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As virtual reality (VR) technology and systems become more commercially available and

accessible, more and more psychologists are starting to integrate VR as part of their

methods. This approach offersmajor advantages in experimental control, reproducibility,

and ecological validity, but also has limitations and hidden pitfalls which may distract the

novice user. This study aimed to guide the psychologist into the novel world of VR,

reviewing available instrumentation and mapping the landscape of possible systems. We

use examples of state-of-the-art research to describe challenges which research is now

solving, including embodiment, uncanny valley, simulation sickness, presence, ethics, and

experimental design. Finally, we propose that the biggest challenge for the field would be

to build a fully interactive virtual humanwho can pass a VRTuring test – and that this could
only be achieved if psychologists, VR technologists, and AI researchers work together.

After many years of hype, virtual reality (VR) hardware and software is now widely

accessible to consumers, researchers, and business. This technology offers the potential
to transform research and practice in psychology, allowing us to understand human

behaviour in detail and potentially to roll out training or therapies to everyone. The aim of

this study was to provide a guide to the landscape of this new research field, enabling

psychologists to explore it fully but also warning of the many pitfalls to this domain and

giving glimpses of the peaks of achievement that are yet to be scaled.Weconsider both the

advantages and limitations of VR technology, from a practical viewpoint and for the

advance of theory.

In this study, we focus specifically on the use of VR for human social interactions,
where a person interactswith another (real or virtual) person. VR is alreadywidely used in

studies of spatial cognition (Pine et al., 2002) andmotor control (Patton, Dawe, Scharver,

Mussa-Ivaldi, & Kenyon, 2006) and these have been reviewed elsewhere (Bohil, Alicea, &

Biocca, 2011). We also focus primarily on creating VR for the purpose of psychology

experiments (rather than therapy or education; Rose, Brooks, & Rizzo, 2005). Note that

we use the termVR tomean ‘a computer-generatedworld’ and not just ‘things viewed in a

head-mounted display’, as the term is sometimes used. The latter includes things like 360°
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video but excludes some augmented reality and non-immersive computer-generated

systems which we cover here.

To frame the current study, we consider the world of VR as a new landscape in which

the psychologist stands as an explorer, waiting at the edge of the map. We describe the
challenges as mountains which this explorer will need to climb in using VR for research.

First, we consider the foothills, describing the basic equipmentwhich our explorer needs

and mapping out the terrain ahead in a review of the practical challenges which must be

considered in setting up a VR laboratory. Second, the Munros (peaks over 3,000 ft in

Scotland) can be climbed by many with the correct equipment; similarly, we review the

issueswhichmay arise in implementing social VR scenarios and the best results achievable

using current technologies. Finally,OlympusMons (the highestmountainonMars) has yet

to be scaled;we consider the grandest challenge of creating fully interactive virtual people
and make suggestions for how both computing and psychological theory must come

together to achieve this goal. Throughout the paper, we attempt to give a realistic view of

VR, highlighting what current systems can achieve and where they fall short.

Why bother?

Before even beginning on the foothills, it isworth askingwhypsychologists should use VR

at all, and what benefits this type of interface might bring. As we will see, VR is not an
answer to all the challenges which psychology faces, and there aremany situationswhere

VR is maybe a hindrance rather than a help. Nevertheless, VR has great promise in

addressing some issues which psychology has recently struggled with, including

experimental control, reproducibility, and ecological validity. These reasons help explain

whymany psychologists are now investing in VR and spending time and effort on making

VR systems work.

A key reason to use VR in the study of social behaviour is to maximize experimental

control of a complex social situation. In a VR scenario, it is possible tomanipulate just one
variable at a time with full control. For example, if you were interested in how race and

gender interact to influence perspective taking or empathy, a live study would require

four different actors of different races/genders – it is hard to assemble such a team, and

even harder to match them for facial attractiveness, height, or other social features. With

virtual characters, it is possible to create infinitely many combinations of social variables

and test them against each other. This has proved valuable in the study of social

perception (Todorov, Said, Engell, & Oosterhof, 2008) and social interaction (Hale &

Hamilton, 2016; Sacheli et al., 2015).
More generally, VR allows for good control of any interactive situation. For example,

we might want to know how people respond to being mimicked by another person

(Chartrand & Bargh, 1999), under social pressure (Asch, 1956) or to a social greeting

(Pelphrey, Viola, & McCarthy, 2004). Social interactions are traditionally studied using

trained actors as confederates who behave in a fixed fashion, and such approaches can be

very effective. However, they are also hard to implement and even harder to reproduce in

other contexts. Recently, there has been an increasing focus on reproducibility in

psychology (Open Science Collaboration, 2015) and worries about claims that only
certain researchers have the right ‘flair’ to replicate studies (Baumeister, 2016).

Confederate studies in particular may be susceptible to such effects (Doyen, Klein,

Pichon,&Cleeremans, 2012), or participantsmaybebehave differentlywith confederates

(Kuhlen & Brennan, 2013). All these factors make confederate interaction studies hard to

replicate. In contrast, a VR scenario, once created, can be shared and implemented
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repeatedly to allow testing of manymore participants across different laboratories, which

should allow for direct replication of studies as needed.

The traditional alternative to studying live social interactions is to reduce the stimuli

and situation to simple cognitive trials with one stimulus and a small number of possible
responses. For example, participants might be asked to judge emotion from pictures of

faces (Ekman, Friesen, & Ellsworth, 1972) or to discriminate different directions of gaze

(Mareschal, Calder, & Clifford, 2013). Such studies have provided valuable insights into

the mechanisms of social perception, but still suffer from some problems. In particular,

they have low ecological validity and it is not clear how performance relates to behaviour

in real-world situationswithmore complex stimuli and awider range of response options.

Using VR gives a participant more freedom to respond to stimuli in an ecological fashion,

measured implicitly with motion capture (mocap) data, and to experience an interactive
and complex situation.

Finally, researchersmay turn toVR to create situations that cannot safely and feasibly exist

in the laboratory, including physical transformations or dangers which could not be

implemented in real life. VR scenarios can induce fear (McCall, Hildebrandt, Bornemann, &

Singer, 2015) and out-of-body experiences (Slater, Perez-Marcos, Ehrsson, & Sanchez-Vives,

2009). Togive a social example, Silani et al.putparticipants in aVR scenariowhere theywere

escaping from a fire and had the opportunity to help another person, thus testing prosocial

behaviour under pressure (Zanon,Novembre, Zangrando, Chittaro, & Silani, 2014). This type
of interaction would be very hard (if not impossible) to implement in a live setting.

To summarize, VR can provide good experimental control with high ecological

validity, while enabling reproducibility and novel experimental contexts. However, it is

also important to bear inmind that the generalizability of VR to the realworld has not been

tested in detail. Just aswe do not always know if laboratory studies apply in the real world,

similarly we must be cautious about claiming that VR studies, where participants still

know they are in an ‘experimental psychology context’, will generalize to real-world

interactions without that context. The brief outline above demonstrates how VR systems
have the potential to help psychologists overcome a number of research challenges and to

answer important questions. However, there are also many issues which must be

considered in setting up aVR laboratory andmaking use of VR in the study of human social

behaviour. In the following sections, we review these challenges and consider if and how

they can be overcome.

The foothills – how to use VR

Many researchers in psychology will have heard of VR, seen some demos, and tried on a

headset.FewerwillhavesetupaVRlaboratoryorprogrammedaVRstudy.Here,weprovidea

short primer on the methods and terminology used in computing and VR. We focus

particularly on how computing systems can take on the challenge of creating virtual

characters (VCs)withbehaviour that iscontingentontheparticipant’s actions.This requires

informationtoflowbothfromtheparticipant tothecomputersystemandfromthecomputer

system to the participant (Figure 1). We consider the technology required for each in turn.

Hardware

Displaying the virtual world

There are a number of ways to visually display a computer-generated world to users,

including head-mounted displays (HMDs), CAVE systems, augmented reality systems
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which range from smartphones to headsets and finally projectors or desktop screens.

Developments in this area are rapid and terminologies often overlap, but commonly used

terms include immersive VR, mixed reality, and augmented reality. Immersive VR
(discussed in more detail below) is typically experienced in an HMD which cuts the user

off from the real world, while augmented reality places computer-generated items in the

real world (sometimes allowing them to interact with the world) and mixed reality can

include elements of both. Social interactions can be implemented across all these systems,

and we review some of the most common approaches here.

The rise of VR in recent years has been mainly driven by the launch of several

lightweight and affordable HMDs frommanymajor consumer electronics companies (see

Appendix S1). All these devices share one common feature: They provide an immersive
experience (Slater, 2009) defined by (1) 3D stereo vision via two screens – one in front of

each eye; (2) surround vision – the real world is ‘blocked’ from your visual perception

and as you turn your head you only see the ‘virtual’world; and (3)user dynamic control of

viewpointwhich means that the user’s head is tracked to update the display in real time

according to where the user looks (Brooks, 1999). Implementing these three features

together means that the visual information available in VR matches critical properties of

the realworld,wherewehave 3D vision all around and the visual scene updateswith head

movements. These immersive displays allowus to automatically respond to the computer-
generated situation as if they were real [1] and are commonly described as Immersive

Virtual Reality (IVR).

Despite the ‘wow factor’ of immersive VR displays, they do have some restrictions.

First, the resolution of such devices is still relatively low compares to a standard computer

Figure 1. Participant interacting with a Virtual Human in virtual reality (VR). The VR system could take

input from the participant through various channels and provide feedbackmainly through video and audio.
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display, so it does not support studies requiring high-fidelity graphics (for instance,

emotion reaction to subtle changes on the face). Secondly, as users are fully immersed

with these VR displays, they are also ‘cut-off’ from the real environment. This makes it

difficult to perform experiments involving interactions with real objects – although we
could simulate the movement of the object in VR, the lack of generalized haptic devices

means that it is difficult to completely replace real objects from our studies. Finally, in the

context of social neuroscience research, immersive displays are not easy to combinewith

neuroimaging methods.

As an alternative toHMDs, CAVE VR systems can be very valuable. A VRCAVE typically

has three or more walls with images projected onto each, giving a surrounding

environment (Cruz-Neira, Sandin, & DeFanti, 1993). The user wears pair of shutter-

glasses, which sync with the projector to generate 3D stereovision. Similar to HMDs, the
glasses are trackedwith six degrees of freedom (DoF) so the displays update in real time to

render the perspective-correct view for the user. But unlike HMDs, in the CAVE the user

can see through the glasses to view any real objects in the environment (including their

own body). This could be a disadvantage for some applications as the glasses do not fully

‘block’ reality (i.e., one cannot fully embody someone else’s body in the CAVE). However,

it could also be an advantage for applicationswhere the user can see and interact with real

objects (e.g., a real driving wheel in a driving simulation) and can get real visual feedback

of their own actions (e.g., hand actions in an imitation tasks). As it is challenging to
implement virtual objects which respond to a user’s actions (and almost impossible to

create haptic feedback of objects in VR), it can be much simpler to allow the participant

to access real objects in a CAVE.

There are also useful VR implementations which are even simpler than a CAVE. Some

laboratories use VR content (i.e., animated 3D avatars) in a semi-immersive VR display, or

even a non-immersive desktop display (Pfeiffer, Vogeley,& Schilbach, 2013; Sacheli et al.,

2015), sometimes coupled with 3D glasses. These could be considered as augmented

reality rather than IVR and provide an interesting bridge between real and computer-
generated worlds (de la Rosa et al., 2015; Pan & Hamilton, 2015). Although it is arguable

that immersion plays a significant role in triggering a realistic reaction in human

participants, showing computer-generated virtual characters on a large screen can also be

effective. In future, as the VR displays become higher fidelity and more wearable, and a

wider variety of haptic devices become available, more and more experiments using

virtual characters should be moving into the space of immersive VR. All these studies will

also need to track the behaviour of the user, as we discuss in the following section.

Tracking the behaviour of the user – head, hands, body, face, and eyes

In addition to providing rich visual (and auditory) inputs to the participant, it is important

for a VR system to be able to record and respond to the participant’s behaviour. Many

studies use the traditional methods of key-hits/mouse clicks to record a participant’s

behaviour, but richer measurement of behaviour can give excellent rewards. An

appropriate system can allow researchers to record the motion of the hands, head, face,

eyes, and body in varying resolution, which allows analysis of implicit and natural
behaviours which may show much more subtle and interesting effects than traditional

key-hitmethods. Here,we review the differentmotion capture (mocap) systems available

to VR researchers and the reasons for using them (see also Appendix S2).

First of all, most HMDs track head motion to update the visual display, and thus crude

information on the direction of a participant’s attention is available ‘for free’ in an HMD
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system. Generally speaking, there are two types of HMDs: Some HMDs support both

rotation and position (6DoF) tracking; others support rotation (3DoF) tracking only. An

HMD with full 6DoF tracking provides a more immersive experience because a user can

bothwalk in the space and turn their head. AnHMDwith only 3DoFonly allows the user to
turn their head but the body is fixed in space. In social interaction, we constantly adjust

our position in relation to other people (for instance, we get closer to someone to share a

private joke). With only 3DoF rotation tracking, this type of social signal cannot be

supported.

Tracking the user’s hand actions is often the next priority. Most high-end VR systems

come with hand-held controllers that are tracked with 6DoF (e.g., Oculus Touch and the

VIVE Controller) whichmeans that if the user holds the controller, then his/her hands are

tracked and can be represented in VRwith 6DoF. However, such systems do not typically
allow for variation in hand posture and gesture. In contrast, markless tracking systems

(e.g., LeapMotion) and VR gloves (e.g., Manus VR) can permit natural conversational

gesturing and richer hand motion. This also means that participants in an HMD can see a

rendering of a handmovingwith the correct timing, posture, and location to be their own

hand, giving a stronger sense of embodiment in the VR world.

Full body tracking in VR can be achieved with a variety of systems, based on different

combinations of cameras, magnetic markers, and inertia markers. It is commonly termed

mocap (short for motion capture). We provide a more detailed review of these in
Appendix S2, summarizing the types of technology available and the advantages/

disadvantages of each. Important issues which need to be considered include the spatial

and temporal resolution of amocap system,whether the system is vulnerable to occlusion

(optical systems) or to interference from other electronics (magnetic systems) and the

latency with which the system can respond. All these issues are discussed in the

Supporting Information. Different systems will be optimal for each of these functions so

careful consideration should be given to the uses of body tracking data when setting up a

VR laboratory.
Head orientation, sometimes in combination with head position, is often used to

capture the gaze of the participant. Going further, it is possible to combine a VR system

with eye-trackers to gain detailed gaze information, either with additional HMD

compatible eye-tracking devices or using an HMDwith build-in eye-trackers. Eye tracking

in combination with responsive virtual characters on a screen has been used to yield

interesting insights into the neural mechanisms of joint attention (Pfeiffer et al., 2013). In

addition, facial motion can be recorded with facial EMG or optical systems, but the latter

are rarely compatible with an HMD because the HMD covers the upper half the face. This
means that researchers interested in facial emotion might have to choose between

recording the participant’s facial motion with high fidelity and presenting stimuli in an

HMD, but cannot easily do both with current systems.

As described above, technologies nowexist to capture different aspects of participant’

hand, face, and body actions in the context of VR research. However, capturing all aspects

of behaviour at once remains a challenging problem, and these technical limitations

impose critical constraints on what psychology studies can be done. Despite the many

challenges in the domain of mocap, there are many reasons why we believe that rich
capture of the human behaviour is valuable for social interaction research.

First, mocap data can be used to generate realistic yet well-controlled virtual character

animations stimuli (de la Rosa, Ferstl, & B€ulthoff, 2016). For instance, de la Rosa and

colleagues used mocap data to create a range of stimuli showing the actions which the

actors actually performed (‘fist bump’ and ‘punch’), but also ambiguous stimuli blending
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the two animations. Perception of these blended mocap stimuli could be tested in an

adaptation context (de la Rosa et al., 2016) or in the context of different facial identities

(Ferstl, B€ulthoff, & de la Rosa, 2017). Using a similarmethod, (Sacheli et al., 2015) applied

the same animation clip to virtual characters with different skin colours (white and black)
and found that a stronger interference effect on participant’s motion from an in-group VC

as compared to the outgroup one. These studies illustrate the value of using mocap and

virtual character technology to create experimental stimuli with precise control.

Second, capturing participantmotionmeans the VR environment can be programmed

to be responsive in real time,with both embodiment (see below) and realistic interactions

between the participant and other objects or characters. For instance, knowing the

participant’s head location means that a virtual character can be programmed to orient

their head and/or gaze towards participant’s head (Forbes, Pan, & Hamilton, 2016; Pan &
Hamilton, 2015) and to maintain an appropriate social distance by stepping back or

forward (Pan, Gillies, Barker, Clark, & Slater, 2012). The ability to link the behaviour of a

virtual character to the participant in real time also facilitated a series of studies on

mimicry in VR, where the virtual character copies participants’ head movements

(Bailenson & Yee, 2007; Verberne, Ham, Ponnada, & Midden, 2013), or both head and

torso movements (Hale & Hamilton, 2016).

Finally, motion capture allows the researcher to record natural and unconstrained

behaviours. This permits measures such as proxemics (McCall & Singer, 2015), approach
as a measure of trust (Hale, Payne, Taylor, Paoletti, & Hamilton, 2017), and imitation

(Forbes et al., 2016; Pan & Hamilton, 2015). For instance, McCall & Singer conducted a

study where participants in an HMD explored a virtual art gallery while two other VCs

(representing people the participant believed to be fair or unfair) remained in fixed

locations. The position and orientation of the participant’s head provided an implicit

‘proxemics’ measure of howmuch they liked each VC (McCall & Singer, 2015). Similarly,

participants can be placed in a virtual maze where they can approach different VCs for

advice to find awayout. The choice ofwhich virtual character for advice andwhether they
followed the advice (i.e., which door they then chose to go through) provided an implicit

measure of trust (Hale et al., 2017). Other studies recorded participants’ hand position

during their interaction with a virtual character as a measurement of imitation and found

that typical adults automatically imitated the virtual characters, but participants with

autism spectrum conditions imitated less (Forbes et al., 2016; Pan & Hamilton, 2015).

These studies illustrate the use of VR to record implicit social behaviours which may be

more revealing than traditional key-hit measures.

To summarize, the hardware required forVR laboratory typically comprises both visual
displays and motion capture systems, with a wide variety of solutions available for

different tasks and contexts (See also Supporting Information). While there are a number

of complex choices involved in getting the right hardware, using VR together with

advanced mocap solutions yields substantial benefits in capturing valid data and creating

realistic VR. However, the hardwaremust always be combinedwith appropriate software

to create a psychological experiment, and so we turn next to the domain of software.

Software

The software package which implements a VR experience with virtual characters is the

core component which creates a social experience and an immersive world. A variety of

commercial and open-source packages are available, but creating an immersive virtual

interactionwithin these can be amajor undertaking. Thepresent section does not attempt
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to review all current software packages as this is a rapidly changing field (see

Appendix S3), but rather we provide an introduction to the terminology of the field

and the critical issues which must be considered in developing a VR scenario in any

software package.
To introduce the reader to the range of what VR software can (and cannot) do, we

imagine a landscape of possible VR systems (Figure 2). In this landscape, we distinguish

betweendifferent types of virtual interaction on twodimensions – the level of interactivity
between participant and computer system (y-axis), and the level of graphical realism

which participant’s experience (x-axis). At one extreme, we can consider the movie

Avatar (Cameron, 2009) which has photorealistic characters but there is no potential to

interact with them as the story progresses (Figure 2A). At the other extreme, the

computer game PacMan has very simple pixelated characters which are highly responsive
to both key-hits and to each other (Figure 2B). This illustrates the difference between

graphical realism and interactivity.

PacMan also provides a good example of an important distinction in the domain of

virtual characters (VCs). Pacman itself is anAvatar, a characterwho is fully controlled by a

human being. The ghostswho chase pacman are described asAgents – characterswho are

fully controlled by algorithms (in Computer Games, this is often called ‘Non-Player

Character’, or NPC). While the word ‘avatar’ is sometimes used for any character that

looks ‘computer generated’, or any graphical representation of the user in the virtual
world, we argue that it should technically be reserved only for those characters which are

fully controlled in real time by another person. In between the two extremes of Avatar and

Agent lies the interesting domain of quasi-agents – characters which are partly

autonomous and partly controlled by a human. These are increasingly widely used in

Figure 2. The landscape of virtual interaction. We distinguish current technologies on two axis –
graphical realism and interaction dynamics. Examples to match each letter are given in the text.
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therapy contexts and gaming contexts. For example, characters in most popular

computer games and online worlds (e.g., FIFA game, World of Warcraft) will show some

behaviours automatically but other behaviours only when the user hits a key (Figure 2C).

In therapies which use VCs (Pan et al., 2012; Rizzo et al., 2015), a conversation agent is
typically used in which some actions (e.g., gaze, proxemics, gestures, smiles) are pre-

programmed while other aspects of the conversation are controlled by a therapist who

listens and watches, then pressing keys on a keyboard to trigger specific events

(Figure 2D). Such systems are described as ‘Wizard of Oz’ systems because the behaviour

appears to come from the virtual character but is actually driven by a human ‘wizard’.

Common psychological studies can also take their place in the interaction landscape.

Virtual games such as Cyberball (Williams & Jarvis, 2006) or multi-round economic games

(Hampton, Bossaerts, & O’Doherty, 2008; Yoshida, Seymour, Friston, & Dolan, 2010) in
which participants play against an algorithm fall on the lower left of the plot (Figure 2E).

Such games are interactive at a fixed time frame (there are only some time points where a

participant canpress a key) andwhich haveminimal graphics, butwhich nevertheless can

be very valuable in psychological research. Economic games can also be built into more

elaborate interfaces with virtual characters to determine how non-verbal behaviours

change decision-making (Gratch, Nazari, & Johnson, 2016).

Fully responsive systems have been built using veryminimal interfaces, such as a single

mouse and a pair of boxes moving on the screen (Auvray, Lenay, & Stewart, 2009), and
these can allow the study of minimal interactions (Figure 2F). Richer responsive systems

that implementmimicry are rare but can be used (Figure 2G). In contrast, studies of social

perception commonly use computer-generated characters (e.g., Jack & Schyns, 2015;

Todorov et al., 2008) but donot allowparticipants to have any interactionwith the figures

they see (Figure 2H). Thus, mainstream psychological studies tend to remain close to the

x-axis or close to the y-axis in the virtual interaction landscape.We argue below that there

is both potential andmore value inmoving further and creating psychological studieswith

greater responsiveness and realism.

The state-of-the-art and current limits

In our interaction landscape, we place live humans in the top-right hand corner with

perfect graphical realism and full responsiveness. An ideal VC system would inhabit the

same space, giving the experimenter both real-time responsiveness and high realism.

Here, we review how far current systems have got towards this goal.

Autonomous or semi-autonomous virtual agents are computer-generated characters
which can engage in realistic interactionswith a participant. These systems, built up from

decades of work, represent the cutting edge of creating realistic virtual agents. They can

register the gestures, body motion, and gaze of a user and generate in real time both the

verbal and non-verbal cues required to effectively communicate with the user, giving a

startling impression of realism. Some semi-autonomous agents have been designed to

enable therapy for conditions such as phobias (Pan et al., 2012) and PTSD (Rizzo et al.,

2015; Figure 2D). Such systems typically function with a human therapist acting as the

Wizard of Oz, both to monitor the progress of the therapy and to select appropriate
behaviours for the VC to show. Similar systems have been built to explore processes of

negotiation (Gratch, Devault, & Lucas, 2016) or mimicry (Hasler, Hirschberger, Shani-

Sherman, & Friedman, 2014).

Fully autonomous agents can also be built, in which a VC can conduct a brief

conversationwith a userwith no human control (Figure 2J). Such systems typically use an
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array of sensors to determine what the user is doing, including motion capture (see

above), speech recognition, face capture (Baltrusaitis, Robinson, & Morency, 2016),

acoustic speech analysis (Eyben, W€ollmer, & Schuller, 2010). Inputs from these systems

are fed into an AI model which determines the user’s goals and provides appropriate
outputs. The outputsmust be translated into speech and gestures using tools such as BEAT

(Cassell, Vilhj�almsson, & Bickmore, 2001) or the Virtual Human Toolkit (Gratch &

Hartholt, 2013). Each system tends to work within a limited domain of knowledge, as

defined by the semantic model, but can be fairly effective within this domain.

We review here some examples of the state-of-the-art in this area. First, the SEMAINE

project created four Sensitive Artificial Listeners (SALs) with different personalities: the

aggressive Spike, the cheerful Poppy, the gloomy Obadiah, and the pragmatic Prudence

(Schr€oder, 2012). All were autonomous agents and can interact with users in real time,
without a human operator. Second, the USC Institute for Creative Technologies

developed the SimSensei Kiosk, Ellie, an autonomous virtual human interviewer able to

engage users for a 15–25 min interaction where they would feel comfortable to share

personal information (DeVault et al., 2014). Ellie is designed to automatically assess user’s

mental health status and identify issues such as depression, anxiety, or post-traumatic

stress disorder. More recently, The ArticuLab at Carnegie Mellon University has designed

social aware robot assistant (SARA), a virtual character who is able to recognize both non-

verbal (visual and vocal) and verbal signals and utilizes AI to formher answer (Zhao, Sinha,
Black, & Cassell, 2016). SARA’s AI is motived by two goals: task (answering questions,

such as help the user to find directions) and social (maintaining a positive and engaging

relationship with the user). After a response is formed with its AI model, both verbal and

non-verbal behaviours are generated to allow a realistic interaction with the user. All of

these systems are focused on generating an emotional connection with the user.

A slightly different approach is taken by the team who developed an artificial agent

named Billie, which can converse with users using both gesture and speech. Billie’s

behaviour is driven by systems based on cognitive models of motor control and
mentalizing, including principles of active inference (Kahl & Kopp, 2017). The system is

able to create common ground in a simple communication task about personal

organization and diary entries and will ask for clarification if it does not understand or

interrupt politely if the user goes off-topic. As the implementation draws on ideas from

cognitive psychology, it also provides an example of how virtual agents can be used to test

psychological theories (Kopp & Bergmann, 2017).

The systems described above are at the cutting edge of current virtual agents, but still

have some limitations. Each system typically remains tied to a very specific social contexts
and can typically discuss only one or two pre-trained topics. The behaviours and gestures

which can be recognized and produced must be carefully specified by the researchers,

and most systems use only a small subset of the behaviours of a real person. Learning and

adaptability is not yet built in. Finally, most of these fully autonomous agents were only

tested with a simple non-immersive VR display (i.e., a computer screen) so that

participants’ facial expression can be tracked. To test the full effect of those autonomous

agents and really compare them to real-world social interaction, new ways of integrating

the tracking technology enabled multimodal approach and the immersive display need to
be explored. Overall, creating a general and fully responsive virtual agent remains a very

large challenge for the future (see below).
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The Munros – challenges in the implementation of VR

In the section above, we have set out the basic requirements of a social VR system and
considered where current psychological research fits in relation to such a system. Our

map of the VR landscape allows us to navigate the space of possible studies, but there are

still mountains to climb and potential pitfalls to avoid. Here,we set out to guide the novice

VR researcher beyond these basic foothills and provide the information needed to scale

the Munros. That is, we describe the technical and practical challenges which face a

researcher setting up a newVR laboratory, togetherwith some guidance for solving them.

As before, we focus on circumstances where research into human social interaction is

likely to be affected.

The challenge of self-embodiment

When a participant puts on an HMD, they lose sight of their own body. In some

experimental contexts, this does not really matter – a participant in an MRI scanner also

has very limited visual input from their own body and can still perform many

psychologically useful tasks. However, there is evidence that lack of embodiment can

lead to worse performance on a variety of tasks which make use of the self-image such as
mental rotation (Steed, Pan, Zisch, & Steptoe, 2016). Giving a participant a realistic and

believable experience of having a body can be critical to many studies. This can be

achieved through visual-proprioception synchrony (i.e., the virtual body or body parts are

where you expect your body to be), visual-motor synchrony (as you move your body, the

virtual bodymoves the sameway), or visual-tactile synchrony (as you experience touchon

part of your body, you see the same virtual body parts being touched at the same time).

Visual-tactile synchrony has been widely used without VR, in the rubber hand illusion

(Botvinick & Cohen, 1998), and the enfacement illusion (Tsakiris, 2008). The same
principles can be applied in VR, using an HMD and a live-feed video from a mannequin

being synchronously stroked as the participant’s own body (Petkova & Ehrsson, 2008), or

a virtual arm being synchronously stroked as the participant’s own arm (Slater, Perez-

Marcos, Ehrsson,& Sanchez-Vives, 2008).More recent studies use visual-motor synchrony

(usually in combination with visual-proprioception and sometimes visual-tactile syn-

chrony) to create feeling of embodiment. This typically means that the participant’s

movements must be captured with a motion tracking system and displayed in the VR

world in real time and in the appropriate spatial location. Wearing an HMD, participants
could look down to see their own virtual body and observe their virtual body moving in

time with their real body (Slater, Spanlang, Sanchez-Vives, & Blanke, 2010). To enhance

the illusion, often amirror is used so participants see ‘themselves’ moving in the mirror in

VR.

Once embodiment is established, it is possible tomanipulate the participant’s sense of

body in variousways. This includes changing the spatial location of the body (Slater et al.,

2009), the age of the body (Banakou, Groten, & Slater, 2013), and the race of the body

(Peck, Seinfeld, Aglioti, & Slater, 2013). Thesemethods open up a rich vein of research for
psychologists to investigate the sense of self andwe recommend (Maister, Slater, Sanchez-

Vives, & Tsakiris, 2014) as a review of this area. In practical terms, a variety of software

solutions are available to implement embodiment, but their success depends critically on

the quality of the motion capture and the time lags in the computers. For a full discussion

about the technical setup of VR embodiment, we recommend (Spanlang et al., 2014).
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The challenge of the uncanny valley

The concept of the uncanny valley was introduced by Mori, MacDorman, and Kageki

(2012) who suggested that there is a non-linear relationship between how human-like a

robot or virtual character looks, and howpeople perceive it. Specifically, he proposed that
characterswhich look nearly-but-not-quite human are judged as uncanny and are aversive.

More systematic studies suggest that an uncanny valley exists for still images morphed

between a human and robot appearance (MacDorman, 2006) but is not always present

when characters are animated (Piwek, McKay, & Pollick, 2014). It may be that

uncanniness arises when there is a disparity between the appearance of a character and

theway inwhich itmoves (Saygin, Chaminade, Ishiguro,Driver, & Frith, 2012), such that a

highly photorealistic human-like figure moving in a jerky fashion would be perceived as

more uncanny than a cartoon-like figure moving in the same way. These studies suggest
that a key requirement for creating believable virtual characters is to use smooth, realistic

motion and that it is not essential to use highly photorealistic virtual characters. A more

detailed review of this issue is provided here (de Borst & de Gelder, 2015).

The challenge of simulation sickness

Many users experience nausea during their VR experience, especially with HMD VR

systems. However, not all users experience simulation sickness to the same extent, and
certain applications cause more severe nausea than others. The main contributor of

simulation sickness is the conflict between the visual and vestibular systems –where the

user perceives they are moving with their eyes but not their body –which is the opposite

of the motion sickness felt on a car or train. One simple fix to this is to use ‘physical

navigation’ in which the user canmove around a large space on the same physical scale as

theVRworld, keepinguser’s visual andbodymotion consistent. This is often referred to as

‘room-scale VR’, and its use in research is constrained primarily by the size of the room

available to the researchers. Other contributing factors to simulation sickness in VRHMDs
including eye strain (the displays are very close to your eyes), latency (as you turn your

head, the imagehas a delay in updating), andhigh contrast images. The impact of these can

be reduced by changing the design of the VR environment, for example, limiting motion

speed or reducing the intensity of optic flow as the user moves.

Because many factors from both hardware and software contribute to simulation

sickness, it is hard to estimate the percentage of participants affected. In a recent study

where participants moved through a virtual maze with an HMD device (Hale et al., 2017;

study 2), three of 24 participants, or 12.5% terminated the task before completion due to
simulation sickness. A large-scale study recruited 1,102participants to go through anHMD

experience and found that the dropout rate was 6.3% for 15 min and 45.8% for 60 min

(Stanney, Hale, Nahmens, & Kennedy, 2003). For practical purposes, simulation sickness

can be measured with the Simulation Sickness Questionnaire (Kennedy, Lane, Berbaum,

& Lilienthal, 1993), and further discussion of the issue can be found here (Oculus, 2017).

The challenge of presence
Before putting on a VR headset, it seems impossible to belief that a VR world could seem

like the real thing, and indeed someVR scenarios aremuchmore believable and ‘real’ than

others. The term ‘presence’ is often used to describe and evaluate the experience of VR

making you feel like you are somewhere else (Sheridan, 1992; Usoh, Catena, Arman, &

Slater, 2000), and ‘co-presence’ or ‘social presence’ is used to describe the experience of

12 Xueni Pan and Antonia F. de C. Hamilton



being with someone else (Casanueva & Blake, 2001; Garau et al., 2003). In 2009, Slater

proposed the term ‘place illusion’ for ‘the strong illusion of being in a place in spite of the

sure knowledge that you are not there’. In this context, the term ‘immersion’ describes

the technical ability of a system to support sensorimotor contingency, forming the
framework inwhich place illusion could occur. The place illusion defines user’s response

to the system, taking into account the possibility that different people could have different

experiences of the place illusion in the same system.

The same paper (Slater, 2009) also proposed to use the term ‘plausibility illusion’ for

the illusion that events happening in VR are real and that in order for the plausibility

illusion to occur, the VR events should be relating personally to the user. This means the

characters and items in the VRworld respond to the user as the user interacts with the VR

world (rather than just watching a 3D movie). For instance, a situation that triggers
plausibility illusion could be when someone entering a virtual bar, a virtual character

approaches them and starts a conversation (Pan et al., 2012). In a typical setup of an

experimental studyusing virtual characters inVR, the strength of the place illusion is often

influencedby theVRdisplay technology,whereas the strength of theplausibility illusion is

influenced by the animation and interactivity of the virtual characters.

As both place and plausibility illusions are subjective concepts, a variety of

questionnaires have been developed to measure them (Usoh et al., 2000; Witmer &

Singer, 1998). These ask questions such as ‘To what extent did you have a sense that you
were in the same place as person X?’ and ‘To what extend did you have a sense of being

part of the group?’ Individual differences in response could be caused by differences in

personality, inmultisensory integration (Haans, Kaiser, Bouwhuis, & IJsselsteijn, 2012), in

prior experience of gaming/VR, or other factors. Further researchwill be needed to define

these fully. A key point to note is that, while current VR systemsmay give a strong sense of

place and presence, they still differ substantially from real life and no participants are

confused between the two. Thus, for studying phenomena which rely on the belief that

another person is present (e.g., the audience effect), it may be valuable to tell participants
that a VC is actually driven by another person (even if it is not). Further, although virtual

characters generally are perceived to bemore plausible when they have more human-like

animations and are programmed to be more interactive, higher level of graphical realism

of those characters does not necessarily increase the level of co-presence.

The challenge of ethics

Psychology researchers have substantial experience in considering the ethical issues
surrounding research, and studies with human participants are typically scrutinized by an

ethics panel before data can be collected. VR research in psychology is subject to the same

constraints, but some particular issues are worthy of examination. It is often suggested

that one of VR’s benefits is that it can be used to recreate dangerous or stressful situations

to explore people’s reaction, which would otherwise very difficult to study or even

impossible. For instance, to test participant’s fear responses, VR was used to create a

‘room101’with disturbing events such as spiders crawling around, explosions, and a floor

collapsing (McCall et al., 2015). Studies from the Slater group include a recreation of the
famous Milgram experiment where participants had to execute fatal electric shots to a

virtual character (Slater et al., 2006); a violent fight scenario (Slater et al., 2013) and a

moral dilemma with an active shooter (Pan & Slater, 2011). In the latter, participants

thought their task was to operate a lift in a gallery in VR, but later were shocked to be

confronted with a tough decision: A gunman entered the lift and started shooting, and
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within a few seconds they had to choose whether they should push a button to save five

people but sacrificing one other, who would otherwise be fine.

It can be argued that putting participants through these scenarios in VR is the closest

we can get to study their behaviours in a similar real-life situations, as participants react to
virtual events and virtual characters as if theywere real. Nevertheless, participants remain

aware that there was no real danger nor were there real consequences (nobody is really

hurt as a result of participants’ decisions). However, as the VR hardware gets better in

supporting ‘immersion’ and the virtual characters both appear and behavemore andmore

realistic, the boundary between virtual and real is becoming blurrier. It is therefore

particularly important to provide full information before participants take part, to make

participants aware of their right to withdraw and to emphasise how to withdraw (e.g.,

close your eyes and say STOP to leave the virtual world and the experimenterwill stop the
study). Further, as various studies have showed that experiences in VR could lead to

change in participants’ behaviour and attitude in their real life (Banakou, Hanumanthu, &

Slater, 2016; Tajadura-Jim�enez, Banakou, Bianchi-Berthouze, & Slater, 2017) and can even

create a false-memory in children (Segovia, Bailenson, Segovia, & Bailenson, 2009), the

implication of VR experiences should be carefully discussed with participants.

A second potential ethical issue for studies in VR concerns personal disclosure,

because some studies suggest that people may be more willing to disclose personal

information (including abuse or trauma) to a virtual character than to a real person (Lucas,
Gratch, King, & Morency, 2014; Rizzo et al., 2015). This can be valuable in some

treatment scenarios, but is also a risk. Confidential data collected from participants in VR

could cause privacy concerns to a greater extent than data collected with traditional

methods. For instance, in VR data collection often includes conversation exchange with

avatars, gaze, and mocap data. These sensitive and personal information must be dealt

with caution with relevant data protection measurements in place. More broadly, putting

a person in a stressful situation to see how they behave could change their perception of

themselves – for example, someone who finds themselves too panicked to help in a VR
test of prosocial behaviour could potentially leave the study feeling like a ‘bad person’.

Fully informed consent and full debrief procedures may help here, but careful

consideration of these issues and how to mitigate them is vital. For more detailed

discussion of ethical issues aroundVR in gaming, research, and therapy contexts,wepoint

the reader to Brey (1999) and Madary and Metzinger (2016).

Finally, despite all the ethical challenges, wemust also not forget the great potential of

VR to have a positive impact on our real life in various aspects, including science,

education, medicine, and training. For more on this, we point the reader to Slater and
Sanchez-Vives (2016).

The challenge of experimental design

Traditional studies in cognitive psychology or psychophysics may have participants

perform the same type of trial dozens or hundreds of times over, to obtain precise

measures of performance. In contrast, typical VR scenarios have a relatively short duration

(it is hard to maintain presence over a long time) and participants might experience just
one or two critical events. Thus, VR can call for very different kinds of experimental

design. A further challenge arises in interactive VR, where a virtual character responds to

the behaviour of a participant and the two take turns in a conversation. In such a scenario,

each participant may experience a slightly different sequence of events, and it does not

necessarily make sense to average all participants together. For example, in studies of
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negotiation training (Gratch, Devault, et al., 2016) and of bargaining (Gratch, Nazari,

et al., 2016), participants learn to negotiate with a virtual character but because the

virtual character is responsive to the participant, each person will experience a slightly

different set of offers in the game. This means different participants may reach different
bargaining outcomes, depending on how they started the game and what decisions they

made. Thus, data cannot necessarily be analysed by the typical method of averaging all

participants together.

In some cases, it mightmake sense to treat the dyad (human + virtual character) as the

unit of analysis, comparing how dyads reach one decision or another. An alternative may

be to draw on research in neuroeconomics and develop a model of the human-VC

behaviour in which the values and rewards that the human and VC assign to different

options can be modelled on a trial-by-trial basis (Hampton et al., 2008). However, for
complex negotiations, there may not be suitable models available. A third option,

applicable to non-verbal behaviour more than to negotiation, may be to develop different

analysis strategies which capture specific patterns of action in the human-VC dyad. For

example, wavelet coherent methods (Schmidt, Nie, Franco, & Richardson, 2014) and

cross-recurrencemethods (Dale& Fusaroli, 2014) have proven valuable in quantifying the

behaviour of human–human dyads and might also be useful in modelling human-VC

dyads. For all these approaches, more work will be needed to develop appropriate

experimental designs and analysis methods, suitable for the study of dynamic interactions
between humans and VCs.

The challenges (and benefits) for theory

Advances in psychology are often driven by the development of theories and the

rigorous testing of these theories against experimental data. Here, VR can provide

both a challenge and a benefit. VR challenges our theories because it requires a

precise and well-specified theory which can be implemented in an artificial system.
For example, a theory might suggest that mimicry leads to prosocial behaviour

(Lakin, Jefferis, Cheng, & Chartrand, 2003), but to build mimicry into a VR system,

we must answer much more detailed questions – how fast does mimicry occur?

which actions are mimicked? how accurately etc.? By building a VR system which

implements mimicry, we can begin to address these questions and test the theory in

detail (Hale & Hamilton, 2016). Similarly, theories might suggest that joint attention

is implemented in particular brain systems, but testing this required a VR

implementation of joint attention (Schilbach et al., 2010), which requires us to
specify the duration of mutual gaze between the participant and VC, the timing of

the looks to the object, and the contingencies between these behaviours. Thus, VR

requires a precise and well-specified theory of the psychological processes under

investigation.

More generally, the architecture of a ‘virtual human’ may have commonalities with

our models of cognitive processing in real humans (Figure 3). Where a real person

has a visual system, a virtual human must have machine vision and sensors to

interpret the actions of their partner. Where a real person has a motor system, a
virtual human must have a control policy to determine which actions to execute and

when. And where a real person has brain systems for theory of mind, decision-

making, affect sharing or reward processing, a virtual human might need to draw on

similar systems. Just as research in machine vision and vision sciences can use similar

or different computational models, so research into other aspects of human
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performance may (or may not) find parallels in the systems needed to implement

realistic virtual behaviour. Finding where these parallels are and which are important

will be a valuable endeavour.

To give a concrete example, Kopp and Bergman consider a number of possible

cognitive models of speech and gesture production, before describing how these can be
implemented in a virtual character. Examination of the behaviour of the character can be

combined with simulations and behavioural data to both build better VR and test models

of gesture control (Kopp & Bergmann, 2017). Thus, using VR imposes rigour on our

psychological theories – a sloppy or weakly specified theory cannot be implemented in

VR, whereas a precise theory will be able to guide the creation of good VR and can be

tested at the same time. While this is a large challenge, achieving it will bring substantial

benefits for the field. In particular, it represents an important step towards our final

challenge.

Mons Olympus – the big challenge

As a guide to establishing a VR laboratory, our paper has thus far provided a map of the

available technologies and a brief overview of common difficulties which can be

avoided with care. We hope this outline will help researchers understand the
practicalities of how to do VR research, but also highlight why one should (or should

not) use VR in the study of human social behaviour. Knowing the boundary conditions

of what a VR setup can achieve is critical in knowing where this technology can be of

use. With these constraints in mind, the final section of this study examines the biggest

Figure 3. The human-virtual agent loop. Colour coding indicates how human cognitive processes have

parallels in the control of virtual agents.
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challenge in social VR research – the Mons Olympus of the field – building a fully

interactive virtual human.

Imagining a VR Turing test

The original Turing test (Turing, 1950) was proposed as a way to determine if a computer

has achieved human-like intelligence. It is typically implemented in a chatroom

environment, where testers communicate with a person or a computer via the medium

of text. The tester is asked to determine if the being in the other room is a human

(pretending to be someone else) or a computer (pretending to be a human). Saygin,

Cicekli, and Akman (2000) provide a fascinating history of the Turing test. In recent years,

the Loebner prize contest has been held to compare chatbots which attempt to convince
judges that they are human. A chatbot recently ‘passed’ this test, albeit using tricks

including pretending to be a child from a different country, rather than by showing adult

levels of behaviour (You, 2015). It is also possible for some non-verbal systems to

effectively mimic the behaviour of humans. Participants in an interactive gaze study were

asked to judge if their interaction partnerwas human or computer (Pfeiffer, Timmermans,

Bente, Vogeley, & Schilbach, 2011), and their performance was close to chance, at least

when they believed the person was attempting to deceive them.

Building on these, it is possible to imaging a VR version of the Turing test, in which
testers determine if a virtual character has bothhuman intelligenceandhumannon-verbal

behaviour. For example, participantsmeet a character in aVR space andmust determine if

that character is an avatar (controlled in real time by a human next door) or an agent

(controlled entirely by a computer). Passing the VR Turing test seems at first glance to be

much more challenging than a text-based Turing test. But how hard would it really be? In

particular, could a VR Turing test be passed with a few hacks, putting together some

previously recorded behaviours, maybe driven by some clever machine-learning

algorithms, to trick users into believing they are interacting with a real person? Or, on
the other hand, is the problem of passing the VR Turing test really a problem that is AI

complete – that is – a problem which cannot be solved until we have placed the full

intelligence of a real human into a computer system.

Part of the solution to this problem must lie in constraining who the VR system is

attempting to emulate – it seems easier to emulate a person who is very unlike the judges

or may have good reasons to not answer questions, than it would be to emulate a friend or

colleague. Like the Eugene chatbot which passed a Turing test by emulating a Ukrainian

boy (You, 2015), current and foreseeable VC systems can potentially do a good job of
simulating human behaviour in a narrow field of knowledge and a narrow range of

emotional expressiveness. But developing VC systems which demonstrate wider

knowledge and more meaningful expressiveness will be valuable for theories of social

cognition in two ways. First, we can consider which aspects of social behaviour can be

implementedwith simple, low level algorithms (tricks) andwhich requiremore complex

processing of emotions ormental states. And second,we can dissect the algorithmswhich

succeed in creating good VR characters to determine what makes them work.

Finally, if a believable VR character can be built, even for a limited field of knowledge,
this would have enormous utility across a wide range of domains. Teaching and therapy

are areas where VR characters are already being used but retail, customer service and

business might also make use of these. It is for psychologists to make sure that our

understanding of real human interactions keeps pace with the developments in artificial

human interactions so that these two fields can gain maximum benefit from each other.
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Conclusions

In this paper,wehave lead the reader fromabasic outline of the equipment needed for VR,
across the landscape of possible experiments and glimpsed the future of virtual humans.

We hope this target article will spark debate about the use of VR in psychology research

and practice and act as a primer for researchers interested in exploring this exciting new

domain.
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