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Abstract. We present the Sigma Lognormal model as a potential tool for curve generation in
computer graphics related applications. We discuss its extension and parameterisations for the
interactive definition of handwriting, drawing and calligraphic trajectories. This results in an efficient
trajectory synthesis method, that has a user interface similar to the ones commonly used with
Bézier curves or splines, but with the added benefit of capturing the kinematics of human drawing
or writing movements. Such kinematics produced by the model can then be exploited to generate
realistic stroke animations or to facilitate expressive rendering methods.

1. Introduction and background
Years of graphonomics research have produced numerous results that have contributed to our understand-
ing of the neural, cognititive and bio-mechanical aspects of human handwriting and drawing. In parallel,
the computer graphics (CG) field, especially within the sub-field of non-photorealistic rendering and an-
imation (NPAR), has produced a wealth of algorithms for the rendition of images that resemble diverse
artistic styles and techniques. Noticeably, these methods seldom take the motor act of writing/drawing
into account (e.g., cf. Kyprianidis et al. 2013), and often rely on methods such as poly-lines or polynomial
based curve generation methods including the classic Bézier curves and related splines.
In this paper, we propose a movement centric approach to curve generation, specifically aimed at CG
applications that require the simulation of traces such as the ones seen in drawing, painting, writing and
calligraphy. Here a curve is defined by the dynamics underlying its production rather than by solely an
explicit definition of its geometry. We argue that this makes it easier to capture the subtle observable
qualities and variations that are typical of hand drawn traces. With an appropriate parameterisation
such a method can be used in similitude to established popular spline-based methods, with the additional
advantage of capturing both the geometry and dynamics of a human made trace with a single integrated
representation.
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Fig. 1. Interactive editing of Sigma-Lognormal trajectories with the corresponding speed profiles (to the left) using
(a) circular arc strokes and (b) Euler spiral strokes. The handles determine the tangent angles defining the shape
of each stroke, and the length of the handle is proportional to the stroke time overlap (∆ti).

For the task at hand, we rely on the Kinematic Theory of Rapid Human Movements (Plamondon, 1995),
a family of models of reaching and handwriting motions, in which a movement is described as the result
of the parallel and hierarchical interaction of a large number of coupled neuromuscular components.
Plamondon et al. (2003) have shown that the impulse response of such a system to a centrally generated
command is given by a lognormal (eq. 2.), which accurately describes the variably asymmetric bell
shape that commonly characterises human movements (Plamondon et al., 1993; Rohrer, Hogan, 2003).
Arbitrarily complex movement trajectories are generated with the space-time superimposition of a discrete
number of lognormal movement primitives or strokes, where each such stroke is aimed at an imaginary
location referred to as virtual target. The sequence of virtual targets describes a high level action plan
for the trajectory, which in an interactive setting can be manipulated in a manner similar to the “control
polygon” typically used in Computer Aided Design (CAD) applications (Fig. 1).
In the following sections we describe three variations of the Sigma Lognormal (ΣΛ) model (Plamon-
don et al., 2014), one of the Kinematic Theory models that is particularly aimed at describing human
handwriting motions. First we describe the ΣΛ model in its original formulation (Section 2.). Then we
describe two extensions: the Weighted ΣΛ (Section 3.) and the Spiral ΣΛ (Section 4.) models, which are



both particularly aimed at interactive CG and CAD applications. Finally we discuss use cases of the mod-
els for the interactive generation of trajectories (Section 5.). Towards this application, we demonstrate a
parametrisation that explicitly defines the asymmetry and duration of each lognormal stroke profile.

2. The Sigma Lognormal (ΣΛ) Model
On the basis of the Kinematic Theory, the Sigma Lognormal (ΣΛ) model (Plamondon et al., 2014)
describes complex handwriting trajectories via the vectorial superimposition of N time shifted stroke
primitives. The pentip velocity is calculated with:

v(t) =

N∑
i=1

D(t)iΛ(t)i, (1)

where D(t)i describes the direction and amplitude of each stroke (towards a virtual target) and

Λi(t) = − 1

σi
√
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2σi2

)
, (2)

describes the lognormal impulse response of each stroke to a centrally generated command occurring
at time t0i. The parameters µi and σi respectively describe the stroke delay and response time in a
logarithmic time scale, and determine the shape and asymmetry of the lognormal. With the assumption
that handwriting movements are made with rotations of the elbow or wrist, the curvilinear evolution of a
stroke can initially be described by a circular arc. The angular evolution of a stroke is described by using
the time integral of eq. 2.:

φi(t) = θsi + (θei − θsi)
∫ t

0

Λi(u)du = θsi +
(θei − θsi)

2
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σi
√

2

)]
, (3)

which can be computed efficiently using the error function (erf) and where θsi and θei describe the starting
and ending angle of the circular arc.

3. The Weighted Sigma Lognormal (ωΣΛ) Model
While the traditional ΣΛ formulation describes the velocity of a handwriting trajectory (eq. 1) that is
integrated to generate the corresponding trace, here we describe each stroke through a weight that is
computed similarly to eq. 3 with:

w(t) =

∫ t

0

Λi(u)du =
1

2

[
1 + erf

(
log (t− t0i)− µi

σi
√

2

)]
∈ [0, 1] . (4)

This formulation avoids the need for numerical integration in the computer implementation and conse-
quently provides a performance advantage, since the error function (erf) is a special function, and an
optimised implementation is readily available in most modern programming languages. Furthermore it
becomes possible to sample a trajectory at a given time step without the necessity to integrate from a
given initial condition.
The planar evolution of a trajectory with m strokes can be described with an initial position p0 and a
sequence of virtual targets (p1, . . . ,pm). Each stroke evolves between a pair of consecutive virtual targets
pi−1,pi and is parametrised with an amplitude Di and a direction θi given by the norm and orientation
of the vector pi − pi−1. The curvilinear evolution of a stroke is then described with a circular arc shape
with a central angle δi. Each stroke is described by a weighted displacement at time t computed with:

di(t) =


Di

[
(cos (θ0i − δiwi(t))− cos (θ0i)) (2 sin (δi/2))

−1

(sin (θ0i − δiwi(t))− sin (θ0i)) (2 sin (δi/2))
−1

]
if |δi| > ε,

Di

[
cos (θi)wi(t)

sin (θi)wi(t)

]
otherwise

(5)

where ε is a small value (1× 10−10) used to avoid divisions by zero and numerical precision issues when
the arc internal angle δi is close to zero, and where

θ0i = θi +
π + δi

2
(6)



is the initial angle on the circle used to compute the circular arc for each stroke. The position along the
trajectory is then computed using a vectorial sum of each stroke with:

p(t) = p0 +

m∑
i=1

di(t). (7)

4. The Weighted Euler Spiral Sigma Lognormal (ωE ΣΛ) Model
In an alternative formulation of the weighted ΣΛ model specifically aimed at interactive curve editing,
we define strokes using an Euler spiral primitive. Euler spirals (aka Cornu spirals, or clothoids or spiros)
are such that their curvature varies linearly with arc length, also permitting the description of variably
curved segments as well as inflections. At the expense of adding a supplementary parameter per stroke
to the model, the use of Euler spirals reduces the number of virtual targets needed to define a trajectory
— such as when defining a doubly looping eight (“8”) figure (Berio, Fol Leymarie, 2015) — and provides
an additional level of editing flexibility. The resulting method can also be used to define trajectories that
are identical to the standard ΣΛ model, since in the limit an Euler spiral segment converges to a circular
arc (Walton, Meek, 2008).

Fig. 2. Examples of Euler spiral stroke primitives using different Hermite constraints (in red).

To describe a spiral we use the following parametrisation of the cosine (C(s)) and sine (S(s)) Fresnel
integrals (Levien, 2009):

C(s) =

∫ s

0

cos
(
πu2/2

)
du and S(s) =

∫ s

0

sin
(
πu2/2

)
du , (8)

which we compute using a fast numerical approximation described by Heald (1985). We define the curvi-
linear evolution of each stroke with two parameters s0i and s1i, which parameterise the arc-length along
the spiral. While the spiral parameters s0i and s1i are not intuitive to specify, these can be uniquely
computed given the orientation of two tangents (Hermite constraints) with respect to the chord of the
spiral (Fig. 2). A number of methods exist for this task (Kimia et al., 2003; Walton, Meek, 2008; Levien,
2009; Bertolazzi, Frego, 2015); for our study we choose the method defined by Levien (2009), which has
proven experimentally to be fast and robust. We then define the arc length evolution of the spiral for
each stroke with:

φsi(t) = s0i + (s1i − s0i)wi(t) (9)

and the integrated displacement of each stroke with:

di(t) = Dil
−1
i

(C(φsi(t))− C(s0i)) cos(θi − θci)− S(hiφsi(t))− S(his0i)) cos(θi − θci)

(C(φsi(t))− C(s0i)) sin(θi − θci) + S(hiφsi(t))− S(his0i)) cos(θi − θci)

 , (10)

where

li =
√

(C(s1i)− C(s0i))2 + (S(s1i)− S(s0i))2 and θci = tan1

(
S(s1i)− S(s0i)

C(s1i)− C(s0i)

)
(11)

are used to respectively correct for the chord length and orientation of the spiral in its canonical form,
and where

hi = sgn

(
πs31i
2|s1i|

− πs30i
2|s0i|

)
(12)

takes care of flipping the spiral along the horizontal axis depending on its curvature and thus allows to
capture different combinations of user defined Hermite constraints.



5. User Interaction and Rendering
The ωΣΛ and ωE ΣΛ models provide flexible trajectory generation tools that are particularly well suited
for interactive (point and click) editing procedures. For example, the user can easily edit the spatial evolu-
tion of the trajectory by dragging virtual targets, and modify the stroke shapes and timing properties by
manipulating handles placed in correspondence with the virtual targets. The resulting editing procedure
is similar to the more traditional CAD methods based on Bézier curves or splines, but allows to edit
both the geometry as well as the physiologically plausible kinematics of the trajectory. This provides an
additional layer of information that can be exploited to facilitate expressive rendering methods that take
the pen dynamics into account (Fig. 3.(b)). Furthermore, it becomes trivial to generate realistic stroke
animations, or to use the resulting trajectories as smooth motion paths for virtual character animations,
or even to drive the motions of a robotic drawing system (Berio et al., 2016).
An additional advantage with respect to traditional curve generation methods is that the parameters of
such models correspond with physically and biologically interpretable aspects of the trajectory planning
and formation processes (Plamondon et al., 2014). As a result, slight random perturbations to the virtual
target positions and the remaining stroke parameters result in variations of the trajectory (Fig. 3.(a))
that are alike the ones that can be observed in instances of a human drawing or writing (Diaz et al.,
2016). This allows a user to define a whole family of trajectories, rather than just a single path, this in
one editing session.

(a) (b) (c)

Fig. 3. (a) Variations of a trajectory using ωΣΛ parameter perturbations. (b) Rendering brush effects using the
ωE ΣΛ model. (c) Lognormals with different skewedness generated by varying the shape parameter Aci ; note that
with Aci ≈ 0 the lognormal closely approximates a (symmetric) Gaussian kernel.

Intermediate parametrisation. In order to facilitate the precise specification of timing and profile
shape of each stroke, we rely upon an intermediate parametrisation that takes advantage of a few known
properties of the lognormal (Djioua, Plamondon, 2008). We define each stroke with: (i) a stroke duration
Ti, (ii) a relative time offset ∆ti with respect to the previous stroke time occurrence and duration, and
(iii) a shape parameter Aci ∈ (0, 1), which defines the skewedness of the lognormal (Plamondon et al.,
2003). The corresponding ΣΛ parameters {t0i, µi, σi} can be then computed with:

σi =
√
− log(1−Aci), µi = 3σi − log(

−1 + e6σi

Ti
) (13)

t0i = t1i − eµ−3σ t1i = t1(i−1) + di−1∆ti t1(0) = 0, (14)

where t1i is the onset time of the lognormal stroke profile. As Aci approaches 0, the shape of the lognormal

converges to a Gaussian (Fig. 3.(c)), with mean t0i + eµi−σ2
i (the mode of the corresponding lognormal)

and standard deviation Ti

6 .

6. Conclusion
We presented a novel way to adapt the ΣΛ model as a powerful tool for the interactive generation of hand-
writing, drawing or calligraphic trajectories. We presented some possible applications and summarised
the advantages of our proposed implementation, including (i) the removal of the need of performing ex-
plicit numerical integration and (ii) the use of Euler spirals to capture and edit stroke primitives with
inflections.
Our longer term goal is to explore the hypothesis that viewing a static image of a hand-made trace involves
the mental recovery of its underlying movement (Pignocchi, 2010; Freedberg, Gallese, 2007; Longcamp
et al., 2003) and that such recovery influences its aesthetic appreciation (Leder et al., 2012). As a result,
we also hypothesise that a precise enough simulation of movement may trigger similar responses in an
observer of artificially rendered traces.
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