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Álvaro Sarasúa
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ABSTRACT
In this paper we present two datasets of instrumental gestures per-
formed with expressive variations: �ve violinists performing stan-
dard pedagogical phrases with variation in dynamics and tempo;
and two pianists performing a repertoire piece with variations in
tempo, dynamics and articulation. We show the utility of these
datasets by highlighting the di�erent movement qualities embed-
ded in both datasets. In addition, for the violin dataset, we report
on gesture recognition tests using two state-of-the-art realtime
gesture recognizers. We believe that these resources create op-
portunities for further research on the understanding of complex
human movements through computational methods.

CCS CONCEPTS
•Information systems→Multimedia databases; •Applied com-
puting→ Sound and music computing;
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1 INTRODUCTION
Music performance involves rich body movement that have been
studied in music research [9]. However, understanding musical
motion remains a challenge for the machine because of complex
temporal and spatial variations in their execution. Tackling this
challenge requires techniques that are able to capture such vari-
ations, as well as datasets upon which these techniques can be
evaluated. In this paper we provide two such datasets.
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Succesful methods in machine learning have o�en relied on well-
designed datasets that can be used for benchmarking. One famous
example is the MNIST dataset1 which is comprised of binary images
of digits. In movement research, there has been less consensus
about a unique dataset that can be used for benchmarking. �e
CMU MoCap database is perhaps the best known online motion
library2 and has been used in a wide variety of research projects.
However, none of them deals with expressive movements of the
sort involved in musical performance. While systems like RepoVizz
[4] allow the sharing of multimodal musical repositories and others
like Mova [1] allow the analysis and visualization of movement
features, motion capture studies of musical performance have not,
to our knowledge, made datasets available beyond the original
studies in which they were used.

Gestural expressivity is linked to the notion of variation in body
movement execution. For instance, in human-human communi-
cation we usually di�erentiate between the information content
(what is communicated) and the expressive information (how it
is communicated) [6]. Similarly, in music we can di�erentiate be-
tween what gesture is performed, which is linked to the musical
task, and how the gesture is performed, which is linked to the musi-
cal expression [5]. �e ways in which a gesture recognition system
can be robust against, or sensitive to, these variations depends on
the task at hand and the classi�cation/adaptation algorithm used.

�e contribution of this paper is twofold. First we present two
datasets of musical gestures with expressive variations that have
been built using a similar experimental procedure. Second we illus-
trate the potential of these datasets by highlighting intrinsic data
variations and by testing state-of-the-art classi�cation techniques.
Ultimately, our goal is to advocate for complementary research
tackling the problem of motion computing under conditions of
expressive variation. We believe that the datasets we provide are
useful resources in pursuing such endeavors.

�e article is organised as follows. We �rst describe the datasets:
number of participants, material, procedure and equipment. �en
we illustrate the data variations embedded in the datasets. In Sec-
tions 3 and 4, we test state-of-the-art gesture recognizers against
one of these datasets. Finally we discuss the results and propose
future research directions relevant to the motion computing com-
munity for which we think the provided datasets are useful.

1h�p://yann.lecun.com/exdb/mnist/
2h�p://mocap.cs.cmu.edu/
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Figure 1: �e phrase (L) from the Kreutzer Etude. Placement
(R) of the sensor on the bowing arm of the subject

2 DESCRIPTION OF THE DATASETS
We present two datasets that have been built on the same purpose:
gathering real-world musical gestures with explicit expressive vari-
ations. �e �rst dataset is comprised of violin gestures while the
second is comprised of gestures from piano performance. Partici-
pants recruited were all experts. Both datasets are available online3.

2.1 Violin gesture dataset
2.1.1 Participants and materials. We recruited 9 experienced

violinists (3 male, 6 female, aged between 17 and 43) and asked them
to play an excerpt from standard pedagogical repertoire: Kreutzer
Etude No. 2 in C major (see Figure 1, le�). All subjects had formal
classical music training, from 6 to 36 years of study.

2.1.2 Procedure. Each subject played the excerpt 10 times using
each of the following 5 bowing techniques: détaché, legato, spiccato,
staccato, martelé. �is set of bowing techniques has been chosen
based on previous work [7, 10] and discussion with professional
violinists during a pilot study.

A�er the 50 trials performed, each violinist was asked to play
the excerpt with 3 bowing techniques (détaché, legato and spiccato),
10 times each, this time varying the dynamic from pianissimo to
fortissimo (very so� to very loud). Finally, each violinist played the
excerpt with the same 3 bowing techniques 10 times each, but now
varying the tempo from slow to fast. In the following, the union
of the �rst 50 trials across the 9 participants is called the original
dataset; the union of the 30 dynamics trials the piano-forte dataset;
and the union of the last 30 tempo trials the slow-fast dataset.

2.1.3 Equipment. We captured the violinists’ gestures with the
Myo consumer device to acquire 8 channels of electromyogram
(EMG), as well as 3-channel accelerometer and 3-channel gyroscope
from its inertial measurement unit (IMU). We maintained consistent
sensor positioning for all participants (Figure 1 right).

2.2 Piano gesture dataset
2.2.1 Participants and materials. We recruited 2 professional

pianists (both female) and asked them to play an excerpt from
Schumann’s Träumerei (Kinderszenen Op.15 No.7) with di�erent
variations in speed execution and expressive intention. �is piece
has been previously used in research to investigate expressive as-
pects of piano music performance [8].

2.2.2 Procedure. Each subject played the excerpt at 3 di�erent
tempi, with and without a metronome: normal (70 beats per minute),
slow (40 bpm) and fast (120 bpm). In the no-metronome condition,

3h�p://gitlab.doc.gold.ac.uk/expressive-musical-gestures/dataset

Figure 2: Le� hand phrase from Träumerei (L), between the
circled notes. Still image from video (R) showing normal
tempo, exaggerated expression.

they also played with rubato (continuous expressive tempo alter-
ation). In each of the conditions for metronome and speed, they
played with 5 expressive intentions: normal, still (trying to move
as li�le as possible), exaggerated, �nger legato (melodic consecu-
tive notes smoothly connected) and staccato (detached consecutive
notes). 3 takes were recorded in each of the conditions, making a
total of 105 takes per pianist.

2.2.3 Equipment. Recordings were made in a room equipped
with an OptiTrack Motion Capture system with which we captured
the position and orientation of 22 body limbs4 at 100 Hz. �e
pianists played an 88-key electronic piano (with weighted action)
from which we recorded audio at 44100 Hz and MIDI data. Video
was recorded using a Microso� Kinect at 30 fps (a still image from
this video is shown in Figure 2, right). A MaxMSP patch was
developed to record all 4 modalities (motion capture, video, audio
and MIDI) aligned into separate �les.

3 VARIATION ANALYSIS
We analyzed the variations embedded in the two datasets. For the
violin dataset we expect variation in the EMG signal re�ecting the
muscle in�ections required to perform the di�erent articulations.
In the piano dataset, we expect spatio-temporal variation in the
motion capture position data re�ecting the di�erent phrasings.

3.1 Violin dataset
We analyze the variation in the EMG data by computing the aver-
age IMU and EMG amplitude across trials and participants for each
dataset. Figure 3 reports the statistics. A one-way ANOVA shows
that there is no signi�cant di�erence between IMU amplitudes
(F (1, 108) = 1.10), p > 0.05) but there is a signi�cant di�erence
between EMG amplitudes (F (1, 108) = 101.53), p < 0.001). More
precisely, EMG amplitude for trials played in original condition is
signi�cantly lower than the EMG amplitude in either the piano-forte
or the slow-fast conditions. Interestingly there is no signi�cant dif-
ference in EMG amplitude between the two last conditions, meaning
that playing with increasing speed or with increased bow pressure
both involves more muscle groups, and consequently more tension.

3.2 Piano dataset
�e piano dataset includes position/orientation of multiple joints,
as well as aligned audio, video and MIDI, resulting in a complex
analysis task that is beyond the scope of this paper. Instead we focus
on a speci�c example that illustrates the potential of the dataset.

4Due to occlusions caused by the piano, the position of body limbs below the abdomen
was unstable

http://gitlab.doc.gold.ac.uk/expressive-musical-gestures/dataset
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Figure 3: IMU (L), EMG (R) average amplitude across trials
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Figure 4: Vertical position of pianist LH across execution
of the phrase at di�erent expressive intentions with means
across trials (color) and standard deviation (shade).
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Figure 5: QoM of the LH in the analyzed excerpt at each vari-
ation task: exaggerated, legato, normal, staccato, and still.

Here we show, for one of the pianists, how the movement of
the le� hand varies for di�erent articulation in a single isolated
phrase (a leap of a major 10th with grace notes leading to the upbeat
of measure 2). Figure 2, le�, shows the score of this phrase. We
trimmed the mocap data aligning on MIDI note messages. Figure 4
shows the vertical position of the le� hand for this phrase for the 5
di�erent expressive variations. It illustrates how the pianist swept
the hand away from the keyboard in the exaggerated variation (as
shown in Figure 2, right) while making a more restrained arch for
normal and staccato. �e dip in the curve shows how she dug down
for the still and legato intentions.

We computed the �antity of Motion (QoM)5 of the le� hand
as the magnitude of its 3-d velocity across trials and execution
speeds. Figure 5 reports the statistics. A one-way ANOVA shows
that there is a signi�cant e�ect of the expressive intention on QoM
(F (4, 18805) = 642.7), p < 0.001). A Tukey’s HSD (Honestly Sig-
ni�cant Di�erence) post-hoc analysis shows that the �antity of
Motion computed for each expressive intention is signi�cantly dif-
ferent between all pairs of intentions.

4 GESTURE REALTIME RECOGNITION
In this section we inspect the potential of two state-of-the-art real-
time gesture recognizers on one of the datasets as a way to highlight
5We do not refer to the magnitude of the 3-d velocity as speed to avoid confusion with
the speed of execution.

to what extent existing techniques can handle variations as pre-
sented above and infer opportunities for further research.

We chose to perform these tests on the violin dataset as it is
comprised of several gestures, multiple instances of each of those
gestures, performed with explicit variation.

4.1 Procedure
We conducted a within-subject procedure where for each subject
we performed 10 tests. In each test we randomly chose a training
set from the original dataset and trained two models from the state-
of-the-art: a Hidden Markov Model (HMM) adapted for realtime
gesture recognition as described in [3] and a dynamical system for
realtime gesture recognition and variation tracking [2] based on
Particle Filtering (PF).

�e HMM was either trained with a single example per gesture
class (denoted HMM-1) or 5 examples per class (HMM-5). �e PF
was trained with a single example per class. We inspected cases of
IMU data only or multimodal IMU+EMG. For each test, we stored
the likelihood estimations along gesture execution to analyze the
classi�cation accuracy at each time step (progression 1 − 100%).

4.2 Results
4.2.1 Classification on the original dataset (Fig. 6, Frame 1). IMU

data. In classi�cation, HMM-1 (93.1%) outperforms PF (91.3%).
HMM-5 is even be�er with a �nal classi�cation rate of 98.9%. At
the very beginning of the gesture execution (1% of the gesture
completed) HMM-1 is more accurate than PF (52.0% vs. 30.8%) and
HMM-5 more accurate than HMM-1 with 63.0% accuracy.

IMU+EMG data. PF outperforms both HMM-1 and HMM-5 (94.3%
against 80.9% and 90.2% respectively). Multimodal IMU+EMG im-
proves PF classi�cation accuracy compared to results with IMU only.
On the contrary HMM-1 and HMM-5 global accuracies decrease
when adding EMG features to the dataset. For each model, using
the EMG modality signi�cantly improves the early recognition rate.
At 1% of the gesture performed, PF, HMM-1 and HMM-5 reach
respectively 67.1%, 72.1% and 79.0%.

4.2.2 Classification on the piano-forte dataset (Fig. 6, Frame 2).
IMU data. HMM-5 and PF obtain similar classi�cation rates (81.3%
and 81.6% respectively), outperforming HMM-1 (75.8%). PF reaches
similar performance than HMM-1 and HMM-5 a�er about 60% of
the gesture has been executed.

IMU/EMG data. Results are globally low. PF, HMM-1, and HMM-
5 perform similarly with classi�cation accuracies of 41.2%, 39.2%,
and 39.5% respectively. Accuracies remain relatively constant at
di�erent times along the gesture progression.

4.2.3 Classification on the slow-fast dataset (Fig. 6, Frame 3). IMU
data. As in the previous comparison, HMM-5 and PF obtain similar
classi�cation rates (81.2% vs. 82.0%), outperforming HMM-1 (73.1%).
HMM-5 achieves a be�er early recognition rate compared to HMM-
1 and PF. PF requires about 20% of the gesture to be completed to
reach similar performance to HMM-1. �e initial classi�cation rate
(at 1% of full gesture) is similar for HMM-1 and HMM-5 (49.6% and
51.3% respectively), above PF performance (42.4%).
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Figure 6: Classi�cation accuracies computed for HMM and PF, trained on the original dataset and testing on original, piano-
forte, and slow-fast, either using IMU only or IMU and EMG

IMU+EMG data. PF achieves a 40, 7% accuracy while HMM-1 and
HMM-5 performances are 32.5% and 37.0%, close to chance (33%).
�e PF rate is relatively constant along the gesture progression.

5 DISCUSSION
We have presented two datasets of real-world musical gesture per-
formed by expert musicians with explicit expressive variations: 1.)
inertial and physiological recording of violin gesture and 2.) motion
capture data of piano gesture.

�e �rst dataset has a number of subjects (9), di�erent gesture
variations (5), and multiple instances of each (10), it constitutes a
good candidate for testing gesture recognition systems. We showed
that HMM exhibits best performance when trained and tested on
the same dataset. Also, HMM shows a be�er early recognition
rate than PF because PF has to update and propagate a probability
distribution at every sample, which leads to slower convergence.
Adding the 8-channel EMG modality decreases HMM recognition
accuracy while increasing PF accuracy. However, none of the meth-
ods managed to adapt when trained on normal condition and tested
on (unexpected) variations with complex data (EMG). �is limi-
tation o�ers an opportunity for further research in the design of
realtime gesture recognition systems robust to complex variations.
�is dataset could then be used as a benchmark.

�e piano dataset contains the position and orientation values
of all body limbs during the performance of a musical excerpt,
with variations in tempo and melodic articulation. �is dataset is a
comprehensive representation of a single gesture and its variations,
thus minimizing the classi�cation task and focusing instead on
analyzing gesture variation. �e dataset is multimodal including
aligned video, audio and MIDI thereby o�ering a wide range of
possibilities for analysis. In the illustrative example here, we used
MIDI data to automatically segment motion capture data to center
the analysis between two notes of interest. We focused on the le�
hand movement at the end of the �rst phrase in the excerpt and
showed that computed �antity of Motion is a�ected by expressive
intentions. We consider that this dataset o�ers great potential for

more complex analysis. For example, an interesting direction would
be to study how expressive intention a�ects features computed from
other modalities (e.g. audio and/or MIDI), and how the variations
in features computed from di�erent modalities correlate.

�ese datasets are made available to the research community.
Our procedures are replicable, using readily available interfaces,
and repertoire commonly used in the study of musical expression
[8]. We hope that they provide a resource for future research in
expressive musical gesture.
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