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Abstract. Nearly all personal relationships exhibit a multiplexity where
people relate to one another in many different ways. Using a set of fac-
ulty CVs from multiple research institutions, we mined a hypergraph
of researchers connected by co-occurring named entities (people, places
and organizations). This results in an edge-sparse, link-dense structure
with weighted connections that accurately encodes faculty department
structure. We introduce a novel model that generates dyadic proposals
of how well two nodes should be connected based on both the mass and
distributional similarity of links through shared neighbors. Similar link
prediction tasks have been primarily explored in unipartite settings, but
for hypergraphs where hyper-edges out-number nodes 25-to-1, account-
ing for link similarity is crucial. Our model is tested by using its proposals
to recover link strengths from four systematically lesioned versions of the
graph. The model is also compared to other link prediction methods in
a static setting. Our results show the model is able to recover a majority
of link mass in various settings and that it out-performs other link pre-
diction methods. Overall, the results support the descriptive fidelity of
our text-mined, named entity hypergraph of multi-faceted relationships
and underscore the importance of link similarity in analyzing link-dense
multiplexitous relationships.

1 Introduction

High impact research commonly spans fields of science, leading universities to
increasingly focus on ways to catalyze cross-disciplinary collaborations. Some
institutions have sought to overcome challenges of disciplinary compartmental-
ization by implementing research networking and researcher profiling systems4.
However, there is little evidence to suggest that such systems generate new,
effective collaborations that span traditional boundaries [32]. Inter-disciplinary
institutes may be positioned to play the match-maker, but these are also difficult
to systematically qualify [15]. An important challenge, then, is to represent re-
lationships among academics from which novel, productive links can be reliably
modeled. The challenge is compounded by the fact that actual collaborations are
a sparse structure: most people do not collaborate with most others. This paper

4 profiles.catalyst.harvard.edu is one example.
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proposes a method of mining a hypergraph with a large number of hyper-edges
— 25 times the number of nodes — and a model which uses an edge-based, dis-
tributional measure of link similarity to propose relationships among academics.

Network mining and modeling bears on a range of problems in computer
systems, power distribution, cell-biology, cognition, organizational structure and
even terrorist networks [3, 12, 33]. Mining social structure, particularly from text,
is an important task for automated recommendation systems [18]. Perhaps the
simplest form of social recommendation is proposing ties between people in a so-
cial network. This task, known generally as link prediction, can lend insights to
how networks grow and change over time, and is the subject of a great deal
of research [28–30, 42]. However, link prediction has been almost exclusively
explored in the context of single-mode, unipartite networks where edges only
connect two nodes [5], which over-simplifies the multiplexity of social dynam-
ics. In reality, nearly all personal relationships consist of multiple, sometimes
diverse connections that vary in strength, breadth and meaning. Here, we show
that such multiplexity can be represented using named entities (NEs) in faculty
CVs. These entities can be interpreted as the relationships in which people par-
ticipate [13], and can consist of organizations (publishing in the same journal,
sharing professional affiliations or committee membership), location (cohabiting
an office, building or city) and personal relationships (co-authors, supervisors or
mentors). Connecting academics by the co-occurring NEs observed in their CVs
forms a complex hypergraph that is edge-sparse (most edges connect only few
nodes) and link-dense (most dyads are connected by at least one edge)5.

The social recommendation task in an edge-sparse, link-dense hypergraph is
similar to traditional link prediction given its focus on dyadic links. The goal
is to propose ties (in our case, weighted links) between nodes based on the
structure of the network. Because most nodes are already connected in a link-
dense graph, recommendations can be interpreted as how strong a link should
be based on a dyad’s local structure. As we will see, this density is problematic
for link prediction methods that rely on variation in the neighborhood around
a dyad. To overcome this density, the proposals should account for both the
strength and similarity of links through a dyad’s neighbors. Fortunately, we can
use the density to our advantage by treating edges as points in a space defined
by nodes’ edge-incidence vectors, allowing similarity to be measured as inverse
distance in high-dimensional space. This strategy is particularly advantageous
as it allows similarity to be calculated without using external information.

There is likely some interplay between the mass and similarity of links on
either side of a neighbor. We hypothesize that the mass of a link through a
transit node is only “available” to the extent links are similar. That is, similar
links can use most of the edge mass, while dissimilar links use only a fraction.
In figure 1b, this is analogous to saying that the mass of link AB (edges 1, 2
and 3) plus BC (edges 1, 4 and 5) is proportional to the similarity of AB and
BC. We hold that this intuition is not only socially plausible, but that it can be
used to more accurately recommend connections.

5 We use link to refer to the set of hyper-edges connecting a pair of nodes.
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Fig. 1. A triad of nodes A, B and C as a simple network (a; left) and as a hypergraph
(b; right). In (b), note that not only can nodes be connected by more than one edge
(ie. a multi-mode graph), but edges can connect more than two nodes as with edge 1.
We write AB to denote the link from A to B, here consisting of edges {1, 2, 3}.

After reviewing related work and providing some background in the next
section, section 3 introduces our model, including definitions of link mass and
distributional link similarity on weighted hypergraphs. Section 4.1 presents four
experiments where the model is used to recover link mass from four versions of
the data, lesioned in different ways. Section 4.2 compares our model to other
link prediction methods after which we review the results of the evaluations.
The final section discusses the contribution of the representation and associated
model, pointing to future work and applications.

2 Background & Related Work

Network analysis is a widely studied and increasingly important area of research
in biology, economics, natural language processing, sociology and computer sci-
ence [12, 16, 17, 37]. In particular, social network analysis seeks to model how
people (nodes) develop relationships to one-another (edges). Such social organi-
zation tends to form groups where similar kinds of ties are shared among the
members [10, 11]. To represent social interactions in a simple network, the mean-
ing of edges must be globally defined, perhaps denoting friendship, kinship or
shared affiliation. A hypergraph, on the other hand, can represent relations that
connect any number of people, who in turn may have any number of connections
[4, 31, 37]. Figure 1 depicts a simple network and a hypergraph with six hyper-
edges, where each dyadic link consists of a set of hyper-edges. What these edges
are, that is to say their semantics, may vary from one graph to another, but as
we will see, people, places and organizations offer a reasonable starting-point for
defining academic relationships.

Scott Feld [13] suggested that social circles, such as affiliations, beliefs and
practices, make up focal points around which people engage and connect. These
foci naturally comprise a network structure that interrelates people as nodes con-
nected by the foci in which they participate. The current study operationalizes
Feld’s focus theory as a model on hypergraphs where people are nodes and foci
are edges. Our approach effectively extends focus theory to a high-dimensional
space where the modes of interaction (edge-types) can greatly out-number the
actors themselves. It is important to note that foci need not be restricted to
social circles or affiliations — they may also be people themselves. Using people,
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places and organizations as edges will allow our analysis to retain the intuitions
from social network analysis and enable us to represent complex relationships
[22]. The challenge will be to propose new, or at least stronger ties in a structure
that is already rich with connections.

Recently, some work has explored statistical learning methods on networks to
predict academic relationships [21], which combines advances in machine learning
with social network analysis in a unipartite setting. Similar to the work here,
given the use of NEs as features in the network, is a method of extracting names
from websites to mine communities of people [27]. Some work on layered social
networks implicitly adopts the hypergraph representation [25, 26, 44], though
most social network analysis still relies on single-mode, unipartite graphs. What’s
more, most research using hypergraphs is framed as n-partite graph analysis,
typically with a small number of layers [4, 24]. Here, we explore hypergraphs
where the layers far out-number the nodes themselves. Although this certainly
compounds the representational complexity of a network, it is considerably more
plausible as it allows actors to relate in the myriad ways people do in the real
world. Hypergraphs have been used to predict multi-actor collaborations (ie.
teams) in academic social networks [36], by predicting the formation of links via
new and old hyper-edges. Because academic teams tend to evince relationships
in different and systematic ways, the hypergraph is a particularly robust data-
structure for modeling team formation [40], recommending new collaborations
[43] and as a model of how scientists actually seek out new projects [37]. In this
paper, instead of assuming a set of edge-types, we show that a distributional
measure of link similarity can help leverage the abundance of edge-types found
in a text-mined hypergraph of NEs.

Proposals in our model are effectively an estimate of how connected two
nodes should be, and can be thought of as link predictions in a static setting.
Traditional link prediction is the task of assigning a likelihood of observing new
a connection at some future time using information about the current network
(see [28] for a review). Getoor et al. [19] introduce a framework for representing
and learning probabilistic link structure in arbitrarily complex relational data.
Extending the statistical learning approach, Al Hasan et al. [2] develop a su-
pervised learning method that uses structural and “aggregate” features to train
a classifier to predict links. Although there are some hybrids, link prediction
methods tend either to allow the use of global information about the network
(diameter, path-distances, etc.) or limit themselves to local information (degree,
shared neighbors, etc.). The method in this paper is more similar to the latter,
as it restricts the search space for dyadic proposals to the links through a dyad’s
shared neighbors.

We hypothesize that links are characterized by two related qualities: their
edge-mass and their similarity to other links. Mass accounts for the strength of
a link, regardless of its composition. The weights of individual hyper-edges can
then be used to discriminate, for example, between participation in a large con-
ference where two people are unlikely to meet, and more intimate relationships,
like a workshop or committee.
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3 Method

Our goal is to propose ties in a social network that is already quite dense with
links. Two nodes are considered linked if they are connected by one or more
hyper-edges. A link refers to a dyadic connection whereas a hyper-edge can
connect any number of nodes (see figure 1). Proposals, then, can be calculated
for any pair of nodes, connected or not, referred to as a dyad.

Proposals are calculated using transitivities, with the assumption that shared
neighbors provide a strong indication of how actual people tend to introduce
other people to one-another [6, 35]. Although restricting the search space to
shared neighbors can be problematic, especially in sparse graphs where higher-
order structure is important [39], it is both plausible to assume academics limit
their search behavior in this manner and it is known to successfully character-
ize social networks more generally [38]. Also, this formulation allows users of
the model to recover straight-forward justifications for individual proposals —
something discussed in the final section. Specifically, a proposal for a pair of
nodes, n1 and n2 in a hypergraph, G, is calculated as follows:

proposal(n1, n2;G) =
∑

t∈Γ (n1)∩Γ (n2)

S(n1t,n2t) (1)

where Γ (x) denotes the neighbors of node x and nxt is the set (hence in bold)
of edges connecting nodes nx and t. S is a function relating two sets of weighted
hyper-edges to be defined below.

3.1 Link Mass

To account for the strength of participation in a given edge, for example mem-
bership in the Association for Computing Machinery (ACM), an edge’s node-
incidence is weighted by the number times it was mentioned in someone’s CV.
This helps account for the difference between someone who mentioned the ACM
100 times and someone who mentioned it only once. There is no limit to the
frequency of an edge’s weight per-node, nor is there a limit to the total num-
ber of entities by which a node may be connected. However, to accommodate
the inverse relationship between the number of participants in an edge and its
importance, we normalize the weights of each edge by their sum. Formally, we
take the edge-wise L1-norm of G, which makes edge-weights inversely propor-
tional to the number of nodes they connect; an edge that only connects two
nodes, receives a weight of .5, whereas edges that connect many nodes receive
a weight closer to zero. Although this normalization down-weights predominant
edges, because entities are initially coded as occurrence frequencies, there is still
room for variation in a how much nodes participate in even the most frequent
edges. Figure 2 shows an example of the initial, frequency-weighted matrix and
its normalized counterpart.
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One simple way to think about the quality of a link is by its mass. Socially,
this can be thought of as the sum of all the ways, important and trivial, two
people relate. We assume that edges in a graph, G, have weights associated
individually with the nodes they connect. That is, each node may “participate”
in an edge to a varying degree (ranging from 0 to 1). The weight for a dyadic link,
then, is the sum of these edge-incidence weights. The weight for a link between
two nodes through a transit node is the minimum of the two links’ mass, as
this represents the maximal relation two people have through either link. This
minimum is the weight used to compute dyadic link mass from one node to
another, though an intermediate node, t:

Mass(n1, t, n2) = min(
∑
i∈n1t

wi,
∑
i∈n2t

wi) (2)

where w is the edge’s weight as described above. Link mass only accounts for
the combined strength of edges through a transit node. Referring to figure 1,
link mass from A to C through B would be the sum of the edge-weights in AB
and BC. While this may be a plausible way to model how people recommend
relationships to one another (by the magnitude of their relationship to each
person), it fails to account for the edges themselves.

3.2 Link Similarity

Link similarity is an important component when examining the social closure of
transitivities: two people are more likely to be introduced if they have similar
links through a shared acquaintance than if those links are dissimilar. To address
link similarity, we conceive of edges as points in the normalized space defined by
edges’ node-incidence. A single edge is represented as the coordinate given by its
weighted node-incidence vector in G, which in the data for our experiments is
highly dimensional. The similarity of two links, n1t and n2t (ie. the connection
from n1 to n2 through t), is defined as one minus the Euclidean distance between
each edge-sets’ centroid, Cn1t and Cn2t:

C
(d)
n1t

=
1

|n1t|
∑
i∈n1t

wi ∈ [0, 1]d

C
(d)
n2t

=
1

|n2t|
∑
i∈n2t

wi ∈ [0, 1]d

Sim(d)(n1, t, n2) = 1−
√

(C
(d)
n1t
− C(d)

n2t
)2

(3)

where d is the dimensionality of the normalized node-space. Using nodes to define
a normalized space in which to compare edges allows a completely internal, data-
driven conception of similarity. This feature of our model not only frees it from
potential problems with extrinsically defined similarity metrics, such as under-
specification, incompleteness or incorrectness, it also scales well to graphs with
arbitrarily large number of edge-types. While there is no reason an externally
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defined similarity measure could not be used in its place, the distributional
measure allows our proposals to be derived within-model.

With these definitions of link mass and link similarity, we can test our hy-
pothesis that the strength of links through a transit are in fact dependent on
their similarity. Further, because we assumed the node-incidence weights used
to define each edge are normalized from 0 to 1, we can use them to scale the link
mass by multiplying the values of Sim by Mass. The intuition is that greater
participation in similar, intimate venues increases the likelihood two people con-
nect. Substituting this combination of Sim and Mass for S in the first equation,
we can define the strength of a proposal between two nodes, n1 and n2:

proposal(n1, n2;G) =
∑

t∈Γ (n1)∩Γ (n2)

Mass(n1, t, n2) ∗ Sim(n1, t, n2) (4)

After generating proposals, p, the values are normalized: pi ← pi−pmin

pmax−pmin
.

4 Results

To evaluate the method outlined above, we retrieved a set of 2,511 CVs of faculty
members at several large, research-intensive universities6. Each CV was coded by
department7. The Stanford Named Entity Recognizer (NER) was used to extract
NEs from the texts of each CV [14, 41]. The Stanford NER extracts people, loca-
tions and organizations with a reported F1-score of 0.93 (precision = 0.93, recall
= 0.92). These entities define the hyper-edges in the network. Note this means an
academic may be a node and a hyper-edge. This process yielded 802,131 unique
hyper-edges (27,982 locations, 142,350 persons, 230,739 organizations). All NEs
that connected at least two people in the network were retained. This has the
side-effect of filtering out spurious entities that were only observed once. Though
most edges do not connect most nodes, only 14 nodes were not part of the largest
connected component, to which we restrict our analysis. In fact, the hypergraph
was almost fully connected: most nodes were connected to all other nodes by
at least one edge, which is not surprising given that each university constitutes
an organization edge connecting a large number of academics. In total, there
were 3,116,256 dyads of which 66% were directly connected by an average of
2.2 hyper-edges. This hypergraph comprises the N ×E matrix referred to as G,
an example of which is depicted in figure 2. After link-mining, the matrix was
weighted and normalized by the method described above. A preliminary eval-
uation of this representation was performed where the node-incidence vectors
{E ∈ G} were used as features to classify academics in their departments. We
found that, when restricted to the same number of features, token-based feature-
sets are significantly outperformed by our representation (see the appendix).

6 Available at klab.ci.uchicago.edu/data/CV data.tar.gz
7 122 faculty members had appointments in more than one department.



8

Observed Normalized
n1 n2 n3 n4 n5

W3C 1 2 0 5 2
ACM 1 0 0 3 0
IEEE 0 0 2 0 0

SIGKDD 0 0 1 1 0

n1 n2 n3 n4 n5

0.1 0.2 0.0 0.5 0.2
0.25 0.0 0.0 0.75 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.5 0.5 0.0

Fig. 2. Example N×E matrix defining G. Nodes / CVs are represented in each column
with four example NEs / edges as rows. Shown are the initial matrix (left), where the
numbers represent an entity’s frequency in each CV, and the normalized matrix (right).

4.1 Recovering Link Mass

The goal of the proposal model described in section 2 is to generate recommen-
dations of stronger ties. Because actual relationships are formed over the course
of time, proposing ties in networks is often framed as predicting whether or not
a link will form in the future [28]. In the absence of temporal data, we evalu-
ated our model in a static setting. We describe its performance in four settings
where the observed graph, G, was systematically lesioned, after which proposals
were calculated on the resulting graph, G′. In each experiment, the goal is for
proposals generated on G′ to replicate or “recover” the link mass observed in G.
Because we make no assumptions about the distribution of link-masses in G, we
use Spearman’s rank-correlation to evaluate whether the ordering of dyadic pro-
posals on G′ is similar to that observed in G. By computing this correlation at
rank from the strongest to weakest links in G, we can also test whether our pro-
posals tend to be more or less accurate as a function of the initial link strength.
These experiments exhaust a reasonable space of evaluation, showing that our
model is robust to local and global lesioning of both links and hyper-edges (figure
4). In all cases, we compare the model to a random model.
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Fig. 3. Four versions of G′ corresponding to four evaluation schemes, derived from
the example triad in figure 1b. Dashed lines represent deleted hyper-edges that were
initially present in G. From left to right: (a): Local edge deletion, where one component
of a hyper-edge in a dyad is deleted. (b): Global edge deletion, where a sample of hyper-
edges are deleted from the entire graph (here hyper-edge 1 is deleted). (c): Local link
deletion, where all edges connecting a dyad are deleted. (d): Global link deletion, where
the edges comprising the chosen dyadic link are deleted from the entire graph (here,
because link AC = {1, 6}, hyper-edges 1 and 6 are deleted globally). In all evaluations,
dyadic proposals are generated from nodes analogous to AC ∈ G′ over all shared
neighbors (those in a similar position to B).
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Fig. 4. Correlation at rank for the four link-mass recovery experiments in section 4.2.
Results for each lesioning scheme (figure 4) clock-wise from top left: local hyper-edge
deletion, global hyper-edge deletion, local link-deletion and global, like-selected hyper-
edge deletion. In each, rank refers to the inclusion of the n strongest dyadic links in
G (equivalent to AC in figures 1 and 3) of which in-lays show the top 1,000. The
shaded region in all plots denotes +/- 1 SD of the mean over 10 folds with Fisher’s
z-transformation. In all experiments the model results (solid blue line) are significantly
better than a null model (dashed grey line).

Local Hyper-Edge Deletion. The first experiment of the recommendation model
tests how well the proposal scores can compensate for locally deleted hyper-
edges. To simulate a world where two people in our network failed to relate in a
particular way, a random hyper-edge is deleted from a dyad, for which a proposal
is then generated using the rest of the graph. In figure 4a, this is analogous to
removing hyper-edge 1, locally from the AC link. The proposal for A→ C should
compensate for the loss of the mass of hyper-edge 1. The proposals correlated
positively with a mean Spearman r = 0.77 (p < 0.0001; mean of 10, 10% samples;
using Fisher’s z-transformation) for all dyads. If we use only transitive link mass
to generate proposals (without link similarity) the correlation is positive but less
strong at r = 0.69 (p < 0.0001): the use of link similarity improved the model
by about 12%. Additionally, there was no discernible trend in the correlation at
rank (figure 5a) from the strongest to weakest links in the original graph, G,
implying the model performs comparably well for strong and weak links alike.
The model also out-performs a null model that draws a random dyadic mass
from G, showing the results are not an artifact of the mass distribution.
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Global Hyper-Edge Deletion. In the second experiment, the model was used to
generate proposals on a globally, edge-lesioned version of G. In this task, 20%
of the hyper-edges in the observed network were removed, and proposals were
generated on the remainder. Even after this lesioning, most dyads were linked
by at least one hyper-edge. Figure 4b shows a triad in which hyper-edge 1 has
been removed, which affects each dyad because it connects all three nodes. Each
run of the model on this evaluation generates a proposal for every dyad, but the
edge-removal process selects a random 20% of hyper-edges, therefore, a 10-fold
cross-validation scheme was employed. The model was judged to be successful
to the extent that the proposals drawn on the lesioned graph, G′ correlate to
the original link masses in G. On average, the proposals were found to correlate
with original link masses at a Spearman r = 0.55 (p < 0.0001, 10 folds). With
proposals that use link mass alone, the correlation is still positive, but less strong
at r = 0.49 (p < 0.0001). This indicates the link similarity is approximately as
important on this task as it was in the first evaluation. Figure 5b shows the
correlation at rank. The lack of trend in this statistic implies the model did as
well for strong links as for weak. The model also out-performs the null model.

Local Link Deletion. This evaluation tests the ability of the model to recover
the mass of entire links. Here, a dyad is completely disconnected, for which a
proposal is then generated. In Figure 4c, this is equivalent to removing hyper-
edges 1 and 2. The strength of the generated proposals, then, should correlate
to the original dyadic link masses. On the local link deletion task, the proposals
correlated to the original dyads with a Spearman r = 0.62 (p < 0.0001; 10,
10% folds). Using mass alone produced a slightly weaker correlation of r = 0.61
(p < 0.0001) which shows that on this task, link similarity is less important
than on the previous two evaluations, providing less than 1% performance gain.
Figure 5c shows the correlation at rank. Overall, the model performs significantly
better than the null model, reiterating that the findings are not an artifact of
the distribution of link masses in G.

Global, Link-Selected Hyper-Edge Deletion. The final experiment tests the abil-
ity to compensate for hyper-edges selected from links and deleted globally. For
randomly selected dyads in G, the hyper-edges comprising the link are removed
from the entire graph. In figure 4d, nodes A and C are connected by hyper-edges
1 and 6, which are then deleted throughout the network to yield the lesioned G′.
Proposals were generated on G′ and their correlation to the the original dyadic
masses is reported. This experiment is effectively a combination of experiments
2 and 3: the model must provide proposals that compensate for an entirely miss-
ing link (experiment 3) using a graph with fewer edges than initially observed
(experiment 2). The proposals in this configuration correlated positively with
the link masses in G: Spearman r = 0.69 (p < 0.0001; 10, 10% folds). This was
stronger than when using link mass alone, which yielded r = 0.57 (p < 0.0001).
Figure 5d shows the correlation at rank for this experiment, in which there is no
discernible trend: the model is consistent across strong and weak links in G.
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4.2 Proposals as Predictions

The preceding experiments show that our model can recover the dyadic link mass
in G after it has been systematically lesioned in different ways. This section tests
our model as a method of link prediction. Link prediction is typically thought of
as the task of predicting a link at some future time given historical data. Because
our mined hypergraph lacks temporal data, we employ a static variant of link
prediction. As in other formulations, a link refers to a single dyadic connection.
Although some work has explored predicting hyper-edges that connect more
than two nodes [21, 40], in our model, though it uses hyper-edges to define link
similarity, it generates dyadic proposals more analogous to links in a unipartite
graph. To compare our proposals to other link prediction methods, we simplify
G into a unipartite graph, G̃, by treating links (sets of edges in G) as unique, un-
labeled edges. Additionally, because our proposals are not simply yes or no binary
suggestions as with typical link-prediction tasks, evaluations like precision, recall
and ROC / AUC are less well-suited to assessing the proposal scores. As such, we
again use Spearman rank-order correlation to compare predictions that preserve
the rank of link-strengths observed in G.

We compare our model to three other link prediction methods: the Jaccard
coefficient, preferential attachment and the Adamic-Adar method [1, 28]. The
Jaccard coefficient is a structural measure defined as the size of the intersection
of a dyads’ common neighbors over that of their union. Preferential attachment
metricates the intuition that highly connected nodes are more likely to form
links than less connected nodes. Adamic-Adar predictions account for the size
of shared neighbors’ neighbors, defined as the inverse log of the number of every
shared neighbor’s neighbors. Each method is defined as follows:

Jaccard Coefficient: |Γ (n1)∩Γ (n2)|
|Γ (n1)∪Γ (n2)|

Preferential Attachment: |Γ (n1)| · |Γ (n2)|

Adamic-Adar:
∑
x∈Γ (n1)∩Γ (n2)

1
log |Γ (x)|

We compared our model to the three link prediction methods described above
using variants of the link-centric experiments in the preceding section (figure 3c
and d). In the first link prediction task, we remove a random 10% of the links in
G, to yield G′, on which which our model is run. For the other link prediction
methods, G′ is converted to a unipartite graph, G̃′ from which predictions are
generated. Because G̃′ includes even the weakest links in G′, it is quite dense. We
varied the threshold required for a link to be considered and report performance
on resulting graph. That is, the weakest dyadic ties (the same links in G′ as in

G̃′) were successively removed over 40 cuts until the graph was empty. Figure 5a
shows the results of each method under this local, link-deletion scheme. A high
correlation implies that a method’s predictions preserved the ranking of links in
the initial graph, which is a stronger indication of performance than a binary
distinction for extant links.
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Fig. 5. (a; left): Spearman rank-correlation of predictions vs. observations on a ran-
domly removed selection of 10% of the links. The lesioned graph, G′ for the proposal
model and G̃′ for the other methods, was used to generate predictions. As weak links
are successively removed from consideration (horizontal axis), the graph becomes in-
creasingly sparse. After 36 cuts, the graph fractured into separate components. (b;
right): Analogous correlation on a random selection of 10% available links having
been removed with their comprising hyper-edges (figure 4d). Here, the graph fractured
after 30 cuts. All error-bars are +/- 1 SE of the mean across 10 runs.

Figure 5a shows that when all links, weak and strong, are considered, the
graph’s density is detrimental to the performance of the unipartite methods.
The performance of these methods, which do not account for link similarity,
underscores its importance in dense settings where structural information is more
uniform. The results also show that our model is considerably more stable with
regards to the effect of weak links. The Jaccard coefficient and the Adamic-Adar
method perform weakly until the number of links is reduced to the strongest
15%, after which they begin to rise. Preferential attachment exhibits similar
behavior to the other models at either end of the link density spectrum, but
performs steadily better as weak links are pruned. Our model is not only more
consistent, its performance is only matched (by preferential attachment) when
the links are reduced to their strongest 8%.

In a second link prediction experiment, the task is designed similarly to the
final experiment in section 4.1. The setup is the same as the link prediction exper-
iment above, except that when a link is selected for removal, all the hyper-edges
comprising it are removed from the graph (see figure 3d). After this lesioning

yields G′, it is again simplified to G̃′ for use with the other link prediction meth-
ods. Figure 5b shows the rank-correlations of the four methods in this task over
the increasingly sparse graph. The results show that the added sparsity, due
to the removal of additional hyper-edges during the lesioning process, gives all
methods a boost. The proposal model still out-performs the other methods until
the graph consists of only the strongest links.
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4.3 Discussion of Results

Altogether, our model performs well across a range of evaluations. However, we
make no claim that the algorithm is generalizable to hypergraphs of arbitrary
structure, but for the purpose of recommending ties in an already densely con-
nected social network, it is quite successful. Some of the model’s strength is due
to the data-structure itself, which is not only a novel operationalization of Feld’s
focus theory of social interaction [13], but also accurately realizes departmental
structure (see the appendix). The four experiments in section 4.2 show that in
many conceivable situations, corresponding to the respective lesioning schemes,
the proposals can account for situations where connections either were not prop-
erly mined / observed, or have actually not been made. On the link prediction
tasks in section 4.3, our model out-performs three other methods that use local
structure. This setting is slightly unfair to the traditional link prediction meth-
ods because they are unable to account for link similarity. Because the unipartite
graph G̃ is a simple weighted graph that is exceptionally dense, structural infor-
mation like a node’s degree and neighborhood are relatively unhelpful. It might
be that precisely the information that is lost in simplifying G to G̃ is the very
information making our model more accurate. It remains to be seen whether
our model performs well in a dynamic setting where historical data are used to
predict future links. In a static setting, however, our results not only support
our model and representation, they also point to an important social dynamic:
that in multi-faceted relationships, both the magnitude and similarity of ties are
important in developing connections.

Though the results here support the veracity of proposals from our model,
they could be evaluated more qualitatively by presenting experts with recom-
mendations with the greatest difference between proposed scores and observed
mass. Though this evaluation would be expensive, it would potentially uncover
dimensions of scholarly relationships not accounted for in our representation. An-
other area for future exploration is dimensionality reduction. Unlike a number of
recent approaches to tasks like collaborative filtering and community detection,
our model does not employ dimensionality reduction on the observed structure
(eg. [20]). Given the cell-wise sparsity of G (99.8% zero-values), we explored us-
ing sub-spaces reduced with PCA and tSNE. On the experiments in section 4.2,
we found a steady degradation of performance as target the dimensionality ap-
proached 0, which implies there is little to no additional information embedded
in lower-dimensional projections. This reduction amounts to a blind compres-
sion of the edges based on their points in node-space — a space we have no
reason to believe is adequately represented by its most prominent components.
Alternatively, one could imagine performing such compression in a semantically
principled manner, for example, by collapsing similar publication venues or ge-
ographical locations, though we leave this to future work.
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5 General Discussion

People are embedded in a deeply social, highly connected, dense social structure.
As representations grow to account for the multiplexity of social ties, they will
naturally begin to exhibit this density — something that is surely not unique to
academics. Social media, for instance, has greatly added to the available ways
for people to connect, ostensibly confounding traditional social network analysis.
The hypergraph structure explored in this paper is able to capture the emergent
multiplicities apparent in relationships, specifically among academics. By using
the mass of links through two people’s shared neighbors, scaled by the similarity
of the same links, scores from our model were able to correlate strongly to
initial observations. This confirms our hypothesis that link mass and similarity
mutually influence how likely transit nodes are to connect neighbors.

One critique of the model is that it overlooks higher-order structure, which
is often exploited using spectral methods [8, 34] or exponential random graph
models [23, 35]. However, we found that the average dyad shares 74% of all
other nodes as neighbors:

1

|G|
∑

n1,n2∈G;n1 6=n2

|Γ (n1) ∩ Γ (n2)|
|G| − 2

= 0.74 (5)

This means that accounting for higher-order structure is largely unnecessary.
Also, by limiting our model to first-order transitivities [38], one can recover a
ranking of the shared neighbors that contributed the most to a proposal. This
kind of ranking would be particularly important for a qualitative analysis that
sought to justify why proposals were made.

The model explored in this paper is primarily a social one, where academics
are placed in the space of locations, organizations and people observed in CVs. It
would be possible to expand the set of edge-types that populate the hypergraph
considered by our method. There is also, of course, no inherent reason to restrict
analysis to CVs, especially as more robust edge-types are explored that may be
found elsewhere. Other sources of relational information about academics might
include research statements, grant proposals and research publications, which
might encode topical and methodological connections among researchers. One
could imagine recovering such information from text about research topics and
their respective methods of inquiry using a mixture of human annotation, ma-
chine learning and crowd curating. Though these further sources of relational
information remain unexplored, we hold that the representation and model pre-
sented here provide a strong foundation — one that is data-driven and that can
account for the complex, multi-dimensional nature human of relationships.
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Appendix: Classifying Academics

As a preliminary task, the veracity G was tested by using it to classify academics
into their known departments. The expectation is that the closer two academics
are inG, the more likely it should be they share a department. In this experiment,
all NEs containing forms of the word department were discarded. Proximity
was defined as the cosine similarity between two nodes’ weighted edge-incidence
vectors (rows in figure 2). All pairs of academics were ordered by decreasing
distance and the percent matched was calculated at every rank (precision at
rank; figure 6). Though some academics hold appointments in more than one
department, which makes a random guess slightly easier than 1

departments=90 , a

null model that guesses the most frequent department (Economics, N = 194)
provides a baseline. Note that this classification model is not learned or fit to the
data, rather, it simply shows that academics with similar relationships, defined
by the weighted edge-incidence vectors, tend to be in the same department.
While there is some difference in performance of each edge-type, they all do
significantly better than the null model.
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Fig. 6. The precision at rank for pairs of academics in decreasing order of similarity.
Precision is defined as the pair being in the same department. In-set is a linear plot
for the top 1,000 closest pairs.
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To assess how useful the extracted NEs are as features in a statistical learning
setting, they were used to train a multi-label classifier over departments. Table
1 shows the performance of the three feature-sets on a linear-kernel SVM and
a random forest with 10 estimators [7, 9]. To make the comparison fair, the
other models were restricted to using the same number of features (the number
of edges in the graph, |E ∈ G|). Each model was trained in one-vs-all scheme
according to each departmental label held by a faculty member (max = 5).
Validation consisted of 20 folds on 20% held-out data. In all configurations, the
node-incidence vectors, {E ∈ G}, outperformed the unigram models. Due to the
multi-label scheme, the test-performance was averaged over all labels (for a single
fold), which could falsely inflate the performance on held-out data. However,
held-out performance was not our goal: the features in G were not mined for the
purpose of training a classifier, nor was the weighting-scheme designed for such a
task. Instead, we note its performance against relatively simple unigram models
to underscore that G does indeed encode departmental structure, indicating it
reliably represents academic relationships.

Feature-set Model Precision Recall F1Score

{E ∈ G} Linear-SVM 0.53 0.95 0.66
Count Unigrams Linear-SVM 0.15 0.27 0.19
TF*IDF Unigrams Linear-SVM 0.45 0.66 0.51

{E ∈ G} Random Forest 0.62 0.92 0.74
Count Unigrams Random Forest 0.60 0.89 0.69
TF*IDF Unigrams Random Forest 0.61 0.92 0.71

Table 1. Multi-label classifier performance on three feature-sets: the weighted edge
incidence vectors in G, count- and TF*IDF-weighted unigrams. Each set was used
to train a linear-kernel support vector machine and a 10-estimator random forest.
Reported are the test-scores averaged over 20 folds with randomized 80/20 train-test
splits.
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