
ar
X

iv
:h

ep
-t

h/
02

01
19

1v
1 

 2
4 

Ja
n 

20
02

Wave function of the radion with a bulk scalar field

Ph. Brax

Service de Physique Théorique
CEA-Saclay

F-91191, Gif/Yvette cedex, France

C. van de Bruck, A. C. Davis, C. S. Rhodes

Department of Applied Mathematics and Theoretical Physics
Centre for Mathematical Sciences

Wilberforce Road, University of Cambridge
CB3 0WA, United Kingdom

January 2, 2014

Abstract

The behaviour of the distance between two branes (the ‘radion’) in a braneworld
model with a bulk scalar field is investigated. We show that the BPS conditions of
supergravity ensure that the dynamics of the scalar field and the radion are not in-
dependent; we derive the four-dimensional effective action, showing that the effective
theory is of scalar–tensor nature, coupling the radion to four-dimensional gravity.

DAMTP–2002–002, t02/008

1 Introduction

The idea that we live on a hypersurface embedded in a higher–dimensional space
sparked a lot of interest amongst cosmologists and particle physicists. It is very
conceivable that the brane–world idea sheds light on some unsolved problems of our
standard models of the micro– and macro–worlds. The idea is mainly motivated by
recent progress in string– and M–theory [1], but phenomenological approaches led to
important insights. In particular, the model by Randall and Sundrum plays the rôle
of a simple playground where the brane world idea can be tested [2],[3]. However, as
with all simple models, it might not be realized in nature. One important extension is
to consider matter fields in the bulk, such as scalar fields (see [4]–[13] and references
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therein). These matter fields exist in some fundamental approaches to brane worlds,
such as heterotic M–theory [1] and supersymmetry [14], and could affect the brane
matter fields, because of the coupling between them.

In this paper we discuss the dynamics of a brane-world scenario with two branes in
the presence of a bulk scalar field. The second brane is separated from the first brane
by a distance rc. From the viewpoint of the four–dimensional theory the distance
between the branes is a scalar degree of freedom, called the radion. The dynamics of
the radion has been discussed in many papers (see [15]–[25] and references therein).
In this paper we study in particular the coupling of the radion to the bulk scalar field.
To do so we focus on linear perturbations around a static solution. In particular this
involves solving the equations of motion for the scalar and gravitational perturba-
tions. As usual we isolate two types of gravitational degrees of freedom: the first
type comprises the gravitons and its imprints on the brane; the second type springs
from the existence of two branes and leads to the radion modulus parameterizing the
proper distance between the branes. In the case of the models considered here, the
coupling between the bulk scalar field and the radion ensures that there is essentially
only one scalar degree of freedom in the four–dimensional effective theory.

The paper is organized as follows: In section 2 we present the set–up of the theory
and the corresponding graviton wave function. In section 3 we discuss the fluctuation
of the distances between the branes and its coupling to the bulk scalar field. The
effective low energy scalar-tensor theory is presented. We summarize our findings in
section 4.

2 The Graviton and the Scalar Field Zero Mode

In this section we describe the brane world setup and describe the graviton and scalar
field zero modes.

2.1 The Background Configurations

We consider a bulk Lagrangian consisting of two terms which describe gravity and
the bulk scalar field, respectively:

Sbulk =
1

2κ2
5

∫

d5x
√−g5(R− 3

4
((∂φ)2 + U)) (1)

The boundary terms read

Sbrane = − 3

2κ2
5

∫

d5x
√−g5(δ(z) − δ(z − rc))UB (2)

where UB is the superpotential related to the potential as

U =

(

∂UB

∂φ

)2

− U2
B . (3)

We will also include the Gibbons-Hawking term

SGH =
1

κ2
5

∫

δ
d4x

√

−gBK (4)
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where δ = δ(z) − δ(z − rc) is the boundary of space-time while gB is the boundary
metric and K the extrinsic curvature. At the position of the branes we impose a
Z2–symmetry.

In this paper we investigate solutions which are obtained from BPS–like equations,
which are given by [4, 5]

a′

a
= −UB

4
, φ′ =

∂UB

∂φ
(5)

where ′ = d/dz for a metric of the form

ds2 = dz2 + a2(z)ηµνdx
µdxν . (6)

We will particularly focus on the case where

UB = 4keαφ, (7)

with α = 1/
√

3,−1/
√

12 which was obtained in a theory with supergravity in singular
spaces [4]. In that case the solution reads

a(z) = (1 − 4kα2z)
1

4α
2 , (8)

whereas the scalar field solution is

φ = − 1

α
ln
(

1 − 4kα2z
)

. (9)

In the α→ 0 we retrieve the AdS profile

a(z) = e−kz. (10)

Notice that in that case the scalar field decouples altogether. In this paper we will
assume that the conditions (5) are valid everywhere.

2.2 Absence of the Scalar Field Zero Mode

We now consider perturbations around the background metric (6). In order to un-
derstand the origin of the radion mode, it was shown in [15] that it is essential to
analyse the possible gauge choices which preserve the Gaussian normal coordinates
(see also section 3 below). In this subsection we concentrate on the bulk scalar field
perturbation and its transformation under infinitesimal coordinate transformations
which preserve the Gaussian normal coordinate system.

Consider a brane located at
z = f(xµ) (11)

where the bulk metric has the form (6), i.e. it reads

ds20 = dz2 + a2(z)ηµνdx
µdxν . (12)

We consider perturbations of this background metric for which the perturbed metric
has the form of a Gaussian normal coordinate system, i.e.

δgzz = 0 = δgµz . (13)
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When perturbing this background metric, one can change coordinates while pre-
serving the Gaussian normal coordinate system and bringing the brane back to
the origin of coordinates. This is achieved by considering vector fields ξ such that
z → z + ξz, xµ → xµ + ξµ which satisfy

ξz ≡ f(xµ), ξµ = −
∫

dz

a2
ηµν∂νξz + ηµνǫν(x

µ). (14)

Such a change of coordinates shifts the brane position to

z = 0. (15)

We still have five gauge degrees of freedom, specified by ξz and ǫµ. In such a coordi-
nate system the metric reads

ds2 = ds20 −
UB

2
a2(z)ξzdx

µdxµ − 2a2
(
∫

dz

a2

)

∂µ∂νξzdx
µdxν (16)

where we have put ǫµ = 0. Such a change of metric corresponds to gravitational
modes which lead to the existence of a radion mode.

Let us now consider the case of a perturbed four dimensional part of the metric

ds2 = dz2 + a2(z)dxµdxµ + hµνdx
µdxν (17)

when the brane is still located at z = ξz. In the Gaussian system at the origin we
can write down the boundary conditions using

Kµν =
1

2
∂zg

B
µν (18)

where gB is the brane metric. The Israel junction conditions can be expressed as the
identity

Kµν − gB
µνK =

1

2
TB

µν (19)

evaluated on the brane. We have denoted by TB the energy-momentum tensor on
the brane.

In the coordinate system where the brane is at the origin, the perturbed metric
reads

ĥµν = hµν − UB

2
a2(z)ξzηµν − 2a2

(
∫

dz

a2

)

∂µ∂νξz, (20)

while the perturbation of the scalar field is

δφ̂ = δφ+
∂UB

∂φ
ξz, (21)

where δφ is the intrinsic part of the scalar field fluctuation as measured when the
brane is at z = ξz. Notice that the perturbed metric and perturbed scalar field have
two sources. The boundary condition evaluated at the origin leads to

∂zhµν |0 +
UB

2
hµν

∣

∣

∣

∣

0
= 2∂µ∂νξz −

a2

2

∂UB

∂φ
ηµνδφ (22)
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The scalar field boundary condition reads

∂zδφ|0 =
∂2UB

∂φ2
δφ

∣

∣

∣

∣

∣

0

(23)

These equations tell us that the brane fluctuation ξz acts as a source of gravitation
on the brane.

Let us now describe the equations of motion in the bulk. We first concentrate on
the Klein-Gordon equation

✷δφ+
1

2
h′φ′ =

1

2

∂2U

∂φ2
δφ (24)

where h = hµ
µ. The Klein-Gordon equation admits a solution

δφ(xµ, z) =
∂Ub

∂φ
φ̂(xµ), (25)

with
h = 0 (26)

for any four dimensional massless φ̂(xµ). It satisfies the boundary condition identi-
cally. Moreover we find that for these solutions the four dimensional metric pertur-
bation is traceless. Of course, there might be other solutions for which the trace does
not vanish; but this solution would not be the zero mode, which we consider here.

We are now going to analyse the Einstein equations to first order. They are best
described by using the second order variation of the action. We consider the coordi-
nate system where the brane is at z = ξz and therefore write the metric perturbation
as hab, where a, b is a five–dimensional index and h55 = 0 = hµ5, as we consider Gaus-
sian normal coordinates. The second order variation of the gravitational Lagrangian
reads [26]

δ(2)Sg =
1

2κ2
5

∫

d5x
√−g0

(

1

2
Dah

abDch
cb − 1

4
DahbcD

ahbc

− R

4
habh

ab +
1

2
Rabh

a
ch

bc − 1

2
Rabcdh

adhbc
)

(27)

while the scalar Lagrangian gives

δ(2)Sφ = − 3

8κ2
5

∫ √−g0
(

Lφ

3
habh

ab + (∂δφ)2 +
1

2

∂2U

∂φ2
δφ2 + 2hab∂aδφ∂bφ

)

(28)

where

Lφ = −3

4

[

(∂φ0)
2 + U

]

(29)

Notice that there is a contribution to the gravitational part from the transverse part
of the gravitational field. We can simplify these actions using Einstein’s equations

Rab = Tab −
1

3
Tgab (30)
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and

Racbd = −U
2
B

16

(

g0
abg

0
cd − g0

adg
0
cb

)

+
1

4

(

∂UB

∂φ

)2

(pag
0
[cdpb] − pcg

0
a[dpb]) (31)

where pa = δa5. The bulk Einstein equations are then

✷hab +
U2

B

8
hab −D{aDch

c
b} =

3

4
∂{aδφ∂b}φ0 (32)

Notice the unconventional appearance of the transverse part of the metric perturba-
tion.

Let us focus on the (55) component of the Einstein equations. It leads to

∂zδφ = 0 (33)

This implies that δφ is a function of xµ only. Now this is not compatible with the
solution of the Klein-Gordon equation unless

δφ ≡ 0. (34)

Therefore the scalar field perturbation vanishes altogether in the coordinate system
where the brane position fluctuates according to ξz.

Finally, the (µ5)–component of the Einstein equations gives

Dνh
ν
µ = 0. (35)

The metric perturbation is therefore found to be transverse-traceless. This will be
used in the following section to identify the graviton wave-function.

In the case where the model with a bulk scalar field is embedded in supergravity
in singular spaces one can understand the absence of an independent scalar degree of
freedom as follows. At low energy the fifth component of the graviphoton completes
the radion field to pertain to a chiral supermultiplet. No extra scalar degree of
freedom is a available to be paired with the scalar field in order to form the scalar
part of a chiral supermultiplet. This implies that no low energy degree of freedom
can be ascribed to the bulk scalar field.

2.3 The Graviton

Now we consider the gravitational equation in order to discuss the graviton modes.
The field equation for the graviton simplifies to

✷hµν +
U2

B

8
hµν = 0 (36)

together with the boundary condition

∂zhµν |0 +
UB

2
hµν

∣

∣

∣

∣

0
= 0 (37)

where we impose ξz = 0. We decompose the solution into a product of a z−dependent
part and a xµ−dependent part:

hµν = g(z)χµν(xµ). (38)
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The Laplacian operator acting on the gravitational perturbation can be obtained by
writing

Γα
5β = −UB

4
ηα

β , Γ5
αβ =

UB

4
g0
αβ , (39)

where the BPS conditions (5) have been used. This leads to

✷hµν = (∂2
zg)χµν + g✷χµν (40)

and eventually

✷χµν = a−2
✷

(4)χµν +

(

(

∂UB

∂φ

)2

− 3

8
U2

B

)

χµν (41)

We consider the zero modes of the gravitational perturbation only, i.e. we select

✷
(4)χµν = 0 (42)

implying that the graviton profile g satisfies

∂2
zg +

(

1

2

(

∂UB

∂φ

)2

− 1

4
U2

B

)

g = 0. (43)

This is a Schrödinger equation with a non-trivial potential. In the Randall-Sundrum
case the brane potential is constant UB = 4k leading to

gRS = a2 (44)

which satisfies the boundary condition.
To find the solution in the general case it is convenient to define the conformal

coordinate

du =
dz

a
; (45)

with such a choice and putting
g =

√
aψ (46)

we obtain the graviton equation

− d2ψ

du2
+

1

a3/2

d2a3/2

du2
ψ = 0. (47)

This is of the form of a supersymmetric quantum mechanics problem with

Q†Qψ = 0 (48)

where

Q = − d

du
+
d ln a3/2

du
, Q† =

d

du
+
d ln a3/2

du
(49)

The two zero modes are easily found to be

ψ1 = a3/2 (50)

7



and

ψ2 = a3/2
∫

du

a3
. (51)

The boundary condition can be reexpressed in terms of ψ

d(ψa−3/2)

du
= 0 (52)

implying that the graviton profile is given by ψ1, i.e. that

g(z) = a2 (53)

Notice that this is the generalization to models with a bulk scalar field of the Randall-
Sundrum result. The graviton is then described by

hµν = a2χµν (54)

where χµν is a four-dimensional massless field. Now notice that we can use the resid-
ual gauge freedom specified by ǫµ(x) in order to retrieve the fact that χµν possesses
two independent polarizations only and therefore qualifies as the four dimensional
graviton. This result guarantees that the low energy effective action will be a scalar–
tensor theory. We are now going to discuss the appearance of an independent scalar
mode whose coupling to gravity will be studied.

3 The Radion

So far we have discussed transverse–traceless modes with ξz = 0. In this section we
include fluctuations of the brane positions and discuss their dynamics.

3.1 Brane Fluctuations

Coming back to the gravitational equation (32), we can investigate modes with ξz 6= 0.
The boundary condition for such modes reads

∂zhµν |0 +
UB

2
hµν

∣

∣

∣

∣

0
= 2∂µ∂νξz (55)

Taking the trace of the boundary condition and using the tracelessness of the gravi-
tational perturbation hµν we find

✷
(4)ξz ≡ ηµν∂µ∂νξz = 0. (56)

This equation implies that the brane fluctuation corresponds to a massless four-
dimensional field. It is a mode which complements the graviton and leads to a
scalar-tensor theory at low energy. One can solve the gravitational equation with the
Ansatz

hµν = a1/2ψξ(z)∂µ∂νξz (57)
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where ψξ satisfies (47). The boundary condition reads

d(ψξa
−3/2)

du

∣

∣

∣

∣

∣

0

=
2

a

∣

∣

∣

∣

0
(58)

One can identify the solution with

ψξ = 2a2
0ψ2(z) (59)

leading to

hµν = 2a2
0a

2
(
∫

dz

a4

)

∂µ∂νξz (60)

It is conspicuous that the two zero modes of the gravitational equation are transcribed
in the two types of physical modes, the graviton and the brane fluctuation.

3.2 Including a Second Brane

So far, we have not used the existence of the second brane. However, as we shall see in
the following, it is important to include a second brane in this setting. The rôle of the
second brane is two-fold. On the one hand, in a consistent supersymmetric setting,
the existence of the second brane is crucial in order to preserve supersymmetry. On
the other hand the second brane screens off the naked singularity from the first brane
[7].

The metric tensor which is a solution of the gravitational equation can be rewrit-
ten as

ĥµν = a2χµν + 2a2
0a

2
(
∫

dz

a4

)

∂µ∂νξz − 2a2
(
∫

dz

a2

)

∂µ∂νξz −
UB

2
a2ξzηµν (61)

where one recognizes the graviton and the brane fluctuation. One can define such a
solution in the vicinity of each brane. In the following we shall denote by a+ and ξ+z
the scale factor and the brane fluctuation on the positive tension brane (respectively
a− and ξ−z on the negative tension brane). In each patch surrounding each brane
the metric tensor is single-valued. We still have to construct a metric tensor which
is single-valued throughout the bulk.

To do so we first impose that the brane fluctuation solution of (47) is single valued.
This is achieved by requiring

a2
+ξ

+
z ≡ a2

−ξ
−
z ≡ ξ (62)

where ξ is a four dimensional massless field. Notice that this mode is intrinsically
non-local relating the fluctuations on one brane to the fluctuations on the other
brane. The metric tensor is now

ĥ+
µν = a2ξµν + 2a2

(
∫

dz

a4

)

∂µ∂νξ − 2
a2

a2
+

(
∫

dz

a2

)

∂µ∂νξ −
UB

2

a2

a2
+

ξηµν (63)
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in the patch surrounding the positive tension brane. In the second patch close to the
negative tension brane, the metric tensor is similar

ĥ−µν = a2ξµν + 2a2
(
∫

dz

a4

)

∂µ∂νξ − 2
a2

a2
−

(
∫

dz

a2

)

∂µ∂νξ −
UB

2

a2

a2
−

ξηµν (64)

Obviously the metric tensor cannot be patched up in this form as the two expressions
in the two patches are different.

However one can perform a change of coordinates which preserves the Gaussian
normal coordinates and translates the second brane. In the second patch it reads

z → z −
(

1

a2
−

− 1

a2
+

)

ξ (65)

which transforms h−µν into h+
µν . The negative tension brane sits now at

T (x) = rc −
(

1

a2
−

− 1

a2
+

)

ξ. (66)

Now the bulk metric is single-valued and given by (63). Notice that the position of
the second brane fluctuates according to fluctuations of the massless field ξ. Moreover
the field T (x) can now be interpreted as the radion measuring the size of the extra
dimension. The radion is also a four dimensional massless field. In particular the
radion measures the brane bending of the second brane.

We would like to obtain the metric tensor in a form where the size of the interval
does not fluctuate, i.e. the radion would appear as a fluctuation of the metric. This
can be achieved thanks to a new change of coordinates defined by

z → z +

(

1

a2
− 1

a2
+

)

ξ (67)

which rescales the size of the bulk in such a way that the second brane sits at z = rc.
Imposing that no (µz) component appears in the metric tensor implies that one must
also transform

xµ → xµ + ξµ (68)

where

ξµ = − a2

a2
+

∫

dz

(

a2
+

a4
− 1

a2

)

∂µξ (69)

This implies that the metric tensor becomes

ĥµν = a2χµν − UB

2

a2

a2
+

ξηµν (70)

Let us now write the full metric including both the background and the perturbation

ds2 = a2

(

z +

(

1

a2
− 1

a2
+

)

ξ

)

dxµdxµ

+

(

1 + ∂z

(

1

a2
− 1

a2
+

)

ξ

)2

dz2 +

(

a2χµν − UB

2

a2

a2
+

ξηµν

)

dxµdxν (71)
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This can be simplified to

ds2 = a2(G(z, x))gµνdx
µdxν + (∂zG)2dz2 (72)

to linear order. We have defined

G(z, x) = z +
ξ

a2
, gµν = ηµν + χµν (73)

This is the generalization of the metric Ansatz proposed by Charmousis, Gregory
and Rubakov [15].

Let us now derive the fluctuation of the scalar field in the various coordinate
systems. When the two branes are translated we have δφ = 0. Shifting the first
brane to the origin implies that

δφ+ =
U ′

B

a2
+

ξ (74)

in the first patch and

δφ− =
U ′

B

a2
−

ξ (75)

in the second patch. Let us now perform the local change of coordinates in the second
patch (65). This defines a single-valued scalar field fluctuation which coincides with
δφ+ throughout the bulk. The change of coordinates (67) leads to a single-valued
fluctuation

δφ = U ′
B

ξ

a2
(76)

Combined with the background scalar field this leads to

φ(z, x) = φ0(G(z, x)) (77)

Notice that the scalar field is now a function of the brane fluctuation parameter ξ,
i.e. the radion. There is no scalar field dynamics per se.

3.3 The Scalar-Tensor Theory at Low Energy

Now that we have described the independent low energy degrees of freedom of the
theory with a bulk scalar field we are in a position to discuss the low energy scalar
tensor theory. We will only examine two relevant terms, i.e. the Einstein-Hilbert
term and the radion kinetic term.

The Einstein-Hilbert kinetic term can be seen to be
∫

d4x
√−gΦR (78)

where gµν is the four dimensional metric and the effective Newton constant is

Φ =
1

κ2
5

∫ rc+ξ/a2
−

ξ/a2
+

a2(y)dy (79)
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Notice the explicit dependence on the radion field. Similarly the kinetic terms for
the radion field is

− 3

8κ2
5

∫

d4x
√−gK (∂ξ)2 , (80)

where

K =

∫ rc

0
dza−2

[

U2
B + 2

(

∂UB

∂φ

)2
]

. (81)

Notice that this is always positive.
Let us focus on the AdS5 case where the scalar tensor theory is specified by

Φ =
1

2kκ2
5

(e−kξ/a2
+ − e−krc−kξ/a2

−) (82)

and
K = 8k(e2krc − 1) (83)

In the large rc limit and for small fluctuations of the radion ξ this result coincides
with the results of Garriga and Tanaka [29] on the Brans-Dicke parameter when
coupling the theory to matter. For the general case the discussion of the coupling to
matter for brane world models with a bulk scalar is left for a companion paper.

4 Conclusions

In this paper we have given a detailed discussion about the dynamics of a two–brane
system with bulk scalar field. We have investigated the coupling of the distance
between the branes, which is a scalar degree of freedom (radion) and four–dimensional
gravity. When the BPS condition (5) is imposed on the system, we find that the bulk
scalar field and the radion combine to give one independent scalar degree of freedom;
i.e. the bulk scalar field does not give rise to an additional degree of freedom. At low
energy we find that the theory reduces to a scalar–tensor theory coupling the radion
to gravity.

There is one final step to be taken, namely the breaking of supersymmetry on the
brane, before we are in a position to confront the brane world with a bulk scalar field
with observation. It is likely that breaking supersymmetry will induce a potential
term for the radion field in the low energy effective action. This is in progress.

Acknowledgements: We are grateful for discussions with C. Charmousis, R. Gre-
gory, L. Pilo and T. Wiseman. This work was supported by PPARC (A.C.D. &
C.S.R.), the Deutsche Forschungsgemeinschaft (C.v.d.B.), a CNRS–Royal Society
exchange grant for collaborative research and the European network (RTN), HPRN-
CT-2000-00148 and PRN-CT-2000-00148.

References

[1] Lukas, A., Ovrut, B., Stelle, K.S., Waldram, D., Phys. Rev. D 59, 086001 (1999)

12



[2] Randall, L., Sundrum, R., Phys. Rev. Lett. 83, 3370 (1999)

[3] Randall, L., Sundrum, R., Phys. Rev. Lett. 83, 4690 (1999)

[4] Brax, P., Davis, A.C., Phys. Lett. B 497, 289 (2001)

[5] Brax, P., Davis, A.C., JHEP 0105:007 (2001)

[6] Brax, P., van de Bruck, C., Davis, A.C., JHEP 0110:026 (2001)

[7] Brax, P., Davis, A.C., Phys. Lett. B 513, 156 (2001)

[8] Mennim, A., Battye, R., Class. Quant. Grav. 18, 2171 (2001)

[9] Maeda, K., Wands, D., Phys. Rev. D 62, 124009 (2000)

[10] van de Bruck, C., Dorca, M., Martins, C.J.A.P., Parry, M., Phys. Lett. B 495,
183 (2000)

[11] Langlois, D., Rodriguez-Martinez, M., Phys. Rev. D 64, 123507 (2001)

[12] Feinstein, A., Kunze, K.E., Vazquez-Mozo, M.A., Phys. Rev. D 64, 084015
(2001)

[13] Flanagan, E.E., Tye, S.H.H., Wasserman, I., Phys. Lett. B 522, 155 (2001)

[14] Bergshoeff, E., Kallosh, R., Van Proeyen, A., JHEP 0010:033 (2000)

[15] Charmousis, C., Gregory, R., Rubakov, V.A., Phys. Rev. D 62, 067505 (2000)

[16] Csaki, C., Erlich, J., Hollowood, T.J., Shriman, Y., Nucl. Phys. B 581, 309
(2000)

[17] Tanaka, T., Montes, X., Nucl. Phys. B 582, 259 (2000)

[18] Pilo, L., Rattazzi, R., Zaffaroni, A., JHEP 0007:056 (2000)

[19] Garriga, J., Pujolas, O., Tanaka, T., Nucl. Phys. B 605, 192 (2001)

[20] Gen, U., Sasaki, M., gr-qc/0011078

[21] Binetruy, P., Deffayet, C., Langlois, D., Nucl. Phys. B 615, 219 (2001)

[22] Kogan, I., Mouslopoulos, S., Papazoglou, A., Pilo, L., hep-th/0105255

[23] Davis, A.C., Rhodes, C.S., Vernon, I., JHEP 0111:015 (2001)

[24] Wiseman, T., hep-th/0201127

[25] Kim, J.E., Kyae, B., Lee, H., hep-th/0110103

[26] Antoniadis, I., Iliopoulos, J., Tomaras, T.N., Nucl. Phys. B462, 437 (1996)

[27] Brax, P., van de Bruck, C., Davis, A.C., Rhodes, C.S., draft in preparation

[28] Chiba, T., Phys. Rev. D 62, 021502 (2000)

[29] Garriga, J., Tanaka T., Phys. Rev. Lett. 84 2778 (2000)

13

http://arxiv.org/abs/gr-qc/0011078
http://arxiv.org/abs/hep-th/0105255
http://arxiv.org/abs/hep-th/0201127
http://arxiv.org/abs/hep-th/0110103

