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Abstract.  The approaches in this work combine the swarm behavior principles 
of Craig W. Reynolds with space filling curves movements.  We intend to eval-
uate how the entire swarm moves by including a deterministic leader behavior 
for some agents. Therefore, we examine different combinations of Hilbert 
Curves with the classical swarm algorithms. We introduce a practical problem, 
the collection of manganese nodules on the sea ground by using autonomous 
agents. Some relevant experiments, combining different parameters for the 
leaders were run and the results are evaluated and described. Finally, we pro-
pose further developments and ideas to continue this research. 
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1   Introduction 

At the same time with the research of renewable resources, it would be useful to find 
new ways in order to open up fossil ones. For example, manganese can be found on 
the sea bottom in form of nodules. Actually, this is a chemical element with the peri-
odic table symbol Mn and atomic number 25. The biggest application area is for rust 
and corrosion prevention on steel [9]. Degradation can be prevented by collecting 
these manganese nodules from the sea ground using specialized robots. It is necessary 
to find appropriate ways how to handle the action of these agents. The results can be 
generalized and cover other collecting tasks as well. Consequently, this work focuses 
on optimizing the swarm behavior of autonomous agents. The solution can be found 
by either improving the achievements or reducing the effort by keeping the same size 
of achievements. The background for our approach is a framework for simulation and 
improvement of swarm behavior in changing environments [1]. It simulates the 
swarm behavior after the principles of Craig W. Reynolds [2] later pointed out in 



section 2.2. The main issue the associated application to the framework does, is to 
deploy agents with a specific strategy and then to gather them. While gathering, the 
agents are collecting the manganese which is distributed on every position in the 
coordinate system. Once they are gathered together, there is no more movement and 
the simulation ends. The intention of our work is to redesign and extend this frame-
work. Manganese occurs in form of nodules, so it is not really realistic that they are 
distributed uniformly. Therefore, it is reasonable to implement a Manganese-Nodule-
Model, where each nodule is represented stand-alone. It should also be considered 
that not all nodules have the same size (value). For this new design of the manganese 
distributions, benchmarks have to be created for having the opportunity to compare 
the results. The next issue is to improve the collecting procedure itself. The more 
meters the agents pass, the higher is the chance to find manganese. Consequently, we 
try to find a way to pass through a bigger area. The less complex solution would be to 
give each agent his own route. This would probably scatter the swarm because of the 
bad orientation and the uneven surface. Most of the research activities about swarm 
behavior are inspired by nature like genetic algorithms or particle swarm optimiza-
tion. These researches focus on bird flocks or fish schools. An alternative discussion 
could be focusing on a pack of wolves, for example. A pack of wolves consists of 
autonomous individuals with a specific hierarchy. Not every wolf has the same power 
of decision for the pack. Normally there is one wolf who leads the group and the 
others are followers [11]. This work aims to study this concept more closely. We want 
to have one or more leaders who will move after a specific route, but still being part 
of the swarm and the rest calculates its new position, that means every iteration in 
consideration of all agents. We imagine an area where we know that there should be a 
big amount of manganese nodules. We need to find proper methods to explore sys-
tematically and carefully through a given area. One of the first things that comes to 
one’s mind is the specialist mathematical field of space filling curves. Summarized, a 
space filling curve is a curve that covers recursively an entire 2-dimensional square.  
We are focusing on the one of the most famous space filling curves developed by 
David Hilbert (section 2.4). 

2  Background 

This section describes the previous work the application is based on. It includes three 
main topics: Moving Algorithms, Particle Swarm Optimization, Hilbert Curves. 
 
2.1  Framework for Adaptive Swarms Simulation and Optimization 
 
The starting application is based on [1]. The framework is an application that runs a 
simulation of agents using moving algorithms Random, Square, Circle, Gauss, and 
Bad Centers [1]. It has different deployment strategies implemented from where the 
moving algorithms start. The frontend is based on the open source framework of pro-
cessing.org [4]. The whole visualization part is done in the Visualization class with 
support of its derived class VisualRobot, which helps to represent the robots in the 
visualization. The whole simulation part is managed by a class with the same name. It 



creates the chosen deployment strategies and calculates the movement of the robots, 
as well as the collection of manganese. Manganese is located on every position in the 
coordinate system. In addition, it also counts the distance in walked meters of all 
agents together. It is also possible to set at the beginning the number of agents. This 
number must be between 2 and 100.  
 
2.2 Moving Algorithms 
 
Artificial systems are, for example, needed when it is wanted to solve problems which 
are beyond the capabilities of a single individual. In our case it is actually required to 
build a swarm of agents, where each agent individually moves forward with consider-
ation of the other agents of the swarm. There are several efficient algorithms for 
swarm behavior and movement of agents that could be implemented in the application 
[4]. The previous work [1] uses a simplification of the bird flock movement described 
by Craig W. Reynolds [2]. The idea was to develop algorithms that simulate swarm 
behavior inspired by flocks of birds or schools of fish. Therefore, three criteria every 
robot follows at each iteration were settled up. The contribution implemented three 
different algorithms that run simultaneously: cohesion, separation, alignment. 
 
2.3 Particle Swarm Optimization 

 
Particle Swarm Optimization (PSO) was first proposed in 1995 by J. Kennedy and R. 
Eberhart [6]. The idea was to build swarm behavioral algorithms for solving problems 
by iteratively improving a candidate’s solution until termination criteria is satisfied 
[7]. It is similar to a genetic algorithm regarding that both algorithms are initialized 
with a random population, in PSO called particles. The difference is that in PSO algo-
rithms, each particle is assigned to a randomized velocity and the particles move 
through hyperspace. Each particle consists of its position, its velocity, its current 
objective value and its personal best value of all time. PSO also keeps track of the 
global best value that is the best objective value of all particles and also the corre-
sponding position.  

 

 

 
2.1 

 
The formula above describes a classical iteration for particle movement. The next 
position x(i) (n+ 1) is made from the current position x(i)(n) and the velocity vector v (i) 
(n+ 1) of a specific particle i. The velocity vector gets created by the following itera-
tion:  
 

 

 
2.2 

 



where xp represents the individual and xg the global best position.  [xp
(i) (n) − x(i)(n)] 

calculates a vector towards the personal best which is influenced by the random vec-
tor r1

(i) (n), that contains values uniformly distributed between 0 and 1.  
[xg

(i) (n) − x(i) (n)] calculates a vector towards the global best which is also influenced 
by some randomness r2

(i)(n). PSO has two options to focus on every iteration. The first 
option is diversity, that means particles are scattered, searching a large area but im-
precise. The second option is convergence that means particles are close together, 
searching a small area very precise. The best result can be achieved through a combi-
nation of both. 
 
2.4 Hilbert Curves 
 
A Space Filling Curve is a special line of the mathematical calculus that fully covers a 
two or three dimensional area. Giuseppe Peano (1858-1932) was the first to discover 
them in 1890. He wanted to create a continuous mapping construction from the unit 
interval onto the unit square [7]. Space Filling Curves have a wide field of purpose in 
computer science. They are used specially to linearize multidimensional data, e.g. 
matrices, images and tables. With their help it is possible to simplify data operations 
like load-store operations, matrix multiplications and updating and partitioning of data 
sets by finding an efficient way to go through the data. 
 
Definition 2.2. Hilbert Curve [10]. The unit square is divided into congruent sub 
squares Qn

(k) with side length 2n. The only condition is, that neighboring sub intervals 
are mapped onto neighboring sub squares, whereby the square that is next to the zero 
position is always the first and the one that is next to the point (1, 0) is always the last. 
If we are now connecting the center of these squares in the right order, we get une-
quivocal curves Cn (Fig. 1). 
 

 
Fig. 1. Level 1-4 of the Hilbert Curve 



3  Implementation Details 

This section shows the practical changes and extensions that were necessary to im-
plement for the experimental procedure. At first, some new classes had to be imple-
mented to lay the basis for the new Manganese-Nodule-Model. These new classes 
help us to represent the nodules on the map as well as for the calculations in the back. 
In section 3.3 is described how these new classes get connected to the existing simula-
tion and visualization.  
 
3.1 New Classes 
 
The class DeployRing deploys the robots in a ring shaped way. It is part of the De-
ploymentStrategy interface. The deployment algorithm is similar to the DeployCircle, 
but has a specific radius right from the beginning. Objects of type ManganeseNodule 
represent the manganese nodules in the backend simulation. Each ManganeseNodule 
object also contains a Coordiantes Object, which specifies the exact position of the 
nodule in the coordinate system. The class VisualManganModule helps to visualize 
the manganese nodule in the simulation. For each available ManganeseNodule object 
in the corresponding list, a new VisualManganNodule object gets created every itera-
tion.  

 
Fig. 2. DeployRing; Top Left initial deploy. 

 
Objects of type ManganeseNodule represent the manganese nodules in the backend 
simulation. They have two attributes. One is the size of the nodule that ranges from 1-
7 as an integer. The other one is the status if the nodule is available or already collect-
ed. Each ManganeseNodule Object also contains a Coordiantes Object, which speci-
fies the exact position of the nodule in the coordinate system. 



 
Fig. 3. Visual Class Diagram ManganeseNodule. 

 
The class VisualManganModule helps to visualize the manganese nodule in the simu-
lation. For each available ManganeseNodule object in the corresponding list, a new 
VisualManganNodule object gets created every iteration. This class includes the con-
version from the size as an integer to the corresponding grey tone for placing it into 
the map in the application. 
 
3.2 General Evolution 
 
The getMangan() method was advised due to the new structuring of the benchmarks. 
As there is not manganese on every position anymore, this function needs to check if 
there is a manganese nodule on this position. If so, the size of it is also returned. The 
step() method helps creating the route to an specific space filling algorithm described 
later.  
 
3.3 Benchmarking 
 
The benchmarks are provided as independent files. It was necessary to create new 
classes ManganeseNodule and VisualManganNodule. These two classes help us to 
simulate the collection of manganese by our autonomous agents. The class Manga-
nesNodule is thereby necessary for all backend happenings and the class VisualMan-
ganNodule is necessary for visualization in the graphical user interface. The visualiza-
tion part is done by the VisualManganNodule class. The files are deposited in the 
project archive. Each line represents a y-value and each char represents a x-value in 
the coordinate system of the graphical user interface. The lines are filled with num-
bers from 0 to 7 in accordance with the size of the nodule, where zero means that no 
nodule can be find on this position. The user can choose between three options: MAP 
1, MAP 2 or MAP 3 and load them. Then the associated file gets scanned and the 
nodules created. 



 
Fig. 4. Benchmarks: Fields (a), Lines (b), Diamond (c). All three graphics represent bench-

mark maps. The benchmarks include manganese nodules from size 1-7.  
 

3.4. Hilbert Algorithm 
 
The Hilbert algorithm is implemented with a recursive function which follows the 
description of section 2.4. The function is called every time when the agent moves 
into the next unit square. The function calls varying from clockwise rotation to nega-
tive rotation which means counterclockwise. The ground structure of how going 
through the 9 sub-squares is fixed implemented. The algorithm function receives four 
parameters:  

 
double len:  initial step length.  
int direction:  specifies the starting direction on the coordinate system in degree.  
int rot:  indicates whether the curve should run clockwise or not. 
int deep:  determines how many levels deep the algorithm should go. 
 

 
 

Fig. 5. Hilbert Algorithm 



4  Experimental Results 

The measured variables are the distance and the collected amount of manganese of all 
robots in one pass. The difference of robots between Rob Total and Rob Hilbert are 
robots behaving after the principles of Moving Algorithms in section 2.2. 
 
We increase successively the number of Hilbert Robots and ran 1000 iterations with 
every increase. It runs with the benchmark Diamonds and the deployment strategy 
Square. This experiment runs with the benchmark Diamonds and the deployment 
strategy Square. With every increase of the number of Hilbert Robots, the covered 
distance of all robots increases by 40,000-60,000 m with an average increase of 
56,569.85 m. The collected manganese does not increase constantly as well. The 
global maximum of 5335 kg is reached with a constellation of 46 Hilbert Robots (see 
Fig. 6). The biggest jump is between the first and the second measurement, with an 
increase of 562%. If we have a look at the efficiency in fig. 6 (left diagram) we see a 
raising graph with some flat parts, all amounts of one flat part have the same efficien-
cy, that is the case for the amount of 3-6 Hilbert Robots (average absolute deviation 
3.2 m), for the amount of 15-21 Hilbert Robots (average absolute deviation 5.2 m) or 
34-40 Hilbert Robots (average absolute deviation 2.9 m).  
 
 

 
a. Collected amount of manganese of Dia-
mond, Square, Hilbert 0-50. 

 
b. Relation between the total amount of col-
lected manganese and the distance all robots 
have covered, for the experiment Diamond, 
Square, Hilbert 0-50. 

 
Fig. 6. Analysis Hilbert 0-50 increase. 

 
 
 



 
a. after 500 iterations 

 
b. after 1000 iterations 

 
Fig. 7. Diamond, Square, Hilbert 0-50: Screenshots experimental procedure. 

 
The correlating local minimum occurs with the amount of 42 Hilbert Robots and 464 
m per kg manganese. In this case, the total amount of manganese breaks down rough-
ly 21% compared to the simulation run with 49 Hilbert Robots. 

5  Conclusion and Future Work 

As this work was focused only on the beginning in combining swarm behavior with 
specific space filling curves, there are further things to develop in order to get deeper 
into this topic. It would be conceivable to think of different leaders with different 
weightings. For example, the leader who collected the most manganese in the last 10 
iterations could get the highest weight in calculating the next position of each agent of 
the swarm. In addition to that, a distributed system could be implemented and thereby 
the communication between the agents would be extended. To really get a maximum 
amount of manganese, the swarm could divide and follow different leaders. The num-
ber of agents who join a specific leader could vary. If the leader loses strength, more 
and more agents join another swarm. The leader stays on his route; this keeps the 
chance high to find new manganese nodule fields. If a leader does not collect any 
manganese for a longer period, he may become a follower and joins a swarm. This 
could also be possible the other way around. If there is a big swarm, new leaders 
could be chosen to search in a specific direction. Another interesting direction would 
be to combine space filling curves with genetic algorithms. It would be imaginable to 
build populations with different amounts of deterministic and swarm agents, like this 
work already did, but keep on developing the next generation after the principles of 
genetic algorithms. As extension, we can consider a changing environment with hun-
dreds or thousands of agents. 
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