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Abstract

Humans use their bodies in a highly expressive way during conversation, and an-

imated characters that lack this form of non-verbal expression can seem stiff and un-

emotional. An important aspect of non-verbal expression is that people respond to each

other’s behavior and are highly attuned to picking up this type of response. This is par-

ticularly important for the feedback given while listening to some one speak. However,

automatically generating this type of behavior is difficult as it is highly complex and

subtle. This paper takes a data driven approach to generating interactive social behavior.

Listening behavior is motion captured, together with the audio being listened to. This
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data is used to learn an animation model of the responses of one person to the other.

This allows us to create characters that respond in real-time during a conversation with

a real human.

Keywords: computer animation, non-verbal behavior, motion capture, machine learning
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1 Introduction

A key element of social interaction is that people respond to each other. The meaning of a

person’s behavior is not solely contained in that behavior but how that behavior responds to

others. This responsiveness is vital for creating characters that can interact believably with

real people. Without it, interactive media and games cannot fully achieve realistic social

interaction. This responsiveness is what makes a character into something truly interactive

rather than merely being pre-scripted. It is thus, not enough for characters’ movements to

look right, if they do not respond appropriately to real people’s actions in real time. This is

particularly true of feedback given while listening to somebody speaking. People feed back

non-verbally whether they are interested; whether they agree or disagree with the person,

and other reactions to the speech. It was shown in Pertaub, Slater and Barker [1] that people

have a strong emotional response when talking to an audience of animated characters, if the

characters display strongly interested or uninterested behavior. Creating believable, real-

time and responsive behavior is one of the key challenges for computer animation.

The primary contribution of this paper is a method of learning responsive behavior from

motion capture data. This method can create characters that are able to interact in real-

time with real people, responding to a number of different user inputs. In this paper the

characters respond to the person’s voice. The first aspect of the contribution is the method

by which data from a conversation between two people can be captured and used for creating

interactive behavior. We motion capture the listener’s responses and either simultaneously
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record the voice of the speaker or, alternatively, we can capture responses to a pre-recorded

speech. The motion capture data is used to create a motion graph data structure that can be

used to generate new motion in real time. The main technical contribution is a novel method

that uses the relationship between the inputs and motion data to learn a value function for

edges in the motion graph. This value function is used to drive the motion generation in

response to new inputs. Therefore, the method results in real-time prediction and realization

of the behavior of a virtual character as a function of the behavior of a real tracked person.

This is important because, for the first time, it provides the possibility of highly realistic, but

data driven interaction between real and virtual people.

2 Related Work

2.1 Data Driven Animation

There are two basic classes of techniques for character animation, procedural and data

driven. Procedural methods (for example, Perlin [2], Tu and Terzolpoulos [3], Neff and

Fiume [4] or Kopp and Wachsmuth [5]) generate motion entirely from algorithmic or math-

ematical models, for example, physical simulations. Data driven techniques on the other

hand use data from human movement, normally from motion capture. The advantage of

data driven techniques is that they make it easy to create highly realistic animation, as they

are based on real human motion. They are also able to easily model the movements of a
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particular individual. The major research area for data driven animation is the task of mo-

tion editing, taking one or more pieces of motion data and adapting or combining them to

produce a new animation that is suited to a new circumstance. This basic problem takes

many forms. Sometimes new constraints need to be added to a motion. Generally these are

inverse kinematics constraints such as reaching for an object or walking over rough terrain

(e.g. Gleicher[6] or Lee and Shin [7]). Constraints are also important when retargetting

motion to new characters (e.g. Gleicher [8] or Tak and Ko [9]). It is also useful to be able to

play a number of different motions in sequence, transitioning from one to the other. Since

finding transitions between arbitrary motions is a very difficult problem, most research has

focused on ways of finding suitable points at which a transition can easily be made, for

example graph based techniques [10, 11, 12], which are used in this paper. More generally

data driven techniques can be used to create simplified interfaces for controlling characters,

for example the work of Lee et al. [12]. Finally, there has been considerable interest in

changing the style of a motion or applying the style of one motion to a different motion (e.g.

Hsu et al. [13] or Brand and Hertzmann [14]). Techniques range from interpolating multiple

motions [15, 16] to using physical simulation to alter the details of a motion [17, 18]. Taken

together the methods described form a powerful tool-set for creating highly realistic and

flexible animation.

An important aspect of data driven techniques is the method used for data capture. This

paper proposes a capture methodology and a method for refining a model once the data has

been captured. In this the work is similar to that of Cooper et al.[19], who propose a capture
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and interactive refinement method for data driven models. Their model is different from

ours, however, in that their refinement step occurs during the capture session while ours

occurs afterwards.

2.2 Expressive Behavior

Animated characters that can engage in realistic, responsive social behavior and express

emotion can add far greater depth to interactive media than has previously been possible.

There has been considerable work on creating characters with this type of expressive behav-

ior [20], for example Cassell et al.’s [21] and Garau et al.’s [22] work on social interaction,

or Gratch and Marsella’s [23] and Poggi, Pelachaud et al.’s [24] work on emotion. The clos-

est work to our own application has been Maatman, Gratch and Marsella [25], who created

a character that listens responsively to a speaker. However, this work has been primarily

knowledge driven, whereas we take a data driven approach that we believe is better able to

capture the subtleties of human conversational behavior. Some researchers such as Nakano

et al. [26] and Lee, Badler and Badler [27] have created models of expressive behavior based

on data, but they used hand annotation of video sequences to extract the data as well hand

analysis to design the model. This means that creating the behavior model was a very labor

intensive process. Using motion capture and machine learning techniques we show that it

is possible to create this type of interactive behavior automatically. Kipp et al.[28] have

presented a machine learning method for reproducing the gestural style of particular indi-
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viduals, though their input data still requires manual annotation of video sequences. Egges

et al. [29] learned a model of expressive posture from motion capture data using Principal

Component Analysis, however, their aim was not to produce responsive behavior. Stone et

al. [30] created a conversational character based on motion capture data. Unlike our work

the responsiveness of their character was based largely on a hand authored language model

rather than being wholly learned from data.

2.3 Responsive Behavior

There has been some work on data driven methods for achieving responsive behavior,

though not applied to expressive social interaction. Kim, Park and Shin [31] and Shira-

tori, Nakazawa and Ikeuchi [32] have characters that are able to respond to the rhythm of

music. Hsu, Gentry and Popović [33] demonstrated an animated dancer that was able to

respond to the moves of its partner. They assume that the movements of the partner are

known in advance and do a search for an optimal solution to the entire sequence. Though

this gives good results for off-line responsiveness, and is likely to out-perform our method in

this context, it is less suited to real time interaction. Doing a complete search is expensive,

and is likely to be impossible if inputs are received one at a time. When producing respon-

sive behavior it is important to choose motion clips based on the quality of match to the

user input both of the clips themselves, and also of future clips that they make available. In

order to respond in real time, we adapt methods from reinforcement learning [34] to do this
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choice without searching all possible future clips. Reinforcement learning is the process of

learning by giving a measurable reward for correct behavior (and punishments for incorrect

behavior). This has been applied very literally to animation by Blumberg et al. [35], who

use the metaphor of “training” an animated dog by rewarding and punishing it. Lee, and

Lee [36] use reinforcement learning to train a virtual boxer, giving rewards based on how

close a punch is to the desired position. Similarly McCann and Polllard [37] use similar

methods for training a character that can produce realistic responses to a navigation control

signal from a user, while Treuille, Lee and Popović [38] have used reinforcement learning

for autonomous navigation behaviour. This type of learning works well for goal directed

behavior, for example, in boxing the goal is to hit the opponent. However, the type of social

behavior we are simulating, does not have this type of explicit goal, so a reward cannot be

easily formulated and reinforcement learning cannot be used. One of the main contributions

of this paper is therefore to show how similar techniques to reinforcement learning can be

adapted to a non-reinforcement learning context in which a reward function cannot be used.

This paper presents a method for simulating small scale, two person interaction. At the other

end of the scale, Lee et al. have proposed a data driven method for simulating large scale

crowd behavior[39].
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3 Learning Listening Behavior

The aim of this work is to produce realistic and responsive non-verbal behavior for conversa-

tions between a real person and an animated character in real-time, such as in an interaction

within a virtual environment. Our character responds to an input signal from a real person.

In our current example, these signal is the person’s voice. Voice is a suitable signal as it is

closely related to expressive behaviour, and it has been shown (e.g. a study by Kendon [40])

that the non-verbal behaviour of listener responds to elements of the speakers voice. It is

also a useful input to use for real time interaction with an animated character, as it can be

capture much more easily and unintrusively than, say, body movement. The novelty of our

approach is that we use a wholly data driven method, using data captured from a real con-

versation to create responsive behavior. This method is completely automated, and therefore

provides substantial labor saving over creating behavior models by hand.

3.1 Data Capture

The capture process is shown in figure 1. We motion capture a listener responding non-

verbally to speech. This can either be speech from a pre-recorded audio file, or live con-

versation. In either case we make a recording of the speech that is being responded to.

From these two sets of data we create a model of both the style of movement of the motion

captured person and the style of behavior: how they respond to other people. The motion

capture data is used to create a motion graph based data structure [10, 11, 12] that is used to
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generate animation. The input signals from the conversational partner are quantized to form

a set of discrete input features: f = {f0 . . . fn}. The stream of features is then synchronized

with the motion data. We a synchronization signal at the start and end of each data set. The

actor being captured was asked to adopt a standard posture and rapidly move out of it at

the end of a 3, 2, 1 count down heard in the audio signal. These two signals were used to

align the start and end of the two data set, which could then be resampled to the same frame

rate. The result is a set of frames containing both motion data and input features: (m, f).

In order to use the motion graph to generate responsive behavior, we use the co-occurrence

of input features and motion data to learn a value function that determines how appropriate

each edge in the graph is to each combination of input features.

3.2 Handling Motion Data

For low level behavior generation we use a method based on Motion Graphs [10, 11, 12].

This gives a way of decomposing one or more long motion clips in such a way that they

can be re-played in a different order. The key to the method is to find frames in the motion

sequences where realistic looking transitions can be made to new places in the motion. A

motion graph is a graph structure as shown in figure 2, in which nodes represent possible

transition points and edges represent motion clips that join different transition points. In our

implementation we make an explicit distinction between two types of edge:

Continuation Edges (shown in black in figure 2) represent continuing along the original
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motion sequence from the current node without making a transition. The edge ends at

the next transition point in the motion. If this end point results in a motion clip that is

too short a later transition point is used to ensure that the resulting clip is longer than

a minimum clip length.

Transition Edges (shown in grey in figure 2) represent a transition to a new position in the

same or a different motion sequence.

Nodes can be either the start of transitions in which case they will have one or more outgoing

transition edges, or the end of a transition in which case they will have an incoming transition

edge but no outgoing ones. Continuation edges use the original motion but for transition

edges we need to create a new motion clip that smoothly interpolates the start and end

points of the transition. To do this we use a variant of Kovar and Gleicher’s formula [11]:

p(t) = α(t)p0(t0 + t) + [1− α(t)]p1(t1 − k + t)

q(t) = slerp(q0(t0 + t), q1(t1 + t), α(t))

In which p(t) and q(t) are the root position and quaternion joint orientations of the new

motions, p0, q0 and p1, q1 are the original motion sequences and t0 and t1 are the times of

the transitions points. k is the length of the transition and α(t) is a function used to ensure

C1 continuity:

α(t) = 3
(
t

k

)2

− 2
(
t

k

)3

New motion can be generated by performing a graph walk and at each node choosing one

outgoing edge. We use the value function defined in the next section to choose the edges.
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We construct the motion graph using the method suggested by Kovar and Gleicher [11],

with the exception that we use Lee et al.’s [12] function for determining the difference

between frames in a motion. This uses instantaneous joint rotations and angular velocities

at the frame, in contrast to Kovar and Gleicher’s function that is based on a set of surface

points on the character summed over a time window to get velocity information. Lee et

al.’s method was used as it is more readily and efficiently calculated from the standard

data available in an animation system, and there is little evidence that Kovar and Gleicher’s

method gives superior results.

3.3 Handling Voice Data

In order to be able to drive character behavior from voice, we must extract a suitable set of

features from the voice. These features should be good predictors of the character’s behav-

ior. The first step is to extract the pitch (fundamental frequency) and intensity (loudness) of

the voice using Boersma’s periodicity analysis method from the Praat tool[41, 42]. We then

calculate the mean and variance of these features over a 1 second window of each frame.

Our method (described in the next section) requires discrete input features. We use a quan-

tization method that aims to maximize the information that the discrete audio variable gives

us about the character’s motion. We therefore choose a discretization that maximizes the

conditional entropy:

H[a|M] =
∑
a

∫
p(a,M) ln p(M|a)dM (1)
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Where a is the discretized audio variable and M is the motion. H[a|M] measures the

average information required to specify the value of M if a is already known. Therefore

minimizing this quantity will give a discretization that best predicts M. Applying equation

1 requires conditional and joint probability distributions for a and M. Fitting a continuous

distribution to M can be problematic if the distribution is not a good model of the movement.

For example, an obvious choice, a multivariate Gaussian performs particularly badly, as the

distribution across the motion is multi-peaked. We avoid the problem by discretizing M. We

perform a principal component analysis on the frames of the motion, using both position

and velocity information, and then perform vector quantization on the result. The vector

quantization is performed finely (number of quanta 100) to obtain a discrete variablem. We

can then model two discrete distributions p(a) and p(m|a) whose values can be learned by

counting occurances in the data set. Rewriting equation 1 we obtain the following equation

for the conditional entropy:

H[m|a] =
∑
a

p(a)
∑
m

p(m|a) ln p(m|a) (2)

As this value is relatively quick to compute we can maximize H[m|a] in an unbiased way

by performing an exhaustive search. Testing each data point as a possible threshold for

discretization. As is it also desirable for the inputs to have low dimensionality we also

use the conditional entropy to choose the best input dimensions to use. Either the best

overall dimension (from the mean and variance of both pitch and intensity) is used if it

is a sufficiently good predictor, otherwise we choose the best pitch measure together with
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the best intensity measure (as the two measure from pitch/intensity are generally highly

correlated).

3.4 Generating Behavior

Generating animation in response to new input features means finding a path through the

motion graph, whose edges are most appropriate to the current input features. This is done

by assigning a value Ve,f to each edge e for each combination of possible input features

f = {f0 . . . fn}. Ve,f represents how well the edge fits the input features. Given values

for each edge, a path can be found by choosing, at each successive node, an outgoing edge

based on its value. The generation process is shown in figure 3. The quantized input features

(see previous section) are used to evaluate the value of each outgoing edge of the current

node. Once an outgoing edge is chosen the corresponding motion clip is played. When the

clip has finished, the process is repeated using the end node of the chosen edge.

Before discussing the exact form of Ve,f we will explain how it is used, which will make

the choice of Ve,f clearer. At each node we must choose one outgoing edge. This edge

may be either a continuation edge or a transition edge. If a continuation edge is chosen, the

motion clip attached to that edge is played and then the next edge is chosen. However, it is

important not to play more than one transition in a row or the motion will become notably

unrealistic. For transition edges we therefore play the transition clip attached to the edge,

followed by the continuation clip of the edge’s end node. Only then do we choose a new
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edge. It is generally a good idea to avoid taking too many transition edges. If the value of

a continuation edge is high it is often better to choose the continuation edge, rather than the

optimal edge, in order to ensure greater continuity in the generated motion. We manage the

trade off between using the best edge according to Ve,f and using the continuation edge by

choosing one or the other at random. The probabilities we use for this selection depend on

two factors. Firstly the value, Ve,f , measuring how good a fit the edge is to the current input

features. The second factor is a penalty based on the quality of the transition. For this we

use the function suggested by Lee et al [12]:

pt = exp(
−Di,j

σ
)

where Di,j is the distance measure described above in equation ?? and σ is a parameter for

controlling the degree to which poor transitions are penalized. In our method this becomes a

useful trade off parameter that controls how likely the system is to choose a poor transition

that is a good match to the current input features. For continuation edges we define Di,j to

be 0 and so pt = 1 and we can ignore it. Therefore we choose the edge with the maximum

value with probability:

Pmax =
ptVmax(n),f

ptVmax n,f + Vcont(n),f

(3)

Where max(n) is the outgoing edge of node n with the highest value, and cont(n) is the

continuation edge of n. The probability of choosing the continuation edge is 1− Pmax.

How do we find Ve,f? As described in section 3.1, we capture data in the form of motion

capture synchronized with input features. This gives us information about which pieces
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of motion data co-occurred with which input features. Ve,f can therefore be chosen based

on whether features f co-occurred with the motion clip Me corresponding to edge e. We

define Me in the following way. If e is a continuation edge, then it directly corresponds

to a motion clip from the original data set. However, transition edges have automatically

generated transitions, and so do not correspond to motion from the original data set. We

therefore define the motion corresponding to a transition edge to be the motion attached to

the continuation edge of its end node. The simplest way to define Ve,f would be to make it

equal 1 if Me co-occurred with features f and 0 otherwise. However, there are two problems.

Firstly, the input features might change over the length of Me. This problem can easily be

overcome by averaging over all the frames in Me. Another problem is that we loose a lot

of information if the set of features f is multidimensional. By using only direct equality as

a measure we loose any information about similar feature sets, for example, sets of features

that differ only in a small number of features. This again, can be easily solved by replacing

simple equality with a count of the number of equal features in the the two feature sets. We

can therefore define the value V 0
e,f for an edge:

V 0
e,f =

∑
i∈frames(Me)

∑N
j=1 δ(fj, fj(i))∑

i∈frames(Me) 1

Where fj is the jth feature of f , fj(i) is the jth feature of the feature set corresponding to

frame i of Me and δ is the Kronecker delta function. V 0
e,f contains all the information about

how suitable the motion corresponding to the edge e is for the feature set f . Unfortunately

this is still not enough to choose an optimal path. A particular node may only have outgoing
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edges with low or zero values for V 0
e,f and so not have much information about which one

is the best to choose. In this case the best strategy would be to choose the edge that leads

to a portion of the graph with many high valued edges. Another problem is that an edge

might have a very high value but lead to a portion of the graph which only contains edges

with very low values. The problem with using only V 0
e,f to choose a path is that it is a very

greedy strategy, not taking into account long term factors, i.e. the values of edges that can

be accessed after taking a particular edge. This could be solved by performing some form

of heuristic search to find an optimal path in terms of V 0
e,f . However, this approach is not

very suitable for real time motion generation. Firstly, it is a slow process relative to greedily

choosing the best edge. More important, much of the effort of finding a path may be wasted,

as the input features may change rapidly. The path would need to be re-planned each time

the input features change, and the time taken to plan the original path would be wasted.

Rather than planning a path, our approach is to embed information about future edges into

a new score V ∗e,f and use a greedy search based on V ∗e,f .

In order to find a value for V ∗e,f that uses both the immediate value of an edge e and the

values of future edges that are accessible after choosing e, we use a technique that is com-

monly used in Reinforcement Learning[34], finding the solutions to the Bellman Equations

for the graph. The Bellman Equation expresses the value of an edge as the expected value of

taking that edge, and subsequent edges that follow form it. It relates the value of choosing a

particular edge with the values of outgoing edges of the end node of that edge (we call this

end node ne). The equation we use is the following:
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V ∗e,f = V 0
e,f + γ

∑
f ′

∑
e′∈ch(ne)

Pf→f ′P (e′)(V ∗e′,f ′)

The value, V ∗e,f of edge e is the immediate value of the edge V 0
e,f as described above,

plus a falloff value γ times the expected value of the next edge to be chosen after e. ch(ne)

are the children of node ne. P (e′) is the probability of choosing edge e′ and Pf→f ′ is the

probability that the input features change from value f to f ′ in one time step (where f ′ ranges

over all possible discretized input feature values). Pf→f ′ can easily be estimated from the

transition frequencies in the training data. The recursion in this equation ensures that values

of possible future paths are taken account of. The fall-off parameter γ ensures that the values

of future edges are weighted lower than current edges. This is important as feature values

may change before a future edge is reached. In our experiments we found that a value of 0.2

for γ worked well.

As described above, only the maximum valued edge and the continuation edge can be

chosen, so this equation becomes:

V ∗e,f = V 0
e,f + γ

∑
f ′
Pf→f ′ 〈V ∗〉 (4)

Where 〈V ∗〉 is the expected future value of V ∗:

〈V ∗〉 = Pmax(ne)V
∗
max(ne),f ′ + Pcont(ne)V

∗
cont(ne),f ′
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Substituting 3 into the above we get the following:

〈V ∗〉 =

(
maxe′∈ch(ne)(ptV

∗
e′,f ′)2 + (V ∗cont(ne),f ′)2

)
maxj∈ch(i)(ptV ∗e′,f ′) + V ∗cont(ne),f ′

The value for V ∗e,f that satisfies equation 4 provides an optimal policy for choosing which

outgoing edges to take at each node. The equation can be solved iteratively. At each iteration

we update V ∗e,f from the current value using the Bellman equation. The value for V ∗e,f at step

k + 1 is calculated in terms of the values of the children of ne at step k:

V k+1
e,f = V 0

e,f + γ
∑
f ′
Pf→f ′

〈
V k
〉

Where: 〈
V k
〉

=

(
maxe′∈ch(ne)(ptV

k
e′,f ′)2 + (V k

cont(ne),f ′)2
)

maxj∈ch(i)(ptV k
e′,f ′) + V k

cont(ne),f ′

By using V ∗e,f we can embed all our prior knowledge of the appropriateness of edges

and of the connectivity of the graph into a single value that enables us to use a very simple,

greedy, O(1) strategy for choosing motion clips in response to new inputs. The algorithm

can be summarized as follows:

1. initialize the current node to a starting value

2. select the child edge emax that maximises the value pt(e)V
∗
e,f

3. choose this edge with the probability given in equation 3, otherwise choose the con-

tinuation edge

4. play the motion clip associated with the chosen edge
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5. once the motion clip has completed set the current node to the end node of the chosen

edge and repeat from 2

3.5 Model Refinement

One potential disadvantage of a data driven approach is that if there are flaws in the final

model due to problems with the data, it might be necessary to perform the capture again

from scratch. Luckily our reinforcement learning based model makes it possible to correct

errors in the control model while still using the original data set. We do this by changing

the the base edge values V 0
e,f . A user interface is provided to give feedback while watching

the generated behavior. If a user sees a character performing a particularly appropriate or

inappropriate action in a given context they can press buttons labeled “good”, “bad” or “very

bad” which result in V 0
e,f being set to 1, 0 or -1. After watching some behavior and giving a

number of items of feedback, the value function is recalculated using the updated values of

V 0
e,f .

4 Results

For our experiments we captured 3 data sets. Each data sets consisted of a number of

captures of the same actor responding to a male voice speaking in different styles (though

different data sets used different actors). The first data set consisted of feeding back interest

or boredom to a speaker who spoke in either a varied (interesting) or monotonous (boring)
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voice. This data set consisted of 3 clips each of approximately 60 seconds. The second data

set was an exercise class scenario, in which the actor had to move in response to motiva-

tional speech. There were 2 clips of a little more than 60 seconds. The speech was either

energetic or calming and the actor produced corresponding movements. In the final data set

the speaker spoke in either a calm or an angry voice and the actor with either a neutral or

submissive posture. In this data sets the clips are shorter (approximately 20 seconds) but

we used 5 clips. In all data sets the speaker changed style of speech during all of the audio

clips. Unsurprisingly we found that variance in pitch was the best predictor of interest in

the voice for the first data set. In the other two data sets the variance of pitch and mean

intensity were the best predictors. We trained a model for each data set using, all of the

clips in each set (in order to demonstrate the quality of purely learned motion, we did not

use our model refinement method in any of the experimental test). We then synthesized new

animation using new audio data. Our models were able to generate responses to the audio

data in real time (for repeatability we used prerecorded audio, but it would be possible for

the characters to respond to live audio). The results are shown in figure 4. For all data sets

our models were able to produce similar responses to those in the original dataset, and with

appropriate timings. The generated motion is reasonably smooth and realistic.
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5 Conclusion and Further Work

This paper has presented a method for creating responsive and expressive listening behavior

for interactive characters based on data from an actor’s performance. The learnt value func-

tion means that characters’ responses run comfortably at real-time speeds and our method

manages to respond appropriately to its input while maintaining the characteristic style of

the actor’s performance. Responding to a user is ultimately what makes a character inter-

active, and we have demonstrated that it is possible to use data driven techniques to learn

this type of behavior, even in non-goal driven contexts. One area for future investigation is

scaling our method to very complex input feature spaces. Our method currently relies on

on tabulating the value function V ∗e,f for all possible combinations of input features. This

causes two problems. Firstly, the storage could become large for a large number of inputs,

however, the input feature space would have to be very large for these storage requirements

to outway the size of the motion data. The other problem is that as the number of inputs

rise then the number of possible combinations rises exponentially, and the number of times

each combination is seen in the data set is likely to become very small. In this case, to learn

effectively, we need to exploit similarities between combinations of input features so that

data from all similar combinations can be used together. In Reinforcement Learning this is

known as the generalization problem [34]. Of course, our method already generalizes by

using a value function based on the sum of similar input features, and so could probably

scale well to relatively large numbers of input features. For very large or continuous input
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feature spaces we would have to learn the values as a parametric function rather than as a

table. Traditionally, in reinforcement learning neural networks have been used [34], though

contemporary techniques such as support vector machines may give better results [43]. With

these techniques our method could well scale to very complex inputs. In particular we would

like to investigate more sophisticated vocal features which would allow for greater across

speaker robustness and also make it possible to respond to more complex information in the

voice.

This work has many possible applications. Improving social responsiveness of charac-

ters would greatly improve the social and emotional depth that can be portrayed in computer

games and widen the range of themes that could be dealt with. This is particularly true of

multiplayer on-line computer games and virtual worlds in which are major part of the so-

cial interaction. As Vihljálmsson and Cassell [44] have noted adding responsive non-verbal

behavior to user avatars in an on-line world can greatly improve the quality of social inter-

action. While we have modeled listener behavior our method could also be used to model

speaker behavior based on their own speech signal, thus simulating both sides of a con-

versation. Finally, it is important to note that our method is not only applicable to social

interaction but could be used for any form of interaction we would like to have with ani-

mated characters. It could be used for sports simulations, for example, we could model the

distinctive way in which a baseball batter swings in response to the different ways a ball can

be pitched.
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motion. In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Anima-

tion, pages 69–77, July 2004.

[34] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

[35] Bruce Blumberg, Marc Downie, Yuri Ivanov, Matt Berlin, Michael Patrick Johnson,

and Bill Tomlinson. Integrated learning for interactive synthetic characters. ACM

Transactions on Graphics, 21(3):417–426, July 2002.

[36] Jehee Lee and Kang Hoon Lee. Precomputing avatar behavior from human motion

data. In 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation,

pages 79–87, July 2004.

[37] James McCann and Nancy Pollard. Responsive characters from motion fragments.

ACM Transactions on Graphics, 26(3), August 2007.

29



[38] Adrien Treuille, Yongjoon Lee, and Zoran Popović. Near-optimal character animation
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Figure 1: The Capture Process. (BW)
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Figure 2: Motion graphs. Motion graphs consists of a number of motion sequences (shown

horizontally from left to right) and transitions between them. Continuation nodes are shown

in black and transition nodes in grey. (BW)
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Figure 3: The Generation Process: at each node in the graph there are several possible

options for the next edge to take. The input signals from the user are used to evaluate a

value function for each edge, which is then used to choose which edge to take. (BW)
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Figure 4: Behavior generated by our models. First row: the interest model, responding to in-

teresting (left) and boring (right) speech. Second row: the exercise class model, responding

to an energizing (left) and calming (right) voice. Bottom row: the angry voice, responding

to a neutral (left) and angry (right) voice. (COLOR)
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