
Computational Creativity and Live Algorithms

Geraint A. Wiggins and Jamie Forth
Computational Creativity Lab

Queen Mary University of London
Mile End Road, London, E1 4FZ

This is a draft of a chapter that has been accepted for publication by Oxford University Press in the Oxford Handbook of Algorithmic
Music, edited by Alex McLean and Roger Dean and published in 2018.

Abstract

This chapter examines the field of algorithmic composition from the perspective of computational
creativity. It begins by introducing the idea of computational creativity as a philosophical perspective.
Next, it introduces a method for consideration of the properties of creative systems, the Creative Systems
Framework (CSF; Wiggins, 2006a,b). The CSF becomes the starting point for a discussion of a system of
comparison specific to algorithmic composition as an artistic and technical practice. Finally, the chapter
sketches a road map for future developments in algorithmic composition and live coding, in these terms.

Keywords: computational creativity, algorithmic composition, creative systems frame-work, live
coding

1 Introduction
Live algorithms have been present in Western music since as early as the eighteenth century. Der allerzeit
fertige Menuetten- und Polonaisencomponist (Kirnberger, 1757) allows minuets and polonaises to be gener-
ated by choosing random numbers. While probably not necessarily intended for live operation, as opposed
to prepared performance, the music is certainly performable in this way.

In the twentieth century, algorithmic processes in music became a feature of modernist composition,
with composers such as Philip Glass (Potter, 2000) and John Cage (Revill, 1993) specifying processes in
advance of performance and writing their output down. Live algorithmic music was less common, because
of practical limitations, but there are examples, such as the chance-driven processes in Lutosłavski’s Jeux
vénitiens (Lutosławski, 1961). Perhaps the archetype of human-driven live algorithmic music is Terry
Riley’s In C (Riley, 1964; Potter, 2000), in which the performers, guided by a conductor, choose the
transitions in a pre-specified algorithmic sequence.

However, to the best of our knowledge, there has yet to be a musically successful attempt to generate
music live for humans to play, despite technologically interesting prototypes at specialist conferences,
which, for example, generate instrumental scores live (e.g., Eigenfeldt et al., 2012; Eigenfeldt, 2014). For
this reason, we base our argument on the restricted case where a human is programming a computer, live,
to play sounds, which are specified by programmatic means: live coding. Live coding is a very specific
microcosm of the broader live algorithms field, and its specificity helps make our model clear. However,
we believe that the model we develop in this chapter is equally applicable to musical coding which happens
not to be live.

Given that a computer is involved, a natural question to ask is “how involved is the computer?” In the
majority of cases, we believe that the computer serves as a very powerful sequencer, where the specification
of the sequence is given in intensional terms1 (that is to say, specified as a generative process) rather than
extensional terms (that is to say, specified as a set of notes, or by the positions of a sequence of knobs or

1These terms are borrowed from symbolic logic. An intensional specification is one which is couched in terms of properties,
such as ‘the integers between 0 and 100’, while an extensional specification lists the set of things referred to. Clearly, intensional
specifications can specify infinite things (e.g. ‘all numbers greater than 0’, where extensional ones cannot. Further, and most important
to our purposes, an intensional specification can be a program that generates things.

1



switches on an analog synthesiser). As such, while the scope of such expression is clearly substantially
broader, and the means of expression fundamentally different, the essential nature of the activity is not
different from the complex-sequencer-based work of bands such as Tangerine Dream, in the 1970s2. The
nature of the intensional specification of sequence is very clearly exemplified in languages such as Tidal
(McLean, 2011), which are optimised from the perspective of easily, efficiently and intensionally specifying
operations, live, that map between sequences specified extensionally or intensionally. This difference is
crucial to the purposes of this chapter, not so much because of the breadth of expression afforded, but
because programs and the numbers that drive them are capable of representing information at more than
one level simultaneously. In particular, they are able to represent and reason about themselves, as well as
about their outputs, affording the capacity for reflection (reasoning about one’s own behaviour), which is
not available to a hardware sequencer, whose knobs are (literally) hard-wired to whichever functions they
control, and whose clock is just that, voltage control notwithstanding. Reflection is a key feature of creative
autonomy, and our purpose here is to explore future paths for live coding, in which the computer is given
more creative responsibility (Colton andWiggins, 2012) for the outputs produced than is the case at present.

McLean and Wiggins (2010c) elicited opinions from practising live coders as to the current and future
development of automation in live coding, particularly in respect of creative autonomy of the computer.
Of those who responded, 40.7 percent believed that it was possible, at the time of the survey, for live code
to modify itself in an artistically valued manner, and some of those who disagreed were optimistic that
this would be possible in future. Exactly half of the respondents agreed that a computer agent has been
developed that has produced a live coding performance indistinguishable from that of a live coder, or that
one such will be developed within five years of the survey. Of the same cohort, however, 34.6 percent
believed that such an agent will never be developed.

The aim of the current chapter, therefore, is to begin to lay out the path towards such valued creativity in
a live coding agent. We begin by defining the Creative Systems Framework (Wiggins, 2006a,b) which will
provide the context for our discussion, and illustrating its application with a very simple example concerning
an imaginary live coder, and we very briefly introduce Tidal, our live coding language of choice. We then
proceed to examine the consequences of following through the various possibilities to foresee a live coding
system that might work in creative partnership with a human in a true hybrid creative system.

2 Creative Systems
The Creative Systems Framework (CSF; Wiggins, 2006a,b) takes as a starting point the following definition
of a creative system.

Creative system A collection of processes, natural or automatic, which are capable of achieving or simu-
lating behaviour which in humans would be deemed creative. (Wiggins, 2006a, p. 451)

This definition presupposes, not unreasonably, that creativity is best understood in terms of human behaviour,
in that we can meaningfully discuss non-human creativity only with reference to behaviour exhibited
by humans. However, depending on the vantage point one takes when considering a creative process,
alternative conceptualisations of creative systems can emerge. For example, an improvisation context,
comprising human and/or artificial agents, may be considered a creative system when viewed from a certain
level of abstraction, as a “black box”. Likewise, the abstraction boundary may be increased still further,
resulting in creative behaviour at the level of societal dynamics, or lowered into hypothesised mechanisms
underlying individual human creativity or more general cognition (Baars, 1988; Wiggins and Forth, 2015).
Applying the CSF at various levels of abstraction it becomes possible to separate out the contribution of
many disparate elements that together give rise to complex and emergent creative behaviour.

In the practice of live coding, computational systems are predominately viewed as tools or instruments
under the control of the human performer, and thus as means of expressing human creativity. Some live
coders tend to view systems more as collaborators, particularly when the systems exhibit behaviour that is
complex and challenging (Bovermann and Griffiths, 2014). In this case it appears that sense of agency on

2Two ground-breaking examples of “live in studio” manipulation of sequencers by Peter Baumann can be found in the Tangerine
Dream tracks Phaedra (1974) and Stratosfear (1976) from the albums of the same names.

2



behalf of the system becomes established by the perception of the system’s behaviour in the mind(s) of the
performer and/or audience. Taking the live coder together with the system as a basic level of abstraction
for applying the CSF, we are able to identify where principle boundaries of responsibility lie for sustaining
creative behaviour in the partnership of human and algorithmic processes. Clarifying these distinctions
will enable the potential shifting of creative responsibilities and for artistic motivations leading to more
inspiring interactive live coding partnerships, but also for motivations in the scientific study of creativity.

3 The Many Levels of Creativity in Live Coding
Creativity abounds, on multiple levels, within live coding. The software employed, or at least the core set of
abstractions used to express musical concepts, are typically developed by the live coder as an integral part of
the development of their musical aesthetic. Before a live coder takes to the stage, a long series of artistic and
technical challenges have to be addressed, requiring a high degree of ingenuity and technical competence.
In the cycles of software development or dedicated rehearsal sessions, the live coder will experiment and
become more familiar with the system’s idiosyncrasies and explore the potential scope of musical output.
In a manner akin to the extended-mind theory of consciousness (Clark and Chalmers, 1998), the live coder
becomes attune to thinking with and through the medium of code and musical abstractions, such that the
software can be understood as becoming part of the live coders’ cognition and creativity. Such fundamental
engagement with musical structure through the medium of code leads to an musical aesthetic suffused with
algorithmic elegance. This phenomenon is not restricted to live code practitioners: Magnusson (2014, p. 13)
identifies from an extensive survey of live coding practice, that a common motivation amongst performers
is to ‘communicate algorithmic thinking’. More generally, Collins (2008, p. 240) characterises the role of
the music analyst when considering computer-generated music as being to seek ‘to explain a given output
(a production) in terms of the originating program (a source)’. Given the prominence of code projection
and other forms of algorithmic visualisation during live coding performance—enabling audiences to form,
at least to some degree, an appreciation of the music with reference to the processes by which it is being
generated—it is reasonable to assume that means of generation are integral to the aesthetic values of live
coded musical performance.

Beyond the coupling of live coder and computational system, creative behaviour can be observed in
group performance. Group live coding performances typically follow a model borrowed from improvised
jazz where performers interact with fellow performers in an ongoing negotiation of musical development
(McLean, 2014). Creativity here can be viewed as distributed among the participating creative agents.
Audience members, simply by engaging with the performance can be understood as exhibiting creative
behaviour by at the very least making meaning out of the experience, but also potentially influencing the
direction of the performance by means of what McLean (2014) identifies as the inherent social feedback
involved in live code performance.

4 Formalising Creative Systems
To formalise the idea of a creative system, we first introduce Boden’s abstract model of creativity, and show
how it can be formalised, to provide a tool set for discussing creative systems. Of course, the creative systems
we have in mind here are hybrid ones, composed of a human programmer-composer and an algorithm. In
particular, in this section, we introduce some specific properties of creative systems that will be useful in
our taxonomy.

4.1 Boden’s Model of Creativity
Boden’s (2004) model of creativity revolves around the notion of a conceptual space and its exploration by
creative agents. The conceptual space is a set of artefacts (in Boden’s terms, concepts) which are in some
quasi-syntactic sense deemed to be acceptable as examples of whatever is being created (Boden, 2004).
Implicitly, the conceptual space may include partially defined artefacts too. Exploratory creativity is the
process of exploring a given conceptual space; transformational creativity is the process of changing the

3



rules which delimit the conceptual space. Boden (1998) also makes an important distinction between mere
membership of a conceptual space and the value of a member of the space, which is defined extrinsically,
but not precisely.

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reasoning,
as a requirement for “real” or “significant” creativity (though the definition of such creativity is so far left
imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example, presents a
completely different account of what is going on in “transformational” creativity, in which the notion of
transformation is not so clearly present. Colton et al. (2014, 2015) present the IDEA and FACE models,
that attempt to characterise creativity from different perspectives. However, since the current chapter is
primarily focused on the application of Boden’s theory to live coding, via our Creative Systems Framework,
explained next, we defer discussion of alternative approaches.

4.2 The Creative Systems Framework
The central idea of the Creative Systems Framework (CSF), the formalism presented by Wiggins (2006a),
is that an exploratory creative system in Boden’s (2004) terms, may be abstractly represented by a septuple,
thus:

〈U,L, [[.]], 〈〈., ., .〉〉,R,T , E〉.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins, 2006a,
gives more detail)3

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules
[[.]] a function generator, whichmaps a subset ofL to a function which associates elements

ofU with a real number in [0,1]
〈〈., ., .〉〉 a function generator, which maps three subsets of L to a function that generates a new

sequence of elements ofU from an existing one
R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative system
being modelled. R is a set of rules, expressed using the language L, which select an “acceptable” or
“relevant” subset of U which corresponds to Boden’s (2004) conceptual space. In Wiggins’ formulation,
selection is permissive in the sense that it admits partial artefacts, even some of whose completions may
eventually turn out not to be admitted. So applying a selector function generated from R by [[.]] and a
suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of Boden’s conceptual space:

{c | c ∈ U ∧ [[R]](c) ≥ 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating: a piece of
music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a fuzzy selector; we
postpone discussion of this for now.)
T is a set of rules which, when interpreted, perhaps along with those in R and E, by 〈〈., ., .〉〉, describe

the behaviour of a creative agent as it traverses the conceptual space from known artefacts to unknown
ones (much as the standard AI search framework; Wiggins, 2006b, explains the relationship in detail),
and possibly back again. The first argument of 〈〈., ., .〉〉 takes a concept/artefact-definition ruleset, such as

3Ritchie (2012) presents a slightly different formalisation of broadly the same ideas.

4



R, above, and the second a rule set such as T , which is the specification of the traversal strategy. The
third argument is E, the rules by which value is attributed to a created artefact, new or otherwise (see
below). R and T are included so that it is possible for T to include reasoning about them, but this is
not a requirement; thus, T can in principle generate artefacts which do not conform to the rules of R and
this can be used to trigger subsequent reasoning and reflection about the creative system under simulation
(Wiggins, 2006b). There is no explicit equivalent of T in Boden’s writing, though it is implicitly present at
all times. To distinguish between transformation of R and transformation of T we write “R-transformation”
and “T -transformation”.
E is a set of rules which define the evaluation of the creative outputs resulting from the agent’s activity,

appropriately contextualised. The formalism does not specify what this context is; it might be the subjective
judgement of the creating agent, or the subjective combined judgements of other agents, or comparison
with some objective measure. E allows us to express the notion of value proposed by Boden (1998). (For
completeness, we mention that we would expect E to be amenable to transformation, also, in particular
ways, especially if this theory were applied in the context of a multi-agent system. However, for the moment
we leave the interesting question of how usefully to formalise E-transformation to future work.)

A further useful mechanism is the function �, defined such that

F �(X) =
∞⋃
n=0

F n(X),

where F is a set-valued function of sets; this allows generation of all the concepts derivable under T from
a given starting concept: below, we will substitute 〈〈., ., , 〉〉 for F in this formula to capture iteration across
the whole search space. A useful constant will be >, the null (or completely undefined) concept, which
inhabits all conceptual spaces.

A brief example may help to clarify the usage of this mechanism. Consider the familiar task (Ebcioğlu,
1988, for example) of harmonising of seventeenth century German hymn tunes in the style of J. S. Bach. We
can model this case as follows (but note that there are other ways, depending on what one wants to achieve).
[[R]] selects a subset of U which might be described as the set of all partial and complete harmonisations
of the canon in question. E then selects those which are considered good, according to criteria that may
be related to appropriate rules of music theory, psychological models of music perception, and/or socially
inspired metrics designed to quantify aspects of value in relation to existent harmonisations. To see why
there is a difference between R and E, consider the comparison between the harmonisations produced by
J. S. Bach himself, and those produced by a first-year music student: the latter are not usually valued as
highly as those of the former, because even the best student is unlikely to produce music of the same quality
as those Bach harmonisations which have been selected by several hundred years of history.

This same pair of subjects can help understand the need for T , also. An extremely competent and
experienced composer and improviser such as Bach will normally have the ability to “see” a harmonisation
which is correct in syntactic terms and of high quality in value terms without too much conscious effort.
This is rarely true of beginning composers, who need to develop their intuitions over a period of time,
usually through a kind of problem-solving approach. T allows us to model these behaviours individually,
and to study their interactions with the externally defined R and E. Also, crucially for the evaluation of
artificial creative systems, the process by which a system produces new artefacts, as defined by T , is integral
in determining the extent to which behaviour may be deemed creative. For example, brute-force search, or
a very prescriptive approach based on hand-coded rules, is unlikely to be considered creative, especially
compared to a process containing a set of learned, higher-level abstractions enabling the generation of
highly valued artefacts with a high degree of efficiency.

Wiggins (2006b) gives examples to elucidate how the framework may be used, and shows how trans-
formational creativity can be cast as exploratory creativity at the meta-level, where the conceptual space is
the set of possible rule sets, generated by a given language, as informally suggested by Bundy (1994).

A substantive difference between Boden’s formulation and that of Wiggins is the addition of the rule
set, T , which describes the actual behaviour of a creative agent as it goes about its business: Boden is
not concerned with this level of detail. The difference gives Wiggins’ formulation more power to describe
the behaviour of implemented creative systems. Thus, it may be compared in detail with existing similar
methods, such as those of AI state space search. Further, the introduction of T , as an explicit component,

5



admits a new kind of transformational creativity, in which an agent modifies its own behaviour by reflective
reasoning. This may be appropriate for the description of behaviours exhibited by Lenat’s AM, for example
(Ritchie and Hanna, 1984).

4.3 Useful Properties of Creative Agents
The apparent supposition in Boden’s work is that creative agents will be well-behaved, in the sense that
they will either stick within their conceptual space, or alter it politely and deliberately by transformation. It
can be argued, however, that this is not adequate to describe the behaviour of real creative systems, natural
or artificial, either in isolation or in societal context. This section identifies some situations not covered
by the assumption of good behaviour, and gives names to them. The important point is that some of these
situations may appropriately trigger particular events, such as a step of transformational creativity, so it is
useful to be able to identify them in the abstract. This leaves us with several general classes of small-scale
conditions which might be observed in AI systems, of which we can then assess the creative potential.

These characterisations are only descriptively useful unless appropriate responses, categorised by
condition, can be specified. This section does so. I assume some appropriate learning mechanism(s) which
can adapt the rules (expressed in language L and categorised into R, T and E), from positive and/or
negative training sets.

4.3.1 Application to Live Coding

For the purposes of this chapter, it is useful first to calibrate the application of the system, by assigning
meanings to the various symbols in the formalism. To illustrate the use of the framework in as transparent
a way as possible, we omit the more complex questions, such as interaction between human performers and
any aspect of performance by our notional programmer which is not mediated via the live coding system.

First, the universe, U, in our case, is all possible music that could potentially be produced (under any
definition of “music” with respect to a given representation4), whether or not by our example live coding
practitioner. At the most abstract level, the conceptual space, C, specified by the rule set, R, is the range of
live coded music that our practitioner can imagine (which is therefore in all probability a subset ofU). T ,
the transition rules, specify a combination of her craft as a live coder and the music that can be produced
by the algorithms that she writes. E, the evaluation rules, express her preferences in the outcomes of this
process, and may refer to the quality of the code, or to the music, or both.

It becomes immediately clear that one could more precisely conceptualise this hybrid creative system,
in which a human creates a program, which then creates for itself, as two distinct layers within the CSF.
There would be two universes, one of live algorithms, and one of music, with a mapping between them,
corresponding to the execution rule of the relevant programming language. Thus, we express our performer’s
creativity in programming, and in music, distinctly. Doing so would allow us to consider programming
techniques, and the design of specialist languages for live coding (McLean and Wiggins, 2010b,a), and this
is our aim later in the chapter. For now, however, to do so would over-complicate our example. Therefore,
T , in our first example, corresponds to the ability of the code produced to traverse C, and not with the
ability of the programmer to write it. Similarly, our evaluation function, E, corresponds to musical value,
and not to value judgements concerning the elegance of code, or other such matters of programming. What
is more, we focus E specifically on musical value attributed by our practitioner, and not on that endowed
by the approval of an audience, for example. This will come later.

Here and elsewhere, the sonic entity being evaluated may be any of a range of musical structures at
various scales, depending on the code being used, and the focus of attention by the listener. We do not
make these distinctions in our examples, because they do not add to our discussion: the reader may choose
any or all of the possible facets of the generated music as his or her preferred area of interest.

4We will not explore issues of representation at this point, suffice it to say that music, fundamentally a psychological phenomenon,
may be represented from multiple perspectives and at various levels of abstraction, such as digital audio signals, score-like discrete
representations or in terms of psychological models of musical perception (Babbitt, 1965; Wiggins, 2012b,c,a).

6



4.3.2 Uninspiration

There are various ways that a creative system can fail to be creative in a valued way. These ways can be
characterised through the rule set E and its relationship with the other components of the CSF.

Hopeless uninspiration is the simplest case, where there are no valued concepts in the universe:

[[E]](U) = ∅.

This system is incapable, by definition, of creating valued concepts, and as such might be termed ill-formed
(if such creative behaviour is the intention).

In this case, there is no solution within the specified universe; there is no capacity within the system to
solve the problem. Therefore, it is up to the system designer to remedy the problem, like a deus ex machina.

For the purposes of our example, we suppose that this case does not arise. It corresponds to the situation
where no valued music exists. (With a more specific application of the framework, however, hopeless
uninspiration is possible: if we were to take as our universe all live algorithms music, we cannot necessarily
assume that E will accept any members ofU.)

Conceptual uninspiration arises when there are no valued concepts in the conceptual space:

[[E]]([[R]](U)) = ∅.

We label this form of uninspiration “conceptual” because it entails a mismatch between R (which defines
the conceptual space) and E (which evaluates concepts within it, and, more broadly, within U). This
condition is contradictory to the purpose of the two rule sets: if R is supposed to constrain the domain of
a creative process, then it is inappropriate for E not to select some of the elements it admits. As such, like
the hopeless case, conceptual uninspiration indicates ill-formation of the intended-creative system.

Conceptual uninspiration can only be addressed, within the system, by the transformation of R.
In our live coding example, this situation is where our programmer does not value the kind of music

which she conceptualises. It is probably not, therefore, likely to be an interesting case.

Generative uninspiration occurs when the technique of the creative agent does not allow it to find valued
concepts within the space constrained by R:

[[E]](〈〈R,T , E〉〉�({⊥})) = ∅.

This kind of uninspiration is less serious than the other two, and does not necessarily indicate an ill-formed
creative system: it merely indicates that a creative agent is looking in the wrong place. This raises the
question of why there is such a mismatch. Boden’s underlying assumption seems to be that the conceptual
space is in some sense definitive, and, certaintly, in a multi-agent environment, it is the only place in
the formalism where the consensus about a creative domain can logically be represented. Generative
uninspiration can be remedied within the framework. Transformational creativity is required. To transform
the set T in a useful way, we need to identify one or more valued concept(s), in the conceptual space
constrained by R (otherwise, we may have aberration, discussed below), and to use it (them) to guide
the transformation. However, there is a methodological problem here: there is no clear way to pick the
concept(s) automatically, except at random or by use of an oracle. The “oracle” might in fact be systematic
search of R (assuming this is possible in finite time), or, again, the deus ex machina of user intervention.

In the live coding context, this situation corresponds to a programmer who has not written an algorithm
that generates music that she values. She must transform her algorithm so that it can do so.

4.3.3 Aberration

Now, consider the following more interesting set of scenarios, which also concerns the relationship between
R and T . A creative agent, A, is traversing its conceptual space. From any (partial) concept(s) in the
conceptual space, A’s technique will enable it to create another. Suppose now that the new concept does

7



not conform to the constraints required for membership of the existing conceptual space (note that there
is no guarantee that it should do so – there is only an assumption in Boden’s work), and is therefore not
selected by [[R]](.). In this case, the set A given by

A = 〈〈R,T , E〉〉�({⊥}) \ [[R]](U)

is non-empty. The CSF terms this aberration, since it is a deviation from the notional norm as expressed by
R. The choice of this rather negative terminology is deliberate, reflecting the hostility with which changes
to accepted styles are often met in the artistic world.

The evaluation of this set of concepts is actually slightly more complicated than the single-concept
motivating case outlined above. The aberrant but valued subset, which I callVA here, is calculated thus:

VA = [[E]](A).

Because we are working in the extensional limit case, with all the created concepts notionally elaborated, we
have to consider the possibility that all aberrant concepts, some aberrant concepts or no aberrant concepts
may be valued. The CSF terms these perfect (VA = A), productive (VA ⊂ A) and pointless (VA = ∅)
aberration, respectively.

In the case of aberration, there is a choice as to whether to value the result or not, and therefore we have
the three categories, perfect, productive, and pointless. Acceptability is determined in terms of evaluation
by whatever audience the agent, A, is playing to—our live coder in this case. If a new concept is accepted,
then a sensible solution might be to revise the notion of what the correct domain (as constrained by R) is,
so as to include the new concept. This, of course, might have consequences: other new concepts might
be included and/or existing ones might be excluded along the way. If the new concept is not accepted
under evaluation, then a reasonable recourse would be to adapt A’s technique, T . This may have similar
consequences with respect to added and existing concepts available to A: valued concepts may be lost, and
new aberrant behaviour may be made possible.

One approach is to use the sets A and VA to generate training examples to modify R and T , using
our learning mechanism(s), as follows. Note that there are open questions here about some of the training
sets required, since that choice is a major factor in the behaviour of the system. The main issue here is a
standard one for AI: how much of what an AI program does is simply programming a computer directly
to do something, and how much is emergent behaviour which was not directly programmed? In particular,
if we first simply train T to match R we might be “coaching” our creative agent too directly, instead of
allowing it to develop, and, second, in doing so we might be restricting its creative capability.

Perfect aberration yields new concepts, all of which are valued, and so should be added to R. T has
enlightened us as to new possibilities. We therefore attempt to revise R, by whatever learning methods are
available, in such a way that all the concepts in A (andVA) are included, soVA is a positive training set,
and the negative training set is either ∅ orU \ [[R]](U) \ A or some subset of the latter, depending on the
effect desired.

In our running example, perfect aberration is the case where the programmer’s algorithm generates
unexpected music, all of which is valued. Obviously, on defining a hit in a way that she hadn’t previously
conceptualised, she will want to adapt her notion (R) of what is live coded music.

Productive aberration means that we need to transform both R and T , because we wish valued concepts
to become accepted, and unvalued ones not to be generated. VA and A \ VA constitute positive and
negative training sets for R, since R needs to expand just enough to include only the valued concepts inA.
T , on the other hand, needs to be transformed to restrict its coverage: A \VA is a negative training set for
T , while, again, a positive training set might be [[R]](U), or simply ∅.

For our example live coder, productive aberration is more difficult than perfect. It requires deeper
introspection to identify which aspects of the aberrant music should be retained and which should be
rejected. She will need to open her mind (R) to the new concepts that she had not previously entertained,
while adapting her algorithm so that it no longer produces the aberrant music that was not valued.

8



Pointless aberration suggests the need to transform T only, so as to prevent the unvalued aberrant
concepts from being generated. There is a negative training set: A. Again, the nature of the positive
training set is an open question.

For our example programmer, pointless aberration is an indication of failure. She will need to rewrite
her algorithm to preclude the unvalued musical concepts.

5 Tidal
The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time, embedded
domain specific language for live coding5. It consists of a conventional command line interface, which its
inventor uses within the Emacs programmable editor, to enable easy reference and reuse of past commands.
The language itself is implemented as an extension of the strongly-typed functional programming language,
Haskell (Thompson, 2011). Functional languages are particularly well suited to this kind of task, partly
because they are symbolic, making it very easy (for the live coder) to associate program fragments with
easy-to-remember symbols (that the live coder has chosen); these program fragments, which may be simple
constant values, or complex sound-generation routines, can then be composed into sequential structures,
stacked into simultaneities, or both, and then operated on by high-order combinators, expressed directly in
Tidal syntax. For example, one can construct a sequence of drum beats by writing down the names of the
relevant sounds in sequence, then reverse it by the application of one simple combinator, and then execute
performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language. Commands are
implicitly looped, and whatever is playing currently continues until a new command has been successfully
compiled. What is more, there is a notion of completion, which ensures that execution of a new command
begins at a time which is musically appropriate, according to McLean’s particular aesthetic. This, coupled
with Haskell’s very powerful type-checking system, helping the live coder to produce correct code, yields
a highly expressive and flexible performance interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several commands
at once, and implicit rules ensure that their output is synchronised, again in keeping with McLean’s musical
aesthetic.

Underlying Tidal is a scheduling system based on OSC (Wright and Freed, 1997), which means that,
ultimately, anything that can be done in Tidal can be done in the reader’s favourite generative composition
system, given an OSC interface—but probably not as easily. This means that Tidal can form a conceptual
framework for the rest of the current discussion, while not limiting its scope, because themodes of expression
it affords are general.

6 Live Coding in the Creative Systems Framework
What, then, does the philosophy of computational creativity have to offer the hybrid creative system formed
by a live coder and her Tidal performance system? We now consider the components of the hybrid system in
terms of the CSF, generalising from our earlier illustrative example. First, we formalise the representations
of the conceptual spaces and the relationship between them. Then we formalise the dynamics of the system.
This allows us, finally, to identify where some of the creative responsibility in live coding performance
might be shared with the computer.

6.1 Intentional and Extensional Representation of Knowledge
Our original universe, U, of all possible musics must be expanded to include Tidal programs, as we now
consider these explicitly. We introduce a conceptual space of well-formed Tidal programs, CTP . Since
the execution rule of Tidal is deterministic6, there is a many-to-one mapping from CTP to the conceptual

5It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded from https:
//tidalcycles.org/.

6Assuming, as we do here, that randomness is not involved.

9



space of Tidal music, which we call CTM . The mapping, which we callX (for “eXecution”) is many-to-one
because there is more than one way to express the production of some items of music, with no audible
difference (e.g., two bars of four beats or four bars of two beats in a performance that does not emphasise
metrical structure). In an intuitive sense, CTM gives semantics to CTP , which potentially opens interesting
questions about music similarity as a measure of program similarity, and which will enable part of our
proposal, below. Note that these two conceptual spaces are objectively defined by the syntax and execution
rule of Tidal. This is illustrated in Fig. 1a. We also introduce an inverse mapping, X′, from points in CTM
to sets of points in CTP such that X′(mi) = {pi : X(pi) = mi}. This partitions the conceptual space of
Tidal programs into equivalence classes on the basis of identical musical output.7

Now we move on to the subjective part of the system: the Live Coder, whom we will call Elsie. For
simplicity, we assume that Elsie will program without making audible errors—while this would be a big
assumption in most programming languages, Tidal is specifically designed not to degrade on error, so it
is not unreasonable here. Supposing that Elsie is only human, and therefore not perfect, it is reasonable
to assume that her personal conceptual space of Tidal programs is a strict subset of CTP . Equally, the
likelihood is that her personal conceptual space of Tidal-produced music will be smaller than CTM . It may
also have elements in it that are not members of CTM , because the coder’s prediction of what her code will
do may sometimes be incorrect. So we give ourselves the extensional sets CP and CM , respectively, and
the corresponding intensional rule sets RP and RM , respectively, to express these points. The extensional
nature of set CP should not be confused with the intensional nature of its constituent artefacts: Tidal
programs are intensional representations of musical sequences, but within the CSF, component sets are
considered extensionally. These are illustrated in Fig. 1b.

Because we are focused on a wider remit than just live coding in this chapter, we omit consideration
of Elsie’s aesthetic preference regarding coding style, because it complicates our model beyond what is
necessary to convey our message. In an equivalent model specifically of live coding, this would be an
indispensable component. Tidal is a very concise language, and therefore there is not very much range of
expression in this sense. We therefore use the empty set, ∅, instead of the more predictable EP .

The formalisation starts to become interesting when we add in Elsie’s music-aesthetic preference,
expressed as a rule set EM , which selects a subset of U, which may contain some or all of each of CTM
and/or CM . This gives us the arrangement illustrated in Fig. 1c. The different combinations of intersection
and non-intersection between CTM , CM and the extension of EM , labelled with lower case letters in the
diagram, indicate areas into which actual or imaginary pieces of music might fall, and each of them
corresponds with a different possibility, from the perspective of computational creativity. We now consider
each in turn, not in terms of the constructive process necessary to build a program, but in terms of the
knowledge and/or imagination required to generate the computational and/or musical concept. The details
are summarised in Table 2.

6.2 Representation of Dynamics of the Hybrid Creative System
Now we have mapped out the landscape of possible outcomes of our human-computer hybrid creative
system, we must look at the dynamics. The Tidal techniques invisaged by McLean (2011) involve a
somewhat incremental approach to programming, where one often constructs a basic musical structure
extensionally (that is, in literal notes or sounds), and then elaborates on it by a mixture of added extensional
structures (for example, a counter-rhythm to be played simultaneously; the approach lends itself well to
strict additive process, such as that used in the early work of Philip Glass: Potter, 2000), or intensionally,
by applying Tidal functions that manipulate the material as part of the performance. This approach lends
itself well to description by the CSF, where the function 〈〈., ., .〉〉 is envisaged as an enumeration process
which traverses a conceptual space, stepping from one concept to the next, in a sequence defined by T
and possibly influenced by R and E. In our case, there is a more complicated interaction, because the
conceptual space being traversed is not that of music, but that of programs. While we would like to argue
that Elsie’s knowledge and capability is such that she would be able to traverse the space of Tidal music

7The issue of the representation of U influences the notion of identity. In this case we may most usefully consider identity in terms
of a psychological space, since any such space will typically be smaller than the mathematical space of program output (Collins, 2008,
p. 240).

10



a)

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

b)

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

her aesthetic preference is not likely to be constant across the music. Therefore, we need CM and
RM, representing the conceptual space of music that the live coder is imagining, and an evaluation
function, EM, representing her preference over what she hears as a result of her program.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live
performance context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready
minuet and polonaise composer].

Lutos lawski, W. (1961). Jeux vénitiens [Venetian Games].

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music
Journal, 26(4):61–68.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis,
Goldsmiths, University of London.

McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings
of the 22nd Psychology of Programming Interest Group.

9

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and reuse
of past commands. The language itself is implemented as an extension of the strongly-typed
functional programming language, Haskell (?). Functional languages are particularly well suited
to this kind of task, partly because they are symbolic, making it very easy (for the live coder) to
associate program fragments with easy-to-remember symbols (that the live coder has chosen); these
program fragments, which may be simple constant values, or complex sound-generation routines,
can then be composed into sequential structures, stacked into simultaneities, or both, and then
operated on by high-order combinators, expressed directly in Haskell syntax. For example, one can
construct a sequence of drum beats by writing down the names of the relevant sounds in sequence,
then reverse it by the application of one simple combinator, and then execute performance of both
simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (?), which means that, ul-
timately, anything that can be done in Tidal can be done in Supercollider—but probably not
as easily. This means that Tidal can form a conceptual framework for the rest of the current
discussion, while not limiting its scope, because the modes of expression it a↵ords are general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal system? We now consider the components of the
hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include programs, as we
now consider these explicitly. We introduce a conceptual space of Tidal performances, CT , which
is specified by the rule set, RT . The conceptual space of Tidal performances is, of course, all the
well-formed programs in Tidal, and therefore RT is just the rules of Tidal syntax. Working on the
assumption that our live coder has aesthetic preferences over her code, we introduce of function
ET , which expresses this preference.

Moving on to the music: there is a one-to-one mapping between a Tidal program4 and its sonic
realisation, which means that the de facto conceptual space of possible performances by our live
coder is in fact just CT . However, we need to consider a more interesting issue: what our live
coder imagines a Tidal progam to do may not match what it actually does do; and her aesthetic
preference is not likely to be constant across the music. Therefore, we need CM, representing

3It grew out of the earlier Petrol language, but it is intended to be more sustainable.
4Assuming, as we do here, that randomness is not involved.

8

Figure 2: LC’s personal conceptual spaces of Tidal programs and Tidal music may not match
exactly to the objective spaces. Specifically, CP is smaller than CT P , and CM may be smaller than
CTM and also include music that is not included in CTM.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

10

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

her aesthetic preference is not likely to be constant across the music. Therefore, we need CM and
RM, representing the conceptual space of music that the live coder is imagining, and an evaluation
function, EM, representing her preference over what she hears as a result of her program.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live
performance context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready
minuet and polonaise composer].

Lutos lawski, W. (1961). Jeux vénitiens [Venetian Games].

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music
Journal, 26(4):61–68.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis,
Goldsmiths, University of London.

McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings
of the 22nd Psychology of Programming Interest Group.

9

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and reuse
of past commands. The language itself is implemented as an extension of the strongly-typed
functional programming language, Haskell (?). Functional languages are particularly well suited
to this kind of task, partly because they are symbolic, making it very easy (for the live coder) to
associate program fragments with easy-to-remember symbols (that the live coder has chosen); these
program fragments, which may be simple constant values, or complex sound-generation routines,
can then be composed into sequential structures, stacked into simultaneities, or both, and then
operated on by high-order combinators, expressed directly in Haskell syntax. For example, one can
construct a sequence of drum beats by writing down the names of the relevant sounds in sequence,
then reverse it by the application of one simple combinator, and then execute performance of both
simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (?), which means that, ul-
timately, anything that can be done in Tidal can be done in Supercollider—but probably not
as easily. This means that Tidal can form a conceptual framework for the rest of the current
discussion, while not limiting its scope, because the modes of expression it a↵ords are general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal system? We now consider the components of the
hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include programs, as we
now consider these explicitly. We introduce a conceptual space of Tidal performances, CT , which
is specified by the rule set, RT . The conceptual space of Tidal performances is, of course, all the
well-formed programs in Tidal, and therefore RT is just the rules of Tidal syntax. Working on the
assumption that our live coder has aesthetic preferences over her code, we introduce of function
ET , which expresses this preference.

Moving on to the music: there is a one-to-one mapping between a Tidal program4 and its sonic
realisation, which means that the de facto conceptual space of possible performances by our live
coder is in fact just CT . However, we need to consider a more interesting issue: what our live
coder imagines a Tidal progam to do may not match what it actually does do; and her aesthetic
preference is not likely to be constant across the music. Therefore, we need CM, representing

3It grew out of the earlier Petrol language, but it is intended to be more sustainable.
4Assuming, as we do here, that randomness is not involved.

8

Figure 2: LC’s personal conceptual spaces of Tidal programs and Tidal music may not match
exactly to the objective spaces. Specifically, CP is smaller than CT P , and CM may be smaller than
CTM and also include music that is not included in CTM.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

10

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Figure 1: The defined conceptual space of Tidal programs, and its corresponding conceptual space
of music. This structure, represented here as a Venn diagram, forms the basis of our argument.
The program at point P in the conceptual space of Tidal programs, CT P , corresponds with the
music at point M in the conceptual space of music generated by Tidal programs, CTM. The dashed
arrows indicate the relationship between the program and the music and their respective points
in the conceptual spaces; the dotted arrow represents the process of execution of Tidal.

by the syntax and execution rule of Tidal. This is illustrated in Fig. 1.
Now we move on to the subjective part of the system: the live coder, whom we will call LC. For

simplicity, we assume that LC will program without making (audible) errors—while this would be
a big assumption in most programming languages, Tidal is specifically designed not to degrade on
error, so it is not unreasonable here. Supposing that our coder is only human, and therefore not
perfect, it is reasonable to assume that her personal conceptual space of Tidal programs is a strict
subset of CT P . Equally, the likelihood is that her personal conceptual space of Tidal-produced
music will be smaller than CTM. It may also have elements in it that are not members of CTM,
because the coder’s prediction of what her code will do may sometimes be incorrect. So we give
ourselves the extensional sets CP and CM, respectively, and the corresponding intensional rule sets
RP and RM, respectively, to express these points. These are illustrated in Fig. 3.

We omit consideration of LC’s aesthetic preference regarding coding style. Tidal is a very
concise language, and therefore there is not very much range of expression in this sense.

The formalisation becomes interesting when we add in LC’s music-aesthetic preference, ex-
pressed as a rule set EM, which selects a subset of U , which may contain some or all of each of
CT Pand/or CM. This gives us the arrangement illustrated in Fig. 3.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

9

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Figure 1: The defined conceptual space of Tidal programs, and its corresponding conceptual space
of music. This structure, represented here as a Venn diagram, forms the basis of our argument.
The program at point P in the conceptual space of Tidal programs, CT P , corresponds with the
music at point M in the conceptual space of music generated by Tidal programs, CTM. The dashed
arrows indicate the relationship between the program and the music and their respective points
in the conceptual spaces; the dotted arrow represents the process of execution of Tidal.

by the syntax and execution rule of Tidal. This is illustrated in Fig. 1.
Now we move on to the subjective part of the system: the live coder, whom we will call LC. For

simplicity, we assume that LC will program without making (audible) errors—while this would be
a big assumption in most programming languages, Tidal is specifically designed not to degrade on
error, so it is not unreasonable here. Supposing that our coder is only human, and therefore not
perfect, it is reasonable to assume that her personal conceptual space of Tidal programs is a strict
subset of CT P . Equally, the likelihood is that her personal conceptual space of Tidal-produced
music will be smaller than CTM. It may also have elements in it that are not members of CTM,
because the coder’s prediction of what her code will do may sometimes be incorrect. So we give
ourselves the extensional sets CP and CM, respectively, and the corresponding intensional rule sets
RP and RM, respectively, to express these points. These are illustrated in Fig. 3.

We omit consideration of LC’s aesthetic preference regarding coding style. Tidal is a very
concise language, and therefore there is not very much range of expression in this sense.

The formalisation becomes interesting when we add in LC’s music-aesthetic preference, ex-
pressed as a rule set EM, which selects a subset of U , which may contain some or all of each of
CT Pand/or CM. This gives us the arrangement illustrated in Fig. 3.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

9

c)

the conceptual space of music that the live coder is imagining, and an evaluation function, EM,
representing her preference over what she hears as a result of her program.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live
performance context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready
minuet and polonaise composer].

Lutos lawski, W. (1961). Jeux vénitiens [Venetian Games].

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music
Journal, 26(4):61–68.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis,
Goldsmiths, University of London.

McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings
of the 22nd Psychology of Programming Interest Group.

McLean, A. and Wiggins, G. (2010b). Tidal - pattern language for the live coding of music. In
Proceedings of the 7th Sound and Music Computing conference.

9

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and reuse
of past commands. The language itself is implemented as an extension of the strongly-typed
functional programming language, Haskell (?). Functional languages are particularly well suited
to this kind of task, partly because they are symbolic, making it very easy (for the live coder) to
associate program fragments with easy-to-remember symbols (that the live coder has chosen); these
program fragments, which may be simple constant values, or complex sound-generation routines,
can then be composed into sequential structures, stacked into simultaneities, or both, and then
operated on by high-order combinators, expressed directly in Haskell syntax. For example, one can
construct a sequence of drum beats by writing down the names of the relevant sounds in sequence,
then reverse it by the application of one simple combinator, and then execute performance of both
simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (?), which means that, ul-
timately, anything that can be done in Tidal can be done in Supercollider—but probably not
as easily. This means that Tidal can form a conceptual framework for the rest of the current
discussion, while not limiting its scope, because the modes of expression it a↵ords are general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal system? We now consider the components of the
hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include programs, as we
now consider these explicitly. We introduce a conceptual space of Tidal performances, CT , which
is specified by the rule set, RT . The conceptual space of Tidal performances is, of course, all the
well-formed programs in Tidal, and therefore RT is just the rules of Tidal syntax. Working on the
assumption that our live coder has aesthetic preferences over her code, we introduce of function
ET , which expresses this preference.

Moving on to the music: there is a one-to-one mapping between a Tidal program4 and its sonic
realisation, which means that the de facto conceptual space of possible performances by our live
coder is in fact just CT . However, we need to consider a more interesting issue: what our live
coder imagines a Tidal progam to do may not match what it actually does do; and her aesthetic
preference is not likely to be constant across the music. Therefore, we need CM, representing

3It grew out of the earlier Petrol language, but it is intended to be more sustainable.
4Assuming, as we do here, that randomness is not involved.

8

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

her aesthetic preference is not likely to be constant across the music. Therefore, we need CM and
RM, representing the conceptual space of music that the live coder is imagining, and an evaluation
function, EM, representing her preference over what she hears as a result of her program.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live
performance context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready
minuet and polonaise composer].

Lutos lawski, W. (1961). Jeux vénitiens [Venetian Games].

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music
Journal, 26(4):61–68.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis,
Goldsmiths, University of London.

McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings
of the 22nd Psychology of Programming Interest Group.

9

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and reuse
of past commands. The language itself is implemented as an extension of the strongly-typed
functional programming language, Haskell (?). Functional languages are particularly well suited
to this kind of task, partly because they are symbolic, making it very easy (for the live coder) to
associate program fragments with easy-to-remember symbols (that the live coder has chosen); these
program fragments, which may be simple constant values, or complex sound-generation routines,
can then be composed into sequential structures, stacked into simultaneities, or both, and then
operated on by high-order combinators, expressed directly in Haskell syntax. For example, one can
construct a sequence of drum beats by writing down the names of the relevant sounds in sequence,
then reverse it by the application of one simple combinator, and then execute performance of both
simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (?), which means that, ul-
timately, anything that can be done in Tidal can be done in Supercollider—but probably not
as easily. This means that Tidal can form a conceptual framework for the rest of the current
discussion, while not limiting its scope, because the modes of expression it a↵ords are general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal system? We now consider the components of the
hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include programs, as we
now consider these explicitly. We introduce a conceptual space of Tidal performances, CT , which
is specified by the rule set, RT . The conceptual space of Tidal performances is, of course, all the
well-formed programs in Tidal, and therefore RT is just the rules of Tidal syntax. Working on the
assumption that our live coder has aesthetic preferences over her code, we introduce of function
ET , which expresses this preference.

Moving on to the music: there is a one-to-one mapping between a Tidal program4 and its sonic
realisation, which means that the de facto conceptual space of possible performances by our live
coder is in fact just CT . However, we need to consider a more interesting issue: what our live
coder imagines a Tidal progam to do may not match what it actually does do; and her aesthetic
preference is not likely to be constant across the music. Therefore, we need CM, representing

3It grew out of the earlier Petrol language, but it is intended to be more sustainable.
4Assuming, as we do here, that randomness is not involved.

8

Figure 2: LC’s personal conceptual spaces of Tidal programs and Tidal music may not match
exactly to the objective spaces. Specifically, CP is smaller than CT P , and CM may be smaller than
CTM and also include music that is not included in CTM.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

10

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

her aesthetic preference is not likely to be constant across the music. Therefore, we need CM and
RM, representing the conceptual space of music that the live coder is imagining, and an evaluation
function, EM, representing her preference over what she hears as a result of her program.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live
performance context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready
minuet and polonaise composer].

Lutos lawski, W. (1961). Jeux vénitiens [Venetian Games].

McCartney, J. (2002). Rethinking the computer music language: Supercollider. Computer Music
Journal, 26(4):61–68.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis,
Goldsmiths, University of London.

McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings
of the 22nd Psychology of Programming Interest Group.

9

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and reuse
of past commands. The language itself is implemented as an extension of the strongly-typed
functional programming language, Haskell (?). Functional languages are particularly well suited
to this kind of task, partly because they are symbolic, making it very easy (for the live coder) to
associate program fragments with easy-to-remember symbols (that the live coder has chosen); these
program fragments, which may be simple constant values, or complex sound-generation routines,
can then be composed into sequential structures, stacked into simultaneities, or both, and then
operated on by high-order combinators, expressed directly in Haskell syntax. For example, one can
construct a sequence of drum beats by writing down the names of the relevant sounds in sequence,
then reverse it by the application of one simple combinator, and then execute performance of both
simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (?), which means that, ul-
timately, anything that can be done in Tidal can be done in Supercollider—but probably not
as easily. This means that Tidal can form a conceptual framework for the rest of the current
discussion, while not limiting its scope, because the modes of expression it a↵ords are general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal system? We now consider the components of the
hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include programs, as we
now consider these explicitly. We introduce a conceptual space of Tidal performances, CT , which
is specified by the rule set, RT . The conceptual space of Tidal performances is, of course, all the
well-formed programs in Tidal, and therefore RT is just the rules of Tidal syntax. Working on the
assumption that our live coder has aesthetic preferences over her code, we introduce of function
ET , which expresses this preference.

Moving on to the music: there is a one-to-one mapping between a Tidal program4 and its sonic
realisation, which means that the de facto conceptual space of possible performances by our live
coder is in fact just CT . However, we need to consider a more interesting issue: what our live
coder imagines a Tidal progam to do may not match what it actually does do; and her aesthetic
preference is not likely to be constant across the music. Therefore, we need CM, representing

3It grew out of the earlier Petrol language, but it is intended to be more sustainable.
4Assuming, as we do here, that randomness is not involved.

8

Figure 2: LC’s personal conceptual spaces of Tidal programs and Tidal music may not match
exactly to the objective spaces. Specifically, CP is smaller than CT P , and CM may be smaller than
CTM and also include music that is not included in CTM.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000
presidential address.

Bundy, A. (1994). What is the di↵erence between real creativity and mere novelty? Behavioural
and Brain Sciences, 17(3):533–534.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder
groups in computational creativity research and practice. In Besold, T., Schorlemmer, M., and
Smaill, A., editors, Computational Creativity Research: Towards Creative Machines. Atlantic
Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International Conference
on Computational Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt,
L., Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

10

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Figure 1: The defined conceptual space of Tidal programs, and its corresponding conceptual space
of music. This structure, represented here as a Venn diagram, forms the basis of our argument.
The program at point P in the conceptual space of Tidal programs, CT P , corresponds with the
music at point M in the conceptual space of music generated by Tidal programs, CTM. The dashed
arrows indicate the relationship between the program and the music and their respective points
in the conceptual spaces; the dotted arrow represents the process of execution of Tidal.

by the syntax and execution rule of Tidal. This is illustrated in Fig. 1.
Now we move on to the subjective part of the system: the live coder, whom we will call LC. For

simplicity, we assume that LC will program without making (audible) errors—while this would be
a big assumption in most programming languages, Tidal is specifically designed not to degrade on
error, so it is not unreasonable here. Supposing that our coder is only human, and therefore not
perfect, it is reasonable to assume that her personal conceptual space of Tidal programs is a strict
subset of CT P . Equally, the likelihood is that her personal conceptual space of Tidal-produced
music will be smaller than CTM. It may also have elements in it that are not members of CTM,
because the coder’s prediction of what her code will do may sometimes be incorrect. So we give
ourselves the extensional sets CP and CM, respectively, and the corresponding intensional rule sets
RP and RM, respectively, to express these points. These are illustrated in Fig. 3.

We omit consideration of LC’s aesthetic preference regarding coding style. Tidal is a very
concise language, and therefore there is not very much range of expression in this sense.

The formalisation becomes interesting when we add in LC’s music-aesthetic preference, ex-
pressed as a rule set EM, which selects a subset of U , which may contain some or all of each of
CT Pand/or CM. This gives us the arrangement illustrated in Fig. 3.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

9

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Figure 1: The defined conceptual space of Tidal programs, and its corresponding conceptual space
of music. This structure, represented here as a Venn diagram, forms the basis of our argument.
The program at point P in the conceptual space of Tidal programs, CT P , corresponds with the
music at point M in the conceptual space of music generated by Tidal programs, CTM. The dashed
arrows indicate the relationship between the program and the music and their respective points
in the conceptual spaces; the dotted arrow represents the process of execution of Tidal.

by the syntax and execution rule of Tidal. This is illustrated in Fig. 1.
Now we move on to the subjective part of the system: the live coder, whom we will call LC. For

simplicity, we assume that LC will program without making (audible) errors—while this would be
a big assumption in most programming languages, Tidal is specifically designed not to degrade on
error, so it is not unreasonable here. Supposing that our coder is only human, and therefore not
perfect, it is reasonable to assume that her personal conceptual space of Tidal programs is a strict
subset of CT P . Equally, the likelihood is that her personal conceptual space of Tidal-produced
music will be smaller than CTM. It may also have elements in it that are not members of CTM,
because the coder’s prediction of what her code will do may sometimes be incorrect. So we give
ourselves the extensional sets CP and CM, respectively, and the corresponding intensional rule sets
RP and RM, respectively, to express these points. These are illustrated in Fig. 3.

We omit consideration of LC’s aesthetic preference regarding coding style. Tidal is a very
concise language, and therefore there is not very much range of expression in this sense.

The formalisation becomes interesting when we add in LC’s music-aesthetic preference, ex-
pressed as a rule set EM, which selects a subset of U , which may contain some or all of each of
CT Pand/or CM. This gives us the arrangement illustrated in Fig. 3.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

9

!

Bundy (1994) and Buchanan (2001) join Boden in citing reflection, and hence meta-level reason-
ing, as a requirement for “real” or “significant” creativity (though the definition of such creativity
is so far left imprecise). Again, it is the capacity to reflect that we consider central here.

For completeness, we mention here that there are other views. Ritchie (2007), for example,
presents a completely di↵erent account of what is going on in “transformational” creativity, in
which the notion of transformation is not so clearly present. Colton et al. (2014, 2015) present
the IDEA and FACE models, that attempt to characterise creativity from di↵erent perspectives.
However, since the current paper is primarily focused on the application of Boden’s theory to live
coding, via our Creative Systems Framework, explained next, we defer discussion of alternative
approaches.

2.2 The Creative Systems Framework

The central idea of the Creative Systems Framework (CSF), the formalism presented by Wig-
gins (2006a), is that an exploratory creative system in Boden’s (2004) terms, may be abstractly
represented by a septuple, thus:

hU , L, [[.]], hh., ., .ii, R, T , Ei.

The symbols here are defined in Table 1. The function of each is briefly explained below (Wiggins,
2006a, gives more detail)2

Table 1: The symbols used in Wiggins’ description of Boden’s exploratory-creative system.

U a universe of possible concepts (artefacts), both partial and complete
L a language in which to express concepts (artefacts) and rules

[[.]] a function generator, which maps a subset of L to a function which associates
elements of U with a real number in [0,1]

hh., ., .ii a function generator, which maps three subsets of L to a function that generates
a new sequence of elements of U from an existing one

R a subset of L
T a subset of L
E a subset of L

U is the (abstract) set of all possible partial and complete artefacts describable in the creative
system being modelled. R is a set of rules, expressed using the language L, which select an “ac-
ceptable” or “relevant” subset of U which corresponds with Boden’s (2004) conceptual space. In
Wiggins’ formulation, selection is permissive in the sense that it admits partial artefacts, even some
of whose completions may eventually turn out not to be admitted. So applying a selector function
generated from R by [[.]] and a suitable real comparator (e.g., 0.5) gives Wiggins’ formalisation of
Boden’s conceptual space:

{c | c 2 U ^ [[R]](c) � 0.5}.

The ruleset, R, then, defines what it is to be an artefact of the kind we are interested in creating:
a piece of music, a joke, and so on. (Alternatively, the output of [[R]] might be used directly in a
fuzzy selector; we postpone discussion of this for now.)

T is a set of rules which, when interpreted, perhaps along with those in R and E , by hh., ., .ii,
describe the behaviour of a creative agent as it traverses the conceptual space from known artefacts
to unknown ones (much as the standard AI search framework; Wiggins, 2006b, explains the rela-
tionship in detail), and possibly back again. The first argument of hh., ., .ii takes a concept/artefact-
definition ruleset, such as R, above, and the second a rule set such as T , which is the specification

2Ritchie (2012) presents a slightly di↵erent formalisation of broadly the same ideas.

3

Tidal execution
rule

$ brak $ sound 
"[bd [sn/2 - 
bd], [hh]*3]"

P M

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

of the positive training set is an open question.
For our example programmer, pointless aberration is an indication of failure. She will need to

rewrite her algorithm to preclude the unvalued musical concepts.

3 Tidal

The Tidal programming language (McLean, 2011; McLean and Wiggins, 2010b) is a real time
programming language for live coding3. It consists of a conventional command line interface,
which its inventor uses within the Emacs programmable editor, to enable easy reference and
reuse of past commands. The language itself is implemented as an extension of the strongly-
typed functional programming language, Haskell (Thompson, 2011). Functional languages are
particularly well suited to this kind of task, partly because they are symbolic, making it very
easy (for the live coder) to associate program fragments with easy-to-remember symbols (that
the live coder has chosen); these program fragments, which may be simple constant values, or
complex sound-generation routines, can then be composed into sequential structures, stacked
into simultaneities, or both, and then operated on by high-order combinators, expressed directly
in Haskell syntax. For example, one can construct a sequence of drum beats by writing down
the names of the relevant sounds in sequence, then reverse it by the application of one simple
combinator, and then execute performance of both simultaneously by the application of another.

Importantly from the perspective of live performance, Tidal is a live compiling language.
Commands are implicitly looped, and whatever is playing currently continues until a new command
has been successfully compiled. What is more, there is a notion of completion, which ensures
that execution of a new command begins at a time which is musically appropriate, according to
McLean’s particular aesthetic. This, coupled with Haskell’s very powerful type-checking system,
helping the live coder to produce correct code, yields a highly expressive and flexible performance
interface.

The final crucial ingredient is synchronised parallelism: Tidal is capable of running several
commands at once, and implicit rules ensure that their output is synchronised, again in keeping
with McLean’s musical aesthetic.

Underlying Tidal is an execution system based on Supercollider (McCartney, 2002), which
means that, ultimately, anything that can be done in Tidal can be done in Supercollider—but
probably not as easily. This means that Tidal can form a conceptual framework for the rest of
the current discussion, while not limiting its scope, because the modes of expression it a↵ords are
general.

4 Live Coding with Computational Creativity

What, then, does the philosophy of computational creativity have to o↵er the hybrid creative
system formed by a live coder and her Tidal performance system? We now consider the components
of the hybrid system in terms of the CSF, generalising from our earlier illustrative example.

Our original universe, U , of all possible musics must be expanded to include Tidal programs, as
we now consider these explicitly. We introduce a conceptual space of well-formed Tidal programs,
CT P . Since the execution rule of Tidal is deterministic, there is a many-to-one mapping from CT P
to the conceptual space of Tidal music, which we call CTM. The mapping is many-to-one because
there is more than one way to express the production of some items of music, with no audible
di↵erence (e.g., two bars of four beats or four bars of two beats in a performance that does not
emphasise metrical structure). Note that these two conceptual spaces are objectively defined by
the syntax and execution rule of Tidal. This is illustrated in Fig. 1.

Working on the assumption that our live coder has aesthetic preferences over her code, we
introduce of function ET , which expresses this preference.

3It grew out of the earlier Petrol language, but it is intended to be more sustainable. It may be downloaded
from http://yaxu.org/tidal/.

8

Figure 1: The defined conceptual space of Tidal programs, and its corresponding conceptual space
of music. This structure, represented here as a Venn diagram, forms the basis of our argument.
The program at point P in the conceptual space of Tidal programs, CT P , corresponds with the
music at point M in the conceptual space of music generated by Tidal programs, CTM. The dashed
arrows indicate the relationship between the program and the music and their respective points
in the conceptual spaces; the dotted arrow represents the process of execution of Tidal.

by the syntax and execution rule of Tidal. This is illustrated in Fig. 1.
Now we move on to the subjective part of the system: the live coder, whom we will call LC. For

simplicity, we assume that LC will program without making (audible) errors—while this would be
a big assumption in most programming languages, Tidal is specifically designed not to degrade on
error, so it is not unreasonable here. Supposing that our coder is only human, and therefore not
perfect, it is reasonable to assume that her personal conceptual space of Tidal programs is a strict
subset of CT P . Equally, the likelihood is that her personal conceptual space of Tidal-produced
music will be smaller than CTM. It may also have elements in it that are not members of CTM,
because the coder’s prediction of what her code will do may sometimes be incorrect. So we give
ourselves the extensional sets CP and CM, respectively, and the corresponding intensional rule sets
RP and RM, respectively, to express these points. These are illustrated in Fig. 3.

We omit consideration of LC’s aesthetic preference regarding coding style. Tidal is a very
concise language, and therefore there is not very much range of expression in this sense.

The formalisation becomes interesting when we add in LC’s music-aesthetic preference, ex-
pressed as a rule set EM, which selects a subset of U , which may contain some or all of each of
CT Pand/or CM. This gives us the arrangement illustrated in Fig. 3.

5 Conclusion

Acknowledgements

References

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–
356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd
edition.

9

g

d
c

b

a

e

f

Figure 1: a) The defined conceptual space of Tidal programs, and its corresponding conceptual space of
music. This structure, represented here as a Venn diagram, forms the basis of our argument. The program
at point P in the conceptual space of Tidal programs, CTP , corresponds with the music at point M in the
conceptual space of music generated by Tidal programs, CTM . The dashed arrows indicate the relationship
between the program and the music and their respective points in the conceptual spaces; the dotted arrow
represents the process of execution of Tidal. b) Elsie’s personal conceptual spaces of Tidal programs and
Tidal music may not match exactly to the objective spaces. Specifically, CP is smaller than CTP , and CM
may be smaller than CTM and also include music that is not included in CTM . c) Elsie’s music-aesthetic
preferences, EM , are expressed as a rule set which select a range of the available possibilities. We use a
simple yes/no approval rating here for simplicity, but a continuous fuzzy set membership could be used if
richer expression were required (Wiggins, 2006a; Ritchie, 2012).

directly, merely selecting the appropriate program to achieve what she wants, any programmer knows that
such exactitude may be expected only for trivial cases. Therefore, such a model would be unrealistic.

Wemodel Elsie’s traversal of the conceptual space of programswith a rule set, TP , and the corresponding
notional traversal of the space of Tidal music withTM . Because, as mentioned above, the execution function,
X, of Tidal maps from CP to CM , many to one, there is an interaction between TP and TM which can be
partly explained in terms of X. For each program, pi ∈ CP , there is a corresponding musical performance,
mi = X(pi). Elsie traverses CP by means of application of 〈〈RP,TP, ∅〉〉 to a vector of programs, p̄, which
Elsie has already conceptualised. In some cases, this will merely result in selection: Elsie will choose a
code fragment that she uses frequently, perhaps to achieve a known effect, or to begin an improvisation
sequence with a personal signature. In other cases, she will be generating new programs from old, perhaps

11



Table 2: Analysis of knowledge required to refer to music in one of the labelled areas in Fig. 1b, in context
of Elsie’s aesthetic preference.

a music achievable through a Tidal program that is neither imaginable nor liked by Elsie
b music that Elsie can imagine, and that is achievable through a Tidal program, but Elsie does not

like it
c music that Elsie can imagine but does not like, and which is not programmable in Tidal
d music that Elsie can imagine and likes, and that is programmable in Tidal
e music that is programmable in Tidal, and that Elsie would like, but that she has not (yet)

conceptualised
f music not achievable in Tidal, but which Elsie can imagine and likes
g music not achievable in Tidal, which Elsie cannot conceptualise, but which she would like if she

could

by conceptual blending (Turner and Fauconnier, 1995) or bisociation (Koestler, 1964; Berthold, 2012). At
our current level of abstraction, however, the specific function is unimportant: its details are tucked neatly
away inside TP . The application of the function generates a new vector of programs, q̄ = 〈〈RP,TP, ∅〉〉(p̄).
At this point, we can identify the nature of the latest product: the Tidal music at point X(qi) in CTM(where
qi ∈ q̄) will fall into one of the areas a, b, d, e, in Table 2, which we examine in the next section.

6.3 Sharing Creative Responsibility
We are now in a position to describe abstractly, with some precision, the actions that Elsie can take as
she performs, and the nature of the resulting outputs, in terms of what she knows and likes, and what is
possible in Tidal. The question, then, is: what can be done to change the components of this system, so that
some of the creative responsibility in Elsie’s performance can be shared with the computer, as is the aim of
computational creativity (Colton and Wiggins, 2012)?

Clearly, given the hybrid nature of the creative system under discussion, different parts of it are subject
to different kinds of modification: Tidal could be enhanced with implementations of one or more of
the components of the CSF formalisation; or Elsie could be modified in a way that is necessary less
straightforward. However, perhaps the computer can help. Essentially, the potential modifications to Tidal
are in two categories: generative power, and reflection. Generative power, here, refers not to generation of
music, but to generation of programs that make music. Reflection, in the current model, refers to evaluation
of music, and not of programs. Elsie on the other hand, as a healthy human, can reflect; she already has
some notion of what she expects from her programs, and an aesthetic by which she judges them.

In sections 4.3, we explain some useful tests, under the general headings of uninspiration and aberration,
that can be applied to a CSF formalisation. The same ideas will be useful in this extended hybrid
formalisation. We now consider the cases in Table 2 in turn. Because we have multiple conceptual spaces
represented concurrently, it is important to pay attention to the subscripts in the symbology. We will be
thinking in terms of CM , the space of music; however, because the objective conceptual space of Tidal
music, CTM , has elements that are not in CM ,

Area a (in Fig. 1) is an area of both hopeless and conceptual uninspiration, in terms of the CSF. This
is the case because, even though the objective conceptual space of Tidal music, CTM , has elements here,
these elements are not valued, and because CM does not include it. To remedy the hopelessness would
be to change Elsie’s aesthetic, so we do not consider this possibility further. To remedy the conceptual
uninspiration without addressing the hopelessness would merely produce unwanted music, so we treat it in
the same way.

Area b contains music that Elsie does not value, which means that, presumably, she would prefer not
to generate it. This entails some kind of filter on the production of code using TP , and this brings us to
the nub of our proposal. We propose two separate ways in which the Tidal system might be enhanced, to
allow creative responsibility to be passed to the computer. The first approach is to restrict the syntax that

12



Elsie is able to use in her programs, in such a way as to divert her performance away from the areas of
CTP and CP that generate music that she does not value. This enhances the creativity of the system, in so
far as it improves Elsie’s chances of producing a result that is satisfactory to her; and some of the creative
responsibility is definitely passed to the computer. It might be argued that the description of a restricted
syntax in terms of a filter within TP could instead be modelled as a change in CTP or CP , i.e., as examples
transformational creativity. However, CTP is objectively defined by Tidal, so it cannot be transformed.
Changes in RP , resulting in a smaller CP (in order to maximise the intersection of CP and EM) could
indeed be conceptualised in terms of transformational creativity. However, the core issue here is that TP
could still take us beyond any restricted subset of CP , because by definition TP traverses U and is not
therefore restricted to CP , so an explicit modification of TP is necessary in either case. Thus, as noted
above, the CSF gives us two distinct (but related) notions of transformational creativity.

The second approach is to replaceElsie’s directmanipulation of programcodewith automated generation
of code fragments, which are subsequently selected and/or approved by Elsie. The fragments offered can be
filtered in the same way as Elsie’s own programs, above, so as to be within Elsie’s preferred range. However,
both of these approaches entail knowledge about Elsie’s preferences that is not currently encoded in Tidal,
or, indeed, in other systems of which we are aware. To make the hybrid system effectively creative, we need
a mechanism for Elsie to feed back approval to Tidal. We return to all these points in the next section, once
our analysis is complete.

Areas c, f and g are imponderable from within the closed system formed by Elsie and her computer.
However, given examples of other musics that Elsie values, it would in theory be possible to use the mapping
X′ to identify examples within CP that would generate music with similar properties. These could then be
used to adapt the generation process, away from c, because it is not valued, or towards a member of CM
that is similar for cases f and g.

Area d is the comfort zone for Elsie: she has conceptualised this music, and she values it. So no action
is required in this area, except to gather feedback so that the computer records Elsie’s approval.

Finally, area e is interesting because it offers an opportunity to change Elsie’s programming behaviour
in ways that she will value. In this area, Elsie has not yet conceptualised the music, so it will be surprising to
her, and her programming style does not give her access to it; so to have the computer lead her programming
towards this area would be of high creative value.

All this reasoning serves no purpose unless a system could be built with the necessary knowledge. In
the next section, we identify the capabilities required by a cooperative creative system based on Tidal, to
enable it to fulfil the potential suggested by our analysis.

7 Proposal: A Hybrid Creative System Based on Tidal
In order to fulfil the potential that the above analysis suggests, we need three key ingredients. The first is the
ability for our computer to relate the meaning of a program to its syntax. The second is for our computer to
have a model of our coder’s preference. The third is for our computer to manipulate the syntactic contructs
available to our coder so as to take on some of the creative responsibility for the music. We outline the
potential to build systems that address each of these in turn, with the intention of raising a challenge to
builders of systems for algorithmic music of the future.

7.1 Semantics
The key difficulty with any computational art system (or indeed any computational system of any kind),
is in predicting its output for any given non-trivial program. The theoretical reasons for this relate to
Turing’s halting problem (Turing, 1936) and their detail is beyond the scope of this chapter; however, we
may summarise by saying that the only way to understand what a program does is to run it and see—but it,
or parts of it, may not terminate, in which case we cannot know what it can do in full.

The upshot of this is that, in general, it is very hard to say what a program means, to give it semantics.
One way of doing so is to consider the “answer set”, the fixpoint8 of the set of possible outputs of the

8Recall our operator, �, which computes this in the CSF, from section 4.2. Note that the halting problem does not affect the CSF
formulation because there is no actual attempt to enumerate the various sets involved: all the constructs are theoretical.

13



program iterated until there are no more available. However, this idea is clearly a hostage to the halting
problem, because some outputs may be prevented from appearing by non-termination of code that precedes
their output in the executing sequence.

Strongly typed functional programming languages, such as Haskell, on which Tidal is based, are
particularly well-behaved in terms of understanding their semantics mathematically. That is not to say that
they are exempt from the halting problem—they are not—but their strong type checking does make the
notion of program well-formation much, much stronger than that in other languages.

Our case, however, is a special one. Tidal is designed to execute programs in loops, and its syntax is
designed to work in this way. Specifically, cycles within Tidal are represented by the set of natural numbers,
and the principle datatype, Pattern, is a map of time to events, which is notionally infinite in length and
can be queried given any time interval expressed as a pair of rational numbers (McLean, 2014, pp.64–65).
If Elsie restricts her code to operators that are part of Tidal and not part of the underlying language, we can
be sure that the programs will halt, and Haskell’s type checking confirms that they are well-formed before
they are run. This means that it is possible to construct a theoretical space of syntax trees, in which each
runnable program is a point. Indeed, it is possible to do this for Haskell programs in general9. Such a space
is still a representation of syntax, not semantics, but it does allow us to realise an implementation of CTP ,
as required by our argument above.

The behaviour of Tidal as a means of controlling the generation of sound gives us an exciting way to
provide semantics for our programs. There is extensive research in the literature on methods for analysing
sound, in terms of features—analytical aspects—which may be more or less perceptually motivated: for
example, the ISMIR10, ICASSP and WASPAA11 conferences afford extensive possibilities for the analysis
of sound along dimensions that may or may not be salient for a given human listener. These features allow
the sonic outputs of Tidal to be represented, more or less approximately, as points in a multi-dimensional
space inwhich dimensions correspond to perceptuallymeaningful qualities (Gärdenfors, 2000). This feature
space constitutes an additional level of representation, or domain of information, within CTM , providing a
perceptuallymotivated spacemapping the lower-level acoustic space. Dimensional reduction using standard
mathematical techniques such as Principal Component Analysis (PCA: Jolliffe, 2002) may be used to throw
away features that add little information, for parsimony. Now, we are in a position to enumerate a relation
approximating the function,X, introduced above, and thence to compute its inverse mapping,X′, though we
must remember that CTP is infinite, and therefore compromise is necessary in doing so: there are various
principled ways of limiting search through CTP , based on techniques from genetic programming and static
program analysis.

The infinite size of CTP is less of a problem than we might expect, for two reasons. First, CP is a
subset, and, given the finite nature of humans, is probably not infinite. Second, given an initial estimate
of CP , it can be expanded piecemeal as Elsie produces her work, and so exhaustive enumeration becomes
unnecessary: instead, the system learns about its user as she uses it. CM , for non-infinite CP , can be
computed off line, and there is an excellent application here for cloud computing: a shared effort to identify
as much as possible of CTM would generate a valuable resource indeed.

7.2 Identifying Value
Given the semantic mapping proposed above, it becomes possible to learn Elsie’s preference, expressed as
rules in EM , whose evaluation, [[EM]], yields a value which can be viewed as an extra dimension in the
extensional set of points in CM subtended by the range of performances she has made with her system.
To do this, feedback from Elsie is required. It may be given in terms of explicit ratings of the music that
is currently happening (perhaps by buttons expressing positive, neutral and negative affect, or by a slider
over a similar range); alternatively, affective response might be measured indirectly, for example by timing
how long Elsie allows a given program to run (assuming that she will replace music she does not value
quite quickly), or by measuring physiological responses, such as skin conductance or heartbeat, though the
physiological approaches are subject to the drawback that being in a performance situation may cause them

9Forth (2012) applies a similar approach to musical-metrical trees, with syntactic considerations drawn from music theory instead
of computer science.

10www.ismir.net
11www.waspaa.com

14



to fluctuate. However they are gathered, the responses will allow us to categorise regions of CM according
to how much Elsie values them. Having done so, we can use X′ to lead us back to the program(s) that
create that music, and it is this possibility that admits computational creativity into our hybrid system. This
involves making assumptions about the nature of EM , and this is an interesting area for further research:
would a further PCA of the perceptual features of CM with the addition of the value dimension, give a
different, possibly more useful, reduction applicable to the larger space of CTM?

7.3 Transforming Human Creativity
Given an estimate of the value that Elsie places on each piece of music, the computer can analyse each
program that Elsie writes, mapping its CTM value via X, to its equivalent point in CM , whose value, given
by application of [[EM]], is known. From this, the system could feed back to Elsie, before executing a piece
of code, if it will generate music in a region with which she has associated negative value previously. Thus,
the computer system detects pointless aberration (see section 4.3.3), and is able to apply transformational
creativity of its human, by influencing her TP . This corresponds to rejecting areas a and b in Fig. 1c.

Conversely, and more interestingly, in the event that Elsie is exploring an area of CTM that is new to her,
the computer may be able to make predictions from [[EM]] about which nearby points, so far unexplored, are
likely to be valued. It is thence possible to map back to corresponding points in CP , and present Elsie with
a range of programs to try. Again, this is a kind of transformational creativity: CM and CP are expanded,
and EM would be modified to reflect Elsie’s evaluation of the result. Here, points in areas a or e is being
moved into area b or d in Fig. 1c.

8 Conclusion: Transforming Computational Creativity
We now look beyond the analysis possible in the restricted space of the chapter. Any or all of the above
operations can in principle lead to changes in CP and RP . Given an appropriate metric on CTP (which
may also be aesthetically motived), we can consider beginning to traverse CP automatically, using, for
example, genetic programming (GP). At this point, Elsie can begin to relax her artistic control, and really
work with the system: she can, for example, restrict her “coding” to telling the computer when to change, or
to evaluating the outputs, perhaps intervening when things go too far from her preference. If she observes
the results in detail, there will be feedback into her own CP and CM , which themselves will feed back into
her use of the system and thus inform future transformations.

Thus, Elsie achieves not the “singularity” of science fiction, but a duality in which she is working on an
equal creative basis with the computer, with shared notions of artefact and of meaning. It would in principle
be possible to estimate Elsie’s EM as a function, and thus simulate her musical aesthetic. However, we
propose that this would be pointless: the computer, as far as all evidence suggests, has no qualia, and
therefore aesthetic response, we suggest, is best left to the entities that seem most likely to be conscious of
it.

Acknowledgements
The authors are supported by the Lrn2Cre8 project, which acknowledges the financial support of the Future
and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of
the European Commission, under FET grant number 610859.

References
Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.

Babbitt, M. (1965). The use of computers inmusicological research. Perspectives of NewMusic, 3(2):74–83.

Berthold, M. R., editor (2012). Bisociative Knowledge Discovery, volume 7250 of LNCS/LNAI. Springer.

15



Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence Journal, 103:347–356.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK, 2nd edition.

Bovermann, T. and Griffiths, D. (2014). Computation as material in live coding. Computer Music Journal,
38(1):40–53.

Buchanan, B. G. (2001). Creativity at the metalevel. AI Magazine, 22(3):13–28. AAAI-2000 presidential
address.

Bundy, A. (1994). What is the difference between real creativity and mere novelty? Behavioural and Brain
Sciences, 17(3):533–534.

Clark, A. and Chalmers, D. (1998). The extended mind. Analysis, 58(1):7–19.

Collins, N. (2008). The analysis of generative music programs. Organised Sound, 13:237–248.

Colton, S., Pease, A., Corneli, J., Cook, M., Hepworth, R., and Ventura, D. (2015). Stakeholder groups in
computational creativity research and practice. In Besold, T., Schorlemmer, M., and Smaill, A., editors,
Computational Creativity Research: Towards Creative Machines. Atlantic Press.

Colton, S., Pease, A., Corneli, J., Cook, M., and Llano, M. T. (2014). Assessing progress in building
autonomously creative systems. In Proceedings of the Fifth International Conference on Computational
Creativity.

Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? In de Raedt, L.,
Bessiere, C., Dubois, D., and Doherty, P., editors, Proceedings of ECAI Frontiers.

Ebcioğlu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music Journal,
12(3):43–51.

Eigenfeldt, A. (2014). Generative music for live performance: Experiences with real-time notation.
Organised Sound, 10(3).

Eigenfeldt, A., Burnett, A., and Pasquier, P. (2012). Evaluating musical metacreation in a live performance
context. In Maher, M. L. et al., editors, Proceedings of ICCC 2012.

Forth, J. C. (2012). Cognitively-motivated geometric methods of pattern discovery and models of similarity
in music. PhD thesis, Goldsmiths, University of London.

Gärdenfors, P. (2000). Conceptual Spaces: the geometry of thought. MIT Press, Cambridge, MA.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. Springer New York,
second edition.

Kirnberger, J. P. (1757). Der allezeit fertige menuetten- und polonaisencomponist [the ever-ready minuet
and polonaise composer].

Koestler, A. (1964). The Act of Creation. Hutchinson & Co., London.

Lutosławski, W. (1961). Jeux vénitiens [Venetian Games].

Magnusson, T. (2014). Herding cats: observing live coding in the wild. Computer Music Journal,
38(1):8–16.

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. PhD thesis, Goldsmiths,
University of London.

McLean, A. (2014). Making programming languages to dance to: Live coding with tidal. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Functional Art, Music, Modeling & Design (FARM
’14), pages 63–70. ACM.

16



McLean, A. and Wiggins, G. (2010a). Bricolage programming in the creative arts. In Proceedings of the
22nd Psychology of Programming Interest Group.

McLean, A. and Wiggins, G. (2010b). Tidal - pattern language for the live coding of music. In Proceedings
of the 7th Sound and Music Computing conference.

McLean, A. and Wiggins, G. A. (2010c). Live coding towards computational creativity. In Ventura et al.,
editors, Proceedings of the First International Conference on Computational Creativity.

Potter, K. (2000). Four Musical Minimalists: La Monte Young, Terry Riley. Steve Reich, Philip Glass.
Cambridge University Press, Cambridge, UK.

Revill, D. (1993). The Roaring Silence: John Cage: A Life. Arcade Publishing.

Riley, T. (1964). In c.

Ritchie, G. (2007). Some empirical criteria for attributing creativity to a computer program. Minds and
Machines, 17(1):67–99.

Ritchie, G. (2012). A closer look at creativity as search. In Proceedings of the 3rd International Conference
on Computational Creativity, Dublin, Eire.

Ritchie, G. D. and Hanna, F. K. (1984). AM: A case study in AI methodology. Artificial Intelligence,
23:249–268.

Thompson, S. (2011). Haskell: the craft of functional programming. Addison-Wesley Educational Pub-
lishers Inc, 3 edition.

Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 2(42):230–65.

Turner, M. and Fauconnier, G. (1995). Conceptual integration and formal expression. Metaphor and
Symbolic Activity, 10(3):183–203.

Wiggins, G. A. (2006a). A preliminary framework for description, analysis and comparison of creative
systems. Journal of Knowledge Based Systems, 19(7):449–458.

Wiggins, G. A. (2006b). Searching for computational creativity. New Generation Computing, 24(3):209–
222.

Wiggins, G. A. (2012a). The future of (mathematical) music theory. Journal of Mathematics and Music,
6(2):135–144.

Wiggins, G. A. (2012b). Music, mind and mathematics: Theory, reality and formality. Journal of
Mathematics and Music, 6(2):111–123.

Wiggins, G. A. (2012c). On the correctness of imprecision and the existential fallacy of absolute music.
Journal of Mathematics and Music, 6(2):93–101.

Wiggins, G. A. and Forth, J. (2015). IDyOT: A computational theory of creativity as everyday reasoning
from learned information. In Besold, T. R., Schorlemmer, M., and Smaill, A., editors, Computational
Creativity Research: Towards Creative Machines, Atlantis Thinking Machines. Atlantis Press.

Wright, M. and Freed, A. (1997). Open sound control: A new protocol for communicating with sound
synthesizers. In International Computer Music Conference, pages 101–104, Thessaloniki, Hellas. Inter-
national Computer Music Association.

17


