
ESA: A CLIM Library for Writing Emacs-Style Applications

Robert Strandh
LaBRI, Université Bordeaux 1

351, Cours de la Libération
33405 Talence Cedex

France
strandh@labri.fr

Troels Henriksen
DIKU, University of Copenhagen

Universitetsparken 1, Copenhagen
athas@sigkill.dk

David Murray
ADMurray Associates

10 Rue Carrier Belleuse, 75015 Paris
david.murray@admurrayassociates.com

Christophe Rhodes
Goldsmiths, University of London

New Cross Road, London, SE14 6NW
c.rhodes@gold.ac.uk

ABSTRACT
We describe ESA (for Emacs-Style Application), a library
for writing applications with an Emacs look-and-feel within
the Common Lisp Interface Manager. The ESA library
takes advantage of the layered design of CLIM to provide a
command loop that uses Emacs-style multi-keystroke com-
mand invocation. ESA supplies other functionality for writ-
ing such applications such as a minibuffer for invoking ex-
tended commands and for supplying command arguments,
Emacs-style keyboard macros and numeric arguments, file
and buffer management, and more. ESA is currently used
in two major CLIM applications: the Climacs text editor
(and the Drei text gadget integrated with the McCLIM im-
plementation), and the Gsharp score editor. This paper
describes the features provided by ESA, gives some detail
about their implementation, and suggests avenues for fur-
ther work.

1. INTRODUCTION
The Common Lisp Interface Manager (CLIM) [3] is spec-
ification of a substantial library for user interaction with
Common Lisp applications. CLIM has a layered design,
and defines a fairly large collection of interacting protocols
that together make up the full library. Thanks to this lay-
ered approach, it is straightforward to add functionality to
CLIM by defining new classes and new methods on existing
generic functions: provided that they respect the defined
protocols, such extensions will integrate seamlessly into the
rest of CLIM. Customization of the standard behaviour of
CLIM components is likewise straightforward, using stan-
dard CLOS means such as subclassing and auxiliary meth-
ods on protocol generic functions as in [1]. For more infor-
mation on CLIM, see for example [2, 4, 5].

ESA is a library for CLIM that assists in writing Emacs-

style applications. The central distinguishing feature of an
Emacs-style application, for our purposes, is that it uses
short sequences of keystrokes as the default method of in-
voking commands, and only occasionally requires the user to
type the full name of the command in a minibuffer. A spe-
cial keystroke (M-x) is used to invoke commands by name.
This interaction style is substantially different from the one
provided by CLIM by default, and therefore required us to
write a different CLIM top level. Fortunately, CLIM was
designed to make this not only possible but fairly straight-
forward, as the implementation of a replacement top level
can build on the protocol layers beneath, just as the default
top level is built.

The ESA library provides other features that are helpful in
the creation of Emacs-style applications; these features need
not be used, but are available if desired. A client applica-
tion may choose to use an info pane1 to display information
about an associated master pane, such as the name of a
buffer being edited, whether application state needs saving,
or the position of the cursor in a buffer. Other optional com-
ponents include a protocol for file input/output with ver-
sioning support; a framework for reading and writing buffers
(with application-defined content) to external streams; and
support for displaying command and keystroke documenta-
tion on-demand. However, we wish to emphasize that, for
our purposes, the defining characteristic of an Emacs-style
application is not its function (such as editing text files or
text buffers) but its mode of interaction.

Two major applications already use the ESA library, namely
Drei, the Emacs-like editor component distributed as part of
McCLIM [7] (and its extension to a standalone application,
Climacs [6]) and Gsharp, an editor for music scores. Thanks
to the ESA library, the look and feel of these applications is
similar, even though they manipulate very different objects.
Other applications that use the ESA library have been writ-
ten or are in the process of development, such as a directory
editor, a mail client, and an info documentation browser.

ESA is developed and distributed as part of McCLIM2, but

1a “mode line” in Emacs terminology.
2See http://common-lisp.net/project/mcclim/ for in-
structions on obtaining McCLIM and ESA.

http://common-lisp.net/project/mcclim/

has been run on other CLIM implementations in the past,
and, to the authors’ knowledge, it should still be possible to
do so. ESA is designed as a portable layer that should run on
top of any CLIM implementation, using only exported CLIM
symbols, though this is unfortunately not always possible.

The rest of this paper gives more details about each of the
components making up the ESA library: section 2 intro-
duces the customized top level and command loop; section
3 discusses the support for keystroke handling using CLIM
command tables, and describes the command tables avail-
able for use by client applications. Sections 4 and 5 describe
the support for multiple windows and for buffer handling,
respectively, following which we demonstrate an example
Emacs-style application, and conclude with a discussion of
the scope for further work.

2. TOP LEVEL
A key part of CLIM is the top level which executes a com-
mand loop that, in each iteration, acquires a command and
any arguments that the command might need, and finally
executes the command.

CLIM provides a default top level that prompts the user for
a command to be executed. The user can satisfy this request
by typing the name of a command (with completion) into an
interactor pane; by selecting an entry in a menu; by issuing
a gesture associated with the command; or by clicking on
a presentation that has a presentation-to-command transla-
tor associated with it. Command arguments are acquired
in a similar way. This default top level works fine when
gestures are mouse gestures or single keystrokes using some
modifier such as control or meta, but is less well adapted
when commands are to be invoked by keystrokes associated
with ordinary characters and when sequences of keystrokes
should be used, as in Emacs.

When the CLIM function run-frame-top-level is invoked
on an application frame, CLIM executes the top-level func-
tion associated with the frame. What top-level function
is associated with a particular frame is determined by
the :top-level option given to the standard CLIM macro
define-application-frame. When no such initarg is given,
CLIM uses the generic function default-frame-top-level

as the top-level function for the frame. ESA applications
must give the :top-level option with a value of (esa-top-
level) in order to use the specific top-level function pro-
vided as part of the ESA library.

The ESA top level accumulates a sequence of keystrokes
until that sequence is associated with a command. To de-
termine whether that is the case, the top level searches a
hierarchy of command tables (see section 3 for the details of
this mechanism).

The ESA top level is also responsible for accumulating
Emacs-style numeric arguments that are used to modify the
behavior of commands. CLIM already contains a mecha-
nism for calling commands with numeric arguments. Before
a command is invoked, the value of the variable *numeric-

argument-marker* is replaced in the list of arguments to a
command by the numeric argument given by the user (the
default is 1). ESA extends the CLIM mechanism by a second

marker, *numeric-argument-p*, a Boolean value that indi-
cates whether a numeric argument was given by the user at
all. This extension allows ESA applications to tell the differ-
ence between the case where a numeric argument of 1 was
explicitly given, and the case where no numeric argument
was given.

Finally, the ESA top level contains support for execut-
ing Emacs-style keyboard macros, whereby a sequence of
keystrokes is recorded for later playback. This mechanism
is very hard to implement unless there is support in the
top level for it, because special treatment is required for
keystrokes that start and end the recording.

2.1 Command Arguments
The custom top-level function provided by ESA is integrated
into CLIM in that it uses the CLIM function accept to
acquire commands and arguments. The ESA library cus-
tomizes the stream-accept generic function called by ac-

cept so that commands and arguments are prompted for in
the ESA minibuffer.

The minibuffer’s version of stream-accept calls the stan-
dard prompt-for-accept function, but then calls accept-

1-for-minibuffer, an ESA-internal function, rather than
the CLIM function accept-1. We must use our own func-
tion as we wish to turn input sensitization off, and accept-1

does not allow this.

There is additional work required to support accepting com-
mands for the com-extended-command command (invoked
by M-x). ESA provides its own command-parser and partial-
command-parser to integrate well with ESA’s top level; how-
ever, there is no standard way to discover, given a command
name, what arguments that command requires, and conse-
quently the implementation of these command parsers are
sensitive to the internal implementation details of the CLIM
implementation.

3. COMMAND TABLES
CLIM command tables support both nesting and inheri-
tance. Inheritance is used for code factoring as usual. An
entry in a command table can be associated with a name in
a menu or with a single keystroke, usually with some modi-
fier key such as control or meta. The value of an entry can
be either a command to be executed, or another command
table for nesting. Multiple keystrokes such as required by
Emacs-style applications are not supported, however.

The Emacs-style interaction mode assumes that the vast
majority of all commands are to be invoked by sequences
of keystrokes that may be ordinary characters, and that on
the rare occasion that a command is needed that is not as-
sociated with a sequence of keystrokes, a special keystroke
(M-x) must be used as a prefix. To provide such a style of
interaction, ESA uses CLIM command-table nesting with a
level of nesting for each single keystroke in the sequence
used to invoke a command. The ESA function set-key

takes a CLIM command, a command-table, and a sequence
of keystrokes to be used to access the command in the com-
mand table. It follows entries in the command table for each
keystroke in the sequence and builds nested command tables
as necessary. Typically, an ESA application will also use the

(in-package #:esa)

(defclass example-info-pane (info-pane) ()
(:default-initargs :height 20 :max-height 20 :min-height 20

:display-function ’display-info :incremental-redisplay t))

(defun display-info (frame pane)
(declare (ignore frame))
(let ((master (master-pane pane)))

(format pane "Pane name: ~S; Accumulator: ~D" (pane-name master) (counter master))))

(defclass example-minibuffer-pane (minibuffer-pane) ()
(:default-initargs :height 20 :max-height 20 :min-height 20))

(defclass example-pane (esa-pane-mixin application-pane)
((contents :initform "hello" :accessor contents)
(counter :initform 0 :accessor counter)))

(defmethod (setf contents) :after (new-contents (pane example-pane))
(setf (pane-needs-redisplay pane) t))

(define-application-frame example (esa-frame-mixin standard-application-frame) ()
(:panes
(window (let* ((my-pane (make-pane ’example-pane :width 600 :height 200 :display-function ’display-my-pane

:command-table ’global-example-table :name "Example Pane"))
(my-info-pane (make-pane ’example-info-pane :master-pane my-pane :width 600)))

(setf (windows *application-frame*) (list my-pane))
(vertically () (scrolling () my-pane) my-info-pane)))

(minibuffer (make-pane ’example-minibuffer-pane :width 100)))
(:layouts (default (vertically (:scroll-bars nil) window minibuffer)))
(:top-level (esa-top-level)))

(defun display-my-pane (frame pane)
(declare (ignore frame))
(with-text-size (pane 70) (princ (contents pane) *standard-output*)))

(define-command-table global-example-table :inherit-from (global-esa-table keyboard-macro-table help-table))

(define-command (com-goodbye :name t :command-table global-example-table)
((count ’integer :prompt "How often"))

"Say \"goodbye\""
(setf (contents (current-window)) (format nil "goodbye~[x0~;~:; x~:*~D~]" count))
(incf (counter (current-window)) count))

(set-key ‘(com-goodbye ,*numeric-argument-marker*) ’global-example-table ’((#\c :control) #\g))

(define-command (com-hello :name t :command-table global-example-table)
((count ’integer :prompt "How often"))

"Say \"hello\""
(setf (contents (current-window)) (format nil "hello~[x0~;~:; x~:*~D~]" count))
(incf (counter (current-window)) count))

(set-key ‘(com-hello ,*numeric-argument-marker*) ’global-example-table ’((#\c :control) #\h))

(defun example (&key (width 600) (height 200))
"Starts up the example application"
(let ((frame (make-application-frame ’example :width width :height height)))

(run-frame-top-level frame)))

Figure 1: Code for the example application of section 6.

CLIM macro define-command with the keyword argument
:command-table to add the command to the same command
table that was used with set-key. This way, using a par-
ticular command table, the command can be invoked either
with the associated keystroke sequence or as an extended
command using M-x.

To allow for modular applications, the ESA library supplies
several different CLIM command tables that may be used
by applications through the use of the command-table in-
heritance mechanism provided by CLIM. The table global-

esa-table contains commands for quitting the application
(C-x C-c), and for invoking an extended command in the
minibuffer (M-x). The help-table contains useful help com-
mands such as describe-key-briefly (C-h c), where-is

(C-h w), describe-key, describe-command, and apropos.
The keyboard-macro-table contains commands for defining
and executing keyboard macros with the usual Emacs key
bindings. Finally, the esa-io-table contains useful com-
mands for file input/output, such as find-file (C-x C-f),
find-file-read-only (C-x C-r), save-buffer (C-x C-s),
write-buffer (C-x C-w), and for toggling the buffer read-
only flag (C-x C-q).

To allow for applications that might have different contexts
in which different sets of commands and keystrokes may
be applicable, the ESA library provides a generic function
find-applicable-command-table to be applied to an ap-
plication frame. The default method returns the command
table of the current window. More complex applications can
choose to define methods on this generic function that return
specific command tables depending on the current context,
such as the position of an application-specific cursor.

4. MULTIPLE WINDOWS
A typical Emacs-style application can contain an arbitrary
number of windows for displaying application data. The
class esa-frame-mixin provides a slot that contains a list
of such windows. Applications that need to manipulate an
arbitrary number of such windows typically define a CLIM
application frame that inherits from this class. By conven-
tion, the first window in this list is the current window, i.e.
the one to which keystrokes are to be delivered. The win-
dows of application may inherit from the esa-pane-mixin

class that provides a default command table for the pane.

4.1 Help Streams
In addition to supporting multiple application windows, the
ESA library provides for an application to display documen-
tation about its commands and keystrokes, in a manner sim-
ilar to help invoked by C-h in Emacs. The default location
for this help to be displayed is in a window stream created
with the CLIM function open-window-stream, though this
is customizeable by the application using the help-stream

generic function (see figure 4 for an example of this).

However, the default implementation suffers from the fact
that there is no standard way within CLIM to share input
buffers between multiple frame-manager windows: there is
standardized support for an :input-buffer initarg to ex-
tended input streams, but no standard means for acquiring
such a buffer. The ESA implementation uses internals, from
Silica (the windowing substrate for one CLIM implementa-

tion) or McCLIM, to get a handle on the input buffer of
the parent application to pass as the value for the :input-

buffer initarg.

5. BUFFERS AND FILES
Applications that use the ESA library may choose to use the
esa-buffer abstraction. This abstraction is useful for appli-
cations that load the contents of a file into some arbitrarily
complex buffer data structure. This abstraction provides
functionality such as generic functions for creating empty
buffers, for creating a buffer by reading from a stream, for
saving the contents of a buffer to a stream, and for associat-
ing the name of a buffer (which is then typically displayed in
an info pane) with a file name that is used to fetch and store
its contents. Other convenient functionality is provided by
this abstraction such as the file name associated with the
buffer, whether the buffer needs saving, and more.

The ESA library supplies and uses a generic function called
buffers that is applied to an application frame, but does
not supply any default method on it. Applications are free
to store an explicit list of buffers in each application frame,
or to use any other method such as storing buffers in CLIM
views, and only explicitly storing the views.

The esa-io package can be used by applications for in-
put/output between buffers and files. Naturally, ap-
plications must define methods for reading and writing
application-specific data, but the package supplies useful
commonalities such as commands for loading files and saving
buffers (that call application-specific routines), functionality
for checking whether a buffer needs saving, and support for
file versioning.

6. EXAMPLE APPLICATION
The ESA library provides an example application that can
be used as a skeleton for real applications. It is a fully-
functional application but with a very simple buffer struc-
ture. The example can be found at the end of this paper.
It contains a single application pane with an associated info
pane, and a minibuffer pane as usual. This very simple ap-
plication has a single slot in the application frame itself that
contains the application-specific data to be manipulated, so
does not need multiple buffers or multiple windows.

In this application, the Hello and Goodbye commands ac-
cept an integer argument that, if invoked by keystrokes,
is given by the numeric argument if any (or 1, if no nu-
meric argument is provided); the application defines its
own command table that inherits from global-esa-table,
keyboard-macro-table and help-table, giving this simple
application extended command processing, keyboard macros
and online documentation respectively.

7. FUTURE WORK
We intend to supply complete documentation of the ESA
library (for partial documentation, see appendix A), and to
include a more complex example application.

One immediate prospect for future work on the library is to
provide a means for applications to dynamically specify the
contents of the application menu-pane in a similar manner to

the way in which they may currently specify the applicable
command table. At present, the menu pane’s contents are
static (though submenus are dynamically generated), and
so it is not currently possible to achieve mode-specific menu
entries.

As we find more commonalities between Emacs-style CLIM
applications, we plan to include them into the ESA library,
probably as separate packages to allow for applications the
flexibility of using these commonalities, providing their own
equivalent functionality, or not using them at all.

8. REFERENCES
[1] S. E. Keene. Object-Oriented Programming in Common

Lisp. Addison-Wesley, 1988. ISBN 0-201-17589-4.

[2] S. McKay. CLIM: The Common Lisp Interface
Manager. Communications of the ACM, 34(9):58–59,
1991.

[3] S. McKay and W. York. Common Lisp Interface
Manager Specification, 1994.
http://bauhh.dyndns.org:8000/clim-spec/.

[4] R. Möller. User Interface Management Systems: The
CLIM Perspective. online, 1998.

[5] R. Rao, W. M. York, and D. Doughty. A guided tour of
the Common Lisp interface manager. ACM SIGPLAN
Lisp Pointers, 4(1):17–37, 1990. Updated 2006 by
Clemens Frühwirth.

[6] C. Rhodes, R. Strandh, and B. Mastenbrook. Syntax
Analysis in the Climacs Text Editor. In International
Lisp Conference Proceedings, 2005.

[7] R. Strandh and T. Moore. A Free Implementation of
CLIM. In International Lisp Conference Proceedings,
2002.

APPENDIX
A. API REFERENCE
In this appendix, we briefly summarize the facilities pro-
vided by the ESA library that are most useful for producing
an Emacs-style application. There are other hooks for cus-
tomization in the full library.

Function esa-top-level frame &key command-parser
command-unparser partial-command-parser prompt

This function is suitable to pass as the first element of
the form argument to the :top-level option in define-

application-frame. The prompt argument is used as the
value for *extended-command-prompt*.

Special Variable *numeric-argument-marker*

Special Variable *numeric-argument-p*

The values of these variables can be included in partial com-
mands given to set-key. Before the command is invoked,
those values will be replaced by the numeric argument given
(default 1) and a Boolean value indicating whether an ex-
plicit numeric argument was given, respectively.

Function set-key command table gestures

This function is used to associate a command with a se-
quence of keystrokes in a particular command table. Nested
command tables will be created as necessary.

Command com-extended-command

This command is associated with the M-x key. Its role is to
acquire (through the use of the CLIM accept function) the
name of a command and the arguments to that command,
and then execute that command.

Special Variable *extended-command-prompt*

This variable contains the string used to prompt the user
for an extended command. The default value is "Extended

Command: ", and can be altered by using the :prompt key-
word argument to esa-top-level.

Command Table global-esa-table

Command Table help-table

Command Table keyboard-macro-table

Command Table esa-io-table

These command tables contain commands (and keyboard
sequences for invoking them) for features that typical ESA
applications might want to include.

The global-esa-table contains the com-quit command
(bound to C-x C-c) and the com-extended-command com-
mand (bound to M-x).

The help-table contains the com-describe-briefly com-
mand (C-h c) which prompts for a key and shows the
command it invokes, the com-where-is command which
prompts for a command name, and shows the key that
invokes it (C-h w), the com-describe-bindings command
which gives a list of commands and associated keystrokes in
the currently applicable command table (C-h b), the com-

describe-key command that displays documentation for
the command invoked by a keystroke sequence (C-h k), the
com-describe-command that gives documentation for a com-
mand (C-h f), and the com-apropos command which shows
commands with names that match a list of given words (C-h
a)

The keyboard-macro-table contains the traditional Emacs-
style keyboard macro commands com-start-kbd-macro (C-
x (), com-end-kbd-macro (C-x)), and to invoke the macro
the com-call-last-kbd-macro (C-x e).

The esa-io-table contains the commands com-find-file

(C-x C-f), com-find-file-read-only (C-x C-r), a com-
mand com-read-only which toggles the read-only flag
of a buffer (C-x C-q), com-set-visited-file-name which
prompts for a new file name for the current buffer (no as-
sociated keystroke sequence), com-save-buffer (C-x C-s),
and com-write-buffer (which prompts for a file name and
writes the buffer to that file) (C-x C-w).

http://bauhh.dyndns.org:8000/clim-spec/

Generic Function find-applicable-command-table frame

This generic function returns the currently applicable com-
mand table for an application frame. A default method on
this generic function is supplied that return the command
table associated with the current window. Client code typ-
ically specializes this function to return different command
tables in different contexts.

Generic Function help-stream frame title

This generic function opens a help stream for the frame with
the title given. It is called by help commands that require
substantial output to display help information.

Standard Class esa-frame-mixin

Standard Class esa-pane-mixin

The esa-frame-mixin class is used by client code to mix
into application frames for Emacs-style applications. It pro-
vides a slot that stores a list of the windows that are used
by the application (accessed using the windows generic func-
tion). It also provides other useful functionality such as a
method on find-applicable-command-table that returns
the command table of the current window.

The esa-pane-mixin class is used by client code to mix into
application panes of an Emacs-style application. It provides
a command table for the pane.

Standard Class info-pane

Standard Class minibuffer-pane

The info-pane class is an application pane that can be used
to display information of another pane (called the master
pane). It accepts the initarg :master-pane and the master-
pane generic function can be used to access the master pane
of an info pane. This generic function is typically used in
the display function for the info pane to access information
about the master pane.

The minibuffer-pane class is an application pane that con-
tains a message to be displayed to the user.

Generic Function buffers frame

This generic function returns a list of all the buffers of the
application.

Generic Function windows frame

This generic function returns a list of all the windows of the
application. The first element of this list is taken to be the
current window, on whose behalf the top-level loop should
process keystrokes and execute commands.

B. SCREENSHOTS
In the following figures, we present screenshots of various ap-
plications using the ESA library. A snapshot of the example
implementation is presented in figure 2, showing the appli-
cation itself and a help window. Figure 3 shows the Gsharp
score editor3, in a state where it is accepting a filename for
input. Figure 4 shows the Climacs editor4 in Lisp mode,
also demonstrating a customization of the help system (dis-
playing to a pane inline with the application, rather than
the default standalone window-stream). Figure 5 displays a
mail client, currently under development.

3http://common-lisp.net/project/gsharp/
4http://common-lisp.net/project/climacs/

http://common-lisp.net/project/gsharp/
http://common-lisp.net/project/climacs/

Figure 2: The example application of figure 1, with a help window showing commands and their associated
keybindings. The panes in the main Example window are, from top to bottom, the example, info and
minibuffer panes; the minibuffer shows the result of C-h c C-c g, describing the command which would be
run by the key sequence C-c g; the last application command was performed with C-u 5 C-c g, running the
Goodbye command with the argument 5.

Figure 3: The Gsharp score editor. When the buffer is in melody mode, individual keystrokes move the
cursor and insert or remove notes, accidentals, key signatures, and other elements of musical notation. When
the buffer is in lyrics mode, the cursor movement keys remain the same but the movement commands act on
lyrics rather than notes, as do the editing and insertion commands. This difference in behaviour is mediated
using methods on find-applicable-command-table.

Figure 4: The Climacs text editor, with help display. As one might expect of a Emacs-Style text editor,
the user’s interaction with the application is strongly reminiscent of other Emacsen. Note the highlighting
around the command name in the help text; this is a presentation of a command object, which is acceptable
as a command; also, climacs performs its own management of help streams, unlike the example application
displayed in figure 2.

Figure 5: The Stamp mail user agent, using the info and minibuffer pane facilities provided by ESA.

	Introduction
	Top Level
	Command Arguments

	Command Tables
	Multiple Windows
	Help Streams

	Buffers and Files
	Example Application
	Future Work
	References
	API Reference
	Screenshots

