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Abstract:
Two modest-sized symbolic corpora of post-tonal and post-metrical keyboard music 
have been constructed, one algorithmic, the other improvised.  Deep learning 
models of each have been trained. The purpose was to obtain models with sufficient 
generalisation capacity that in response to separate fresh input seed material, they 
can generate outputs that are statistically distinctive, neither random nor recreative 
of the learned corpora or the seed material. This objective has been achieved, as 
judged by k-sample Anderson-Darling and Cramer tests. Music has been generated 
using the approach, and preliminary informal judgements place it roughly on a par 
with an example of composed music in a related form. Future work will aim to 
enhance the model such that it deserves to be fully evaluated in relation to 
expression, meaning and utility in real-time performance. 
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1.Introduction
Could a deep learning model of music function as a free-improvising partner? 

Free improvisation is commonly mainly post-tonal (that is, most of the time lacks 
emphasis on pitch structures that are hierarchical) [1,2], and often post-metrical (that
is, mostly lacks hierarchical repetitive rhythmic structures) [3-5]. In other words, it is 
often very different from common-practice Western music, or pop and rock (as 
illustrated by Online Resource 3  amongst the Electronic Supplementary Material).  
An experienced free improviser in any artistic form is usually capable of responding 
to highly diverse, often unanticipated inputs in ways that are potentially equally 
diverse and sometimes unfamiliar even to the improviser [4,6]. Experimental work 
has revealed something of the decision making involved [7-9]  (reviewed [10,11]). By
the same token, a free improviser may choose for example to adopt a tonal or 
metrical posture, or engage in blues-oriented phrases, at any time. Thus free 
improvisation is not congruent with post-tonal and/or post-metrical music, but at the 
least includes them. Indeed, the implied conceptual ideal that a free improviser is 
always able to migrate away from their own conventions is of course unrealistic. In 
contrast to free improvisation, most algorithmic (computational) music generation 
systems have their own fixed heuristics, though sometimes responding to external 
events by using machine listening to transform the outputs of those otherwise 
unchanged heuristics [12-16]. It seems that in principle a deep learning neural net 
model based on appropriate corpora might learn a diverse enough set of statistical 
associations that it could be generatively seeded and sampled so as to function like 
a free improviser. This paper demonstrates a first step towards such a system. 

Why do we focus on deep learning as a candidate generative framework, 
rather than for example variable order Markov chain or n-gram models [17,18] or 
time series analysis models [19]? Essentially, it is the non-linear activation 
components within neural nets, together with a possibly large number of input 
features, and the potential for the deep learning system itself (rather than the user) to
determine which are useful features for prediction, that underlies the appeal. These 
features imply a capacity for very long term hierarchical relationships to be grasped 
(which is more difficult to conceive with the mentioned alternative approaches). In 
addition, the developing evidence that layers within a deep net may take on 
distinctive tasks (for example, the identification of particular features of a visual 
image : e.g. see the concise discussion in [20]) also suggests that deep learning may
offer distinctive contributions to music generativity. This view is supported by an 
extensive review of current approaches to music generativity, which nevertheless 
does not go deeply into comparisons with other approaches [21]; see also [22] for 
contemporary reviews of algorithmic music making.  

Unlike the present paper, previous deep learning music generation systems 
have mainly focused on generation of common practice instrumental music (using 
symbolic representations): see reviews [17,23,24,21].  A more recent emphasis is on
audio generation (using digitised wave form representations) [25,26]. Considering 
the case of music with symbolic representation (and thus potentially conventional 
musical notation), the highly successful FolkRNN [27] produces music closely akin to
Irish Folk music, with clear tonal and metrical features very much in common with it. 
Occasional audible perturbations to those features occur.  Performance RNN is a 
recent output of the Google Magenta project [28]. It uses a quantisation of rhythm 
into 10msec units, in which durations only up to 1sec are used, so as to create 
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‘expressive timing’ and dynamics. The online illustrative sound excerpts of 
Performance RNN (as in the training corpus of piano music used) are largely tonal, 
and the authors themselves describe the outputs somewhat dismissively as 
‘noodling’. One feature commonly lacking in deep learning generators is overt 
hierarchical structure, such as repetitions over a long time scale. In the work on 
audio generation from audio inputs, SampleRNN [25] introduces multiple levels of 
temporal hierarchy, but over less than a second. However, the principle can clearly 
be extended.

Given our intent to progressively assemble a Deep Improviser, a machine 
capable of free improvisation particularly in conjunction with human partners, we 
started with the target of multi-hand keyboard music, and considered carefully the 
symbolic representation appropriate for our purpose. The resultant representation is 
detailed in the next section. 

The paper proceeds as follows. In section 2, we describe some of the long 
term purposes of the work, and how these lead to our adopted form of symbolic 
representation of keyboard music. We also summarise the key criteria we aimed to 
fulfil in our initial prototype system. Section 3 describes the generation of musical 
corpora for training the models, which in turn is described in Section 4. The 
generative step is discussed in Section 5, together with statistical data on the nature 
of the corpora, inputs and outputs. Section 6 provides discussion, conclusions and 
some pointers to future work. 

2. Specific purposes and the musical representation
Keyboard music consists of two types of events: single notes, and chords 

(which comprise several simultaneously sounded notes). Thus we will refer to ‘event’
when we are making no distinction between these two types, and ‘chord’ or ‘note’ 
when we need to be specific. To accommodate our target, multi-hand post-tonal 
music, our intended model needs to allow chords to comprise any pitch 
combinations, and we decided that up to 10 pitches (notes) could be allowed in a 
chord, based on practical experience in keyboard improvisation.  Some of the 
relevant music involves multiple algorithmic parts, or multiple keyboard players at 
one or two pianos, and hence we refer to our target as ‘multi-hand’ keyboard music, 
noting that with four hands most (but not all) likely combinations of pitches, even if 
widespread across the keyboard, can be performed. To accommodate post-metrical 
features, our model also needs to permit continuous variation in the event duration 
(be it chord or note), and inter-onset interval (ioi) between events (time of event 
onset does not so clearly represent this feature, but rather requires differencing to 
generate it). We allowed these to be continuous variables, with an upper limit of 20 
seconds (after which the sound of almost any piano note has died away). We chose 
further to represent pitch and key velocity (dictating acoustic intensity of the sounded
note/chord) by continuous values bounded respectively by 0-120 (standard MIDI 
values, where the note middle C, normally termed C4, is 60), and 0-127, so that in 
the future these two could also be performed as continuous variables. This would 
allow continuously morphing microtuning, and could avoid or embrace the concept of
a dominant tuning system, such as that of most Western music. Note for example 
that post-tonal music does not always eschew tonality, just as 12-tone serialism, 
pioneered a century ago, often strives for atonality [29], but not always, and in any 
case does not always achieve it [1,2].  Analogous flexibilities apply to timing and 
tuning issues. In sum, our system should be able to accommodate tonality or 
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continuous pitches, and metricality or a time continuum, together with the 
conceivable intermediates. 

So as illustrated in Figure 1, each event is defined in the same way by a 
vector of 13 numbers: numbers 1-10 are pitches, so that a melody note just occupies
location 1, and 2-10 are occupied by a preset value of -1, suitable for the following 
regression. An event comprising a chord of 5 notes would have 5 locations with pitch
values and 5 locations still set at -1. We organise the pitches of the notes to descend
from p1 towards p10. We accept input pitch values from MIDI 0-120 as noted (the full
range provided by some of the algorithms used in our algorithmic corpus). The 
model predictions can thus encompass both negative and positive values and we 
assess the model precision in relation to these ‘raw’ predictions; but when realising 
musical outputs from predictions, we only allow pitch outputs from 12-113 (many 
pitch values below 12 or above 113 are audible but essentially non-discriminable 
from each other). Input vector location 11 is occupied by a single velocity value (MIDI
range 0-127), but sonically realised outputs are constrained to 20-127, since values 
below 20 are again usually indiscriminable and mostly inaudible. Vector locations 12 
and 13 in the representation each provide a continuous value (quantised to integer 
msec in the inputs) respectively for event duration (note or chord), and similarly a 
value for inter-onset interval (ioi), the delay time until the next event. Note durations 
may be longer than ioi, so notes may overlap each other. Because the musical 
material being learned has strong time series autoregressive properties (see detail in
Section 4), we included 10 lags of the input series 13-component vector together 
with the present event as the basis for outputting a prediction of the next 11 13-
component vectors, including the next event. In other words, each input to the deep 
learning model has the shape 11 x 13 (as does each output). 

Our representation currently involves simplifications, in that often notes of a 
given chord event have different durations that we do not include. Similarly, in this 
prototype we disregard keyboard pedalling (which is recorded in MIDI, and can over-
ride the offset time of a sounded note). We plan to introduce both features into our 
system later. 
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Figure 1. The musical representation in the form of a single input matrix. Each event 
is represented as a vector of pitches (1-10), together with the corresponding single 
velocity (v), duration (d) and inter-onset interval (ioi) to the next event.  When an 
input event is a ‘note’, only p1 has a positive number, and p1-10 are each -1. When 
an event is a chord, several of p1-10 have positive number entries, the remainder -1.
Velocities are represented as 0-127 (the midi format), while duration and ioi are in 
msec. Each input to the learning process (and also to the generation process) 
comprises a sequence of 11 such 13-element vectors, corresponding to the vector of
the current event plus the preceding 10 time-series ‘lags’ (previous events). These 
are used to model (or predict) event + 1.

 
We want to be able to manipulate/sample the model itself to produce varied 

outputs, eventually in real-time . As a first step, we pursue the possibility of 
perturbing the outputs by seeding with new material (which in principle could be 
generated live while the model proceeds). In our preceding work on adventurous text
generation [30]  we also used sampling temperature (dictating the entropy of the 
sampling distribution from which a prediction is chosen) to enhance diversity of 
output, and showed the success of this. In the present work on music generation, we
have delayed this manipulation for future implementation. 

3. Creating multi-hand keyboard corpora
We constructed two keyboard corpora for the training of our initial models, 

since we can find no prior symbolic corpus with the objectives and features we 
required (post-tonal and post-metrical). First, our ‘Algorithmic Corpus’ was made by 
concatenating 13 runs of 6 different compositional algorithms developed in previous 
work by author RTD (an internationally active composer/improviser). Several of 
these algorithmic pieces were multi-strand in nature, that is, have multiple 
simultaneous melodic strands as in chamber and orchestral music, as well as chords
vs notes. Most of the algorithms are interactive (so called live algorithms). RTD also 
performed 9 keyboard improvisations specifically to form the second, ‘Improvised 
Corpus’, using a Yamaha CP300 weighted touch sensitive keyboard at Queen Mary 
University of London (20170905). A quite separate single improvised piece recorded 
in 2016 on a Kurzweil weighted touch sensitive keyboard constitutes the ‘Seed 
Piece’, from which 11-event segments are later used to seed the generation of 
output from the formed models. This piece is not included in the Improvised Corpus. 
An audio excerpt of one piece from the Algorithmic Corpus, and another from the 
Seed Piece (to provide an example of improvised keyboard playing) are provided 
within the Electronic Supplementary Material, realised using the Pianoteq physical 
synthesis piano. Pianoteq is particularly suitable in the longer term because it can be
used effectively with any tuning system, not only the conventional Western tunings 
we use here. Our previous work showed the utility of synthetic serial music corpora 
in understanding the information content of such music, and in modelling its pitch 
features [2]. 

Table 1 shows the basic features of the constructed corpora and of the Seed 
Piece. PCA was merely used to provide an impression of the size of the major 
principal components, such that any major contrasts might be revealed. The table 
illustrates the distinctiveness of the three different materials in every respect bar the 
overlap of PCA component variances between the algorithmic corpus and the 

6



improvised seed piece. Further comparisons between the Improvised corpus and the
Improvised seed piece are illustrated later in Figure 3. 

 Table 1. Descriptive statistics of the two constructed corpora and the seed 
improvisation (to be used with the models for generative purposes)
Material Number 

of 
events

Total 
number 
of notes

Mean 
notes 
per 
event

Ratio between 
the number of 
chords and the
total number of
events

PCA components
1 and 2, % 
variance 
explained 
respectively

Algorithmic 
Corpus

16484 66892 4.05 0.65 81.4 18.5

Improvised 
Corpus

13466 34397 2.56 0.56 70.5 28.7

Seed Piece 
(Improvised)

214 1001 4.68 0.72 81.0 18.7

Table 1 Legend. Note that very few chord pitch combinations are repeated at all; 
whereas the pitches of many notes are. Note also that because of the occurrence of 
some uniform columns of -1 values (unoccupied pitch components), the PCA was 
done on unscaled values, for illustrative purposes only. The Seed Piece was solely 
used to provide randomly selected 11-event sequences which triggered generative 
outputs from the deep learned models. 

4. Developing a Deep Learning model
As noted above, we aimed for a model which could be perturbed (that is, be 

sensitive to external input seeds), so as to generate outputs distinct in statistical 
nature from its learned corpus and from the Seed Piece. So we took the avoidance 
of overfitting very seriously, to seek such flexibility (generalisability) in the generation
phase. Especially given the limited size of our corpora, we considered that a model 
that at least beats so-called common-sense (or naïve) predictions (see next 
paragraph for detail), but is not necessarily the most precise feasible, might have 
internalised statistical associations that could provide the basis for such flexible 
generation. 

As is well known, most musical time series can be modelled well as an  
autoregressive process, implying that each event is substantially predicted by a 
series of immediately preceding events [31-33]. Indeed, the normal common-sense 
prediction for time series which we adopted (often called the naïve model) is that the 
next event is similar to the last and so guessed as being the same [34]. We 
undertook some simple autoregressive time series analyses (TSA) on the corpora 
each taken as a single whole, to pre-establish that each of our feature series, of pitch
(p), velocity (v), duration (d) and inter-onset interval (ioi) are highly autoregressive, 
with lags of around 10 previous events plus the present being significant predictors 
of the next. In comparison, there was little cross-predictive capacity, for example 
from ioi or duration on to pitch (assessed both by univariate TSA, with ioi etc as 
predictors, and by vector autoregression, in which features may potentially be 
mutually influential: see [19] for discussion of such relationships in keyboard music). 
Consequently, our representation provided inputs to the deep learning model that 
were sequences of 11 events, each represented by the vector of 13 values 
described above. These inputs were used successively to predict the next event, and
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the model was trained by comparing prediction with actual. The first 2/3 of each 
corpus was used as the corresponding training set, to which the deep learning net 
was exposed. The remaining 1/3 was used as a ‘validation’ set, used to assess the 
precision of the learned model when exposed to previously unseen material (i.e. its 
generalisation capability). No learning was permitted each time the validation set 
was run (i.e. the weights in the net remained fixed).  A stopping criterion was used 
during training, focused on optimising fit to the validation set, to minimise risk of 
overfitting the training set. Learning was stopped when 20 epochs had failed to 
improve the loss (the estimation of prediction precision) observed in the validation 
set.

Dilated convolutional neural nets (CNN) have recently emerged as powerful 
models of sequence structure (see for extended review and practical tutorial on deep
learning using Keras, which we used as our coding platform : [20]).  Given our 
modest recent success in using these for poetic text generation, we first considered 
stacked CNN alone for the Deep Improviser. Because of the apparently greater 
capacity of recurrent neural nets (RNN) and in particular those using the LSTM (long 
short-term memory) nodes, we then considered RNNs receiving outputs from an 
initial CNN layer. We optimised models on the algorithmic corpus, and then solely 
tuned and fine-tuned (varying the learning rate) these for the improvised corpus, 
since these results were adequate for our purpose, and we were not determined as 
yet on utterly optimising all models. Figure 2 summarises the form of the CNN/RNN 
model. 
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Figure 2. The CNN/RNN model. Based on the Keras format, the figure shows the 
sequential layers and summarises their nodes for the deep learning network 
adopted. ‘Input’ and ‘output’ describe the shape of the matrices handled at each 
sequential point, where ‘None’ indicates the total number of input/output matrices, 
which corresponds to the total number of rows in the corpus data being modelled. 
Batches of 128 inputs were used. Note that the 11x13 input and output vectors 
themselves are not represented in the diagram (see Figure 1).   

We largely overcame overfitting by a combination of stringent dropout 
(parameter 0.5) at each layer, including both dropout and recurrent dropout in LSTM 
layers, together with L2 kernel-regularization at each layer (parameter 0.01); and by 
application of the stopping criterion defined above. Overfitting was judged by 
continuous monitoring of loss (mean squared error) in the training set, and also in a 
withheld (unlearnt) validation set. These both reached their minima at a similar point,
and hence the use of a second unlearnt test set was unnecessary (because the 
danger of progressive adaptation of the model not only to the training but also the 
validation set was minimised). This also allowed us to train on a larger portion of the 
corpora than would have been feasible if a second unlearnt test set had been used.  
Furthermore, given the limited size of the corpora, our concern was more for the 
ability to generate, than for maximal learning. There was no shuffling, because these
are autocorrelated time series (shuffling on the basis of pre-estimated phrase 
structure may be of future interest).  We used robust scaling (to address the 
asymmetric distributions of temporal values (shown later in Figure 3)) and the very 
different ranges of the individual parameters, and then we undertook some 
hyperparameter tuning (notably to trim down to the minimal size nets effective for our
corpora), together with limited parameter fine-tuning using sequenced learning rates.
Modelling was done with Keras and Theano (0.9). Bidirectional RNN were ineffective
(as might be expected, bar the occurrence of significant retrogradation, where for 
example a pitch sequence may occur both forwards and backwards). Pitch 
augmentation (by transposing the materials to every possible relative position within 
an octave range) has been found effective in improving loss measures during 
modelling with tonal music [35], but was not so here. 

Table 2 summarises the performance of the resultant pair of models (one 
CNN alone, one CNN followed by RNN) as applied to both the Algorithmic and 
Improvised Corpora (different weights in each case, but identical model form). The 
data show consistently favourable comparisons with estimates of common-sense 
predictions, and reveal the capacity of the models to deal reasonably with previously 
unseen data (generalisability). Compared to the CNN only model, the CNN-RNN 
gives an improved overall rmse (root mean squared error) in the case of the 
Algorithmic Corpus, but not with the Improvised Corpus (further hyper-parameter 
optimisation for this case could be attempted).  The data also show that the temporal
features contribute a large part of the rmse, given their large values, while the rmse 
attached to pitch 1 is respectably small. Given pitch ranges of 0-120 in the input, it 
can be seen that the rmse of modelled pitch 1 in the several models (rmse range 11-
19 expressed in the pitch units) constitutes a maximum error of about 16%. 
Especially in post-tonal music (where contour, that is whether the pitch sequence 
goes up or down at a given point, is likely far more important than precise pitch 
number) this seems to us quite usable. We noted above that the input representation
ordered the pitches of a chord event from high (p1) to low (descending towards p10).
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We found that the predictions were similarly well ordered, and the number of 
predictions >0 was closely parallel to the number of pitches in the input chord (where
the remaining values in the input event vector p1-p10 set were  -1 as described 
above). Correspondingly, the predictions included a similar number of values <0. A 
consequence of this was that the rmse for p1 (shown in Table 2), was generally 0-2 
units larger than that for p1-10 taken together (data not shown), confirming that 
possible weighting within the pitch positions for the loss function would at most have 
modest effect. Weighting the pitch and temporal components differently in the loss 
function for training (e.g. with respect to their relative variances) might be useful in 
the future.  We could reasonably have improved the apparent rmse by setting all p2-
10 predictions that were <0 to -1, but we chose not to do this. 
 Note that the purpose of adding the RNN with LSTM nodes (with only a c.50%
increase in model parameters) is not solely to enhance the model precision, but also 
in the hope of enhancing model ‘memory’ (autoregressive and cross-parameter 
temporal relationships), such that it might predict longer sequences. We return to this
issue in the next section. 

Table 2. Performance of the selected Deep Learning Models on the withheld 
validation set
Corpus/Model RMSE

Overall 
(vector of 
13 values)

IOI p1 Validation
Loss

Number of 
parameters

Algorithmic 
Corpus:
Naïve model 562.22 1004.23 24.55 N.A. N.A.
CNN only 397.04 415.66 15.49 95.25 7565
CNN/RNN 180.36 488.57 11.54 96.44 10445

Improvised 
Corpus:
Naïve model 254.18 477.91 19.76 N.A. N.A.
CNN only 185.56 417.72 16.01 83.32 7565
CNN/RNN 196.30 450.24 19.20 80.90 10445

Table 2 Legend. The naïve model, as indicated in the text, was one in which the next
event is predicted to be the same as the present one. The deep learning models 
were selected and optimised for hyperparameters, tuning and fine tuning on the 
Algorithmic Corpus; then adapted by tuning and fine tuning to the Improvised 
Corpus. CNN, 64 filters, kernel of 4, dilation 8. CNN/RNN: CNN 32 filters, kernel of 4,
dilation 8, RNN LSTM 32. N.A., not applicable. As indicated above, the loss measure
is based on the robust scaling (allowing for the very different numerical scales of 
time and pitch), and not on the same scale as the larger RMSE values, which latter 
do correspond to the measurement units of the respective inputs. 

5. Triggering, characterising and sounding distinctive outputs
Just as our models were trained on inputs of 11 events (each represented by 

a vector of 13 values) to predict the next event (in the same vector form), so we 
planned to trigger outputs by using varied sequences of such vectors from an 
external (previously unseen) single improvised keyboard performance (214 events, 
comprising 1001 notes). We used the simplest form of prediction, in which the 
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highest probability next event is selected (and making this more subtle will likely 
enhance the diversity of output we can obtain). So during generation each most-
likely prediction was added to the end of the seed, and the first seed member 
removed, so that after 11 predictions the new sequence constituting the next seed is 
composed entirely of model predictions. Thus one important question is how 
frequently should one re-seed with a sequence from the external seed; which in turn 
brings up the question whether the models have sufficient memory to continue 
generating fresh sequences ad infinitum, or whether they gradually regress to a fixed
value set after a certain number of predictions: that is, gradually converge on a 
prediction which remains thereafter constant. We expected this regression might 
occur in both models, particularly the CNN only, both because of the limited capacity 
of CNN for temporally ordered sequences in comparison with LSTM (or gated 
response units, which we found to behave similarly in our system) units, and also the
relatively small size of the learned corpora.  The results of assessing this question 
were that both CNN and CNN/RNN models defined above regressed to a static 
value within about 60 predictions, after seeding once. This required that both the 
CNN and CNN/RNN models are reseeded very regularly for generative applications. 
While certain model modifications, such as the introduction of residual connections 
(re-injection of earlier weights) may delay this regression to the mean, it is probable 
that larger corpora would help overcome this (and in turn, they may require larger 
deep learning nets). For assessments below both CNN and CNN/RNN models were 
reseeded every 10 events with a randomly chosen (thus normally new) subsequence
from the seed (reseeding every 11, being the number of input vector sequences in 
the learning phase, or 20 events was also functional). Varying the ‘temperature’ (as 
mentioned above) at which the learned output distribution is sampled may reduce 
the required frequency of reseeding.  1000 events were generated: note again that 
each event may be a single note or a chord. 

All outputs were floating point numbers which were approximated to the 
nearest integer. As mentioned above, predicted pitch and velocity values outside the 
ranges MIDI numbers 12-113 and 20-127 respectively, and predicted duration or ioi 
values less than 0 msec or more than 15000 msec were rejected for the purposes of 
musical realisation, and the corresponding note removed. Rejection was not used in 
the statistical analysis of the prediction performance, and so did not distort the 
distributions of the respective parameters. Based on detailed prior empirical data on 
improvised keyboard performance [36,7] all notes that occurred within 35 msec of an
initial note were grouped together as a chord for realisation.

As we described previously [30], analysis of word outputs during text 
generation can be done using word embeddings (vectorial representations of 
statistical word relations: reviewed [20]) or stylometry, based on relative word or 
ngram frequencies, and we used the R ‘stylo’ package to successfully distinguish 
word output distributions in our generative poetry project. While chord2vec [35] and 
related modifications of word2vec [37] are useful in adopting a similar approach to 
tonal and metrical music, they are not applicable here because specific chord 
voicings rarely recur (though individual notes of course do), and the whole vector of 
p1-10,v,d,ioi essentially never recurs exactly, partly because of the continuous 
parameters (finely quantised to 1 msec) involved in d and ioi. Thus an alternative 
approach to assessing whether outputs are statistically distinctive or simply 
recreative has been adopted, in which we undertake univariate and multivariate 
testing of the question: what is the probability that the distribution of pitch (or velocity,
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duration, ioi) values observed in one case (e.g. the Algorithmic Corpus) and that 
observed in another (e.g. the generated output from the Algorithmic Corpus when 
seeded with the external improvised sequences) both arise from a parent distribution
(which remains unspecified in nature). We undertook the statistical analyses in the 
R.  For this purpose (and for playback) we reorganised the pitches of each chord into
MIDI sequences of individual notes (for this assessment we are not considering time 
series sequential relationships). The Anderson-Darling test can determine this value,
and Table 3 shows as an example the relevant results from the simpler CNN-only 
model based on the Algorithmic and on the Improvised Corpora, confirming that 
seeding with the external sequences from an improvised piece (a piece which is not 
included within the Improvised Corpus) is effective in driving generation which is not 
simply distributed the same way as either the learned corpus or the seed. The 
multivariate Cramer test, assessing whether two distributions are distinct, supports 
this conclusion where undertaken, considering all the parameters p1-10, v, d, ioi 
simultaneously in their chord/note event representation.  Because the R Cramer 
algorithm generates very large numbers (which can outstrip the range permissible 
with the 32 bit number representations that R normally expects) it was necessary to 
undertake the test with subsets of the data. For example, it gave p = 0 for comparing 
3000 sequential notes from the Improvised Corpus, and from the deep learned CNN 
model of that corpus, seeded by the external improvised piece. 

Table 3. Output Distinctiveness: Univariate testing for possible statistical common 
origins of corpora, seed, and generated outputs, based on note sequences.

Generator 
Model

Comparison 
Distribution 
Origin

Anderson-Darling statistic T.AD, and (probability of 
origin from a common distribution reported by R) for 
the specified distribution parameter 
pitch 
distribution

key velocity 
distribution

note 
duration

note inter-
onset 
interval

Algorithmic 
Corpus 

Generated 
output

734.2 
(<0.001)

394.7 
(<0.001)

615.8 
(<0.001)

1370 
(0)

Input seed 1090 
(0)

1123 
(0)

94.72 
(<0.001)

138.3 
(<0.001)

Improvised 
Corpus

Generated 
output

135.4 
(<0.001)

2670 
(0)

694.3 
(<0.001)

2210 
(0)

Input seed 909.1 
(0)

666.4 
(<0.001)

146.6 
(<0.001)

203.2 
(<0.001)

Table 3 Legend. The CNN-only models of the Algorithmic and the Improvised 
Corpus were seeded with sequences of the external improvised piece (not included 
in the Improvised Corpus). The properties of the corpora and the seed are 
summarised in Table 1. The generated outputs are 1000 events. The Anderson-
Darling kSample test was done in R with package kSamples. Its statistic, T.AD is 
(AD criterion – mean)/sd and there are separate versions for discrete and continuous
distributions (quoted accordingly above). The statistic then provides a probability that
the two distributions considered could come from a shared parental distribution 
(whose nature is not determined). These univariate measures were based on notes 
(and not chords, for reasons discussed in the text). The corpora and the seed were 
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also mutually distinct judged by this test. p, pitch (encompassing all of p1-p10 
sounded pitches, and disregarding the unsounded values), v attack velocity, d note 
duration, ioi interonset interval.

Figure 3 illustrates some of the distributions that are included in Table 3, 
specifically those from the seeded Improvised Corpus modelled by the CNN-only, 
and shows that its implications are visually plausible. Separate Anderson-Darling 
analyses (not shown) of the outputs from the CNN/RNN model of the Algorithmic 
Corpus (and the parallel analyses with the CNN-RNN Improvised Corpus model) 
support a general conclusion: that our approach permits the generation of 
sequences statistically distinct from either the learned corpus or the input seed 
distribution which are yet organised rather than random.

Figure 3. Density distributions of Pitch (a), key velocity (b), note duration(c) and note 
IOI (inter-onset intervals: d) for the Improvised Corpus, the Seed Piece, and the 
Generated Output (1000 events). The descriptive characteristics of the Corpus and 
the Seed are summarised in Table 1. The distinctiveness of the Generated Output 
material is revealed as partly due to its broad pitch distribution (1a), and partly to its 
emphasis on lower key velocities than either the seed or corpus(1b). It has a 
dominant mass of durations around 50msec (1c), in part because of the 
simplification introduced in the model representation whereby the notes of a chord all
have the same duration. This effect is supported by the relative preponderance in the
Generated Output of chords over melody notes, resulting in a large mass around 0 
msec note inter-onset interval, shared with the seed but not the Corpus (1d). Note 
that the graphed note duration distributions are truncated at 200ms, and the inter-
onset interval distributions at 100msec to make the distinctions as clear as possible 
(no distinctions are visible in the much longer time values, and for example the IOI 
distributions range up to almost 20000 ms).  
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Going from statistical distinction to substantive human evaluation of 
computational artistic generativity is a hugely difficult task [38-41] as for that matter is
evaluation of (manually) composed work; and there is also an argument that 
computational creativity (to which this paper potentially contributes) should be 
assessed in relation to its own specified objectives, partly or even solely by an 
internal mechanism [42].  In a previous paper on generativity with time series models
[19] we elaborated in some depth on possible approaches which could minimise the 
psychological ‘demand’ commonly imposed in human listening tests (for example, 
avoiding reference to computational vs compositional origins and hence the biases 
these commonly elicit). In addition, we pointed to the complexity of evaluating an 
output which occurs simultaneously with a live improvisation or an enunciation of a 
pre-composed element. While we intend to grapple fully with this in due course, for 
the time being we allowed ourselves a preliminary informal test: 21 researchers 
listened to 3 unidentified items of post-tonal and post-metrical keyboard music in a 
group setting. The items were 75-100 seconds in length, and presented as ‘multi-
hand keyboard music’ (and so it was pointed out that it was not necessary to assess 
whether what was heard was feasible for a single human to play). Listeners were 
informed that one piece was composed manually, one generated by a deep learning 
model with seeding, and one was composed algorithmically. The first item was an 
extract of composer Morton Feldman’s Piano Four Hands (1957-8, from the Etcetera
KTC2015 CD performed by Roger Woodward), the second an extract of a Deep 
Improviser product, and the third taken from an algorithmic piece included in the 
corpus it had learned (the latter two extracts are provided as supplementary material,
while the first cannot be published here for reasons of copyright, but is available).  
After all items had been heard, votes were called first for preferred item, being 
respectively 3:3:15 (i.e. a preference for the algorithmic piece), and then for which 
piece was the deep learned product 11:10:0 (i.e. an equivocation between Feldman 
and Deep Improviser). There were only a few people amongst this group who had 
prior exposure to music of this kind, but in a separate group of three friends, all 
familiar with such work, when given the same test and scenario, the scores were  for 
preferred item, 1:1:1 (no strong preference), and identifying the Deep Improviser 
piece, 1:0:2 (this time, an equivocation between Feldman and algorithmic 
composition) . Thus the Deep Improviser was not readily identified, and the 
algorithmic piece was overall preferred amongst the three, but the Deep Improviser 
was competitive with the human composer. We view this at least as support for the 
utility of our approach (RTD is a great admirer and was an acquaintance of the 
composer). 

 
6. Discussion, Conclusions and Future Work

Overall, our prototype Deep Improviser shows initial signs of success: it can 
generate outputs distinct from its learned corpus or input seeds that nevertheless 
have commonality with them. Clearly this distinctiveness can likely be dramatically 
enhanced by control of sampling temperature (and this control might be powerful if 
used in a context-dependent manner). There are numerous limitations to the model 
so far, of which perhaps the most obvious are the relatively small corpora (though 
this is an advantage for any music maker wanting to establish their own model and 
corpora), and the sparseness of occupancy of the p1-10 part of the vectorial 
representation of an event (together with the lack of distinct duration values for 
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individual notes of a chord). On the other hand, one-hot encoding (where for 
example pitches 12-113 would be represented each by a vector of 101 zeros with a 
1 at the spot in the vector corresponding to the pitch) is also a sparse representation,
yet has many benefits including categorical prediction, and may be useful here (it is 
used as the basis of Performance RNN encoding). We have raised the issue of 
contour above, and it is apparent that accuracy of contour could be used as part of a 
loss function, regardless of tuning system or quantisation. Similarly, quantising 
durations, for example at the observed 35msec cut off between a succession of 
notes and a chord, may also be valuable. The fact that MIDI represents chords as a 
succession of notes, separated by 0 or a few msec in timing also indicates that 
considering we found it necessary for some purposes above to interconvert recorded
chords and notes, there may be a case for generating chords as sequences of 
(almost simultaneous) notes rather than as such, and modelling accordingly. This 
would also invite a hierarchical conditional model in which the first prediction is 
whether an event is a note or a chord, and the subsequent predictions then evaluate 
the chosen case (note or chord expressed as a rapid sequence of notes). This may 
ensure a wider range in the relative occurrence of chord vs. melody notes in the 
generated outputs: as currently the chord:note ratio is commonly quite high. It would 
also present a pathway towards production of multiple parallel streams of events. 

The time series analyses assessing relations between p, v, d, and ioi 
mentioned above also revealed limited mutual influences in comparison with 
autoregressive influences, with minor exceptions. This suggests that a multi-input 
multi-output (branched) deep learning model, with only certain influences permitted, 
may provide a more accurate model, and one in which the weighting of the loss 
determined on the different components of the prediction (p,v,d,ioi) might be varied 
according to their variability and relative importance, analogous to approaches 
developed with multidimensional Markov models of music such as IDyOM [43]. This 
is underpinned by the fact that the distributions of the temporal features are very 
different from those of pitch and velocity. We will consider transformations based on 
cumulative density functions, identification of repetitions and geometrical structures 
within perceptually grounded representations as possible means of reducing the 
complexity of those data [44,45] particularly for further analyses of outputs. 

In the future development of this project, we want to create and use a system 
operative in real time, and given pre-learned models, this is already feasible. It will 
also be possible to fit and update models in real-time over an accumulating 
performed input, at the same time as generating from the current model with seeding
and sampling. In our previous work we have demonstrated the utility of analytical 
autoregressive multivariate time series models  as generators themselves, and 
constructed a system operative in real time [19]. The present Deep Improviser, while
yet shallow, when comprised of CNN and RNN probably imitates some of the 
sequential aspects of time series models. But we also plan in the longer run to 
integrate Deep Improviser with algorithmic approaches based on information 
theoretic and perceptual decision-making models [46,47]. 

7. Electronic Supplementary Material (ESM). 
Online Resource 1. An extract of generation by the CNN model of the algorithmic 
corpus, with seeding (ESM1v2-dlgen.mp3). MIDI file recorded to audio using 
Pianoteq.
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Online Resource 2. An extract of an algorithmic piece by RTD included in the 
Algorithmic corpus. (ESM2-algo.mp3). MIDI file recorded to audio using Pianoteq.

Online Resource 3. An extract of the Seed Piece, improvised by RTD (2016). 
(ESM3-seed.mp3). MIDI file recorded to audio using Pianoteq.
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