et al., 1988; Fuson and Kwon, 1991; Miura and
Okamoto, 2003; Dowker and Lloyd, 2005; Dowker et al.,
2008; Krinzinger et al., 2011). Noteworthy, number word
structure influences number processing in verbal but also
in other numerical tasks that do not rely on a verbal
processing component explicitly. As regards verbal numerical
tasks, specific transcoding errors were observed depending on
specific characteristics of certain number word systems (e.g.,
effects of the base-20 system in the French number word system,
Seron and Fayol, 1994; see also Colomé, À et al., 2010 for
base-20 system effects in Basque). More specifically related to
the current study are transcoding errors due to the inversion
property of some languages. In German, Dutch, Arabic but also
other languages the order of tens and units in number words
corresponding to two-digit numbers is inverted as compared
to the Arabic digital notation (e.g., 27 ↔ “siebenundzwanzig,”
i.e., “seven-and-twenty”). As a consequence, children speaking a
language with inversion commit specific inversion related errors
in transcoding (i.e., writing down 72 when dictated “seven-and-
twenty”). For German-speaking first graders it has been shown
that almost 50% of errors committed are inversion related (Zuber
et al., 2009). No such errors are reported for languages without
inversion (e.g., Italian, cf. Power and Dal Martello, 1990, 1997).
In a recent study in Czech, where both an inverted and a regular
number word system exist for two-digit number words, revealed
the same detrimental effects on transcoding even in a within-
participant design in first-grade children (Pixner et al., 2011b;
see also Imbo et al., 2014, for cross-linguistic effect within the

same nation). However, number word influences on multi-digit
number processing also extend to other numerical tasks such as
symbolic magnitude comparison (Nuerk et al., 2005; Pixner et al.,
2011a), number line estimation (Helmreich et al., 2011) ormental
addition (Göbel et al., 2013).

The effect of interest, with which language influences can
be studied in multi-digit number comparison, is the unit-
decade compatibility effect. In unit-decade compatible number
pairs separate comparisons of tens and units lead to the same
decision (e.g., 42_57; 4 < 5 and 2 < 7) whereas in unit-decade
incompatible number pairs separate comparisons of tens and
units lead to opposing decisions (47_62, 4 < 6, but 7 > 2).
Usually, unit-decade compatible pairs are responded to faster and
less error prone than incompatible number pairs (e.g., Nuerk
et al., 2001; Ganor-Stern et al., 2007, 2009; Moeller et al., 2009;
Macizo et al., 2010; Macizo and Herrera, 2013; see Nuerk et al.,
2011, 2015, for reviews). Importantly, this effect was shown to
be modulated by the numerical distances between corresponding
digit positions. Nuerk et al. (2001, see also Nuerk et al., 2004
for children data) found, for example, that the unit-decade
compatibility effect was more pronounced when the distance
between the unit digits of the two numbers of a number pair
was large. This influence of the respective distances indicates
that the unit-decade compatibility effect is not an attentional
congruity effect or a categorical response conflict but is indeed
driven by the separate processing of the numerical magnitudes of
the constituent digits of a multi-digit number.

Furthermore, language and namely, inversion of number
words, has been shown to influence the compatibility effects in
different studies. For two-digit number pairs, it has been shown
that the unit-decade compatibility effect is more pronounced
for languages with number word inversion (Nuerk et al., 2005,
see also Pixner et al., 2011a for children data), at least when
numbers are read from left-to-right (Moeller et al., 2015). It
has been argued that number word inversion influences the
comparison process as the unit digit being named first in
the respective number words (erroneously) implies a higher
importance and activation of the unit digit, although it is
actually irrelevant for the decision. The higher activation of
unit digits elevates the compatibility effect, because it is actually
a unit interference effect, where the automatic activation of
irrelevant unit comparisons cannot be completely suppressed
thus hindering or prolonging responses in incompatible trials.

In the current study we were interested in whether and –
if so – how three-digit number comparison is influenced by
inversion. In languages with non-inverted number words, the
order of digits in a three-digit number is the same as the
order of constituents of the corresponding number word (e.g.,
in English: 372 ↔ three-hundred-and-seventy-two). Contrarily,
this is not the case in languages with inverted number words
(e.g., in German: 372 ↔ three-hundred-two-and-seventy; see
Figure 1, for illustration). Similar to two-digit numbers, the unit
digit is named before the tens digit following the hundreds digit.
This may increase interference due to the irrelevant unit digit.
However, in contrast to two-digit numbers, the neighborhood
of the constituents differs between number words and Arabic
numbers. The number word corresponding to the unit digit is
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FIGURE 1 | Visual and verbal neighborhood. If language influences are
present, verbally neighboring digits should interfere with the comparison
process. In case of a language without inverted number words, the interference

due to the decade digits should be most pronounced. In contrast, for a
language with inversion, the interference due to the unit digits should be more
pronounced as compared to the decade digits.

the direct neighbor of the number word corresponding to the
hundred digit (i.e., three and seven in above example) whereas
the direct neighbor of the hundred digit in Arabic digital notation
still is the tens digit (i.e., three and two in above example). If
linguistic number word structure influences three-digit number
processing, interference due to the unit digit might not be
restricted to the neighboring Arabic tens digit but might also
extend to the verbally neighboring hundred digit. Consequently,
interference due to the unit digit should be more pronounced
for German-speaking participants whereas for English-speaking
participants it was observed that interference due to the decade
digit was more pronounced (Korvorst and Damian, 2008; see also
Figure 1 for an exemplary illustration).

Paralleling the unit-decade compatibility effect for two-digit
number comparison, both hundred-decade and hundred-unit
compatibility can be defined for three-digit number comparison.
A three-digit number pair is hundred-decade compatible when
separate comparisons of the hundred and the decade digits
lead to the same decisions (e.g., 742_896; hundreds 7 < 8 and
decades 4 < 9) and hundred-decade-incompatible when separate
comparisons of hundreds and tens lead to opposing decisions
(e.g., 362_517, hundreds 3 < 5, but 6 > 1). Analogously, a
three-digit number pair is defined as hundred-unit compatible
when separate comparisons of hundred and unit digits yield
the same decision (e.g., 742_896, hundreds 7 < 8 and units
2 < 6) and hundred-unit-incompatible when these separate
comparisons lead to opposing decisions (e.g., 537_692, hundreds
5 < 6, but units 7 > 2). It is important to note that hundred-
decade compatibility and hundred-unit compatibility are both
attributes of one single number pair, which can be manipulated
independently from each other.

So far, there are only few studies investigating language
influences in three-digit number comparison tasks. In line with
the larger interference due to decade-digits for languages with
a non-inverted number word structure, Korvorst and Damian
(2008) observed that, for English-speaking adults, the hundred-
decade compatibility effect was descriptively more pronounced
as compared to the hundred-unit compatibility effect. The
authors interpreted this to indicate a left-to-right processing

gradient reflecting partially sequential processing. However,
it is important to note that in the original stimulus set of
Korvorst and Damian (2008) hundred-decade compatibility was
confounded with overall distance: overall distance was larger for
hundred-decade compatible number pairs. This may have led
to an inflation of the hundred-decade compatibility effect and,
therefore, questions the proposed interpretation of a left-to-right
processing gradient.

The only direct between-language comparison for three-digit
numbers was conducted with children in third grade. Klein
et al. (2013) observed that only German-speaking children
exhibited a reliable hundred-unit compatibility effect, whereas no
such effect was found for Italian-speaking children (a language
without inversion). Moreover, the hundred-unit compatibility
effect was more pronounced as compared to the hundred-
decade compatibility effect for German-speaking third and fourth
graders (Mann et al., 2012). This corroborates the argument
on more pronounced unit interference when units neighboring
hundreds verbally due to the inverted structure of German
number words. However, the direct comparisons between the
language groups was not significant, so that these differential
language influences need to be treated with caution.

It is, however, important to note that with any outcome of
above study, children’s processing of multi-digit numbers cannot
simply be generalized to adults. Children seem to move from
a more sequential to a more parallel processing mode for both
two-digit (Nuerk et al., 2004; Mann et al., 2011) and three-digit
(Mann et al., 2012) numbers. It is well conceivable that language
influences children’s more sequential processing of three-digit
numbers, but does not influence adult’s more parallel and more
automatic (cf. Kallai and Tzelgov, 2012) processing. Therefore,
the question remains whether or not a stronger influence of unit
interference in a language with inverted number words may only
be a transient developmental phenomenon.

The present study set off to investigate inversion-related
language specificities in three-digit number processing in
German- (a language with inverted) as well as English-speaking
(a language with non-inverted number words) adults. Because
hundred-decade compatibility was confounded with overall
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distance in the stimulus set of Korvorst and Damian (2008)
we created a new better matched stimulus set avoiding such
confounds. Nevertheless, in line with results of Korvorst and
Damian (2008), we expect to find reliable effects of hundred-
decade as well as hundred-unit compatibility for both language
groups indicating that three-digit numbers are processed in
a parallel-decomposed manner. Yet, for the English-speaking
participants, one would expect no differences in the size of
hundred-decade and hundred-unit compatibility effects when the
larger hundred-decade compatibility effect were indeed driven
by the confounded stimulus set of Korvorst and Damian (2008).
On the other hand, we had a specific hypothesis regarding the
influence of the inversion property of German number words:
for our German-speaking participants the interference due to the
verbally first named unit-digit should be more pronounced as
compared to the English-speaking participants. This interference
should result in a relatively larger hundred-unit compatibility
effect as compared to the hundred-decade compatibility effect for
the German-speaking sample.

The evaluation of the pattern of compatibility effects for the
two language groups will provide first empirical evidence on
the question of whether the specific influence of the inverted
number word structure on numerical cognition generalizes from
2- to 3-digit number processing. In particular, the proposed
differential pattern of compatibility effects would corroborate
the notion of inversion-related influences in German to persist
into adulthood not only for the processing of two- but also of
three-digit numbers.

Materials and Methods

Participants
Twenty-five native German speakers (three male, four left-
handed) and 28 native English speakers (six male, two left-
handed) participated in the study. In each group, one participant
had to be excluded due to error rates exceeding 10%. Mean age of
the resulting samples was M = 23.08 years (SD = 6.28 years) for
German- and M = 20.11 years (SD = 2.34 years) for English-
speaking participants. Participants were recruited via postings
at either the University of Tuebingen or the University of York
and received course credits or 5€/4£ for compensation. All
participants reported normal or corrected to normal vision.
The study was approved by the local ethics committee of the
University of York.

Stimuli and Design
In total, the stimulus set consisted of 640 three-digit number
pairs. Numbers containing the same digit more than once (i.e.,
545 or 555), multiples of hundred (i.e., 200) and/or multiples
of ten (i.e., 420) were not included in the stimulus set. For
320 of these number pairs, all corresponding digits differed
from each other. For these critical items, the factors hundred-
decade compatibility (HDC) and hundred-unit compatibility
(HUC; each compatible vs. incompatible), as well as hundred
(HD), decade (DD), and unit distance [UD; for all, small
(1–3) vs. large (4–8)] were manipulated orthogonally in a

2 × 2 × 2 × 2 × 2 within-subject design. Problem
size (the sum of the two numbers of a number pair) was
matched for all resulting 32 conditions and overall as well as
decade and unit distance was matched for the respective item
conditions. Hundred distance could not be held constant for
all conditions, as hundred distance is necessarily smaller for
hundred-decade-compatible than hundred-decade-incompatible
trials when problem size is held constant across conditions
[hundred distances: MHDC−comp = 3.7, SDHDC−comp = 2.1,
MHDC−incomp = 4.4, SDHDC−incomp = 2.2; t(318) = 3.31,
p < 0.001]. Descriptive characteristics for these 320 critical
number pairs are given in the supplementary material.

Additionally, 320 within-hundred number filler pairs were
included. Filler items should prevent participants from focusing
on decision-relevant hundred digits only. For half of these filler
items, hundred digits were held constant (e.g., 475_421) whereas
for the other half hundred and decade digits were identical (e.g.,
425_421).

Number pairs were presented above each other in Arabic
notation in white against a black background (font: “Arial,” font
size: 24 pt, bold) with a viewing distance of ∼50 cm.

Task and Procedure
In a magnitude comparison task participants had to indicate
the larger of two three-digit numbers as fast and accurately as
possible. In case the upper number in the display was larger,
participants were instructed to press the ‘↑’ key of a standard
keyboard with their right index finger. When the lower number
was larger, participants had to press the ‘↓’ key with their left
index finger. Instructions were given in the respective native
language of participants. The two to-be-compared numbers of
each pair appeared simultaneously and remained visible until
a response key was pressed. Trials were separated by an inter-
trial interval of 500 ms. Trial order was randomized separately
for each participant. Participants did not receive feedback as
to the correctness of their response. Prior to the critical trials,
participants performed 10 practice items, which were not part of
the stimulus set.

Results

Only correct responses were considered for analyses [mean error
rate was 3.7%, SD = 2.1%; German: 4.0%, SD = 2.3%; English:
3.4%, SD= 1.9%; t(49) = 0.86, p= 0.392]. All three-digit number
pairs with RTs faster than 200 ms were excluded from further
analyses. Additionally, all number pairs with RTs deviating more
than ±3 standard deviation from the individual participant’s
mean RT were excluded. This procedure led to a total loss of
1.4% of the data [German: M = 1.4%, SD = 0.4%; English:
M = 1.4%, SD = 0.7%; t(49) = −3.43, p = 0.733]. As error
rates were very low, analyses focused on RT. Nevertheless, a
highly significant positive correlations between error rates and
reaction times (German: r = 0.788, p < 0.001; English: r = 0.688,
p < 0.001) indicated a similar response pattern for errors and
RTs disconfirming a speed accuracy trade off. Compatibility and
distance effects were evaluated by a 2 × 2 × 2 × 2 × 2 × 2
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TABLE 1 | Mean and standard deviation for all 32 stimulus categories for the German- and the English-speaking sample.

Hundred
distance

Decade
distance

Unit
distance

Hundred-decade-compatible Hundred-decade-incompatible

Hundred-unit-
compatible

Hundred-unit-
incompatible

Hundred-unit-
compatible

Hundred-unit-
incompatible

M (SD) M (SD) M (SD) M (SD)

large large large German 680 (141) 729 (186) 693 (152) 700 (166)

English 724 (158) 754 (162) 738 (155) 758 (138)

large large small German 676 (162) 708 (215) 709 (185) 746 (196)

English 716 (132) 730 (128) 749 (169) 767 (129)

large small large German 711 (205) 726 (182) 682 (162) 753 (225)

English 737 (196) 781 (224) 705 (129) 776 (141)

large small small German 698 (155) 684 (158) 706 (172) 722 (187)

English 739 (148) 724 (109) 773 (162) 777 (165)

small large large German 757 (186) 792 (196) 808 (167) 841 (234)

English 801 (159) 826 (158) 842 (130) 869 (154)

small large small German 790 (214) 808 (231) 813 (218) 806 (213)

English 832 (180) 854 (205) 866 (166) 856 (164)

small small large German 680 (141) 807 (186) 755 (218) 839 (172)

English 803 (138) 879 (203) 761 (113) 876 (141)

small small small German 775 (193) 768 (182) 765 (190) 783 (187)

English 851 (225) 815 (136) 823 (182) 846 (161)

M, mean; SD, standard deviation.

ANOVA discerning the within-subject factors HDC (compatible
vs. incompatible), HUC (compatible vs. incompatible), HD
(small vs. large), DD (small vs. large), UD (small vs. large) as
well as the between-subject factor language (German vs. English).
Mean reaction times and standard deviations for all stimulus
categories are presented in Table 1. In the following we will
first report results relevant for possible language differences in
compatibility effects, before describing distance effects as well as
further modulations of compatibility effects through distances
between respective digit positions.

Compatibility Effects and Language
Differences
In line with our hypothesis, reliable main effects of HDC and
HUC were observed indicating that three-digit numbers were
processed in a parallel and decomposed fashion. Hundred-decade
compatible number pairs (M = 765 ms, SD = 172 ms) were
on average responded to 14 ms faster than hundred-decade
incompatible number pairs [M = 779 ms, SD = 165 ms;
F(1,49) = 19.65, p < 0.001, η2p = 0.29]. Additionally, response
latencies were on average 27 ms shorter for hundred-unit
compatible number pairs (M = 759 ms, SD = 165 ms) as
compared to hundred-unit incompatible pairs [M = 786 ms,
SD = 171 ms; F(1,49) = 39.96, p < 0.001, η2

p = 0.47].
In contrast to our hypotheses and in contrast to the

compatibility pattern observed by Korvorst and Damian (2008),
the main effect of HUC was descriptively larger as compared to
the effect of HDC for both language groups (see Figure 2 for an
illustration).

In addition to the main effects of HDC and HUC,
the interaction between HDC and HUC was significant

FIGURE 2 | Effects of hundred-decade (HDCE) and hundred-unit
compatibility (HUCE) for German- and English-speaking adults. Error
bars represent standard errors.

[F(1,49) = 4.42, p = 0.041, η2
p = 0.08]. In contrast to Korvorst

and Damian (2008), this interaction indicated that the effect of
HUC is larger for hundred-decade incompatible as compared to
compatible number pairs (33 and 21 ms, respectively).

In contrast to what we expected, neither the interaction
between HDC and language [F(1,49) = 0.11, p = 0.745] nor
that between HUC and language [F(1,49) = 0.01, p < 0.919]
nor the three-way interaction of HDC, HUC and language
was significant [F(1,49) = 0.10, p = 0.756]. Overall reaction
times did not differ between groups [German; M = 750 ms,
SD= 196 ms, English:M = 792ms, SD= 169 ms; F(1,49)= 0.81,
p = 0.372]. Importantly there wasn’t any reliable interaction
with the factor language at all. These findings indicate that
language did not modulate three-digit number processing. This
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interpretation is further corroborated by Bayesian analyses. Using
the method proposed by Masson (2011), graded evidence for the
null hypothesis (given the obtained data) can be calculated (see
Masson, 2011, for a detailed description of the method).With
respect to the interaction of both HDC and HUC with language,
Bayesian analyses revealed that the probability of the null
hypotheses (no differences between language groups) was 0.87
and 0.88, respectively. For the three-way interaction of HDC,
HUC, and language the probability was 0.87. Applying the criteria
suggested by Masson, probabilities above 0.75 can be considered
positive evidence for the null hypothesis.

Distance Effects and Influences of Digit
Distances on Compatibility Effects
A significant main effect of hundred distance was found indexing
number pairs with a large HD (M = 728 ms, SD = 159 ms)
to be responded to 88 ms faster than pairs with a small HD
[M = 816 ms, SD = 176 ms; F(1,49) = 534.75, p < 0.001,
η2
p = 0.92]. This clearly indicates that number magnitude was

processed in the task at hand. Moreover, the effect of DD was
marginally significant [F(1,49) = 3.33, p = 0.074, η2

p = 0.06].
In line with the results of Korvorst and Damian (2008) this
reflected a tendency toward an inverted DD effect: number pairs
with a small DD (M = 770 ms, SD = 167 ms) tended to be
processed faster than pairs with a large DD (M = 774 ms,
SD = 166 ms). In addition, the interaction of HD and DD was
significant [F(1,49) = 21.00, p < 0.001, η2

p = 0.30] indicating
that the reversed DD effect was only present for small hundred
distances but not for large HD (−15 and 7 ms, respectively).

With respect to the HDC effect, a reliable two-way interaction
of HDC and DD was observed [F(1,49) = 9.30, p = 0.004,
η2
p = 0.16]. In line with previous findings on the influence of

digit distances on compatibility effects for two-digit numbers
(Nuerk et al., 2001) and three-digit numbers (Korvorst and
Damian, 2008), this interaction indicated that the HDC effect
was more pronounced for larger as compared to smaller DD.
Moreover, a reliable interaction of HDC and UD was observed
[F(1,49) = 4.22, p < 0.045, η2

p = 0.08] indicating that the
effect of HDC is larger for large UD when compared to small
UD. Additionally, three three-way interactions were observed
involving HDC. Firstly, the interaction of HDC and DD was
further qualified by the three-way interaction of HDC, DD, and
HD [F(1,49) = 4.49, p = 0.039, η2

p = 0.08]. Breaking down this
three-way interaction into its constituting two-way interactions
revealed that the interaction of HDC and DD was significant for
small HD [F(1,49) = 11.92, p = 0.001, η2

p = 0.19] but not for
large HD. Secondly, the interaction of HDC and DD was further
qualified by the reliable three-way interaction of HDC, DD, and
HUC [F(1,49) = 24.16, p < 0.001, η2

p = 0.33]. Breaking down
this three-way interaction in two-way interactions of HDC and
DD for hundred-unit-compatible and – incompatible number
pairs showed that the interaction was significant for hundred-unit
compatible number pairs [F(1,49) = 28.92, p < 0.001, η2

p = 0.37]
but not for hundred-unit incompatible ones [F(1,49) = 0.17,
p = 0.682]. Lastly, the interaction of HDC, UD, and HD was
reliable [F(1,49) = 19.48, p < 0.001, η2

p = 0.28]. Breaking down
this three-way interaction showed that the two-way interaction

of HDC and UD was reliable for large HD [F(1,49) = 10.49,
p = 0.002, η2

p = 0.17] but not for small HD.
For the HUC effect, modulations due to distances between

the respective digit positions were observed as well. First,
the interaction between HUC and UD was significant
[F(1,49) = 28.85, p < 0.001, η2

p = 0.37] indicating that the
effect of HUC was more pronounced for larger as compared to
smaller UD. This two-way interaction was further qualified by
two three-way interactions including HD and DD, respectively.
Breaking down the three-way interaction of HUC, UD, and
HD [F(1,49) = 8.89, p = 0.004, η2

p = 0.15] revealed that
the interaction of HUC and UD was reliable for both large
[F(1,49) = 12.11, p = 0.001, η2

p = 0.20] and small HD
[F(1,49) = 32.32, p < 0.001, η2

p = 0.39]. However, while the HUC
effect was larger for large UD for both large and small HD, the
difference between the HUC effects for large and small UD was
more pronounced for small HD. Breaking down the three-way
interaction of HUC, UD, and DD [F(1,49) = 26.11, p < 0.001,
η2
p = 0.35] showed that the two-way interaction of HUC and UD

was reliable for small DD [F(1,49) = 42.44, p < 0.001, η2
p = 0.15]

but not for large DD.
To further investigate the contribution of inter-digit distances,

we ran a regression analysis similar to that conducted by Nuerk
et al. (2001) for both language groups separately. Importantly,
the results mirrored those of the ANOVA. After checking for
collinearity between predictors (e.g., hundred distance was highly
correlated with overall distance as well as logarithmic hundred
distance), we included the predictors absolute hundred distance,
absolute decade distance, absolute unit distance, categorical
predictors of HDC and HUC, respectively, continuous predictors
of HDC and HUC {e.g., the continuous HDC index for a
compatible number pair is positive [732_896; index: +6 (9–3)]
while the continuous HDC index for an incompatible number
pair is negative [762_851; index: −1 (5–6)]}, and problem
size (operationalized as the mean of the two to-be-compared
numbers). For both language groups, regression analysis was
highly predictive [German: R = 0.700, adj. R2 = 0.482,
F(5,314) = 60.42, p < 0.001; English: R = 0.718, adj. R2 = 0.507,
F(5,314) = 66.64, p < 0.001] with the same five predictors
incorporated in the final model: absolute hundred distance (G:
b = −0.620; E: b = −0.660), HDC categorical (G: b = −0.228;
E: b = −.219), HUC categorical (G: b = −0.196; E: b = −0.200),
HDC continuous (G: b = −0.081; E: b = −0.105) and problem
size (G: b = 0.251; E: b = 0.190). Thus, the predictors for
both languages were identical. Directly contrasting standardized
b-weights of significant predictors between both languages
using the method suggested by Brame et al. (1998) revealed
no significant differences for any predictor (all Z < 1.1, all
p > 0.27).

In sum, the results of these regression analyses are in line
with previous research: the predictor hundred distance was the
strongest predictor of RT indicating that participants indeed
performed a magnitude comparison task. In addition, results
suggest that even for three-digit numbers, compatibility effects
are not simply categorical, but are influenced by the magnitudes
of the involved digits. This is reflected by the inclusion of the
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continuous HDCvariable in the final regressionmodel, which did
not code compatibility categorically, but defined by magnitude.

Discussion

The aim of the current study was to investigate whether
three-digit number processing in adults is influenced by
the specific language property of number word inversion.
Although we observed reliable hundred-decade and hundred-
unit compatibility effects, these were not modulated by language
in the present study. Bayesian analyses substantiated these
null effects. In sum, these data argue against a reliable
influence of language on three-digit number processing in
adults.

This was in contrast to our expectations because such language
influences have been found repeatedly for two-digit numbers
over a variety of tasks and participant groups (e.g., Nuerk
et al., 2005; Macizo et al., 2010; Helmreich et al., 2011; Pixner
et al., 2011a; Göbel et al., 2013; Imbo et al., 2014). For three-
digit number processing, there is first evidence from child
data indicating language influences, which were, however, small
and not observed consistently (Klein et al., 2013). However,
in contrast to this, no language effects were found at all in
the present study when evaluating the influence of number
word inversion on the pattern of HDC and HUC effects in
German- and English-speaking adults using a three-digit number
comparison task. This indicates that language influences on
multi-digit number processing in children cannot simply be
generalized to adults (Nuerk et al., 2004; Mann et al., 2011, 2012).

Nonetheless, comparable and reliable effects of HDC and
HUC were observed for both German- and English-speaking
adults. This indicated three-digit numbers to be processed
in a parallel and decomposed manner in both language
groups. Additionally, in both language groups the pattern of
compatibility effects differed from the one observed for English-
speaking participants previously reported by Korvorst and
Damian (2008). In particular, we observed the effect of HUC to
be descriptively larger than the effect of HDC contradicting a
sequential left-to-right processing gradient in three-digit number
processing.

Lack of Language Differences in Adults
We observed significant HDC and HUC for German and
English-speaking adults in ANOVA and regression analyses. In
line with previous results for multi-digit numbers (e.g., Nuerk
et al., 2001; Ganor-Stern et al., 2007; Macizo et al., 2010;
Meyerhoff et al., 2012; Macizo and Herrera, 2013; Moeller et al.,
2013) three-digit numbers thus seemed to be processed in a
parallel and decomposed manner: the correct decision in number
magnitude comparison was not only influenced by the decisive
digit (i.e., the hundred digits in the case of between-hundred
number pairs) but also by the separate comparisons of decision-
irrelevant tens and units. This provides further evidence for
the argument that place-value information and the magnitudes
of single digits are considered automatically when multi-digit
numbers are processed.

Importantly, and in contrast to previous results for two-
digit numbers, the present data indicate that three-digit number
processing is not influenced by number word inversion. The
decision-irrelevant tens and units thus exhibited a comparable
influence on three-digit number processing for both German-
and English-speaking participants. Unlike for tens and units,
the position of the hundred digit is not inverted in German
number words as compared to its position within the digit string
(e.g., 384: dreihundertvierundachtzig, literally: three hundred
four and eighty). Considering this, the present pattern of
results indicates that interference due to inverted digits does
specifically affect the inverted digits but not those next to the
inverted ones. In turn, this might mask potential language
differences in multi-digit number processing beyond the two-
digit number range. Therefore, the observed compatibility effect
pattern indicated that language influences observed for two-
digit number processing do not generalize to three-digit number
processing. Our results thereby indicate that inversion effects
seem to be restricted to the digits being inverted (i.e., tens
and units) and do not generalize to the verbally neighboring
hundreds.

Please note, however, that the samples investigated in this
study comprised only 25 and 28 participants, respectively.
Therefore, one might speculate that null effects observed in this
study might be attributable to power problems and/or type-
1 errors associated with small sample sizes. Yet, this seems
unlikely for at least two reasons. First, the observed null effects
were substantiated by Bayesian analyses indicating them to be
reliable. Second, it needs to be considered that for two-digit
numbers, influences of inversion on the compatibility effect
have been observed with similar sample sizes (e.g., Nuerk et al.,
2005). So, even if statistically significant inversion influences
on three-digit number processing might be detected with
larger sample sizes, this would provide further evidence for
our conclusion that these influences are most likely smaller
and/or less reliable than for two-digit number processing in
adults.

Differences between Three-Digit Number
Processing in Children and Adults
Investigating an adult sample, the present data did not indicate
language to influence three-digit number processing. However,
when considering previous evidence from children, data indicate
language-specific developmental shifts from more sequential to
more parallel decomposed processing of multi-digit numbers
(e.g., Klein et al., 2013). As previously observed for two-digit
numbers, compatibility effects for three-digit numbers seem
to become more pronounced with increasing age. However,
for non-inverted languages, the effect of HUC was present in
(English-speaking) adults (this study and Korvorst and Damian,
2008) but not in (Italian-speaking) children (Klein et al., 2013).
For the inverted German language, the effect of HDC effect was
present in adults but not in children of third and fourth grade.
Furthermore, for both German-speaking adults (this study) and
children (Mann et al., 2012), the effect of HUC effect was
larger than the hundred-decade compatibility effect. Thus, there
are language influences on the developmental shift from more
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sequential toward more parallel decomposed processing of multi-
digit numbers with age and experience.

While the shift in processing patterns can be provoked by
changes on the visuo-spatial and/or verbal processing level in
non-inverted languages (i.e., English, Italian), in the inverted
German language, a shift in processing verbal information is
more probable. Because the tens did not interfere with the
comparison process in German-speaking elementary school
children, it can be assumed that, at least for children up to
fourth grade, interference caused by verbal number words is
more pronounced as compared to interference caused by the
directly neighboring digits in symbolic Arabic number notation.
Thus, auditory-verbal neighborhood of spoken number word
elements seems to be more important at this point than visuo-
spatial neighborhood of written digits. This might be due
to children’s tendency to verbalize what they are cognitively
engaged in – in the present case three-digit Arabic numbers –
more strongly than adults might do. In line with this, research
on so-called private speech indicates that children’s use of a
more externalized, overt verbal thinking in kindergarten reduces
gradually to rather internalized, soundless inner speech over the
course of early elementary school (e.g., Kohlberg et al., 1968;
Berk, 1992; Winsler and Naglieri, 2003). Although internalizing
with age, language-supported processing might still be more
pronounced in elementary school children when compared to
adults. In turn, visuo-spatial neighborhood seems to become
more salient with increasing age, experience, and automaticity
in number processing whereas interference due to automatic
activation of corresponding number word properties seems to
become less salient. Taken together, these findings are in line
with the notion of a developmental shift from more language
modulated sequential processing of three-digit numbers to a
more decomposed and parallel processing mode, which getsmore
independent of language with increasing age and experience.

Sequential and Parallel Processing and
Differential Compatibility Patterns
Combined sequential and parallel processing has been postulated
for multi-digit numbers beyond the two digit number range
(Korvorst and Damian, 2008; Meyerhoff et al., 2012). For three-
digit numbers, Korvorst and Damian (2008) accounted for the
larger HDC effect (as compared to the HUC effect) by suggesting
a sequential left-to-right processing gradient enhancing the
interfering role of the tens. In such sequential processing, tens
are assumed to be processed directly following the hundreds and
therefore interfere more than the subsequently processed unit
digits.

While this explanation is appealing, we were not able to
replicate Korvorst and Damian’s (2008) results in this respect.
Instead, we observed the HUC effect to be descriptively
larger than the HDC effect for both the present English- and
German-speaking participants. These results are inconsistent
with the assumption of a left-to-right processing gradient. As
a consequence, the question why differing compatibility effect
patterns were found between the present study and that of
Korvorst and Damian (2008) is of theoretical importance for our
understanding of multi-digit number processing.

To account for this inconsistency, one should first consider
differences in the stimulus set. As already described above,
overall distance was larger for hundred-decade-compatible as
compared to hundred-decade incompatible number pairs in the
original stimulus set used by Korvorst and Damian (2008).
Therefore, the HDC effect may have been inflated, because overall
numerical distance and HDC were confounded. This confound
was eliminated in the present stimulus set, which might have led
to the smaller hundred-decade-compatibility effect in the present
study. Yet, these contrasting results highlight the importance of
matching task, stimuli, and procedures when aiming at evaluating
multi-digit number processing.

Nevertheless, differences in stimulus characteristics may
not be sufficient to explain that – in the present study –
the HUC effect was larger than the HDC effect for both
language groups. On a first glance, this seems somewhat
counterintuitive since hundred and unit digits are visually
and conceptually further apart but caused larger inter-digit-
interference. A possible explanation for this finding is the effect of
lateral masking. Investigated extensively in reading research, this
effect describes the interference letters have on the processing of
their neighboring letters. When a target letter is flanked by other
letters, parafoveal and peripheral vision decreases and, therefore,
the probability of correctly identifying the target letter decreases
as well (Wolford and Chambers, 1983; Huckauf et al., 1999).
Paralleling letter strings or words, one obvious difference between
two-digit and three-digit numbers is that only in a three-digit
number the decade digit has two neighbors, whereas the hundred
and the unit digit only have one. This means less inhibitory
influences for the two lateral digits (e.g., hundreds and units)
which might in turn add to a descriptively more pronounced
HUC effect.

Conclusion

Taken together, our data suggest that there are limitations
to language influences on multi-digit number processing – at
least in adults. We observed no influences of number word
inversion on three-digit number magnitude processing. This
seems counter intuitive because we have seen an increasing
number of papers in recent years showing language influences
for a wide variety of numerical task, stimulus sets and participant
groups. Therefore, the current data constrain these findings:
language influences may not be ubiquitous but seem to be specific
to stimulus sets, age groups, and probably tasks. Additionally,
our data suggest that perceptual determinants of processing
multiple elements deserve attention in multi-digit number
processing research. On a practical level, future studies might
wish to evaluate the development of language differences with
age more systematically. Thereby, possible associations with
numerical/arithmetical competencies may be investigated (e.g.,
Göbel et al., 2013), which, in turn, would allow to better
understand the influence of inverted number word systems on
children’s numerical development. On a theoretical level, it would
be desirable to better the interplay of parallel and sequential
processing of in multi-digit numbers. Therefore, future studies
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may use eye-tracking to evaluate online what is actually going on
during the comparison process.

Acknowledgments

JB was supported by the Leibniz-Competition Fund (SAW-2014-
IWM-4) providing funding to Elise Klein. KM and H-CN were
principal investigators at the LEAD Graduate School [GSC1028],
a project of the Excellence Initiative of the German federal and

state governments. We would like to thank Silke Göbel and
Carolin Maier for their help in data collection.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2015.01216

References

Berk, L. E. (1992). “Children’s private speech: an overview of theory and the status
of research,” in Private Speech: From Social Interaction to Selfregulation, eds
R. M. Diaz and L. E. Berk (Hillsdale, NJ: Erlbaum), 17–53.

Brame, R., Paternoster, R., Mazerolle, P., and Piquero, A. (1998). Testing
for the equality of maximum-likelihood regression coefficients between
two independent equations. J. Quant. Criminol. 14, 245–261. doi:
10.1023/A:1023030312801

Colomé, À., Laka, I., and Sebastián-Gallés, N. (2010). Language effects in
addition: how you say it counts. Q. J. Exp. Psychol. 63, 965–983. doi:
10.1080/17470210903134377

Dehaene, S., Dupoux, E., and Mehler, J. (1990). Is numerical comparison digital?
Analogical and symbolic effects in two-digit number comparison. J. Exp.
Psychol. Hum. Percept. Perform. 16, 626–641. doi: 10.1037/0096-1523.16.3.626

Dowker, A., Bala, S., and Lloyd, D. (2008). Linguistic influences on mathematical
development: how important is the transparency of the counting system?.
Philos. Psychol. 21, 523–538. doi: 10.1080/09515080802285511

Dowker, A., and Lloyd, D. (2005). “Linguistic influences on numeracy,” in
Mathematics in the Primary School, eds D. V. Jones, A. Dowker, and D. Lloyd
(Oxford: Bangor School of Education), 21–35.

Fuson, K. C., and Kwon, Y. (1991). “Chinese-based regular and European irregular
systems of number words: the disadvantages for English-speaking children,” in
Language in Mathematical Education: Research and Practice, eds K. Durkin and
B. Shire (Milton Keynes, PA: Open University Press), 211–226.

Ganor-Stern, D., Pinhas, M., and Tzelgov, J. (2009). Comparing two-digit numbers:
the importance of being presented together.Q. J. Exp. Psychol. 62, 444–452. doi:
10.1080/17470210802391631

Ganor-Stern, D., Tzelgov, J., and Ellenbogen, R. (2007). Automaticity and two-
digit numbers. J. Exp. Psychol. Hum. Percept. Perform. 33, 483–496. doi:
10.1037/0096-1523.33.2.483

Göbel, S., Moeller, K., Pixner, S., Kaufmann, L., and Nuerk, H.-C. (2013). Language
affects symbolic arithmetic in children: the case of number word inversion.
J. Exp. Child Psychol. 119, 17–25. doi: 10.1016/j.jecp.2013.10.001

Helmreich, I., Zuber, J., Pixner, S., Kaufmann, L., Nuerk, H.-C., and Moeller, K.
(2011). Language effects on children’s mental number line: how cross-
cultural differences in number word systems affect spatial mappings of
numbers in a non-verbal task. J. Cross Cult. Psychol. 42, 598–613. doi:
10.1177/0022022111406026

Huckauf, A., Heller, D., and Nazir, T. A. (1999). Lateral masking: limitations
of the feature interaction account. Percept. Psychophys. 61, 177–189. doi:
10.3758/BF03211958

Imbo, I., Bulcke, C. V., De Brauwer, J., and Fias, W. (2014). Sixty-four or four-and-
sixty? The influence of language and working memory on children’s number
transcoding. Front. Psychol. 5:313. doi: 10.3389/fpsyg.2014.00313

Kallai, A. Y., and Tzelgov, J. (2012). The place-value of a digit in multi-digit
numbers is processed automatically. J. Exp. Psychol. Learn. 38, 1221–1233. doi:
10.1037/a0027635

Klein, E., Bahnmueller, J., Mann, A., Pixner, S., Kaufmann, L., Nuerk,
H.-C., et al. (2013). Language influences on numerical development –
inversion effects on multi-digit number processing. Front. Psychol. 4:480. doi:
10.3389/fpsyg.2013.00480

Kohlberg, L., Yaeger, J., and Hjertholm, E. (1968). Private speech: four studies and
a review of theories. Child Dev. 39, 691–736. doi: 10.2307/1126979

Korvorst, M., and Damian, M. F. (2008). The differential influence of decades and
units on multidigit number comparison. Q. J. Exp. Psychol. 61, 1250–1264. doi:
10.1080/17470210701503286

Krinzinger, H., Gregoire, J., Desoete, A., Kaufmann, L., Nuerk, H. C., and
Willmes, K. (2011). Differential language effects on numerical skills in second
grade. J. Cross Cult. Psychol. 42, 614–662. doi: 10.1177/0022022111406252

Macizo, P., and Herrera, A. (2013). The processing of Arabic numbers is under
cognitive control. Psychol. Res. 77, 651–658. doi: 10.1007/s00426-012-0456-6

Macizo, P., Herrera, A., Paolieri, D., and Roman, P. (2010). Is there cross-language
modulation when bilinguals process number words? Appl. Psycholinguist. 31,
651–669. doi: 10.1017/S0142716410000184

Mann, A., Moeller, K., Pixner, S., Kaufmann, L., and Nuerk, H.-C. (2011).
Attentional strategies in place-value integration. J. Psychol. 219, 42–49. doi:
10.1027/2151-2604/a000045

Mann, A., Moeller, K., Pixner, S., Kaufmann, L., and Nuerk, H.-C. (2012). On
the development of Arabic three-digit number processing in primary school
children. J. Exp. Child Psychol. 113, 594–601. doi: 10.1016/j.jecp.2012.08.002

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to
null-hypothesis significance testing. Behav. Res. Methods 43, 679–690. doi:
10.3758/s13428-010-0049-5

Meyerhoff, H. S., Moeller, K., Debus, K., and Nuerk, H.-C. (2012). Multi-digit
number processing beyond the two-digit number range: a combination
of sequential and parallel processes. Acta Psychol. 140, 81–90. doi:
10.1016/j.actpsy.2011.11.005

Miura, I., Kim, C., Chang, C. M., and Okamoto, Y. (1988). Effects of language
characteristics on children’s cognitive representations of number: cross-cultural
comparisons. Child Dev. 59, 1445–1450. doi: 10.2307/1130659

Miura, I., and Okamoto, Y. (2003). “Language supports for mathematics
understanding and performance,” in The Development of Arithmetical Concepts
and Skills, eds A. Baroody and A. Dowker (Mahwah, NJ: Lawrence Erlbaum
Associates, Inc.), 229–242.

Moeller, K., Fischer, M. H., Nuerk, H.-C., and Willmes, K. (2009). Sequential or
parallel processing of two-digit numbers? Evidence from eye-tracking.Q. J. Exp.
Psychol. 62, 323–334. doi: 10.1080/17470210801946740

Moeller, K., Klein, E., Nuerk, H. -C., and Willmes, K. (2013). Magnitude
representation in sequential comparison of two-digit numbers is not holistic
either. Cogn. Process. 14, 51–62. doi: 10.1007/s10339-012-0535-z

Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., and Nuerk, H.-C. (2011). Early
place-value understanding as a precursor for later arithmetic performance—a
longitudinal study on numerical development.Res. Dev. Disabil. 32, 1837–1851.
doi: 10.1016/j.jecp.2010.09.002

Moeller, K., Shaki, S., Göbel, S. M., and Nuerk, H. C. (2015). Language
influences number processing–a quadrilingual study. Cognition 136, 150–155.
doi: 10.1016/j.cognition.2014.11.003

Nuerk, H.-C., Kaufmann, L., Zoppoth, S., and Willmes, K. (2004). On the
development of the mental number line: more, less, or never holistic with
increasing age? Dev. Psychol. 40, 1199–1211. doi: 10.1037/0012-1649.40.6.1199

Nuerk, H.-C., Moeller, K., Klein, E., Willmes, K., and Fischer, M. H. (2011).
Extending the mental number line. Z. Psychol. 219, 3–22. doi: 10.1027/2151-
2604/a000041

Nuerk, H.-C., Moeller, K., and Willmes, K. (2015). “Multi-digit number
processing - overview, conceptual clarifications, and language influences,” in
OxfordHandbook of Numerical Cognition, eds R. Cohen Kadosh and A. Dowker
(Oxford: Oxford University Press), 106–139.

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1216 |  66

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01216
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01216
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Bahnmueller et al. Three-digit number processing and inversion

Nuerk, H.-C., Weger, U., and Willmes, K. (2001). Decade breaks in the mental
number line? Putting the tens and units back in different bins. Cognition 82,
B25–B33. doi: 10.1016/S0010-0277(01)00142-1

Nuerk, H.-C., Weger, U., and Willmes, K. (2005). Language effects in magnitude
comparison: small, but not irrelevant. Brain Lang. 92, 262–277. doi:
10.1016/j.bandl.2004.06.107

Pixner, S., Moeller, K., Hermanova, V., Nuerk, H.-C., and Kaufmann, L.
(2011a). Whorf reloaded: language effects on nonverbal number processing
in first grade—a trilingual study. J. Exp. Child Psychol. 108, 371–382. doi:
10.1016/j.jecp.2010.09.002

Pixner, S., Zuber, J., Hermanova, V., Kaufmann, L., Nuerk, H.-C., and Moeller, K.
(2011b). One language, two number-word systems and many problems:
numerical cognition in the Czech language. Res. Dev. Disabil. 32, 2683–2689.
doi: 10.1016/j.ridd.2011.06.004

Poltrock, S. E., and Schwartz, D. R. (1984). Comparative judgments of multidigit
numbers. J. Exp. Psychol. Learn. 10, 32–45. doi: 10.1037/0278-7393.10.1.32

Power, R., and Dal Martello, M. F. (1990). The dictation of Italian numerals. Lang.
Cogn. Process. 5, 237–254. doi: 10.1080/01690969008402106

Power, R., and Dal Martello, M. F. (1997). From 834 to eighty thirty four: the
reading of arabic numerals by seven-year-old children. Math. Cogn. 3, 63–85.
doi: 10.1080/135467997387489

Seron, X., and Fayol, M. (1994). Number transcoding in children:
a functional analysis. Br. J. Dev. Psychol. 12, 281–300. doi:
10.1111/j.2044-835X.1994.tb00635.x

Winsler, A., and Naglieri, J. A. (2003). Overt and covert verbal problem-solving
strategies: developmental trends in use, awareness, and relations with task
performance in children aged 5–7. Child Dev. 74, 659–678. doi: 10.1111/1467-
8624.00561

Wolford, G., and Chambers, L. (1983). Lateral masking as a function of spacing.
Percept. Psychophys. 33, 129–138. doi: 10.3758/BF03202830

Zhang, J., and Wang, H. (2005). The effect of external representations on
numeric tasks. Q. J. Exp. Psychol. 58A, 817–838. doi: 10.1080/027249804430
00340

Zuber, J., Pixner, S., Moeller, K., and Nuerk, H.-C. (2009). On the language
specificity of basic number processing: transcoding in a language with inversion
and its relation to working memory capacity. J. Exp. Child Psychol. 102, 60–77.
doi: 10.1016/j.jecp.2008.04.003

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Bahnmueller, Moeller, Mann and Nuerk. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1216 | 67

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


ORIGINAL RESEARCH
published: 13 March 2015

doi: 10.3389/fpsyg.2015.00265

Frontiers in Psychology | www.frontiersin.org March 2015 | Volume 6 | Article 265 |

Edited by:

Hans-Christoph Nuerk,

University of Tübingen, Germany

Reviewed by:

Marc Brysbaert,

Ghent University, Belgium

Claudia K. Friedrich,

University of Tübingen, Germany

*Correspondence:

Amandine Van Rinsveld,

Education, Culture,

Cognition and Society,

University of Luxembourg,

Route de Diekirch,

L-7201 Walferdange, Luxembourg

amandine.vanrinsveld@uni.lu

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Developmental Psychology, a section

of the journal Frontiers in Psychology

Received: 20 October 2014

Accepted: 23 February 2015

Published: 13 March 2015

Citation:

Van Rinsveld A, Brunner M, Landerl K,

Schiltz C and Ugen S (2015) The

relation between language and

arithmetic in bilinguals: insights from

different stages of language

acquisition. Front. Psychol. 6:265.

doi: 10.3389/fpsyg.2015.00265

The relation between language and
arithmetic in bilinguals: insights from
different stages of language
acquisition
Amandine Van Rinsveld 1*, Martin Brunner 2, Karin Landerl 3, Christine Schiltz 1† and

Sonja Ugen 4 †

1 Education, Culture, Cognition and Society, Institute of Cognitive Science and Assessment, University of Luxembourg,

Walferdange, Luxembourg, 2 Berlin-Brandenburg Institute for School Quality, Free University of Berlin, Berlin, Germany,
3Department of Psychology, University of Graz, Graz, Austria, 4 Luxembourg Center for Educational Testing, University of

Luxembourg, Luxembourg, Luxembourg

Solving arithmetic problems is a cognitive task that heavily relies on language processing.

One might thus wonder whether this language-reliance leads to qualitative differences

(e.g., greater difficulties, error types, etc.) in arithmetic for bilingual individuals who

frequently have to solve arithmetic problems in more than one language. The present

study investigated how proficiency in two languages interacts with arithmetic problem

solving throughout language acquisition in adolescents and young adults. Additionally,

we examined whether the number word structure that is specific to a given language

plays a role in number processing over and above bilingual proficiency. We addressed

these issues in a German–French educational bilingual setting, where there is a

progressive transition fromGerman to French as teaching language. Importantly, German

and French number naming structures differ clearly, as two-digit number names follow a

unit-ten order in German, but a ten-unit order in French. We implemented a transversal

developmental design in which bilingual pupils from grades 7, 8, 10, 11, and young

adults were asked to solve simple and complex additions in both languages. The

results confirmed that language proficiency is crucial especially for complex addition

computation. Simple additions in contrast can be retrieved equally well in both languages

after extended language practice. Additional analyses revealed that over and above

language proficiency, language-specific number word structures (e.g., unit-ten vs.

ten-unit) also induced significant modulations of bilinguals’ arithmetic performances.

Taken together, these findings support the view of a strong relation between language

and arithmetic in bilinguals.

Keywords: numbers, language learning, bilingualism, arithmetic, addition

Introduction

Although every human can manipulate approximate numerical quantities independently from lan-
guage (Xu and Spelke, 2000), acquiring and mastering symbolic representations of exact quantities
critically depends on language and instruction. Amazonian tribes who have restricted or no
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number words for quantities larger than five (or even two)
impressively illustrate the importance of language for exact
quantity representations. While their members can handle and
manipulate large numerosities approximately, they are not able
to process and represent them exactly (Gordon, 2004; Pica et al.,
2004). Formal education enables the acquisition of exact num-
ber representations through labeling sets using distinct number
names (Fuson et al., 1982). In other words, exact numerical quan-
tities are learned through the use of language (Le Corre and
Carey, 2007), and consequently exact number processing remains
under the influence of language long after exact number rep-
resentation acquisition. Recent studies demonstrated that basic
processes such as number comparison are performed in slightly
different ways depending on task language (Nuerk et al., 2005;
Macizo et al., 2010; Van Rinsveld et al., 2012). Yet language plays
an especially crucial role in more complex numerical computa-
tions, such as arithmetic problem solving. In the present study,
we investigated whether and how the progressive acquisition
of multiple languages modulates arithmetic problem solving in
bilinguals.

Language and Arithmetic
Several studies provide strong evidence for an involvement of
language in exact arithmetic (Spelke and Tsivkin, 2001). Exact
calculations, contrary to approximate number processing, is
thought to be represented in a specific language-coded for-
mat. Neuropsychological studies highlighted that the preserva-
tion of language is in fact necessary for arithmetic problem solv-
ing, as many authors reported an association between acalculia
and aphasia (e.g., Delazer et al., 1999; Basso et al., 2000, 2005,
but see Rossor et al., 1995; Cappelletti et al., 2001; Baldo and
Dronkers, 2007). In the same way, neuro-imaging studies have
shown that exact calculation tasks systematically activate spe-
cific language areas, arguing for an exact language-dependent
system as opposed to a language-independent approximate sys-
tem for number representations (Dehaene et al., 1999; Cohen
et al., 2000; Stanescu-Cosson et al., 2000; Gruber et al., 2001;
Venkatraman et al., 2006, but see Pesenti et al., 2000; Zago and
Tzourio-Mazoyer, 2002; Benn et al., 2012).

Language is undoubtedly needed to build exact quantity repre-
sentations, yet it still has to be clarified for what specific aspect of
calculation language plays a crucial role. Heterogeneous solving
strategies and processes can be involved in calculation depending
on task difficulty (Beishuizen, 1993). Language may consequently
affect distinct calculation types differentially. For that matter, it
is important to separately examine the specific role played by
language in each of the two classically distinguished arithmetic
solving strategies. On the one hand, we distinguish simple calcu-
lations that are generally composed of one-digit operands (i.e.,
operands <10). For these problems it is widely accepted that
learning and practice lead to a direct retrieval of their solutions
from memory, as so-called “arithmetic facts” (Ashcraft, 1992;
McCloskey, 1992; Fayol and Thevenot, 2012). However, there
is less agreement concerning the storage format of these arith-
metic facts: they could be represented in an abstract seman-
tic format (McCloskey et al., 1985), a verbal format (Campbell,
1994; Dehaene and Cohen, 1995) or in a format depending on

individual subject’s preferences (Noel and Seron, 1993). More-
over, the importance of language in arithmetic fact retrieval is
modulated by operation-type: simple addition and multiplica-
tion, in comparison to subtraction and division, especially rely
on verbally coded facts probably because addition and multipli-
cation facts are more often learned and used in their verbal code
than subtraction and division (Lemer et al., 2003).

More complex calculations (i.e., operands >10), on the other
hand, cannot directly be retrieved frommemory but they require
mental computations to be solved. These computations mainly
rely on working memory resources to execute solving strate-
gies, keep intermediate solutions in memory and update the final
solution (Hitch, 1978; Ashcraft, 1995). According to Logie et al.
(1994), the phonological loop of Bladdeley’s working memory
model (Baddeley, 1992) is used in mental calculation to verbally
repeat the numbers. Studies using articulatory suppression dur-
ing complex calculation have shown that phonological mediation
occurs, especially when some elements of the problems disap-
pear after a short presentation time (Fürst and Hitch, 2000).
Moreover, a study with English-Welsh bilinguals found longer
response times and more errors when calculations were per-
formed in Welsh than in English, due to longer number words
in the former (Ellis and Hennelly, 1980). Klessinger et al. (2012)
revealed that the impact of number word lengths on exact addi-
tions was especially prominent in less proficient calculators. Sim-
ilarly, a neuro-imaging study confirmed the crucial role of work-
ing memory in complex calculation and suggested that the work-
ing memory components engaged in the (visual or verbal) solv-
ing process may depend on individual solving strategies (Delazer
et al., 2003). Taken together, these findings suggest that language
is important for arithmetic problem solving at different levels
because arithmetic facts are potentially represented or retrieved
from memory in a verbal format and complex arithmetic solv-
ing processes rely at least partially on verbal working memory
components.

Language is crucial for exact representation of large numerosi-
ties and for exact arithmetic problem solving, at least during the
acquisition of these abilities. The different number naming sys-
tems used in different languages can modulate numerical per-
formances during acquisition stages of numerical cognition but
also in adults, who have long acquired these abilities (Campbell
and Xue, 2001; Chen et al., 2009). Specifically, the order of tens
and units in two-digit number words is a characteristic of number
naming systems that can directly affect arithmetic performances.
Brysbaert et al. (1998) showed that additions presented in the
format “21 + 4” were solved faster by French-speaking partici-
pants (21 is pronounced twenty and one since French number
words follow the ten-unit order), whereas the same additions
presented in the format “4 + 21” were solved faster for Dutch-
speaking participants (21 is pronounced one and twenty since
Dutch number words following the unit-ten order). Moreover,
Göbel et al. (2014) reported that German-speaking children had a
larger carry effect in additions compared to Italian-speaking chil-
dren. They explained this result by the greater similarity between
the Arabic digit notation and the order of tens and units in Italian
number words than in German number words. Indeed, Arabic
digit notation follows the same order (from left to right) than the
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tens-units order of Italian number words (e.g., “24” = twenty-
four) but they are inverted in comparison to the unit-ten order of
German number words (e.g., “24”= four-and-twenty).

Another difference between number naming systems from
different languages is the use of a base-20 structure instead of
base-10 structure for two-digit number words (e.g., in French and
in Basque). Seron and Fayol (1994) highlighted the specific diffi-
culties encountered by French-speaking children for 70 and 90
number words following this base-20 structure used in France, in
comparison to Belgian French-speaking children who use base-
10 structure for 70 and 90. The former took longer and made
more errors than the latter when writing down Arabic digits in
a number dictation task. The base-20 system seems to have an
impact not only during development but also later since a study
by Colomé et al. (2010) showed that adult Basque speakers are
influenced by the base-20 system of their language when they
solve addition problems (see also Salillas and Carreiras, 2014).
Taken together, the structure of the number words in the lan-
guage in which numbers are acquired appears to affect arith-
metic performances during childhood and some influence on
arithmetic computation even persists in adulthood.

Bilinguals and Arithmetic
Given the critical role of language in arithmetic problem solv-
ing, how people using several languages (e.g., bilinguals) calcu-
late is a particularly intriguing question. Many models of lan-
guage processing in bilinguals support the idea that bilinguals’
languages are active in parallel at any time, occasioning mutual
interferences between languages (e.g., Kroll et al., 2014). It is
generally assumed that interferences of the dominant language
during the use of the non-dominant language are more conse-
quential than interferences in the opposite direction, and the rel-
ative asymmetry in this mutual influence is a function of bilingual
proficiency (Bialystok, 2009; Kroll et al., 2013). Indeed, higher
proficiency level in a language lessons potential interferences of
other languages on it. From the reports in the literature about
bilingual’s arithmetic problem solving it appears that several ele-
ments concerning the relative mastery of languages (i.e., language
proficiency) as well as the structure of the number words in the
involved languages directly modulate bilinguals’ performances
in arithmetic. Relevant data concerning these two aspects are
highlighted below.

Early studies in bilingual speakers provided first indications
that arithmetic skills is related to language proficiency. They
indeed observed systematic advantages in response time and
accuracy when bilinguals calculated in their first compared to
their second (and less proficiently mastered) language (Marsh
and Maki, 1976; McClain and Huang, 1982; Geary et al., 1993).
Frenck-Mestre and Vaid (1993) tested addition fact-verification
tasks in bilinguals with correct-outcome problems but also false-
outcome problems that could be related or unrelated to multipli-
cation facts (i.e., 2+3 = 6was a false-outcome addition related to a
multiplication fact). The authors observed associative confusion
when problems were presented in bilinguals’ first language and in
Arabic digits but not in bilinguals’ second language, so that they
argued in favor of automatic arithmetical fact retrieval in the first
but not the second language.

More recently, neuro-imaging studies on late Chinese-English
bilinguals suggested that the verbal code of the first language is
needed to retrieve arithmetic facts when the network of arith-
metic facts in second language is not sufficiently developed.
Wang et al. (2007) observed that performing complex calcula-
tions in first and second languages rely on a common activation
network, but with higher activations during calculations in sec-
ond language. This was interpreted as evidence for extra language
processing needs in second language; potentially translation of
input from second into first language (Lin et al., 2011). Taken
together, these bilingual studies point toward an advantage for
both retrieving arithmetic facts and computing complex arith-
metic problems in the first language, i.e., the language in which
most bilinguals learned to do arithmetic.

However, the bilinguals tested in the aforementioned stud-
ies were all late bilinguals or clearly unbalanced bilinguals, so
the picture may be a bit different in more balanced bilin-
guals or bilinguals who did not acquire arithmetic in their
first language. Indeed, one study reported that highly proficient
bilinguals produced arithmetic facts equally well in their two
languages (Campbell and Epp, 2004). Moreover, a study with
Philipino-English bilinguals reported better arithmetic fact ver-
ification performances in English number word presentation,
which was their second language but also the language in which
they learned arithmetic at school and which they reported as
their preferred language for doing arithmetic (Bernardo, 2001).
Furthermore, Salillas and Wicha (2012) provided evidence for
strong associative networks between terms and solutions for
problems in the language in which participants learned arith-
metic, which was not necessarily their first language. Participants
seemed to maintain these early-established networks in adult-
hood, independently of language proficiency. These results were
supported by a recent study where bilinguals showed switch-
ing costs when they had to retrieve arithmetic facts in their
untrained- vs. trained-language (Saalbach et al., 2013). Hence,
when bilinguals solve arithmetic problems, the language in which
arithmetic was learned might be even more critical than the
first language or the language in which they are currently most
proficient.

In sum, bilinguals’ arithmetic performances can be modu-
lated by language proficiency levels, language of math acquisition
and number word structure of the respective spoken languages.
However, we are still lacking extensive studies, which investi-
gate the relation between these different factors and arithmetic
performances in bilingual participants. Such approaches are nev-
ertheless necessary to understand in detail how language con-
tributes to numerical computations. It is for instance currently
unclear whether in highly proficient bilinguals performance lev-
els in arithmetic become equivalent for their two languages or
whether they maintain an advantage for retrieving and/or cal-
culating in the language of arithmetic acquisition. It is also not
known what increasing language proficiency implies for simple
and complex calculations. Finally, it remains to be explored how
language-related differences in number word structures affect
arithmetic performance in bilinguals (e.g., German units-tens vs.
the French tens-units; German base-10 vs. French base-20 for
number words between 70 and 99).
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The Present Study
One of the major issues when studying bilinguals is that there
often are asmany different stories and profiles of languages acqui-
sition as individuals. However, age of acquisition and proficiency
levels of languages in bilinguals may drastically influence vari-
ous ranges of cognitive processes (e.g., Altarriba and Basnight-
Brown, 2007). In the present study we took advantage of the
unique German-French bilingual school system of Luxembourg
in order to address the aforementioned questions concerning to
the relation between language and arithmetic by tracking the
development of addition solving in bilingual adolescents and
young adults at five different stages of bilingual proficiency. Bilin-
gualism is a major attribute of the Luxembourgish educational
system, as German and French are both teaching languages. In
primary school teaching is held exclusively in German, but dur-
ing secondary school, teaching language progressively switches
to French, so that the pupils become highly proficient both in
German and French through their education.

We composed four samples of German-French bilingual
pupils at different levels of Luxembourgish secondary school (i.e.,
grades 7, 8, 10, and 11) and one sample of German-French bilin-
gual young adults (who had also attended secondary school in
Luxembourg). All participants thus mastered both German and
French. Pupil participants from grades seven to 11 incrementally
improved their mastery in German and French, with a relative
emphasis on French as this language was becoming their pre-
dominant teaching language. The young adults achieved the level
of excellence in both French and German. Altogether this yielded
a design encompassing five distinct stages of German-French
bilingualism.

For empirical research on the interplay of language and arith-
metic the bilingual context in Luxembourg is characterized by
a double advantage. (a) Firstly, all participants of a given age-
class have a similar exposure to each of the two languages,
as they are all first taught in German and then in French.
This allows composing large samples of bilingual participants
that are homogenous in terms of duration and amount of
exposure to each language. Moreover, although bilingual, all par-
ticipants acquired arithmetic in German. (b) Secondly, German-
French bilinguals are particularly interesting because German
and French languages use inverted number word structures.
Two-digit number words follow the units-tens order in German
(e.g., “four-and-twenty”) but the tens-units order in French (e.g.,
“twenty-four” like in English).

The experimental tasks consisted in addition problems that
participants had to solve both in German and in French during
two separate sessions. Additions were presented in two differ-
ent formats (i.e., visual presentation of Arabic digits and audi-
tory presentation of number words) and consisting of two diffi-
culty levels (i.e., simple and complex additions). Throughout the
entire experiment participants had to give their answers orally
in the language of the session. Thus, task language permeated
task instructions as well as presentation and solution of the addi-
tions in the auditory format, whereas only task instructions and
solution production were imbued by task language in the visual
format. Based on the literature reviewed above a series of predic-
tions concerning the influence of language on addition solving

in German-French bilinguals could be derived. Moreover, we
also formulated detailed proposals on how these language effects
might express at different stages of bilingual proficiency.

Effects of Calculation Complexity on Bilinguals’

Arithmetic Solving
In simple additions participants are thought to retrieve the solu-
tion from memory (Ashcraft, 1995). Previous studies with bilin-
guals have shown evidences for early-encoded arithmetic facts in
one of the bilinguals’ languages (e.g., Frenck-Mestre and Vaid,
1993; Spelke and Tsivkin, 2001; Wang et al., 2007) underlined by
format-depending representations (Dehaene and Cohen, 1995).
Nevertheless, other studies have highlighted evidences for trans-
ferable facts from one language to the other in very proficient
bilinguals (e.g., Campbell and Epp, 2004) suggesting a possible
representation of numbers independent from any format or lan-
guage of encoding (McCloskey et al., 1985). Consequently, it can
be expected that highly proficient bilinguals (i.e., adults and older
adolescent participants of the present study) retrieve addition
facts equally well in German and French. Indeed, these partici-
pants should be proficient enough in French and/or have been
sufficiently exposed to numbers in French to be able to solve the
simple additions similarly in French as in German.

Language-related performance differences ought to predomi-
nantly arise with complex additions. Compared to simple calcu-
lations, more complex arithmetic problems are thought to rely
on computational procedures composed of multiple processing
steps (e.g., Fayol and Thevenot, 2012), which can be modulated
by language proficiency but also by specific number word struc-
tures. With respect to task presentation format, language effects
should be larger for auditory than visual presentation formats
because the operands have to been kept in memory in the for-
mer (LeFevre et al., 2001). In line with the prominent role of
language, we expected that participants of all proficiency lev-
els solve complex additions better and faster in German than in
French. Indeed all participants had acquired German earlier than
French and German was also their language of arithmetic acqui-
sition (Bernardo, 2001; Salillas and Wicha, 2012). At the highest
bilingual proficiency levels this benefit should be reduced, but we
anticipated that it might never be resorbed completely if the early
constellation of bilingual proficiency is critical.

Effects of Number Word Structures on Bilinguals’
Arithmetic Solving
Performance differences that arise when bilinguals solve addi-
tions might also be due to the specific number word structure
of the respective languages. To gauge the impact of the differ-
ent two-digit number-naming systems used in French vs. Ger-
man on arithmetic performance in the five different bilingualism
proficiency groups, we investigated two aspects of the number
words.

Firstly, we explored whether the particular base-20 number
word structure used in French (but not in German) for num-
bers from 70 to 99 might impact arithmetic performances dif-
ferentially across age-groups. Indeed, the number words under
70 follow the classical base-10 structure in both task languages,
while the number words over 70 follow the base-10 structure in

Frontiers in Psychology | www.frontiersin.org March 2015 | Volume 6 | Article 265 | 71

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Van Rinsveld et al. Language and arithmetic in bilinguals

German but not in French (where they follow the base-20 struc-
ture). We expected to find a general problem size effect in both
languages because arithmetic problems with larger numbers are
assumed to be more difficult to solve than arithmetic problems
with smaller numbers (Groen and Parkman, 1972). But more
interestingly, we also assumed that additions involving numbers
over 70 would be specifically difficult in French because of the
base-20 structure (Seron and Fayol, 1994). This specific difficulty
should thus be especially pronounced at lower French proficiency
levels.

Secondly, we aimed to understand whether and how the order
of tens and units in number words (i.e., tens-units in French vs.
units-tens in German) plays a role in bilinguals’ addition perfor-
mances. As Pixner et al. (2011) reported that the number naming
system used in a two-digit number transcoding task modulated
the type of errors, we analyzed which errors bilingual partici-
pants made on complex additions across the different presenta-
tion formats and languages. Given the contrasting positions of
units and tens in German and French it is plausible that the same
bilingual participant makes errors that predominantly pertain to
distinct value positions depending on the language in which the
calculation is performed.

Testing these predictions on our unique German-French
bilingual sample will allow us to better understand the relation
between language and arithmetic in bilinguals and how this rela-
tion evolves with increasing bilingual proficiency levels. To the
best of our knowledge, there are currently no studies that system-
atically investigated how the influence of number word structure
on arithmetical performance evolves as a function of language
proficiency. Taken together these original data should also yield
new insights into the role of language in arithmetic and number
processing in general.

Methods

Participants
A total of 193 bilingual participants were recruited for the present
study. The sample was composed of 36 pupils from grade 7 (21
females; mean age of 12.2 years; SD = 0.36 years), 33 pupils
from grade 8 (13 females; mean age of 13.2 years; SD = 0.58
years), 35 pupils from grade 10 (15 females; mean age of 15.5
years; SD = 0.66 years), 41 pupils from grade 11 (19 females;
mean age of 16.4 years; SD = 0.72 years) and 48 young adults (34
females; mean age of 22.4 years; SD = 2.67 years).

All participants thus spoke Luxemburgish (an official lan-
guage of Luxembourg which developed from a dialectal vari-
ant of German) or German as native language and attended
the Luxembourgish school system in the highest academic track,
which prepares for attending college and university. Moreover,
all study participants (including the adults) had attended Lux-
embourgish primary school that starts with German as teaching
language. From second grade of primary school on, all partici-
pants learned French as a second language. Importantly, students
in grades 7 and 8 were taught mathematics in French, whereas
students in grades 10 and 11 were not only taught mathematics
but also all of their other courses in French (except the German
and English language courses). Over the school years, relative

exposure and proficiency in French thus progressively increased
and tended toward bilingualism with high proficiency levels in
both German and French in the highest grades. Consequently,
the adult group was composed of young adult participants who
had become highly proficient German-French bilinguals through
their education.

Native language(s), the number of years spent in Luxembour-
gish schools and linguistic background (under the form of self-
assessment of language proficiency) were checked in a short ques-
tionnaire before starting the experiment in order to ensure that
all participants also had similar exposures to languages in these
respects. Adults received 20e for their participation. Informed
consent was obtained from all participants.

Stimuli
Eighty-four two-operand addition problems were presented dur-
ing the entire experiment. The set was composed of 28 one-digit
simple additions (e.g., 4+ 2) and 56 two-digit complex additions
(e.g., 56 + 32). This stimulus set was split in four blocks of addi-
tions to be allocated to both presentation formats of the problems
and to both language sessions: visual and auditory presentation
of the numbers in the German session and visual and auditory
presentation of the numbers in the French session.

Simple additions were composed of two one-digit operands
ranging from 2 to 9. We excluded +1 additions and additions
between the same operands (e.g., 7 + 7), resulting in a range of
solutions from 5 to 17. The simple additions with carry (additions
with a solution of 10 ormore) and without carry (additions with a
solution below 10) were equally distributed across the four blocks
of additions.

Complex additions were composed of two two-digit operands
ranging from 12 to 86 in order to keep solutions below 100.
We excluded all additions including a zero or ties. Further-
more, problems with a repetition of the same digit between the
operands or between one of the operands and the solution were
excluded, resulting in a range of solutions from 35 to 98. The
requirement of a carry to be solved (with or without carry), the
position of the larger operand (left vs. right in visual presentation;
first vs. second in auditory presentation) and the problem size
(small when the solution ranged between 30 and 69 or large when
the solution ranged between 70 and 98) were taken into account
in the repartition of complex additions in the four blocks. Indeed,
each block contained seven problems with carry and seven prob-
lems without carry, and seven problems of small size and seven
problems of large size. In other words, among the small problems,
half of them contained a carry and half of them did not, and the
same for the large problems, so that problems with and without
carry were distributed equally among problems of different sizes
within each block. The assignation of the blocks to a presenta-
tion format and a language was balanced through participants.
For instance, block 1 was be assigned to visual presentation of the
French session for the first eight participants but the same block
1 was assigned to visual presentation of the German session for
the next eight participants.

Procedure
We ran the experiment on an Apple 13′ Macbook using Psyscope
X B57 (Cohen et al., 1993) where voice onset times of responses

Frontiers in Psychology | www.frontiersin.org March 2015 | Volume 6 | Article 265 | 72

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Van Rinsveld et al. Language and arithmetic in bilinguals

TABLE 1 | Mean duration of presentation of auditory additions in ms with

standard deviation for each complexity level of the additions as a function

of language.

Simple additions Complex additions

M (SD) M (SD)

German 1736 (80.1) 2582 (134.6)

French 1745 (169.8) 2574 (235.3)

Total 1740 (131.6) 2576 (191.8)

Mean presentation time differences between languages were not significant neither for

simple additions, t(54) = 0.239; p = 0.812, not for complex additions, t(108) = 0.148; p =

0.883.

were recorded with a voice key on the Iolab USB Button Box. As
the voice key only recorded the response onset, the experimenter
wrote the solutions down and pressed a key to start the next trial,
which started after an inter-trial interval of 500ms. The onset of
the response time (RT)—measurement started when the stimulus
presentation was completed.

In the visual presentation format, additions appeared on a
white screen in black (Arial, font size 90) until participants
responded. In the auditory presentation format, participants had
to listen to the additions via headphones (in both ears). The
length of auditory presentation was controlled between languages
separately for simple and complex additions, so that the mean
duration of auditory presentation did not differ between lan-
guages (see Table 1). In both presentation formats, participants
had to respond orally by giving the solution in the microphone in
the language of the task. This means that for auditory presenta-
tion of the additions, RT-measurement started at the offset of the
second operand.

The testing was organized in two language sessions: partic-
ipants performed both presentation formats first in one task
language and then in the other. Order of presentation formats
and task languages were counterbalanced between participants.
Instructions and interaction with the experimenter remained in
German or in French, according to the session. Participants were
tested individually and were instructed to respond as accurately
and as fast as possible. Seven training items preceded the 21 addi-
tions of each block. The entire experiment lasted about 50min.

Data Processing
Effects of Calculation Complexity (Simple vs.

Complex Additions)
In order to track the development of arithmetic problem solv-
ing in bilingual children and adults, correct response times (RTs)
and correct response rates (CRs) during experimental tasks were
collected at five different stages of language proficiency. Train-
ing items were not included in the dataset, and we also excluded
RTs of all trials below or above three standard deviations from the
mean of each participant and from the group mean. We excluded
4% of the trials in this way before analyzing the RTs.

We ran a preliminary analysis of variance (ANOVA) on the
RTs and the CRs including all additions participants had to solve
with Complexity2 × Format2 × Task language2 as within-subject

factors and Age-group5 as between-subject factor. The two levels
of complexity were the simple one-digit operand vs. the complex
two-digit operand addition problems; format referred to visual
or auditory presentation of the additions; and task language was
German or French (for instructions, presentation of the addi-
tions in the auditory format, and production of the answer).
The age-group factor had the following levels: seventh graders,
eighth graders, tenth graders, eleventh graders or young adults.
The aim of this preliminary ANOVA was to see whether it was
relevant to analyze both complexity levels (simple vs. complex
addition) separately. Therefore, we only report results from the
effect and interactions with the complexity factor. Then, we ran
analyses of variance (ANOVA) on the RTs and the CRs separately
for each type of additions: i.e., the simple one-digit additions
and the complex two-digit additions. Within each ANOVA we
used Format2 × Task language2 as within-subject factors and
Age-group5 as between-subject factor.

Effects of Number Word Structure
To investigate how arithmetic performance is influenced by the
different structures of number words in German and French we
conducted two additional analyses. Firstly we tracked the impact
of the particular base-20 number word structure used in French
but not in German for numbers from 70 to 99 on the arith-
metic performances across age-groups. Therefore, we introduced
one more factor in the ANOVA on complex additions: the prob-
lem size. We categorized the items in two levels of problem size
according to whether problems involved or not a number over
70. Indeed the number words under 70 follow the classical base-
10 structure in both task languages, whereas the number words
over 70 follow the base-10 structure in German but the base-20
structure French. We thus ran an ANOVA with Problem size2 ×
Format2 × Task language2 as within-subject factors and with
Age-group5 as between-subject factor.

Secondly, we focused on the impact of the order of tens and
units (i.e., ten-unit in French vs. unit-ten in German) in two-digit
number words on arithmetic performances.We analyzed the type
of errors participants made across different presentation formats
and languages when solving complex additions involving on two-
digit numbers. Within each task language and format, we listed
the rate of errors (%) for which only the ten-digit was false (“ten-
error,” i.e., 34 instead of 24) and inversely, the rate of errors for
which only the unit-digit was false (“unit-error,” i.e., 34 instead
of 35). Other types of errors were not included in the analyses
because we found less than 2% of each type. We ran an ANOVA
on these error rates with Error type2 × Format2 ×Task language2
as within-subject factors and with Age-group5 as between-subject
factor. The two levels of the error type factor corresponded to
“ten-error” and “unit-error” and the level of the other factors
were the same as in the previous analyses.

Results

Effects of Calculation Complexity (Simple vs.
Complex Additions)
Preliminary ANOVA showed a strong effect of complexity on
both RTs [F(1, 184) = 893.961; p < 0.001; η

2 = 0.829] and
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CRs [F(1, 185) = 510.891; p < 0.001; η
2 = 0.734]. Both in

RTs and CRs, complexity modulated effects of language [RTs:
F(1, 184) = 177.873; p < 0.001; η

2 = 0.492, CRs: F(1, 185) =

64.294; p < 0.001; η
2 = 0.258], format [RTs: F(1, 184) =

43.034; p < 0.001; η
2 = 0.190, CRs: F(1, 185) = 235.634;

p < 0.001; η2 = 0.560] and age-group [RTs: F(4, 184) = 12.740;
p < 0.001; η

2 = 0.217, CRs: F(1, 185) = 3.880; p = 0.005;
η
2 = 0.077]. We also observed a triple interaction between

complexity, language and format [RTs: F(1, 184) = 13.119; p <

0.001; η
2 = 0.067, CRs: F(1, 185) = 9.768; p = 0.002; η

2 =

0.050]. Only in RTs, there was also a significant triple interaction
between complexity, language and age-group [RTs: F(4, 184) =

4.610; p = 0.001; η
2 = 0.091]. Since all factors of the pre-

liminary ANOVA interacted with complexity, we will directly
report below separate analyses and results for both complexity
levels.

Simple Additions
For the simple additions, overall mean RT was 1309ms (SE =

32ms) and overall mean CR was 96.4% (SE = 0.3%). We found
an age-group effect on RTs [F(4, 184) = 12.710; p < 0.001; η2 =

0.216] and on CRs [F(4, 185) = 3.038; p = 0.019; η2 = 0.062],
as participants solved the simple additions faster and more accu-
rately with increasing age-group (seeTable 2). Furthermore, sim-
ple additions were performed faster when they were presented in
auditory than in visual format, F(1, 184) = 171.992; p < 0.001;
η
2 = 0.483, but no difference between formats was observed

in terms of CRs, F(1, 185) = 0.737; p = 0.392; η
2 = 0.004

(see Figures 1A,B). Thus, simple auditory additions were solved
faster than visually presented ones, but correct response rates
were similar for both formats.

Moreover, simple additions were performed faster in German
than in French [RT: F(1, 184) = 77.199; p < 0.001; η2 = 0.296],

TABLE 2 | Means of reaction times (RT) in ms and correct response rates (CR) in % with standard errors for each complexity level of the additions (simple

vs. complex) and the general mean performances as a function of age-group.

Group Simple additions Complex additions Total

M (SE) M (SE) M (SE)

RT

Seventh graders 1638 (74.5) 5774 (285.9) 3706 (173.7)

Eighth graders 1408 (77.9) 4533 (298.9) 2970 (181.6)

Tenth graders 1358 (75.6) 4377 (290.0) 2867 (176.2)

Eleventh graders 1145 (69.7) 3691 (264.1) 2383 (162.5)

Adults 994 (63.6) 3098 (244.1) 2046 (148.3)

Total 1309 (32.4) 4294 (124.0) 2794 (75.5)

CR

Seventh graders 94.8 (0.7) 74.5 (1.9) 84.7 (1.1)

Eighth graders 95.7 (0.8) 77.0 (1.9) 86.4 (1.2)

Tenth graders 96.9 (0.7) 77.7 (1.9) 87.3 (1.1)

Eleventh graders 96.5 (0.7) 82.1 (1.7) 89.3 (0.1)

Adults 98.0 (0.6) 84.9 (1.6) 91.5 (0.9)

Total 96.4 (.03) 79.2 (0.8) 87.8 (0.5)

FIGURE 1 | Mean reaction times in ms (A) and mean correct response rates in percentages (B) with standard errors for the simple additions in each

task language (black line for German and red line for French) as a function of presentation format.
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see Figure 2A. Participants also made fewer errors in German
than in French [F(1, 185) = 9.782; p = 0.002; η

2 = 0.050],
but this language effect on CRs was marginally modulated by the
age-group (language × age-group: F(4, 185) = 2.234; p = 0.067;
η
2 = 0.046), see Figure 2B. We decomposed this interaction

by separately running a Format2 × Task language2 ANOVA on
CRs in each age-group. It appeared that only the seventh graders
were less accurate in French than in German, F(1, 34) = 4.074;
p = 0.050; η

2 = 0.092, while all other age-groups performed
with equal accuracy in both languages (all F’s < 1 and p’s > 0.05),
see Figure 2B. No other interaction reached significance (all F’s<

1 and p’s > 0.05). In sum, participants solved simple additions
faster in German than in French, but in both languages they per-
formed the task faster when additions were presented in auditory

than in visual format. In terms of accuracy, additions presented in
both languages and presentation formats were performed equally
well, except that seventh graders were less accurate in French than
in German.

Complex Additions
For the complex additions, overall mean RT was 4294ms (SE =

124ms) and overall mean CR was 79.2% (SE = 0.8%). We found
an age-group effect on RTs [F(4, 185) = 14.008; p < 0.001; η2 =

0.232] and on CRs [F(4, 185) = 5.976; p < 0.001; η2 = 0.114],
as participants from the older age-groups solved the complex
additions faster and more accurately (see Table 2).

Regardless of task language complex additions were per-
formed faster [F(1, 185) = 4.997; p = 0.027; η

2 = 0.026], and

FIGURE 2 | Mean performances for simple additions (A, B) and for complex additions (C, D) in each task language (black line for German and red line

for French) as a function of age-group. Performances are measured in reaction times (A, C) and in correct response rates (B, D). Bars represent standard errors.
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TABLE 3 | Means of reaction times (RT) in ms and correct response rates (CR) in % with standard errors for each presentation format of the simple and

complex additions as a function of age-group.

Group Simple additions Complex additions

Visual Auditory Visual Auditory

M (SE) M (SE) M (SE) M (SE)

RT

Seventh graders 1863 (86.9) 1414 (79.4) 5430 (260.2) 6118 (349.1)

Eighth graders 1577 (90.9) 1239 (83.0) 4485 (272.1) 4580 (365.1)

Tenth graders 1575 (88.2) 1142 (80.6) 4283 (263.9) 4470 (354.2)

Eleventh graders 1357 (81.3) 933 (74.3) 3682 (240.4) 3699 (322.6)

Adults 1231 (74.2) 757 (67.8) 3038 (222.1) 3158 (298.1)

Total 1520 (37.8) 1097 (34.5) 4183 (112.8) 4405 (151.5)

CR

Seventh graders 94.6 (0.9) 95.1 (1.0) 86.2 (1.6) 62.8 (2.6)

Eighth graders 95.5 (0.9) 96.0 (1.0) 84.5 (1.6) 69.4 (2.7)

Tenth graders 96.6 (0.9) 97.3 (1.0) 85.2 (1.6) 70.2 (2.6)

Eleventh graders 96.3 (0.8) 96.7 (0.9) 87.3 (1.4) 76.8 (2.4)

Adults 97.9 (0.8) 98.1 (0.8) 89.1 (1.3) 80.8 (2.2)

Total 96.2 (0.4) 96.6 (0.4) 86.5 (0.7) 72.0 (1.1)

more accurately [F(1, 185) = 245.736; p < 0.001; η
2 = 0.571],

when presented visually than in auditory format, see Table 3.
Moreover, for CRs the format effect was modulated by age-group
[format × age-group interaction: F(4, 185) = 8.365; p < 0.001;
η
2 = 0.153]. Decomposition of this interaction showed that par-

ticipants became more accurate with age for auditory presented
additions. However, CRs remained similar across age-group for
visually presented additions. This led to a progressively smaller
error rate difference between visual and auditory formats with
age-group (see Table 3).

In general, complex additions were also performed faster and
more accurately when the task language was German than when
it was French, RT: F(1, 185) = 201.922; p < 0.001; η2 = 0.522
and CR: F(1, 185) = 113.630; p < 0.001; η

2 = 0.381, see
Figures 2C,D. However, this language effect was modulated by
the presentation format, both in terms of RTs, F(1, 185) = 10.729;
p = 0.001; η2 = 0.055, and CRs, F(1, 185) = 19.657; p < 0.001;
η
2 = 0.096. Firstly, results from the pairwise comparisons on

the RTs showed that even if complex additions were always per-
formed faster in German than in French, the effect of the for-
mat (i.e., visual vs. auditory) was only significant for French,
F(1, 185) = 9.867; p = 0.002; η2 = 0.051, but not for German,
F(1, 185) = 0.105; p = 0.746; η

2 = 0.001. Hence, auditory-
presented additions were performed slower than visually pre-
sented additions only in French, see Figure 3A. Secondly, results
from the pairwise comparisons on the CRs showed that language-
related accuracy differences were larger in auditory, F(1, 185) =

109.919; p < 0.001; η2 = 0.373, than visual presentation format,
F(1, 185) = 28.536; p < 0.001; η2 = 0.134, see Figure 3B.

Thus, when task language was French, participants were
slower for additions presented in auditory compared to visual
format, but the presentation format did not modulate RTs in
German. Additionally, additions of the German session were

always solved more accurately than additions of the French ses-
sion and this effect of task-language was more pronounced for
additions presented in auditory format. Finally, regardless of
presentation format, task language also interacted with the age-
group on the RTs, F(4, 187) = 5.317; p < 0.001; η2 = 0.103, but
not on the CRs, F(4, 187) = 0.194; p = 0.941; η2 = 0.004. Indeed,
response times of both language sessions became increasingly
similar with age, see Figure 2C.

When considering the above analyses it appears that the vari-
ability was different across age groups. Levene’s test for homo-
geneity of variances across groups was indeed significant, as the
younger groups performances were more heterogeneous than
the older groups’ (see standard errors reported in Table 2). This
characteristic of the data is typical for transversal developmental
comparisons, but it might have impacted the above-mentioned
results and masked some interactions between age groups and
task-language and/or presentation format effects. To cancel any
potential influences of variance heterogeneity we therefore re-
conducted the same analyses after a standardization of the data
per age-group. The results of this additional analysis are detailed
in the Annex 1 of Supplementary Material.

To sum up results on both raw and standardized data, bilin-
gual participants of all five age groups solved simple additions
faster in German than in French. Moreover auditory format sim-
ple additions were performed faster than visual format additions
in both languages1. In contrast age group impacted the accuracy
of simple addition solving, as seventh graders were overall less
accurate in French than in German. This finding was confirmed

1Direct differences of RTs between formats of presentation can only be interpreted
as modality-related measurement differences because RT recording started at the
end of stimulus presentation in auditory format and at the beginning of stimulus
presentation in visual format.
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FIGURE 3 | Mean reaction times in ms (A) and mean correct

response rates in percentages (B) with standard errors for

complex additions in each task language (black line for German

and red line for French) and in each presentation format (solid

line for visual and dashed line for auditory) as a function of

age-group.

by the z-score analyses, which revealed that only participants
of the tenth grade onwards solved simple additions with equal
accuracy in both languages, even if they remained always slightly
faster in German than in French.

Furthermore, complex additions were performed faster and
better in German than in French. Critically, age group impacted
RT differences observed when bilingual participants solved com-
plex additions in German compared to French. Nevertheless,
additional results on z-scores showed that task-language effect
on RTs did no longer interact with age-group after standardiza-
tion of the data. Thus, the effect of task language on RTs and CRs
remained constant proportionally across age-groups.

Concerning presentation format, even though the differences
of RTs cannot be interpreted per se, results on CRs showed that
participants made more errors in auditory format than in visual
format, especially in French compared to German were the CRs
difference between formats was smaller. And this effect inter-
acted with age-group as participants became more accurate for
auditory-presented additions with increasing age. This last inter-
action between format and age-group remained significant after
standardization of the data, suggesting that participants’ abil-
ity to solve auditory presented additions genuinely improves
with age.

Effects of Number Word Structure
Base-10 vs. Base-20 Tens
Here we only report effects and interactions involving the prob-
lem size factor because other effects and interactions were already
explained in detail in section Effects of Calculation Complexity
(Simple vs. Complex Additions). In general, we observed lower
CRs [F(1, 185) = 85.196; p < 0.001; η

2 = 0.315] and slower
RTs [F(1, 173) = 151.138; p < 0.001; η2 = 0.466] with problems
over 70 than with problems under 70. Moreover, problem size
interacted with the task-language both in RTs, F(1, 173) = 16.327;
p < 0.001; η2 = 0.086, and CRs, F(1, 185) = 52.912; p < 0.001;
η
2 = 0.222.

To decompose this interaction, we ran pairwise comparisons.
The problem size effect on the RTs was larger when the task lan-
guage was French [F(1, 173) = 91.565; p < 0.001; η2 = 0.346]
than when it was German [F(1, 173) = 64.836; p < 0.001;
η
2 = 0.273], see Figure 4A. In terms of CRs, problem size effect

was only significant in French [F(1, 185) = 105.613; p < 0.001;
η
2 = 0.363] but not in German [F(1, 185) = 2.878; p = 0.091;

η
2 = 0.015], see Figure 4B. Further, the difference in CRs

between German and French was smaller in problems under 70
[F(1, 185) = 11.763; p = 0.001; η

2 = 0.060] than in problems
over 70 [F(1, 185) = 140.200; p < 0.001; η

2 = 0.431]. Finally,
the problem size factor did not interact with any other factor, not
even the age-group, all Fs < 1 and ps > 0.1. Thus, task language
strongly modulated the effect of problem size in the direction that
problem size effects were more pronounced when the task was
performed in French than in German.

When considering the above analyses it appears that partic-
ipants generally responded slower in French, which was also
their less mastered language. Thus, the greater problem size effect
found in French could also be due to participants’ weaker French
proficiency, independently of the structure of number words in
this language. To rule out this alternative explanation, we re-
conducted this analysis after a standardization of the data per
language, see results in Annex 2 of Supplementary Material. In
summary, interactions of language and problem size remained
significant after standardization of the data per language, suggest-
ing that differences of problem size effect observed between lan-
guages in raw data are not a consequence of bilinguals’ differences
between languages in terms of language mastery.

Units-Tens vs. Tens-Units
In general, more errors were made on tens than units, F(1, 110) =
10.283; p = 0.002; η2 = 0.085. Moreover, the task language ×
error type interaction was significant, F(1, 110) = 56.194; p <

0.001; η2 = 0.338, and pairwise comparisons showed that there
were more errors on the tens than on the units when addi-
tions were presented in German, F(1, 110) = 50.108; p < 0.001;
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FIGURE 4 | Mean reaction times in ms (A) and mean correct response rates in percentages (B) with standard errors for complex additions solved in

each task language (black line for German and red line for French) as a function of problem size (under and over 70).

FIGURE 5 | Mean percentage of errors from the total errors (%) made

on the decade digit or on the unit digit with standard errors for each

task language (German in black and French in red). Bars represent

standard errors.

η
2 = 0.313, but inversely, when additions were presented in

French, there were more errors on the units than on the tens,
F(1, 110) = 9.594; p = 0.002; η2 = 0.080. Additionally, there were
more errors on the tens in German than in French, F(1, 110) =

48.293; p < 0.001; η
2 = 0.305, and more errors on the units

in French than in German, F(1, 110) = 46.711; p < 0.001;
η
2 = 0.298, see Figure 5.
Furthermore, the format of presentation interacted with task

language, F(1, 110) = 7.783; p = 0.006; η
2 = 0.066. Pairwise

comparisons of German vs. French addition errors showed the
same pattern of results in both presentation formation but more
errors of both types were made in German than in French for
the auditory presentation format, F(1, 110) = 8.002; p = 0.006;
η
2 = 0.068. In contrast, more errors of both types were made in

visual than in auditory presentation format in French, F(1, 110) =
12.791; p = 0.001; η

2 = 0.104. It should be noted that this
last interaction does not change the conclusions yielded by the
aforementioned complex additions results, as here the error rates

only referred to percentage of errors on unit vs. 10 digits in the
incorrect solutions.

In summary, in German more errors were produced on the
tens (e.g., “twenty” in “four-and-twenty”), whereas errors con-
cerned predominantly the units in French (“four” in twenty-
four”). This pattern of results was present for both presentation
formats of the additions but was even more prominent in audi-
tory format when task was performed in German and in visual
format when task was performed in French.

Discussion

To provide new insights into the question of bilingual’s arith-
metic problem solving we tracked arithmetic performances in
German-French bilinguals at five different stages of their bilin-
gual development from adolescence to adulthood. Four age-
groups of pupils attending secondary school and one group
of young adults had to provide oral answers to simple (i.e.,
addends <10) and complex (i.e., addends >10) addition prob-
lems presented once in a visual format (Arabic digits) and once
in an auditory format (spoken number words). Moreover, all
participants performed experimental tasks both in German and
French in two distinct language sessions. Task language had a
direct influence on solving complex addition problems, whereas
only much weaker language effects were observed when par-
ticipants retrieved answers for simple additions. From adoles-
cence to adulthood complex additions performance considerably
improved in both German and French, with especially notewor-
thy gains of accuracy in auditory-presented calculations. Yet, for
complex additions a substantial language-related advantage for
German additions remained in highly proficient adult bilinguals
both in accuracy and response times. In contrast, participants
tended to retrieve simple additions comparably well in German
and French with increasing bilingual proficiency. In addition, the
specific number word structures of German and French also sig-
nificantly impacted bilinguals’ arithmetic performance. Due to
the base-20 structure of large French two-digit words, calcula-
tions with large numbers over 70 were less well-succeeded in
French than German. Furthermore, the tendency to make errors
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involving the second position of the number word led bilingual
participants to produce more errors on the units when calculat-
ing in French and more decade-related errors in German. Firstly,
we will discuss how language globally affected task performance
and then separately consider simple and complex addition solv-
ing. Secondly, we will debate upon the effect of number word
structure on bilinguals’ arithmetic skills.

Effects of Calculation Complexity
Overall additions were performed faster and with fewer errors
in German than in French. This task language effect seemed to
persist even in highly proficient adult bilinguals. As German was
learned first by all participants it can be considered as their pre-
dominant language. In addition, it was also their language of
arithmetic acquisition. Our results are consequently in agreement
with the fact that (a) relative language predominance is known
to promote arithmetic performance in bilinguals (Marsh and
Maki, 1976; McClain and Huang, 1982; Frenck-Mestre and Vaid,
1993; Geary et al., 1993) and (b) bilingual adults solve numeri-
cal problems more proficiently in the language in which arith-
metic was learned (Bernardo, 2001; Salillas and Wicha, 2012).
The results also fit with the idea of non-selective language activa-
tion in bilinguals. Thus, lower arithmetic performances in French
might also—at least partially—be due to less efficient access for
French (in general) than for the predominant German (Bialystok,
2009; Kroll et al., 2013, 2014).

Nevertheless, a more nuanced picture emerged when con-
sidering separately how performance in simple and complex
additions varied between the increasing language proficiency
levels. With simple additions (e.g., 4 + 3 = 7) seventh and
eighth graders were still marginally less accurate in French than
German. But all other participants from grade 10 and upward
did not show any accuracy difference between German and
French when solving simple additions. If arithmetic acquisition
language alone would explain language-related differences in
bilinguals’ arithmetic performance, then we would have expected
an advantage for simple additions in the German session per-
sisting in all age groups. However, here we observed that after
3 years of math-classes in French (i.e., grade 10 and upwards)
participants solved simple additions with equal accuracy levels
in German and French. This suggests that in addition to the
importance the language for arithmetic acquisition, the current
language proficiency level modulated the ability to retrieve
simple arithmetic facts. Once a certain proficiency level was
reached in both of the bilinguals’ languages, the initial advantage
for solving simple additions in the language in which they had
been acquired (i.e., German) no longer applied for accuracy
rates, as participants attained ceiling performances for these
very simple arithmetic problems. However, even in adults some
response time differences between languages remained, though
reduced in comparison to other age-groups.

In complex addition (e.g., 54 + 13 = 67), language-related
performance differences were more prominent as responses
remained slower and less accurate in French than in German in
all groups, which is consistent with the idea that complex addi-
tions require more processing steps and are therefore more likely
to be influenced by language (Beishuizen, 1993). At first sight,

raw data analysis indicated that complex addition response times
of both language sessions became increasingly similar with age.
However, when group differences in variance were eliminated
by data standardization it appeared that language-related per-
formance differences in favor of German remained of similar
importance across all age groups. Concerning German, even with
mathematics taught in French during the entire secondary school
years, we observed neither decrease nor stagnation of arithmetic
performances in comparison to French. Thus, complex calcu-
lation proficiency in the first language (i.e., German) seems to
pursue a continuous development independently of the language
in which formal math education is taught.

Complex additions were also affected differentially by pre-
sentation format of the additions, whereas no substantial dif-
ference was observed in simple additions. Participants made
always more mistakes with auditory-presented additions. But
French still enhanced this effect, with participants making on
average 34% (± 0.01% SE) errors when computing auditory-
presented complex additions (vs. 22% (± 0.01 SE) errors in
German). Over and above this interaction with task language,
auditory-presented complex additions were succeeded less well
than visually-presented ones. However, the auditory disadvan-
tage gradually reduced with increasing age (even in standard-
ization data). This relative improvement for auditory-presented
additions that was specific to complex problems might be due
to developmental trends in cognitive and verbal abilities com-
bined with a prolonged exposure to complex addition solving
and an increasing math expertise. Indeed, as attested by the ceil-
ing performances observed in simple additions, all participants
were perfectly skilled to retrieve arithmetic facts, coherently with
the common observation that children usually achieve arithmetic
fact retrieval around the age of 8 years onwards (Barrouillet and
Fayol, 1998; Butterworth, 2005). Although, participants’ perfor-
mances on complex additions did not reach any ceiling and con-
tinued to improve across age-groups in both languages. These
observations fit well with the idea that solutions for complex
additions cannot be retrieved directly from memory, even in
adults (Ashcraft, 1995).

For this type of complex arithmetic computation, factors
such as procedural knowledge, planning and working memory
are known to play critical roles (Fürst and Hitch, 2000). In
auditory presentation format, the additional need to keep the
heard addends in working memory may interfere with using the
phonological loop in the computation process. Consequently,
participants made more errors for auditory presented additions
than visually presented additions. This format effect in com-
plex additions was especially pronounced when performing the
additions in French, i.e., a language that was relatively less pro-
ficient (LeFevre et al., 2001) and/or distinct from the language
of arithmetic acquisition. These findings nicely highlight the
involvement of language in the numerical processing under-
lying complex additions. If participants had simply computed
the results in their first language (i.e., German) and then trans-
lated them to the output language (i.e., French) this would
have affected performance similarly in both the visual and the
auditory presentation formats. But contrary to this prediction
performance specifically dropped when participants computed
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auditory-presented complex additions in French. This may be
due to the fact that arithmetic was learned in German or to glob-
ally weaker proficiency level in French. Due to the specific dif-
ferences between number word structure in French and German
languages, the interaction might also (at least partially) result
from differences between French and German number naming
systems. In the following paragraphs, we will further discuss the
latter effects and their relation to arithmetic in German-French
bilinguals.

Effects of Number Word Structure
Languages differ in the way they construct two-digit number
words (Campbell and Xue, 2001). This may directly influence
bilinguals’ addition skills and/or interact with other factors such
as bilingual proficiency level and arithmetic acquisition lan-
guage. Evaluating how arithmetic problem solving is influenced
by number word structure in German-French bilinguals is par-
ticularly interesting because those both languages encounter two
major differences in their number naming systems. Firstly, two-
digit number words follow a unit-ten order in German (e.g.,
“24” = four-and-twenty) but a ten-unit order in French (e.g.,
“24” = twenty-four). Secondly, the 10 words for the numbers
over 70 follow a base-10 structure in German (e.g., “72” = two-
and-seventy) but a base-20 structure in French (e.g., “72” =

sixty-twelve).
To characterize the effect of number word differences between

languages on arithmetic performances, we conducted additional
analyses on complex additions. Firstly, we focused on the base-10
vs. base-20 structure of large two-digit number words. Additions
involving numbers under and over 70 were analyzed separately,
since number words under 70 follow a base-10 structure in both
language but number words over 70 follow a base-ten struc-
ture in German and a base-20 structure in French (e.g., “72” is
pronounced as “sixty-twelve”). Not surprisingly, additions over
70 were solved overall slower than additions under 70 in both
languages, confirming the classical problem size effect (Groen
and Parkman, 1972). Nevertheless, the response time difference
between additions under and over 70 was larger in French than in
German.Moreover, in terms of accuracy, participants mademore
errors for additions over 70 than additions under 70 in French,
but not in German where errors rates in additions under and over
70 were similar. Interestingly, these results were observed regard-
less of additions’ presentation formats and participant groups.
The latter observation demonstrates that the base-10 vs. base-20
effect is not modulated by bilingual proficiency groups. Never-
theless, it remains to be empirically determined whether specific
difficulties for number words also occur in French-German bilin-
guals with French as first language. These findings confirm the
early reports by Ellis and Hennelly (1980) that bilinguals’ arith-
metic skills are inevitably marked and modulated by the num-
ber word structure of the language in which they are currently
calculating. In line with the present results, recent behavioral and
electrophysiological studies indicate that these language-related
characteristics might even impregnate basic number representa-
tions (Pixner et al., 2011; Salillas and Carreiras, 2014).

Secondly, we analyzed the type of errors participants made,
namely whether more errors were made on the tens or on the

units across different languages, presentation formats, and bilin-
gual proficiency groups. As noted above, the number word struc-
ture in French and German differs in terms of which digit is
pronounced at first in two-digit number words (ten vs. unit). It
appeared that participants systematically produced more errors
on the ten digit (e.g., “2” in “24”) when calculating in German
and more errors on the unit digit (e.g., “4” in “24”) in French.
Again, the presentation format and the group of participants did
not modify this result. Thus, independent of the calculation lan-
guage, errors seem to predominantly concern digits holding the
second position of the solution number. These findings elegantly
show how a language-independent focus on the first segment of
number words can lead to qualitatively distinct numerical out-
comes within different language contexts. Taken at face value,
they imply that making calculation errors while computing prices
in the range between 18 and 100 will become more expensive for
a German- than for a French-speaking person.

General Considerations

Literature provides divergent conclusions about the level at which
bilinguals’ different languages are involved in number processing
and about the language in which bilinguals actually solve arith-
metic problems. Many factors such as age of acquisition of the
second language, language of teaching during school years and
currently used language seem to determine the use of the lan-
guage during arithmetic problem solving in bilinguals (Bernardo,
2001; Campbell and Epp, 2004; Salillas and Wicha, 2012). Inves-
tigating arithmetic performance in Luxembourgish adolescents
and young adults who become highly proficient German-French
bilinguals through the school system offered the rare opportunity
to study large groups of bilingual participants at different bilin-
gual proficiency levels who are homogeneously composed with
respect to the previous factors.

Our findings obtained with German-French bilinguals at five
distinct levels of bilingual proficiency extend the current knowl-
edge by confirming that language plays a critical role in the
computations underlying complex addition (i.e., operands above
“10”) at all bilingual stages. Participants’ skills in computing
additions in both German and French improved steadily with
increasing bilingual proficiency levels from grade 7 to young
adulthood. Nevertheless, participants of all age groups solved
complex German additions faster and more accurately than
French ones. This German advantage remained although math-
ematics is taught in French during the entire secondary school
years. It is probably due to the fact that German is participants’
first school language and their arithmetic acquisition language
and that complex additions are not automatized enough to be
free of any language help along the solving process. In contrast,
simple addition facts (i.e., operands below “10”) were accessed
more directly and similarly in both languages, especially at later
stages of second language acquisition. Indeed accuracy levels for
simple additions were similar in French and German from grade
10 upwards, while their response times got closer. Thus, highly
proficient bilinguals tend to be able to retrieve addition facts sim-
ilarly in both languages suggesting that bilinguals’ arithmetic fact
retrieval may become either independent from the verbal code or
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automatized enough in different languages’ verbal codes to lead
to similar performances (Campbell and Epp, 2004).

The second part of our study explored the role of number
word structure in bilinguals’ arithmetic performance. German-
French bilinguals indeed speak two languages that are character-
ized by inverted ten-unit structures of two-digit number words
(unit-ten vs. ten-unit number words) and with different con-
structions of tens over 70 (base-10 vs. base-20). Consequently
the full effect of number word structure on arithmetic compu-
tation could be highlighted optimally in this type of bilingual
population. When additions were computed in French, specific
response-delays and error-increases were observed for calcula-
tions involving number words over 70. Moreover, results from
error analyses showed that participants of all age groups always
committed more errors related to the digit that occurred in sec-
ond position in the number word, i.e., tens in German and units
in French. Taken together, both differences in German vs. French
number word structures (two-digit words with base 10 vs. 20 and
direct vs. inverted digit order) seemed to play a role in arithmetic
processing at all bilingual proficiency stages.

In conclusion, the present study demonstrates that both
(a) language proficiency levels and (b) number word structure
affect addition solving performances in bilinguals. This leads to

the conclusion that arithmetic significantly relies on language
processes, especially in complex computations. Further studies
will be needed to generalize the present findings to other num-
ber processing tasks (e.g., magnitude comparison), other arith-
metic operations (e.g., subtraction, multiplication,) and other
tasks with number words (e.g., math word problems).
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Anat Prior *, Michal Katz , Islam Mahajna and Orly Rubinsten
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Languages differ in how they represent numerical information, and specifically whether
the verbal notation of numbers follows the same order as the symbolic notation (in
non-inverted languages, e.g., Hebrew, “25, twenty-five”) or whether the two notations
diverge (in inverted languages, e.g., Arabic, “25, five-and-twenty”). We examined
how the structure of number–words affects how arithmetic operations are processed
by bilingual speakers of an inverted and a non-inverted language. We examined
Arabic–Hebrew bilinguals’ performance in the first language, L1 (inverted) and in the
second language, L2 (non-inverted). Their performance was compared to that of
Hebrew L1 speakers, who do not speak an inverted language. Participants judged
the accuracy of addition problems presented aurally in L1, aurally in L2 or in visual
symbolic notation. Problems were presented such that they matched or did not
match the structure of number words in the language. Arabic–Hebrew bilinguals
demonstrated both flexibility in processing and adaptation to the language of aural–
verbal presentation – they were more accurate for the inverted order of presentation
in Arabic, but more accurate for non-inverted order of presentation in Hebrew, thus
exhibiting the same pattern found for native Hebrew speakers. In addition, whereas
native Hebrew speakers preferred the non-inverted order in visual symbolic presentation
as well, the Arabic–Hebrew bilinguals showed enhanced flexibility, without a significant
preference for one order over the other, in either speed or accuracy. These findings
suggest that arithmetic processing is sensitive to the linguistic representations of number
words. Moreover, bilinguals exposed to inverted and non-inverted languages showed
influence of both systems, and enhanced flexibility in processing. Thus, the L1 does not
seem to have exclusive power in shaping numerical mental representations, but rather
the system remains open to influences from a later learned L2.

Keywords: L1, L2, bilingualism, number processing, addition

Introduction

Bilingual speakers have control of two languages and hence raise important questions regard-
ing language and cognitive representations and processing. Such questions include the degree
to which two languages are represented or processed independently versus interactively (e.g.,
Kroll and Stewart, 1994; Costa, 2005), as well as the impact of language on cognitive represen-
tations more generally. The fact that languages differ in their structural properties provides an
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elegant method of investigating to what degree cognitive rep-
resentations, in the current case in the numerical domain, are
uniquely shaped by the native language (L1) or rather remain
open to influences from a later acquired second language (L2).
This question has been previously addressed in the domain of
semantic/conceptual representations. Thus, Jiang (2002, 2004)
proposed a model according to which the conceptual system
is mostly shaped by the L1, except in highly proficient bilin-
guals. In contrast, Degani et al. (2011) demonstrated sensitivity of
semantic processing to L2 lexical properties, even in unbalanced
moderately proficient bilinguals (see also Cook, 2003; Laufer,
2003; Wolff and Ventura, 2009). The role of the L1 vs. the L2 in
shaping representations and processing has also been investigated
in the numerical domain (Gelman and Butterworth, 2005), again
leading to conflicting results.

For example, Macizo et al. (2010) showed that the process-
ing of number words in one language was not modulated by
the way bilinguals processed number words in their alternative
language, which differed in the structure of number words. In
contrast, it has been consistently shown that even proficient L2
speakers resort to their L1 to perform mathematical operations
(e.g., Spelke and Tsivkin, 2001). In addition, Salillas and Carreiras
(2014) recently demonstrated specific influences of the struc-
ture of the language in which early math instruction occurred
on the processing of numerical information in highly proficient
balanced bilinguals.

These conflicting results raise the question to what degree
people can learn to process numerical information according to
the structure of their L2, when it differs markedly from that of
the L1, specifically when they are highly proficient L2 speakers.
The current work extends this controversial line of research by
investigation the impact of both the L1 and the L2 on numeri-
cal representation and calculation in highly proficient bilinguals,
whose languages differ in the structure of number words.

This question is of central importance, because arithmetic pro-
cessing in monolinguals is closely linked to language (Dehaene,
1992; McCloskey, 1992; Campbell, 1994; De Smedt et al., 2010;
Archibald et al., 2013 ). Thus, it has been shown that the four
basic operations (addition, subtraction, multiplication, and divi-
sion) are learned in school with different emphasis on quan-
tity manipulations and on linguistic skills (Dehaene and Cohen,
1995; Delazer et al., 2006; Ischebeck et al., 2006), with multipli-
cation and addition being retrieved from verbal memory but
subtraction and division requiring manipulation of quantities
(e.g., Zhou et al., 2006). In general, it has been suggested that with
advanced age and practice, counting and using quantity knowl-
edge to achieve an outcome is replaced as the strategy of choice
by memory retrieval, similar to the way words are retrieved from
the verbal lexicon, at least in cases of addition and multiplica-
tion (e.g., Delazer et al., 2006; Ischebeck et al., 2006). However, it
should be noted that Pesenti et al. (2000) and Venkatraman et al.
(2005) did not find any language-related frontal activations for
symbolic exact arithmetic involving simple addition problems,
suggesting that different strategies, other than retrieval from
verbal memory, may be in use.

These findings lead to fascinating questions concerning the
cognitive mechanisms underlying mathematical operations in

proficient bilinguals, especially when information is presented in
the L2. For example, when doing arithmetic in the L2, do bilin-
guals rely on the linguistic structure of that language, and how do
these processes interact with the L1? These questions address the
fundamental issue of whether human cognitive capacities related
to the L1 and the L2 employ a shared or independent cognitive
system. Numerical knowledge acts as a natural and ecological
laboratory for the study of L1/L2 interactions, as bilinguals have
three sets of symbols to represent the same semantic concept:
written or symbolic digits (3), L1 number words (e.g., shalosh in
Hebrew or talate in Arabic) and L2 number words. This makes it
possible not only to study translation from L1 to L2 and from L2
to L1 but also from a common semantic meaning to written or
verbal forms in either language. In the current study we extend
the examination of bilingual cross-language interaction by asking
whether the structure of number words in one language is mod-
ulated by the way bilinguals process numbers in the alternative
language.

Languages differ in the structure of number words and how
they are used, and such differences can shape the way in which
speakers of a certain language process numbers. Thus, several
studies set out to examine the idea that variability in mathemat-
ics performance may be related to differences in the cognitive
organization of numbers that is affected by number–word charac-
teristics of a language. Thus, number words in Chinese, Japanese,
and Korean are congruent with the traditional base 10 numer-
ation system, such that the spoken number corresponds exactly
to the implied quantity represented in the written form (i.e., the
number 49 is written in character symbols as four-10s-nine).
Number words in English, on the other hand, may lack the ele-
ments of 10s and ones that are contained in them (i.e., the number
12, twelve). Miura et al. (1988) found that whereas first grade
native speakers of English preferred to use a collection of unit
blocks to represent numbers, speakers of base-10 languages more
frequently used a construction of 10s and ones, in correspon-
dence with the linguistic structure (see also Fuson and Kwon,
1992; Miller et al., 1995; Geary et al., 1996).

In a more recent study, Colomé et al. (2010) compared Italian
and Catalan speakers. Italian is a base-10 language while Catalan
number-words are constructed by combining multiples of 20
with units or with teens (e.g., the verbal representation of 35
is “twenty and fifteen”). Their results showed a consistent dif-
ference between the two groups in their preference toward
a certain number–word structure when solving problems ver-
bally and when typing their answers in Arabic numerals. The
researchers concluded that language differences in the structure
of number–words play a role when solving addition problems.

The current study focuses on the property of inversion, coined
by Zuber et al. (2009) to describe the situation when the order of
the symbolic and verbal notation of a number are inverted. For
example, the number “25” in inverted languages is pronounced
as “five and twenty.” The inversion property affects all two-digit
numbers from 21 to 98, repeats for the 10,000s, and is a feature of
various languages such as Arabic, Danish, Dutch, and German.
There is evidence showing that children who speak languages
with inversion have difficulty in basic numerical transcoding
tasks, namely the ability to translate numerals from one form
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to another, such as the Arabic notation “27” to verbal notation
“seven and twenty” (e.g., Pixner et al., 2011; Imbo et al., 2014).
Difficulty in such tasks, probably due to the multiple inversions
required in representing two-digit numbers, consequently leads
to working memory overload (Zuber et al., 2009).

In adults, Brysbaert et al. (1998) tested the theory that numer-
ical addition is based on language processes by comparing French
and Dutch-speaking participants solving addition problems such
as 20 + 4 and 4 + 20 (unit + decade) and 21 + 5 and 5 + 21
(unit + decade-unit) presented either as Arabic numerals or as
number words. The French participants solved operations like
“20 + 4” and “21 + 5” faster than their counterparts in the other
order, both when presented with Arabic digits and with num-
ber words. The Dutch participants differed in their performance;
operations like “20 + 4” were preformed faster in this order
only when presented in the numeric format, but no differences
between “20 + 4” and “4 + 20” were found for the verbal format.
When the operation consisted of decade-unit + unit (21 + 5),
they were faster to answer in the inverse order (5 + 21). The
results demonstrated some differences in preference for order
of operations based on language when the questions were pre-
sented in written verbal form and the participants were asked to
respond verbally. On the other hand, the two groups did not dif-
fer significantly in their responses when asked to type the answers
numerically. The authors concluded that the numerical system is
largely autonomous of the language system.

However, a later study by Nuerk et al. (2005) compared
English and German speakers’ performance in magnitude com-
parison. Two numbers were presented above each other on a
computer screen and participants were asked to determine which
number was larger. This study showed influence of the inversion
property in a unit-decade compatibility effect. This compatibil-
ity effect is found when two-digit Arabic numbers are compared,
such that cases where separate decade and unit comparisons lead
to the same decision (e.g., 32_47; in this case 3 < 4 and 2 < 7)
are processed faster than incompatible trials (e.g., 37_52; in this
case 3 < 5, but 7 > 2). According to McCloskey (1992), there
may be separate mental number line representations for decades
and units which, in turn, may be separately processed in two-digit
number comparison. If this is true, comparing a pair of incompat-
ible numbers could be a more difficult and lengthy process than
comparing a pair of compatible numbers.

In the above mentioned study, Nuerk et al. (2005) investigated
the generality of the compatibility effect by comparing English
and German speakers. They found that while for native German
speakers the compatibility effect is much larger for large unit
distances than for small unit distances, for native English speak-
ers the compatibility effect is larger for small decade distances
than that of the German speakers. Moreover, large unit dis-
tances and small decade distances led to disproportionately more
errors for English participants but not for German participants.
The authors therefore concluded that decade distance seemed to
determine responses in English speakers, while overall distance
was the most important predictor for German speakers, particu-
larly when dealing with written number words. Thus, the lexical
representation in a language influences magnitude comparison
even when numbers are presented in a non-linguistic format.

A recent study conducted by Macizo and Herrera (2010)
strengthens this conclusion by testing Spanish speakers’ num-
ber processing when presented with two-digit number words in
reverse form (unit-decade order, e.g., five-and-twenty). In each
trial, one number word was presented above the other in the cen-
ter of the screen and the participants had to select the larger of
the two numbers. Based on the effects of the decade distance and
the compatibility effect, the results showed that only decade dis-
tance was a significant predictor for difference in reaction time
(RT). The authors concluded that speakers of non-inverted lan-
guages have learned a language-dependent process for analyzing
written numbers in which decades have a major role regardless
of the position in which they are presented experimentally. These
findings reinforce the theory that the spoken language does in fact
affect the way in which numbers are processed when presented in
both numeric and verbal form.

To date, there is only a handful of studies that have taken a
close look at number processing in bilinguals who speak both
an inverted language and a non-inverted language. These studies
have suggested that bilinguals process two-digit number words
selectively in their L1 and L2 and that they do not seem to
transcode number words from their L2 into Arabic number for-
mat. In other words, most studies have found that the processing
of number words in the L1 does not influence the way bilinguals
process number words in their L2 (Macizo et al., 2010, 2011).
Macizo et al. (2010) examined the way Italian/German bilinguals
performed a number comparison task by presenting them with
compatible and incompatible number–word pairs in their two
languages. Participants were faster when presented with compat-
ible pairs than incompatible pairs in German, while they were
slower when presented with compatible pairs than incompatible
pairs in Italian. The authors concluded that bilingual speakers are
not bound to the number-structure of their L1 and the relative
reliance on the decade and unit values differ depending on the
language of presentation; when processing number–words in an
inverted language, they rely on the unit values, and when process-
ing number–words in a non-inverted language, they rely more on
the decade values.

A more recent study by Macizo et al. (2011), also investigated
between-language influences by comparing Spanish/English and
German/English bilinguals’ performance on a number compari-
son task. Their results show that both bilingual groups presented
a reverse compatibility effect when performing the comparison
task in the L2 (a non-inverted language) but differed in the way
they processed L1 numbers. A reverse compatibility effect was
observed in the L1 Spanish task for the Spanish/English bilinguals
(an expected pattern for a non-inverted language), and a regular
compatibility effect was observed in the L1 German task for the
German/English bilinguals (an expected pattern for an inverted
language). The finding that bilinguals processed two-digit num-
ber words selectively in their L1 and L2 means that bilinguals are
influenced by the language of presentation and process numbers
according to the expected pattern for each language.

Taking such recent findings into account, the question that
remains unanswered is whether or not cross-language influ-
ences exist in other numerical processing tasks, namely in arith-
metic calculation. We investigate this question by presenting
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Arabic/Hebrew bilinguals and native Hebrew speakers with addi-
tion problems composed both in visual–symbolic notation and
in aural–verbal presentation. Similar to Brysbaert et al. (1998) we
manipulated the order in which the elements of the addition
problems were presented (20 + 5 vs. 5 + 20) such that they did
or did not match the structure of number words in the language.
To our knowledge, this was the first study to use number words
in an aural–verbal format instead of presenting number words in
a written format. Thus, the current study will test the influence
of language on number processing by examining the effect of the
structure of number words in a language on processing addition
problems, as well as the susceptibility of speakers of inverted and
non-inverted languages to decade and unit numerical values.

We are particularly interested in whether the organization of
numerical processing is determined by one’s L1, which in this
case is also the language of math instruction, or whether it is
open to influences from the L2 as well. If the former is true,
the performance of Arabic speakers in both aural–verbal pre-
sentation and in visual–symbolic presentation should reflect the
inversion property of their L1. However, if the latter is true there
are two possible patterns: they might show different preferences
depending on the language in which the problem is presented.
The second option is that Arabic–Hebrew bilinguals in the cur-
rent study might show enhanced flexibility in processing, such
that they become less sensitive overall to differences between
presentations that match inverted or non-inverted structures.

Materials and Methods

Participants
Sixty three students from the University of Haifa participated
in the study: 31 Arabic–Hebrew bilinguals (22 women, mean
age 22) and 32 Hebrew–English bilinguals (20 women, mean
age 26). Participants were recruited through flyers and online
ads. Participants gave informed consent and were paid 30 NIS
an hour (45–60 NIS in total). The study was approved by the
research ethics committee of the University of Haifa. All par-
ticipants included in the study reported no history of language
and\or numerical disabilities.

Materials
Language Experience and Proficiency Questionnaire
(LEAP-Q)
The LEAP-Q (Marian et al., 2007) is a computerized self-report
questionnaire that gathers information regarding participants’
language background and abilities in all the languages they speak.
The questionnaire includes questions regarding age of acquisi-
tion of languages, oral and written self-rated proficiency in all the
languages a participant speaks, and the percent of time each lan-
guage is used. The questionnaire was written in Hebrew and all
participants were encouraged to ask questions if a portion of the
questionnaire was unclear to them.

Arithmetic Two-Minute Test
Participants’ mathematical automaticity skills were assessed using
the Arithmetic Two-Minute test (Openhin-Bitton and Breznitz,

unpublished). This task consists of 80 simple arithmetic cal-
culation problems, including the four basic math operations
(addition, subtraction, multiplication, and division). The prob-
lems were presented in four columns, 20 problems for each basic
math operation. Participants were instructed to solve as many
problems as possible, from all four types, in 2 min. Total time,
accuracy and correct responses per minute were scored.

Working Memory Test
Memory performance was assessed using a computerized N-Back
task (Owen et al., 2005), comprised of digit and spatial memory
subsets. In both tasks, a sequence of digits or square locations
was displayed on the computer screen and participants indi-
cated when the current stimulus was identical to the stimulus
that appeared on the previous trial by pressing on the “space”
bar. There were 60–75 steps in each task (totaling 135 steps), 15
of which included target stimuli. Each trial started with a fix-
ation point for 250 ms, a black screen for 500 ms, a stimulus
for 500 ms, and a black screen for one second. Digit span was
assessed using six digits (1, 2, 3, 4, 5, 6), and spatial memory
was assessed using six different square locations on the computer
screen. Participants could respond once the stimulus appeared or
after 1 s. In addition, 5 s breaks were provided every 24 trials.

Experimental Task: Verifying Addition Problems
Participants responded to addition problems presented to
them in three formats: visual–symbolic (Arabic numerals),
aural–verbal in the L1, and aural–verbal in the L2 (see Table 1).
In order to balance the design, Hebrew speaking participants also
completed an aural–verbal block in English, their L2. However,
because the structure of number words does not differ between
Hebrew and English, this block was not theoretically relevant, and
therefore results were not analyzed.

Problems were presented with answers, and participants indi-
cated by button press if the equation was correct or not. RT and
accuracy of responses were recorded. All critical problems were
comprised of the addition of a round decade number and a single
unit number (e.g., 20 + 5 = 25). Addition problems were con-
structed using three numerical ranges (20–29, 40–49, and 70–79).
Elements of the problem could be presented such that they
matched or did not match the order of number words in partici-
pants’ language. The ordermanipulation was implemented across
both aural–verbal and visual–symbolic presentation. Across par-
ticipants each problem appeared in both the Match and the
Non-match condition.

Match
The structure of the verbal representation of the problemmatches
the structure of number words in the language; i.e., “five plus
twenty equals five and twenty” or “5 + 20 = 25” for Arabic and
“twenty plus five equals twenty five” or “20+ 5= 25” for Hebrew.

Non-match
The structure of the verbal representation of the problem does not
match the structure of number words in the language; i.e., “twenty
plus five equals five and twenty” or “20 + 5 = 25” for Arabic, and
“five plus twenty equals twenty five” or “5+ 20= 25” for Hebrew.
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TABLE 1 | Demonstration of experimental materials, by problem type and condition.

Match Non-match

Correct problems Arabic aural–verbal Five plus twenty equals five and twenty Twenty plus five equals five and twenty

Arabic visual–symbolic 5 + 20 = 25 20 + 5 = 25

Hebrew aural–verbal Twenty plus five equals twenty-five Five plus twenty equals twenty-five

Hebrew visual–symbolic 20 +5 = 25 5 + 20 = 25

Incorrect decade Arabic aural–verbal Five plus twenty equals thirty-five Twenty plus five equals thirty-five

Arabic visual–symbolic 5 + 20 = 35 20 + 5 = 35

Hebrew aural–verbal Twenty plus five equals thirty-five Five plus twenty equals thirty-five

Hebrew visual–symbolic 20 + 5 = 35 5 + 20 = 35

Incorrect unit Arabic aural Five plus twenty equals twenty-four Twenty plus five equals twenty-four

Arabic numeric 5 + 20 = 24 20 + 5 = 24

Hebrew aural Twenty plus five equals twenty four Five plus twenty equals twenty four

Hebrew numeric 20 + 5 = 24 5 + 20 = 24

Although verbal representations in the table are written in English to illustrate the order of elements in the problems, in the actual experiment all verbal materials were
recorded in Hebrew or Arabic. In addition, all visual–symbolic problems were presented in Arabic (not Indian) numerals.

For each addition problem correct and incorrect responses
were constructed. Incorrect answers consisted of an error either
in the units or in the decades:

Incorrect unit
The wrong answer was in the same decade of the correct answer,
but the unit value was different. If the numeral unity was under
5, it was replaced by a number between 5 and 9 at random; if the
unit number was above 5, it was replaced by a number between 0
and 4 at random (see Table 1).

Incorrect decade
The wrong answer shared the same unit of the correct answer,
but the decade value was different. Each group of decades was
divided into two sub-groups: units under 5 and units above 5. In
each sub-group, the decades were changed with a smaller value
(minus 1) or greater value (plus 1) at random (see Table 1).

Finally, two types of filler addition problems were added to
the list. The first type included problems from the second decade
(11–19) of similar structure to the critical items. The second type
of filler items were problems which did not match the structure
of number words in either of the languages; e.g., “twenty three
plus four equals twenty seven.” These problems were included in
the experiment in order to provide the participants with a list of
diversified problems and so that they do not pick up on a pattern
of the first two types of problems. The filler problems could also
include carry procedures. However, since this type of problems is
not relevant for the theoretical questions presented in this study,
they were not further analyzed.

When all stimuli were constructed, three comparable lists each
containing 96 items were created. Each list included 24 items in
the Match condition (12 correct, 6 incorrect Decade, 6 incor-
rect Unit); 24 items in the Non-match condition (12 correct, 6
incorrect Decade, 6 incorrect Unit) and 48 filler items (24 correct
and 24 incorrect). All three lists were orally recorded in Arabic,
Hebrew, and English, by a native speaking female of each lan-
guage, respectively. Each problem and each answer was saved in
separate sound files, played consecutively to participants. This
allowed randomization of presentation order across participants,

and also allowed us to measure response RT from the onset of the
answer, leading to more accurate assessment of performance.

Procedure
The tasks were divided into two 1-hour sessions. The first session
included the LEAP-Q, the Two-Minute Test, and the Working
Memory task. The second session included the experimental task
of verifying addition problems. All computerized tasks were pro-
grammed in E-Prime, and the participants sat approximately
60 cm from the screen.

Experimental Task Presentation
Aural–verbal blocks
Each block started with written instructions in the language of
the following block. Participants were instructed to respond as
quickly and as accurately as possible.

Addition problems were presented through headphones, and
did not appear on the screen, though participants responded
using a computer keyboard. Each trial started with a fixation cross
for 400 ms, followed by a blank screen for 150 ms, after which the
problem was presented aurally while a green dot appeared in the
center of the screen. The green dot remained on the screen until
the participants responded. Participants used their index finger
to press the right key for a correct answer or the left key for an
incorrect answer. After responding, a red circle appeared in the
center of the screen and participants pressed a key to initiate the
following trial, to ensure that all participants had the same allot-
ted response time. Each language block included 96 trials, and
participants were given two short breaks during the block.

The instructions were followed by a practice block including
18 addition problems (nine problems per language). Participants
were given feedback on their performance in the practice block.
The experimental block, however, did not provide the partici-
pants with feedback on their performance.

Visual–symbolic block
Addition problems including answers were presented at the cen-
ter of the screen. Each trial started with a fixation cross for 400ms,
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then a blank screen for 150 ms, after which the addition prob-
lem was presented centrally in Arabic numerals until participants
responded with the right key if the problem was correct and with
the left key if it was incorrect. Responses were followed by a red
circle appearing in the middle of the screen, and participants
pressed a key to initiate the next trial. The experimental block
was preceded by a practice block of nine addition problems, for
which participants received feedback.

Arabic speaking participants completed one list aurally in
Arabic, one list aurally in Hebrew, and one list visually. Hebrew
speaking participants completed one list aurally in Hebrew, one
list aurally in English, and one list visually. The assignment of
list to presentation condition was counterbalanced across par-
ticipants, as were the order of visual vs. aural presentation, and
the order of L1/L2 within the aural presentation. Within each
list, item presentation was randomized for each participant. The
96 items in each list were randomly divided into three blocks,
each containing 32 items. Participants were given breaks between
blocks.

Results

Background Variables
The group performance in the background variables is presented
in Table 2. The performance of the Arabic and Hebrew speakers
was compared in working memory (N-back task), language back-
ground (LEAP-Q) and arithmetic abilities (Two-Minute arith-
metic task). The Arabic speakers were significantly younger than
the Hebrew speakers, t(60) = 5.32, p< 0.001. However, there was
no significant difference between the groups in years of education
(p = 0.15).

Additionally, there was no significant difference between the
two groups when performing the arithmetic two-minute test,
(p = 0.66). In other words, the Arabic speaking participants
and the Hebrew speaking participants did not differ signifi-
cantly in the number of arithmetic problems solved correctly in a
two-minute span.

The working memory task, which required the participants to
recall numerical and spatial stimulus 1 or 2 steps back, revealed
a main effect of participant group, because Arabic speaker
had shorter RTs than Hebrew speakers across all conditions,
F(1,61) = 4.44, p < 0.05. However, both groups were equally
accurate, again across all conditions, F(1,61) = 1.24, p = 0.27.
Previous research has shown that accuracy in working memory

TABLE 2 | Means (SD) of participant characteristics.

Native Arabic
speakers N = 31

Native Hebrew
speakers N = 32

Age* 21.65 (2.4) 25.73 (2.9)

L1 self-rated proficiency 9.71 (0.49) 9.85 (0.31)

L2 self-rated proficiency 7.71 (1.37) 7.47 (1.88)

L2 age of acquisition 8.90 (1.7) 7.26 (3.15)

Participant years of education 14.63 (1.96) 14.35 (1.7)

*Means significantly different at p < 0.01.

tasks is a more sensitive index of individual differences in work-
ing memory (Unsworth and Engle, 2008). Therefore, we do not
further analyze the speed differences between the participant
groups.

Experimental Tasks – Addition Problems
In order to address the theoretical issue of the impact of num-
ber word structure on numerical processing, we conducted three
main comparisons. In the processing of aural–verbal problems we
first compared the performance of Arabic speakers in Arabic (the
L1, an inverted language) and Hebrew (the L2, a non-inverted
language). Then, we compared the performance of Hebrew
speaking and Arabic speaking participants in their performance
on Hebrew aural–verbal problems. This comparison allowed us
to investigate whether speakers of an inverted L1 might pro-
cess a non-inverted language differently than native speakers of
a non-inverted L1. Finally, we compare the performance of the
two participant groups on their responses to visual–symbolic
problems. An important aspect of the two comparisons across
participant groups is that they were based on the exact same
stimuli for all participants.

Arabic Speakers, L1/L2 Aural Presentation
To compare the performance of native Arabic speakers in L1
and L2, we conducted a three-way repeated-measures ANOVA
on accuracy rates, and on mean RTs for correct responses.
Within participant variables were Presentation Language (Arabic,
Hebrew), Order (Match, Non-match to the structure of number
words in the language of presentation), and Correctness (correct,
incorrect Unit, incorrect Decade).

In the analysis of RTs, there was a main effect of presentation
language F(1,28) = 42.5, p < 0.001, η = 0.6, because partic-
ipants were faster to respond to addition problems in Arabic,
the L1, than in Hebrew, the L2 (Table 3). Although participants
were numerically faster to respond to problems that matched the
structure of number words in the relevant language (inverted in
Arabic, non-inverted in Hebrew), this difference did not reach
statistical significance, F(1,28) = 2.1, p = 0.16. This finding is
noteworthy in that it demonstrates that Arabic speaking partic-
ipants were not sensitive to order of presentation, and regardless
of whether they were listening to problems in the L1 or the
L2 they were equally able to respond to problems presented in
inverted or non-inverted order (see Table 3). Finally, the two-
way interaction between presentation language and correctness
was significant, F(2,56) = 19.1, p < 0.01, η = 0.7. This interac-
tion is driven by the fact that in Arabic, participants were faster to
respond to problems with an incorrect unit, whereas in Hebrew

TABLE 3 | Mean RTs (SD) for aural–verbal addition problems, by language
and by order.

Native Arabic
speakers in
Arabic (L1)

Native Arabic
speakers in
Hebrew (L2)

Native Hebrew
speakers in
Hebrew (L1)

Inverted 1297 (50) 1697 (60) 1655 (64)

Non-inverted 1313 (66) 1635 (58) 1560 (57)
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they were faster to respond to problems with an incorrect decade.
Because in Arabic the unit information becomes available first
in aural presentation (five-and-twenty) whereas in Hebrew the
decade information becomes available first (twenty-and-five) this
pattern is expected. No other main effects or interactions were
significant.

In the accuracy analysis there was a significant main effect of
presentation language, F(1,28)= 4.90, p< 0.05, η = 0.15, because
participants were more accurate overall in the L1 than in the
L2. In addition, there was a main effect of Order, F(1,28) = 7.7,
p < 0.01, η = 0.2, because participants were more accurate to
judge addition problems adhering to the structure of number
words in the language of presentation, than to problems that
did not match the structure of number words (see Figure 1).
Importantly, the effect of Order was stable across both lan-
guages of presentation (namely, the interaction between Order
and Language was not significant), indicating that in Arabic par-
ticipants were more accurate in judging problems presented in
the inverted order, whereas in Hebrew they were more accurate
in judging problems presented in the non-inverted order. This
shows flexibility and adaptability of processing preferences to the
language of presentation.

Comparing Hebrew and Arabic Speakers on
Aural–Verbal Presentation in Hebrew
To compare the performance of native Hebrew and native Arabic
speakers in responding to aural–verbal addition problems pre-
sented in Hebrew, we conducted a three-way mixed design
ANOVA, on reaction times and accuracy (Table 3). Within-
participant variables were Correctness (correct, incorrect-Unit,
incorrect-Decade), Order (Match, Non-match to the structure of
number words in the native language), and the between partici-
pant variable was native language group (Arabic, Hebrew).

Analysis of RTs to Hebrew aural presentation revealed a
significant main effect of Order, F(1,58) = 5.9, p < 0.05, η = 0.1,

FIGURE 1 | Accuracy rates of Arabic speakers to aural–verbal addition
problems, by language of presentation and order of presentation.
Note: Inverted order (5 + 20 = 25) matches the structure of number words in
Arabic, but not in Hebrew. Non-inverted order (20 + 5 = 25) matches the
structure of number words in Hebrew, but not in Arabic.

because participants were faster to respond to addition problems
that match the structure of number words in Hebrew, than to
problems that do not match this structure. The two-way inter-
action between Order and Language Group was not significant,
F < 1, showing that native Hebrew and native Arabic partici-
pants showed very similar patterns of performance and sensitivity
to the order manipulation. This finding aligns with the pattern
reported above, comparing the accuracy of performance of the
native Arabic speakers in Arabic and in Hebrew.

Although native Hebrew speakers, performing the task in their
L1, were numerically faster than native Arabic speakers perform-
ing the task in their L2 (mean RTs of 1607 and 1637 ms, respec-
tively), this difference was not statistically significant, F < 1. The
main effect of correctness was significant, F(1,58)= 7.1, p< 0.05,
η = 0.35, because participants were slower to respond to prob-
lems with incorrect units (m = 1736) than to correct problems
(m = 1622) or to problems with incorrect decades (m = 1551).
Again, we interpret this pattern as a result of the time at which
information becomes available as the answer to the problem
unfolds aurally. No other interactions were significant.

The analysis of accuracy rates again revealed a significant main
effect of Order, F(1,58) = 6.6, p < 0.05, η = 0.1, because all
participants were more accurate to judge addition problems that
matched the structure of number words in Hebrew than problem
that did not match this structure. Crucially, the effect of Order
did not interact with Language Group, demonstrating that this
preference was shared by both native Arabic and native Hebrew
speakers. This is the same pattern that was reported above for the
RTs. There were no other significant main effects or interactions.

Comparing Hebrew and Arabic Speakers on
Visual–Symbolic Presentation
To compare the performance of native Hebrew and native Arabic
speakers in responding to visual–symbolic addition problems, we
conducted a three-way mixed design ANOVA, on reaction times
and accuracy (see Figure 2). Within-participant variables were
Correctness (correct, incorrect-Unit, incorrect-Decade), Order
(Match, Non-match to the structure of number words in the
native language), and the between participant variable was native
language group (Arabic, Hebrew).

In the analysis of RTs there was a significant main effect of
Correctness, F(1,60) = 8.6, p < 0.01, η = 0.2. Participants were
faster to respond to correct than to incorrect problems. There
was also a significant two-way interaction between Order and
Language group, F(1,60) = 6.7, p < 0.05, η = 0.1. Follow up
comparisons showed that whereas native Hebrew speakers were
significantly faster to respond to problems matching the struc-
ture of number words in Hebrew than to non-matching problems
[t(30) = 2.7, p< 0.01], native Arabic speakers did not show sensi-
tivity to the order manipulation, t(30) < 1. No other main effects
or interactions were significant.

In the analysis of accuracy rates, the only significant find-
ing was a three-way interaction between Order, Correctness, and
Language group, F(2,120) = 4.2, p < 0.05, η = 0.1. Follow up
comparisons showed that for Arabic speakers there were no sig-
nificant effects in accuracy for either Order of presentation or
Correctness (all F < 1). Conversely, for Hebrew speakers there
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FIGURE 2 | Reaction times (RTs) to visual–symbolic addition problems.
Inverted order (5 + 20 = 25) matches the structure of number words in
Arabic, but not in Hebrew. Non-inverted order (20 + 5 = 25) matches the
structure of number words in Hebrew, but not in Arabic.

was a significant interaction between Order and Correctness,
F(2,60)= 4.3, p< 0.05, because they showed lower accuracy rates
for problems with incorrect units presented in the non-matching
order.

Discussion

The present study examined whether adult university students
show a preference for processing addition problems presented in
an order that matches the structure of number words in their
native language. Furthermore, we investigated the permeabil-
ity of numerical processing to the structure of number words
in the L2, especially when it differs markedly from the L1. We
found that native Hebrew speakers, whose L2 (English) shares
the same non-inverted structure of number words as the L1, have
a marked preference both in aural–verbal presentation and in
visual–symbolic presentation for addition problems presented in
an order that matches the familiar structure of number words.
Conversely, we found that Arabic–Hebrew bilinguals showed
more flexibility in their patterns of performance, though the pat-
terns revealed by the data were somewhat more complex. Thus,
when comparing the performance of Arabic–Hebrew bilinguals
across their two languages and for visual–symbolic problems,
they did not show a preference in RTs for either inverted or non-
inverted problems. However, when comparing their performance
to that of native Hebrew speakers for aural–verbal problems pre-
sented in Hebrew, they did show the same pattern, of a preference
for non-inverted over inverted problems. This preference was
also apparent in the Arabic–Hebrew bilinguals’ accuracy rates for
aural–verbal problems presented in their two languages. Thus,
they were more error prone when the structure of the addi-
tion problem mismatched the structure of number words in the
language of presentation. Therefore, both the possible patterns
identified in the introduction are apparent in the performance of
the Arabic–Hebrew bilinguals. On the one hand, we found evi-
dence for some adaptation to the language of presentation, mostly

in accuracy rates. On the other hand, the Arabic–Hebrew bilin-
guals also show evidence for enhanced flexibility, expressed as less
sensitivity overall to the alignment between the order of presen-
tation of addition problems and the structure of number words
in the language.

The current results regarding the effect of order of presen-
tation proved to be quite interesting. Previous findings com-
paring languages that differ in the structure of number words
(Brysbaert et al., 1998; Colomé et al., 2010) support a predic-
tion that speakers of inverted languages should prefer to solve
problems that follow the order of inverted number words (unit-
decade), while speakers of non-inverted languages would prefer
to solve problems that follow the order of non-inverted num-
ber words (decade-unit). Colomé et al. (2010), who compared
Italian and Catalan speakers, argued that language differences in
the structure of number–words play a role when solving addition
problems. They reached this conclusion after finding that the dif-
ferences between the two groups’ preference toward a particular
number–word structure remained consistent both when solving
problems verbally and when typing their answers on a keyboard.

Brysbaert et al. (1998), who compared Dutch and French
speakers, also found that the order of presentation of addi-
tion problems, and whether it matched the structure of num-
ber words, influenced participants’ performance when asked to
respond verbally. Nonetheless, since these results were not repli-
cated when participants typed their answers on a keyboard, the
authors concluded that the differences between the two languages
were due to a strategic adaptation to verbal output requirements
instead of a direct influence of language in the addition stage.

The results of the current study show that whereas the Hebrew
speakers followed the expected pattern, showing a preference for
problems that follow a non-inverted order, the Arabic speak-
ers were equally facile in responding to visual–symbolic addition
problems presented in inverted and non-inverted order. In con-
trast, in aural–verbal presentation the Arabic–Hebrew bilinguals
showed less sensitivity to order of presentation in indices of
RT, but were more accurate for inverted problems in Arabic
and for non-inverted problems in Hebrew. These findings sug-
gest that the Arabic speakers are flexible and show a shift in
language-order preference. In other words, it seems that by
being exposed regularly to both an inverted language (Arabic)
and a non-inverted language (Hebrew), they have developed
the ability to process both orders equally well. It is important
to note that previous studies that investigated the effect of the
structure of number–words presented the experimental verbal
stimuli in written form on a computer screen. Our study is
the first to present participants with aurally presented addition
problems without including a written representation (verbal or
numeric).

Furthermore, unlike previous studies, where participants were
asked to type a numerical answer or verbally answer an addi-
tion problem, the participants in the current study were asked
to decide whether the problem they heard (question and answer
included) was correct or incorrect. This might be an additional
reason for differences found between our findings (particu-
larly regarding the order of presentation) and those of previous
studies.
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In addition, the current study explored the permeability of
numerical processing to influences from the L1 and the L2 in
highly proficient bilinguals. This issue is closely related to the
debate questioning whether conceptual representations of bilin-
guals are exclusively shaped by the lexical structure of L1, or
whether they are open to influences from a later learned L2 (e.g.,
Jiang, 2002; Degani et al., 2011). The current results suggest that
the numerical processing of bilinguals might be shaped by expo-
sure to two systems differing in the structure of number words,
and not exclusively determined by the L1. Further, our bilingual
participants were sensitive to the language of presentation, in that
they showed different preferences in the L1 and in the L2, with the
latter aligning closely with the performance of native speakers of
the language.

The Arabic–Hebrew speakers in the current study differed sig-
nificantly in the way they processed number words in Arabic
from the way they processed number words in Hebrew. They
were more sensitive to unit values when they heard problems
recorded in Arabic but weremore sensitive to decade values when
they heard similar problems recorded in Hebrew. It is true that
due to our methodological decision to present problem aurally,
decade identity became available earlier in Hebrew whereas in
Arabic, unit identity became available first. Of course, this could
have been the cause of the observed pattern of results. However,
the results could also be interpreted to mean that the structure of
number words in the language influences the relative emphasis of
unit and decades values in arithmetic performance. In accordance
with this argument, in their study, Nuerk et al. (2005) concluded

that decade distance seemed to determine responses in a number
comparison task for English speakers, while overall distance was
the most important predictor for German speakers, particularly
when dealing with written number words.

Further Macizo et al. (2011), examined language influences
by comparing Spanish/English and German/English bilinguals’
performance on a number comparison task. Their results demon-
strate a reverse compatibility effect observed in the L1 Spanish
task for the Spanish/English bilinguals (an expected pattern
for a non-inverted language), and a regular compatibility effect
observed in the L1 German task for the German/English bilin-
guals (an expected pattern for an inverted language). However,
a reverse compatibility effect was observed in the L2 English
task for both groups. Since their results suggest that bilinguals
process two-digit number words selectively in their L1 and L2,
they concluded that bilinguals are influenced by the language
of presentation and process numbers according to the struc-
ture of number words for each language. The current flexible
pattern found for the Arabic–Hebrew bilinguals aligns with
these results, and extends them further to aural–verbal presen-
tation.

In summary, the use of number processing as a case study
for the interactions between language and cognition in bilinguals,
allowed us to clearly demonstrate two important findings: (1) the
L1 does not exclusively shape the conceptual knowledge and cog-
nitive representations, and (2) extensive exposure to an L2 can
result in flexibility of representation and adaptability to different
linguistic structures.
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The Welsh language uses a regular counting system, whereas English uses an irregular

counting system, and schools within Wales teach either through the medium of Welsh

or English. This provides the opportunity to compare linguistic effects on arithmetical

skills in the absence of many other confounding factors that arise in international

comparisons. This study investigated the hypothesis that language properties influence

children’s performance in certain numerical tasks by comparing the performance of

20 Welsh- and 20 English-medium Year Two pupils in non-verbal line estimations and

transcoding. Groups did not differ on global arithmetic abilities, but the pupils taught

through the medium of Welsh on average performed better in the non-verbal line

estimation tasks than the English-medium group. This superiority was most apparent in

comparisons involving numbers over 20: a result which was complicated by the fact that

Welsh-medium pupils showed a lower range of error scores than the English-medium

pupils. These results were thought to be related to the increased transparency of the

Welsh counting system.

Keywords: young children, number representation, estimation, cross-linguistic, counting system, Welsh bilinguals

Introduction

Comparisons of arithmetical performance of children in different countries have consistently
shown significant differences (e.g., TIMSS, 1996; OECD, 2014).There are many possible cultural
differences that may influence arithmetical development. These may include attitudes to
mathematics or to academic skills in general; methods of mathematics education; the amount of
time that is devoted to arithmetic teaching in school, and the economic or political situation of a
country. The cultural issue that will be considered in the present article is language.

Children in Pacific Rim countries, such as China, Japan, and Korea, show superior performance
in arithmetic (e.g., Fuson and Kwon, 1992; Miller et al., 1995; Miura and Okamoto, 2003), which
is often attributed to the regularity of Asian counting systems. A regular counting system is purely
multiplicative, meaning if the oral counting system corresponds closely to the written number word
system, then children need only learn the digit names of one to nine and of multiples (i.e., 10, 100,
1000), to be able to say any number word up to 9999. Irregular counting systems on the other hand,
such as English, include number words that do not show a one-to-one correspondence with the
Arabic written system, such as teen numbers, e.g., “thirteen,” and multiples of ten, e.g., “twenty,”
which consequently need to be learned separately. These differences in the degree to which the
spoken and written number systems of languages coincide with each other have been suggested as
an explanation for some of the results of international comparisons of arithmetical performance
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of children, as a regular counting system might facilitate
children’s learning to count to higher numbers, and might also
increase their understanding of place value concepts.

Though systematic research on the subject began relatively
recently, the idea that counting systems may influence
arithmetical ability has been proposed for a long time.
Two-hundred years ago, Edgeworth and Edgeworth (1798)
posited the English language’s highly irregular counting system
as a possible disadvantage to English speakers when developing
arithmetical skills. Although the cross-cultural differences that
have been found in arithmetical performance could be due to
differences in number word systems, the fact that some countries
with transparent counting systems also show superior results in
mathematics performance does not prove a causal relationship.
Other cross-cultural differences, such as those mentioned
above, could also be contributing to mathematical performance
differences. In order to assess the impact of counting system on
the development of numerical skills, it is important to rule out
other differences as much as possible.

Studies of children living in Wales offer a promising solution
to this problem. In Wales, 80% of children receive their school
instruction in English-medium schools, while 20% receive their
instruction in Welsh-medium schools. All of the children are
living in the same area, in similar cultural environments, and
all are studying mathematics in a similar fashion according
to the National Curriculum of England, Wales and Northern
Ireland. Thus, it is possible to study the specific effects of
language on arithmetic, independently of other educational and
cultural differences. The Welsh language in fact contains both an
irregular counting system and a regular counting system, but only
the regular counting system is used when teaching arithmetic
in schools (Roberts, 2000). For example, whereas in English,
“eleven” does not correspond to the written digits, in Welsh “un
deg un” is used, which translates to “one ten one.” The Welsh
term for “twenty-one” is “dau ddeg un” or “two tens one”, which
represents the tens and units more transparently than the English
term.

So far, few studies have compared numerical skills in Welsh
children attending English- and Welsh-medium schools. One
such study was conducted by Dowker et al. (2008), in which the
performance of Welsh-speaking and English- speaking children
living in Wales in a variety of number processing tasks was
compared. The results showed thatWelsh children demonstrated
superior performance in comparing two-digit numbers, but the
two groups did not differ in terms of arithmetic test performance.
The authors concluded that such results indicate that linguistic
effects affect specific aspects of arithmetic performance as
opposed tomore global effects (also seeMark and Dowker, 2015).
This is consistent with the fact that arithmetic performance has
often been shown to be comprised of numerous components, as
opposed to being a unitary function (e.g., Dowker, 2005).

Most studies of cross-linguistic differences in numerical
abilities, including Dowker et al.’s earlier (2008) study of Welsh
children, have looked either at possible differences in arithmetical
procedures, or on transcoding and related skills such as written
number comparison, or both. If counting system effects are found
on arithmetic or transcoding, this may either reflect effects on

the ease of carrying out procedures in different counting systems,
or differences in the internal representation of number by users
of different counting systems. Relatively few studies have looked
directly at whether children’s internal representations of number
are affected by the transparency of the counting system; and this
is an important issue to resolve.

One way of studying the internal representation of number
is to use the mental number line. Number line estimation
tasks require participants to judge the position of a target
number on a blank number line (e.g., Siegler and Booth, 2004;
Booth and Siegler, 2006; Siegler et al., 2009). By calculating the
discrepancy between the participant’s estimate and the target
number’s actual location, number line estimation tasks can
be used to assess participants’ internal mental number line
representation. Research has suggested that overall number sense
revolves around a mental number line, and that children’s mental
number line representations correlate with and are casually
linked to arithmetic performance (e.g., Siegler and Booth, 2004;
Booth and Siegler, 2006, 2008; Link et al., 2014). Furthermore,
a developmental shift has been consistently observed between
the ages of 5 and 8 years, in which children rely increasingly
on linear representations of numerical magnitudes as opposed
to a reliance on logarithmic representations, with the shift
being age dependent, and occurring for smaller scales before
a linear representation of larger scales emerges (Booth and
Siegler, 2008). Using non-verbal number line estimation tasks,
in which the target number is presented visually rather than
verbally, is particularly advantageous as makes it possible to
assess linguistic effects on mental number line representations
without the confounding factor of verbal comprehension, which
might be separately influenced by language.

The few studies that have so far investigated the mental
number line representations of children from different linguistic
backgrounds have given somewhat conflicting results, though
most have suggested at least some linguistic influence. Siegler and
Mu (2008) found that Chinese kindergarten children performed
better than their American counterparts on mental number
line estimation tasks involving a number line spanning from
1 to 100. Laski and Yu (2014) found that both Chinese and
Chinese-American children performed better than monolingual
English-speaking American children, though they also found that
children in China performed better on these tasks than Chinese-
American children, suggesting that educational factors were
more important than linguistic factors. By contrast, Muldoon
et al. (2011) did not find such a difference between Chinese and
Scottish 4-and 5-year-olds; and indeed when smaller number
lines from 0 to 10 and 0 to 20 were included, the Scottish children
performed better.

Helmreich et al. (2011) looked at another language group, with
a counting system that is less transparent than most Europaean
counting systems. German speakers have a counting system that
has the potentially confusing property of inversion of tens and
units: e.g., the number that is written as 24 is spoken as “vier
und zwanzig” (twenty-four). Helmreich et al compared German-
and Italian-speaking children’s estimation accuracy in a non-
verbal number line estimation task in which the number line
spanned from “0” to “100.” The German children did indeed
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perform significantly worse than the Italian-speaking children
on the mental number line task, though not in tests of global
arithmetical ability.

The main aim of the current study was to extend the
findings of Dowker et al. (2008) to investigate whether Welsh
and English medium children in Wales would differ in the
precision of their non-verbal number line estimation. In other
words, does the language of school instruction affect the mental
number line in children who are otherwise having similar cultural
and educational experiences? Number line estimation tasks do
not form part of the teaching syllabus in Wales, meaning
children’s performance in this task should be largely immune to
teaching effects. Additionally, we wished to assess and compare
the children’s general arithmetical ability and their numerical
transcoding abilities: their ability to read and write two-digit
numbers.

The performance of 20 Welsh-medium and 20 English-
medium children was compared regarding the British Abilities
Scale (BAS) Number Skills test, writing to dictation, reading
numbers aloud, and a non-verbal line estimation task, which
included number lines from 0–20 and 0–100.

We predicted that the Welsh-medium children would score
higher on the number line estimation tasks, and that this would
be especially true of the number line from 1 to 100, as this
places greater demands on the ability to represent multi-digit
numbers, for which a transparent counting systemwould provide
an advantage. On the basis of Dowker et al.’s (2008) findings
about Welsh-medium children’s better performance on two-digit
number comparison, we also predicted that the Welsh-medium
children would perform better on the tasks involving reading
and writing numbers. However, we predicted that there would
be no difference between the two groups in BAS Number Skills
test performance, based on Dowker et al.’s (2008) earlier findings
and their suggestion that linguistic effects on mathematics may
be specific rather than global.

Method

Ethical Approval
Ethical approval for this study was obtained from Oxford
University’s Central University Research Ethics Committee.

Participants
Forty children, drawn from the Year Two classes of two state
primary schools in Cardiff and one state primary school from
the Rhondda Cynon Taf area, took part in the study. The data
from all participants were included in the analysis. Written
consent was obtained from all parents or guardians. One Cardiff-
based school taught through the medium of Welsh, from which
20 children (10 girls) took part. The other two schools were
English-medium schools, and 10 participants from each school
(20 in all, including 14 girls) took part. All the children in
the Welsh- medium schools were taught exclusively through
the medium of Welsh, but 13 of the 20 children spoke English
as a first language. Though taught through different languages,
mathematics teaching followed exactly the same curriculum
in the three schools. The 20 Welsh-medium children were

compared with the 20 English- medium children. All were tested
at the same time of their school year, but they turned out to be
somewhat different in age. The mean age of the Welsh-medium
school pupils was 6 years and 5 months (SD = 0.30; range 73–
85), and the English-medium school pupils 6 years and 7 months
(SD = 0.35; range 73–84). The age difference between the two
groups was significant [t(38) = 2.38, p = 0.022, d = 0.75]. All
children had normal or normal-to-corrected vision.

Tasks and Procedure
The children completed four tasks: the BAS Number Skills test,
which is a standardized test that assesses written calculation
(Elliott et al., 1997), two transcoding tasks (writing to dictation
and reading aloud), and a non-verbal number line estimation
task.

In the writing Arabic numbers to dictation task, participants
were required to write down 32 different Arabic numbers (two
single-digit, 10 double-digit, and 20 3-digit numbers) that were
presented verbally one by one by the experimenter.

In the reading Arabic numbers aloud task, participants were
required to read aloud 32 different Arabic numerals (two single-
digit, 10 double-digit, and 20 three-digit numbers) that were
presented on a computer screen one by one. In both transcoding
tasks, items were scored with a 0 for every incorrect answer, and
1 for every correct answer.

The number line task was a pen and paper task that required
participants to estimate the position of a visually presented
number (as opposed to verbally presented) on an empty number
line, without counting or using any other strategy other than
estimation. The number lines were 10 cm long, and labeled with
“0” on the left end, and “20” or “100” on the right end. Each
number to be estimated was presented centrally above each
empty individual number line in Arabic notation. Participants
estimated the position of the numbers 12, 1, 13, 4, 15, 19, 7, 17,
and 5 on 0–20 number lines, and the position of the numbers 27,
2, 64, 35, 7, 13, 99, 75, 47, 3, 11, 82, 95, 9, 17, 6, 18, and 53 on
0–100 number lines. Before beginning the task, participants were
presented with an orienting problem for each of the two different
number lines, where they were required to estimate the position
of 10 on the 0–20 number line, and 50 on the 0–100 number line
for practice purposes.

The children were tested in one-to-one single sessions with the
experimenter. The tasks were explained and conducted in Welsh
for the Welsh-medium education children and in English for
the English-medium education children. Each trial was presented
sequentially, and no feedback on performance was provided for
any of the trials, including the practice trials.

The data were analyzed using IBM SPSS 20.

Results

Overall Mean Scores
The mean raw score on the British Abilities Scales Basic Number
Skills test (henceforward referred to as BAS) was 8.25 (s.d. 3.24)
and the mean standard score was 107.98 (s.d. 11.9). The mean
score for the Reading Aloud test was 20.98 (s.d. 8.42) and the
Writing test was 19.75 (s.d. 7.95).
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To obtain number line estimation scores, the distance between
the true position of the number that was presented and the
position of the number corresponding to the child’s estimate
on the number line was measured to the nearest millimeter.
These deviationmeasures were then averaged for each participant
individually to give two mean estimation error scores; one score
for the 0–20 number line estimations, and one for the 0–100
number line estimations. These were also averaged to obtain an
overall mean estimation error for each participant.

The mean estimation error score for the 0–20 number line
was 12.12mm. (s.d. 9.43) and the mean estimation error for the
0–100 number line was 20.36mm. (s.d. 7.15). The overall mean
estimation error score was 17.58 (s.d. 6.98).

Correlations Between Age, BAS Scores and

Other Measures
A correlation table is given in the Supplementary Material.

Pearson product-moment correlations were carried out
between Age in months and the other measures. Age did not
correlate significantly with the BAS raw score or standard score,
nor with the estimation error measures, though there was a trend
toward a significant negative correlation with errors for the 0–
100 number line, i.e., for older children to perform slightly better
[r(38) = −0.295; p = 0.065]; but it did correlate very significantly
with Reading Aloud [r(38) = 0.53; p < 0.001] and Writing
[r(38) = 0.46; p = 0.003].

Pearson product-moment correlations were carried out
between BAS raw score and the other measures. The BAS raw
score showed a significant negative correlation with estimation
errors overall [r(38) = −0.439; p = 0.005] and with errors for
the 0–100 number line [r(38) = −0.479; p = 0.002], though it
did not correlate significantly with errors for the 0–20 number
line [r(38) = −0.25; p = 0.12]. It also correlated significantly
with Reading Aloud [r(38) = 0.69; p < 0.001] and Writing
[r(38) = 0.73; p < 0.001]. Correlations between the BAS standard
score and the other measures were very similar to those between
the BAS raw score and the other measures.

The overall estimation error score showed a significant
negative correlation with Reading Aloud [r(38) = −0.6; p <

0.001] and Writing [r(38) = 0.49; p < 0.001].
For a more detailed list of correlations, see the Supplementary

Material.

Comparison Between Groups: Analyses of

Covariance
As the language groups differed significantly in Age, and as
Age correlated significantly with some measures, Analyses of
Covariance were carried out with Age as a covariate.

To compare the Reading Aloud and Writing scores of the
Welsh- and English-medium groups, two univariate ANCOVAs
were conducted with language as the fixed factor, age as a
covariate, and the Reading and Writing scores as dependent
variables. Group differences did not approach significance for
either task.

To compare the estimation errors of the Welsh- and English-
medium groups, three univariate ANCOVAs were conducted
with language as the fixed factor, age as a covariate, and the three

different mean estimation error scores as dependent variables.
The ANCOVA revealed no significant group difference for the
0–20 number line estimation errors [F(1, 37) = 2.77; p = 0.11;
partial eta2 = 0.05], but did reveal a significant difference for
the overall estimation error score [F(1, 37) = 4.36, p = 0.044;
partial eta2 = 0.11], and a borderline significant difference for
estimation errors in the 0–100 number line task, [F(1, 37) =

3.77, p = 0.06; partial eta2 = 0.092]. Estimation errors were
lower in the Welsh-medium group for all these tasks, though
the difference only approached significance for the 0–100 task
(M = 19.05, SD = 5.52 for the Welsh-medium pupils compared
to M = 21.69, SD = 8.42 for the English-medium pupils); and
reached it for the overall estimation error score (M = 16.06,
SD = 4.66 for the Welsh-medium pupils and M = 19.1, SD =

8.57 for the English-medium pupils).

Further Analyses of Estimation Error Scores
As the 1–100 line included both comparisons of numbers over
20 and numbers under 20, analyses were carried out on mean
errors for both types of number separately, to elucidate whether
group differences related to the entire number line, or just to the
larger numbers. For numbers under 20, there was no significant
group difference at all [F(1, 37) = 0.844, p = 0.89; partial eta2 =

0.001]. However, for numbers over 20, the group difference was
significant [F(1, 37) = 9.14, p = 0.003; partial eta2 = 0.274].
The Welsh-medium pupils had a mean estimation error score of
14.67 (SD = 4.88) as compared with 21.09 (SD = 13.5) for the
English-medium pupils.

Since the standard deviation was higher in the English than
the Welsh group for numbers over 20 on the 1–100 line,
analysis of variance may not be a fully adequate measure; and
non-parametric analyses were also carried out. A Kolmogorov-
Smirnov independent-samples test failed to reach significance
(p = 0.172); while a Moses Test of Extreme Reaction showed a
significant difference between the ranges of the two groups, with
a higher range in the English group (p = 0.02).

For the 00–20 number line, analyses were carried out on mean
errors for teen numbers vs. numbers below 10. To compare the
estimation errors of theWelsh- and English-medium groups, two
univariate ANCOVAs were conducted with language as the fixed
factor, age as a covariate, and the two different mean estimation
error scores (for numbers under 10 and over 10 on the 1–20
number line) as dependent variables. The ANCOVA revealed
no group difference even approaching significance for numbers
under 10 [F(1, 37) = 0.005; p = 0.95], but did reveal a significant
difference for numbers over 10 [F(1, 37) = 5.43, p = 0.025; partial
eta2 = 0.13]. For the numbers over 10, Welsh-medium children
made lower estimation errors (M = 11.64; SD = 10.39 for the
Welsh-medium group and M = 18.76; SD = 13.62 for the
English-medium group.

Discussion

This study aimed to extend Dowker et al.’s (2008) study of
Welsh children, and to examine the role of language in children’s
transcoding skills and non-verbal number line estimations by
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comparing two groups of school pupils for which cultural and
educational variables were not strong confounding variables.

The results suggest that the transparency of the counting
system may indeed have an influence on children’s number
representation, far more than on arithmetical skills. There was no
evidence in this study for better arithmetic or transcoding in the
Welsh-medium children. The two groups performed similarly
in the BAS standardized test, and in the reading and writing of
numbers.

However, after controlling for age, the Welsh-medium
children performed better on the number line estimation task.
This is congruent with the findings of Siegler and Mu (2008),
Laski and Yu (2014), and Helmreich et al. (2011), indicating
that the transparency of the counting system may influence not
only the ease of carrying out procedures with numbers (although
in the present study there was no evidence for this), but their
representations of numbers.

This is particularly striking, because in this study there were
no apparent environmental differences between the groups, other
than the linguistic ones. The children attended apparently similar
schools, and were all studyingmathematics according to the same
curriculum. It should be noted that the majority of the Welsh-
medium children spoke English at home, which makes any effect
of school instruction medium even more striking. While it is
not possible completely to rule out the influence of some non-
linguistic characteristics of a particular school or teacher, this
seems unlikely, especially as the groups did not differ on the
standardized arithmetic test.

The group differences varied both with the nature and extent
of the number line and with the size of the numbers involved
in particular tasks. The Welsh-medium group made lower
estimation errors, and this difference was significant overall and
approached significance for the 0–100 number line, but not for
the 0–20 number line. This is consistent with the prediction that
language would be likely to affect number line estimation more
for multi-digit numbers. This prediction was indeed supported
by further analyses of estimates for different sizes of numbers
within the 0–20 and 0–100 number lines. The groups differed on
the 0–20 number line for their estimates of teen numbers, but not
of numbers under 10. On the 0–100 number line, they differed
significantly for numbers over 20, but not at all for numbers
from 0 to 20 (single digit or teen). Thus, whether the groups
differed for teen numbers or not seemed to differ according to
the surrounding numerical context, but there is more evidence
that the groups differed for numbers over 20, and did not differ
for numbers under 10. In other words, the precision of numerical
representations was most affected by language for numbers that
required an understanding of the relationship between tens and
units, which appears to be facilitated by a transparent counting
system. These representations were also those most related to
arithmetical performance: the BAS Arithmetic test correlated
significantly with the error score on the 1–100 number line but
not the 0–20 number line.

There is, however, an important qualification with regard to
the statement that the groups differed significantly for numbers
over 20. The range of error scores was significantly higher for
the English medium pupils. Presumably as a result of this, a

non-parametric comparison between the language groups for this
group of numbers failed to reach significance. The greater range
of scores for the Englishmedium group is intriguing in itself. One
possible explanationmay be that the transparent counting system
of Welsh constrains the strategies for estimation, while the less
transparent English system provides fewer constraints and cues,
leading to greater variability in strategies and thereby in scores. A
yet more interesting possible explanation is that the transparent
counting system constrains representation as such, and that this
is far more variable in a more opaque counting system. Clearly,
more research needs to be done, involving a wider variety of
representational tasks and a larger set of transparent and opaque
counting systems.

The hypothesis that reading and writing two-digit numbers
would be affected by the language group was not supported at all.
It may be that these skills, which are school-taught, depend more
on specific teaching, which would be similar in the Welsh- and
English-medium schools, and do not depend strongly on internal
numerical representations. Although this finding might seem
to conflict with the earlier results of Dowker et al. (2008) that
indicated that Welsh-medium children were better than English-
medium children at dealing with two-digit numbers, the tasks
were rather different. The task in Dowker et al.’s (2008) study
involved reading and comparing two-digit numbers; and it may
be that the comparison element of the task was more dependent
on internal representations.

Intriguingly, what did correlate quite strongly with the
number reading and writing tasks was chronological age, even
though the age range in this study was restricted and the children
were all tested at the same time in their school year. Further
research needs to be done to see whether maturation or perhaps
some specific aspect of home experience is particularly important
in the development of these skills. The finding that young
children can show a significant age correlation, even within a
quite restricted age range, with some numerical abilities but not
others is congruent with earlier studies with somewhat younger
children (Dowker, 2008), and clearly needs further exploration.

Thus, the results imply that greater transparency in a
language’s counting system may lead to the developmental shift
in children’s mental number line representation (that is, the shift
from a logarithmic representation to a linear representation)
occurring at an earlier age.

Given that previous research has documented this
representation’s link with overall arithmetic ability, the advantage
of being taught arithmetic through the medium of a language
that utilizes a regular counting system may be more widespread
than previously thought. It would be interesting to carry out
longitudinal studies to investigate whether this advantage
persists longitudinally, and whether it predicts any other aspects
of later arithmetic. The Welsh-medium children did better at
the number line estimation tasks; these tasks correlated with a
standardized arithmetic test; but the Welsh- medium children
did not at this stage do better at the standardized arithmetic test.
Might the number line advantage correlate with standardized
arithmetic test differences, or with differences in more specific
aspects or arithmetic later on? Cross-sectional studies of a wider
variety of age-groups would also yield interesting information
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about how language effects on numerical skills might change
with age.

Though the results do suggest that the transparency of
a language’s counting system has an effect on some aspects
of number processing, some caution is needed to drawing
extremely strong conclusions, as the groups, though from similar
backgrounds, were not matched in advance on all possible
factors, and in particular there was an unexpected small but
significant difference in age. This was controlled for in the
analyses by including age as a covariate, as age did show a
surprising level of correlation with some measures; but this is
not a completely satisfactory solution, and future studies should
ensure matching for age.

Moreover, direct measures of proficiency in the two languages
were not obtained. Although the English-medium children
studied Welsh formally as a second language at school, they may
not have been bilingual in the same sense as children who speak
English at home and Welsh at school. At present, we cannot be
certain about the extent to which group differences are the result
of general proficiency in Welsh; Welsh medium mathematics
instruction in particular; or the experience of bilingualism. It
would be desirable for future studies to explore the issue further.
In particular, it would also be interesting to study Welsh-English
balanced bilinguals, and to investigate whether different results
would be obtained when testing the same children in Welsh vs.
English.

These results may have some implications for educational
practice. As stated in the Introduction, there is evidence that the
development of linear representations of numerical magnitude
contributes to arithmetical development (Booth and Siegler,

2008). The present study also supports a few earlier studies in
suggesting that this development may be facilitated by regular
counting systems and impeded by irregular counting systems.
Perhaps English-medium schools, or any schools that teach
through the medium of a language that has an irregular counting
system, could investigate ways of helping children generate linear
representations of number. For example, one way of achieving
this might be is through the playing of board games in which
the counters are moved linearly across equidistant spaces, thus
providing a transparent representation of numerical magnitude
(Siegler and Ramani, 2009).

The main conclusion of this study is that the regularity and
transparency of the Welsh counting system may help children
not only in learning the correspondence between written and
oral representations of number but also in the development
of non-verbal numerical magnitude representations. Therefore,
the influence of language should be considered when teaching
number processing, especially when teaching children who
struggle with mathematics.
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The relative linguistic transparency of the Asian counting system has been used to
explain Asian students’ relative superiority in cross-cultural comparisons of mathematics
achievement. To test the validity and extent of linguistic transparency in accounting for
mathematical abilities, this study tested Chinese and British primary school children.
Children in Hong Kong can learn mathematics using languages with both regular (Chi-
nese) and irregular (English) counting systems, depending on their schools’ medium of
instruction. This makes it possible to compare groups with varying levels of exposure to
the regular and irregular number systems within the same educational system, curriculum,
and cultural environment. The study included three groups of first/second graders and
third/fourth graders with varying degrees of experience to the Chinese language and
counting systems: no experience (UK; n = 49); spoke Chinese at home and learnt to
count in English at school (HK-E; n = 43); spoke Chinese at home and learnt to count in
Chinese at school (HK-C; n = 47).They were compared on counting, numerical abilities and
place value representation.The present study also measured nonverbal reasoning, attitude
toward mathematics, involvement of parents, and extra-curricular mathematics lessons to
explore alternative explanations of children’s numeric ability. Results indicated that students
in HK-C were better at counting backward and on the numeric skills test than those in
HK-E, who were in turn better than the UK students. However, there was no statistical
difference in counting forward, place value understanding, and a measure of arithmetic.
Our findings add to existent literature suggesting that linguistic transparency does not have
an all-pervasive influence on cross-national differences in arithmetic performance.

Keywords: linguistic transparency, counting system, arithmetic, cross-cultural, Chinese Number Advantage

INTRODUCTION
International comparisons of children’s arithmetic performance,
such as the Trends in International Mathematics and Science
Study, consistently showed that Asian students outperformed their
Western counterparts (Stedman, 1997; Mullis et al., 2000, 2008;
Provasnik et al., 2012). While many individual and sociological
factors could influence mathematics learning, the current study
focused on linguistic influences on early mathematics learning.
Recent years have seen a surge in empirical literature on the role
of language in accounting for cross-cultural disparities in chil-
dren’s number understanding and arithmetic competence (Fuson
and Kwon, 1992; Aunio et al., 2004, 2006, 2008; Cheng and Chan,
2005; Rasmussen et al., 2006; Wang et al., 2008; Göbel et al., 2011;
Krinzinger et al., 2011; Pixner et al., 2011; Zhao and Singh, 2011;
Klein et al., 2013; Cankaya et al., 2014). Linguistic influences on
mathematics learning warrant interest because the capacity to
name and manipulate numeric quantities has been used to explain
why human mathematical abilities could develop beyond the rudi-
mentary number sense observed in animals (Dehaene, 1997). If
the representation for large quantities and algorithms for calcula-
tion were underlay by language, it follows that distinct linguistic

characteristics could lead to differential computational efficiency
and arithmetic understanding.

There is a lot of debate about the extent to which language
affects thought in general; but some evidence suggests that abstract
concepts are more influenced than concrete ones by linguis-
tic diversity (Gentner and Boroditsky, 2001; Borghi et al., 2011;
Borghi and Binkofski, 2014). As number is a highly abstract con-
cept, one might expect it to be more influenced by linguistic
diversity than some other domains.

One linguistic characteristic that could influence children’s
mathematics learning is the way in which numbers and arithmeti-
cal relationships are expressed in the counting system. It has been
suggested that the superior arithmetic performance of Chinese and
other Asian students could be explained by the relative linguistic
transparency of many Asian counting systems (Fuson and Kwon,
1991; Miller et al., 2005; Ng and Rao, 2010), termed the ‘Chinese
Number Advantage’ (CNA). Transparent number systems give a
clear and consistent representation of the base system (base-ten
in most languages). One example is the Chinese counting system,
where the boundary between 10 and 11 is explicit in both written
and spoken forms. The Chinese word for 11 is (shi yi), literally
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‘ten–one’; that for 12 is (shi er), literally ‘ten–two,’ and so on.
The same rule applies for larger numbers, such that 20 is (er
shi) ‘two–ten,’ 59 is (wu shi jiu) ‘five–ten–nine’ and so on.
Hence, new numbers could easily be inferred in Chinese, and it
is clear that the numbers are organized according to a base-ten
system.

Edgeworth and Edgeworth (1798) suggested more than
200 years ago that English-speakers might be at a disadvantage
compared with speakers of other languages due to the relatively
irregular English counting system. This gained empirical support
from Miller et al. (1995), who found that Chinese and Ameri-
can 4- and 5- year olds performed similarly in learning to count
up to 12, but the Chinese students were about a year ahead of
the American children in the further development and count-
ing of higher numbers. In contrast to regular counting systems,
the English words eleven and twelve do not provide clear clues
for their cardinality nor the base system. Those well-versed in
the history of numbers might recognize that the English words
for 11 and 12 reflected historical relations to the Old Saxon
words ellevan and twelif, literally ‘one-left’ and ‘two-left’ respec-
tively after 10 has been subtracted. However, this information
is not apparent to young learners! In addition, various phone-
mic modifications further complicate number learning for English
children: In 13–19, ten becomes -teen, three becomes thir-, and five
becomes fif-. Above 19, ten becomes -ty for tens starting from 20,
two becomes twen- in the twenties and four becomes for- in the
forties.

English children also had more difficulties than speakers of
some other languages in acquiring the base-ten system. Since
English children must learn one through twelve by rote learning,
the base-ten system might be scaffolded. Experimental evidence
was provided by cross-cultural studies on six-year-olds using reg-
ular counting systems such as Chinese, Japanese, and Korean
versus children from less regular counting systems such as French,
Swedish, and the U. States. (Miura et al., 1988, 1993; Miura and
Okamoto, 2003). Children were asked to represent numbers with
cubes representing single units and ten-segmented blocks repre-
senting tens. It was found that children from regular counting
systems were more likely to use bars and cubes in combination
to represent numbers, while children from less regular count-
ing systems were more likely to count out the exact number of
cubes. Failure to take advantage of tens-bars suggested poorer
understanding of the base-ten system.

The greater transparency of base system might make place value
easier to grasp in a regular counting system (Miura and Okamoto,
2003). Place-value knowledge refers to the knowledge of the value
of each digit by considering its place in a multi-digit number,
such that each ‘5’ in 555 is understood as 5 hundreds, 5 tens, and
5 units, respectively. Such knowledge is essential for arithmetic
computations. The regular Chinese number system can be directly
mapped onto Arabic numbers; for example, 17 is ‘ten–seven’ in
Chinese, making it obvious that the ‘1’ is a ’10.’ In contrast, place
values of English numbers are obscured by the three forms of
ten (ten, -teen, and -ty), and the fact that the order of reading
numbers does not necessarily align with the Arabic numbers (e.g.,
seventeen vs. seventy). Such irregularities mask place values and
hinder English children’s arithmetic development.

Despite the linguistic advantages that the Chinese number sys-
tem potentially afforded, some considered that the CNA could
not be an adequate explanation for Asian children’s superior-
ity over Western children in nearly all mathematical domains
(Ackerman, 1988). The many other cultural differences between
Asian and Western children, such as quantity and quality of math-
ematics teaching (Saxton and Towse, 1998), attitudes of parents
and personal motivation toward mathematics (Stevenson et al.,
1993) weaken the CNA. Research conducted in Wales (MacLean
and Whitburn, 1996; Dowker and Lloyd, 2005; Dowker et al., 2008)
offered important insights in this regard, since groups with varied
levels of exposure to regular (Welsh) and irregular (English) num-
ber systems could be compared. Dowker et al. (2008) found that
Welsh children were facilitated on reading and comparing two-
digit numbers, but not on all arithmetic tests. They concluded
that linguistic transparency could not on its own explain the cross-
national differences in arithmetic, thus providing indirect evidence
against the CNA.

In a similar attempt to distinguish language and cultural effects,
and to test the CNA directly, the present study recruited British
and Hong Kong primary school students. The Hong Kong edu-
cational system is based upon the British system, reflecting its
history as a British colony. Mathematics could be taught in a reg-
ular (Chinese) or irregular (English) counting system, depending
on the medium of instruction of the school. It is hence possi-
ble to compare the mathematical performance of children who
received either English- or Chinese-medium schooling, within
the same educational system, curriculum, and cultural environ-
ment. Our study adds to the literature in that it is one of the
first studies to take advantage of the Chinese/English medium of
instruction system in Hong Kong to study linguistic influences in
Mathematics. Our study also attempts to extend Dowker et al.’s
(2008) Welsh study, as it also compares groups of children taught
in different languages within otherwise similar settings. Further-
more, this study serves as a supplement to existing CNA studies,
many of which compare Chinese and Finnish (Aunio et al., 2004,
2006, 2008).

Three groups of primary school children with varying degrees
of experience with the Chinese language and counting system were
compared in this study—those who had no experience (British
students); those who spoke Chinese at home but learnt Mathe-
matics in English (students in English-medium schools in Hong
Kong); and those who spoke and learnt Mathematics in Chinese
at both home and school (students in Chinese-medium schools in
Hong Kong). The English- and Chinese-medium schoolchildren
in Hong Kong differed mainly in terms of the linguistic medium
used in their school instruction, but otherwise had similar cul-
tural and educational experiences; while the British children were
of course growing up within a different culture and educational
system. They were all given a non-verbal intelligence measure, a
test of numerical skills, a test of place value representations, and
an attitude toward mathematics questionnaire. As both Chinese-
and English-medium schools in Hong Kong followed the same
mathematics curriculum, the two groups of Hong Kong children
differed primarily in the language in which they learnt mathe-
matics. Testing Hong Kong students taught in different media of
instruction allowed us to tease apart whether it is the exposure to
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the Chinese language per se or the use of the Chinese counting sys-
tem that influenced mathematical ability. British students served
as a control group for exposure to the Chinese language, while
students in the English-medium school in Hong Kong served as
the control group for formal instruction of the Chinese count-
ing system. The present study also took into account the role
of children’s attitude toward mathematics and involvement of
parents, both of which were often omitted in previous cross-
linguistic studies (MacLean and Whitburn, 1996; Dowker et al.,
2008).

Based on the CNA, it was hypothesized that (1) students in
Hong Kong would perform better than British students on all
numerical tasks, including counting, place value knowledge and
the numerical skills test; (2) within Hong Kong, students in Hong
Kong Chinese-medium schools would perform better than those
in English-medium schools. In order to study the impact of dura-
tion in use of Chinese number system in numerical skills, we
recruited a younger group (first-/second-graders) and an older
group of children (third-/fourth-graders).

MATERIALS AND METHODS
PARTICIPANTS
A total of 159 children from two primary schools in Hong Kong
and two primary schools in Oxford, UK participated in the test-
ing. As the proximity of primary schools to students’ homes
constitutes a major factor in primary school enrollment, the
socioeconomic status (SES) of the catchment area in which the
schools were situated could be considered proxy to the SES of
their students. In this regard, the schools in Hong Kong and
UK were located in predominantly middle-class areas. Testing
in Hong Kong was done in August while testing in the UK was
done in October of the same year. To ensure similarity of age and
years in school, Hong Kong students were at the end of their first
and third grade while UK students were at the start of their sec-
ond and fourth grade. Written informed consent was obtained
from parents of all participants. The study was approved by the
Central University Research Ethics Committee of University of
Oxford.

At the Chinese-medium school in Hong Kong (henceforth
HK-C), Cantonese was the first language for all children, who
came from Chinese-speaking homes. They received a Chinese-
medium education, and were taught Mathematics in Cantonese.
There were 25 first-graders and 25 third-graders from HK-C. At
the English-medium school in Hong Kong (henceforth HK-E),
Cantonese was the first language of the children, and they spoke
Chinese at home. However, they received education in English for
most school subjects including Mathematics. There were 37 first-
graders and 16 third-graders from HK-E. At the British school in
Oxford (henceforth UK), English was the first language of the chil-
dren. They spoke English at home and at school, with no exposure
to the Chinese language. There were 26 second-graders and 30
fourth-graders from UK.

MEASURES
Measures employed were translated and back-translated from the
English-version into Chinese by the first author and a bilingual
experienced mathematics teacher, respectively. Two experienced

mathematics teachers at a Chinese-medium primary school then
reviewed all items.

Demographic and background information
Participants were asked about their age, grade and whether they
attended kindergarten. To investigate the effect of additional
mathematical instruction and parental involvement, participants
were asked whether they attended mathematical classes outside
of school and whether their parents helped them with their
homework in general, as well as in math homework in particular.

Counting
Participants counted aloud from 1 to 30 and then backward from
30 to 1. Hesitations (more than 3 s delay), missing numbers, and
incorrect sequence were recorded.

Numerical abilities
All children completed the British Abilities Scales (BAS) Basic
Number Skills test, which involved recognizing and reading two-
/three-digit numbers, as well as solving simple written calculations.
Scores in addition, subtraction, multiplication, division, fraction,
and decimals were added to compute a ‘purer’ measure of arith-
metics. Raw scores were used in preference to standard scores as
the test had not been standardized in Hong Kong.

Place value knowledge
Participants completed a number-comparison task identical to
that used by Dowker et al. (2008), based on that of Donlan and
Gourlay (1999). A pair of two-digit numbers was simultaneously
presented to participants, who were asked to read them aloud and
to point to the larger one within the pair. There were 24 pairs of
numbers consisting of three types of number pairs: Transparent,
Misleading, and Reversible. Transparent word pairs contained two
numbers differing in the tens digit, thus requiring decade compar-
isons (e.g., 73 and 43) or contained repeated digits (e.g., 66 and
55). In Misleading number pairs, the smaller number contained
a digit larger than the sum of digits in the larger item, (e.g., 51
and 47). Reversible pairs contained numbers whose tens and digit
places were opposites (e.g., 85 and 58). An overall error score was
calculated as in Dowker et al. (2008).

Attitude toward mathematics (ATM)
Mathematics and Anxiety Questionnaire (MAQ; Thomas and
Dowker, 2000) was used to measure children’s ATM. Children
answered four types of questions measuring self-perceived perfor-
mance, attitudes in mathematics, unhappiness related to problems
in mathematics, and anxiety related to problems in mathemat-
ics. There was a practice task followed by seven math-related
situations: math in general, written calculations, mental calcu-
lations, easy calculations, difficult calculations, math homework,
and listening and understanding the teacher during math lessons.
Children answered on a 5-point scale using different pictures for
each type of questions, such as ticks and crosses (“very good” to
“very bad”), sweets and wasps (“like very much” to “hate very
much”). The ratings varied from 0 for the most negative answer
to 4 for the most positive answer, with a higher score indicating a
more positive ATM. Overall the scale was found to be reliable (28
items, α = 0.89).
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Non-verbal intelligence
All children completed Raven’s Colored Progressive Matrices Set A,
AB, and B (Raven, 1962). Children were required to choose the cor-
rect answer from six options for 36 colored puzzles. Raven’s tests
are favored as a measure of nonverbal intelligence since they are
considered“culture-fair,” which is particularly important for cross-
cultural studies. Raw scores were used in preference to standard
scores as the available version of the test had not been standardized
in Hong Kong.

RESULTS
DEMOGRAPHIC DATA
The means and SD of age, BAS total and arithmetic scores, Raven’s
matrices, MAQ, and Number Comparison total error scores of the
different Schools (language groups) are shown in Tables 1 and 2.
The variables were normally distributed, allowing subsequent
parametric analyses. Participants with a Raven’s score two SD away
from the group mean were excluded.

NONVERBAL INTELLIGENCE
Univariate ANOVA with School (three levels: HK-C, HK-E, UK)
and Grade (two levels: first/second grade, third/fourth grade) as
the independent variables (IV), and Raven’s score as the depen-
dent variable (DV) was conducted to investigate whether students
differed in intellectual functioning. Children at the three schools
differed significantly on Raven’s matrices score, F(2,138) = 37.81,
p < 0.001, η2 = 0.36. Post hoc LSD tests revealed that the dif-
ference was driven by the UK school and the Hong Kong schools
(p < 0.001). The UK students had a lower score (μ = 25.27) than
HK-E students (μ = 29.98) and HK-C students (μ = 31.06), while
the Hong Kong schools did not differ significantly from each other.
Children in the two grades were also significantly different from
each other: F(1,138) = 7.43, p = 0.007, η2 = 0.053. Third/fourth
grade students performed better than first/second grade students.

There was no interaction of grade and school. Group differences in
nonverbal intelligence were statistically controlled in subsequent
analysis.

COUNTING
For the Counting task, a successful attempt was one in which
no mistakes were made. Hesitations of over three seconds, incor-
rect sequence or missing numbers constituted a failed attempt.
Chi-squared contingency tests revealed a non-significant rela-
tionship between Schools and Success/Failure on the Counting
Forward task for first-/second-graders. However, there was a
significant relationship between Schools and Success/Failure on
the task for third-/fourth-graders, X2(2, N = 66) = 9.82,
p = 0.007. Figure 1 depicted percentage of students who failed
the Counting Forward task. Chi-squared test results for Counting
Backward tasks revealed a significant relationship between Schools
and Success/Failure on the task for first-/second-graders, X2(2,
N = 73) = 9.45, p = 0.009. There was also a significant relationship
between Schools and Success/Failure for third-/fourth-graders,
X2(2, N = 66) = 7.14, p = 0.028. In both Counting Forward
and Backward tasks, paired comparisons between groups were not
possible due to relatively small sample sizes. Figure 2 depicted
percentage of students who failed the Counting Backward task.

NUMBER COMPARISON
Univariate ANCOVA with Grade and School as IV, Number Com-
parison total error score as DV and Raven’s matrices score as
a covariate showed that Grade F(2,132) = 7.92, p = 0.001,
η2 = 0.11, as plotted in Figure 3. Post hoc pairwise compar-
isons showed that HK-C students were significantly better than
HK-E and UK students in first/second grade: F(2,132) = 7.168,
p = 0.001, η2 = 0.098, but not in third/fourth grade. Also, within
the UK group, first-/second-graders had higher error scores than
third-/fourth-graders: F(1,132) = 19.007, p < 0.001, η2 = 0.13.

Table 1 | Mean age, BAS total score, and arithmetic scores, Raven’s Matrices score, MAQ score, and Number Comparison task total error score

for first/second grade students (SD in brackets).

Schools N Age BAS Raven MAQ Number comparison

Total Arithmetic

HK-C 22 6.95 (0.21) 18.09 (5.41) 11.95 (4.04) 29.95 (3.00) 49.68 (10.10) 0.27 (0.88)

HK-E 27 6.65 (0.48) 16.96 (4.10) 11.81 (3.97) 29.74 (2.77) 67.67 (24.99) 1.44 (1.58)

UK 24 6.85 (0.29) 9.21 (3.38) 4.33 (2.33) 24.17 (3.84) 71.04 (14.28) 3.08 (3.88)

Table 2 | Mean age, BAS total score, and arithmetic scores, Raven’s Matrices score, MAQ score, and Number Comparison task total error score

for third/fourth grade students (SD in brackets).

Schools N Age BAS Raven MAQ Number comparison

Total Arithmetic

HK-C 25 8.96 (0.35) 26.92 (2.83) 22.24 (3.96) 32.04 (3.13) 46.84(3.67) 1.36 (9.82)

HK-E 16 8.56 (0.51) 23.62 (3.85) 18.69 (3.00) 30.38 (3.24) 58.56 (12.54) 1.75 (2.82)

UK 25 8.88 (0.31) 16.28 (2.70) 10.22 (2.58) 26.32 (4.44) 64.76 (13.61) 0.48 (0.96)
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FIGURE 1 | Percentage of failed attempts at Counting Forward for

students in the different Schools. Error bars denote SEM.

FIGURE 2 | Percentage of failed attempts at Counting Backward for

students in the different Schools. Error bars denote SEM.

NUMERICAL SKILLS AND ATTITUDES
To investigate the effect of linguistic influences on numerical skills,
a MANCOVA with Grade and School as IV, MAQ, and BAS total
scores as DV and Raven’s matrices score as a covariate showed a
significant effect of Grade and BAS total scores: F(1,132) = 118.54,
p < 0.001, η2 = 0.47. Third/fourth grade students performed bet-
ter on the BAS total scores than first/second grade students even
after controlling for IQ. A significant effect of School and BAS
total scores was found: F(2,132) = 41.98, p < 0.001, η2 = 0.39.
Post hoc tests revealed that BAS total scores from all schools sig-
nificantly differed from each other, even after controlling for IQ.
HK-C students performed the best, followed by HK-E students
and then UK students. There was also a significant effect of Grade
and MAQ: F(1,132) = 5.10, p = 0.026, η2 = 0.04, with first/second
grade students having a higher MAQ score. There was also a sig-
nificant effect of School and MAQ: F(2,132) = 16.07, p < 0.001,
η2 = 0.20. Post hoc tests revealed that HK-C students scored lower
than HK-E students and UK students, but HK-E students did not
differ significantly from UK students. There was no significant

FIGURE 3 | Interaction effect of Grade and School on Number

Comparison error scores. Error bars denote SEM.

interaction between Grade and School, for either BAS total score
or MAQ.

To investigate linguistic influences on arithmetic abilities
specifically, a MANCOVA with Grade and School as IV, MAQ, and
BAS arithmetics as DV and Raven’s matrices score as a covariate
was conducted. Results showed significant main effects of Grade
and BAS arithmetic score: F(1,130) = 154.34, p < 0.001, η2 = 0.54,
as well as School and BAS arithmetics: F(2,130) = 49.36, p < 0.001,
η2 = 0.43. A significant interaction was found between Grade and
School for BAS arithmetics: F(2,130) = 5.31, p = 0.006, η2 = 0.76.
The interaction is plotted in Figure 4. First-/second-graders in
the two Hong Kong schools did not significantly differ from each
other in BAS arithmetic, but the UK first-/second-graders per-
formed worse than the HK students. In third-/fourth-graders, all
the schools differed in performance, with HK-C students perform-
ing better than HK-E students, who were in turn better than UK
students in arithmetics.

FIGURE 4 | Interaction effect of Grade and School on BAS arithmetic

scores. Error bars denote SEM.
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To investigate whether group differences in MAQ might be
either exaggerating or masking group differences in arithmeti-
cal performance, a final ANCOVA was carried out with Grade
and School as IV, BAS arithmetic as DV, and both Ravens and
MAQ as covariates. There was again a significant effect of both
Grade [F(1,129) = 33.44; p < 0.026; η2 = 0.94] and of School
[F(2,129) = 12.42; p < 0.059; η2 = 0.92], with a significant inter-
action between School and Grade: F(2,129) = 5.01; p = 0.008,
η2 = 0.072. Ravens continued to be a significant covariate of Grade
[F(1,129) = 12.85; p < 0.001; η2 = 0.091] but MAQ was not.

PARENTAL INVOLVEMENT AND OUTSIDE SCHOOL MATHEMATICS
In order to establish whether parental involvement had an influ-
ence on the students’ performance on BAS in the different schools,
a chi-squared contingency test was conducted between Parental
Involvement and Schools for first-/second-graders and third-
/fourth-graders separately. No significant results were found in
either grade, indicating that parental involvement in math did not
differ significantly across the schools.

Similarly, to establish whether outside school mathematics
instruction might have an influence on the students’ performance
in BAS in different schools, a chi-squared contingency test was
carried out between Outside School Mathematics and Schools for
first-/second-graders and third-/fourth-graders separately. No sig-
nificant results were found in either grade. Therefore, the students’
outside school formal mathematics instruction in math did not
differ significantly across the three schools.

DISCUSSION
GENERAL DISCUSSION
This study aimed at examining the effect of exposure to the
transparent Chinese counting system on counting, place value
understanding general mathematical performance, and arith-
metics through a cross-cultural study of HK-C, HK-E, and UK
children. Our experimental design allows us to posit that if chil-
dren performed in a descending order of HK-C > HK-C > UK,
formal instruction and use of Mathematics in Chinese might be
driving the difference in performance. If Hong Kong schoolchil-
dren performed as a group performed better than UK children,
however, it could be suggested that mere exposure or knowledge
of Chinese counting system was enough to impact performance.
The effect of duration of use of a Chinese counting system was
also studied through the comparison of younger (first/second
grade) and older (third/fourth grade) children. Our results showed
that CNA imposed an effect on general mathematical abilities
(BAS total scores). However, this effect was not apparent in rela-
tion to number representation (Counting Forward/Backward), or
arithmetic abilities (BAS arithmetic scores) specifically. Further-
more, exposure to Chinese counting systems was only found to
impact place value knowledge (Number Comparison) in younger,
but not older, children. This suggested that while exposure to
a regular counting system could advance place value under-
standing and general numerical abilities, it is unlikely to confer
long-term benefits nor be able to explain cross-national differences
in arithmetic abilities specifically.

In an attempt to exclude confounding variables to examine
linguistic influences, our study minimizes the effects of known

alternative explanations to CNA in explaining number represen-
tations and arithmetic performance, such as IQ, ATM, outside
school mathematics classes and parental involvement in children’s
learning.

IQ
The UK students in our sample had a lower Raven’s score than
the Hong Kong groups. Since nonverbal IQ is related to general
academic abilities including arithmetics, this effect was controlled
as a covariate. Given that the correlations and group comparisons
all controlled for the effect of IQ, significant differences obtained
were explicable by some factors over and beyond the influence
of IQ.

Attitude toward mathematics
It has been suggested that more positive attitudes in Chinese com-
pared to American students might contribute to the former putting
more effort into their learning (Wong et al., 2001). However, our
results showed that UK students indicated a more positive ATM,
followed by HK-E and then HK-C students, which is the exact
opposite of their pattern of performance on the arithmetic test.
Our findings were in line with previous findings that students
in countries ranking high in international comparisons disliked
mathematics (Leung et al., 2006; Hirabayashi, 2006). Moreover,
when attitude score was included as a covariate in the analysis
of the effects of group and grade, it was found neither to affect
BAS scores, nor to change the nature of the group differences. We
cannot, however, exclude the possibility that Hong Kong students
were more motivated to do well in academic assessments in gen-
eral. It has previously been suggested that Chinese students were
driven by pleasure derived from a result of the success attained in
exams rather than through the process of learning per se (Leung
et al., 2006).

Outside school mathematics classes
Some students enrolled in tutorial classes outside of school. These
tutorial classes are not usually subject-specific for primary school
students, though some are (e.g., the Kumon Educational maths
program). Although it could be expected that exposure and
drilling in arithmetics might impact positively on arithmetic tests,
extra-curricular mathematics class participation did not differ sig-
nificantly across the three schools in our study. Hence, outside
school mathematics exposure is unlikely to be responsible for
the cross-cultural differences in arithmetic abilities found in our
study, though one cannot rule out possible influences of more
specific characteristics of the extracurricular instruction provided
to different children.

Parental involvement in children’s education
Some studies suggested that Chinese parents were more involved in
their children’s education, giving more help or reprimand (Chen
and Stevenson, 1989). Thus we asked students if their parents
helped with their mathematics homework or taught them math-
ematics at home. However, our results showed that there was no
statistically significant difference in self-reported level of parental
involvement across the schools. Hence differences in arithmetic
abilities found in this study were not likely to be due to disparate
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parental involvement, though it is always necessary to be cautious
about self-report measures.

Curriculum and educational system
The primary educational system in Hong Kong is modeled on
that of the British system, reflecting its colonial history to
the UK. In Hong Kong, children receive primary education
‘Primary 1 – Primary 6’ from the ages of 6 until 12. In Eng-
land, primary education spans over a similar age range, and
is divided into ‘Key Stage 1’ (5–7 years old) and ‘Key Stage
2’ (7–11 years old). In both education systems, schools are
required to teach a curriculum set by the government. The HK-C
and HK-E students shared the same curriculum and Confu-
cian traditions for academic excellence. In Hong Kong, more
than half of primary school children were allocated centrally
to Chinese-medium or English-medium schools. Hence, selec-
tion bias in relation to medium of instruction was unlikely
to severely undermine our results. While the curriculum dif-
ference between Hong Kong and the UK was not possible to
control, Tsang and Rowland (2005) had concluded that the two
curricula were similar in content and organization. However,
the scope of the study did not permit detailed comparisons of
the implemented curricula and classroom teachings across the
schools.

There are also other possible differences between the schools,
which could have conceivably affected the results. Although there
was no explicit difference in prestige or selectivity between the
schools, and they were in similar neighborhoods, it is still possible
that there might have been subtle differences between the parents,
who chose to send their children to the Chinese- and English-
medium schools. For example, the parents, who sent their children
to the Chinese-medium school, might have identified more closely
with Chinese culture, including an emphasis on mathematics and
science. It may also be that some of the parents, who sent their
children to the English-medium school, may have been respond-
ing to lower perceived mathematical ability in the children, by
sending them to a school where they might compensate by acquir-
ing fluency in a foreign language. The fact that the two Hong Kong
groups did not differ in Ravens score reduces the likelihood that
the differences in mathematical performance were due to some
important pre-existing differences in ability; but one cannot rule
out such differences altogether.

COUNTING
Interestingly, UK students were found to be better than Hong
Kong students at forward counting from 1 to 30 in first/second
grade. This was inconsistent with the idea that regular number
systems required less cognitive effort to learn and thus should
be learnt earlier (Miller et al., 1995; Towse and Saxton, 1998).
The observably poorer performance of HK-E students in forward
counting across grades highlighted the caveat that it could not
be determined whether the HK-E students could be counting or
reading the numbers in Chinese in their heads and then giving
an English response. Hence, their poor performance could be due
to having to give response in a second language, especially one
which is less transparent. It should be noted that it would be
inevitably difficult to obtain a sample with no ‘contamination’ of

a second language in any likely setting for a bilingual educational
system.

In Backward Counting from 30 to 1, Hong Kong students
appeared to perform better than their HK-E and UK peers, but
the difference between HK-E and UK children was minimal. Tak-
ing together the results of Forward and Backward Counting, it
could be suggested that Forward Counting consisted of rote learn-
ing of the sounds of number strings; hence it might not be a real
indication of children’s number counting ability. When children
were asked to count backward, which was much less common to
hear and produce, the results showed a difference between chil-
dren learning to count with a regular Chinese counting system
and irregular English counting system. Since Chinese has a more
transparent counting system, it is easy to infer the next number
up or down the number line. Thus, students who learnt to count
in Chinese could easily produce the backward sequence on the
spot. In contrast, children who learnt to count in English had
more difficulty, as it required ‘flipping over’ their phonological
representation of the number strings.

NUMBER COMPARISON
Our finding that HK-C students were significantly better than HK-
E and UK students on the number comparison task in younger
children but not older children suggested that transparency of
the Chinese counting system might give children a ‘head-start’ in
place value understanding. However, such an advantage bestowed
by the CNA on first/second grade children was not ‘sustainable,’ as
students who learn to count in irregular English counting system
gradually ‘caught up’ in place value knowledge, as shown by the
non-significant difference in the number comparison task across
schools in third/fourth grade. That being said, such a conclusion
is limited by a cross-sectional design and needs to be clarified in
a longitudinal study in which children from HK-C, HK-E, and
UK are followed through from first/second grade to third/fourth
grade on the same task. It would also be interesting to replicate our
study with an addition of a more explicit measure of place value
knowledge (e.g., base-ten blocks) than our Number Comparison
task. Our results support the practice of teaching young children
from irregular counting systems to learn how numbers are formed
in transparent number systems. Such an experience could serve
both as cultural exposure and as a means to gain insight into the
base system and place values.

MATHEMATICAL COMPETENCE
Numerical competence was tested with the British Abilities Scale
Number Skills Test, which was developed for students follow-
ing the UK curriculum. Despite this potential advantage to the
UK students, they performed the worst out of the three groups.
Our results revealed an expected descending order of performance
(HK-C, HK-E, UK) on general mathematic performance as mea-
sured by the total score on the BAS Number Skills test, as well as
arithmetic performance in older children. Interestingly, however,
such a disparity was not found for questions tapping arithmetic
operations in younger children. HK-C did not achieve better arith-
metic performance relative to HK-E children in the first/second
grade. However, Hong Kong students as a whole still performed
better than children in the UK.

www.frontiersin.org February 2015 | Volume 6 | Article 203 | 106

http://www.frontiersin.org/
http://www.frontiersin.org/Developmental_Psychology/archive


Mark and Dowker Chinese Number Advantage

As noted above, one caveat was that HK-E students could be
disadvantaged by having to learn and respond in a second lan-
guage. However, Dowker et al. (2008) showed that the advantages
of learning Mathematics in Welsh held even if it was not a child’s
first or only language. Hence, the poorer performance of HK-E
relative to HK-C children was unlikely to be due to disadvan-
tages of learning in a second language. Although our results could
be interpreted to mean that some exposure to a regular Chi-
nese system was still advantageous even if it was not the formal
medium of instruction at school, our results weaken the CNA
per se as an explanation for better arithmetic abilities of Asian
students.

CONCLUSION AND FUTURE STUDIES
In conclusion, this study demonstrated that young children who
were learning mathematics in Chinese were better at manipulat-
ing the number line than those learning mathematics in English,
whether English be their first or second language. We also showed
that linguistic transparency in number representations might facil-
itate place value learning in young children, but such an advantage
is neither sustainable nor necessarily translated to better arithmetic
performance in older children. Our pattern of findings replicated
that of Dowker et al. (2008), whereby children who learnt mathe-
matics in regular counting system out-performed those who learnt
mathematics in English on the Number Comparison task but
not (at least for the younger children) on a test of more general
arithmetic. The mechanism underlying the linguistic influence is,
however, yet to be elucidated. As yet, the evidence is not sufficient
to demonstrate that the CNA, as framed in terms of transparency
of numbers, can explain the cross-national differences in arith-
metic consistently demonstrated across age groups. The fact that
children in HK-E performed significantly better than the UK chil-
dren, although both groups were educated in English, suggests
that general educational and cultural differences are at least as
important as linguistic differences; though one cannot rule out
the possibility that the HK-E children were advantaged by their
exposure to Chinese counting at home.

More research is needed to fully understand the nature and
extent of the differences in arithmetic between Chinese- and
English-speaking children. To date, only a few studies have taken
advantage of the unique opportunities afforded by the Chinese-
and English-medium of instruction to tap linguistic influence
in mathematics learning. In an ideal world, children of simi-
lar backgrounds would be randomly assigned to Chinese versus
English medium schools, to rule out any effects of self-selection.
In practice, this would of course be impossible. However, extend-
ing the number of schools studied would reduce the chances of
the results being due to sample or school characteristics that are
unrelated to language. It would also be interesting if the study
could be extended to even younger children in kindergarten in
order to test for even earlier effects. Moreover, it would be desir-
able to include a wider variety of number representation tasks:
for example, including the blocks task of Miura et al. (1988). It
is a potential limitation that the British Abilities Scales and the
Raven’s Matrices were developed for use in Britain, rather than
in Hong Kong. The fact that Hong Kong pupils outperformed
British pupils on both tests makes it in fact unlikely that these tests

involved unfamiliar or unsuitable material for use in Hong Kong
schools. However, future studies should also attempt to develop
and standardize tests for simultaneous use in the UK and in Hong
Kong.
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The directionality of space-number association (SNA) is shaped by cultural experiences.
It usually follows the culturally dominant reading direction. Smaller numbers are generally
associated with the starting side for reading (left side in Western cultures), while larger
numbers are associated with the right endpoint side. However, SNAs consistent with
cultural reading directions are present before children can actually read and write.Therefore,
these SNAs cannot only be shaped by the direction of children’s own reading/writing
behavior. We propose six distinct processes – one biological and five cultural/educational –
underlying directional SNAs before formal reading acquisition: (i) Brain lateralization, (ii)
Monitoring adult reading behavior, (iii) Pretend reading and writing, and rudimentary
reading and writing skills, (iv) Dominant attentional directional preferences in a society,
not directly related to reading direction, (v) Direct spatial-numerical learning, (vi) Other
spatial-directional processes independent of reading direction. In this mini-review, we
will differentiate between these processes, elaborate when in development they might
emerge, discuss how they may create the SNAs observed in preliterate children and
propose how they can be studied in the future.

Keywords: space-number associations, reading acquisition, numerical development, literacy, preliteracy, SNARC,

number acquisition

THE READING AND WRITING DIRECTION ACCOUNT IN
ADULTS
One of the most intriguing findings in the field of Numerical
Cognition is that numbers in adults are automatically associated
with a spatial horizontal dimension (Fischer and Shaki, 2014). In
Western countries, relatively larger numbers are usually associated
with the right side in space and smaller numbers with the left
side in space. The most widely studied demonstration of such
an association is the so-called SNARC-effect (Spatial-Numerical
Association of Response Codes; Dehaene et al., 1993): even in tasks
in which number magnitude is irrelevant (e.g., parity judgment
tasks), participants are faster to respond to larger numbers with
the right hand, and to smaller numbers with the left hand (Wood
et al., 2008).

The common reading account proposes that the origin of this
directionality stems from reading habits. Suggested by Dehaene
et al. (1993), this account was further corroborated in a series of
studies by [e.g., Shaki and Fischer (2008), Fischer et al. (2009),
Shaki et al. (2009); see also Zebian (2005)]. They showed that gen-
eral and situational exposure to right-to-left writing modulated or
even reversed the common SNARC effect – participants exposed
to right-to-left reading habits had a null or right-to-left SNARC
effect. However, there are other accounts of the origin of SNAs.
For instance, some researchers propose that the SNARC effect
is created by the order of numbers in verbal working memory

sequences (e.g., van Dijck and Fias, 2011). Others suggest that
the direction of the SNARC effect might be triggered by early fin-
ger counting habits (an embodied account; Fischer, 2008) or that
verbal-linguistic markedness might contribute to number-parity
and number magnitude representations (Nuerk et al., 2004). A
detailed discussion of these accounts is beyond the scope of the
current review; here, we will focus on the dominant account, which
is the common reading account.

SPACE-NUMBER ASSOCIATIONS IN CHILDREN
Space-number associations (SNAs) develop in early childhood
(McCrink and Opfer, 2014). Western preschoolers have a strong
preference for left-to-right object counting (Briars and Siegler,
1984; Opfer et al., 2010; Shaki et al., 2012; Knudsen et al., in press)
as well as for left-to-right sequences of Arabic digits (Opfer and
Furlong, 2011). In a typical counting task, an explicit spatial-
numerical decision has to be made, i.e., to start from the left or
from the right. However, preschoolers show SNAs even in tasks not
requiring an explicit spatial-numerical decision. Patro and Haman
(2012) observed a SNARC-like effect in a non-symbolic numeros-
ity comparison task in children as young as 3- and 4-years-old.
All these children were clearly preliterate, so their reading habits
could not explain their SNAs. In addition, SNAs in preschool chil-
dren are already automatic and present even when magnitude is
not task-relevant. Hoffmann et al. (2013; Experiment 2) observed
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a classical SNARC effect in children as young as 5;5 years when
children had to decide whether Arabic numbers changed to red
or to green, by pressing a left- or right-located button. A SNARC-
like interaction between number magnitude and response side was
observed. Thus, number magnitude was task-irrelevant (children
had to decide about color), but automatically activated. Moreover,
there was no explicit instruction that magnitude should be related
to one side of space. The presence of SNAs in preschool chil-
dren clearly challenges the common reading account for SNAs,
because those children have not yet developed reading habits
themselves.

Recently, de Hevia et al. (2014) observed that already 7-months-
old infants, growing up in Italy1 (left-to-right-reading), showed a
preference for left-to-right increasing sequences of sets’ numerosi-
ties. They proposed an alternative to the common reading account
and suggested biological predisposition to cause SNAs in very
young children. These biologically determined SNAs might later
be modulated or even reversed by reading/writing acquisition.

Even such a combination account of biological left-to-right pre-
disposition and later modulation by cultural reading habits is at
odds with recent studies. Shaki et al. (2012) showed that read-
ing/writing habits in a society modulated counting habits already
in preliterate children. British 3–6-years-old preschool children
counted mainly from left-to-right, whereas the majority of the
Israeli and Palestinian children (growing up in right-to-left read-
ing cultures) counted from right-to-left. The combination account
cannot explain these data. Its biological component cannot explain
any cultural variation by reading habits at all. Its reading expe-
rience component cannot explain cultural modulation before
reading acquisition.

Spatial-directional training also shapes or modulates SNAs
in preliterates. Patro et al. (in press) provided directional atten-
tional non-numerical training to 3–4-years-old children. They
observed that left-to-right training led to a subsequent left-to-
right SNARC-like effect, while right-to-left training led to a
right-to-left SNARC-like effect. In another study, Göbel et al.
(2014) tested counting direction in British and Arab preschool-
ers before and after a 5 min reading-related experience that was
either left-to-right or right-to-left. They found that, irrespective of
children’s initial counting direction, most children who observed
left-to-right reading counted left-to-right, and most children who
observed right-to-left reading counted right-to-left. Such modula-
tion of SNA direction by training also speaks against an exclusively
biological account.

Both studies clearly show that spatial-directional experience
shapes SNAs in preschoolers. In addition, taking both studies
together they make an important point, which will drive our
review: different SNA types were modulated by different spa-
tial (training) mechanisms. Patro et al. (in press) conducted an
implicit attentional training, not related to reading observation,
and this training affected an implicit directional measure of SNA
(the SNARC effect), but did not lead to a change in explicit
counting direction. Similarly, Göbel et al. (2014) showed an effect
on explicit counting direction only when the training included
explicit reading observation but not with implicit attentional

1Personal communication with Maria Dolores de Hevia.

training. This is in line with Kamawar et al.’s (2010) observation
that children have a strong idea which explicit SNA is correct. They
showed that the majority of 5–11-years-old children they tested in
Canada believed that the order in which items were counted was
important. Most children favored a left-to-right, top-to-bottom
order of counting. Thus, children are very aware of explicit count-
ing direction and have a clear idea of what the ‘correct’ direction
of counting is. For children, this ‘correct’ direction seems to be
consistent with their particular cultural reading/writing habits.

There is now clear empirical evidence that SNAs can be formed
in preschool children, but we still lack a coherent theoretical pro-
posal that could explain which concrete mechanisms or processes
contribute to the emergence of number-space effects in young
children. This is an obvious gap in this line of research. This
mini-review aims to close this gap by proposing and discussing six
distinct mechanisms.

It is important to note that numbers can be linked to spatial
directions in different ways. Patro et al. (2014), who proposed
four SNAs in general, described two spatial-directional SNA types
in particular:

(i) Associations between cardinalities and spatial directions: in
this SNA, there is a directional association similar like in
a SNARC effect – in left-to-right reading cultures larger
numerosities are responded to faster on the right side and
smaller numerosities on the left.

(ii) Associations between ordinalities and spatial directions: in
this SNA, spatial direction is related to ordinality (e.g., the
direction of counting) – it is not necessarily related to cardi-
nality because younger preschoolers do not know that the end
point of the counting sequence equals the cardinality (i.e., the
total number of objects in the sequence).

The mechanisms outlined in this review may not contribute
equally to the emergence of the two SNA types described above.
These mechanisms, their differential impact, and the probable
age of onset will be defined and systematically demarcated in the
remainder of this review.

MECHANISMS POTENTIALLY INDUCING
SPATIAL-NUMERICAL DIRECTIONALITY IN PRELITERATE
CHILDREN
BRAIN LATERALIZATION
Brain lateralization may play an important role for early spatial-
directional preferences (Rugani et al., in press, 2015, for animal
studies). Directional spatial-numerical biases in 7-months-old
infants have been interpreted as an innate disposition to asso-
ciate larger numerosities with one side in space (de Hevia et al.,
2014). While such findings may be explained by innate biases,
they are not fully conclusive yet: first, so far, no evidence has
been obtained that the spatial-numerical biases vary systemati-
cally with an indirect measure of brain lateralization: handedness.
Second, early presence of a mechanism does not necessarily imply
innateness – 7 months might be long enough to learn about
spatial-directional regularities in a social cultural setting. Third,
even spatial biases which seem to be strongly predisposed might
be subject to cultural influences (Güntürkün, 2003; Shaki, 2013).

Frontiers in Psychology | Developmental Psychology March 2015 | Volume 6 | Article 215 | 111

http://www.frontiersin.org/Developmental_Psychology/
http://www.frontiersin.org/Developmental_Psychology/archive


Nuerk et al. Space-number associations in preliterate children

To be clear, these arguments do not preclude a role of brain lat-
eralization in humans but, in our opinion, the case is far from
closed.

MONITORING ADULT READING BEHAVIOR
Joint book reading activity promotes emergent literacy (including
print awareness) in children who are not yet conventional read-
ers (Sénéchal et al., 1996; Mol et al., 2009). Via joint book reading,
preliterate children could learn about text directionality by observ-
ing their parents pointing to particular places in text or referring
to subsequent pictures (Dobel et al., 2007; McCrink et al., 2011).
Knowledge of spatial organization of script and pictures in books
(and also about the organization of books) could be acquired very
early because adults start reading books to children as young as
1–2 years (Sénéchal et al., 1995; Fletcher and Reese, 2005). So,
by reading books to children, adults may impose an attentional
directionality, which children internalize even before they formally
acquire reading skills.

PRETEND READING AND WRITING, AND RUDIMENTARY READING AND
WRITING SKILLS
Children acquire basic aspects of reading and writing well before
formal instruction in school starts (Snow et al., 1998). In pretend
reading, typically developing children at the end of their third
year not only demonstrate that they know how to hold a book
and turn pages in their native writing system, but also that they
know that stories progress as pages are turned and that a story
has a beginning, middle and end (e.g., Doake, 1985; Sulzby, 1985,
Valencia and Sulzby, 1991). Also, starting at the end of age 3,
approximate word-by-word pointing in pretend reading can be
observed (Dooley, 2010). In pretend writing, preliterate children
‘write’ lists, thank-you notes, etc. (Dyson, 1982). Thus, young
children at least start extracting the characteristic direction of their
native language’s writing system. Between the ages of 3 and 4
children become more and more aware of the elements of writing
and their linearity so that most 4 years-old can read and write
one or more simple words, including their own name (Hildreth,
1936; Bloodgood, 1999; Puranik et al., 2011, 2013). That is, the
directional process related to the local writing system appears to
become active at the end of the third year and further elaborated
in older preschoolers.

DOMINANT ATTENTIONAL-DIRECTIONAL PREFERENCES IN A SOCIETY,
NOT DIRECTLY RELATED TO READING DIRECTION
Reading and writing habits may influence directional prefer-
ences which at first sight have nothing to do with reading and
writing themselves. First, visuo-spatial processing appears to
be biased by writing direction. For instance, Arabic partici-
pants preferred drawing horizontal lines from right-to-left, while
English-speaking participants preferred drawing them from left-
to-right (Lieblich et al., 1975). Culture-dependent line bisection
biases have been observed both in adults (Chokron and Imbert,
1993; Kazandjian et al., 2010; Rinaldi et al., 2014) and preliter-
ate preschoolers (Chokron and De Agostini, 1995; but see Fagard
and Dahmen, 2003). Second, spatial imagery also appears to be
biased by writing direction. Hindi participants, reading from left
to right, drew bicycles or elephants facing to the left, whereas Arab

participants exhibited a rightward bias for those objects (Vaid,
1995). For temporal preferences (e.g., meals of the day), adults
tended to prefer horizontal alignment corresponding to their read-
ing habits, i.e., future to the right in left-to-right writing systems
and future to the left in right-to-left writing systems (Tversky et al.,
1991). Furthermore, spatial representations of actions appeared to
be modulated by reading direction. Adults exposed to left-to-right
writing systems preferentially place and expect agents on the left
side of a picture, whereas adults exposed to right-to-left writing
systems show the reverse pattern (Maass and Russo, 2003; Dobel
et al., 2007; Maass et al., 2009). In sum, adults engage in all kinds
of attentional-directional behaviors which are not directly related
to reading/writing, but which are nevertheless consistent with the
direction of reading/writing in a society. Children may observe
such behaviors from parents and other models and imitate them.

Importantly, some culture-dependent spatial directional
actions themselves do not develop before school: children of school
age, but not preschoolers showed culture-dependent directionality
in drawing (Kebbe and Vinter, 2013). Similarly, children of school
age showed temporal ordering of spatial relations (Tversky et al.,
1991), but preschoolers did not show a preference regarding spa-
tial placement of agents (Chokron and De Agostini, 2000; Spalek
and Hammad, 2005; Dobel et al., 2007; McCrink et al., 2014; for
reviews see Kazandjian and Chokron, 2008; Chokron et al., 2009).

It should be also noted that many applications for electronic
devices (computers, tablets, smartphones) are adjusted for dif-
ferent reading/writing directions. Even operating systems (e.g.,
Windows) have a Hebrew/Arabic version, which starts from right-
to-left: the ‘start’ button is located on the right side of the screen
and the window menu opens from right-to-left. Similar directional
differences can be found in childrens’ applications /games, which
are designed for 3–4-years-old kids, who are not yet able to read.
Thus, via such applications, young children are directly exposed
to certain attentional-directional cultural preferences2.

In sum, there are multiple cultural spatial-directional biases in
everyday actions which are not directly related to reading behavior,
but are nevertheless consistent with its directionality in the local
culture. It is conceivable that such biases influence attentional
directionality in preliterate children.

DIRECT SPATIAL-NUMERICAL LEARNING
The mechanisms described above are concerned with spatial-
directional biases which are not related to numbers. However,
there are also direct explicit instructions of spatial-numerical
relations. For example, children are exposed to certain spatial
arrangements of numbers in their picture books, and they are
often formally and informally taught to count objects in a certain
order. Lindemann et al. (2011) have shown that finger-counting
habits also seem to differ between cultures. Finger counting habits
even strongly differ between cultures which have the same script
[see Bender and Beller, 2012, for between culture-variations; Was-
ner et al. (in press), for within-culture variations]. Thus, there
is a spatial-numerical component in finger counting that goes
beyond reading directionality and which is directly learnt in a
given culture.

2We thank a reviewer for pointing this out to us.
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Therefore, children may directly learn certain directionalities
of space-number relations from adult models or instruction. This
direct instruction of SNAs may begin at about 2–3 years, when
children start to count.

OTHER SPATIAL-DIRECTIONAL PROCESSES INDEPENDENT OF READING
DIRECTION
Cultures may also differ in other spatial-directional processes,
which are not related to reading direction or explicit numerical
instruction. For instance, spatial looking behavior when crossing
a street is influenced by the lane on which the traffic usually drives
(first look to the right for left-lane traffic in the UK, first look to
the left, for right-lane traffic in the rest of Europe). Such spatial-
directional mechanisms might affect SNAs as well. However, we
are not aware of any studies yet examining such influences. We
would hypothesize that other spatial-directional influences gen-
erally increase directional SNAs when they are congruent to the
cultural reading/writing direction and decrease SNAs when they
are incongruent.

WHERE WE ARE AND WHAT WE CAN CONCLUDE
We have defined and delineated six distinct mechanisms which
might be responsible for the emergence of spatial-numerical direc-
tional preferences before formal literacy (for an overview including
time of onset, see Figure 1). These mechanisms are probably often
consistent, but can be sometimes in conflict. For instance, an Arab
parent may read Arab children’s books from right-to-left, but may
count objects from left-to-right, because this is how numbers are
ordered in most numerical and arithmetic graphs. Therefore, dif-
ferent SNA types may be represented in a different fashion or
even in an opposite direction because they are learnt by different,
possibly directionally conflicting, mechanisms.

FIGURE 1 | Overview of the different mechanisms underlying the

acquisition of spatial-numerical associations. Mechanisms are ordered
according to their probable age of onset according to the literature. Exact
time of onset is often difficult to determine, therefore, the shaded start of
the arrows depicts the probable range of onset in typically developing
children. Note that brain lateralization starts before birth and that all
mechanisms continue to activate spatial-numerical associations beyond the
age of 48 months as indicated by the arrows.

Most of the learning mechanisms proposed here are related
to embodied spatial-numerical learning (e.g., Fischer and Brug-
ger, 2011; Moeller et al., 2012; Wasner et al., in press). Many
spatial-numerical associations are bodily experienced and might
be represented in an embodied way, for instance, by using fingers
for number magnitude. In recent intervention studies (Fischer
et al., 2011; Link et al., 2013, 2014), it was shown that embod-
ied spatial-numerical training leads to greater successful learning
than various types of control training. Spatial experiences which
are strongly routed in bodily representations may exert stronger
influences on the build-up of SNAs, compared to other expe-
riences. A similar account has been proposed by McCrink and
Opfer (2014), who suggest that oriented motor behavior (e.g.,
hand movement during counting) might be a primary factor
which refines SNAs in children. Following Fischer and Brugger
(2011), one can postulate that for some SNAs embodied cultural
influences like dominant reading/writing behavior may be most
relevant (ordinality in counting), while for other SNAs (cardinal-
ity and its response side association) situated influences are more
dominant.

We conclude that spatial-numerical directional preferences
before formal reading should not be surprising. They need not
be innate, because they may develop through many different cul-
tural and social mechanisms. We suggest that their nature and
consistency should be systematically studied. For future studies,
we make several predictions:

(i) Explicit SNAs (e.g., counting) should be trained best by
explicit spatial-directional experiences, while implicit SNAs
(e.g., SNARC) should be learned best through implicit spatial
experiences.

(ii) Conflicting spatial directions should lead to weaker direc-
tional SNAs than congruent spatial directions.

(iii) Spatial learning mechanisms that are strongly embodied
should influence SNAs more than mechanisms that are less
strongly embodied or not embodied.

While these predictions are consistent with the available data,
they have not been systematically tested so far. Future studies
should not focus on the mere existence of different spatial-
numerical associations in preschool children, but start exploring
the relative contributions of distinct mechanisms which lead to
the emergence and shape of distinct SNAs.
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Most adults and children in cultures where reading text progresses from left to right also
count objects from the left to the right side of space. The reverse is found in cultures
with a right-to-left reading direction. The current set of experiments investigated whether
vertical counting in the horizontal plane is also influenced by reading direction. Participants
were either from a left-to-right reading culture (UK) or from a mixed (left-to-right and top-to-
bottom) reading culture (Hong Kong). In Experiment 1, native English-speaking children and
adults and native Cantonese-speaking children and adults performed three object counting
tasks. Objects were presented flat on a table in a horizontal, vertical, and square display.
Independent of culture, the horizontal array was mostly counted from left to right. While
the majority of English-speaking children counted the vertical display from bottom to top,
the majority of the Cantonese-speaking children as well as both Cantonese- and English-
speaking adults counted the vertical display from top to bottom.This pattern was replicated
in the counting pattern for squares: all groups except the English-speaking children started
counting with the top left coin. In Experiment 2, Cantonese-speaking adults counted a
square array of objects after they read a text presented to them either in left-to-right or in top-
to-bottom reading direction. Most Cantonese-speaking adults started counting the array
by moving horizontally from left to right. However, significantly more Cantonese-speaking
adults started counting with a top-to-bottom movement after reading the text presented in
a top-to-bottom reading direction than in a left-to-right reading direction. Our results show
clearly that vertical counting in the horizontal plane is influenced by longstanding as well
as more recent experience of reading direction.

Keywords: mental number line, grounded cognition, SNARC, spatial–numerical association, children, physical

world account

INTRODUCTION
Spoken language affects various aspects of number processing and
arithmetic. For example, the way number words are constructed
differs between languages. The complexity of number word con-
struction influences early counting, arithmetic and place-value
understanding (Dowker et al., 2008; Siegler and Mu, 2008; Zuber
et al., 2009) and inconsistencies between the Arabic notation and
number word construction (e.g., number word inversion) lead to
disadvantages in symbolic number processing (Pixner et al., 2011)
and affects symbolic arithmetic (Göbel et al., 2014b). Written lan-
guage practices also affect numerical cognition. For example, the
direction of reading and writing within a culture can influence
number processing (Göbel et al., 2011). The current paper focuses
on the influence of reading direction on the direction of counting
by comparing the counting of children and adults in the United
Kingdom (UK) to children and adults from Hong Kong (HK).

Most Western adults and children count objects horizon-
tally from left to right (Opfer and Thompson, 2006; Opfer
et al., 2010; Shaki et al., 2012). This counting bias might be yet
another instantiation of the mental number line, a common
spatial–numerical association (SNA) of small numbers with left

and larger numbers with right space (Fischer and Brugger, 2011).
Evidence for a mental number line with a left-to-right direction
comes from a large body of research investigating the spatial–
numerical association of response codes (SNARC) effect: in parity
judgment participants are consistently faster to respond with
left responses to smaller and right responses to larger numbers
(Dehaene et al., 1993; for a review see Wood et al., 2008).

Interestingly, several recent studies have reported the existence
of horizontal SNAs already in young infants and animals: newly
hatched and 3-day-old chicks have a tendency to associate large
numbers with the right side of space (Rugani et al., 2014, 2015),
chimpanzees and rhesus monkeys associate smaller numbers with
starting on the left side of space (Adachi, 2014; Drucker and Bran-
non, 2014) and 7-month-old infants prefer displays that increase
in magnitude to be shown from left to right (de Hevia et al., 2014).
These findings point toward a biological predisposition for early
horizontal SNAs (Rugani et al., 2010, 2011). Hemispheric later-
alization could account for an advantage in processing the left
hemispace: an early right hemispheric dominance in visuo-spatial
tasks might lead to a stronger allocation of attention to the left
hemifield (Mesulam, 1990). Combined with a preference for
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increasing sequences (Macchi Cassia et al., 2012) this hemispheric
asymmetry could provide the early building blocks of a left-to-
right SNA. Some evidence for this hemispheric asymmetry account
comes from adult neglect patients (Heilman and Van Den Abell,
1980): after damage to their right parietal lobe they typically show
a rightward shift in line and number bisection (Umiltà et al., 2009),
pointing toward a role of the right parietal lobe in attending toward
left space (Göbel et al., 2006). However, the hemispheric asym-
metry account cannot explain why illiterate adults showed no
significant SNARC effect (Zebian, 2005) and no preference for a
particular horizontal counting direction (Shaki et al., 2012). Stud-
ies on illiterate adults provide strong support for an alternative
account for horizontal SNAs: the reading direction account.

This account suggests that the direction of the mental num-
ber line is shaped by the culturally dominant reading direction.
Already in the first paper on the SNARC effect Dehaene et al.
(1993) provided evidence that the size and possibly the direction
of this effect might be related to reading direction. They investi-
gated the SNARC effect in a group of participants who originated
from a right-to-left reading culture (Iran) but were living in a
left-to-right reading culture (France) at the time of testing. The
strength of their SNARC effect was correlated with the length of
time spent in the left-to-right reading culture. In addition, there
is evidence for a reversal in the direction of the SNARC effect and
the dominant counting direction in cultures with a right-to-left
reading direction. Arab participants who read from right to left
show a reversed SNARC effect: they are faster to respond to small
numbers with a right and to larger numbers with a left response
(Zebian, 2005; Shaki et al., 2009). Similarly, the majority of Arab
adults and children count from right to left (Shaki et al., 2012). In
summary, those findings are most convincingly explained by the
reading direction account.

Taking this account a step further, the reading direction account
predicts a vertical mental number line in cultures reading from top
to bottom. At this point it is important to clarify that the term ver-
tical is used in two ways: in a two-dimensional context, for example
when reading a page of a book, the vertical axis refers to the axis
perpendicular to the horizontal axis. However, in 3D the true ver-
tical axis is perpendicular to the horizontal plane. Surprisingly
little research has investigated SNAs in the vertical dimension and
most research on vertical SNAs so far has focused on the vertical
axis in the horizontal plane (see Hartmann et al., 2014).

During number processing some people automatically activate
visuo-spatial images of number lines (so called number forms)
that are stable over time and highly individual. Already in an early
description, many of these forms (Galton, 1880, Figures 2, 4, 6 and
8) progress not only from left to right but also from bottom to top.
In a study of 15 Belgium university students with number forms,
nine number forms progressed from the bottom up and only one
from top to bottom (Seron et al., 1992). Sagiv et al. (2006) classified
the direction of number forms of 114 Scottish synaesthetes and
311 controls without synaesthesia as either left-to-right, right-to-
left, bottom-to-top, or top-to bottom exclusively. The majority
was classified as left-to-right, but 11% of the synaesthetes’ number
forms and 23% of the controls’ number forms progressed bottom-
to-top and none showed a top-to-bottom direction. This suggests,
at least in individuals with number forms, a predominant vertical

association of small numbers with bottom and larger numbers
with top space.

Research suggests that this vertical association is not specific
to just people with explicit number forms. Schwarz and Keus
(2004) found a truly vertical SNARC effect in Dutch partici-
pants: eye movements to a bottom response location started
earlier for smaller than larger numbers while eye movements
to a top response location begun earlier for larger than smaller
numbers. Further, a vertical SNARC effect has been found in Bel-
gium, American, German, and Israeli participants (Gevers et al.,
2006; Müller and Schwarz, 2007; Holmes and Lourenco, 2012;
Shaki and Fischer, 2012; Hartmann et al., 2014). The majority
of these studies (Gevers et al., 2006; Müller and Schwarz, 2007;
Shaki and Fischer, 2012) used vertical responses in the hori-
zontal plane, i.e., close and far response buttons. However, two
of these studies (Holmes and Lourenco, 2012; Hartmann et al.,
2014) used a truly vertical response button arrangement and
found that participants were faster to respond to small numbers
with bottom hand responses and large numbers with top hand
responses.

Those findings support the idea of a vertical dimension of num-
ber magnitude with increasing magnitude from bottom to top.
This direction of the vertical SNA is opposite to predictions from
the reading direction account. At first, one might think that in
Western participants the dominant reading direction is from left
to right and thus neutral with respect to the vertical dimension.
However, given that most reading and writing in adults involves
more than one line of text, reading and writing have a secondary
direction: line by line, from the top to the bottom of a page.
A strong version of the reading direction account thus proposes
that the secondary reading direction (top-to-bottom) should also
influence the direction of the SNA and lead to an association of
small numbers with top and larger numbers with bottom space.
However, I suggest an alternative: a weaker version of the reading
direction account proposes that only the dominant reading direc-
tion is affecting SNAs and not the secondary reading direction.
This weaker version can account for the horizontal SNA, but is
silent with respect to the vertical SNA found in left-to-right and
right-to-left reading cultures. Interestingly, this hints at possibly
different mechanisms underlying horizontal and vertical SNAs.

Vertical associations might reflect experience with the physi-
cal world (Lakoff and Núñez, 2000; Gevers et al., 2006). In the
physical world magnitude is often associated with higher up in
the vertical dimension: more water in a glass is indicated by a
higher level, higher buildings and trees and taller people extend
more upward than smaller ones. If the association between num-
ber magnitude and vertical space is mainly driven by experiences
in the physical world (the physical world account) then the associ-
ation of small numbers with the bottom and larger numbers with
the top space should be found independent of cultural context.
In Fischer’s (2012) terminology, this physical world account is a
grounded theory (Barsalou, 2008, p. 162) based on “invariants
in the physical world”. Support for this account comes for exam-
ple from a study by Lachmair et al. (2014). In a lexical decision
task, after being primed with small numbers, participants were
significantly faster to respond to words that are normally associ-
ated with lower vertical space (e.g., submarine). In contrast, words
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associated with upper vertical space (e.g., eagle) were significantly
faster responded to when the prime was a large number.

Research on vertical SNAs in Japan, a culture with a dom-
inant reading direction from top to bottom, strongly supports
the physical world account. Ito and Hatta (2004) asked 50
Japanese undergraduate students to place 0–9 on a vertical line.
The majority (76%) placed ascending numbers from bottom to
top and only 18% used a top-to-bottom arrangement, argu-
ing against a dominant influence of vertical reading direction.
When Japanese participants performed a vertical SNARC task
with response buttons in the horizontal plane they also showed
the same association as Western participants: Japanese partici-
pants were faster to respond to smaller numbers with bottom
than top responses and to larger numbers with top than bot-
tom responses. The direction of their vertical SNAs was opposite
to their reading direction and in line with the physical world
account.

A study with Taiwanese participants, however, showed that
whether reading direction influences the SNARC effect in the
horizontal and vertical dimension might depend on the number
format used in the task. There are three numerical notations in
Taiwan: (1) Arabic digits (e.g., 1), (2) Chinese number words in
the simple form (e.g., ), (3) Chinese number words in the com-
plex form (e.g., ). Hung et al. (2008) tested the horizontal and
vertical SNAs of these three notations in Taiwanese participants.
Arabic digits are typically printed horizontally in text in Taiwan,
while Chinese number words appear more often in vertical text
with a top-to-bottom directionality. For Arabic digits they found
a significant horizontal SNARC effect with faster left than right
responses for smaller digits and faster right than left responses for
larger digits, but there was no significant horizontal SNARC effect
for Chinese number words. In contrast, the vertical association
between numbers and space was only significant for the Chinese
number words in the simple form, but not for Arabic digits or
Chinese number words in the complex form. Chinese number
words in the simple form were responded to faster with top than
bottom responses for small numbers and faster with bottom than
top responses for large numbers. This suggests that the association
between number and space is not hardwired, but flexible (Bäch-
told et al., 1998; Ristic et al., 2006; Fischer et al., 2009, 2010) and
can adapt rapidly to a different context. In Fischer’s (2012) ter-
minology, this speaks for the situatedness of SNAs. Furthermore,
it was the dominant reading direction associated with the specific
number notation used in the task that predicted the specific direc-
tion of the SNA. The different results found for Chinese number
words in the simple and in the complex form suggest that in order
to influence SNAs the association between notation and reading
direction needs to be strong and firmly established. Chinese num-
ber words in the complex form probably did not influence the
direction of SNA, because they are less frequent than Arabic digits
and Chinese number words in the simple form and do not strongly
evoke a reading context.

In summary, SNAs also exist in the vertical dimension. The
most common association seems to be along a mental number line
with numbers with increasing magnitude going from bottom to
top space. Reading direction possibly can influence this association
under certain conditions.

The first aim of the current study was to investigate whether
reading direction influences the direction of vertical counting in
the horizontal plane. To the best of my knowledge, this has not
yet been investigated. An explicitly spatial-numerical task (object
counting) was chosen rather than the implicit, more commonly
used SNA task of number judgment because we have shown
that reading direction influences the horizontal counting direc-
tion (Shaki et al., 2012). Furthermore, so far no study has directly
investigated the effect of reading direction on implicit SNA tasks
in young children while there is evidence from our own work
(Göbel et al., 2014a) that recent reading observation, even in
preliterate children, can change their horizontal counting direc-
tion. Investigating vertical counting was logically the next step. I
chose two groups of participants with different reading experi-
ences: (1) participants with a dominant reading direction from
left to right and a secondary reading direction from top to bottom
(UK), (2) participants with mixed dominant and secondary read-
ing direction (Hong Kong [HK]). The majority of text in books
and newspapers in HK is printed from left to right with a sec-
ondary reading direction from top to bottom. A visible minority
of text, however, is presented in top-to-bottom direction with
the secondary reading direction going from right to left1. I was
interested in the effect of both dominant and secondary reading
direction on the direction of counting. The second aim was to
investigate whether the amount of reading (and writing) experi-
ence influences the strength of the association. We therefore tested
both children and adults. Children were beginning readers and
had thus much smaller experience with the cultural direction of
reading and writing than adults. Third, given that there might be
different mechanisms underlying horizontal and vertical SNAs I
was interested in whether there is a hierarchy in the association
of number and space. For example, are horizontal SNAs more
dominant than vertical SNAs? We tested this by asking partic-
ipants to count objects in a display with balanced vertical and
horizontal dimensions (a square of objects). Lastly, we were inter-
ested in how flexible those spatial biases are. Thus, in Experiment
2 we manipulated the most recent reading experience direction
(left-to-right or top-to bottom) and investigated whether the most
recent reading experience shows an immediate effect on counting
direction.

EXPERIMENT 1
Adults and children in the UK and in HK were asked to count
objects in three differently arranged displays: a horizontal, a ver-
tical, and a square display (Figure 1). In line with their dominant
reading direction, we expected the majority of all participants to
count the horizontal array from left to right. With respect to count-
ing the vertical array, the strong reading direction account predicts
that all participants will count from top to bottom, while the weak
reading account predicts no preference for a specific vertical count-
ing direction in UK participants, but a top-to-bottom preference

1Many street and shop signs in HK are vertical. In a pilot study in 2012, 100 books
for children and 100 books for adults were picked randomly from the shelves of
the Hong Kong Central Library. Eighty percent of the books for children used
a left-to-right reading direction, 17% a top-to-bottom reading direction, and 3%
mixed reading directions. For adult books the corresponding percentages were: 46%
left-to-right, 42% top-to-bottom, and 12% mixed.
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for HK participants. We expected the children to show this pat-
tern less strongly than the adults due to their limited experience
with reading and writing. The physical world account, in contrast,
predicts that most participants will count the vertical array from
bottom to top. For counting objects in the square arrangement
there are two factors of interest: first, the starting position and
second, the direction of the first movement. The reading account
predicts a top left starting position and a first movement from left
to right for all participants. The physical world account predicts
a bottom starting position and a first movement from bottom to
top, but is neutral with respect to left or right side.

MATERIALS AND METHODS
Participants
All British participants (80 children, 100 adults) were native
English speakers brought up in the UK. All HK-Chinese partic-
ipants (94 children, 99 adults) were native Cantonese speakers
brought up in HK. British 4-and 5-year-old children were tested
with parental consent in nurseries and primary schools in North
Yorkshire, Greater Manchester, and Shrewsbury. HK-Chinese 4-
and 5-year-old children were tested with parental consent in
kindergartens in HK. All adult participants gave written con-
sent. British adults were tested in the UK, HK-Chinese adults
in HK. Data for left-handed children and adults were excluded.
I am reporting data for the remaining 71 British children (mean
age = 4.44 years, SD = 0.50, 33 female, 38 male), 85 HK-Chinese
children (mean age = 4.82, SD = 0.38, 51 female, 34 male), 90
British adults (18–94 years, mean age = 48.07 years, SD = 21.64,
58 female, 32 male) and 99 HK-Chinese adults (18-83 years, mean
age = 32.98, SD = 14.80, 59 female, 40 male). The study was
approved by the Ethics Committee, Department of Psychology,
University of York.

Materials
Twelve golden plastic coins (diameter = 3.5 cm) and three rectan-
gular mats (40 cm × 30 cm, landscape) were used to create three
counting displays (Figure 1). For the horizontal display four coins
were placed horizontally in a linear array onto the mat, equidis-
tant (4.0 cm) from each other with the two outer coins placed at
about 6.3 cm from the side edges of the mat and all coins at about
13.3 cm from the top and bottom edges of the mat. In the vertical
display four coins were placed flat on the mat, vertically in a linear
array equidistant (3.0 cm) from each other with the coins placed
at about 18.3 cm from the side edges and at about 3.5 cm from
the top and bottom edges. In the square display four coins were
placed into a 2 by 2 square, with about 8.0 cm between each coin,

FIGURE 1 | Schematic of the counting displays used in Experiment 1

(not drawn to scale). (A) Horizontal array, (B) vertical array, (C) square
array.

with the outer edges of the square arrangement at about 12.5 cm
from the left and right edges of the mat and at about 7.5 cm from
the top and bottom edges.

Procedure
All three stimuli sets (horizontal, vertical, and square display)
were prepared before testing and covered with DIN A3 sheets
of paper. Participants were tested individually in a quiet room.
HK-Chinese participants were tested in Cantonese, by a native
Cantonese speaker. British participants were tested in English, by
a native English speaker. Stimuli were present lying flat on the
table at which the participant was seated, centrally in front of the
participant, and covered. The first stimulus set was then presented
by lifting off the cover. Participants were asked, “Can you please
point to each of the coins for me and count aloud how many
there are?” No demonstration was given, and participants’ order
of counting was recorded by the experimenter. The instruction
was repeated twice again with the next two stimulus sets. Next,
handedness was tested. Children were asked to draw a picture
of a sun. Adults filled out the Edinburgh Handedness Question-
naire (Oldfield, 1971). In addition, children in HK were asked
to write three age-appropriate characters (big, small, mother). At
the end participants were thanked, children were praised, and
received a sticker. All participants counted the horizontal, ver-
tical, and square displays. The order of the presentation of the
three displays and the seating position of the experimenter (to
the left or right of the participant) was counterbalanced between
participants.

RESULTS
Horizontal array
As can been seen in Figure 2, the majority of all participants
counted the horizontal display from left to right (57.7% of the
British children, 93.3% of the British adults, 92.9% of the HK-
Chinese children, and 87.9% of the Chinese adults, Supplementary
Table S1). The difference between the number of participants
counting left to right and right to left was significant for British
adults (χ2 = 67.6, df = 1, p < 0.01), HK-Chinese children
(χ2 = 62.69, df = 1, p < 0.01) and HK-Chinese adults (χ2 = 56.82,
df = 1, p < 0.01). For the British children, there was no significant

FIGURE 2 | Percentage of participants counting the horizontal display

left to right vs. right to left.
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preference in counting direction (χ2 = 1.70, df = 1, p = 0.19).
Significantly more British adults counted from left to right than
British children (χ2 = 29.0, df = 1, p < 0.001). There was no sig-
nificant difference in counting frequency between the HK-Chinese
children and adults (χ2 = 1.33, df = 1, p = 0.25) or between
the British adults and HK-Chinese adults (χ2 = 1.63, df = 1,
p = 0.20). Although more British 5-year-olds (67.7%) than 4-
year-olds (50.0%) counted left to right this difference did not reach
significance (χ2 = 2.25, df = 1, p = 0.13) and there was no effect of
age on the horizontal counting direction for HK-Chinese children
either (χ2 = 1.38, df = 1, p = 0.24). There was no effect of order,
experimenter location or gender on the frequency of horizontal
counting direction in any group (all ps > 0.05).

Vertical array
Significantly more British children (74.6%) counted from bot-
tom to top than from top to bottom (25.4%; χ2 = 17.25,
df = 1, p < 0.01). In contrast, the majority of British adults
(83.3%, χ2 = 40.00, df = 1, p < 0.01), HK-Chinese chil-
dren (81.2%, χ2 = 33.05, df = 1, p < 0.01) and HK-Chinese adults
(86.9%, χ2 = 53.83, df = 1, p < 0.01) counted from top to bottom
(see Figure 3, Supplementary Table S1). The counting patterns
between British children and adults were significantly different
(χ2 = 54.7, df = 1, p < 0.01). There was no significant difference
in counting frequency neither between the HK-Chinese children
and adults (χ2 = 1.12, df = 1, p = 0.29) nor between the British
adults and the HK-Chinese adults (χ2 = 0.47, df = 1, p = 0.49),
but there was a significant difference between HK-Chinese chil-
dren and British children (χ2 = 48.90, df = 1, p < 0.001). There
was no significant difference in counting preference between the
4-and 5-year-old children neither for the British children nor for
the HK-Chinese children (all ps > 0.05). Gender did not affect
the counting direction (all ps > 0.05). While there was no effect
of order or experimenter location for British or Chinese adults
(all ps > 0.05), order had a significant effect for both British, and
HK-Chinese children. For British children significantly more chil-
dren counted top to bottom when the vertical array came after
the square (50.0%) than when it came before the square array
(15.75%; χ2 = 8.94, df = 1, p < 0.001). The same pattern was
observed for the HK-Chinese children: significantly more Chinese

FIGURE 3 | Percentage of participants counting the vertical display top

to bottom vs. bottom to top.

children counted top to bottom when the vertical array came after
the square array (90.24%) than when it came before the square
array (72.72%; χ2 = 4.26, df = 1, p = 0.04). Experimenter
location did not affect counting direction for the HK-Chinese
children (χ2 = 0.253, df = 1, p = 0.62). However, significant
more British children with the experimenter sitting on their right
side (36.3%) counted top to bottom than British children with the
experimenter sitting on their left side (15.8%, χ2 = 3.95, df = 1,
p = 0.047).

Square array
The data for one 5-year-old British child were excluded from the
data analysis because he moved diagonally when counting the
coins in the square. The majority of the British children started to
count either on the bottom left (31.4%) or right (41.4%) coin. All
other groups showed a clear preference to start counting with the
top left coin (British adults: 88.9%, HK-Chinese children: 71.8%;
HK-Chinese adults: 81.8%; see Table 1).

Vertical starting position. Significantly more British children
(72.9%) started counting the square on one of the two bottom
coins than on one of the two top coins (27.1%; χ2 = 14.63,
df = 1, p < 0.01). In contrast, the majority of British adults
(92.2%, χ2 = 64.18, df = 1, p < 0.01), HK-Chinese chil-
dren (80.0%, χ2 = 30.60, df = 1, p < 0.01) and HK-Chinese
adults (93.9%, χ2 = 76.46, df = 1, p < 0.01) started at a top coin.
The counting patterns between British children and British adults
(χ2 = 72.2, df = 1, p < 0.01) as well as between the British chil-
dren and the HK-Chinese children (χ2 = 43.6, df = 1, p < 0.001)
were significantly different. Although overall most HK-Chinese
children and adults counted the square starting from a top coin,
there were significantly more HK-Chinese children (20.0%) who
started counting the coins in the square from a bottom coin than
HK-Chinese adults (6.1%, χ2 = 8.12, df = 1, p < 0.01). There
was no significant difference in counting preference between the
British adults and the HK-Chinese adults (χ2 = 0.22, df = 1,
p = 0.64).

Horizontal starting position. All groups except the British chil-
dren showed a clear preference to start counting the coins in
the square on the left side (British adults: 91.1%, χ2 = 60.84,
df = 1, p < 0.01; HK-Chinese children: 80.0%, χ2 = 30.60, df = 1,
p < 0.01, HK-Chinese adults: 84.8%, χ2 = 49.5, df = 1, p < 0.01).
For British children there was no significant difference between
the number of children starting counting the coins in the square
on the left (50.0%) versus on the right side (50.0%, χ2 = 0, df = 1,
p = 1.00). The counting patterns between British children and
British adults (χ2 = 33.9, df = 1, p < 0.001) as well as between the
British children and the HK-Chinese children (χ2 = 15.5, df = 1,
p < 0.001) were significantly different. There was no significant
difference in counting preference neither between the HK-Chinese
children and HK-Chinese adults (χ2 = 0.748, df = 1, p = 0.39)
nor between British adults and the HK-Chinese adults (χ2 = 1.73,
df = 1, p = 0.19).

First movement. As expected, the first movement when count-
ing the coins in the square was horizontal for most British adults
(88.9%, χ2 = 54.4, df = 1, p < 0.01), HK-Chinese children (69.4%,
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Table 1 | Number of participants by starting position and direction of first movement for counting the square display for Experiment 1.

Starting position First movement

Left Right Horizontal Vertical

Group Top Bottom Top Bottom Left–right Right–left Bottom–top Top–bottom

British

Children 13 22 6 29 24 15 26 5

Adults 80 2 3 5 77 3 4 6

HK-Chinese

Children 61 7 7 10 54 5 11 15

Adults 81 3 12 3 76 4 2 17

χ2 = 12.81, df = 1, p < 0.01) and HK-Chinese adults (80.8%,
χ2 = 37.59, df = 1, p < 0.01) and the majority moved from left
to right (British adults: 85.6%, HK-Chinese children: 63.5%, HK-
Chinese adults: 76.8%). In contrast, for British children there was
no significant preference for moving horizontally (55.7%) or ver-
tically (44.2%; χ2 = 0.914, df = 1, p = 0.34) first. This pattern
was significantly different from the counting pattern for British
adults (χ2 = 22.7, df = 1, p < 0.001) and for HK-Chinese adults
(χ2 = 12.4, df = 1, p < 0.001) and approaching a significant differ-
ence to the counting pattern for HK-Chinese children (χ2 = 3.10,
df = 1, p = 0.08). 34.3% of British childrens’ first movement was
from left to right, 21.4% from right to left, 37.2% from bottom
to top and 7.1% from top to bottom. For more details, please see
Table 1.

Experimenter seating position, order, gender, and children’s age.
There were no significant differences between the square counting
patterns of 4 and 5 year olds for the British or the HK-Chinese
children and no effect of gender (all ps > 0.05). For British chil-
dren and adults as well as for HK-Chinese adults experimenter
seating position and order of the square array did not signifi-
cantly affect their counting behavior (all ps > 0.05). However,
for the HK-Chinese children significantly more children (29.5%)
started counting at the bottom than the top when the square
was presented after the vertical display than when it was pre-
sented before (9.8%, χ2 = 5.19, df = 1, p = 0.02). Equally,
their first movement was significantly more likely to be vertical
when the square display was presented after the vertical array
(40.9%) than when it was presented before the vertical array
(19.5%, χ2 = 4.58, df = 1, p = 0.03). In addition, significantly
more HK-Chinese children started counting the square on the
right side when the experimenter was sitting on their left (32.6%)
than when she was sitting on their right side (7.7%, χ2 = 8.58,
df = 1, p < 0.01). All other effects of order and experimenter
location were non-significant.

DISCUSSION
Overall, results from Experiment 1 broadly support the read-
ing direction account. As predicted, there was a preference to
count the horizontal array from left to right. For British chil-
dren this preference was present, but not statistically significant.

For all other groups the left-to-right preference was statistically
significant supporting the reading direction account of horizontal
SNAs. At first, the finding that British children did not show a
significant preference of horizontal counting direction seems to
be at odds with previous findings of a left-to-right SNA in 3-6-
year-old Western children (Patro and Haman, 2012; Shaki et al.,
2012; Knudsen et al., in press). However, previous studies have
shown that horizontal SNAs can only be elicited in young chil-
dren under certain conditions (Hoffmann et al., 2013) and that
they are less pronounced than in older children or even absent
(Berch et al., 1999; Van Galen and Reitsma, 2008). In addition, the
percentage of children counting left to right found in our study
(57.7%) is comparable to a previous study in which 60.7% of UK
pre-school children showed a preference for counting from left to
right (Shaki et al., 2012). In this study the preference for count-
ing from left to right in UK children increased significantly from
preschool into school age lending further support to the reading
direction account.

For the vertical array, in line with the strong reading direc-
tion account, the majority of adults and HK-Chinese children
in our study counted the coins from the top to the bottom.
British children, however, showed a significant preference to count
from bottom to top. A similar pattern was observed for count-
ing the square array: while most British adults, HK-Chinese
adults and HK-Chinese children started counting with the top
left coin, British children preferred to start counting with a bot-
tom coin with no preference for either the left or right bottom
coin. In summary, the reading direction account explains the
findings from British adults, HK-Chinese adults, and HK-Chinese
children.

In contrast, the counting patterns of British children are in line
with the physical world account. Although we chose the same age
groups for British and HK-Chinese children, HK-Chinese children
start being taught to write (and read) in Chinese from around age
3 (Curriculum Development Council, 2006). This is much earlier
than for British children. I suggest that the differences in count-
ing patterns between the British and the HK-Chinese children are
explained by the fact that the two groups of children were not
matched on reading (and writing) experience. For young children
with little reading skill the experience of magnitude in the phys-
ical world might dominate their vertical SNAs and the culturally
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dominant reading direction only begins to shape their SNAs with
increasing exposure to and experience of reading and writing.
There are two aspects of our data that support this conclusion:
first, although HK-Chinese children showed a clear preference to
count the square starting at the top left coin, significant more HK-
Chinese children than HK-Chinese adults started counting from
a bottom coin, showing some residual pattern in line with the
physical world account. Second, although British children did not
show a statistically significant preference for a particular reading
direction in the horizontal direction as predicted by the physi-
cal world account, descriptively more British children (57.7%)
counted from left to right than right to left. I argue that this might
be a hint of the emergence of the effect of reading direction on
horizontal counting direction in British children.

EXPERIMENT 2
Experiment 2 tested the flexibility of the counting pattern. Pre-
vious research (Bächtold et al., 1998; Ristic et al., 2006; Fischer
et al., 2009, 2010) has shown that the SNARC effect is flexible and
can be altered easily by short spatial experiences. For example,
in a study by Shaki and Fischer (2008) bilingual Russian-Hebrew
speakers showed a significant horizontal SNARC effect after read-
ing a Russian text for 10 min (written in Cyrillic, reading direction
left-to-right), but a significantly smaller horizontal SNARC effect
after reading a Hebrew text (reading direction right-to-left) for the
same amount of time. Inspired by this study, we asked HK-Chinese
students living in the UK to count objects arranged in a 6×6 grid
after they read a horizontal or vertical text. The reading direction
account predicts that overall, in line with the dominant reading
direction, the majority of participants will count the objects from
top left to bottom right, row by row. In addition, it is expected that
more participants will count from top right to bottom left, col-
umn by column, after reading the vertical text than after reading
the horizontal text. A second aim of the study was to investigate
whether, similarly to Dehaene et al. (1993), the length of stay in
the UK also influenced the strength of the vertical SNA.

MATERIALS AND METHODS
Participants
Ninety-three right-handed native Cantonese speakers (18–25 years
old, mean age = 20.63, SD = 1.27, 57 female, 36 male), brought
up in HK, were tested. All had been living in the UK for less
than 5 years (between 1 month and 5 years, mean years = 2.80,
median = 3.00, SD = 1.43) and had given written consent. The
study was approved by the Ethics Committee, Department of
Psychology, University of York.

Materials
The display consisted of 36 identical black unfilled circles (circum-
ference = 1.6 cm) on a white piece of paper (19.2 cm by 19.2 cm).
Circles were presented in a 6 by 6 grid with each circle at approxi-
mately 1.6 cm from the next circle and the outer circles at 0.4 cm
from the edge (see Figure 4).

The reading material was a one-page text on attitudes about
facing loss in Cantonese. It was taken from a website for Chinese
reading comprehension (MaMa Resources, 2012; Supplementary
material A, B, and C). Six comprehension questions were presented

FIGURE 4 | Schematic of the 6 × 6 counting grid used in Experiment 2.

on a separate sheet of paper. There were two conditions: a verti-
cal and a horizontal text condition. In the vertical text condition,
text on all three pages (the consent form, the short article and
the comprehension questions) was presented in a vertical layout.
For this text presentation the reader starts at the top right cor-
ner, reading column by column top to bottom, moving from right
to left for each subsequent column. In the horizontal text condi-
tion all text was presented in horizontal layout that could only
be read by starting at the top left corner moving from left to
right in each row, starting with the top row and reading down-
ward row by row from the top to the bottom row. The content
of the horizontally and vertically presented consent form, article,
and comprehension questions was identical (see Supplementary
material A and B).

Procedure
Participants were tested individually in the UK. Upon arrival
participants were pseudorandomly allocated to either the verti-
cal or horizontal reading condition and were tested individually
in a quiet room in Cantonese by a native Cantonese speaker.
Participants were asked to take a seat at the table where the stim-
uli had already been placed and covered before the participant
arrived. Then, they were given the text to read. Subsequently
they were given a sheet with comprehension questions and a pen
and asked to provide the answers to the questions in writing.
Participants in the vertical reading condition were given the con-
sent form, text and comprehension questions in vertical layout,
while participants in the horizontal reading condition received
the consent form, text, and comprehension questions in horizon-
tal layout. After the reading task, all participants were presented
with the counting task. Participants were asked to count aloud
the number of circles present on the piece of paper as quickly
as possible while pointing to each circle. It was emphasized that
even if it was obvious how many dots the display contained, they
should still point to and count each circle. No demonstration was
given, and the participants’ order of counting was recorded by
the experimenter. The seating position of the experimenter (to
the left or right of the participant) was counterbalanced between
participants.

RESULTS
Six participants were excluded from the data analysis because their
starting position for counting was not at the top, bottom, left, or
right side of the grid.
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Starting position
All remaining participants started counting at a top position. Most
participants started counting at the top left of the grid. 70 partici-
pants (80.5%) started counting on the top left and 17 participants
(19.5%) started on the top right side of the grid (χ2 = 32.87, df = 1,
p < 0.01). We then split participants into two groups depending on
the length of stay in the UK (median split: short: less than 3 years;
longer: 3 years or longer). In line with our predictions the length
of time spent in the UK had a significant effect on their starting
position (χ2 = 4.41, df = 1, p < 0.05, see Supplementary Table S2):
although in both groups the most frequent starting position was
top left, there were significantly more participants in the short stay
(31.3%) than in the longer stay group (12.7%) starting counting
at the top right.

In line with our predictions, there was a significant effect of text
direction on the starting position (χ2 = 13.50, df = 1, p < 0.01,
see Figure 5): in the horizontal text group 95.6% of participants
started counting on the top left while in the vertical text condition
it was only 64.3%. For the horizontal group there was also a sig-
nificant effect of length of stay in the UK on the starting position
(χ2 = 5.76, df = 1, p < 0.05): none of the participants who had
been in the UK three years or longer started counting on the top
right, while 16.7% of the participants who arrived within the last
three years did. There was no significant effect of length of stay
on starting position for the vertical text group (χ2 = 0.31, df = 1,
p = 0.58).

First movement
As expected, the majority of participants started counting with
a horizontal movement. Sixty-eight participants (78.2%) moved
horizontally from their starting position, 19 (21.8%) vertically
(χ2 = 27.60, df = 1, p < 0.01, see Supplementary Table S2).
All of the participants moving horizontally moved from left to
right, and all of the participants moving vertically moved from
top to bottom. In line with our predictions there was a significant
effect of text direction on the direction of the first movement
(χ2 = 9.16, df = 1, p < 0.01, see Figure 6): in the vertical text
group 35.7% of participants started counting top to bottom while
in the horizontal condition it was only 8.9%. Length of stay in the
UK had no significant effect on the direction of the first movement
(χ2 = 2.63, df = 1, p = 0.11).

FIGURE 5 | Percentage of participants by text condition choosing top

left or top right as starting position in Experiment 2.

FIGURE 6 | Percentage of participants by text condition choosing left

to right versus top to bottom as first movement in Experiment 2.

Gender and experimenter seating position
There were no significant effects of gender and seating position
of the experimenter on starting position or first movement (all
p > 0.09).

DISCUSSION
Experiment 2 showed that directional reading habits dominate the
counting behavior of adults. In line with their dominant reading
direction, most HK-Chinese adults counted a square of circles
from top left to bottom right, row by row. However, the frequency
of this counting pattern was modulated by two factors: first, the
most recent reading experience and second, reading experience
within the last few years. Although most participants who had just
read a vertical text still showed a preference for counting from top
left to bottom right and row by row, significant more participants
counted from top right to bottom left, column by column, after
reading a vertical text than after reading the horizontal text. This is
direct evidence for an influence of the most recent reading experi-
ence on the pattern of counting. Secondly, there is some evidence
that the strength of this effect can be influenced by how long par-
ticipants had lived in the UK: while nobody who had stayed in the
UK longer than 3 years counted vertically after reading the hori-
zontal text, two participants who had stayed in the UK less than
3 years at the time of testing did so.

GENERAL DISCUSSION
In summary, our results strongly support the reading direction
account. The majority of British and HK-Chinese participants
counted the horizontal array in line with their dominant reading
direction, from left to right. The vertical array in turn, they mostly
counted from top to bottom, in line with their secondary reading
direction, highlighting that both, horizontal and vertical, aspects
of reading influence the direction of counting objects. Finally,
when counting the four coins arranged in a square, the majority
started on the top left coin, moved from the left to the right coin
and then to the bottom left coin before ending on the bottom right
coin. This pattern parallels a typically pattern of reading (Western)
text on a page. Even the divergent results from the UK children
fit with the reading direction account: I argue that UK children
did not show a significant preference for a particular horizontal
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counting direction yet, because the influence of reading direction
is still weak at that age due to their limited reading and writing
experience. Similarly, UK children still displayed a bottom-to-
top counting preference for the vertical array. I suggest that they
showed this pattern because their experience with and thus the
influence of the secondary reading direction is even weaker and
in its absence the experience of magnitude in the physical world
dominates the vertical SNA. While Experiment 1 investigated the
effect of reading direction on counting by comparing groups of
participant with different reading experiences, in Experiment 2
we directly manipulated the frequency of counting direction by
varying the most recent reading direction. Significantly more par-
ticipants counted from top right moving top to bottom, column
by column, after reading a vertical text than after reading a hori-
zontal text. These results provide direct experimental evidence of
an effect of the most recent reading direction on the direction of
counting. Overall, our results are best explained by the reading
direction account.

However, there are alternative accounts of the origins of hori-
zontal and vertical SNAs which will be examined in the following
sections. Although horizontal SNAs seem to be weaker in younger
children, several recent studies have reported the existence of
horizontal SNAs in infants (de Hevia et al., 2014) and animals
(Adachi, 2014; Drucker and Brannon, 2014; Rugani et al., 2014,
2015). These findings are difficult to reconcile with the reading
direction account and support a biological rather than cultural
account, at least for early horizontal SNAs. The hemispheric later-
alization account, however, cannot explain why in our study UK
children show the horizontal SNA less strongly than HK-Chinese
children unless one postulates that hemispheric lateralization is
stronger in HK-Chinese children than in UK children of the same
age which seems unlikely. Second, the hemispheric lateralization
account predicts a left-to-right counting bias in both literate and
illiterate adults and does not account for the reversal in participants
who read from right to left. Clearly, the hemispheric lateralization
account on its own is insufficient to explain the existing data on
cultural counting direction.

However, a recent study (de Hevia et al., 2014) provides a
suggestion for how the hemispheric lateralization account and
the reading direction account of SNAs could be reconciled (a
combination account). They found a preference for numerical
increasing sequences from left to right in 7-month-old infants.
This preference was context-dependent: it was only present when
infants received the increasing condition before the decreasing
condition, but not when the presentation order was reversed.
This suggests that there might be a biological predisposition
to link numerical order to spatial directionality and that this
early bias is easily modifiable by experiential and cultural factors
such as reading direction (de Hevia et al., 2012; for an overview
of other early experiential and cultural factors see Nuerk et al.,
2015).

Another factor for the origin of horizontal SNAs has been sug-
gested by Fischer and Brugger (2011): finger counting habits.
Fischer (2012, p. 163) cites finger counting habits and its rela-
tionship with horizontal SNAs as an example of embodiment,
“sensory and/or motor constraints of the human body,”, shap-
ing number concepts. In an online survey of over 900 adults

(Lindemann et al., 2011) the majority of Western participants
reported starting counting with their left hand while the major-
ity of Eastern participants started with their right hand. These
finger counting habits are in line with the direction of their
horizontal SNAs. However, this study cannot discern between
two options: finger counting habits could shape the direction of
horizontal SNAs or vice versa. The crucial test is whether chil-
dren’s finger counting direction is predictive of their dominant
object counting direction. Recent findings by (Knudsen et al., in
press) suggest that the answer is likely to be ‘no’: the majority
of German 6-year-old children tested started counting with fin-
gers on their right hand, but displayed a significant preference
to count objects from left to right. In addition, finger counting
habits cannot explain horizontal SNAs in animals and preverbal
infants.

A clear advantage of the reading direction account is that it
can explain SNAs in both horizontal and vertical dimensions.
Both, the finger counting habits account and the hemispheric lat-
eralization account, cannot explain counting preferences in the
vertical dimension. The preferred vertical counting direction of
adults and HK-Chinese children in our study is in line with their
secondary reading direction and opposite to the direction pre-
dicted by the physical world account. This is puzzling, because
most studies of the vertical SNARC effect have reported a bottom-
to-top orientation for increasing magnitude (Gevers et al., 2006;
Müller and Schwarz, 2007; Holmes and Lourenco, 2012; Shaki
and Fischer, 2012; Hartmann et al., 2014). Why did we find a clear
top-to-bottom association in the vertical array for our adult par-
ticipants and HK-Chinese children when most vertical SNAs have
been reported to go from bottom to top? Why should a read-
ing direction account explain vertical counting direction while
the physical world account is used to explain the vertical SNARC
effect? I argue that these divergent results are due to two reasons:
first, in contrast to parity judgment in the SNARC experiments,
counting objects is in itself a spatial and explicitly numerical
activity, so with object counting we are testing explicit associa-
tions between number and space which might be different from
implicit associations between number and space tested in the
SNARC effect (see Nuerk et al., 2015). Second, I propose that
the required spatial movement inherent in counting objects in
the sagittal plane activates reading experience more strongly than
choosing one of two spatial response buttons in a parity judg-
ment task. At least in initial stages of reading, people often use
their fingers to guide them when reading text on a page. Similarly,
when counting objects in space, participants used their fingers to
point to objects in space. I argue that object counting per se is
a spatial activity that automatically activates magnitude and that
particularly in the horizontal plane we used, at least in compe-
tent readers, this space is strongly associated with reading and
writing.

In our study the group with the smallest reading and writ-
ing experience, UK children, preferred to count the vertical array
from bottom to top. This association of bottom with small and
top with larger magnitude can neatly be explained by the phys-
ical world account: in our daily interactions with the physical
world there are many examples of experiences where ‘more is up’
(Lakoff and Núñez, 2000; Hartmann et al., 2014) with the ground
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level providing a natural zero (Holmes and Lourenco, 2012). Fis-
cher (2012) argues that this is an example of grounded cognition
(Barsalou, 2008). A higher mountain takes more effort and more
time to climb than a smaller one. In contrast to our data, the phys-
ical world account does not predict cultural differences in vertical
SNAs because the experience of the physical world is universal:
the same physical principles apply independent of geographical
location on our planet.

Perhaps related to experiences of magnitude in the physi-
cal world (Barsalou, 2008; Lachmair et al., 2014), we commonly
encounter and use linguistic metaphors (Pecher and Boot, 2011)
that associate more with higher, for example, ‘prices rise’ and ‘I’ll
just turn up the volume.’ These linguistic factors have spatial
consequences. After reading descriptions of magnitudes (more
or less) in sentences participants were faster to respond with
a top button after ‘more’ sentences and a bottom button after
‘less’ sentences (Sell and Kaschak, 2012). Even in an unrelated
categorization task after judging magnitudes (few or many?) par-
ticipants responded faster after a ‘many’ judgment when the item
to be categorized was presented at the top of the screen than
when it was presented at the bottom (Pecher and Boot, 2011).
The current study does not allow us to distinguish between the
physical world account and the linguistic metaphor account for
vertical SNAs in inexperienced readers, because both accounts
predict an association of smaller magnitude with bottom space
and larger magnitude with top space. However, a study by Holmes
and Lourenco (2012) indicates that the vertical direction might
be less malleable by verbal (metaphorical) instruction than has
been reported for the horizontal direction (e.g., Bächtold et al.,
1998; Ristic et al., 2006; Fischer et al., 2010). During a parity
judgment task they asked participants explicitly to think of num-
bers as floors of a building (bottom-to-top metaphor), as items
on a shopping list (top-to-bottom metaphor) or as diving lev-
els in a swimming pool (top-to-bottom metaphor). In all three
conditions participants associated smaller numbers with bottom
and larger numbers with top space. Following a physical world
account for vertical SNAs, one might expect the association of
small magnitude with bottom and large magnitude with top
space to be strong, stable, fixed, and unaltered by instruction,
because the universal physical principles on our planet (e.g., grav-
ity) almost never change. However, our findings in Experiment
2 suggest that the vertical counting direction can be modified
by recent reading direction. Also, the vertical SNARC effect can
be modified by effector instruction (Müller and Schwarz, 2007)
and by different number notations (Hung et al., 2008). These
results speak against a fixed vertical SNA with a grounded ori-
gin and provide good evidence that vertical SNAs can also be
altered by instruction and recent experiences (see Hartmann et al.,
2014).

This takes us to the question of whether counting direction
preferences in a truly vertical plane would be different. Most stud-
ies on vertical SNAs, including the current study, have not used
a truly vertical plane but a horizontal plane with close and far
locations. The horizontal plane is heavily used when reading and
writing, thus favoring a situated conception. A truly vertical plane
might be a better test of the physical world account for vertical
associations. Two recent studies have used a truly vertical plane

(Holmes and Lourenco, 2012; Hartmann et al., 2014) and reported
a bottom-to-top association. To our knowledge, counting in the
truly vertical direction, e.g., counting a stack of blocks has not
been investigated systematically yet.

In both experiments presented here participants were asked to
point to the objects and count them. On the basis of the cur-
rent experiments it is not possible to exclude the possibility that
pointing alone (without counting) could have resulted in spa-
tial preferences too. Non-numerical horizontal spatial directional
training can lead to changes in directional motor behavior in a
visual search task (Patro et al., in press). Furthermore, culture-
dependent biases in line bisection (Chokron and De Agostini,
1995; Rinaldi et al., 2014) as well as a culture-dependent pref-
erences for the direction of drawing (Kebbe and Vinter, 2013)
have been reported for the horizontal direction. So it is plausible
that culture-dependent preferences in performing motor actions
(such as pointing) might have contributed to the counting bias.
Future studies should investigate directional preferences for both
counting and pointing.

In summary, I have discussed the evidence for grounded,
embodied, and situated origins of horizontal and vertical SNAs. A
combination account (de Hevia et al., 2012; Nuerk et al., 2015) is
emerging: due to hemispheric lateralization (Rugani et al., 2014,
2015) and a preference for increasing magnitudes (Macchi Cas-
sia et al., 2012) we start life with a slight preference to associate
small magnitudes with the left side of space (a biological pre-
disposition). In addition, interactions with the physical world
(grounded cognition; Barsalou, 2008) lead us to expect magni-
tudes to increase from the bottom to the top resulting in an initial
SNA with increasing magnitude from bottom left to top right.
Interactions with cultural spatial biases in the environment such
as exposure to cultural reading practices then modify this initial
bias: depending on the culturally predominant spatial direction-
ality the bottom left to top right bias either gets strengthened,
weakened, or overwritten. Although further research into other
cultural spatial biases is needed, current evidence favors reading
direction as the strongest cultural spatial influence. SNAs molded
by longstanding cultural directional biases can also be modified
temporarily by recent spatial experiences.

To conclude, our findings clearly support the influence of
primary and secondary reading direction on the horizontal and
vertical direction of counting in the horizontal plane and its rela-
tionship to recent as well as longstanding reading exposure and
experience.
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The study of spatial-numerical associations (SNAs) is an active research project that was triggered
by a landmark publication reporting several simple reaction time experiments: Adults classified
visually presented numbers according to their parity by using left and right response keys (Dehaene
et al., 1993). The main finding was that small numbers, such as 1 or 2, were classified faster on
the left side and larger numbers, such as 8 or 9, were classified faster on the right side. This
specific instance of a SNA has been replicated and extended in numerous studies (recent review
by Fischer and Shaki, 2014). The original interpretation of the effect assumed a “spill-over” from
reading habits into the number domain but subsequent work has pushed back the time line to
preschoolers, infants, and even neonates (for recent review, see Patro et al., 2014). Our own work
(e.g., Shaki et al., 2009; Fischer and Shaki, 2015) confirmed that reading habits contribute to the
direction and strength of SNAs but has also indicated that they are not the only and not even
the strongest determinant (e.g., Fischer et al., 2010). In the following paragraphs we propose a
processing principle for SNAs and describe two successive steps by which the mapping of numbers
onto space might occur.

Our proposed processing principle is that spatial mapping is an integral part of semantic number
processing. This is evident from the ubiquity of SNAs: They have been reported with various
stimulus formats, in many different tasks, and while studying a wide range of responses (for recent
review, see Fischer and Shaki, 2014). SNAs modulate the cortical region underlying semantic
number processing (i.e., bilateral hIPS; Cutini et al., 2012). Moreover, the association between
numbers and space is bi-directional: numerical magnitude can serve as a spatial cue and vice
versa (Stoianov et al., 2008; Shaki and Fischer, 2014a). Most studies of SNAs have used centrally
presented numbers in combination with spatial responses, whichmay have encouraged participants
to use spatial number mapping strategies (Fischer, 2006). However, today it is clear that the very
appearance of numerical stimuli is enough for SNAs to appear, even when removing, in healthy
adults (cf. Zorzi et al., 2002), spatial features from both stimuli and responses (Fischer and Shaki,
2015; Ranzini et al., 2015). Evidence for such a purely conceptual link between numbers and space
was even found in Hebrew speakers, thus requiring correction of our earlier claim of the need for
consistency of directional processing habits across stimulus domains (Shaki et al., 2009; Shaki and
Fischer, 2012, 2014b).

We note that our present proposal leaves open the issue of the origin(s) of SNAs, be they a
congenital result of hemispheric specializations, or acquired by culturally shaped spatial habits such
as reading or finger counting (Fischer, 2008; Lindemann et al., 2011; Domahs et al., 2012; Fischer
and Shaki, 2015; Rugani et al., 2015a,b). Assuming that processing number meaning is obligatorily
accompanied bymapping it onto a spatial continuum, two issues remain to be addressed to account
for a given SNA in a particular setting: The selection of the appropriate spatial dimension, and the
directionality of mapping numbers along that dimension. We now present an idea of how these
two steps are taken and describe recent evidence in support of this proposal.

First, the spatial dimension selected for mapping of numbers reflects the stimulus and response
features of the current task. When lateralized response keys are provided to participants to measure
the speed of their judgments, then most participants will align their number representations along
the dimension indicated by these keys, be it horizontal, vertical, or radial. This is what the bulk of
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the literature has documented (as recently reviewed by Fischer
and Shaki, 2014). In the absence of such response keys,
when responses to numbers are required by making spatially
directional arm, head, eye or whole-body movements, then the
major directions or endpoints of those movements define the
mapping dimension, again either using the horizontal (Fischer,
2003; Fischer et al., 2004; Loetscher et al., 2008; Shaki and
Fischer, 2014a) or vertical dimension (Schwarz and Keus, 2004;
Winter and Matlock, 2013). When spatially distinct responses
to the numbers are required but no response dimension is
prescribed, the resulting mapping of numbers onto space will
be more varied across participants (Fischer and Campens,
2008). Finally, even when no spatially distinct responses are
required, as for example in a simple detection task, the spatial
mapping of centrally presented numbers will still emerge through
lateralization of other stimuli, such as visually presented cues
(Fischer et al., 2003; for a recent update, see Fischer and Knops,
2014).

Finally, once a dimension for the spatial mapping of numbers
has been selected by the participant, their distribution along
this dimension still remains to be decided. For this second
step, we propose that the orientation of the SNA is influenced
by spatial experience. This rule underlines the manifold of
possible influences on the SNARC which are only beginning
to be documented and studied. Living in a three-dimensional
world, we are differentially sensitive to horizontal vs. vertical
space. For example, as a result of the embodied nature of
cognition, vertical distinctions are most salient and horizontal
ones least salient (Fischer and Brugger, 2011), leading to

faster acquisition of, and discrimination along, the vertical
than the horizontal dimension (Franklin and Tversky, 1990).
Similarly, the increasing strength of SNAs with age (Wood
et al., 2008; Hoffmann et al., 2014) indicates that they may
reflect accumulated spatial habits/experiences during life. An
example are reading habits (see the contribution of Nuerk
et al., 2015 to this research topic for a detailed description of
mechanisms). Importantly, such life-long experiences are less
powerful in determining the directionality of a SNAs compared
to more recent experiences with numbers, as demonstrated in
emerging training studies (e.g., Fischer, 2012) and by rapid
alternations of SNAs between successive trials (Fischer et al.,
2009).

In summary, the proposed two successive steps seem to
capture a wide range of observations pertaining to the ubiquity
of SNAs that have recently re-invigorated research into numerical
cognition. We hope that the present proposal will guide further
interest in the design of novel studies that aim to test specific
predictions about the origin and strength of SNAs. For example,
how can we identify the sequential nature of the mapping
process? How shall we weight the contributions of previous
experiences? Clearly, such questions identify numerical cognition
as a convenient test-bed for the study of fundamental principles
of cognition generally.
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Previous research has consistently found an association between spatial and
mathematical abilities. We hypothesized that this link may partially explain the
consistently observed advantage in mathematics demonstrated by East Asian children.
Spatial complexity of the character-based writing systems may reflect or lead to a
cognitive advantage relevant to mathematics. Seven hundered and twenty one 6–9-
year old children from the UK and Russia were assessed on a battery of cognitive skills
and arithmetic. The Russian children were recruited from specialist linguistic schools
and divided into four different language groups, based on the second language they
were learning (i.e., English, Spanish, Chinese, and Japanese). The UK children attended
regular schools and were not learning any second language. The testing took place
twice across the school year, once at the beginning, before the start of the second
language acquisition, and once at the end of the year. The study had two aims: (1) to
test whether spatial ability predicts mathematical ability in 7–9 year-old children across
the samples; (2) to test whether acquisition and usage of a character-based writing
system leads to an advantage in performance in arithmetic and related cognitive tasks.
The longitudinal link from spatial ability to mathematics was found only in the Russian
sample. The effect of second language acquisition on mathematics or other cognitive
skills was negligible, although some effect of Chinese language on mathematical
reasoning was suggested. Overall, the findings suggest that although spatial ability
is related to mathematics at this age, one academic year of exposure to spatially
complex writing systems is not enough to provide a mathematical advantage. Other
educational and socio-cultural factors might play a greater role in explaining individual
and cross-cultural differences in arithmetic at this age.
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Introduction

Research has shown that East Asian children on average out-
perform other children in mathematics (Miura, 1987; Song and
Ginsburg, 1988; Stevenson and Stigler, 1992; Geary et al., 1993;
Stevenson et al., 1993; Imbo and Vandierendonck, 2007; Mullis
et al., 2008; OECD, 2010; Rodic et al., 2014). This advantage
might partly be explained by the regular structure of the East
Asian number system, as well as by the shorter pronunciation of
numbers that leads to a greater digit span (Dehaene, 1997).

In our previous research we investigated whether spoken
Chinese language leads to better arithmetic skills in pre-school
children (Rodic et al., 2014). We assessed children from China,
Russia, UK and two populations from Kyrgyzstan (Kyrgyz and
Dungan), on arithmetic and other cognitive tests. As the Dungan
population is ethnically similar to Chinese, speaks a form of
Mandarin but uses Cyrillic (instead of character basedMandarin)
as a writing system, we were able to test for the effect of the spoken
language while controlling for its written aspect. Dungan children
did not show any advantage in arithmetic over Kyrgyz children.
This suggests that using oral Chinese, with its transparent num-
ber system and faster pronunciation of numbers, does not lead to
mathematical advantage, at least for early arithmetic.

Other cognitive factors, such as spatial ability, might also play
a role in the observed cross-cultural differences. For example,
greater spatial complexity and increased visuo-spatial demands
of Chinese reading and writing systems may lead to better math-
ematical performance.

Although the direction of effects and the nature of the asso-
ciation between spatial ability and mathematics remain unclear,
they seem to be intrinsically linked. One recent genetically infor-
mative study examined the relative contribution of genetic and
environmental factors to variation in spatial ability and to its
relationship with different aspects of mathematics in 4174 pairs
of 12-year-old twins (Tosto et al., 2014). The results suggested
that, individual differences in spatial ability and different aspects
of mathematics stem from both, common genetic (60%) and
environmental (40%) factors. The observed correlation between
spatial andmathematical ability was largely explained by overlap-
ping genetic effects, but also overlapping environmental factors.
At the level of the brain, both spatial cognition and number
processing have been shown to rely on parietal lobes, espe-
cially the Intra Parietal Sulcus (Dehaene, 1997). At the behavioral
level, many studies found associations between different aspects
of spatial and mathematical abilities across development. For
example, spatial sketchpad of working memory and mathemat-
ics performance were found to correlate (0.41) in second graders
(Krajewski and Schneider, 2009). A correlation has also been
observed between performance on a 3-D mental rotation task
and mathematical word problem solving tasks in six graders
(Van Garderen and Montague, 2003). Spatial ability has been
found to correlate with mathematical ability over and above
general cognitive ability in adults, both in the US (Rohde and
Thompson, 2007), and China (Wei et al., 2012). Mathematically
gifted adolescents perform better on spatial tasks than their non-
gifted peers (Hermelin and O’Connor, 1986; Dark and Benbow,
1991).

Multiple potential mechanisms underlie the observed space-
mathematics associations, from spatial representations of magni-
tudes on amental number line, to spatial representations of math-
ematical relations, to the use of diagrams in algebraic problem
solving (Geary, 1994, 1995; Hubbard et al., 2005).

It is possible that the observed advantage of representatives
of East Asian cultures in mathematics can be at least partially
explained by the spatial-mathematical link. Previous research
indicates that spatial ability may causally contribute to mathe-
matical learning (Rohde and Thompson, 2007; Wai et al., 2009).
There is also evidence that East Asian populations show an aver-
age advantage in visuo-spatial abilities (Sakamoto and Spiers,
2014). This advantage may be related to the complexity of the
character-based writing, which may either reflect or lead to supe-
rior spatial ability of some East Asian populations.

In contrast to letter-based scripts, where complexity is linear
(reflected in the number of letters in a word), the complexity
of Chinese characters increases with the number of elements
(strokes and sub character components) packed into the same
square configuration. When learning to read a Chinese char-
acter, both visual-orthographic processing and spatial analysis
are essential (Tan et al., 2005). It is possible that continuous
engagement in such processing leads to superior development of
the relevant brain networks, which in turn leads to advantages
in mathematics. In contrast, linear orthographic representations
may lead to the development of the language relevant brain
networks and their employment for solving mathematical prob-
lems. Support for the differential cortical number-related activity
across populations was found in an fMRI study comparing native
English speakers to native Chinese speakers (Tang et al., 2006).
Native English speakers employed language processes for mental
calculation (e.g., simple addition), while native Chinese speak-
ers employed visuo-premotor association network for the same
task.

The current study aims to investigate the spatial-mathematical
link in 6–9-year-old Russian and UK children in the context
of language learning over one school year. The children were
assessed on a cognitive test battery measuring general skills (e.g.,
speed of processing), IQ, spatial ability, symbolic number under-
standing, non-symbolic comparison of numerosity, numerical
reasoning, and arithmetic. The testing took place twice during the
school year, once at the beginning and once at the end. Russian
children were monolingual and began learning different second
languages at the beginning of the school year. The languages
included character-based systems (Chinese and Japanese) and
alphabet-based systems (English and Spanish). The UK sample
served as a control.

We tested the following 2 hypotheses:

(1) Spatial ability (Mental rotation) at the beginning of the
academic year will predict arithmetic scores (Simple subtrac-
tion) at the end of the academic year, in both, Russian and UK
6–9 year-old children, even after controlling for IQ scores.

(2) Children who learn a second language that employs a spa-
tially complex character-based writing system (Chinese and
Japanese) will show a greater gain in mathematics and related
abilities after 1 year of learning.
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Although we are aware that the current design does not allow
us to control for the effect of other linguistic factors, such as
faster pronunciation of numbers and transparency of the num-
ber system, our previous study suggested no effect of the spoken
language on arithmetic in the Dungan population (Rodic et al.,
2014). In addition, the aim of our study is not to assess potential
advantages of solving mathematical problems in a particular lan-
guage (i.e., Russian children use Russian language for mathemat-
ical learning), but instead to test whether the process of learning
and using spatially complex characters as a second language leads
to some mathematically advantageous cognitive shift.

Materials and Methods

Participants
Seven hundred and twenty one 6–9 year-old children were
recruited through primary schools in the UK and Russia. The
children were tested in two waves, once at the beginning and
once at the end of the 2012/2013 academic year. In the first
wave of testing there were 155 UK participants from 5 schools
in London (69 boys; mean age = 85 months, range 72–108);
and 566 Russian participants from 15 schools across Russia (246
boys; mean age = 98.5, range = 88–104 months). In the second
wave of testing, the number of participants has reduced to 145
UK participants (63 boys; mean age = 90 months, range = 80–
105 months); and 438 Russian participants (185 boys; mean
age = 105.8 months, range = 96–121 months). Attrition in the
UK sample was mostly due to children changing schools. The
substantial attrition in the Russian sample was largely due to a
technical problem with the on-line test administration or access
to remote samples in some regions.

The Russian participants were in the second year of their
primary school education. Because Russian children start their
primary education at 7 years of age (a year later than the UK
children), they were inevitably older than the UK children of the
same school year. In order to match the UK and Russian partic-
ipants, both on their chronological age and years of education,
half of the UK children were in the second year and half were in
the third year of their primary education.

In the UK sample none of the children were learning a 2nd
language at school before or during the year of testing. Although
30% of the sample (44 children) reported to be bi-lingual (indi-
cated speaking languages other than English at home), none of
the children used character-based writing systems.

All Russian children in the sample were monolingual and
started learning the second language at school at the beginning
of the school year. Out of 566 children, 379 started learning
English language; 25 – Japanese; 74 – Spanish and English; and
88 – Chinese and English languages. On average, children had
between 2 and 4 sessions (45 min each) of second language
lessons per week. All schools were specialist language schools
with enhanced language curricula. Selection into the language
schools is not entirely random, although no special entry require-
ments are practiced and many children are enrolled on the basis
of living proximity. However, parents’ willingness to enroll chil-
dren into specialist language schools and belief in the children’s

ability to cope with the pressures of learning extra languages
can be considered as a ‘self selection’ violation to random enrol-
ment.

The project received approval from the Ethics Committees of
Goldsmiths, University of London; and Tomsk State University.
Parental consent was obtained prior to data collection.

Measures and Procedure
The battery of tests included seven on-line
(www.dweipsy.com/lattice) computerized tasks (see Figure 1)
administered in a single session at schools. The testing lasted
approximately 40 min. All tests started with practice trials
and were always administered in the following order: Mental
rotation, Choice reaction time, Non-symbolic comparison of
numerosity, Symbolic number magnitude comparison, Simple
subtraction, Number series and Raven’s progressive matrices.
Children indicated their responses by pressing “Q” or “P” (or
corresponding Russian keys) marked with the stickers on the
keyboard. For Choice reaction time, Non-symbolic comparison
of numerosity and Symbolic number magnitude comparison
tasks accuracy and RT (milliseconds) were recorded. For the rest
of the tasks, the dependent variable was correct minus incorrect
responses, correcting for guessing. The tasks are described in the
following section, grouped in five categories: (1) general skills
and IQ; (2) spatial ability; (3) symbolic number understanding;
(4) non-symbolic number sense; (5) operating with numbers
(arithmetic), and numerical reasoning. Internal validity of
each measure was assessed using Cronbach’s alpha analysis. The
Cronbach’s alphas, reported below separately for the two samples,
are based on the first wave of data collection. The results from
the second wave were highly similar.

General Skills and IQ
Choice reaction time task (Butterworth, 2003) assessed accuracy
and speed with which children responded to the dot appear-
ing on the left (15 trials) or right (15 trials) side of the fixation
‘+.’ The task was time-unconstrained. The inter-stimulus inter-
val varied randomly from 1500 to 3000 ms. Cronbach’s α = 0.65
(N = 154, UK sample) and Cronbach’s α = 0.87 (N = 555,
Russia).

Raven’s progressive matrices (Raven et al., 1998) measured gen-
eral intelligence. Participants were presented with an incomplete
figure and had to identify the missing segment that would com-
plete the figure’s intrinsically regular pattern. Children used a
mouse to indicate which out of the presented six segments was
the correct one. The children had 4 min to go trough as many tri-
als as they could (80 trials in total). Cronbach’s α = 0.67 (N = 154,
UK sample) and Cronbach’s α = 0.73 (N = 543, Russia).

Spatial Ability
Mental rotation task (Shepard and Metzler, 1971) evaluated chil-
dren’s ability to mentally rotate three dimensional images. The
target image was presented on the upper part of the screen, with
two possible answers presented on the left and right bottom parts
of the screen. The child had to decide which of the bottom two fig-
ures was matching the figure at the top by pressing either left or
right button. The matching images were rotated from 15 to 345◦.
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FIGURE 1 | Illustration of tasks used in the experiment, in the order of presentation.

Children had to select the correct answer in as many trials as they
could in 3 min (180 trials in total). Cronbach’s α = 0.75 (N = 140,
UK sample) and Cronbach’s α = 0.87 (N = 564, Russia).

Symbolic Number Understanding
Symbolic number magnitude comparison task (Girelli et al., 2000)
used a Stroop-like paradigm to assess the ability to compare
numerical values of numbers. Two digits of varying sizes (1:2
size ratio) appeared simultaneously on the screen. The trials were
divided into congruent, incongruent and neutral trials. In the
congruent condition a numerically larger digit (e.g., 8) was also
physically larger than a numerically smaller digit (e.g., 3). In
the incongruent condition, three is physically larger than eight,
and in the neutral condition, both digits are of the same physi-
cal size. Children had 5 s to decide which number was larger in
numerical magnitude, ignoring differences in physical size. Three
sessions of 28 trials each were separated by 10-s resting peri-
ods. Cronbach’s α = 0.77 (N = 153, UK sample) and Cronbach’s
α = 0.87 (N = 545, Russia).

Non-Symbolic Number Sense
Non-symbolic comparison of numerosity (Baroody and Ginsburg,
1990) measured non-symbolic number sense. Children had to
estimate (without counting) which of the two sets of dots of
varying sizes, presented simultaneously on the screen, contained
more dots (36 trials, 5 s per trial). In all sets the combined area of
all dots was controlled to be the same. The number of dots varied
from 5 to 12; ratios were 2:3, 5:7, and 3:4. Cronbach’s α = 0.78

(N = 153, UK sample) and Cronbach’s α = 0.84 (N = 549,
Russia).

Operating with Numbers (arithmetic) and
Numerical Reasoning
Simple subtraction task assessed early arithmetic ability. The min-
uends were all smaller than 18 and the differences were single-
digit numbers. Two candidate answers were presented beneath
the problem, one on each side of the screen. Children had to select
the correct answer in as many trials as they could in 2 min (92
problems). Correct and incorrect answers were within the range
of each other plus or minus 3. Cronbach’s α = 0.75 (N = 152, UK
sample) and Cronbach’s α = 0.73 (N = 542, Russia).

Number series completion task (Smith et al., 2001) measured
logical numerical reasoning. A sequence of numbers was pre-
sented on the screen (e.g., 1,3,5,7) with two additional numbers
below it. The child was asked to infer the pattern of these num-
bers and decide which out of the two candidate answers presented
below the sequence should complete the sequence (e.g., 9 or 16).
The children were given 4 min to do as many sequences as they
could. Cronbach’s α = 0.65 (N = 146, UK sample) and Cronbach’s
α = 0.63 (N = 589, Russia).

Results

Growth
First, we evaluated average growth on each assessedmeasure over
one academic year. This was done separately for the UK and
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Russian samples, as the two samples could not be directly com-
pared: UK sample was heterogeneous in terms of biological age
and years of schooling; the Russian children were selected from
specialist language schools (see Table 1 for mean and SDs for the
raw scores for both samples on all tasks).

As can be seen from Table 2, children’s performance improved
significantly for all tasks, with the exception of RT in Choice
Reaction Time in the UK sample. The effect sizes of growth,
obtained by means of one way repeated measures ANOVAs,
ranged from 2.1% (for RT and accuracy of Choice RT task in
the Russian sample) to 44% (for Simple subtraction in the UK
sample).

Further, we ran the between-subjects one-way ANOVAs on
growth scores for each variable, calculated by subtracting the
scores at time 1 from the scores at time 2, with sample as a two
level factor (UK vs. Russian). The size of growth for all variables
was highly similar across the Russian and the UK samples, with
only one significant [but negligible, η2

p = 1.2%; F(1,525) = 6.161,
p = 0.01] difference for the Raven’s task (see Table 2).

The Relationship between Spatial Ability and
Arithmetic Over Time
The cross-lag analyses, conducted on each sample separately,
tested the first hypothesis regarding the longitudinal relationship
between spatial ability and arithmetic, while controlling for IQ
scores. This type of analysis (described below) evaluates associa-
tions between the two variables over time, while controlling for
stability of each measure over time and for associations between
the two measures at the same time.

Russian Sample
Before conducting the cross-lagged analyses, a correlation matrix
was obtained and inspected to check for longitudinal associ-
ations, as well as associations between Mental rotation and
Subtraction. Correlations between time 1 and time 2 assess-
ments were moderate, both for Mental rotation (r = 0.507) and
Subtraction (r = 0.498), indicating relative stability of measures
over time. A modest relationship between the Mental rotation
and Subtraction was found at both assessments waves (r = 0.221
at time 1 and r = 0.275 at time 2). Correlation between Mental
rotation at time1 and Subtraction at time 2 was slightly higher
(r = 0.277) than that of Subtraction at time 1 andMental rotation
at time 2 (r = 0.137).

Next, the cross-lag structural equation modeling (Campbell,
1963), was utilized to investigate the longitudinal relationship
between spatial ability (Mental rotation) and early arithmetic
(Subtraction). This type of analysis can investigate causal order-
ing of variables by estimating three types of relationships: (1)
autoregressive paths which assess within-construct stability by
estimating the correlation between two assessments of the same
variable (e.g., Mental rotation at time 1 and time 2); (2) contem-
poraneous relationship between the two measures at the same
assessment wave (e.g., Mental rotation at time 1 and Subtraction
at time 1); and (3) cross-lagged relationship which estimates the
extent to which scores for one variable at time 1 predict unique
variance in the other variable at a later time (e.g., Mental rota-
tion at time 1 and Subtraction at time 2), while controlling for

autoregressive and contemporaneous associations. Further, we
included the Raven’s scores at time 1 as a covariate in order to
control for IQ on both measures at both times.

Figure 2 shows standardized path coefficients for the longitu-
dinal relationship between spatial ability and arithmetic. The full
model, which included the cross-lagged associations, was found
to fit the data better (AIC = 4825.61), than the model exclud-
ing those associations (AIC = 4837.52). The non-significant
paths were then dropped from the cross-lagged model until
the best fitting model was achieved: χ2 (3) = 6.35, p = 0.098,
RMSEA = 0.046, CFI = 0.990, TLI = 0.966, SRMR = 0.024
(N = 527). The best fitting model suggests the direction of the
relationship from spatial ability to later arithmetic and not vice
versa. The standardized paths are shown in Figure 2. Significant
paths were: the cross-lagged path from Mental rotation at time 1
to Subtraction at time 2 (β = 0.180, SE= 0.04, p< 0.001); the con-
temporaneous paths between Mental rotation and Subtraction
at both, time 1 (β = 0.225, SE = 0.04, p < 0.001) and time 2
(β = 0.162, SE = 0.04, p = 0.002); and the autoregressive paths
for both, Mental rotation (β = 0.524, SE = 0.04, p < 0.001) and
arithmetic (β = 0.526, SE = 0.04, p < 0.001). The paths from the
covariate (Raven’s) were significant for Mental rotation at time
1 (β = 0.103, SE = 0.04, p = 0.018); and Subtraction at time 1
(β = 0.136, SE = 0.04, p = 0.002).

The UK Sample
Correlations between time 1 and time 2 assessments were mod-
erate, both for Mental rotation (r = 0.434) and Subtraction
(r = 0.575), indicating relative stability of measures over time. A
modest relationship between the Mental rotation and Subtraction
was found at both assessments waves (r = 0.185 at time 1 and
r = 0.195 at time 2). Correlation between Mental rotation at time
1 and Subtraction at time 2 was not significant, while Subtraction
at time 1 and Mental rotation at time 2 were modestly correlated
(r = 0.209).

Next, cross-lag analysis was conducted in order to investi-
gate the relationship between the spatial ability (Mental rotation)
and early arithmetic (Subtraction) while accounting for the IQ
scores.

Figure 3 shows standardized path coefficients for the longi-
tudinal relationship between spatial ability and arithmetic in the
UK sample. The model excluding the cross-lag associations was
found to fit the data better (AIC = 1428.342) than the full model
which included those associations (AIC = 1425.781). The non-
significant paths were then dropped from the model. The model
in Figure 3 fitted the data very well: χ2 (4) = 2.618, p = 0.062;
RMSEA <0.001; CFI = 1.00; TLI = 1.031; SRMR = 0.036
(N = 144). In the UK sample, the significant paths included: the
contemporaneous path betweenMental rotation and Subtraction
at time 2 (β = 0.238, SE = 0.08, p = 0.004); and the
autoregressive paths for both Mental rotation (β = 0.393,
SE = 0.07, p < 0.001) and Subtraction (β = 0.603, SE = 0.05,
p < 0.001).

The paths from the covariate (Raven’s) were significant for
Mental rotation at time 1 (β = 0.257, SE = 0.08, p = 0.001);
Mental rotation at time 2 (β = 0.164, SE = 0.08, p = 0.035); and
Subtraction at time 1 (β = 0.235, SE = 0.08, p = 0.003).
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FIGURE 2 | Cross-lagged analysis of mental rotation and subtraction over one academic year, accounting for IQ (Russian sample).

FIGURE 3 | Cross-lagged analysis of mental rotation and subtraction over one academic year, accounting for IQ (UK sample).
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TABLE 2 | The effect sizes for growth over the school year, on all tasks for the UK and Russian samples.

Sample UK Russia

Task Score type Partial η2 (%) Partial η2 (%)

Mental rotation Correct–incorrect responses 7%∗∗ N = 155 6.1%∗∗ N = 544

Choice RT Mean RT non-significant N = 152 2.1%∗ N = 556

Proportion of correct responses 3.4%∗ N = 152 2.1%∗ N = 556

Comparison of
numerosity

Mean RT 13%∗∗ N = 151 4.2%∗∗ N = 551

Proportion of correct responses (1) 11%∗∗ N = 151 3.1%∗∗ N = 551

Magnitude
comparison

Mean RT 26%∗∗ N = 150 35%∗∗ N = 547

Proportion of correct responses 16%∗∗ N = 150 6.3%∗∗ N = 551

Subtraction Correct–incorrect responses 44%∗∗ N = 155 30%∗∗ N = 579

Number series Correct–incorrect responses 15%∗∗ N = 149 4.2%∗∗ N = 537

Raven’s Correct–incorrect responses 22%∗∗ N = 148 11%∗∗ N = 517

∗p < 0.05, ∗∗p < 0.001 for significance of improvement in scores (growth) from Time 1 to Time 2; ns, non-significant; NS, number series.

Second Language Acquisition Effects on
Cognitive Skills and Arithmetic
The second hypothesis, addressing the effects of second language
learning on arithmetic and related skills, was investigated in the
Russian sample. The sample was split into four groups based on
the different languages that children learn at school (i.e., English,
Japanese, Spanish and English and Chinese and English). Table 3
shows the descriptive statistics for the four language groups at
both times.

One-way ANOVAs were employed to test for differences on
all tasks between the four groups at the beginning of the year
(time 1). Despite the differences in sample sizes (379 for English;
25 for Japanese; 74 for Spanish; 88 for Chinese), performance at
baseline was overall similar across the four groups. No significant
differences between the groups were found for RT and accuracy
of Choice reaction time; RT and accuracy of Symbolic num-
ber magnitude comparison; RT and accuracy of Non-symbolic
comparison of numerosity; and Mental rotation (correct minus
incorrect responses score). For the remaining three tasks sig-
nificant (p < 0.05), but very small (η2

p = 2.1–3.2%, p < 0.05)
differences were found (details available from the authors). Only

one violation to equal variance was found (for the Raven’s task),
but the differences in variance were negligible (as suggested in
Field, 2009).

Next, to test for the effect of the language learnt at school on
task performance at the end of the year, we conducted ANCOVA,
including the performance on the task at the baseline time 1 as
a covariate. The only significant effect of language was on the
Number series completion task [F(3,399) = 4.063, p = 0.007],
with Chinese/English learning group slightly (η2

p = 3%), outper-
forming Japanese (p = 0.021) and Spanish/English (p = 0.001)
learning groups.

Discussion

The study set out to investigate the relationship between spa-
tial ability and mathematical performance. First, we assessed the
cross-lag relationship between spatial ability (Mental rotation)
and arithmetic (Simple subtraction). The significant positive link
from spatial ability to later arithmetic was found only in the
Russian sample. This finding is similar to what was previously

Frontiers in Psychology | www.frontiersin.org March 2015 | Volume 6 | Article 333 | 138

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Rodic et al. Character-based writing and arithmetic

TA
B

L
E

3
|D

es
cr

ip
ti

ve
st

at
is

ti
cs

fo
r

th
e

R
u

ss
ia

n
sa

m
p

le
la

n
g

u
ag

e
g

ro
u

p
s,

fo
r

al
lt

as
ks

at
b

o
th

ti
m

es
.

S
co

re
ty

p
e

(m
ax

im
u

m
sc

o
re

o
ve

ra
ll)

E
n

g
lis

h
T

1
S

p
an

is
h

an
d

E
n

g
lis

h
T

1
C

h
in

es
e

an
d

E
n

g
lis

h
T

1
Ja

p
an

es
e

T
1

E
n

g
lis

h
T

2
S

p
an

is
h

an
d

E
n

g
lis

h
T

2
C

h
in

es
e

an
d

E
ng

lis
h

T
2

Ja
p

an
es

e
T

2

Ta
sk

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
ea

n
(S

D
)

M
en

ta
lr

ot
at

io
n

C
or

re
ct

–i
nc

or
re

ct
re

sp
on

se
s

(4
3)

12
.9

(9
.3

5)
N

=
36

6
11

.0
6

(9
.6

3)
N

=
70

13
.7

7
(8

.6
7)

N
=

83
11

.2
8

(9
.1

3)
N

=
25

14
.2

7
(1

1.
63

)
N

=
29

0
14

.5
3

(1
1.

38
)

N
=

54
17

.1
7

(9
.3

8)
N

=
76

14
.1

1
(1

0.
85

)
N

=
18

C
ho

ic
e

R
T

M
ea

n
R

T
(2

50
0)

64
6.

81
(2

53
.3

6)
N

=
36

9

62
7.

46
(0

.1
1)

N
=

71
68

0.
99

(2
31

.1
7)

N
=

88

69
8.

36
(1

96
.2

1)
N

=
25

59
6.

67
(1

65
.3

8)
N

=
28

9
57

0.
84

(1
43

.0
0)

N
=

55
59

7.
85

(1
29

.0
9)

N
=

76

64
7.

63
(1

47
.3

2)
N

=
17

P
ro

po
rt

io
n

of
co

rr
ec

t
re

sp
on

se
s

(1
)

0.
93

(.1
2)

N
=

36
9

0.
94

(0
.1

1)
N

=
71

0.
93

(0
.1

4)
N

=
88

0.
96

(0
.0

6)
N

=
25

0.
95

(0
.0

8)
N

=
28

9
0.

95
(0

.0
9)

N
=

55
0.

96
(0

.0
6)

N
=

76
0.

96
(0

.0
4)

N
=

18

C
om

pa
ris

on
of

nu
m

er
os

ity
M

ea
n

R
T

(2
56

2)
11

86
.0

9
(3

27
.0

3)
N

=
36

5

11
90

.8
2

(3
51

.2
7)

N
=

71
11

60
.5

0
(2

90
.9

0)
N

=
88

13
08

.4
4

(5
35

.4
0)

N
=

25
11

55
.0

2
(4

95
.8

8)
N

=
21

7
97

5.
73

(2
1.

76
)

N
=

52
10

29
.3

0
(2

58
.0

4)
N

=
78

11
30

.0
6

(1
78

.2
3)

N
=

18

P
ro

po
rt

io
n

of
co

rr
ec

t
re

sp
on

se
s

(1
)

0.
87

(0
.1

3)
N

=
36

5
0.

86
(0

.1
3)

N
=

71
0.

86
(0

.1
0)

N
=

88
0.

82
(0

.2
1)

N
=

25
0.

89
(0

.1
2)

N
=

21
7

0.
89

(0
.0

9)
N

=
52

0.
88

(0
.1

1)
N

=
77

0.
92

(0
.0

4)
N

=
18

M
ag

ni
tu

de
co

m
pa

ris
on

M
ea

n
R

T
(2

21
8)

11
10

.3
9

(2
72

.9
6)

N
=

36
3

11
51

.9
3

(2
73

.2
9)

N
=

69
11

10
.8

4
(2

38
.5

4)
N

=
88

12
07

.0
4

(2
04

.2
7)

N
=

25
98

1.
35

(2
19

.6
4)

N
=

28
6

96
4.

92
(1

72
.1

6)
N

=
55

99
0.

15
(2

02
.3

8)
N

=
79

10
85

.5
3

(1
94

.6
2)

N
=

18

P
ro

po
rt

io
n

of
co

rr
ec

t
re

sp
on

se
s(

1)
0.

88
(0

.0
8)

N
=

36
3

0.
86

(0
.0

9)
N

=
69

0.
87

(0
.0

9)
N

=
88

0.
89

(0
.0

7)
N

=
25

0.
91

(0
.0

8)
N

=
28

6
0.

89
(0

.0
8)

N
=

55
0.

92
(0

.0
6)

N
=

79
0.

91
(0

.0
9)

N
=

18

S
ub

tr
ac

tio
n

C
or

re
ct

–i
nc

or
re

ct
re

sp
on

se
s

(5
0)

16
.6

5
(1

0.
88

)
N

=
39

1
13

.3
8

(8
.7

2)
N

=
74

16
.1

2
(9

.1
3)

N
=

88
10

.8
8

(7
.0

7)
N

=
25

23
.1

6
(1

0.
73

)
N

=
28

4
20

.7
5

(7
.6

)N
=

55
23

.4
3

(9
.3

)
N

=
74

19
.6

6
(6

.7
6)

N
=

18

N
S

C
or

re
ct

–i
nc

or
re

ct
re

sp
on

se
s

(1
7)

3.
37

(6
.3

8)
N

=
35

8
0.

77
(6

.7
9)

N
=

70
2.

59
(7

.2
0)

N
=

83
0.

84
(6

.8
7)

N
=

25
4.

96
(6

.8
2)

N
=

28
2

2.
24

(6
.8

0)
N

=
54

6.
47

(6
.3

6)
N

=
78

2.
94

(5
.4

0)
N

=
17

R
av

en
’s

C
or

re
ct

–i
nc

or
re

ct
re

sp
on

se
s

(2
9)

11
.9

7
(5

.2
3)

N
=

34
9

10
.4

0
(3

.6
6)

N
=

71
12

.9
3

(6
.9

4)
N

=
88

10
.3

3
(2

.6
9)

N
=

24
4.

72
(6

.8
2)

N
=

28
2

13
.9

2
(4

.1
5)

N
=

52
14

.9
3

(2
.7

9)
N

=
78

12
.9

4
(3

.3
8)

N
=

18

En
gl

is
h

T1
;S

pa
ni

sh
an

d
En

gl
is

h
T1

;C
hi

ne
se

an
d

En
gl

is
h

T1
;

an
d

Ja
pa

ne
se

T1
,a

ve
ra

ge
pe

rfo
rm

an
ce

of
ch

ild
re

n
be

fo
re

le
ar

ni
ng

a
se

co
nd

la
ng

ua
ge

in
th

e
fir

st
w

av
e

of
te

st
in

g
(T

im
e

1)
;E

ng
lis

h
T2

;
S

pa
ni

sh
an

d
En

gl
is

h
T2

;C
hi

ne
se

an
d

En
gl

is
h

T2
;a

nd
Ja

pa
ne

se
T2

,a
ve

ra
ge

pe
rfo

rm
an

ce
of

ch
ild

re
n

af
te

r
le

ar
ni

ng
a

se
co

nd
la

ng
ua

ge
fo

r
on

e
ac

ad
em

ic
ye

ar
in

th
e

se
co

nd
w

av
e

of
te

st
in

g
(T

im
e

2)
.

Frontiers in Psychology | www.frontiersin.org March 2015 | Volume 6 | Article 333 | 139

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Rodic et al. Character-based writing and arithmetic

found with 18-year-old students from the US whose spatial abil-
ity predicted mathematical portion of Scholastic Aptitude Tests
(SATs) even after controlling for IQ (Rohde and Thompson,
2007). The smaller number of participants and the larger stan-
dard errors in the UK sample indicated possibility of insufficient
power to detect any effects that might have existed in this sam-
ple. Further, as spatial ability is a complex multifactorial domain,
our findings may not extend beyond the relationship between 3-D
mental rotation ability and arithmetic. Future studies with tasks
measuring different aspects of spatial ability (e.g., spatial memory
or navigation) are needed to assess whether different aspects of
spatial ability have different relation to arithmetic.

Differences between the two samplesmay also indicate that the
relationship between spatial ability and mathematical ability may
develop differently in different cultures. However, as the UK chil-
dren were between 12 and 15 months younger than the Russian
children at both waves of testing, the differences could also reflect
developmental processes. Future research is needed to confirm
the generalizability of our finding to different populations and at
different ages.

Second, owing to the access of special sampling of the Russian
sample we were able to investigate whether acquisition and usage
of the character-based writing system, within 1 year, could lead
to a better performance in arithmetic and other cognitive skills in
6–9-year children. There were no noticeable differences between
the language groups on any of the tasks at the baseline time
1. At time 2 no significant differences in performance emerged
across the language groups for most tasks. The only task that
showed significant, although small effect (3% of the variance)
was the Number series completion task, even after controlling
for the performance at the baseline. The children who learnt
Chinese/English showed a small advantage over those who learnt
Japanese and Spanish/English. Because these children showed the
biggest improvement in this mathematically related task over
1 year, there is some indication that learning the Chinese lan-
guage may positively influence mathematical reasoning. As the
children were learning mathematics in Russian and were not
tested in Chinese, oral advantage of Chinese language is unlikely
to explain the observed advantage. It is possible that the usage of
the spatially complex character-based writing system indeed plays
a role in the observed advantage in mathematical ability, as sug-
gested by our hypothesis. The lack of advantage in children who
learnt Japanese, which also required learning the character-based
writing system, could be due to the very small sample size of this
sample (N = 25), but further research is needed in order to test
this.

Overall, there was a significant improvement over one aca-
demic year, in both samples on all tasks. The biggest improve-
ment in both samples (Russian = 30% and the UK = 44%),
was seen for the Simple subtraction task. This is not surpris-
ing as this ability was explicitly taught to the pupils throughout
the year. Furthermore, although the UK sample demonstrated
bigger growth on most tasks overall, the only significant dif-
ference between samples was found on Raven’s task, with UK
children showing bigger growth. This finding suggests that the
developmental trajectory of mathematically relevant skills is sim-
ilar for both samples.

The writing system is likely to be only one of many factors
contributing to the advantage of East Asian children in math-
ematics. As discussed earlier, cultural ethos, parental support,
frequent practice and the Confucian values that place high value
on effort and academic success (Leung, 2001) –may all contribute
independently.

Another possible explanation for the lack of the effect of
learning a spatially complex character-based writing system is
that our sample was too young. Previous studies suggested that
mathematical advantage in children with better spatial skills was
due to them employing spatial representations to solve math-
ematical problems (Geary, 1994, 1995). This skill comes with
more experience and might not be used by the children in early
primary school. In order for children to employ such strate-
gies, more mathematical experience and explicit teaching of
these strategies may be needed. Investigations with older chil-
dren are required to explore these possibilities. Additionally, the
usage of spatial strategies might not be useful for simple arith-
metic. For the advantage in arithmetic in this early stage other
factors might play a bigger role, such as the fast pronuncia-
tion of numbers (Geary et al., 1993) and regularity of number
systems. Using spatial strategies as suggested by Geary (1995)
might begin to play a role with more advanced mathematical
problem solving and geometry, which is taught later in formal
education.

The study had several limitations. Several tasks lacked sen-
sitivity as they turned out to be too easy (e.g., Non-symbolic
comparison of numerosity) or too difficult (e.g., Number series
completion). It is possible that more sensitive tasks would
yield some significant differences between the language groups.
Further research with more sensitive tasks is needed to better
address these issues.

Another limitation, is that the length of the period in which
children were exposed to learning the character-based writing
system might not have been sufficient enough for the devel-
opment of greater spatial and, consequently, greater math-
ematical skills. It is likely that a longer and more inten-
sive exposure (more than 3 h a week) is needed for an
effect to emerge. In addition, also it is of course possi-
ble that the mathematical advantage of Asian populations is
not influenced by the usage of character-based writing sys-
tem, but reflects a particular distinctive cognitive feature that
has led to the invention of this complex system in the first
place.

Finally, the sample sizes of our language groups were very
different, ranging from 25 participants for the Japanese lan-
guage group to 391 participants for the English language group.
The fact that Japanese language group consisted of only 25 par-
ticipants at time 1 and 18 at time 2 could have significantly
decreased a chance of detecting any true effects of learning that
language.

Conclusion

Despite curricular and other sample differences, the rate of learn-
ing on all tasks over one academic year was very similar for
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the UK and Russian children. In line with previous research,
spatial ability predicted arithmetic in the Russian sample lon-
gitudinally and beyond intelligence scores. We extended pre-
vious literature by testing whether the acquisition of spa-
tially complex character-based writing system could lead to
better performance in maths, due to the established rela-
tionship between the spatial ability and mathematics. Only a
small effect (3%) of learning Chinese as a second language
was found on mathematical reasoning. Our findings suggest

that despite the importance of spatial ability for mathemat-
ics, one academic year of increased spatial processing through
exposure to spatially complex writing systems might not be
enough to provide a mathematical advantage. Longer peri-
ods of exposure might be needed for it to have a posi-
tive effect on mathematics. Further cross-cultural longitudi-
nal research is needed to identify specific cognitive, cultural,
educational, linguistic and genetic influences on mathematical
learning.
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Linguistic influences in mathematics have previously been explored through subtyping
methodology and by taking advantage of the componential nature of mathematics and
variations in language requirements that exist across tasks. The present longitudinal
investigation aimed to examine the language requirements of mathematical tasks in
young children aged 5–7 years. Initially, 256 children were screened for mathematics and
reading difficulties (RDs) using standardized measures.Those scoring at or below the 35th
percentile on either dimension were classified as having difficulty. From this screening,
115 children were allocated to each of the mathematical difficulty (MD; n = 26), MDRD
(n = 32), RD (n = 22) and typically achieving (n = 35) subtypes.These children were tested
at four time points, separated by 6 monthly intervals, on a battery of seven mathematical
tasks. Growth curve analysis indicated that, in contrast to previous research on older
children, young children with MD and MDRD had very similar patterns of development on
all mathematical tasks. Overall, the subtype comparisons suggested that language played
only a minor mediating role in most tasks, and this was secondary in importance to non-
verbal skills. Correlational evidence suggested that children from the different subtypes
could have been using different mixes of verbal and non-verbal strategies to solve the
mathematical problems.

Keywords: subtyping, language, mathematical difficulties, children, longitudinal, reading

INTRODUCTION
A variety of methodologies have shed light on the nature of
the relationship between language and mathematics including
cross-cultural, correlational, and neuroscientific approaches (e.g.,
Butterworth, 2008; Dowker et al., 2008). One approach is to com-
pare the mathematics performance of children with different levels
of academic achievement, with a focus on subtype differences
that mimic the subgroups of children who are grouped in class-
rooms on the basis of their ability level (e.g., Geary and Hoard,
2001; Koponen et al., 2006; Donlan et al., 2007). In a longitudinal
study of children aged 7–9 years adopting both a componen-
tial and subtyping approach, Hanich et al. (2001) and Jordan
et al. (2003) reported that children with specific mathematical
difficulties (MDs) had an advantage over those with comorbid
mathematics and reading difficulties (MDRD) in areas where
performance may be mediated by language, specifically exact cal-
culation, story problems, and calculation principles. On the other
hand, these groups did not differ on tasks reliant on numeri-
cal magnitudes, visuo-spatial processing, or automaticity, such
as approximate arithmetic. Of course, the curriculum changes
as children progress through school and becomes progressively
more language dominated, meaning that the relationship between
language and mathematics cannot be assumed to be static.

Using a subtyping approach, the present research examined
the language requirements of Hanich et al. (2001) and Jordan
et al. (2003) mathematical tasks for younger children aged 5–
7 years. In contrast to N. Jordan and colleagues’ research on
older children, standardized reading tests would not have been

suitable for the younger children in the present research. There-
fore classifications in the present research were made based on
phonological ability, which is strongly associated with early read-
ing progress (Adams, 1990; Ziegler et al., 2010) and with specific
language difficulty (e.g., Kamhi and Catts, 1986; Catts et al., 2005).
For simplicity, in this paper, the term RD is used to represent
both reading difficulty (RD) and phonological difficulty. Infer-
ences about the role of language in mathematics were made by
comparing the performance of four subtypes: specific MDs; spe-
cific phonological difficulties (RD), comorbid mathematics and
phonological difficulties (MDRD) and typical mathematics and
phonological achievement (TA). Consistent with Hanich et al.
(2001) and Jordan et al. (2003) these subtypes were compared on
seven mathematical tasks; namely, exact calculation; story prob-
lems, approximate arithmetic, place value, calculation principles,
forced retrieval, and written problems.

Hanich et al. (2001) and Jordan et al. (2003) made their con-
clusions about the language requirements of the tasks based on
comparisons between MD and MDRD. They concluded that there
was little evidence of MDs amongst RD relative to TA. In contrast,
the value of RD/TA comparisons has been demonstrated by Jor-
dan et al. (2010) who found that amongst RD children who did
not have MD at age 5 years, approximately half had standardized
mathematical ability consistent with MDRD by age 7 years. Closer
examination revealed that this was due to the age-related shift in
balance from non-verbal to verbal mathematical items in the stan-
dardized mathematics achievement test. Indeed, RD made less
progress than TA on the more verbal tasks such as number facts,
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formal calculation, and formal concepts, but had similar growth
on tasks with lower language requirements including numbering,
number comparison, and informal concepts. As both MD/MDRD
and RD/TA subtype comparisons can tell us about the importance
of language in mathematical tasks, the present research focuses
on both. Further, building upon the work of previous subtyping
studies (e.g., Hanich et al., 2001; Jordan et al., 2003), the present
research evaluated subtyping as an approach to examining the
role of language in mathematics. For this reason the possibility
that the relationship between language and mathematical tasks is
obscured by subtypes adopting different compensatory strategies
is explored. Hereafter follows a synopsis of what is currently known
about the language requirements of these seven mathematical
tasks.

Exact calculation is an untimed task involving questions such as
“how much is 3 plus 5?” or “how much is 6 take away 3?” Previous
studies have suggested that language skills are unique predictors
of performance on this task (Swanson and Beebe-Frankenberger,
2004; Fuchs et al., 2005, 2006). A longitudinal study examining
the mathematical abilities of 5–9-years-old children with specific
language impairment (SLI) suggests that these counting-related
skills are indeed verbally mediated. The key problem areas identi-
fied at age five in these children included producing the number
word sequence and counting accurately (Fazio, 1999). Hanich et al.
(2001) found that 7-years-old children with MDRD had a more
severe impairment in exact calculation than those with MD only.
The advantage of MD over MDRD on this task appears to be
due to MD’s more accurate use of verbal/finger counting pro-
cedures and comparatively better understanding of calculation
principles (Jordan and Montani, 1997; Geary et al., 1999; Jordan
and Hanich, 2000). Clearly there is strong evidence to suggest this
task is verbally demanding for young children, and these effects
can be observed from as young as 5 years. Although children with
MD were found to outperform MDRD on this task, they still did
not perform as well as typically achieving (TA) children at age 7
(Hanich et al., 2001), which is unsurprising given the verbal and
non-verbal requirements of counting (Dowker, 2005).

Story problems are untimed arithmetic problems presented
in word format that rely on both verbal and non-verbal abilities
(Swanson and Beebe-Frankenberger, 2004; Fuchs et al., 2006), and
the language requirements of this task are considerably greater
than those of exact calculation. Good language skills will help
the children to understand the meaning of the story problem,
to subsequently form a problem representation, and to read and
review the problem rather than relying on holding the problem in
memory. Indeed, Jordan et al. (1995) had previously found that
children aged 6 with low language ability but adequate spatial
ability were impaired on this task relative to normally achieving
children. Of course, other non-linguistic skills are also important
such as the ability to form concrete or numerical representations
of word problems (Dowker, 2005). Subtyping evidence highlights
the importance of language ability for this task; comparisons of
mathematical subtypes showed that children aged 7–9 years with
MDRD consistently perform less well on story problems than those
with MD (Hanich et al., 2001; Jordan et al., 2003). Hanich et al.
(2001) suggested that, although the performance of MD was weak-
ened by their mathematical deficits, such children may have been

able to compensate, to an extent, through their unimpaired verbal
skills, and therefore outperform MDRD. Likewise the unimpaired
mathematical skills of the RD subtype may have helped alleviate
the negative impact of their poor language skills when perform-
ing this task. By contrast, the difficulties observed in MDRD, who
have weaknesses in both mathematics and reading may have been
due their limited compensatory skills. These ideas are speculative
and the exact nature of compensatory routes to problem solving is
unclear. It is perhaps surprising that the RD subtype did not dis-
play a stronger impairment on this task, because understanding
the problem through language has been highlighted as a particular
area of difficulty for children.

A distinction between approximate (e.g., 2 + 3 = 4 or
11) and exact (e.g., 2 + 3 = ?) arithmetic has been made
in educational research (Dowker, 2003). Despite sharing some
key skills (e.g., using relations between numbers) and per-
formance on these tasks being associated in young children
(Dowker, 1998), discrepancies and dissociations have been found
between these tasks in typically developing children (Dowker,
1994, 1998), neuropsychological patients with dyscalculia (War-
rington, 1982; Dehaene and Cohen, 1991), and adults with
dyslexia (Gobel and Snowling, 2010). Cross-cultural research
highlights that cultures that lack number words beyond 5 are
able to perform approximate but not exact arithmetic when the
problems involve numbers outside their vocabulary range (Pica
et al., 2004). Imaging studies show that exact calculation pro-
duces greater activation of areas of the brain associated with
language, while performing approximate arithmetic leads to
greater activation of areas involved in the processing of quan-
tity and spatial information (Dehaene et al., 1999). Subtyping
evidence based on 7–9-years-old also indicates that approxi-
mate arithmetic has relatively low language demands; both MD
and MDRD displayed a similar level of impairment, while RD
performed as well as TA (Hanich et al., 2001; Jordan et al.,
2003).

Place value tasks assess understanding of how the position of a
digit represents a value, as well as ability to name numbers. Chil-
dren who speak a language with a regular counting system such
as Welsh are better at reading two digit numbers than those who
speak English which has an irregular counting system (Dowker
et al., 2008). Correlational evidence shows that linguistic skills are
related to performance on a number naming task, as is spatial
span but to a lesser extent than linguistic ability (LeFevre et al.,
2010). Subtyping studies indicate that children with MD outper-
form MDRD on this task (Jordan and Hanich, 2000), and those
with RD (Hanich et al., 2001) and SLI (Grauberg, 1998) have dif-
ficulty compared to normally achieving children. Contrary to this
idea, Hanich et al. (2001) reported that MD and MDRD had a
similar level of performance on a place value task. They also found
that both MD and MDRD were impaired relative to TA children,
concluding that non-verbal skills must also be important. Jordan
et al. (2003) found little difference between the subtypes on num-
ber naming, suggesting that this part of the task was too easy for
children aged 7–9 years, although it is likely that differences will
be found in younger children. Overall these findings indicate that
both verbal and non-verbal abilities facilitate performance on this
task.
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Calculation principles such as commutativity, n + 1 and inver-
sion can be used by children to infer the answers to mathematics
problems rather than having to fully calculate the answer. Dowker
(1998) found that for children aged 5–9 years verbal IQ predicts
the use of calculation principles on addition tasks, while both
verbal and performance IQ are predictive for subtraction; also
predictive of calculation principles use on addition tasks was a ver-
bal/performance IQ discrepancy, possibly because uneven abilities
make it difficult to follow standard school-taught procedures, lead-
ing children to adopt alternative strategies. Hanich et al. (2001)
and Jordan et al. (2003) proposed that when these principles are
taught at school, language comprehension may be key to develop-
ing a conceptual understanding of them. Subtyping studies have
shown that at age 7 children with MD performed at the same
level as MDRD; however, by age 9 children with MD significantly
outperformed MDRD (Hanich et al., 2001; Jordan et al., 2003).

Fact retrieval assesses the ability to recall answers to problems
directly from memory. Subtyping evidence indicates that poor
fact retrieval is the most consistent deficit in children with MDs
(Russell and Ginsburg, 1984; Geary, 1990, 1993; Geary et al., 1991;
Barrouillet et al., 1997; Ostad, 1997, 1998, 1999, 2000; Hanich
et al., 2001; Jordan et al., 2003) and in individuals with Turner syn-
drome who have normal reading ability (Rovet et al., 1994; Molko
et al., 2003; Bruandet et al., 2004). These findings strongly indicate
that non-verbal factors must influence performance on this task.
Although fact retrieval deficits have been identified as a defining
feature of MD by many studies, care must be taken when interpret-
ing this finding. As Dowker (2004) points out, arithmetic screening
tests often emphasize fact retrieval, consequently it is unsurpris-
ing that those children identified as MD on the basis of that test
display impairments on a fact retrieval task. While non-verbal
skills such as subitizing ability appear to facilitate performance on
forced retrieval tasks (Koontz and Berch, 1996), language is also
important, as children and adults with specific RDs do not per-
form as well as normally achieving children on forced retrieval
(Geary et al., 2000; Hanich et al., 2001; Simmons and Singleton,
2006; Smedt and Boets, 2010), nor do children with SLIs (Fazio,
1999). There are a number of reasons why children with RDs
experience fact retrieval difficulties. For example, Robinson et al.
(2002) point out that the repetition method of learning mathemat-
ical facts relies very heavily on phonological ability. Additionally,
counting is a verbally mediated skill which is commonly used by
young children to solve arithmetic problems and correctly solving
these problems through counting will strengthen the association
between the problem and the solution (Siegler and Shrager, 1984).

Written problems are presented in a vertical visual format
and are not read to the children (e.g., Hanich et al., 2001;
Jordan et al., 2003). As all problems are displayed in vertical for-
mat it is inevitable that some degree of spatial ability is needed
for the correct placement and alignment of digits (Dowker, 2005).
Evidence suggesting that this task requires good non-verbal skills
comes from a study of children with visuo-spatial learning dif-
ficulty but normal reading ability (Venneri et al., 2003). Despite
performing similar to controls on an oral calculation task, these
children displayed impairments on a written calculation task. In
addition, Hanich et al. (2001) and Jordan et al. (2003) found that
both subtypes with MD had a similar level of impairment on this

task, and those with specific RDs did not. This indicates that non-
verbal ability plays a greater role than verbal ability in this task.
The written problems task used by Jordan et al. (2003) involved
problems both with and without a carry/borrow operation. As
items with carry/borrow operations are not included in the cur-
riculum for the age group involved in the present study, these
items are not included in our adapted version of this task. Relative
to normally achieving children, those with visuo-spatial learn-
ing difficulty have more difficulty when a carry/borrow operation
is required than when it is not (Venneri et al., 2003). Therefore,
by removing this requirement, the task makes fewer non-verbal
demands and this must be taken into consideration when making
predictions about the performance of the subtypes on this task.

Our predictions about the role of language in each of the seven
mathematical tasks were made based on studies of older children
with MD and what we already know about the normal develop-
ment of children aged 5–7 years. It is expected that subtyping
evidence will indicate that both verbal and non-verbal skills are
important for tasks such as exact calculation, story problems, cal-
culation principles, place value, and forced retrieval. On the other
hand, performance on tasks such as written problems and approx-
imate arithmetic is likely to involve relatively fewer language skills.
In some ways language could play a more important role in task
performance in the early years because children aged 5–7 years
are more reliant on verbal counting-based procedures than older
children (Siegler, 1996). It is possible, however, that as the lan-
guage skills of the children in the present research will be less
well-developed than the sample in Hanich et al. (2001) and Jordan
et al. (2003), the TA children will not yet have developed as much
of an advantage. Since the maths curriculum becomes progres-
sively more language dominated over the early school years, the
relation between language and mathematics cannot be assumed to
be static. In this study we explore the consistency of MD and RD
relationships in the earliest school years, in children 5–7 years of
age.

MATERIALS AND METHODS
PARTICIPANTS
The 14 participating schools in this study were from a range of
demographic areas, including representation from both urban and
rural areas. The Northern Ireland Multiple Deprivation Measure
(Northern Ireland Statistics and Research Agency, 2005) rankings
for each school’s intake area (1 highest, 890 lowest), indicated that
about half of the schools in the sample were located in deprived
areas and the other half in the more affluent areas of Northern Ire-
land (range 2–887).All Year 1 children in the participating schools
who had parental consent took part in the screening exercise. The
mathematics and phonological difficulty screening tests were indi-
vidually administered to 256 children with a typical testing session
lasting 25–30 min. All participants spoke English as their first lan-
guage. From this screening, 115 children were retained to allow
for comparable sample sizes in the four subtypes of interest (see
Table 1). At the time of screening the children were aged 5½ years
(M = 65.59 months; SD = 3.61), and slightly more males (55%)
took part than females.

The specific achievement criteria for each subtype are as
follows:
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Table 1 | Subtype ability characteristics and sample sizes.

Subtype N Mathematical

percentile score

Mean (SD)

Phonology

percentile score

Mean (SD)

Verbal percentile

score Mean (SD)

Non-verbal

percentile score

Mean (SD)
Time

1 2 3 4

MDRD 32 29 30 29 21.34 (9.44) 20.98 (11.57) 22.80 (16.35) 37.72 (23.04)

MD 26 25 25 24 24.42 (10.89) 46.96 (19.21) 42.62 (19.32) 38.81 (27.05)

RD 22 24 19 20 49.27 (14.37) 21.82 (10.76) 31.90 (20.32) 48.62 (25.93)

TA 35 33 29 29 53.57 (16.29) 54.93 (13.63) 46.72 (20.93) 44.63 (23.45)

MD: Mathematics score at or below the 35th percentile, and
phonological score at or above the 40th percentile.
RD: Phonological score at or below the 35th percentile, and math-
ematics score at or above the 40th percentile.
MDRD: Both mathematics and phonological scores at or below
the 35th percentile.
TA: Both mathematics and phonological scores at or above the
40th percentile.
None: Children with phonological/mathematics scores within the
36th–39th percentile range were unclassified.

SCREENING MEASURES
Standardized mathematics ability: the Test of Early Mathemat-
ics Ability 3, Form A (TEMA 3, Ginsburg and Baroody, 2003)
was designed to identify young children with MDs aged 3:0–
8:11 years. This test examines formal and informal mathemati-
cal skills including number comparison, non-verbal arithmetic,
counting, problem solving, numbering skills, numeral literacy,
mastery of number facts, calculation skills, and the understand-
ing of concepts. In a study by Mazzocco and Myers (2003) which
employed various standardized tests, the Test of Early Mathemat-
ics Ability, TEMA-2 (Ginsburg and Baroody, 1990) was reported
as the test which produced the most normally distributed data
and the greatest stability in test performance over time. The
TEMA-3 test has high test–retest reliability (0.95) and corre-
lates moderately (0.55) with the applied problems subtest of the
Woodcock–Johnson III Tests of Achievement (Woodcock et al.,
2001).

Standardized phonological ability: the Rhyme Detection and
Phoneme Deletion (beginning sounds) subtests of the Phono-
logical Abilities Test (PAT; Muter et al., 1997) measure young
children’s phonological ability, which is a strong predictor of
early reading progress (Adams, 1990). The Rhyme Detection
subtest requires a child to select which of three words rhyme
with the stimulus word (e.g., cat, which word rhymes?, fish,
gun, or hat). For the Phoneme Deletion (beginning sounds)
subtest the child is required to delete the first phoneme of a
single syllable word (e.g., “bus” without the [b] says [us]).The
Rhyme Detection and Phoneme Deletion – Beginning Sounds
subtests were selected because overall they are considered to be
the best predictors at age 5, 6, and 7 years of scores on the
BAS word reading test (Elliott et al., 1997), and they have good
test–retest reliability (Phoneme Deletion, 0.84; Rhyme Detection,
0.80).

VERBAL AND NON-VERBAL ABILITY MEASURES
The Verbal cluster (Word Definitions and Verbal Similarities) and
the Non-Verbal subscale (Matrices) of the British Ability Scales
2 (BAS-2; Elliott et al., 1997) were used as ability measures at
time 2. In the word definitions test children were presented
orally with a word and asked what it meant. In order to be
scored as correct, the child had to express the key concepts of
the word’s meaning, rather than simply to use it in the correct
context. The Verbal Similarities test assesses a child’s ability to
explain how two words are similar. For example, when asked
why an apple and orange are alike they could say they are both
fruits. More general answers that would apply to other cate-
gories (e.g., both have skins) are scored as incorrect. The purpose
of the matrices subtest is to examine a child’s ability to cor-
rectly identify those rules that govern variables in abstract figures.
For each item the child must choose which of six alternatives
correspond to the geometric pattern that is missing from the
matrix. The verbal cluster has a correlation of 0.69 with the
corresponding scale of the WISC III, and the non-verbal rea-
soning cluster has a correlation of 0.56 with the performance
scale of the WISC III. All subtests have good internal reliability
for 6-years-old (word definitions, 0.79; verbal similarities, 0.88;
matrices, 0.78).

BATTERY OF MATHEMATICAL TASKS
The mathematics test battery comprised seven tasks: exact cal-
culation, story problems, approximate arithmetic, place value,
calculation principles, forced retrieval, and written problems.
These tasks were closely based on those used previously by
N. Jordan and colleagues. with 7–9-years-old. A number of adjust-
ments were made to the tasks so that they would be suitable
for children aged 5–7 years. (1) The time limits for approximate
arithmetic, calculation principles, and forced retrieval tasks were
increased to accommodate the slower processing speeds typical
of younger children. (2) The administration time of N. Jordan’s
battery was considered too long for young children and therefore
the number of items in each task was reduced for the present
investigation. (3) Digit correspondence items were omitted from
the place value task as they were considered to be too difficult
for children aged 5–7 years. (4) Problems with a carry oper-
ation were excluded from the written problems task, because
this concept is not taught during the early years of primary
school. These tasks are described in further detail in Jordan et al.
(2009).
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PROCEDURE
Table 1 displays the ability information for each subtype in the
experimental sample, and sample sizes at each time the mathemati-
cal test battery was administered. From the 256 children screened,
115 were allocated to the four achievement subtypes and com-
pleted the mathematical tasks at time 1. Attrition rates for times 2,
3, and 4 were 3, 10, and 11% respectively. This total sample of 115
included all children identified as having MD or RD. There were
too many MDRD and TA children to retain for further longitudinal
testing from the 256 children screened. Therefore a subset of chil-
dren with MDRD was kept; these children were selected carefully
to ensure that MDRD were well-matched to MD for mathematics
ability and to RD for phonological ability. Similarly, TA children
were selected to match the MD group for phonological ability and
the RD group for mathematics ability.

All testing was completed on an individual basis at the par-
ticipating schools by one experimenter who had received police
clearance. The study was approved by the School of Psychology
Research Ethics Committee at Queen’s University Belfast. The
children from the four achievement subtypes were assessed lon-
gitudinally on a battery of mathematical tasks from age 5½ years
onwards. Each child completed the mathematical test battery at
four time points separated by 6 monthly intervals, and the admin-
istration duration for each session was on average 25 min. Four
versions of the battery were constructed in which the order of
items was varied for the exact calculation, story problems, approx-
imate arithmetic, and forced retrieval tasks. Each child was given
a different version of the test battery at the four time points; the
presentation order across the four time points for these versions
was varied within each subtype. For all children, the tasks were
presented in the following order, (1) exact calculation, (2) story
problems, (3) approximate arithmetic, (4) place value, (5) calcu-
lation principles, (6) forced retrieval, and (7) written problems.
The verbal and non-verbal ability measures were administered
at age 6–106 of the 115 (9 were absent) participating children.
Testing took 20–30 min depending on the ability level of the
child.

RESULTS
DATA ANALYSIS PROCEDURES
Raw mean scores and standard deviations are shown in Table 2,
while estimated trajectories are shown in Figure 1. All models
were estimated by maximum likelihood (ML) using AMOS 7
(Arbuckle, 2006). Prior to the data analysis, individual and group
level growth plots for each of the mathematical subtasks were
examined; these provided an indication of the approximate shape
of growth for each task. These plots revealed that, for all subtypes,
growth appeared to be approximately linear on story problems,
approximate arithmetic, place value, forced retrieval and written
problems tasks, and curvilinear on exact calculation and calcula-
tion principles tasks. It was also apparent that for all tasks there
was considerable variation in final status and to a lesser extent
growth rates, not only between, but also within, subtypes.

Data analysis consisted of two stages, the first of which involved
fitting an unconditional model (without predictors) for the whole
sample to each of the seven mathematical tasks, to determine if
linear or non-linear models provided better fit. In the second

stage of the analysis, conditional models were fit to each math-
ematical task, with achievement group membership as a predictor.
Three types of model were tested in this analysis including, linear,
freed loading, and quadratic. For all models the slope loading
for the fourth time point was set to 0, in order to scale the
intercept factor to represent final status. For both linear and non-
linear models, the measurement occasions were parameterised in
such a way as to reflect rates of growth in terms of 6-months
increments.

LINEAR AND NON-LINEAR UNCONDITIONAL MODEL COMPARISONS
For all tasks, nested model comparisons were used to evaluate
whether growth was linear or non-linear. Chi-square differ-
ence tests were used to evaluate if the specification of a freed
loading model provided a significantly better model fit than a
linear model. The results indicated that a non-linear model did
not significantly improve model fit for five of the tasks (story
problems, approximate arithmetic, place value, forced retrieval,
and written problems) suggesting that growth for these tasks
was probably linear. By contrast, the chi-square difference test
was significant for the exact calculation (χ2 = 13.47, df = 2,
p < 0.01) and for the calculation principles task (χ2 = 13.04,
df = 2, p < 0.01). This would suggest that a non-linear
model would better describe the shape of growth for these
tasks.

When a quadratic model was run for the calculation princi-
ples task multiple estimation problems were encountered, which,
according to Bollen and Curran (2006) suggests that this model
provides a poor representation of the observed data. In such cases
where growth does not follow a strict linear or quadratic trajec-
tory a freed loading model is more suitable, therefore a freed
loading model was specified for the calculation principles task.
On the other hand, the quadratic model did provide a good fit
for the exact calculation task. Although the mean of this factor
(χ2 = 9.673, df = 1, p < 0.01) was significantly different from
0, the variance was not. As there was little variation in accelera-
tion then there would be no value in using achievement subtype
membership as a predictor. It would still have been possible to use
a quadratic model for this task by fixing the variance; however,
to provide more comparability in terms of the interpretation of
growth rates across tasks, a freed loading model was also specified
for this task.

According to the chi-square test statistics all the models fit well,
as there was no significant difference between the models and
the data (Table 3). The model for story problems and calculation
principles do not provide an exact fit according to the root-mean-
square error of approximation (RMSEA) statistics; nevertheless,
these values are still considered acceptable (Browne and Cud-
eck, 1993). All models fit well-according to the Tucker Lewis
index (TLI) and incremental fit index (IFI) statistics (between 0.9
and 1.2).

Table 4 displays the means and variances for final status and the
growth rates for the combined sample on each task. For all tasks the
variances for the growth rates and final status were significantly
greater than zero, therefore the analysis of parameter correlates
could be pursued. In the next stage of data analysis, achievement
subtype was added as a predictor to the model for each task.
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Table 2 | Mean raw scores and standard deviation on the mathematical tasks by subtype at times 1–4.

Task Subtype Time 1 Time 2 Time 3 Time 4

Mean SD Mean SD Mean SD Mean SD

Exact calculation MDRD 0.81 1.15 1.66 1.63 2.90 1.79 3.76 1.86

MD 1.62 1.30 3.24 2.03 4.04 1.77 4.63 1.74

RD 1.82 1.47 3.79 1.89 4.79 1.44 5.20 1.24

TA 2.74 1.72 4.12 1.73 4.97 1.32 5.59 0.68

Story problems MDRD 0.84 0.85 1.41 1.09 2.00 1.36 2.72 1.60

MD 1.46 1.36 2.16 1.57 2.36 1.78 3.33 1.90

RD 1.14 0.94 2.63 1.50 3.32 1.63 4.25 1.41

TA 2.17 1.25 2.82 1.74 4.10 1.52 4.66 1.74

Approximate arithmetic MDRD 5.91 2.43 7.41 2.10 8.23 2.22 8.83 2.07

MD 6.85 2.39 8.16 2.17 8.44 2.77 9.96 1.78

RD 7.09 2.64 8.04 2.85 9.16 1.57 10.40 1.85

TA 7.46 2.23 8.30 2.53 9.31 2.22 10.55 2.03

Place value MDRD 1.84 0.81 2.45 0.74 2.80 0.76 3.41 0.98

MD 2.69 0.79 2.84 1.14 3.64 0.91 4.17 0.76

RD 2.23 0.61 3.00 0.59 3.47 0.70 4.15 0.88

TA 2.83 1.07 3.55 0.97 4.34 1.26 5.00 1.13

Calculation principles MDRD 0.13 0.42 0.10 0.41 0.93 1.01 1.55 1.43

MD 0.42 0.76 0.88 1.09 2.28 1.59 2.54 1.67

RD 0.32 0.65 1.08 1.06 2.26 1.66 3.55 1.70

TA 1.11 1.30 1.76 1.44 3.28 1.79 4.00 1.71

Forced retrieval MDRD 0.63 0.87 0.55 0.83 1.70 1.73 2.59 1.97

MD 1.19 1.13 2.16 1.65 3.40 1.76 3.58 1.47

RD 1.23 1.02 2.13 1.54 3.37 1.71 4.10 2.10

TA 2.00 1.33 3.24 1.73 4.07 1.60 5.07 0.84

Written problems MDRD 0.31 0.54 1.34 1.54 2.13 2.03 3.31 2.35

MD 1.08 1.87 2.28 2.03 3.20 2.63 5.25 2.95

RD 1.18 1.01 3.00 2.36 4.32 2.58 5.35 2.62

TA 1.77 1.66 3.76 2.45 4.72 2.67 6.00 1.91

Maximum possible score by task: exact calculation (6), story problems (8) approximate arithmetic (13), place value (7), calculation principles (6); forced retrieval (6);
written problems (8).

CONDITIONAL MODELS WITH ACHIEVEMENT GROUP MEMBERSHIP AS
A PREDICTOR
To enable between-group comparisons, final status and growth
rates were regressed on three dummy variables. In the first set of
models, MD, RD, and TA were coded as 1 and MDRD, the reference
group, was coded as 0. In order to compare all groups, models were
also estimated with TA and then with RD as the reference group.

The fit indices (Table 5), show that most models still fit well
after the predictor was added and the model fit actually improved
for the story problems and calculation principles tasks. The fit
indices for the approximate arithmetic task model are not as good
as they were before achievement subtype was added to the model;
despite this the overall model fit for this task is still acceptable.

For all tasks, there was significant variation in final status
which was unexplained by achievement subtype membership

(Table 6). With the exception of story problems, after controlling
for achievement subtype membership, there was still considerable
unexplained variance in growth rates. In fact, for all tasks, achieve-
ment subtype membership explained much less of the variance in
growth rate than in final status. Achievement subtype membership
explained much more variance in the growth rates for story prob-
lems (24%) and calculation principles (19%) than for the other
mathematical tasks. From the remaining tasks, approximate arith-
metic is the one for which achievement subtype membership
explains the least variance, both in terms of final status (12%) and
growth rates (2%). It is likely that, for these reasons, the model
for the approximate arithmetic task fits less well after achievement
subtype membership was added as a predictor to the model.

Growth curve model comparisons between the MD and MDRD
subtypes revealed no significant differences in terms of final status
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FIGURE 1 | Estimated mean scores on the mathematical tasks by achievement subtype.
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Table 3 | Fit indices for the final unconditional models.

Task χ2 TLI IFI RMSEA

Exact calculation p = 0.42 1.01 1.00 0.00

Story problems p = 0.18 0.97 0.98 0.07

Approximate arithmetic p = 0.90 1.16 1.07 0.00

Place value p = 0.63 1.03 1.01 0.00

Calculation principles p = 0.15 0.94 0.98 0.08

Forced retrieval p = 0.58 1.02 1.01 0.00

Written problems p = 0.66 1.03 1.01 0.00

Fit indices Ideal fit; Chi-square test statistic (χ2) = non-significant p-value;Tucker-
Lewis index (TLI) = 1; Incremental fit index (IFI) = 1; Root-mean-square error of
approximation (RMSEA) ≤0.05.

Table 4 | Estimated parameters for the combined sample by task.

Task Final status Growth rate Covariance

(FS/GR)
Mean Variance Mean Variance

Exact calculation 4.71 2.19 0.98 0.25 0.36

Story problems 3.72 2.87 0.75 0.16 0.58

Approximate arithmetic 9.83 2.92 0.99 0.36 0.70

Place value 4.17 1.01 0.59 0.09 0.23

Calculation principles 2.82 2.83 0.77 0.24 0.73

Forced retrieval 3.76 3.18 0.83 0.29 0.76

Written problems 4.89 5.33 1.26 0.43 1.21

FS/GR is final status/growth rate. All significant at the p < 0.05 level.

and growth rates on any of the mathematical tasks (Table 7 and
Figure 1). Furthermore, both subtypes had significantly lower
final status on all tasks relative to TA children. The MD subtype
displayed significantly weaker growth over the 18 months period
than normally achieving children on the story problems, place
value, calculation principles and forced retrieval tasks. Despite

Table 5 | Fit indices for the conditional models.

Task χ2 TLI IFI RMSEA

Exact calculation p = 0.454 1.00 1.00 0.00

Story Problems p = 0.193 0.96 0.99 0.05

Approximate arithmetic p = 0.072 0.85 0.95 0.08

Place value p = 0.322 0.98 0.99 0.04

Calculation principles p = 0.423 1.00 1.00 0.01

Forced retrieval p = 0.258 0.97 1.00 0.05

Written problems p = 0.287 0.97 0.99 0.04

Table 6 | Variance explained by achievement subtype membership.

Task Final status Growth rate

Variance R2 Variance R2

Exact calculation 1.72** 0.20 0.23** 0.02

Story problems 2.03** 0.29 0.12 0.24

Approximate arithmetic 2.59** 0.12 0.38* 0.02

Place value 0.73** 0.29 0.09** 0.08

Calculation principles 1.84** 0.36 0.21** 0.19

Forced retrieval 2.37** 0.26 0.26** 0.07

Written problems 4.28** 0.18 0.36** 0.07

Variance refers to the variance in intercepts and slopes remaining after controlling
for achievement subtype membership. R2 the amount of variance in the model
explained by achievement subtype membership. * p < 0.05, ** p < 0.01.

MDRD and MD having similar growth rates across tasks, the only
task on which MDRD experienced significantly less growth than
normally achieving children was calculation principles.

The RD subtype had significantly greater final status than both
MD and MDRD on the exact calculation and story problems tasks
and only the MDRD subtype on calculation principles. On the
story problems and calculation principles tasks the RD subtype
had significantly greater growth than both the MD and MDRD
subtypes.

Table 7 | Estimated final status (age 7 years) and growth rates by achievement subtype.

MDRD MD RD TA

FS GR FS GR FS GR FS GR

Exact calculation 4.07a,b 1.00 4.06a,b 0.96 5.02 1.10 5.56 0.91

Story problems 2.80a,b 0.64b 2.82a,b 0.50a,b 4.38 1.05 4.74 0.84

Approximate arithmetic 9.39a 1.01 9.12a 0.84 10.00 1.06 10.63 1.05

Place value 3.74a 0.54 3.72a 0.50a 4.06a 0.57 4.98 0.73

Calculation principles 1.66a,b 0.52a,b 2.26a 0.63a,b 3.19a 0.97 4.13 1.02

Forced retrieval 2.99a 0.79 2.99a 0.62a 3.76a 0.87 5.09 1.01

Written problems 3.73a 1.04 4.30a 1.22 5.39 1.44 6.10 1.39

FS (final status), GR (growth rate). Significant differences, p < 0.05. aTA > MDRD, MD, RD; bRD > MDRD, MD.
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Table 8 | Correlations between phonological, verbal and non-verbal

ability, and performance on each mathematical task by subtype.

Subtype Task Phonological

ability

Verbal

ability

Non-verbal

ability

TA Exact calculation 0.11 –0.31* –0.03

Story problems 0.12 0.43* 0.23

Approximate

arithmetic

0.34* 0.17 –0.03

Place value 0.41* 0.40* 0.40*

Calculation principles 0.04 0.15 0.29

Forced retrieval 0.05 –0.09 0.11

Written problems 0.40* –0.01 0.05

RD Exact calculation –0.25 –0.15 0.33

Story problems 0.03 0.10 0.46*

Approximate

arithmetic

–0.12 0.19 0.60*

Place value –0.26 0.15 0.42*

Calculation principles 0.01 0.32 0.46*

Forced retrieval –0.01 –0.21 0.43*

Written problems –0.14 –0.03 0.46*

MD Exact calculation 0.78* 0.03 0.38*

Story problems 0.76* 0.39* 0.38*

Approximate

arithmetic

0.63* –0.03 0.13

Place value 0.59* 0.21 0.22

Calculation principles 0.46* 0.17 0.33

Forced retrieval 0.87* 0.13 0.28

Written problems 0.72* 0.22 0.23

MDRD Exact calculation 0.21 –0.06 0.37*

Story problems 0.40* –0.06 0.34*

Approximate

arithmetic

0.19 0.15 –0.05

Place value 0.18 0.02 0.36*

Calculation principles 0.16 0.28 0.07

Forced retrieval 0.28 –0.07 0.58*

Written problems 0.10 –0.06 0.34*

*p < 0.05.

Children with specific RDs performed less well than normally
achieving children at time 4 on all tasks; these differences were
significant for place value, calculation principles, and forced
retrieval. Despite these differences, RD and TA had comparable
growth rates across all tasks. Ceiling effects were apparent on
exact calculation and forced retrieval for the normally achieving
subtype at the end of the developmental period under inves-
tigation. Consequently, these effects may have impeded our
ability to detect significant differences between the subtypes with
learning difficulties and the TA subtype in terms of final status
and growth rate on these tasks. Based on the estimated scores

produced by the growth curve analysis, overall the consistent
pattern for all tasks (Figure 1) was: TA outperformed RD, and
MD and MDRD had a similar level of impairment relative to
RD and TA.

RELATIONSHIPS BETWEEN VERBAL, NON-VERBAL ABILITY, AND THE
MATHEMATICAL TASKS
The relationship between verbal, non-verbal and phonological
ability and performance on each of the mathematical tasks (time 4)
was investigated using Pearson product-moment correlations.
Scores on the ability measures were correlated with performance
on each mathematical task to examine the relationship between
these abilities in TA children and in the subtypes with learning
difficulties (Table 8).

DISCUSSION
The present research examined the role of phonological ability in
the mathematical development of 5–7-years-old using a subtyp-
ing approach. Contrary to Hanich et al. (2001) and Jordan et al.
(2003), both MD and MDRD children aged 5–7 years in the present
study exhibited very similar performance across all mathematical
tasks, as evidenced by their final status (age 7 years) and growth
rates. Despite initial matching for mathematics ability with TA,
RD had consistently weaker performance on place value, calcula-
tion principles, and forced retrieval, suggesting that phonological
ability is important for children aged 5–7 years when perform-
ing these particular tasks. In addition to age-related differences,
some of the adaptations made to N. Jordan’s original battery of
tasks may have led to minor qualitative differences in the nature of
the tasks, possibly limiting comparability with the present inves-
tigation. Furthermore, the use of different mathematics and RD
screening may partly explain the differences in findings between
the present research and that of Hanich et al. (2001) and Jordan
et al. (2003). While phonological ability is related to both language
and reading ability, as Robinson et al. (2002) point out, phonolog-
ical ability may directly influence mathematics achievement. For
example, the repetition method of learning mathematical facts
relies very heavily on phonological ability. As each number fact
is repeated phonological information must be both generated and
stored and each repetition strengthens the association between the
problem and the answer. The greater the association between the
answer and the problem the greater the chance of successful recall.
This may explain why children with poor phonological ability
but strong non-verbal abilities were more impaired in the present
research compared to children with specific RD in other research
(Hanich et al., 2001; Jordan et al., 2003).

As MD and MDRD were initially matched for mathematics
ability, it was not expected that MDRD would perform worse
than MD on all tasks. Rather it was expected that MDRD would
have weaker performance than MD on tasks with stronger lan-
guage requirements, and have similar or possibly better results
than MD on tasks with fewer language requirements if they
could adopt effective compensatory strategies. Despite a body
of research showing that language plays a key role in many of
the mathematical tasks, the MD and MDRD subtypes performed
similarly on all tasks. It is difficult to explain why RD per-
formed worse than TA on some tasks, yet MDRD and MD had
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similar performance despite having different phonological abil-
ities. Of course not all skills associated with mathematics were
assessed in this study and it is possible that MDRD were able
to achieve comparable performance to MD through the use of
alternative skills. Indeed, uncertainty exists over the exact num-
ber of deficits that may contribute to children’s MDs (Swanson,
2007) and to what extent these occur in isolation or co-occur
in various combinations. To date, numerous deficits have been
linked to MD, including poor number sense (Butterworth, 1999),
visuo-spatial difficulties (Rourke and Conway, 1997) and execu-
tive dysfunction (Geary et al., 2007a) and as a group the MDRD
subtype may have had superior skills to MD in any of these
areas.

The possibility that these subtypes were relying on different
strategies when completing the different mathematical tasks has
previously been suggested (Hanich et al., 2001). While this is a
somewhat speculative suggestion, a correlational analysis per-
formed in the present research does lend support to this idea.
Phonological ability was consistently highly associated with the
performance of MD on each of the mathematical tasks, whereas
non-verbal and verbal ability were not. It may seem surprising that
phonological ability was related to maths performance much more
than verbal ability despite both being language-based tasks. How-
ever, compared to the verbal IQ tasks used in the present study, the
phonological tasks require very basic skills, for example, rhyming
and the ability to break words down into phonemes (Muter et al.,
1997). In contrast, the verbal subtests of the British Ability Scales
require a broad range of higher order skills such as vocabulary
knowledge, reasoning, and abstract thinking (Elliott et al., 1997).
By contrast only non-verbal ability predicted the performance of
the RD subtype on each of the mathematical tasks. Similarly, non-
verbal ability was a better predictor than verbal ability of MDRD
children’s performance on most tasks. These findings suggest that
the children with MD may tend to use their intact verbal skills more
often than their impaired non-verbal skills to solve problems. On
the other hand, the RD subtype may use their intact non-verbal
skills more than their weak verbal skills to solve problems. These
findings indicate that language does not play a ‘standard’ role in
mathematical tasks, rather the role of language will vary from indi-
vidual to individual depending on their particular strengths and
weaknesses. Indeed, cross-cultural evidence shows that amongst
cultures where counting words are not available, children solve
non-verbal calculation problems using spatial strategies. In con-
trast English-speaking children hardly ever use spatial strategies
and tend to rely more on counting words (Butterworth et al., 2011).

Greater knowledge of individual differences in strategy use
would allow interventionists to design interventions based on the
strength and weaknesses of the child (Dowker and Sigley, 2010)
rather than forcing them to use ‘standard procedures’ which may
not suit their learning style. For example, students with specific
RD often have difficulty recalling number facts (e.g., Simmons
and Singleton, 2006; Smedt and Boets, 2010), and for these stu-
dents use of derived strategies based on facts that they can recall
may be more appropriate. In some cases students will need assis-
tance to develop appropriate strategies and in other cases they
may come up with their own strategies. For example, university
students with specific RDs mention developing their own visual

strategies (e.g., diagrams) to understand and solve mathematical
problems and to compensate for their relatively weak verbal skills
(Perkin and Croft, 2007). There has been some research on how
children with uneven abilities solve exact calculation compared
to TA children (e.g., Geary et al., 2000; Jordan et al., 2003; Wylie
et al., 2012). Generally speaking these studies show that children
with MD and MDRD employ a different strategy mix to RD or
TA when solving problems, either by relying on developmentally
immature strategies or trying to use mature counting strategies
before developmentally ready. However, less is known about the
use of individual strategies on other mathematical tasks (e.g., place
value, geometry). In addition, asking children about how they
solve problems can only identify different procedures, it does not
tell us about individual differences in terms of how children rep-
resent number in the brain. While much is now known about
the neural basis of numerical cognition (Butterworth and Walsh,
2011), less is known about how children with uneven abilities rep-
resent mathematical problems at a neural level compared to TA
children.

The performance of TA on each of the tasks was correlated
with phonological, verbal and non-verbal ability, to indicate the
language and non-verbal requirements of these tasks for children
with good verbal and non-verbal skills who are more likely to fol-
low standard procedures. For TA children, the correlation analyses
did not highlight any clear bias towards verbal or non-verbal strat-
egy use. In contrast to previous research (Dowker, 1998), verbal
ability did not predict the performance of TA children on most
mathematical tasks. It could be the case that as children get older
and their verbal skills develop further they are better able to utilize
these skills when solving mathematics problems. If so, this may
partially account for the stronger relationship between maths and
verbal IQ observed in Dowker’s sample which comprised chil-
dren aged 5–9 years. It was surprising that for TA verbal and
non-verbal ability did not relate more consistently with the math-
ematical tasks; however, the correlations may have been weakened
by ceiling effects on the mathematical tasks.

A key aim of the present research was to evaluate the suitability
of subtyping as an approach to examining the role of language in
mathematics. On a positive note, subtyping has greater ecologi-
cal validity than correlational analyses, in the sense that children
are arbitrarily classed as having MD in the classroom. Indeed,
decisions regarding whether or not to intervene are often made
based on these arbitrary cut-off points. However, in contrast to
correlational approaches, subtyping does not use full variation in
statistical analysis. It is important to note that a key limitation of
the present study and the previous work of Hanich et al. (2001) and
Jordan et al. (2003), was the use of subtyping classification based
on an assessment at a single time point. Research on subtype sta-
bility has shown that while some young children have persistent
MDs, others have a more variable pattern of achievement and can
be mislabeled if assessed only once (Mazzocco and Myers, 2003).
It is possible that the lenient cut-off point (35th percentile) used
in the present analysis may have affected the results. Indeed, Geary
et al. (2007b) found that children with mathematical disabilities
(<15th percentile) and those with low maths achievement (23rd–
39th percentile) displayed qualitatively different profiles of deficit.
However, Jordan and Hanich (2003) found that children with
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below average (<15th percentile) and those with low (15th–
30th percentile) mathematics achievement displayed qualitatively
similar performance on a range of mathematical tasks.

The present analysis has identified a further limitation of using
a subtyping approach. Assessing the language requirements of
these tasks based on subtyping comparisons is difficult because
in the present study, and in Hanich et al.’s (2001) investigation, on
some occasions the RD subtype was significantly impaired, yet the
MDRD subtype performed at a similar level to the MD subtype.
The opposite situation was also observed by Hanich et al. (2001),
where the MD subtype significantly outperformed the MDRD
subtype yet the RD subtype was not significantly impaired. These
inconsistencies indicate that subtyping on its own as a method-
ology does not give a good indication of the verbal/non-verbal
requirements of a task. Indeed, Bartelet et al. (2014) have con-
cluded that it is difficult to draw conclusions from subtyping
evidence alone due to the heterogeneous nature of MD. Despite
these limitations, subtyping in conjunction with correlational evi-
dence does provide important insights into the role of language
in mathematics. The findings from the present study suggest that
children can achieve very similar performance levels via differ-
ent mixes of verbal and non-verbal strategies. Consistent with the
existing body of research on mathematical tasks (e.g., Dowker,
2005; Dowker et al., 2008; LeFevre et al., 2010), subtypes with
weak verbal or non-verbal ability do not perform as well as their
typically achieving counterparts, suggesting that both language
and non-verbal skills are important in achieving age-appropriate
performance on most tasks.
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Though previous findings report that hearing impaired children exhibit impaired language
and arithmetic skills, our current understanding of how hearing and the associated language
impairments may influence the development of arithmetic skills is still limited. In the
current study numerical/arithmetic performance of 45 children with a cochlea implant were
compared to that of controls matched for hearing age, intelligence and sex. Our main
results were twofold disclosing that children with CI show general as well as specific
numerical/arithmetic impairments. On the one hand, we found an increased percentage
of children with CI with an indication of dyscalculia symptoms, a general slowing in
multiplication and subtraction as well as less accurate number line estimations. On the
other hand, however, children with CI exhibited very circumscribed difficulties associated
with place-value processing. Performance declined specifically when subtraction required
a borrow procedure and number line estimation required the integration of units, tens,
and hundreds instead of only units and tens. Thus, it seems that despite initially atypical
language development, children with CI are able to acquire arithmetic skills in a qualitatively
similar fashion as their normal hearing peers. Nonetheless, when demands on place-value
understanding, which has only recently been proposed to be language mediated, hearing
impaired children experience specific difficulties.

Keywords: number processing, multiplication, number line estimation, subtraction, cochlear implants

INTRODUCTION
At first glance, skills like mental arithmetic and/or magnitude
comparison are not readily dependent on language abilities. In
fact, quite many numerical competencies – such as numerical dis-
crimination and additive/subtractive expectations – are mastered
well before children are able to actively produce their first words
(for a respective review, see Feigenson et al., 2004). Thus, the lack
of studies investigating numerical cognition in individuals with
impaired hearing (who are known to have a delayed or even aber-
rant language development) comes to no surprise. The present
study aims to address the case of deaf and profoundly hearing
impaired children who received a cochlear implant (CI) during
early infancy.

Recent research shows unambiguously that early implantation
enables most of the young users with CI to develop considerable
speech and language competence (e.g., Geers et al., 2003; Nott
et al., 2003; Tomblin et al., 2005; Connor et al., 2006; Johnson
and Goswami, 2010). The developmental trajectories, however,
seem to be deviant from typical with respect to phonetics and
phonology and delayed with respect to grammar and lexicon (e.g.,
Blarney et al., 2001; Chin, 2006; Leyrer, 2008; Adi-Bensaid and
Tubul-Lacy, 2009; Geers et al., 2009; Friedmann and Szterman,
2011). Importantly, such variability in developmental pathways
of linguistic skills might affect other cognitive domains such as
numerical cognition. In the present study, we will evaluate the

benefits and limitations of cochlear implantation for the acquisi-
tion of numerical skills in affected children. Before presenting the
experimental study the interrelation of numerical and language
skills will be elaborated on briefly.

THE INTERRELATION OF NUMERICAL AND LANGUAGE SKILLS
It has been argued that language plays a key role in the devel-
opment of number-related language processing and in particular
so in the development of number concepts (e.g., Carey, 2004).
Following this, LeFevre et al. (2010) proposed a developmen-
tal calculation model that differentiates three relevant pathways
for the development of numerical skills: a linguistic pathway, a
quantitative and a spatial attention pathway. In their sample of
182 children aged 4.5–7.5 years the three aforementioned path-
ways were found to contribute independently to early numerical
skills. Moreover, there is also evidence suggesting influences of
language skills to be rather specific. The currently most influen-
tial model of number processing – the Triple Code model _(see
Dehaene et al., 2003; Arsalidou and Taylor, 2011 for latest amend-
ments) – suggests numerical information to be represented by
three codes within the human brain. The visual-Arabic num-
ber form is the most basic code. It is recruited to perceive digits
as numerically informative symbols and associated with bilateral
occipital brain areas. Additionally, the Triple Code model differ-
entiates between an analogue quantity code and verbal numerical
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representations. The analogue quantity code is involved whenever
quantity or magnitude information of numbers is processed. It
is assumed to be subserved by bilateral cortex areas around the
intra-parietal sulcus. Finally, verbal numerical representations are
recruited in tasks such as number naming. Additionally, arith-
metic facts (e.g., multiplication fact knowledge) are assumed to
be stored in a verbal code. Verbal numerical representations are
associated with left-lateralized perisylvian language areas and the
angular gyrus. In line with the assumption of a verbal numeri-
cal representation language influences should be most prominent
when it comes to arithmetic fact knowledge, whereas represen-
tations of numerical quantity and numerical symbols should be
less dependent on language. Noteworthy, the findings of Kopo-
nen et al. (2006) revealed that number naming speed is indeed
closely related to arithmetic fact retrieval. This means that skilled
calculators are able to directly retrieve the result of a number
fact (e.g., 3 × 4) from phonological long-term memory with-
out having to apply procedural calculation strategies. Additionally,
it has been observed that this fact retrieval processes are sub-
ject to interference by concurrent articulation (Lee and Kang,
2002; Moeller et al., 2011). This provides further evidence for the
verbal (language related) format of arithmetic fact knowledge.
Nevertheless, also more direct evidence for the close interre-
lation between number fact retrieval and language abilities is
accumulating. For instance, Fazio (1999) reported deficient fact
retrieval skills in children diagnosed with a specific language
impairment (SLI, see also Donlan et al., 2007). Furthermore, it
has been found repeatedly that children suffering from dyslexia
(whose core difficulty by definition is impaired acquisition of
written language) often exhibit deficient number fact retrieval,
too (e.g., Snowling, 2000; see also Miles et al., 2001; Simmons and
Singleton, 2008; De Smedt and Boets, 2010; Göbel and Snowl-
ing, 2010). Finally, beyond the case of fact retrieval, counting
abilities have also been observed to be associated with language
competencies (children with dyslexia: Simmons and Singleton,
2008; children with SLI: Koponen et al., 2006; Donlan et al.,
2007).

Nevertheless, as already indicated in the Triple Code model not
all aspects of numerical cognition should be associated with lan-
guage competencies. In line with this suggestion it was found that
subitizing (LeFevre et al., 2010), symbolic calculation (McNeil and
Burgess, 2002), number comparison (O’Hearn and Luna, 2009) as
well as number line estimation (requiring children to estimate the
position of a given number on a presented number line; Koponen
et al., 2006) are rather independent from language skills. However,
even when these tasks are referred to as being non-verbal, recent
research indicated that this might only be part of the story. For
instance Pixner et al. (2011a) disclosed language influences on a
two-digit number comparison task that was administered to Ger-
man, Italian and Czech-speaking first graders. The three groups
are ideal populations to study language influences because they
are distinguishable regarding the correspondence between sym-
bolic Arabic and spoken number word systems. While spoken
and the symbolic Arabic number systems closely correspond to
each other in Italian (venti-cinque/twenty-five → 25], the German
number word system is intransparent insofar as the order of tens
and units is inversed in spoken as compared to symbolic notation

(fünfundzwanzig/five-and-twenty → 25). Finally, in Czech both
inverted and non-inverted number words are utilized. Notewor-
thy, the intransparency of the inverted number word system posed
particular difficulty on German-speaking children’s transcoding
performance in general (Zuber et al., 2009) and Czech-speaking
children when asked to transcode inverted number words (see also
Pixner et al., 2011a for language effects in magnitude comparison).
In line with this, mental number line representations also seem to
be moderated by language characteristics (Helmreich et al., 2011).
LeFevre et al. (2010) propose in their model of numerical devel-
opment that the number line task calls on both semantic (number
magnitude) and spatial representations. Additionally, the authors
suggest that performing the number line estimation task for multi-
digit number ranges requires mastery of the base-10 structure of
the Arabic number system (see also Moeller et al., 2009) which in
turn is clearly language dependent as indicated by recent evidence
from transcoding (Zuber et al., 2009; Pixner et al., 2011b) but also
number line estimation (Helmreich et al., 2011). Taken together,
though there is accumulating evidence for a link between language
and number processing knowledge on the exact nature and the
underlying mechanisms of this association is still rather patchy
even in typically developing not to say in atypically developing
children such as deaf or children with CI.

NUMBER PROCESSING IN HEARING IMPAIRED AND DEAF INDIVIDUALS
A frequent observation in educational settings is that children
with profound hearing impairments as well as deaf children quite
often experience difficulties to acquire calculation skills (e.g.,
Zarfaty et al., 2004; Ansell and Pagliaro, 2006). Upon taking into
account the aforementioned link between language and numerical
skills (typically developing children: Zuber et al., 2009; Helm-
reich et al., 2011; Pixner et al., 2011a,b; children with dyslexia:
Simmons and Singleton, 2008; children with SLI: Koponen et al.,
2006; Donlan et al., 2007) number-related deficiencies in hearing
impaired individuals come to no surprise. Interestingly, already
the National Council of Teachers of the Deaf Research Com-
mittee, 1957 examined 200 deaf students in Great Britain and
found a significant (i.e., a 1–21/2 year) delay in the acquisition
of arithmetical skills. Similar findings are reported by Kramer
(2007) who investigated German-speaking deaf individuals. How-
ever, different from research on typically developing children for
which the interrelation of language and number processing has
been investigated quite specifically, there is a scarcity of studies
systematically investigating specific numerical skills (e.g., arith-
metic fact retrieval, basic arithmetic, number line estimation, etc.)
and its relation to language skills for hearing impaired individuals
in a comparative manner. Therefore, the present study pursued
this issue.

THE PRESENT STUDY
The main aim of the present study was to systematically examine
numerical and arithmetical skills in formerly deaf children that
received a CI in early childhood as compared to typically develop-
ing children. It is important to note that there is broad consensus
in the literature indicating atypical language development in chil-
dren with CI (e.g., Boothroyd et al., 1991; Dawson et al., 1995;
Geers et al., 2009; Pisoni et al., 2010; Ingvalson and Wong, 2013;
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Rinaldi et al., 2013). Therefore, we did not wish to evaluate the
influence of an atypical language development in children with
CI on their numerical/arithmetic abilities by correlating their per-
formance in a language task with those in numerical/arithmetic
tasks. Instead, we compared the performance of children with CI
and a control group matched on hearing age and general intel-
lectual functioning in specific numerical/arithmetic tasks chosen
for either their strong dependence on language-related processing
(i.e., multiplication fact retrieval) or their only weak dependence
on language skills (i.e., two-digit subtraction and number line esti-
mation). Thereby, we aimed at evaluating whether impairments
possibly observed for CI children may be associated with their
known atypical language development. In particular, the following
research questions and hypotheses were pursued.

(1) On a general level we were interested in whether the number
of students with poor arithmetic skills is comparable for chil-
dren with CI and their normal hearing (NH) peers. Following
the rationale that numerical competencies are directly (arith-
metic facts) or indirectly (magnitude representation) related
to verbal language representations it is expected that chil-
dren with CI are more likely to score poor on a standardized
mathematics performance test as compared to their hearing
peers.

(2) More specifically, it was of interest whether possible impair-
ments of children with CI would be most pronounced for
those tasks for which the closest association with language
is assumed. When this is the case, children with CI should
perform significantly worse than their hearing peers in a
multiplication task assessing verbally driven arithmetic fact
retrieval. On the other hand, for tasks with a more indi-
rect association with language processes such as subtraction
and/or number line estimation our hypotheses need to be
more specific. Generally, children with CI should not perform
worse on subtraction. However, this might be moderated by
the need for a borrowing. Following the model of LeFevre
et al. (2010) mastery of the place-value structure of the Ara-
bic number system is language dependent (see also Pixner
et al., 2011a,b). Thus, as successful application of the borrow-
ing procedure requires place-value understanding (see Klein
et al., 2010a,b for the case of carry in addition) we expect
children with CI to experience particular difficulties for bor-
rowing subtraction problems. Similarly, LeFevre et al. (2010)
suggest performance in the number line estimation task to be
associated with place-value understanding (see also Moeller
et al., 2009; Helmreich et al., 2011). Thus, children with CI
should also show poorer performance in the number line
estimation task as compared to their NH peers.

MATERIALS AND METHODS
PARTICIPANTS
Overall, 94 children participated in the present study, 45 chil-
dren (26 males) with CI and 49 NH controls (23 males). Cochlear
implants were surgically placed when children were at a mini-
mum of eight and a maximum of 50 months of age. Participating
children attended third to fifth grade. Fourteen of the hearing
impaired participants were in special educational schools. In these
schools children with CI are taught together with deaf children.

Even though it is tried to teach children with CI using spoken
language as far as possible part of the instruction also includes
sign language.

Though children with CI were older than their hearing peers,
the two groups were comparable with respect to hearing expe-
rience and grade level (see Table 1). Please note that we used
hearing age instead of age at implantation as a variable describing
the hearing/language experience of the children with CI because it
is possible to match the two groups on this variable. As we aimed
at matching our two groups as closely as possible we decided
to use hearing age because it is not possible to match the two
groups on age at implantation as a measure of hearing/language
experience.

Moreover, in Austria hearing impaired children are likely to
start school with a delay of one to 2 years. Thus, grade level was
used as matching criteria between the experimental (CI) and the
control group (NH) because grade level is more relevant (in terms
of the received mathematical instruction) than chronological age
when investigating arithmetical skills. Furthermore, the two study
groups were comparable with respect to overall intellectual func-
tioning and verbal working memory. For central executive (CE)
functioning there even was an advantage for the Children with CI
(see Table 1).

ASSESSMENT AND PROCEDURE
The study was approved by the local ethics committee of the
UMIT, Hall in Tyrol.

To assess math achievement children with CI had to complete
the basic arithmetic operations scale of the Heidelberger Rechen-
test 1–4 (HRT 1–4; Haffner et al., 2005). Please note that control
children were not administered the HRT.

Instead, both groups were asked to solve two PC-administered
tasks tapping multiplication and subtraction skills. In addition, a
number line estimation task was presented in paper-pencil format.
Each child was tested individually in a separate room.

Multiplication capabilities were assessed by a verification task
comprising 80 multiplication problems with one-digit operands.
These critical trials were presented in randomized order preceded
by 10 practice trials to ensure task comprehension. Stimuli were
presented centrally on the screen in the form x × y = z (Arial font,
size 48). On each trial, the problem was presented simultaneously
with an either correct or incorrect solution probe. Additionally,
incorrect probes were separated into two error types: operand
errors representing the correct solution to a neighboring multipli-
cation problem of the same table (e.g., 3 × 4 = 15) and so-called
non-table errors not related to any item of the multiplication tables
(e.g., 3 × 4 = 13). Children were asked to indicate by button press
whether the solution probe was correct (right-hand button press)
or not (left-hand button press). Stimulus presentation was pre-
ceded by a fixation cross presented at the center of the screen for
500 ms. Then the multiplication problem appeared and stayed
visible until one of the response buttons was pressed. After an
inter-stimulus-interval of 500 ms the fixation cross for the next
trial was presented.

Subtraction skills were assessed by a choice reaction task involv-
ing 40 subtraction problems. Comparable to the multiplication
task critical trials were presented in randomized order and were
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Table 1 | Demographic variables and background information on the study groups (mean ± SD).

Children with CI

n = 45

Control group

n = 49

Statistical difference

Age (months) 122.18 ± 11.58 101.86 ± 16.29 t (92) = 6.94; p < 0.001

Hearing experience (months) 98.78 ± 15.35 101.86 ± 16.29 t (92) = 1.55; n.s.

Grade placement Third grade n = 17

Fourth grade n = 21

Fifth grade n = 7

Third grade n = 20

Fourth grade n = 29

t (92) = 1.49; n.s.

Intellectual functioning (T-score)◦ 53.00 ± 9.28◦ 52.69 ± 4.81§ t (92) < 1; n.s.

Verbal working memory (forward span)# 4.93 ± 0.91 4.71 ± 0.68 t (92) = 1.33; n.s.

Central executive (CE) functioning (backward span)# 3.80 ± 0.89 2.92 ± 0.67 t (92) = 5.43; p < 0.001

◦Measured by CFT 20-R (Weiß, 2008).
§ Measured when children attended first grade by the CFT-1 (Cattell et al., 1997). As the CFT is thought to tap the g-factor of intelligence (that is considered to be
rather stable across development) we are confident that intellectual functions are comparable between participant groups.
#Measured by a letter span task.

preceded by 10 practice trials. Importantly, in order to assess
procedural solution strategies rather than direct fact retrieval (as
dominant in multiplication) the subtraction task comprised two-
digit numbers only. Problems were presented in the form xx –
xx (Arial font, size: 48) at the x/y-coordinates (512/300) with the
two solution probes appearing below the problem, either on the
left side (x/y coordinates 300/550) or on the right side (x/y coor-
dinates 724/550). Children had to single out the correct solution
by button press (right or left button press). After a fixation cross
was presented for 500 ms the problem and the solution probes
appeared on the screen simultaneously. The stimuli stayed visible
until one of the response buttons was pressed, directly followed
by the fixation cross of the next trial. Subtractions were catego-
rized into those requiring a borrow procedure (e.g., 52–37) and
those not requiring a borrow procedure (e.g., 49–34). Importantly,
problem size was matched between these item categories.

Number line estimation performance was assessed in a paper-
pencil version of the number-to-position number line estimation
task. Children were asked to estimate the spatial position of a
given number on a number line ranging from 0 to 100 for a
first set of items and from 0 to 1000 for a second set of items
(each line measuring 10 cm). Only the start (0) and end (100
or 1000) point of the number line was specified by the respec-
tive Arabic number. Above each number line the target number
was written in Arabic notation. Overall, 36 critical trials were pre-
sented (n = 18 per range) that were preceded by two practice
items.

SCORING AND ANALYSES
HRT
Performance in the standardized calculation test was scored
according to the procedure described in the test manual (con-
verting raw scores into T-scores).

Multiplication
Multiplication performance was analyzed in two separate two-
way ANOVAs. In a first ANOVA the within-subject factor problem

type (correct vs. incorrect) and the between subject factor partic-
ipant group (CI vs. NH) were discerned. In the second ANOVA
influences of the within-subject factor error type (operand vs.
non-table error) and the between-subject factor participant group
were evaluated. As the two participant groups differed reliably
with respect to CE functioning this variable was incorporated as
a covariate. Both analyses were conducted separately for reaction
times (RT) and error rates.

Subtraction
Subtraction performance was evaluated using a two-way ANOVA
incorporating the within-subject factor task borrowing (with vs.
without) and the between-subject factor participant group (CI
vs. NH). As for multiplication performance, this analysis was run
for RT and error rates and CE functioning was considered as a
covariate.

Number line estimation
Data analysis of the number line task considered the absolute esti-
mation error (i.e., how far the actually indicated position deviated
from the correct position of a target number). As two different
number lines (i.e., ranging from 0 to 100 and from 0 to 1000) were
employed in the current study and in order to make results com-
parable, the percent absolute estimation error [PAE; i.e., (target
number – estimated number)/number range)] per number line
range was used for further analyses (cf. Siegler and Booth, 2004).
Finally, number line estimation performance in terms of PAE was
evaluated in a two-way ANOVA with the within-subject factor
number line range (0–100 vs. 0–1000) and the between-subject
factor participant group (CI vs. NH). Again, CE functioning was
incorporated as a covariate.

RESULTS
HRT
Seven out of 45 children with CI exhibited considerably poor
performance on the index scale basic arithmetic operations (as indi-
cated by a percentile <10). Please note that a percentile <10 is
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used as cut-off for the diagnostic criteria of developmental dyscal-
culia (International Classification of Diseases/ICD 10: Dilling and
Freyberger, 2001; Diagnostic and Statistical Manual of Mental Dis-
orders/DSM IV: American Psychiatric Association [APA], 1994).
Hence, seven children of our experimental group (i.e., 15.6%)
would fall below the diagnostic threshold of developmental dyscal-
culia. Interestingly, another seven children of the experimental
group were found to exhibit excellent performance levels on the
standardized calculation test (as indicated by percentiles >85).
Nevertheless, an statistical evaluation indicated that the T-scores
on the HRT index scale basic arithmetic operations of the exper-
imental group (M = 48.40 SD = 10.49) did not differ reliably
from those of the standardization sample of the HRT [M = 50.00,
SD = 10.00; t(44) = 0.89, n.s.].

MULTIPLICATION
Analyses of problem type
Analyses of error rates did not reveal any significant result. Neither
the main effects of problem type or participant group nor their
interaction turned out to be statistically reliable (all F < 1). There
was also no significant influence of the covariate (F < 1).

With respect to response latencies the ANOVA revealed a sig-
nificant main effect of problem type [F(1,91) = 14.61, p < 0.001].
This indicated faster responses for accepting a correct solution
probe than rejecting an incorrect one (2773 ms vs. 3280 ms,
respectively). Additionally, the reliable main effect of participant
group [F(1,91) = 9.45, p < 0.01] indicated that latencies of chil-
dren with CI were longer than those of NH controls (3516 ms
vs. 2537 ms, respectively, see Figure 1). The interaction of
problem type and group was not significant (F < 1). Finally,
the influence of the covariate was significant [F(1,91) = 8.41,
p < 0.01] with shorter latencies being associated with higher CE
scores.

Analyses of error type
Again, the ANOVA on error rates did not reveal any significant
result. Neither the main effects of error type or participant group

FIGURE 1 | Response latencies separated for problem type (presented

with either correct or incorrect solution probe) and participant group.

Error bars represent one standard error of the mean (SEM).

nor their interaction turned out to be statistically reliable (all
F < 1.25, all p > 0.27). Also the influence of the covariate was
not reliable (F < 1).

The analysis of participants’ response latencies revealed a sig-
nificant main effect of participant group [F(1,91) = 8.41, p < 0.01]
indicating longer latencies for children with CI than for hearing
controls (3794 ms vs. 2767 ms, respectively). Neither the main
effect of error type nor the interaction of group and error type
was statistically reliable (both F < 1). However, the influence of
the covariate was significant [F(1,91) = 8.70, p < 0.01] associating
higher CE scores with faster responses.

Taken together this indicates that responses of children with CI
were reliably delayed. However, both groups exhibited comparable
performance profiles (regarding problem type and error type).

SUBTRACTION
For error rates the ANOVA revealed a significant borrow effect
[F(1,91) = 23.86, p < 0. 001]. As depicted in Figure 2, chil-
dren committed significantly more errors on problems requiring
a borrow than on problems not requiring a borrow procedure
(35.4% vs. 14.8% errors, respectively). Moreover, the main effect
of participant group was not reliable [F(1,91) = 2.82, p = 0.10]
indicating that children with CI did not exhibit a significantly
higher error rate than their NH peers (28.2% vs. 22.0% errors,
respectively). Most importantly and in line with our expecta-
tions the significant interaction of borrow and participant group
[F(1,91) = 4.82, p < 0.05] indicated that the borrowing effect
was indeed more pronounced for children with CI as compared to
NH controls (25.0% vs. 16.1% errors, respectively, see Figure 2).
Finally, the influence of the covariate was reliable [F(1,91) = 6.03,
p < 0.05] with a higher CE score being associated with a smaller
error rate.

For response latencies only the main effect of participant group
was reliable [F(1,91) = 12.82, p < 0.01]. This indicated that
responses of children with CI responded were generally slower
as compared to the responses of the control group (6691 ms
vs. 5265 ms, respectively). Neither the main effect of borrowing

FIGURE 2 | Error rates for the subtraction task depicted separately for

borrow conditions (non-borrow vs. borrow) and participant group.

Error bars reflect one SEM.
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nor the interaction of borrowing and participant group turned
out to be reliable (both F < 1.26, both p > 0.26). Additionally,
the influence of the covariate was not reliable [F(1,91) = 2.48,
p = 0.12].

In summary, children with CI not only exhibited pro-
longed response latencies but also experienced difficulties when
it comes to the specific processing of place-value information
as required by subtraction problems incorporating a borrow
procedure.

NUMBER LINE ESTIMATION
With respect to estimation errors the ANOVA revealed a significant
main effect of number line range [F(1,91) = 32.30, p < 0.001].
This indicated that children’s estimation error was reliably larger
when asked to mark the position of a given number on a num-
ber line ranging from 0 to 1000 as compared with those ranging
from 0 to 100 (5.7% vs. 12.0% misplacement, respectively). Addi-
tionally, the main effect of participant group was also significant
[F(1,91) = 11.76, p < 0.01]: compared to controls the estima-
tion error of children with CI was significantly larger (10.8% vs.
7.0% misplacement, respectively). Moreover, these main effects
were qualified by the reliable interaction of number line range
and group [F(1,91) = 11.77, p < 0.01]. The interaction indicated
that the increase of estimation error from the 0 to 100 to the 0
to 1000 number line range was more pronounced for children
with CI than for hearing controls (8.5% vs. 4.2% increase in mis-
placement, respectively, see Figure 3). Finally, the influence of the
covariate was significant [F(1,91) = 8.09, p < 0.01] indicating that
higher CE scores were associated with a smaller estimation error,
this means more precise localization of numbers on the number
lines.

Summarizing the results for the number line estimation task it
has to be noted that as for the subtraction task we observed specific
impairments for children with CI as the demands on processing
place-value information increased (i.e., from two- to three-digit
numbers).

FIGURE 3 | Estimation error for the number line estimation task

separated for number line range (0-to-100 vs. 0-to-1000) and

participant group. Error bars represent one SEM.

DISCUSSION
The main aim of the present study was to investigate numeri-
cal/arithmetical capabilities in children with CI and to contrast
their performance to NH peers of matched hearing age. We were
interested in general as well as in specific performance differ-
ences between these participant groups. On the general level
we expected children with CI to perform reliably worse than
their NH peers, as arithmetical capabilities have been shown to
be related to language representations and their processing both
directly (e.g., arithmetic facts) and/or indirectly (e.g., magnitude
representation). Additionally, we hypothesized that children with
CI should be specifically impaired on arithmetical competencies
with a specific reference to place-value understanding. Accord-
ing to LeFevre et al. (2010) the representation of the place-value
structure of the Arabic number system is closely related to lan-
guage representations (see also von Aster and Shalev, 2007 for
a similar view) even in tasks usually considered not to address
language-based numerical representations such as subtraction or
number line estimation. Generally, the current data corrobo-
rated both of our hypotheses. We observed general (i.e., increased
rates of dyscalculia indications, prolonged overall RT) as well as
specific impairments (i.e., more pronounced borrowing effect)
for children with CI. These will be discussed in turn in the
following.

GENERAL NUMERICAL IMPAIRMENTS OF CHILDREN WITH CI
In a first step, arithmetical skills of children with CI were examined
by administering a standardized calculation test. Results revealed
that 15.6% of children with CI exhibited performance levels being
indicative of developmental dyscalculia. With a general preva-
lence rate of dyscalculia in the general school population of 4–7%
(e.g., Badian, 1993; Gross-Tsur et al., 1996; von Aster et al., 2007)
indications of dyscalculia were more prominent in children with
CI than was to be expected. This increased rate of dyscalculia
indications may be interpreted to index a general impairment of
arithmetical capabilities in children with CI. Importantly, the over-
all result pattern for the more specific arithmetical assessment (i.e.,
multiplication, subtraction, and number line estimation) corrob-
orated such a conclusion. For each of these tasks we observed
reliable group differences indicating that children with CI per-
formed more poorly than the hearing controls: children with CI
took longer to complete the multiplication verification as well
as the subtraction choice reaction task. Moreover, their number
line estimations were less accurate as compared to those of the
hearing controls. This indicated that children with CI seemed to
suffer from a general impairment, in particular, a general slowing
combined with reduced accuracy of mental number line represen-
tations, as regards their arithmetical capabilities. Taken together,
this suggests that the known atypical language development of
children with CI (e.g., Boothroyd et al., 1991; Dawson et al., 1995;
Geers et al., 2009; Pisoni et al., 2010; Ingvalson and Wong, 2013;
Rinaldi et al., 2013) seemed to exhibit a reliable negative influ-
ence on their numerical development as previously proposed
(e.g., Fazio, 1999; Koponen et al., 2006). This is in line with
recent evidence suggesting language to influence numerical tasks
as basic as magnitude comparison and number line estimation
but also more complex arithmetic in children (e.g., Helmreich
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et al., 2011; Pixner et al., 2011a,b; Göbel et al., 2014). Usually, it
is argued that this is due to a coactivation of verbal numerical
representations such as number names when children perform
symbolic numerical tasks. This activation may occur automat-
ically, but especially children are regularly found to verbalize
numerical tasks to assist processing. When no or only impaired
such coactivation of verbal numerical representations and thus
verbalizing is possible because of impaired language abilities (as
in children with CI) this may lead to the prolonged processing
times.

However, closer inspection of the performance pattern of chil-
dren with CI indicated that this might only be part of the story. On
the one hand, 15.6% of children with CI were found to perform
significantly above average on the HRT. Interestingly, this may
indicate that the normal distribution describing arithmetic perfor-
mance capabilities of children with CI may be flatter and broader
as compared to that of normally developing children. However,
the two distributions did not differ regarding their mean as indi-
cated by our analyses. On the other hand, poorer performance
in the HRT and the observed general slowing may be associated.
The HRT as used in this study is a speeded test and the observed
general slowing might have led to the increased number of dyscal-
culia indications in the sample of children with CI. Therefore, it is
inevitably necessary not only to look at these general performance
impairments but also to evaluate more specific performance dif-
ferences associated with particular numerical competencies and/or
representations.

SPECIFIC IMPAIRMENTS OF CHILDREN WITH CI
Evaluating the specific impairments will consider the results of
the computerized calculation tasks as well as the number line
estimation task. While multiplication performance has repeat-
edly been suggested to be closely related to language skills (Lee
and Kang, 2002; Dehaene et al., 2003; see also Fazio, 1999; Kopo-
nen et al., 2006), language is generally assumed to play either
no or only a minor role for solving subtractions (of either one-
or multi-digit operands; McNeil and Burgess, 2002) or number
line estimation (e.g., Siegler et al., 2010; but see LeFevre et al.,
2010). However, even though Lee and Kang (2002) and Moeller
et al. (2011) report experimental evidence for impairments of
multiplication fact retrieval due to a verbal secondary task, no
other specific language related impairments for multiplication
have been reported in the literature. Thus, despite a generally
poorer multiplication performance we did not expect any fur-
ther specification of performance differences. In line with this,
we observed no differences between children with CI and NH
controls with regard to the processing of correctly or incorrectly
solved multiplication problems as well as for the differentiation
between table and non-table errors. However, closer inspection
of the association of hearing age with error types revealed an
interesting result with respect to non-table errors. A correla-
tion analysis indicated that the percentage of non-table errors
was correlated significantly with hearing age in children with CI
[r(45) = −0.30, p < 0.05] indicating that with increasing hearing
age fewer non-table errors were committed. Interestingly, this cor-
relation was not reliable in children without CI [r(49) = 0.11,
n.s.]. Fisher’s Z-test indicated that the difference between the

two correlations was significant (Z = 1.97, p < 0.05). Impor-
tantly, this pattern of results is in line with the assumption that
impaired hearing/language experience of children with CI may
have influenced their numerical development. Generally, multi-
plication is assumed to be solved via verbally mediated retrieval
of arithmetic facts from long-term memory (e.g., Dehaene et al.,
2003). Butterworth et al. (2003) found that with increasing skill
level (i.e., automaticity of fact retrieval) the number of non-
table errors decreased (see also Campbell and Graham, 1985).
This is exactly what we observed for hearing/language experi-
ence of children with CI. Taken together, this indicated that the
children with CI seem to process multiplication problems in a
qualitatively similar way to hearing controls but with a quan-
titative difference arguing for an impairing influence of their
reduced hearing/language experience. This interpretation was
substantiated by the results for subtraction and number line
estimation.

Based on the considerations of LeFevre et al. (2010; see also
Helmreich et al., 2011) suggesting a link between language skills
and the processing of place-value information we hypothesized
that children with CI should experience particular difficulties
as the demands on place-value processing increase. This is the
case for (i) borrow as compared to non-borrow problems in
subtraction (requiring to borrow from the tens place depend-
ing on the relation of the units) and (ii) for increasing number
ranges in the number line estimation task (requiring to integrate
three instead of two digits in the 0–1000 compared to the 0–100
range). As regards subtraction we observed that the borrowing
effect was indeed more pronounced in children with CI as com-
pared to NH controls. Importantly, this finding is driven by a
specific decrease of performance of children with CI for subtrac-
tion problems requiring a borrow procedure. Importantly, the
hypothesis that this may be associated with the impaired hear-
ing/language experience of children with CI is corroborated when
specifically considering the correlation of hearing age of these chil-
dren with their performance in borrow subtraction problems. The
correlation analysis revealed the to-be-expected reliable negative
correlation in children with CI [r(45) = −0.28, p < 0.05, tested
one-sided] indicating that with increasing hearing age borrow
subtraction problems were solved faster. Moreover, this corre-
lation was not reliable in children without CI [r(49) = 0.14,
n.s.]. And Fisher’s Z-test indicated that the difference between
the two correlations was significant (Z = 2.01, p < 0.05). This
is well in line with our argument that hearing and thus language
experience of children with CI is specifically related to their place-
value understanding as particularly relevant in borrow subtraction
problems.

Furthermore, we also found a similar place-value related effect
for the number line estimation task. With the increase of the num-
ber range from 0 to 100 to 0 to 1000 the estimation error increased
more strongly for children with CI than for NH controls. Again,
this supported our hypothesis of a specific impairment of children
with CI that might result from poorer place-value understand-
ing that, in turn, might originate from their atypical language
development. Helmreich et al. (2011) observed that number line
estimations of German-speaking children were less accurate than
that of Italian-speaking children and attributed this to the way

www.frontiersin.org December 2014 | Volume 5 | Article 1479 | 160

http://www.frontiersin.org/
http://www.frontiersin.org/Developmental_Psychology/archive


Pixner et al. Number processing with cochlear implants

the place-value structure of Arabic numbers is reflected in the
respective languages’ number words. While the order of tens and
units in symbolic numbers is reflected correctly in Italian number
words (e.g., 27 → ventisette, i.e., twentyseven) it is inverted in Ger-
man number words (e.g., 27 → siebenundzwanzig, i.e., literally
sevenandtwenty). This indicates an influence of language repre-
sentations on number line estimations. In line with this LeFevre
et al. (2010) found number line performance to be predicted by
the linguistic pathway of their model of numerical development.
In turn, this language dependency of place-value processing (e.g.,
Pixner et al., 2011a,b) might account for the impaired processing
in children with CI when demands on place-value understand-
ing increase in both number line estimation in a wider range and
borrow subtraction problems.

Nevertheless, it is important to note that subtractions used in
the present study were comprised of two-digit operands. Accord-
ing to the literature, language deficiencies (as seen in children
with SLI) are often accompanied by working memory impair-
ments (e.g., Henry et al., 2012). Thus, it would be plausible to
speculate that children with aberrant language development such
as our children with CI experience specific difficulties upon solving
borrow subtraction problems because these pose heavy demands
on working memory resources. Following this rationale, children
with CI (and atypical language development) should be at a clear
disadvantage upon solving these kinds of tasks. However, in the
present study children with CI were found to have comparable
verbal working memory scores and even significantly better CE
scores than NH controls. Therefore, the poor working memory
hypothesis cannot account for the current results. Additionally,
influences of this variable have been accounted for in the analysis.
Furthermore, it should be noted that in Austria, children acquire
numbers up to 1000 in third grade. Because participating chil-
dren attended third to fifth grade, one may assume that our results
(children with CI performing poorer on large number ranges than
controls) are attributable to third graders who do not yet master
numbers beyond 100. However, this was not the case. Additional
analyses revealed that estimation accuracy did not differ signifi-
cantly between children with CI attending third grade and those
attending fourth and fifth grade [t(43) < 0.89; n.s.].

CONCLUSION
Taken together, our results disclose that children with CI (and
an associated atypical language development, cf. Boothroyd et al.,
1991; Dawson et al., 1995; Geers et al., 2009; Pisoni et al., 2010;
Ingvalson and Wong, 2013; Rinaldi et al., 2013) show general as
well as specific numerical/arithmetic impairments. On the one
hand, an increased number of children with CI was found to show
indication of dyscalculia symptoms on a standardized arithmetical
test. Additionally, children with CI were generally slower than NH
controls in multiplication and subtraction. Finally, also their num-
ber line estimations were less accurate. Synced with no differences
for the processing of problem and error types in multiplication
this seems to indicate that the main impairment of children with
CI is a general slowing. However, on the other hand, children
with CI exhibited very circumscribed difficulties associated with
the processing of place-value information. Performance declined
more strongly than for NH controls when (i) subtraction required

a borrow procedure and (ii) number line estimation was to be
performed within a wider number range requiring the integra-
tion of units, tens and hundreds instead of only units and tens.
As demands on place-value understanding is increased in both
of these cases the language dependency of place-value processing
(LeFevre et al., 2010) might account for the impaired performance
in children with CI.

It is important to note that we did not evaluate the influence
of an atypical language development in children with CI on their
numerical/arithmetic abilities by correlating their performance in
a language task with those in numerical/arithmetic tasks. Because
recent studies consistently found atypical language development
in children with CI (e.g., Boothroyd et al., 1991; Dawson et al.,
1995; Geers et al., 2009; Pisoni et al., 2010; Ingvalson and Wong,
2013; Rinaldi et al., 2013) we compared the performance of chil-
dren with CI and a control group in specific numerical/arithmetic
chosen for either their strong (i.e., multiplication fact retrieval) or
weaker (i.e., two-digit subtraction and number line estimation)
dependence on language-related processing. The specificity of the
present results corroborated this research strategy. Yet, future stud-
ies employing a combined approach are desirable to cross-validate
the present findings.

Nevertheless, our findings are original because we were able to
show that a large and carefully selected group of children with
CI (attending third to fifth grade) displayed overall compara-
ble performance levels and profiles on arithmetic tasks thought
to rely heavily on language demands (i.e., multiplication facts).
Thus, it seems that despite initially atypical language development,
which might account for the general slowing, children with CI are
able to acquire arithmetic skills in a qualitatively similar fashion
as their NH peers. Nonetheless, with increasing task complexity
that is reflected by the necessity to quickly access the positional
base-10 place-value system of the Arabic notation, children with
CI perform poorer than their NH peers. The present findings
have important implications for educational practice and contin-
uing education of children with CI. In particular, our findings
suggest that (i) children with CI may perform equally well than
their hearing peers provided they are given some extra time to
solve arithmetic problems, and (ii) children with CI may require
more focused teaching of the Arabic base-10 place-value system in
order to make up for their initial (and probably language-related)
difficulties to acquire numerical skills.
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Number facts are commonly assumed to be verbally stored in an associative
multiplication fact retrieval network. Prominent evidence for this assumption comes from
so-called operand-related errors (e.g., 4 × 6 = 28). However, little is known about
the development of this network in children and its relation to verbal and non-verbal
memories. In a longitudinal design, we explored elementary school children from grades
3 and 4 in a multiplication verification task with the operand-related and -unrelated
distractors. We examined the contribution of multiplicative fact retrieval by verbal and
visuo-spatial short-term and working memory (WM). Children in grade 4 showed smaller
reaction times in all conditions. However, there was no significant difference in errors
between grades. Contribution of verbal and visuo-spatial WM also changed with grade.
Multiplication correlated with verbal WM and performance in grade 3 but with visuo-
spatial WM and performance in grade 4. We suggest that the relation to verbal WM in
grade 3 indicates primary linguistic learning of and access to multiplication in grade 3
which is probably based on verbal repetition of the multiplication table heavily practiced
in grades 2 and 3. However, the relation to visuo-spatial semantic WM in grade 4
suggests that there is a shift from verbal to visual and semantic learning in grade 4. This
shifting may be induced because later in elementary school, multiplication problems
are rather carried out via more written, i.e., visual tasks, which also involve executive
functions. More generally, the current data indicates that mathematical development is
not generally characterized by a steady progress in performance; rather verbal and non-
verbal memory contributions of performance shift over time, probably due to different
learning contents.

Keywords: multiplication, arithmetic, fact retrieval, operand errors, verbal working memory, visuo-spatial working
memory
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Introduction

Children usually get better in arithmetic problem solving with
age and experience. For instance, the processing strategy of
multiplication in children changes from procedure- and strategy-
based calculation to retrieval during developmental ages (Cooney
et al., 1988; Lemaire and Siegler, 1995). It has been reported
that there is a transition to retrieval process for solving single-
digit multiplication problems in grade 4 (Cooney et al., 1988).
However, this retrieval process is not constant during the
following years of development (Campbell and Graham, 1985).
Nonetheless, longitudinal studies for verification of this claim
are scarce. In particular, the development of the automatic
associations within the fact retrieval network has not been
sufficiently understood.

Of major importance in multiplication verification
performance is operand-relatedness. Operand-relatedness is
whether the presented or responded answer belongs to the table
of one of the operands or not. For instance, in a production task,
an operand-related error is when a participant responds with
24 when presented with the problem 7 × 4 because 24 is part
of the same multiplication table of one of the operands (here
the 4). An operand-unrelated error would be the solution 30
because this number belongs neither to the multiplication table
of 4 nor of 7. In a verification task for the problem 4 × 6 = 24, an
operand-related verification distractor would be 4 × 6 = 28, and
the operand-unrelated distractor would be 4 × 6 = 29.

It has been reported that the operand-related distractor errors
make up about 87.5% of all errors in adults (Campbell, 1997;
Domahs et al., 2006) and about 75.7% of all errors in children
(Butterworth et al., 2003). The large frequency of operand-related
errors has been explained in terms of a developing memory
representation in an interrelated network of facts (Ashcraft,
1987). This representation means that during retrieval of a
multiplication answer from an interconnected multiplication
network, the operand-related distractors will activate the retrieval
processing more than the operand-unrelated distractors and
lead to a slower response with more errors. These assumptions
have been implemented in the network interference model
which explains that arithmetic facts are stored as nodes in an
associative network in long-term memory and are retrieved
via a spreading activation (Campbell, 1995). The presented
multiplication generates activation in the corresponding nodes
and this activation spreads along the connecting pathways to
associated nodes. For example, the presentation of 7 × 3
activates node 7 along with its related nodes (14, 21, 28, etc.)
and node 3 with its related nodes (6, 9, 12, etc.). In other
terms, the activation of associates which are the operand-
related distractors (e.g., 28 instead of 21 in the example above),
increases the accessibility of these associates. Consequently, it
is more plausible to verify it erroneously as a correct answer.
However, in the operand-unrelated distractors (e.g., 25 instead
of 21 in the example above), there is minimum activation of
the associates, hereby decreasing the accessibility of them as a
correct answer. Hence, activation of multiple associates interferes
with the solutions because it renders these associates more
accessible.

To our knowledge, there are very few longitudinal studies
in regard to multiplication development in children considering
operand-relatedness. For instance, in a study by Lemaire and
Siegler (1995) it was shown that in three sessions of multiplication
production assessment in grade 2, the proportion of both
operand-related and -unrelated errors increased. The other study
which used multiplication verification in children, did not report
error analyses because it was stable at about 6% in grades 3 and
4 (De Brauwer and Fias, 2009). Therefore, it is still unclear if
error patterns and their relation to operand-relatedness change
longitudinally in children and consequently what can be inferred
with regard to the longitudinal change in the multiplication fact
retrieval network.

From the structure of the network interference model, two
hypotheses could be brought forward for our longitudinal
developmental study on multiplication facts. (i) Because the
strength of the association network could increase with age and
experience, the operand-relatedness error effect should be larger
in older children. (ii) The alternative hypothesis would be that
the network becomes more refined in reciprocal inhibition so
that the single entries can be better separated with age and
experience. Then, the operand-relatedness error effect should
be smaller in older children. In our opinion, both views
are possible. The current study set out to discern these two
hypotheses.

Another main issue of this study is that to our knowledge
the possible varying influence of other cognitive processes on the
multiplication performance has not been studied longitudinally
in children. One natural candidate for such a cognitive process
is memory, containing working memory (WM) and short-term
memory (STM). One account of WM capacity is defined by
Shah and Miyake (1996) and Miyake and Shah (1999). In this
model WM capacity contains two separate pools of domain-
specific resources for verbal and visuo-spatial information. Each
domain keeps and manipulates information independently from
the other. This distinction between verbal and visuo-spatial
domains has been supported by the previous findings (e.g.,
Friedman and Miyake, 2000; Miyake et al., 2001; Jarvis and
Gathercole, 2003). WM has been reported as a pure measure
of a child’s learning potential (Alloway and Alloway, 2010).
Thus, it has been assumed to predict a child’s performance
in mathematic learning based on the WM skills (Alloway and
Passolunghi, 2011). While WM is defined as an ability of storage
and manipulation of information, STM is considered as only
storage of information for a temporary period of time (for
more see Alloway et al., 2006). In other words, WM is a
memory system containing separable interacting components,
while STM is almost a single store (Alloway et al., 2006). In
sum, STM demonstrates temporal deterioration and capacity
limits, whereas WM is a multi-component system that stores and
manipulates information in STM and uses attention to manage
STM and applies STM to cognitive tasks (Baddeley and Hitch,
1974; Cowan, 1988; Baddeley, 1992, 1998; for more see Cowan,
2008). Therefore, STM involves a minimal load of processing,
while WM contains an additional process for manipulation of
information that leads to higher loading of process. Different
components of STM and WM have already been reported to
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be involved in different mathematical tests during developing
stages (see also Meyer et al., 2010) but the possibility of
their different role in development of multiplication has not
been longitudinally considered – therefore, the differential roles
of STM and WM will also be considered in the current
study.

Recent studies have shown that the relative contributions of
memory components to general mathematic learning changes
during development ages. At first, preschool children rely more
on visuo-spatial memory than verbal memory for learning and
remembering arithmetic; therefore, the best predictor of the
arithmetic performance at this age is visuo-spatial sketchpad
capacity (McKenzie et al., 2003; Simmons et al., 2008). Later,
starting from school age, learning is more dependent on verbal
rehearsal to preserve information in memory, thus recruiting
more the phonological loop (Hitch et al., 1988; Rasmussen and
Bisanz, 2005). This has been explained by verbally mediated
strategies, in which children transform symbols and numbers into
verbal code (Logie et al., 1994; Geary et al., 1996). By the first
grade, performance relies equivalently on non-verbal and verbal
memory. Meyer et al. (2010) showed that the verbal components
of memory predict mathematical reasoning skill in grade 2,
whereas the visuo-spatial component is the predictor in grade
3. Therefore, different WM and STM components seem to be
critical for mathematics learning in general. However, currently
we have only little data on how the different verbal and visuo-
spatial components ofWM and STM contribute to multiplication
performance in different ages in elementary school and how
the importance of such components changes over time. For our
study, we hypothesized a shift between memory components,
from verbal to visuo-spatial, in children during development in
multiplication similarly to those reported by Meyer et al. (2010)
for mathematical reasoning. In the current study as we collected
longitudinal data, the first aim was to evaluate in which way
children process multiplication in grades 3 and 4. According
to the previous findings, we expected children in grade 4 to
be faster and possibly less error-prone than in grade 3. The
second aim was to investigate whether their memory processing
is differentially influenced by operand-relatedness with age and
experience, especially with regard to the error data. Finally,
the third and main aim of this study was to investigate the
contributions of verbal linguistic and visuo-spatial non-verbal
representations on arithmetic skill, namely the influence of verbal
and visuo-spatial STM and WM on multiplication skill.

Materials and Methods

The current study was part of a large longitudinal project
evaluating numerical development from grade 1 to grade 4. In
this study, we focused on the development of multiplication
performance which was measured only from grade 3 to
grade 4.

Participants
In total, 77 native German-speaking Austrian children (39 girls
and 38 boys) were assessed in multiplication both at the end of

grades 3 and 4. The children were between 8 years 6 months and
10 years 5 months (M = 9 years 4 months, SD = 7 months) in
grade 3 and 1 year older in grade 4. All children had normal or
corrected-to-normal vision and IQ scores in the normal range.
No child received special education services or had documented
brain injury or behavioral problems. This study was carried out
in accordance with the recommendations of the Landesschulrat,
the regional school administration, which was responsible for
approval of school-related studies in Austria at that time. Parents
of all subjects gave written informed consent in accordance with
the Declaration of Helsinki.

Multiplication Stimuli
Children were tested on a computerized multiplication
verification task. The experiment started with eight practice
trials. Multiplication problems (range of operands: 3–8; problem
size: 13–54) along with the answer probe were presented at the
same time on the screen in white against a black background
(font: Arial; size: 48-point). Problems were presented in the
form x × x = xx at the x/y coordinates (512/300) on a screen
with the resolution set to 1024 × 768. In total there were 80
multiplication trials. Half of the trials were true (i.e., the solutions
were displayed) and half of them were false (i.e., distractors
which had to be rejected were displayed). The distractors
consisted of operand-related and operand-unrelated trials. In
the operand-related trials the operand split was ±1 from the
solutions on the multiplication table (e.g., 6 × 3 = 21). In
the operand-unrelated trials the displayed answers were not
from the multiplication table. In the operand-unrelated trials
the displayed answer differed from the solution by ±2 to ±9,
with the average split matched at 0.4 (e.g., 6 × 3 = 13). The
task was a verification paradigm where the displayed answer
needed to be verified as correct or incorrect. Problem size
was held approximately constant between item categories.
Problems and answer probes were presented until a response
was given or the response time (RT) of 15000 ms finished. The
response was made by pressing the “Alt” or “Alt Gr” button of
a QWERTZ keyboard to verify whether the displayed answer
was the solution or distractor, respectively. It is essential to
note that the solutions and distractors refer to the stimuli
presented in the verification task, not the children’s responses.
The children’s responses were correct or incorrect. The fixation
cross was presented at the beginning of each trial for 500 ms.
The inter-stimulus interval was set to 1500 ms. No feedback was
given.

Memory Tasks
Four memory components including verbal and visuo-spatial
STM and verbal and visuo-spatial WM (Alloway et al., 2006;
Alloway and Passolunghi, 2011) were assessed in the present
study. For verbal STM, children were asked to immediately recall
spoken sequences of letters (presentation rate: one letter per
second). Starting with two-item sequences, sequence length was
increased by one letter when at least two of three given sequences
were recalled correctly; otherwise, testing was stopped. The verbal
STM score was the maximum sequence length at which at least
two sequences were repeated correctly. For visuo-spatial STM,
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in a block tapping task (Corsi, 1973), children needed to repeat
pointing to cubes in the same order as the experimenter. Again,
children started with two-item sequences. The procedure and
scoring were identical to those in letter repetition. In general,
forward span tests were defined as STM and backward span
tests were defined as WM (Cowan, 1988; see also Cowan,
2008).

For verbal and visuo-spatial WM, children were asked to recall
sequences of letters and blocks in reverse order. The procedure
and scoring were identical to those in the STM tasks. It is
noteworthy that the current study included forward recall as a
measure of verbal and visuo-spatial STM and backward recall
as a measure of verbal and visuo-spatial WM. In forward recall
tasks the processing load is minimal as children immediately
recall the sequences (Alloway et al., 2006). In contrast, in the
backward recall tasks there is an additional requirement to recall
the reverse sequence that imposes a substantial processing load
on the child. This higher processing load has been illustrated by
the finding that forward spans scores are higher than backward
spans (Isaacs and Vargha-Khadem, 1989; Vandierendonck et al.,
2004).

Procedure
All children were assessed individually in one-on-one sessions in
a separate room. In both grades, multiplication performance and
short-term and WMwere assessed.

Analysis
Response times were measured by key-press. Only RTs for correct
responses were entered into the analyses. Furthermore, response
latencies shorter than 200 ms or longer than 15000 ms were not
considered; however, there was no response out of this range. In
a second step, responses outside the interval of±3 SD around the
individual mean were excluded. Thus, about 3% of the responses
in grade 3 and about 4.5% of the responses in grade 4 were
not considered for further analyses. First, we ran two repeated-
measures analyses of variance (ANOVAs), first for the solution
and distractor (operand-related and -unrelated together) trials for
both grades and second for the operand-related and operand-
unrelated distractors for both grades. Second, the correlation
of the WM components was analyzed using stepwise multiple
linear regression analysis on mean RTs and error rates. For
the error analysis, an arcsine-square-root transformation was
applied to approximate normal distribution (e.g., Winer et al.,
1971).

Because of controversies regarding confirmation of null
hypothesis using traditional statistical inference, the Bayesian
method was used in the current study. The method described
in detail by Masson (2011) enables calculating graded evidence
for null hypothesis (i.e., no difference between groups) and
alternative hypothesis (i.e., difference between groups). In the
analysis, sum of squares and number of observations from
ordinal ANOVA were used to calculate Bayesian factors which
then can be used to calculate posterior probabilities (see also
Raftery, 1995). In fact, we employed the Bayesianmethod in order
to estimate the likelihood of correctness of the null and alternative
hypotheses.

Results

Trials with RTs 3 SDs above or below a child’s average RT were
excluded. Children with trial exclusion or an error rate of more
than 33% were not considered [six children (mean age = 9 years
4 months, two girls and four boys)]. Thus, the data of 71
children was considered in the analyses. Children had on average
significantly higher WM scores in grade 4 than in grade 3 (see
Table 1). A previous study suggested that the window between
second and third grades is too short a time frame for major
changes in WM capacity (Meyer et al., 2010) but interestingly
we found that this difference is statistically significant between
grades 3 and 4.

Solution vs. Distractor
First, we investigated the effect of grade on the solution and
distractor (both operand-related and -unrelated together) trials
for RTs and accuracy.

Response Times
Raw RT of correct responses was analyzed by repeated-measures
ANOVAwith grade (3 or 4) and condition (solution or distractor)
as within-participant factors. Children took on average 3118 ms
(SD = 1243 ms) to choose the correct answer in grade 3 and
2320 ms (SD = 916 ms) in grade 4. Children in grade 4 were on
average 798 ms faster than in grade 3, F(1,70) = 58.46, p < 0.001,
η2
p = 0.46. RTs for the solution condition was 531 ms faster

than for the distractor condition which indicated a significant
difference between the two conditions, F(1,70) = 162.07,
p < 0.001, η2

p = 0.70. Interaction of grade × condition showed
that the effect of grade is greater for the distractor than for
the solution, F(1,70) = 9.14, p = 0.003, η2

p = 0.12 (Figure 1A;
Table 2). Bayesian analysis revealed that the posterior probability
of null hypothesis for grade and condition was about zero (the
same probability of alternative hypothesis was complementary,
i.e., about 1). The posterior probability of null hypothesis
for interaction was 0.10 (the same probability of alternative
hypothesis was 0.90).

Error Rates
Error rates were analyzed by repeated-measures ANOVAs with
grade (3 or 4) and condition (solution or distractor) as within-
participant factors. Overall, children responded incorrectly on
6.11% of all trials in grade 3 and on 6.51% in grade 4.
Error rates did not differ significantly neither between the

TABLE 1 | Means and SDs of memory components.

Grade 3 Grade 4

Variable M SD M SD ta pb

Verbal short-term memory (STM) 4.55 0.73 4.92 0.73 −4.68 <0.001

Verbal working memory (WM) 2.89 0.60 3.30 0.55 −4.72 <0.001

Visuo-spatial STM 5.06 0.70 5.56 0.67 −4.88 <0.001

Visuo-spatial WM 4.18 1.10 4.69 0.86 −3.82 <0.001

aPaired sample t test. bTwo-tailed significance level of 0.01.
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FIGURE 1 | (A) Mean response times (RTs; in ms) for the solution and distractor. (B) Mean RTs (in ms) for the operand-related and -unrelated distractors. Error bars
reflect SEs.

TABLE 2 | Mean response times (RTs) and error rates (and SDs) for
multiplication trials.

Grade 3 Grade 4

M SD M SD

RT (ms) Solution 2799 1091 2108 847

Operand-related distractor 3468 1466 2523 948

Operand-unrelated distractor 3406 1371 2544 1045

Errors (%) Solution 6.30 6.24 5.77 6.04

Operand-related distractor 7.68 9.41 8.94 10.52

Operand-unrelated distractor 4.15 7.37 5.56 8.17

grades, F(1,70) = 0.11, p = 0.74, η2
p = 0.002, between the

conditions, F(1,70) = 0.095, p = 0.76, η2
p = 0.001, nor in their

interaction, F(1,70) = 3.04, p = 0.09, η2
p = 0.042. Thus, the RT

differences could not be explained by speed-accuracy trade-offs.
Bayesian analysis revealed that the posterior probability of null
hypothesis for grade and condition was 0.89 (the same probability
of alternative hypothesis was 0.11). The posterior probability of
null hypothesis for interaction was 0.65 (the same probability of
alternative hypothesis was 0.35). This is rated as positive evidence
for the null hypothesis applying the criteria suggested by Masson
(2011).

Operand-Related vs. Operand-Unrelated
Second, we investigated the effect of grade on the operand-related
and operand-unrelated distractor trials for RTs and accuracy.
Note that this analysis was done for the distractors only.

Response Times
Raw RT of correct responses was analyzed by repeated-measures
ANOVA with grade (3 or 4) and condition (operand-related
or operand-unrelated) as within-participant factors. Children
in grade 4 were on average 903 ms faster than in grade 3,
F(1,70) = 53.74, p < 0.001, η2

p = 0.43. Raw RT neither differed
significantly between conditions, F(1,70) = 0.28, p = 0.60,

η2
p = 0.004, nor did interaction between conditions and grade,

F(1,70) = 1.57, p = 0.22, η2
p = 0.022, (Table 2; Figure 1B).

Bayesian analysis revealed that the posterior probability of null
hypothesis for grade was about zero (the same probability of
alternative hypothesis was about 1). However, the posterior
probability of null hypothesis for condition was 0.88 (the same
probability of alternative hypothesis was 0.12); and for interaction
0.79 (the same probability of alternative hypothesis was 0.21).

Error Rates
Error rates were analyzed by repeated-measures ANOVAs with
grade (3 or 4) and condition (operand-related or operand-
unrelated) as within-participant factors. The operand-related
distractor trials were significantly more error-prone than the
operand-unrelated distractor, F(1,70) = 22.82, p < 0.001,
η2
p = 0.25. Error rates neither differed significantly between

the grades, F(1,70) = 1.43, p = 0.24, η2
p = 0.02, nor did

interaction between conditions and grade, F(1,70) = 0.06,
p= 0.81, η2

p = 0.001. Bayesian analysis revealed that the posterior
probability of null hypothesis for grade was 0.80 (the same
probability of alternative hypothesis was 0.20). However, the
posterior probability of null hypothesis for condition was about
zero (the same probability of alternative hypothesis was about 1);
and for interaction 0.89 (the same probability of alternative
hypothesis was 0.11).

Relation between Multiplication Performance
and Memory Components
Regression Analysis1

In order to investigate which memory component predicted
multiplication performance in grades 3 and 4, a series of

1We know from many previous numerical and arithmetic experiments that RT
data in children are very noisy. Hence, employing z-transformed RT to reduce
inter-individual differences in intra-individual variance (cf. Nuerk et al., 2004,
and many following papers since), we reanalyzed linear regressions. In general,
none of the memory components predicted z-transformed RTs in grade 3. In
grade 4 the verbalWM component predicted solution z-transformed RT, distractor
z-transformed RT, and operand-related distractor z-transformed RT. However, this
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stepwise regression analyses were conducted. For each grade,
one regression predicted each of the 10 verification dependent
variables (total RT, solution RT, distractor RT, operand-related
distractor RT, operand-unrelated distractor RT, total error,
solution error, distractor error, operand-related distractor error,
and operand-unrelated distractor error) from the four memory
components measured concurrently. All four memory scores
were entered simultaneously with a stepwise function. This
approach allowed us to identify the best predictors for different
dependent variables in both grades. The model of total errors in
grade 3 comprised only the predictor verbal WM, R2 = 0.057,
adjusted R2 = 0.044, F(1,69) = 4.193, p = 0.044, while
the other memory components failed to explain significant
amounts of additional variance. Inspection of the individual
beta weights indicated a significant influence of verbal WM
(Table 3). The model of the operand-unrelated distractor errors
in grade 3 comprised only the predictors verbal WM and
verbal STM, R2 = 0.178, adjusted R2 = 0.153, F(2,68) = 7.340,
p = 0.001, while the other memory components failed to
explain significant amounts of additional variance. Inspection
of the individual beta weights indicated a significant influence
of verbal WM and verbal STM (Table 3). The model of total
errors in grade 4 comprised only the predictor visuo-spatial
WM, R2 = 0.072, adjusted R2 = 0.058, F(1,69) = 5.325,
p = 0.024, while the other memory components failed to
explain significant amounts of additional variance. Inspection
of the individual beta weights indicated a significant influence
of visuo-spatial WM (Table 3). All other predictors and
criterion variables were not significant in regression analyses.
Bayesian analysis revealed that the posterior probability of
null hypothesis for total error in grade 3 was 0.51 (the
same probability of alternative hypothesis was 0.49). However,
the posterior probability of null hypothesis for the operand-
related distractor error was about zero (the same probability
of alternative hypothesis was about 1); and for total error in
grade 4 0.38 (the same probability of alternative hypothesis was
0.62).

Discussion

In the current study we collected longitudinal data from children
in grades 3 and 4. The first aim of the study was to evaluate how
children process multiplication in different grades. The second
aim was to investigate the development of the multiplication fact
retrieval network, i.e., whether their memory of multiplication

suggests that intra-individual noise in the RT data may at least partially account for
the null effects observed in RTs.

facts is influenced by operand-relatedness. Furthermore, the third
and main aim of this study was to investigate the contributions
of verbal and visuo-spatial STM and WM to multiplication
skill.

Multiplication Fact Fluency Increases
Longitudinally with Age and Experience
As we expected, children in grade 4 were faster than in grade
3 which is in line with previous findings that children become
faster during development (Koshmider and Ashcraft, 1991;
Lemaire et al., 1996; Butterworth et al., 2003; De Brauwer
and Fias, 2009). Although children in both grades depended
heavily on memory retrieval to solve the simple one-digit
problems, this retrieval processing was more dominant in grade 4
(Verguts and Fias, 2005). Thus, because of the faster processing,
verification of the solution, and rejection of the distractor was
faster.

As regards RTs, children in both grades verified the solutions
faster than the distractors (Koshmider and Ashcraft, 1991;
De Brauwer and Fias, 2009). Koshmider and Ashcraft (1991)
explained this result by saying that the solutions facilitate
verification of the correct answer in children when the solutions
are used as a prime, probably because the solutions make the
strongest activation in the related nodes which in turn accelerates
memory retrieval process.

As regards errors, the difference of error rate between the
solutions and distractors was not statistically significant in the
current study: the error rates remained stable, about 6% in grades
3 and 4. Again, this non-significant change in error rates is in line
with previous results (Koshmider andAshcraft, 1991; De Brauwer
and Fias, 2009).

In brief, children in grade 4 were faster in both conditions
than in grade 3 but their performance in regard to error
did not differ significantly. This can be explained by more
efficient and faster solving strategies with age which are, however,
not yet more accurate than the slower strategies of younger
children.

No Changes in the Operand-Relatedness
Effect with Age and Experience
In line with our main hypothesis, the operand-related distractors
were erroneously responded to significantly more frequently
than the operand-unrelated distractors. The finding is in line
with the previous studies in children (Koshmider and Ashcraft,
1991; Lemaire and Siegler, 1995; Butterworth et al., 2003) which
reported operand-related errors as the most frequent errors. It
implies that multiplication facts are stored in the associative
network already 1 year after the first multiplication facts are

TABLE 3 | Results for significant predictors entered in the stepwise multiple regression analysis.

Grade Variable Predictor B Standardized β t p

3 Total error Verbal WM −0.049 −0.239 −2.048 0.044

Operand-unrelated
distractor error

Verbal STM
Verbal WM

0.095
−0.069

0.408
−0.242

3.603
−2.132

0.001
0.037

4 Total error Visuo-spatial WM −0.041 −0.268 −2.308 0.024
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learnt. The suggestion of the interacting neighbors model even
holds for those young children in grades 3 and 4. The model
assumes that the operand-related distractors lead to stronger
confounding with the solutions than the operand-unrelated
distractors.

However, as regards the operand-relatedness effect, we found
no difference between grades 3 and 4. In fact, there was an
operand-relatedness effect in both grades but it was neither
stronger nor weaker than in the other grade. This result was
again in line with the only longitudinal study of multiplication
in a verification paradigm in children (De Brauwer and Fias,
2009). The finding of the present study is consistent with the
idea that multiple changes may occur in the associative network.
First, the strength of the association network increases with
age and experience (which leads to faster retrieval in older
children). Second, the network may become more refined in
reciprocal inhibition. More association strength with age would
lead to a higher operand relatedness effect because related
entries are activated more. However, better reciprocal inhibition
would lead to better differentiation between entries and therefore
to a lower operand relatedness effect because related entries
could be more easily inhibited. If both processes increase
similarly with age and experience, the operand-relatedness effect
may stay unchanged. This is what we found in the present
study.

An Age-Related Shift from Verbal to
Visuo-Spatial Working Memory Predicting
Multiplication Performance
Interestingly, we found that verbal WM predicts multiplication
problem solving in grade 3, while in grade 4 visuo-spatial WM
is the predictor. This finding for multiplication performance
extends and refines current accounts of the role of different WM
components during different developing stages. A developmental
change of the influence of verbal and visuo-spatial components
was reported several years ago for more general math capabilities:
it was shown that there is a strong link between verbal and
mathematical skills when young children are learning new
information which becomes weaker in older children as the result
of practice (Jensen, 1980). In accordance to this finding, several
studies have shown the weak conjunction between phonological
loop and mathematical performance in adults (e.g., Logie and
Baddeley, 1987; Heathcote, 1994; Logie et al., 1994). The present
study did not find any significant correlation between verbal
WM and multiplication performance in grade 4 which can be
related to a gradual shift from strongly verbal representations
of multiplication to the build-up of a more abstract semantic
retrieval of mathematical facts from long-term memory which is
visually based, at least when the stimuli are presented visually as
in our study.

One possible suggestion is that one may expect to see more
predictability of verbal WM in grade 4. However, this was not
the case. Three reasons may explain this finding. First, learning
and task context of multiplication problems encountered in
(Austrian) schools may contribute to their explanation. While
in the initial learning phase in grades 2 and 3, multiplication
problems may be more auditorily and verbally trained, they may

be more often encountered visually as part of more complex
arithmetic problems in grade 4. Second, the shift toward more
visuo-spatial processing is consistent with previous studies on
arithmetic development showing that in children, arithmetic
tasks require superior demand of visuo-spatial processing during
the development (Alloway and Passolunghi, 2011). In fact in
adults, Fürst and Hitch (2000) showed that the phonological
loop is not crucially caught up in retrieving factual mathematical
knowledge which is also consistent with our data that verbal WM
plays a lesser role in older children. Finally, the same verbal to
visuo-spatial WM shift has been observed in other arithmetic
domains. Meyer et al. (2010) found such a shift from grade 2
to grade 3 in some basic arithmetic and mathematical reasoning.
For these reasons, we believe that our finding of a developmental
shift from verbal to visuo-spatial WM with age and experience
does not come as a surprise but is actually consistent with the
literature in other fields of arithmetic development. In sum,
the data shows an important developmental shift from verbal
to visuo-spatial WM in the prediction of simple multiplication
problem performance (as indexed by overall errors) from grade 3
to grade 4.

Furthermore, neuroimaging studies revealed a neural
dissociation of verbal and visuo-spatial WM (Smith et al., 1996;
Thürling et al., 2012), which were modified differently due to
arithmetic training. The brain activation pattern of development
and training of calculation shows a shift of activation from the
frontal to the parietal regions (for a review Zamarian et al., 2009).
This modification shows a shift from verbally representation of
the calculation to more visually representation. While the frontal
are is involved in verbal WM, the parietal area is mostly involved
in visuo-spatial WM (for a review Cabeza and Nyberg, 2000;
Dumontheil and Klingberg, 2012).

Interestingly, for the operand-unrelated distractor errors in
grade 3, verbal STM reached significance as the only STM
predictor in our whole study. However, this makes sense because
during the second and third years of elementary school children
are commonly highly trained with direct verbal learning of
multiplication facts. Therefore, verbal STM is still significant for
multiplication in grade 3. In the fourth grade, however, children
have to use the learnt skills, such as multiplication, indirectly in
more advanced mathematic problems such as mathematical text
questions which does not involve any aspect of STM massively
in this grade. Verbal STMmay only affect the operand-unrelated
distractor errors because the operand-relatedness may lead to
interference specifically in the STM where no information is
manipulated. Vice versa, the solutions share at least one element
with possible operand-related distractors. It seems plausible that
in such clear cases which require no manipulation and selection
of information, verbal STM processing is most predictive.
Again, our finding that verbal STM influences multiplication
performance in earlier grades is consistent with previous findings
from other more general arithmetic measures. For instance,
Alloway and Passolunghi (2011) showed that verbal and visuo-
spatial STM were involved in arithmetic performance at age 7
but only visuo-spatial STM was involved at age 8. Although the
prediction of operand-unrelated distractor error by verbal STM
in grade 3 was reasonable, the positive correlation between verbal
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STM and operand-unrelated distractor error was unexpected.
One possible explanation would the interference of other
simultaneous processes, which occupy STM. We know that the
results of simplemultiplication problems are retrieved from long-
termmemory (for a review of neuroimaging studies see Zamarian
et al., 2009). Indeed, the results of the one-digit time one-
digit multiplication problems, which belong to the multiplication
table are stored in long-term memory and retrieved via WM.
Therefore, it may conclude that to answer these problems, we
do not rely so much on STM (Butterworth et al., 1996). Hence,
any involvement of STM in other simultaneous processes can
interfere with this fact retrieval procedure. But this is not the
case of WM. We know that WM is involved in almost every
cognitive process. Since WM has a crucial role in the retrieving
of multiplication result, higher WM capacity can lead to a better
manipulation on different processing including multiplication
performance. Butterworth et al. (1996) showed that in a patient
with impaired STM, the mental calculations such as one-digit
multiplication are intact. However, we believe that this is only a
possible interpretation, which needs to be tested directly.

None of the memory components were able to predict RTs
in both grades. We believe that this is due to high (inter-
individual and intra-individual) variability in the RT measures
for the children, which may be overcome in comparisons of
means but may be critical for inter-individual comparisons
and correlations. Variability in RTs can be explained by several
sources. First, children use different strategies for multiplication
problem solving (Cooney et al., 1988; Sherin and Fuson, 2005)
which mostly lead to equal (correct) responses but to different
RTs. Second, individual differences in mathematical competence
modulate RTs during mental arithmetic. For instance, Grabner
et al. (2007) suggested that the recruitment of retrieval
strategies during arithmetic problem solving may be caused
by individual differences in mathematical ability. Therefore,
different children rely on different memory processes. This may
lead to highly variable RTs, not only intra-individually, but
also inter-individually, even though both ways may lead to the
solution of themultiplication problem. For these reasons, RTmay
be more sensitive to intra- and inter-individual variability than
errors. Future studies should probably combine investigations
of the strategy used and different WM components to examine
if specific WM components are associated with specific solving
strategies.

Conclusion

In line with the previous findings (Swanson, 2006; Meyer et al.,
2010), the current study suggests that although verbal WM may
facilitate early stages of arithmetic learning and performance,
visuo-spatial WM may support later arithmetic performance
during the development – at least during elementary school.
We would like to mention that while we found this shift in
prediction of multiplication problem solving from grade 3 to
4, the others found it in different ages, however, albeit for
different mathematical contents. For instance Meyer et al. (2010)
found the shift in mathematical reasoning from grade 2 to 3.

Meyer et al. (2010) were concerned with mathematical reasoning.
Their mathematical reasoning subtest of the WIAT-II “is a
verbal problem solving test that measures the ability to count,
identify geometric shapes and solve single- and multi-step word
problems.” In contrast, we were concerned with multiplication.
Multiplication – as said above – is introduced in grade 2, verbally
trained in grade 3 and then integrated in visual tasks in grade
4 – therefore the shift from verbal to visual makes sense for
multiplication at exactly that age. Because the mathematical
reasoning subtest of the WIAT-II is an aggregate score of many
different tasks, it is hard to tell, why the shift was caused
in Meyer et al. (2010) from grade 2 to 3. However, because
the subtests contained some very basic tasks like counting or
identifying geometric shapes, which are introduced earlier than
multiplication, it is possible that the shift from verbal to visuo-
spatial WM is also earlier in their study. In sum, it seems that
this shift may be found in different developing ages for differing
mathematical skills. This shift may serve as an essential step in
mathematical development, however, its relation to age may vary
according to mathematical content – in our view, this deserves
further more detailed investigation in the future.

This changing role of verbal and visuo-spatial WM
components for predicting arithmetic performance could
be useful for diagnosis and intervention in children with
mathematical learning difficulties. However, we recommend
that future studies should also assess children’s strategy-use.
By examining strategy-use together with the contribution
of different memory components, researchers might be able
to uncover cognitive demands of multiplication learning in
developmental ages.

As regards the fact retrieval network itself, the current data
suggest that retrieval is faster and more efficient from grade 3 to
grade 4; however, the lack of change in the operand-relatedness
effect with age may suggest that in children’s fact retrieval
network both automatic association and reciprocal inhibition
of concurrent responses may increase. More associations and
at the same time better inhibition might lead to an unaltered
operand-relatedness effect in this longitudinal study. This is
only a speculative interpretation which needs to be examined
in future studies with considering inhibitory control, attentional
processing, and self-regulation as well.
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