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Abstract—Programming sound synthesizers is a complex and
time-consuming task. Automatic synthesizer programming in-
volves finding parameters for sound synthesizers using algorith-
mic methods. Sound matching is one application of automatic
programming, where the aim is to find the parameters for a
synthesizer that cause it to emit as close a sound as possible to a
target sound. We describe and compare several sound matching
techniques that can be used to automatically program the Dexed
synthesizer, which is a virtual model of a Yamaha DX7. The
techniques are a hill climber, a genetic algorithm and three deep
neural networks that have not been applied to the problem before.
We define a sound matching task based on six sets of sounds,
which we derived from increasingly complex configurations of
the Dexed synthesis algorithm. A bidirectional, long short-term
memory network (LSTM) with highway layers performed better
than any other technique and was able to match sounds closely in
25% of the test cases. This network was also able to match sounds
in near real time, once trained, which provides a significant speed
advantage over previously reported techniques that are based on
search heuristics. We also describe our open source framework
which makes it possible to repeat our study, and to adapt it to
different synthesizers and algorithmic programming techniques.

Index Terms—Computer generated music, Signal synthesis,
Artificial neural networks, Genetic algorithms, Frequency mod-
ulation

I. INTRODUCTION

SOUND synthesizer programming is an important and diffi-
cult activity which is carried out regularly by professional

musicians, sound designers and composers. It first involves
the selection of a synthesizer, and then the adjustment of its
settings until the user is satisfied with the sound it produces.

Synthesizers can have hundreds of parameters, which means
that the potential set of configurations is enormous. In this
paper, for example, we study the Dexed synthesizer which has
155 real-valued parameters. Additionally, these parameters can
be non-linear with respect to the timbre of the sound, and they
can be interdependent such that one parameter’s effect depends
upon the value of one or more of the other parameters.

Human synthesizer programmers currently have two op-
tions: they can use libraries of preset sounds, possibly adjust-
ing some parameters to fine tune the tone, or they can program
the synthesizer from scratch. In this paper, we consider a third
option: automatically deriving sound synthesis parameters
using machine learning and optimisation techniques.

Specifically, we consider the problem of sound matching,
where the aim is to program a synthesizer to generate sound
as close as possible to a specific target. We address the sound
matching problem at several levels of complexity, using several

machine learning and optimisation techniques. We investi-
gate the hypothesis that deep network architectures will out-
perform the previously reported sound matching techniques,
in terms of speed and accuracy.

A. Previous work

There is a considerable body of work in automatic sound
synthesizer programming. A key task in this work, as described
above, is sound matching. Horner et al. described one of the
first sound matching systems, which used a genetic algorithm
(GA) to find settings for frequency modulation (FM) synthe-
sis algorithms [1]. Several researchers have re-addressed the
FM synthesizer parameter optimisation problem, for example,
Mitchell et al. [2] and Roth [3].

Sound matching is one application of automatic sound
synthesizer programming. Another application is to provide a
more intuitive interface between the user and the parameters,
where the user operates in an intuitive timbral or visual space,
and the programming system generates the synthesizer param-
eters required. Arbib et al. used machine learning techniques
to map from perceptual space to synthesizer parameter space
[4]. Other researchers used 2D [5, p42] and 3D interfaces [6]
to visualise the timbre space of synthesizers, enabling more
efficient exploration. Timbre word to parameter mappings
provide another intuitive means to find parameters [7], [8].
Perhaps the most intuitive way to program a synthesizer is by
playing an instrument and deriving parameters from the live
input [9] or even using the human voice [10], [11].

Some researchers have attempted to integrate automatic
synthesizer programming technology with publicly and com-
mercially available synthesizer systems. Dahlstedt used an
interactive genetic algorithm (IGA) to help program the Nord
Modular synthesizer, where the algorithm suggests variations
on a synthesis patch to the user, who can then select their
preferred variations for further ‘breeding’ [12]. More recently,
Yee-King described a similar IGA driven synthesizer program-
mer implemented using web browser technology and released
as open source software [13]. Both these systems followed
earlier work with IGAs and sound synthesis by Johnson [14],
and can be traced back further to Dawkins’ Biomorphs concept
[15].

IGA systems are not complete synthesizer programmers
though; they aid in the process but do not carry it out. The
SynthBot system was a complete synthesizer programmer,
and it was able to program FM and analogue modelling
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synthesizers available in the industry standard, Virtual Studio
Technology (VST) format [16]. Heise described a similar VST
programmer, using a particle swarm optimisation technique
instead of Synthbot’s GA [17]. These complete programmer
systems were able to match tones convincingly, but they also
used simple synthesizers with less than 50 parameters. The
work presented here uses a synthesizer in the VST format,
but the synthesizer is considerably more complex than the
synthesizers in the previous VST work.

We think that VSTs are an excellent and varied test bed for
automatic synthesizer programmers - the KVR audio software
database contains 3,765 VST plug-ins, with a variety of syn-
thesis methods1. VSTs also offer the possibility of transferring
the technology to a commercial product. This product would
be able to interoperate with digital audio workstation (DAW)
and plug-in software that musicians are already using. We
note that VST is not the only option here - modular systems
such as Native Instruments’ Reaktor would be an interesting
target, and researchers have already investigated automatic
patch generation using the PureData system [18].

The last system we will review is Tatar et al.’s PresetGen,
as it represents the current state of the art in sound matching
with a commercially available synthesizer [19]. PresetGen
used an advanced, multi-objective genetic algorithm to match
real instrument and contrived sounds made using a software
version of the OP-1 synthesizer made by Teenage Engineering.
Contrived sounds are made with the synthesizer, so they can
theoretically be matched perfectly if the settings can be found.
The researchers also carried out a ‘machine to human’ trial,
comparing human programmers to PresetGen, similarly to
[16]. The system was found to have human competitive sound
matching capabilities. We think that the PresetGen work could
be extended by comparing the performance of the GA to
other systems. Also, we think that the speed of the matching
would need to be improved to make it viable for a commercial
product, as it takes 5 hours on a 50 core supercomputer to
match a 2 second sound. We address both of these challenges
in our work - we compare several methods, and we investigate
the possibility of near real-time sound matching.

In summary, automatic synthesizer programming is a fasci-
nating and challenging area to investigate, with clear potential
to impact on the methods used by industry professionals. In
this paper, we build upon previous work but go further by
making the three contributions enumerated below.

1) A description of three novel deep network approaches
to automatic synthesizer programming.

2) A study comparing these new techniques to previously
used techniques.

3) An open source, automatic synthesizer programming test
bed, to support future work in this area.

II. METHOD

This section describes the sound matching problem in more
detail and the methodology we have used to address it. It first
describes the Dexed synthesizer and its parameters, then de-
tails the test sets used to evaluate our automatic programming

1http://www.kvraudio.com

Fig. 1. The user interface for the Dexed synthesizer, showing repeated sets
of controls for each of the six ‘operators’.

techniques and finally describes the algorithmic techniques
themselves.

A. The DX7 and Dexed synthesizers

The Dexed synthesizer is a virtual, software synthesizer
which aims to model the synthesis algorithm found in the
Yamaha DX7 synthesizer as closely as possible2. The DX7
implements frequency modulation (FM) synthesis, a technique
which was first described by Chowning [20]. FM synthesis
involves the generation of complex waveforms using a small
number of oscillators (known as operators in DX7 termi-
nology). These DX7 operators can modulate each other’s
frequency, where the modulation occurs at a rate higher than
20Hz, and which enables the synthesis of frequency sidebands.
Dexed is available as a VST plug-in, which is a standard for-
mat developed by Steinberg, used to author effects processors
and virtual synthesizers. VST plug-ins, such as Dexed, can be
loaded into any VST compatible host program, meaning third
parties can develop synthesizers, then musicians can use them
inside a VST compatible, digital-audio workstation.

Yamaha released the DX7 in 1983, so it is not currently a
state of the art synthesizer. However, several reasons make it
an attractive subject for study. It is one of the best known and
most commercially successful synthesizers of all time and is
known for being difficult to program [21]. Also, Yamaha and
other manufacturers have used variants of the underlying FM
synthesis algorithm in newer synthesizers, making it a current
technique. These synthesizers include the Native Instruments
FM8 (2011), the Yamaha Montage (2016) and the Korg Volca
FM (2016), the latter being a hardware emulation of the DX7.
However, all these synthesizers rely heavily on preset sounds
and do not offer innovative programming methods that give
the user a greater deal of creative scope.

B. Details of the synthesis engine

The DX7 synthesis engine contains six digital oscillators,
known as operators. Each operator has several available wave-

2https://github.com/asb2m10/dexed
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Fig. 2. Schematic of three of the available 32 Dexed/ DX7 algorithms.
Numbered boxes are operators. Connections between operators imply the
upper operator is modulating the frequency of the lower one. The synthesis
engine connects operators on the bottom row to the audio output.

forms, two control envelopes, and various tuning and other
controls. The Dexed DX7 emulator exposes the synthesis
engine as 155, real-valued parameters in the range 0-1, which
is the standard range for VST plug-ins. Figure 1 shows
the Dexed graphical user interface (GUI), which reflects the
structure of the underlying synthesizer. There are six operator
control panels, labelled 1-6, showing the envelope, tuning, and
other controls for each operator. There are global controls such
as those for the overall amplitude envelope at the bottom
right and there is a modulation routing display at bottom
centre (the ‘algorithm’ in DX terminology). Figure 2 shows
a clearer view of three out of the 32 available algorithms in
the synthesizer. Each box represents an operator, and the lines
represent modulation, where a modulator operator modulates
the frequency of a carrier operator. Feedback is also present,
where an operator modulates its own frequency.

C. The sound matching problem

The sound matching problem is solved by finding the
parameters for a synthesizer that cause it to emit a sound that
matches a target sound as closely as possible.

The experiment we have designed, and which is described
below, aims to apply several automatic sound synthesizer
programming techniques to the sound matching problem and
to compare their performance.

We formalise the sound matching problem into a series of
six test sets, each test more complex algorithmically than the
last. A test set contains 30 members, where each member
represents a single test for the synthesizer programmer. A test
set member consists of a vector of parameters for the Dexed
synthesizer and a vector of audio features. Therefore, a test set
member represents a preset for the synthesizer and the sound it
produces. The programmer must attempt to match the sound,
without knowing the settings.

To generate the test sets, we sampled the parameters from
a uniform distribution in the range 0-1. We then obtained the
audio features by setting the parameters on the synthesizer,
playing a note for one second, then extracting the features from
the sound signal generated at the output of the synthesizer. The
experimental framework described later allows this process to
be completed automatically.

1) Audio features and evaluation: Many different audio
features are appropriate for musical applications [22]. The
early sound matching work used simple spectral features, but

Programmertarget
MFCCs

Parameter
settings

Dexed 
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Fig. 3. The workflow we use to evaluate a programmer against a member
of a test set. The programmer receives audio features as input. It generates
settings for the synthesizer as output. We render the sound resulting from
these settings and compared to the input sound to evaluate the programmer.

more recent work uses Mel Frequency Cepstrum Coefficients
(MFCCs) [23]. We also use MFCCs in this study as they
have been an effective audio feature for sound matching
tasks [16], [17], monophonic instrument recognition tasks [24],
and listener studies have shown that a movement in MFCC
space is associated with a similar ‘sized’ movement in human
perceived timbre space [25].

We used pyAudioAnalysis, an audio feature extraction li-
brary for Python to extract the MFCCs [26]. It uses the MFCC
implementation from scikits.talkbox3, which in turn uses the
FFT and discrete cosine transform implementations from
scipy.fftpack4. We set the system sample rate to 44,100Hz and
the FFT window size to 2048 frames, which is approximately
50ms. We extracted the features from overlapping windows
with a hop size of 1024 frames. We extracted 13 MFCC
coefficients per frame, with the Mel filter bank beginning at
133Hz.

We evaluate an automatic synthesizer programmer against
a member of a test set using the process shown in Figure 3.
The programmer receives the target feature vector as its input.
It then has to find out what the settings are that will cause
the synthesizer to generate these features. The programmer
outputs its estimate of the parameter settings. These settings
are used to set up the synthesizer, which then plays a single
note (MIDI note 24). We extract audio features from the output
of the synthesizer and compute the Euclidean distance between
these features and the target features. A good programmer will
be able to get close to the target sound in feature space.

We evaluate the synthesizer programmers against every
member in every test set, and this provides an overall score
for each programmer. The test set contains sounds that have
been generated with the synthesizer, referred to as contrived
sounds in [19]. A perfect synthesizer programmer should be
able to resynthesize contrived target sounds exactly.

Another approach would be to create a test set containing
real instrument sounds, which the synthesizer could only
approximate. We consider this to be a valid approach, but we
prefer the contrived sound approach here because it provides
a simple baseline against which the programmers can be
evaluated, i.e. the possibility of an error of zero. With a real
instrument sound as a target, there is no way to know if
the algorithm is performing well in an absolute sense - it
cannot be known if it has, in fact, found the closest sound
that synthesizer can make to that instrument sound. With

3https://pypi.python.org/pypi/scikits.talkbox
4https://docs.scipy.org/doc/scipy/reference/fftpack.html
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TABLE I
PARAMETER COUNTS AND OPERATOR COUNTS IN THE TEST SETS. EACH

SUCCESSIVE TEST SET UNLOCKS MORE PARAMETERS AND AN EXTRA
SYNTHESIZER OPERATOR MODULE.

Test set Parameter count Operator count

T1 22 1

T2 44 2

T3 66 3

T4 88 4

T5 110 5

T6 132 6

the contrived sounds, a perfect programmer can find a zero
error sound. This evaluation does not consider the actual
parameters that were used to generate the target sound, as the
timbral distance is more important than the parameter distance.
Therefore, it is acceptable for a programmer to make a sound
using different settings than those in the test set, so long as it
achieves a timbral match.

2) Difficulty of the test sets: Parameter freezing is used
to make the test sets increasingly difficult. Set 1 is probably
the easiest set as 133 out of the 155 parameters are frozen.
This means that only 22 parameters vary between the items in
the set. The variable parameters include the global envelope
parameters and operator specific parameters. In test set 1, we
choose the variable parameters such that the synthesizer is
effectively only using one operator. In test set 2, two operators
are unlocked, through to the full six operators in set 6. This
arrangement requires that we choose the modulation routing
algorithm carefully, to ensure that the varying parameters
affect operators that will change the sound. There are 155
parameters in total within the synthesizer, and 23 of them are
global parameters which affect the overall sound.

D. Automatic synthesizer programming techniques

We implemented five different synthesizer programming
algorithms for this study, and we will begin this section
by explaining why we chose these particular algorithms. In
later sections, we present more details about the algorithms
themselves and the hyperparameters that we selected.

The algorithms were a hill climber algorithm, a genetic
algorithm, and three different neural networks. The hill climber
was the most straightforward algorithm, and we included
it in the set to provide a benchmark that could be used
for comparison with the more sophisticated algorithms. We
included a genetic algorithm (GA) because many previous
studies have used them successfully. The inclusion of a GA
also provides the opportunity for comparison with previous
work in this area.

The three neural networks we used were a multilayer per-
ceptron (MLP), a long, short-term memory network (LSTM)
and a bi-directional LSTM with highway layers which we refer
to as LSTM++ [27], [28], [29].

The MLP was the most straightforward network algorithm
in this set of three, and we included it as a benchmark for
the other more complex neural algorithms. The first of these

more complex algorithms was an LSTM, which is an example
of a recurrent neural network. We added the LSTM as it is
reported to perform better at sequential data modelling tasks
than the MLP, especially at speech analysis tasks which have
similarities to timbre analysis tasks. For example, Graves et
al. showed that LSTMs could outperform deep feedforward
architectures on the TIMIT phoneme recognition benchmark
[30].

While there are simpler recurrent networks than an LSTM,
we chose to use it because its architecture provides better
memory persistence, reducing the vanishing gradient problem
which can limit the memory to a few frames in simpler
recurrent neural networks [31].

The final neural network algorithm was LSTM++. It begins
with a bidirectional LSTM, which is an extended form of an
LSTM. It allows the network access to the complete sequence
of input frames in forward and reverse order, instead of just
forward order as in the standard LSTM [28]. The bidirectional
LSTM network, therefore, has access to the past and future
context of an input frame, which has proven useful in other
audio signal analysis tasks such as onset detection [32].

Highway layers provide a means for data to flow through
several layers of the network uninhibited, as well as through
the standard means of nodes with associated activation func-
tions. Highway layers are reported in previous work to al-
leviate further the vanishing gradient problem such that the
network can better model longer input sequences, and LSTMs
with these layers have been shown to outperform standard
LSTM networks in speech recognition tasks [29]. We selected
this architecture as the sound synthesis algorithm and feature
extractor both have strong forward and reverse relationships in
their data. The synthesis algorithm also has interdependence
between its components. This architecture seemed to provide
the maximum potential for modelling these characteristics.

Now we shall describe our specific implementations of these
algorithms, along with their hyperparameters.

1) Hill climber: The hill climber (HC) is the simplest
method used in the evaluation. We based it on the continuous
space HC described in [33]. The HC begins at a random point
in parameter space by sampling the synthesizer parameters
from a uniform distribution in the range 0-1. It then iterates
through the parameters, creating five variations of each param-
eter in turn. The five variations consist of a large decrement,
a small decrement, nothing, a small increment and a large
increment. The synthesizer plays a note with each variation
of the parameter settings, and we extract audio features. The
algorithm compares each variant to the target sound in audio
feature space. The error is the Euclidean distance between
the two sounds. HC chooses the variant with the lowest error
and moves to the next parameter on that variant. If the lowest
error is the ‘nothing’ variant, the size of the variations is made
smaller for the next round. The HC stops when it fails to
decrease the error for several iterations.

2) Genetic algorithm: The genetic algorithm (GA) used
in this study is a standard model which uses roulette wheel
selection, crossover and elitism. The GA works by manipulat-
ing a population of solutions to the sound matching problem,
where each solution consists of a set of parameters for the
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synthesizer. The GA initialises the solutions in the population
to random vectors, sampled from a uniform distribution. It
assigns each a fitness score by rendering a sound with those
settings, extracting features and comparing them to the target
features. The fitness is the reciprocal of the Euclidean distance
between the candidate features and the target features. The
closer the sounds are to the target sound, the higher their
fitness.

The GA generates the next generation of solutions by
selecting multiple pairs of ‘parents’, where the probability
of selection is proportional to the fitness. The parameter
vectors of the two parents are crossed over to produce a
‘child’ containing some parameters from each parent. The
child undergoes mutation, where some of its parameter values
are increased or decreased by a fixed amount, and the mutant is
added to the next generation. The GA includes elitism, which
results in 10 of the fittest individuals being added unchanged
to the next generation. The optimisation process ends when the
population has converged, which means it has not increased
in mean fitness for some number of iterations.

The GA parameters were as follows: the population size was
200, the chance of mutation per parameter per child was 0.01,
the mutation size was 0.1, and the number of elite individuals
per generation was 10.

3) Multilayer perceptron network: The multilayer percep-
tron (MLP) network used in this study is a simple form
of feed forward neural network, provided as a baseline for
comparison with more sophisticated network architectures. We
implemented the MLP and the other neural networks using the
Tensorflow machine learning library [34].

The MLP had an input layer, an output layer and three
hidden layers. The input layer had one unit per MFCC
coefficient per frame, which allowed one complete feature
vector to be passed to the input. As mentioned above, we
rendered the sounds for 1 second, which resulted in 27 MFCC
frames, with 13 coefficients each. Therefore, the input layer
had 351 units. The output layer had the same number of units
as the number of parameters for the test set, for example,
test set one had 22 parameters. The hidden layers have 50,
40 and 30 units, respectively. We experimented with several
topologies, including deeper and broader ones, but we chose
this topology because it showed a smooth decrease in the
training set error over time, compared to other topologies.
The units use the standard rectified linear unit (ReLU) for
their activation function, which is commonly used in audio
analysis tasks [35].

A training set consisted of 60,000 audio feature - parameter
pairs, in the same format as the test set members. There
was a different training set for each test set, with the frozen
parameters configured accordingly. The error function for
training was the root mean squared error between the predicted
settings and the actual settings used to make the target sound.
This parameter based error is different from the error function
in the HC and GA, which used the error between the actual
sound the synthesizer generates and the target sound. It was
necessary to use the parameter error in the neural networks
because it is not possible to backpropagate the error via the
synthesizer itself or to otherwise include sound rendering in

the training process.
For each of the six test sets, we trained the network for

1000 epochs using the Adam optimiser. Adam is a stochastic,
gradient-based optimisation technique which is appropriate for
complex network topologies and large data sets [36]. It also
has intuitive hyperparameters, making it more straightforward
to tune than other optimisers. We used dropout in the training
process for the MLP. Dropout is a regularisation technique
that randomly blocks units from propagating the signal during
training, and which has been shown to prevent overfitting
caused by co-adaptation between units [37].

4) Long Short-Term Memory network: The next neural
network architecture was a Long Short-Term Memory network
(LSTM).

LSTMs use memory units to achieve the gain in memory
persistence. A memory unit is a data storage unit in the
network that uses gates to control read and write access. We
used the tflearn LSTM implementation5, which is based on
the standard LSTM [27].

We constructed an LSTM network layer with 128 units. The
input layer had 13 units so that we could feed in the features
frame by frame. It had the same number of output units as the
MLP, equal to the number of parameters in that particular test
set. The LSTM layer connects to the outputs via an additional,
fully connected layer with ReLU activation functions.

We used an Adam optimiser to train the network for 1000
epochs, with the same 60,000 item training sets used to train
the MLP. We also used the same synthesizer parameter error
metric. The network was trained in batch mode with batches
of 32 and a learning rate of 0.001. To evaluate the network
against the test set, we used the output values generated after
the last input frame had been fed in since the output varied
with each frame.

5) Bidirectional LSTM with highway layers: The final
neural network architecture was a bidirectional LSTM with
highway layers (LSTM++). Figure 4 illustrates the architecture
of the LSTM++ network. We based this architecture on a
standard model from the tflearn library, then found it worked
well on our tests, so did not modify it further.

The LSTM++ begins with an input layer with 26 nodes, 13
for the forward and 13 for the reverse audio feature sequence.
The input layer feeds into two separate instances of our
previous 128 unit LSTM, one for each direction. The LSTM
blocks are fully connected to a re-shaping layer, which scales
down to 64 units for input to the highway layers and uses an
exponential linear unit (ELU) activation function. The units
in the highway layers also use the ELU activation function.
They are stacked on top of each other, each with 64 units, each
fully connected to the previous layer. The final highway layer
is fully connected to the output. An Adam optimiser trained
the network using the standard 60,000 item training set and
parameter error metric, for 1000 epochs.

E. Synthesizer programmer framework

We think that the lack of a set of repeatable benchmarks
and the lack of a reusable software framework have hampered

5https://github.com/tflearn/tflearn
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Fig. 4. The network topology for the LSTM++ network. There are two parallel
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a reshaping layer, which prepares the signal for the highway layers. There are
six highway layers, each one fully connected to the previous one. The output
layer has the number of outputs dictated by the test set.
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Fig. 5. The synthesizer programmer testing framework. The experiment
controller carries out the synthesizer programming experiment by interacting
with the programmers and the test and training data generator. The test and
training set generator interacts with the VST host to produce sets of parameter
settings and feature pairs. The VST host component loads VST plug-ins,
renders their output and extracts features.

the development of research into automated synthesizer pro-
gramming. Benchmarks and software frameworks are common
in other areas of machine learning research. Therefore, we
provide the software framework used for this study as an
open source repository [38], [39]. The framework is accessible
from Python, and it provides a VST host with offline sound
rendering and feature extraction functions. It also contains
our machine learning models with testing and training data.
Figure 5 illustrates the main components of the framework.
We hope that these tools make the investigation of machine
learning and synthesizer programming more accessible for
future researchers.

III. RESULTS

This section presents the results of running the synthesizer
programming techniques across the 180 items in the six test
sets. Table II presents the mean results achieved in each test
set by each technique, along with the mean result per test
set across all techniques. The final column shows the total
error over all items in all test sets per programming technique.
Lower numbers indicate better performance.

Figure 6 visualises the performance of each technique
against every item in the test sets. The darkness of a line

TABLE II
SUMMARY OF RESULTS FOR ALL TECHNIQUES IN ALL TEST SETS. THE

VALUES SHOWN ARE THE MEAN VALUES ACHIEVED ACROSS EACH TEST
SET, EXCEPT FOR THE FINAL COLUMN WHICH SHOWS THE TOTAL ERRORS

OVER ALL TEST TESTS PER ALGORITHM.

Method T1 T2 T3 T4 T5 T6 Total

HC 17.29 20.95 23.18 19.9 22.35 21.96 3769
GA 23.2 37.59 32.03 27.71 28.12 31.32 5399

MLP 24.53 36.13 33.66 26.76 32.78 31.38 5557
LSTM 24.01 37.26 33.17 24.93 29.71 32.76 5455

LTSM++ 19.47 23.15 21.48 20.66 18.14 22.59 3765
Mean 21.7 31.01 28.70 23.99 26.22 28.00
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Fig. 6. Performance of the techniques against all test items. Each vertical
strip represents a technique being applied to a single test item. A light colour
indicates a good match, darker indicates a worse match.

indicates the distance in feature space between the target
sound and the sound generated by the programmer. Dark
lines represent poor performance, and lighter lines indicate
better performance. This visualisation makes it possible to
gain an insight into the consistency of the performance of
a given technique. Consistent performance would manifest as
a horizontal strip with many similarly shaded lines.

Figure 7 shows the distributions of MFCC errors over all
180 test items for all techniques. This visualisation provides
another perspective on the consistency of performance, and
it illustrates the range of errors achieved. Lower errors are
desirable, so distributions weighted to the left indicate better
performance. Informal listening tests with the resulting sounds
indicated that very similar sounding sounds have MFCC
distances of 10 to 15 or less. Sounds with an MFCC error
in excess of 20 are unlikely to sound very similar.

IV. ANALYSIS

This section discusses the performance of the different
synthesizer programmers regarding accuracy and speed. We
consider the difference between the search-oriented techniques
(hill climber and genetic algorithm) and the modelling oriented
techniques (neural networks) and the reasons for the variation
in performance between them. We end the section by dis-
cussing the feasibility of making this technology available to
end users.
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Fig. 7. A comparison of the distribution of MFCC errors for all programmers
over the complete, 180 item test set. The LSTM++ has more very low errors.
Errors of less than 10 indicate perceptually very similar sounds.

A. Sound matching accuracy

Table II presents the performance of each programmer
against each test set. The final column contains the summed
errors over all test sets. It shows that the LSTM++ network
achieved the lowest total error. The simplest programmer,
HC, achieved the second lowest error. The visualisation in
Figure 6 shows that HC was a more consistent performer than
the LSTM++ network. The HC row in the figure contains
mostly light grey lines, indicating consistently low errors. The
LSTM++ row contains a mixture of grey, black and white
lines, indicating low, high and medium errors.

Figure 7 shows the numerical range of MFCC errors
achieved by the different programmers. We suggested above
that errors greater than 20 indicate sounds that are not per-
ceptually similar, based on informal listening tests. LSTM++
and HC both have approximately 25% of their matches in this
‘close’ category, but LSTM++ has twice as many as HC in
the ‘very close’, 0− 10 error range.

Surprisingly, the GA, which is considered the standard
technique in the literature, did not perform as well as the
simpler HC programmer. It generated several large errors
in the 60 − 80 range. However, it was a very simplistic
implementation, and other studies ran their GAs much longer,
with larger populations. We shall discuss the time required to
run the GA, and how this might impact its usefulness in a
user-facing system, below.

B. Search vs. modelling

The techniques fall into two categories: search and mod-
elling. The HC and the GA search through the space of
possible sounds by iteratively varying the parameters of the
synthesizer and examining the resulting audio features. The
neural networks are modelling a mapping from feature space
to parameter space.

Successful searching of the space of possible sounds de-
pends on factors such as the smoothness of the error sur-
face and the presence therein of local minima. A smooth
error surface in the context of synthesizer programming is
one where small changes in parameter space result in small
changes in feature space. Roth and Yee-King considered the
error surface of a simple, two parameter FM synthesizer, with
parameters in the range 0-1 [3]. They noted that a change of
0.1 in one parameter could produce a large change in feature
space, equivalent to the feature difference between two real
instruments. We have not analysed the Dexed synthesizer in
this way, but several of its parameters are comparable to those
in that simple FM synthesizer, so it is likely to have a rough
error surface.

Hill climbers have trouble with rough error surfaces as they
become trapped behind ‘error barriers’. The ‘five variations’
feature of our HC alleviates this somewhat, enabling different
sized jumps through parameter space. HCs also have trouble
with local minima. Premature convergence indicates that the
search space contains local minima. The horizontal grey
HC strip in Figure 6, and the central weighting of the HC
histogram in Figure 7 show that the hill climber consistently
converged on sub-optimal solutions, given the lowest possible
error was zero. Therefore the search space does contain local
minima.

The modelling based methods face a different set of prob-
lems. The training data for the models contains feature vectors
as inputs and parameter settings as outputs. They must learn
a mapping from inputs to outputs, which is effectively the in-
verse of the process of sound synthesis and feature extraction.
We have not examined the trained network models to find
out how they work, but certain characteristics of the problem
might explain the performance of the different architectures
- consistency through time and the structure of the synthesis
algorithm.

The timbral output of the synthesizer is consistent through
time as it is designed to model musical instruments, which
also produce consistent timbres, once the attack portion of the
sound is complete. Therefore, there is repetition in the feature
vector, especially between frames that are close together in
time. Architectures that are capable of modelling the consistent
nature of the feature vector, perhaps through recurrency, are
likely to perform better. The LSTM network did not perform
much better than the MLP though. The LSTM++ added
bidirectional and highway layer components to the LSTM,
and this seemed to improve the performance significantly.
The bidirectional component is intended to unlock more
information about the signal, and the highway component is
intended to alleviate the vanishing gradient problem further.
It is not clear which of these provided the greatest impact
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upon performance, but the LSTM++ network showed strong
potential, with several very low error scores.

The LSTM++ did not achieve the best performance across
all the test sets. This observation is most likely a side effect
of the limited size of the test sets, as opposed to being a
characteristic of the synthesizer parameters available in each
test set. Small test sets might contain ‘easy’ or ‘hard’ sounds
by chance, whereas larger test sets would contain a fairer
representation of the difficulty of a given set of un-frozen
parameters. The requirement to test against all items in the
test set with all techniques limited the practical size of the
test sets, so it was not possible to go further in examining the
relative difficulty of the different test set parameter options.

C. Sound matching speed

The algorithms have a training phase and a sound matching
phase. The time taken to complete these stages varies signifi-
cantly between the search and modelling approaches.

The search based approaches did not require training, but
the modelling approaches did. We trained the MLP for 1000
epochs with a training set of 60,000 members, per test set,
which took approximately a day on a Thinkpad workstation
with an Intel i7 CPU and NVIDIA Quadro 2200 GPU. It took
a similar length of time to train the other neural networks.
However, once trained, the networks could generate parameter
settings in near real time.

By contrast, the search based approaches needed to carry
out a complete search for each sound match. The evaluation
of a candidate in the HC and GA took around 40ms, which in-
cluded rendering the sound, extracting features and comparing
to the target sound. One epoch in the HC involved evaluating
five variations of up to 132 parameters, which takes around 26
seconds, or seven hours for 1000 epochs of the most complex
test set. The GA evaluates less per epoch and is not sensitive
to the number of parameters, so it takes around two hours for
1000 epochs.

For comparison, the state of the art PresetGen system
took five hours on a 50 core supercomputer to match a
two second sound. Our simple search implementations would
likely approach this speed if they were multi-objective, had a
similar population size and if the synthesizer was as complex
as the OP-1. We do not think it is feasible to implement a user-
facing system if it requires that many CPU cycles per sound
match, so there is strong motivation to pursue the network
approach given our positive, preliminary results.

D. Generalisation across pitch ranges

The test sets contain a single sound for each synthesizer
preset, which is generated by playing a fixed musical note
(in this case MIDI note 24) on the synthesizer for a fixed
length of time and with a fixed intensity. We did not evaluate
the timbral variation when playing different notes from the
chromatic scale with the same parameters, nor when varying
the intensity of the chosen note. The timbre of real instruments
varies significantly with intensity and fundamental frequency,
as discussed by Loureiro et al. [40]. We would need to
consider this factor when designing presets to emulate musical

instruments across a range of pitches and intensities. For
example, we could generate multiple presets for different
pitches and intensities.

E. Real world application

We will now consider how the techniques discussed in the
paper might be made available to end users. The technology
has two characteristics which make it amenable to this: it uses
an industry standard plug-in format, and it can match sounds
in near real-time on consumer hardware. Using the VST
plug-in format means the system can work with synthesizer
software that professional musicians already own. Real-time
sound matching means the user can work interactively with the
programmer and more easily integrate it into their workflow.

The system would consist of a library of pre-trained network
models for different VSTs and a user-facing program. The
library of models would reside on a server and would be
regularly updated with new models and plug-ins. The user-
facing program would search for installed plug-ins on the
user’s machine, then pull down the models for those plug-
ins from the server. To match a sound, the user would provide
the target sound; then the system would instantiate the trained
models for their synthesizers and generate settings. It would
play back the results using the plug-ins themselves, and the
user could save their favourite sound match as a preset for the
plug-in, accessible from other programs (such as DAWs).

However, we should note that the sound matching perfor-
mance of our best performing architecture is not good enough
for a user-facing application yet. At least, not for synthesizers
as complex as the Dexed. Currently, less than 25% of the
matches can be considered close matches, as indicated by our
informal listening tests. A user-facing, sound matching system
should present the user with sounds that they are likely to
consider similar to the target, most of the time. A formal
listening test would allow us to establish the error constraints
for such a system more clearly.

V. CONCLUSION

In this paper, we have applied several machine learning and
optimisation techniques to the problem of sound matching. We
will now discuss the contributions claimed in the introduction,
in light of the results and analysis we have presented.

The first contribution is the design and evaluation of three
deep network architectures suitable for application to the
sound matching problem. The key feature of these architec-
tures, going beyond the previous work, is their ability to match
sounds in near real-time. This feature offers the possibility
that users can interact with more complicated synthesis ar-
chitectures more efficiently and intuitively than they could
previously, opening up new creative possibilities.

The second contribution is a comparative study of sev-
eral synthesizer programming techniques. This study and its
method are important because they allow us to benchmark
new techniques against techniques reported in previous work.
With these benchmarks, it is easier to demonstrate progress
in the field. There are many potential extensions to our
method, such as comparing different synthesizers, matching
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real instrument or environmental sounds, using different audio
features, and including a formal listener study. We hope that
this comparative study model will feature in future research
in this area.

The final contribution is an open source, automatic synthe-
sizer programmer test bed. This system provides a VST host
designed for this task, with offline rendering and feature ex-
tracting capabilities, a set of example synthesizer programmers
and example training and test sets. With these elements, future
researchers can more easily repeat our study and develop the
extensions mentioned above.

In future work, we aim to improve the sound matching
performance of the deep network architecture and to evaluate
its ability to program a range of different synthesizers. Part
of this work will involve the investigation of more audio
feature types, for example, the Wavenet autoencoder offers
a novel means to model the features of audio signals using
machine learning [41]. A listener study would allow us to
understand the connection between measured and perceived
feature distance better, and therefore to better evaluate system
performance. If we can improve the performance sufficiently,
we would like to make it available to professional creatives
who work with synthesizers to see what the creative possibil-
ities are for a real-time, automatic synthesizer programmer.
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