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Abstract

The enactive AI framework wants to overcome the sense-
making limitations of embodied AI by drawing on the bio-
systemic foundations of enactive cognitive science. While
embodied AI tries to ground meaning in sensorimotor inter-
action, enactive AI adds further requirements by grounding
sensorimotor interaction in autonomous agency. At the core
of this shift is the requirement for a truly intrinsic value func-
tion. We suggest that empowerment, an information-theoretic
quantity based on an agent’s embodiment, represents such a
function. We highlight the role of empowerment maximisa-
tion in satisfying the requirements of enactive AI, i.e. estab-
lishing constitutive autonomy and adaptivity, in detail. We
then argue that empowerment, grounded in a precarious exis-
tence, allows an agent to enact a world based on the relevance
of environmental features in respect to its own identity.

Introduction
Enactive Artificial Intelligence (AI), as proposed by Froese
and Ziemke (2009), represents a framework for the design
and evaluation of artificial agents with the goal of foster-
ing intentional agency and sense-making. It results from
a critique of the embodied approach to AI (Pfeifer et al.,
2005), which was first embraced by Brooks (1991) to over-
come several hard problems of good old-fashioned AI re-
lated to sense-making, in particular the symbol grounding
and frame problems. At the centre of Froese and Ziemke’s
critique is the fact that embodied AI allows for an agent’s
value function to be externally defined and controlled, which
counteracts genuine intentional agency. Inspired by the bio-
systemic foundations of enactive cognitive science, they re-
quire agents to be genuinely intrinsically motivated in or-
der to afford constitutive autonomy and adaptivity. The goal
of this paper is to evaluate whether empowerment maximi-
sation (Klyubin et al., 2008), a bio-inspired, information-
theoretic candidate for intrinsic motivation, is sufficient for
the realisation of enactive agents with intentional agency.

We first present an overview of embodied AI and of how
enactive AI wants to overcome it’s shortcomings. This is
followed by an in introduction to empowerment, and an in-
depth investigation of its role in constitutive autonomy and

adaptivity. Crucially, we do not analyse whether enactive
AI’s requirements are sufficient for intentionality and sense-
making in artificial agents, but investigate whether they can
be met by means of empowerment maximisation.

Criticising Embodied Artificial Intelligence
Situated and embodied cognition together with Enactivism
represent three strongly interlinked theories in cognitive sci-
ence. Situated cognition suggests that cognitive processes
emerge from the interaction of an organism and its world,
and are thus inseparable from action. Embodied cognition
as defined by Rosch et al. (1992) emphasises the role of an
agent’s physical body in shaping cognitive processes. Given
that an agent’s body necessarily exists in some place, em-
bodied cognition presupposes situatedness. The theories
of embodied situated cognition are supported by a growing
body of empirical evidence, highlighting how constraining
bodily abilities of human participants can affect e.g. judge-
ment and comprehension processes (cf. Strack et al., 1988;
Gallagher, 2005; Havas et al., 2010). The theories are also
supported by research in morphological computation (Za-
hedi and Ay, 2013) and exemplified by “brainless robots”
(Pfeifer et al., 2005), which perform otherwise computation-
ally extensive tasks such as walking only by means of their
bodily properties, e.g. the constraints and interplay of joints.

Brooks (1991) was the first to bring the ideas from em-
bodied situated cognition to AI research. Since then, em-
bodied AI has developed into a mature framework for mod-
elling artificial agents (cf. Pfeifer and Scheier, 2001), which
stands in opposition to good old-fashioned AI with its em-
phasis on the explicit manipulation of internal symbolic rep-
resentations. We will outline the embodied approach to AI
by reference to a selection of design principles suggested
and argued for by Pfeifer et al. (2005). They were split into
groups concerning the general design philosophy (P) and the
actual design methodology (A).

Embodied AI aims at gaining new insights in the general
science of life and mind, as opposed to applied engineer-
ing (P-1). Principle P-2 calls for a reduced designer’s in-
fluence in order to create systems with emergent behaviour.



In the course of this, the designer will face a trade-off be-
tween robustness and flexibility of the system (P-3). Prin-
ciple P-5 adheres to the general theory in stating, amongst
other things, that observed behaviour is neither reducible to
an agent nor to its environment, and that seemingly complex
behaviour can be triggered by simple internal mechanisms.
This is where embodied AI differs most from its traditional
counterpart. In actual design, agents should never be cre-
ated in isolation, but with their environment in mind (A-1).
Principle A-2 suggests that the proper study of intelligence
requires a holistic perspective on agents instead of look-
ing at sub-components only. Principle A-3 states that nat-
ural intelligence does not come from algorithms in a central
controller, but through the organisation of an agent’s sen-
sorimotor loop. Consequently, A-4 says that cognition can
be best understood as “appropriate sensorimotor coordina-
tion” (Froese and Ziemke, 2009). Finally, the value princi-
ple (A-8) requires the agent to be supplied with information
about whether a certain action was good or bad, in order to
motivate its behaviour.

It is tempting to believe that embodied AI makes one of
the biggest challenges of classic AI, the frame problem, ob-
solete. Wheeler (2005) defines it as:

Given a dynamically changing world, how is a nonmag-
ical system (...) to take account of those state changes
in that world (...) that matter, and those unchanged
states in that world that matter, while ignoring those
that do not? And how is that system to retrieve and (if
necessary) to revise, out of all the beliefs that it pos-
sesses, just those beliefs that are relevant in some par-
ticular context of action? (Wheeler, 2005)

Embodied and situated agents seem to resolve this prob-
lem practically: by grounding cognition into their situated-
ness in a continuously changing world, they do not need to
refer to any internal representations. Nevertheless, Froese
and Ziemke point out that the presence of a closed senso-
rimotor loop only addresses the first part of the definition;
what is missing is an agent’s own capacity to assign rele-
vance to features of the world. They particularly criticise the
value principle of embodied AI (A-8), which does not pre-
clude the external assignment of such values or more general
goals. More explicitly, they argue that the meaning problem
cannot be resolved by injecting values externally, and crit-
icise embodied AI for not demanding an intrinsic perspec-
tive. It is a part of our goal to propose a practical solution to
this challenge.

The Enactive Approach to Artificial
Intelligence

The enactive approach to AI consequently roots in the ques-
tion of how a system can be designed in which “relevant
features of the world show up as significant from the sys-
tem perspective itself, rather than only in the perspective of

the human designer or observer” (Froese and Ziemke, 2009).
Froese and Ziemke borrow ideas from enactive cognitive
science, a theoretical framework which claims that cogni-
tion is embodied, situated and grounded in practical activity.
At its core is the idea that individuals do not passively create
internal representations of a pre-given external world (Stew-
art, 2010); instead, they actively generate meaning by con-
structing their Umwelt (Von Uexküll, 1982), i.e. their very
own world of significance, through interaction with the en-
vironment. According to Rosch et al. (1992), features of the
world are not independently out there, but enacted through
an agent’s activity.

Similarly, Froese and Ziemke argue teleologically that be-
haviour can only be purposeful if it is significant from the
system’s own perspective. To distinguish simple matter and
most artificial agents which are incapable of such intrinsic
concern from actual living beings, enactive cognitive sci-
ence draws on Jonas’ notions of being by being, as opposed
to being by doing (Jonas, 1982): while artificial systems can
exist without actually doing anything, living systems estab-
lish their systemic identity in reaction to the constant threat
of becoming a non-being. The latter thus have a precarious
existence, which is continually challenged by material or en-
ergetic requirements. In order to react to threats, they must
be able to assign significance to features of the world.

Jonas suggests that this precarious existence is biologi-
cally rooted in an individual’s self-organisation, as captured
by the concept of autopoiesis. Introduced by Maturana and
Varela (1987), autopoiesis represents a basic mode of iden-
tity. The term only applies to physiochemical systems, and
is generalised by the notion of organisational closure. A
system implementing organisational closure is understood
as a network of processes that generate and sustain its iden-
tity under precarious conditions, and that form a unity in a
containing domain. In their first design principle for fully
enactive agents, Froese and Ziemke thus claim that intrinsic
teleology requires organisational closure, or in other words,
constitutive autonomy:

EAI-1 (Constitutive autonomy): the system must be ca-
pable of generating its own systemic identity at some
level of description. (Froese and Ziemke, 2009)

This intrinsic perspective represents the enactive version of
embodied AI’s value function principle (A-8). In contrast to
the synthetic methodology of the embodied approach, it re-
quires the designer to establish the environmental conditions
that allow for the emergence of a self-constituting system
without direct design influence on the agent architecture.

Although this principle affords a binary significance
mechanism, Froese and Ziemke argue that it is not sufficient
for sense-making as the enaction of an Umwelt, i.e. as the
continuous evaluation of events in relation to maintaining
the system’s identity. In order to enable an agent to improve
its situation or to compensate for some encountered event, it



must be able to distinguish external events more gradually
in terms of how they could affect its internal organisation.
In other words, they require an agent’s Umwelt to not be
merely black and white. The capacity to distinguish differ-
ent tendencies towards non-existence, and to act on them in
order to move away from a precarious situation is covered
by the concept of adaptivity as defined in (Di Paolo, 2005).
Additionally, an adaptive agent must be able to act upon its
environment to prevent such precarious events in the future.
The necessity of adaptivity for sense-making is covered by
the second enactive design principle:

EAI-2 (Adaptivity): the system must have the capacity
to actively regulate its ongoing sensorimotor interac-
tion in relation to a viability constraint. (Froese and
Ziemke, 2009)

This viability constraint can either be defined externally or
be intrinsically related to the system’s identity. Neverthe-
less, an external viability constraint would not conform with
EAI-1. In summary, enactive AI complements and extends
embodied AI’s approach to move sense-making into the sen-
sorimotor loop, by grounding sensorimotor interaction in in-
tentional agency (Froese and Ziemke, 2009).

Empowerment as Intrinsic Motivation for
Enactive Artificial Agents

We suggest that empowerment maximisation, a principle in-
troduced by Klyubin et al. (2005a), represents a promising
candidate for a genuinely intrinsic value function in enac-
tive AI. We will briefly provide the reader with an intuition
and formal definition of empowerment and the principle of
empowerment maximisation. We will then argue that em-
powerment supports the formation of constitutive autonomy
in enactive agents in both a synthetic and self-constituting
manner, and fulfils the requirements for adaptivity without
further modifications.

Empowerment and Empowerment Maximisation
Empowerment, the quantity underlying the maximisation
principle, is defined over the relationship between an agent’s
actuators and sensors, and as such is sensitive to the agent’s
embodiment and Umwelt. It measures the influence of an
agent’s actions on its environment (controllability), and the
extent to which it can perceive this influence afterwards (ob-
servability). In other words, empowerment quantifies the
options available to an agent in terms of availability and vis-
ibility; it measures how much potential influence an agent
has on the world it perceives. Klyubin et al. (2008) introduce
the principle, while Salge et al. (2014b) provide an extensive
survey of motivations, intuitions and past research.

At the centre of the empowerment definition is the in-
terpretation of an agent’s embodiment as an information-
theoretic communication channel. For any arbitrary separa-
tion between an agent and a world we can define sensor vari-

ables S and actuator variables A as those states that allow
for the in- and outflow of information to the agent, respec-
tively. This interaction with the world is usually described as
a perception-action loop (Fuster, 2001; Touchette and Lloyd,
2000, 2004) as in Fig. 1, which can be analysed by means
of a causal Bayesian network and Pearl’s interventional cal-
culus (Pearl, 2000). Here, arrows imply causation between
random variables: the agent’s actions A only depend on its
sensor input S, which in turn is determined by the rest of
the system R. The latter is affected by the preceding sys-
tem state and the agent’s actions. The interventional causal
probability distribution p(St+1|St, At) thus represents the
(potentially noisy) communication channel between actions
and future sensor states. For simplicity, the interaction pre-
sented here is discrete in time and space. Continuous imple-
mentations exist, e.g. for robotics (cf. Salge et al., 2014b).

Empowerment is then defined as the maximum potential
information flow (Ay and Polani, 2008) that could possibly
be induced by a suitable choice of actions, in a particular
state st. This can be formalised as the channel’s capacity:

Est = max
p(at)

I(St+1;At)

= max
p(at)

H(St+1)−H(St+1|At))

= max
p(at)

∑
A,S

p(st+1|st, at)p(at) log
p(st+1|st, at)∑

A
p(st+1|st, ât)p(ât)

Here, I(St+1;At) represents the mutual information be-
tween sensors and actuators, which is based on the differ-
ence of regular H(St+1) and conditional Shannon (1948)
entropy H(St+1|At). The channel capacity is computed by
finding the action distribution that maximises the mutual in-
formation. Note that this distribution just defines what the
capacity is, and is not the actual action policy. For more in-
formation on these notions see (Cover and Thomas, 1991).

Empowerment is local, i.e. the agent’s knowledge of
the local dynamics p(St+1|St, At) is sufficient to calculate
the quantity. The information-theoretic grounding makes it
domain-independent and universal, i.e. it can be applied to
every possible agent-world interaction, as long as this inter-
action can be modelled as a perception-action loop. This im-
plies that empowerment can be computed on arbitrary agent
morphologies, and can cope with changes being made to it.
Because the perception action loop can be applied to sub-
systems (cf. Fuster, 2001), or to formalisations on different
levels of abstraction (choosing a more or less fine grained
model of what actions and sensors are), empowerment can
also be applied to an agent on different hierarchical levels.
Finally, empowerment is task-independent, i.e. it is not eval-
uated in regard to a specific goal or external reward.

Given that empowerment does not measure an agent’s ac-
tual, but potential influence on the environment, an agent can
choose its actions accordingly, in order to get into states with
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Figure 1: Causal Bayesian network of a memoryless perception-action loop unrolled in time, with the agent’s sensors S,
actuators A and the rest of the world R.

maximum empowerment. The hypothesis behind this max-
imisation principle suggests that in order to adapt to changes
in their environment, living beings tend to keep their options
open. In other words, in absence of more specific goals,
they prefer states in which their actions have the strongest
potential influence on the environment. More informally, an
empowerment-driven agent wants to be in a state where its
different actions would have different effects on the world,
but it does not necessarily act out all options. This goes
hand in hand with a second hypothesis, namely that evolu-
tion favoured organisms with efficient information process-
ing (Polani, 2009). Empowerment can thus be understood
as one information efficiency principle focusing on the in-
terplay of actuators and sensors. Based on the properties
outlined in the previous paragraph, empowerment maximi-
sation satisfies the criteria for an intrinsic motivation func-
tion as suggested by Oudeyer and Kaplan (2008).

Empowerment and Constitutive Autonomy
The enactive AI framework suggests that, in order to gen-
erate its own identity, a system must continuously maintain
its precarious existence (Jonas, 1968; Froese and Ziemke,
2009). Crucially, empowerment maximisation will not, of
itself, bring about such a precarious existence. Neverthe-
less, it allows for its maintenance and supports the process
of second order engineering for the emergence of constitu-
tive autonomy. In other words, agents which maintain their
empowerment above zero realise organisational closure. To
support this claim, we will first show that empowerment
serves as a proxy for an agent’s internal organisation.

A Proxy for Internal Organisation Given that a precari-
ous existence is essentially conditioned on material and en-
ergetic requirements, we suggest that an agent’s internal pro-
cesses should maintain its ability to satisfy these require-
ments. Consequently, an agent has to maintain its capacity
to interact with the world by changing and observing it. Em-
powerment quantifies this capacity; it is non-negative, con-
tinuous, and becomes zero if an agent has no influence over
the world it perceives. Given that maintaining the ability
to interact should be the prime objective, we infer that zero
empowerment will inevitably lead to disorganisation. As the
internal processes are dependent on these energetic and ma-
terial requirements, we also deduce that the organisation is
impossible to recover without external support. An empow-
erment value of zero therefore marks the viability boundary

of an agent and serves as proxy for its internal organisation.
It does not capture an agent’s precarious existence directly,
but the extent to which this existence could be autonomously
maintained by means of sensorimotor interaction.

Empowerment does not distinguish whether it is the agent
itself which looses coherence or its surrounding world. This
is consistent with the theory of situated and embodied cogni-
tion, which does not allow separation of the two in terms of
their contribution to cognitive processes. In order to main-
tain its existence, an agent has to keep both its internal pro-
cesses and its surroundings organised, which is reflected in
non-zero empowerment. Crucially, it is guaranteed to be-
come zero if an agent’s precarious existence is lost from
the point of view of autonomous regeneration, even if its
internal organisation is still intact. This provides us with
an alternative definition of death, which accounts for exter-
nal forces. For instance, deactivating a robot would result
in an empowerment value of zero, because there is nothing
the robot could do in order to regain control over its senso-
rimotor loop, which is in turn required to maintain its ex-
istence. Consequently, an empowerment maintaining robot
would try to hinder an external force from shutting it down.

If the robot is deactivated nonetheless, the only option
then is to rely on an external intervention to bring this capac-
ity back. In a system where the internal organisation relies
on a multitude of different active processes, the loss of some
causes a chain reaction were others break down, leading to
decay of the agent, as it is helplessly exposed to the entropy
of the world. Seligman (1975) describes this situation in
psychological terms, i.e. from a human perspective. In a
classical robot, turning it off is usually not as problematic,
as most current robots do not rely on the need to continu-
ously maintain and repair their systems. Nevertheless, if a
robot is not turned back on, entropic processes will eventu-
ally obliterate the robot, leading to its information-theoretic
death, i.e. a complete loss of organisation. In summary, an
empowerment of zero marks death in terms of the inability to
recover autonomously. This eventually leads to information-
theoretic death, which cannot be reversed even by means of
external intervention.

Also note that in contrast to other homeostatic variables,
such as a robot’s energy level, this equation between death
and empowerment holds in both ways. A robot could be
turned off whilst its energy level, an essential variable for its
successful operation, remains high. But a robot cannot be
turned off without its empowerment dropping to zero.



Second-Order Homeostasis An empowerment value
over the viability boundary thus reflects an agent’s efforts
to maintain its internal organisation and to sustain its influ-
ence on the environment. This is the case even if we assume
empowerment to be a meta-variable, i.e. if its maintenance
is implemented via several homeostatic processes. Since
keeping empowerment non-zero means to keep the agent’s
internal organisation coherent, which in turn means to keep
empowerment non-zero, we end up with a self-referential
process. In other words, maintaining empowerment means
preserving the capacity to maintain empowerment. It is
this form of second order homeostasis that characterises au-
topoiesis: “an homeostatic (...) system which has its own
organisation (...) as fundamental variable which it maintains
constant” (Maturana and Varela, 1980, p. 79). Since we are
particularly interested in non-physiochemical systems, we
make the more general claim that a system which keeps its
empowerment non-zero realises organisational closure.

Synthetic vs. Second Order Engineering An empower-
ment maintaining system does not necessarily have to face
precarious conditions; the latter must be specified or emerge
from the agent’s dependencies on the environment. Never-
theless, empowerment can serve as a meta-variable to inform
the design of self-constituting agents both from a synthetic
and emergent perspective. If we take the earlier, weaker
stance of embodied AI and allow for some direct influence
on the agent design, empowerment can be used as an ex-
plicit intrinsic value function. Maintaining a more specific
variable such as an agent’s energy level is not sufficient to
ensure the coherence of the overall organisation, and thus
does not suffice for organisational closure. If we assume
empowerment to be implicitly implemented by several other
variables, maintaining empowerment in turn means to main-
tain all variables that are required to keep the organisation
coherent. We thus adopt the claim that empowerment “might
contribute to modulate pre-imprinted drives or help consti-
tuting new homeostatic drives” (Klyubin et al., 2008).

If we stick to strict second order engineering of emer-
gence, empowerment can act as a primer to inform the envi-
ronmental conditions required for the emergence of a self-
constituting agent. More specifically, the environmental
conditions must give rise to regulative processes that imple-
ment dynamics similar to empowerment maximisation, in
order to allow for the emergence of specialised homeostatic
variables (Klyubin et al., 2008). As a meta-variable, empow-
erment allows us to make less explicit assumptions about
the specialised processes which must emerge from the envi-
ronment to constitute and maintain an agent’s identity, and
yet remains specific enough to enable a more directed pro-
cess. Counterintuitively, designing the environment in a way
that affords the emergence of an empowerment maintaining
agent thus allows for more, not less, freedom in emergence
and is therefore in sync with the enactive AI principles.

A Sufficiently Intrinsic Value Function Although em-
powerment is not a truly emergent property in this con-
text, we argue that it is still sufficiently intrinsic to sat-
isfy Froese and Ziemke’s requirements for an agent’s value
function. It is local, and domain-independent through its
information-theoretic grounding. This also makes it inde-
pendent from any sensory semantics, a criterion brought for-
ward by Oudeyer and Kaplan (2008). Embedded in the ar-
chitecture of a minimal agent with a precarious existence,
empowerment becomes grounded in the maintenance of its
identity. Calculating empowerment either explicitly or im-
plicitly then translates to assigning genuine relevance to fea-
tures of the environment.

Empowerment and Adaptivity
We have demonstrated that keeping empowerment non-zero
already satisfies a minimal form of adaptivity in terms of
maintaining a precarious existence. We will show that
this mechanism represents an abstraction of empowerment
maximisation, a principle which naturally emerges from an
agent’s need to optimise the efficiency of its sensorimotor
interaction. Crucially, empowerment maximisation realises
adaptivity without adding additional complexity, e.g. more
layers to an agent’s architecture.

Distinguishing Viability Tendencies Di Paolo (2005) de-
fines adaptivity as a system’s capacity to regulate its states
and its relation to the environment with the result that:

1. Tendencies are distinguished and acted upon de-
pending on whether the states will approach or re-
cede from the boundary and, as a consequence,

2. Tendencies of the first kind are moved closer to or
transformed into tendencies of the second and so fu-
ture states are prevented from reaching the boundary
with an outward velocity (Di Paolo, 2005).

By quantifying the efficiency of the perception-action
loop for different reachable sensor states, empowerment al-
lows the agent to identify states that afford it more options
relative to its sensorimotor equipment. Given the link be-
tween the agent’s internal organisation and the efficiency
of its sensorimotor loop, empowerment allows the agent to
distinguish tendencies in the environment in terms of how
they could potentially affect its viability, which satisfies Di
Paolo’s first requirement.

We want to stress that the agent does not need to possess
a “viability set” in Di Paolo’s sense, i.e. different degrees or
different forms of disorganisation above its viability bound-
ary. Unlike the value function in embodied AI (A-8), em-
powerment is future-directed and can therefore differentiate
genuine tendencies in terms of action affordances that might
have an impact on an agent’s viability, even if there is no
actual robustness in the agent.



As a necessary requirement for real-world scenarios, its
information-theoretic foundation enables it to cope with un-
certainty in the sensorimotor loop. Anthony et al. (2008)
show that empowerment allows an agent to extract and use
local information to learn about the world’s global structure.
An agent which improves empowerment locally in terms of
time and space is thus likely to improve globally as well.

Transforming Viability Tendencies Using empowerment
maximisation as an action policy allows an agent to prevent
states which might prove fatal, and to prefer those which
might be beneficial. In a simulation study, we demonstrated
that empowerment maximising agents were able to main-
tain their precarious existence even under serious energy re-
source constraints (Guckelsberger and Polani, 2014). With
empowerment becoming zero when the agent has no sen-
sorimotor control, there is no need to explicitly define a
death state, and empowerment maximisation naturally leads
to death avoidance behaviour. We conclude that empower-
ment maximisation fulfils Di Paolo’s aforementioned, sec-
ond requirement for adaptivity in terms of sensorimotor co-
ordination (Di Paolo, 2005).

Several studies have investigated how empowerment
maximisation can facilitate sensorimotor adaptation. Klyu-
bin et al. (2005b, 2008) show that empowerment can serve as
an immediate guide for sensor and actuator evolution during
an agent’s lifetime. They have used empowerment as the
fitness function in a genetic algorithm to evolve both sen-
sors and actuators, while constraining the agent’s informa-
tion processing bandwidth. This empowerment maximisa-
tion strategy yielded sensors and actuators of different qual-
ities which were “meaningful” in respect to the agent’s cur-
rent state. This is possible because empowerment is not
only well defined for different agent morphologies, but even
makes these morphologies comparable in terms of which is
the better fit for a given environment.

The information-theoretic nature of empowerment allows
for a less-biased and thus pro-enactivist approach to senso-
rimotor adaptation, because it does not rely on any assump-
tions about sensory modality (Oudeyer and Kaplan, 2008;
Salge et al., 2014b). Due to its grounding in the sensorimo-
tor loop, empowerment can potentially be used to modify the
environment (Salge et al., 2014a), the agent’s morphology,
and its sensors and actuators (Klyubin et al., 2008). Hence it
also satisfies Di Paolo’s requirement for an agent to regulate
not only its states, but also its relation to the environment.

Given the evidence above, we conclude that empower-
ment maximisation satisfies Di Paolo’s requirements for
adaptivity. It even exceeds them in that it allows for sen-
sorimotor coordination and adaptation not just in “some cir-
cumstances”, as Di Paolo (2005) requires, but in a perma-
nent fashion. An empowerment maximising agent not only
acts when there is a disaster, but continuously optimises its
mastery of the sensorimotor loop. If the empowerment gra-

dient is less steep, empowerment allows for more freedom
in the selection of actions.

Discussion
We have claimed that an empowerment maintaining agent
can be considered as implementing organisational closure.
Nevertheless, we have not yet demonstrated that it meets
Maturana’s and Varela’s second requirement for autopoiesis,
namely to constitute itself “as a concrete unity in the space
in which the components exist (...)” (Maturana and Varela,
1980, p. 79). Froese and Ziemke point our that there is
no mechanism available yet to test for this criterion in non-
biophysiological systems (Froese and Ziemke, 2009). Thus,
our argument so far is based on the assumption that such a
boundary has been somehow established; and we demon-
strated how empowerment scales, i.e. that it can be ap-
plied to an arbitrary chosen boundary since it is defined on
any possible morphology. It is unclear though whether this
boundary is maintained for an empowerment maximising
agent emerging from second order engineering.

Empowerment maximisation overcomes Wheeler’s
“intra-context frame problem” Wheeler (2008), i.e. a
system’s challenge to act appropriately and flexibly in a
given context, by assigning potential future states relevance
relative to its identity. Nevertheless, in order to maximise
empowerment, an agent must infer not only potential
future sensor states, given the current state, but also its
action consequences in these possibly remote states. The
obvious question arising from this is whether computing
empowerment, or more broadly speaking, behaving as
if one was maximising the empowerment, would require
an explicit forward model. Most existing work assumes
a somewhat acquired world model that can be queried
(Salge et al., 2014b) but more recent work argues that a
neural network can be trained to act as if it was maximising
empowerment, without an explicit forward model, based
only on past experience (Mohamed and Rezende, 2015).
In any case it should also be noted that the formalism
only requires an agent-centric understanding of the local
dynamics p(St+1|St, At) based on a level of “representa-
tion” consistent with the idea of sensorimotor contingencies
(O’Regan and Noë, 2001), i.e. an understanding of the
regularities of the agent’s own sensorimotor loop.

Revisiting enactive AI’s design principles through the lens
of empowerment yields that they cannot be as clearly sepa-
rated as Froese and Ziemke suggest; there must be an im-
plicit value function already in place to maintain the consti-
tutive autonomy of an agent. Adaptivity could resort to the
same value function, if the latter is powerful enough to dis-
tinguish different viability tendencies. This is the case for
empowerment, which scales seamlessly across both require-
ments without further modifications.

Our investigations also shed light on the issue of robust-
ness: while Froese and Ziemke take physical robustness, i.e.



the existence of a set of non-fatal events, for granted in au-
topoietic systems, we believe that in the realm of artificial
agents, we must allow for systems which can disintegrate
in an instant. One might argue that this does not allow for
an Umwelt to be constituted, but this is only correct if we
think of a value function in embodied AI’s terms, determin-
ing “whether an action was good or bad”. Empowerment
as a future-directed motivational function in turn allows an
agent to distinguish genuine tendencies of states to impact
its organisation in a positive or negative way. A stochastic
system allows for the emergence of such tendencies without
the need for the agent to have actual physical robustness. For
instance, consider an agent moving across a narrow bridge
under windy conditions. Even if the agent only had a binary
viability set, it could consider a position at the bridge’s edge
as more risky, since the likelihood of being blown away is
higher, which would eventually render the agent unable to
act. Given that such tendencies allow agents to assign rele-
vance to features of the world, i.e. to construct an Umwelt,
we suggest that adaptivity is not absolutely necessary for
sense-making. Nevertheless, we agree that it is extremely
useful in order for agents to improve and compensate.

Conclusion
We have demonstrated that empowerment satisfies the re-
quirements for enactive AI, i.e. constitutive autonomy and
adaptivity. We approached these requirements separately,
and suggested empowerment as an implicit or explicit, but
genuinely intrinsic value function which overcomes the lim-
itations of embodied AI. In particular, we argued that sus-
taining empowerment is a self-referential process, and that
empowerment-driven agents are thus autopoietic.

We demonstrated that empowerment maximisation can-
not afford a precarious existence itself, but represents a
generic mechanism which ensures the maintenance of such
an existence. We believe that empowerment can be realised
by means of more specialised variables, or lead to the for-
mation of such variables. By describing how empowerment
could support the process of second order engineering for
the emergence of constitutive autonomy, we also want to
stress its potential role as a mediator between the synthetic
methodology of embodied AI and the strict ideas of emer-
gence in enactive AI.

When embedded into an agent with a precarious exis-
tence, empowerment will be grounded in the maintenance of
its identity. If we take Froese and Ziemke’s claims seriously,
we can thus assume that the relevance which empowerment
assigns to states of the world represents genuine concern.
We showed that the principle of maintaining empowerment,
as required for constitutive autonomy, is simply a special
case of maximising it. Additional layers in an agent’s archi-
tecture therefore become obsolete: empowerment maximi-
sation represents a mechanism which satisfies the conditions
for adaptivity and thus allows an agent to regulate it states

and its relation to the environment to move away from its
viability boundary.

Froese and Ziemke developed the framework of enactive
AI to advance intentional agency and sense-making in ar-
tificial agents, and suggest that their requirements represent
necessary, although potentially not sufficient conditions. We
argue that the second requirement of adaptivity is actually
not necessary for sense-making, but extremely useful for the
constitution of advanced behaviour and a robust identity. Al-
though they want to move away from carbon chauvinism and
Dreyfus’ requirement to reproduce living agents in detail
(cf. Dreyfus, 2007), their examples in (Froese and Ziemke,
2009) are largely simulations of biochemical processes. We
believe that minimal agents motivated by an appropriate in-
trinsic motivation, such as empowerment, can serve as an
inspiring abstraction, which could particularly support the
selection of environmental conditions in second order engi-
neering of emergence.
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