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The violation of certain Bell inequalities allows for device-independent information processing secure
against nonsignaling eavesdroppers. However, this only holds for the Bell network, in which two or more
agents perform local measurements on a single shared source of entanglement. To overcome the practical
constraints that entangled systems can only be transmitted over relatively short distances, large-scale
multisource networks have been employed. Do there exist analogs of Bell inequalities for such networks,
whose violation is a resource for device independence? In this Letter, the violation of recently derived
polynomial Bell inequalities will be shown to allow for device independence on multisource networks,
secure against nonsignaling eavesdroppers.
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The violation of Bell inequalities has been shown to have
immense practical importance for quantum information
processing [1–3]. Indeed, violation of certain Bell inequal-
ities is a resource for unconditionally secure key distribution
[1–7] and randomness amplification [8–10], and for achiev-
ing certain computational advantages [11–15]. Moreover,
these protocols are device independent, meaning they
depend only on the observed output statistics of devices
used to implement them. In the case of key distribution, for
certain protocols the violation of a Bell inequality can be
used to lower bound the secure key rate [3]. Furthermore,
monogamy relations have been derived between the viola-
tion of certain Bell inequalities and the amount of informa-
tion an eavesdropper can obtain about the generated key; the
higher the violation, the lower the information [17–19].
However, these results only hold for the Bell network

depicted in Fig. 1(a), in which two agents perform local
measurements on a single shared source of entangled
systems. The utility of these networks is limited by
practical constraints: entangled systems can only be trans-
mitted over relatively short distances, and only a small
number of agents can share an entangled state distributed
by a single source [20–22]. To overcome this, large-scale
multisource quantum networks, such as that schematically
illustrated in Fig. 2, have been employed [20,21,23–31].
Yet having multiple intermediate nodes in the network
opens the door for novel eavesdropping attacks not seen in

the Bell network. Do there exist analog of Bell inequalities
for such multisource networks whose violation is a resource
for device-independence and which can prevent novel
eavesdropper attacks?
Recently, polynomial Bell inequalities have been derived

[32–40] on the correlations classically achievable in multi-
source networks. Violation of these polynomial inequalities
witnesses nonclassical behavior in such networks. Can such
violations be connected to advantages in information process-
ing on large quantum networks, as was the case in the Bell
network?Themain obstacle to establishing such a connection
is that the set of classical correlations of a given general
network forms a nonconvex semialgebraic set [35]; thus,
methods establishing standard Bell inequality violation as an
information-theoretic resource are no longer applicable [41].
Such bounds on the correlations generated in multisource

networks were originally studied in the field of causal
inference [44,45]. Recently, the tools and formalism pio-
neered in this field have begun to see applications in
quantum information [46–51]. Indeed, this formalism sub-
sumes and generalizes standard cryptographic constraints
such as no-signaling and the assumption that agents each
have a secure laboratory, as is discussed in more detail in the
Supplemental Material [52]. In this formalism, agents and

(a) (b)

FIG. 1. (a) Bell network: X, Y and A, B denote inputs and
outcomes of the agents. (b) Bell network with eavesdropper.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 120, 020504 (2018)

0031-9007=18=120(2)=020504(6) 020504-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.020504&domain=pdf&date_stamp=2018-01-10
https://doi.org/10.1103/PhysRevLett.120.020504
https://doi.org/10.1103/PhysRevLett.120.020504
https://doi.org/10.1103/PhysRevLett.120.020504
https://doi.org/10.1103/PhysRevLett.120.020504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


sources are represented by nodes in directed acyclic graphs
(DAGs), with the arrows denoting the causal relationship
between nodes. For example, the DAG in Fig 1(a) corre-
sponds to the causal structure of the Bell network. As in
standard device independence, this work assumes that
both measurement devices used by agents, and the sources
they measure, are supplied by an untrusted adversary, or
eavesdropper [60].
In the Bell network, violation of a Bell inequality rules

out quantum [4] and postquantum [3,5] eavesdroppers. In
these attacks, the systems measured by the agents could be
correlated with a system held by the eavesdropper, as
depicted in Fig. 1(b). These need not be quantum systems,
as long as the DAG of Fig. 1(b) holds. Measuring this
system using a device with input Z and outcome E, an
eavesdropper could gain information about agents’ out-
comes. That is, it may be that PðEjA;B; ZÞ ≠ PðEjZÞ. By
violating the chained Bell inequality, however [17,19],
agents can limit the information such an eavesdropper can
gain about their outcomes.
However, for the general networks considered here, there

are new avenues for eavesdropping attacks. The eavesdrop-
per supplying the sources can hold systems correlated with
more than a single source, as in Fig. 2(c). Additionally,
the eavesdropper could even introduce correlations [61]
between sources, as in Fig. 2(d). The main findings of the
current work are as follows: (1) For an eavesdropper holding
independent postquantum systems that can each be corre-
lated with a single source, the violation of certain poly-
nomial inequalities bounds this eavesdropper’s information
about agents’ outcomes. (2) By introducing correlations
between sources assumed by the agents to be independent,
an eavesdropper can simulate quantum correlations con-
sistent with the original DAG, hence gaining complete
knowledge of agents’ outcomes. However, increasing the

measurement settings can combat this. (3) A new inter-
mediate device-independence scenario: trusting a subset of
sources are not correlated with a single system held by an
eavesdropper. Given this assumption, the attack of item (2)
can be prevented. It should be emphasized here that, as in the
work of Ref. [5], security will be established against non-
signaling eavesdroppers by bounding their predictive power
to learn the outcome of agents’ devices. In the case of
Fig. 1(b), letting DðP;QÞ ≔ 1

2

P
xjPðxÞ −QðxÞj denote the

total variational distance, this corresponds to bounding
D(PðEjA;X; ZÞ; PðEjZÞ). Another way of bounding this
is through the device-independent guessing probability
(see, e.g., [62]), that is, through establishing a bound on
PðE ¼ AÞ. Informally, the difference between these two
approaches is that, in the former, one is bounding the amount
of information an eavesdropper can infer about agents’
outcomes from the result of their chosen measurement, and,
in the latter, one is bounding the probability that the
eavesdropper correctly guesses agents’ outcomes.
Each of the above three points will now be illustrated

with concrete examples involving repeater and star net-
works. The derivations of all results in the remainder of the
paper are presented in the Supplemental Material.
Repeater networks.—Consider a repeater network in

which n sources are each shared between two out of
nþ 1 agents, who each perform local measurements with
their devices. The crucial information about agents’ inputs
and outputs is captured by the DAG of Fig. 2(a). The
devices held by agents A1 and Anþ1 have two inputs,
denoted x1 and xnþ1, with x1, xnþ1 ∈ f0; 1g, and two
possible outputs A1 ¼ a1 and Anþ1 ¼ anþ1, again with a1,
anþ1 ∈ f0; 1g. All remaining agents have devices with a
single input and four possible outputs, denoted Ai ¼ a0i a

1
i

with aji ∈ f0; 1g. If all λi from Fig. 2(a) are classical
random variables, then an inequality bounding the classi-
cally achievable correlations is

R ≔
ffiffi
I

p
þ

ffiffiffi
J

p
≤ 1; ð1Þ

where I ¼ 1
4

P
x1;xnþ1

hA1A0
2 � � �A0

nAnþ1i,

J ¼ 1

4

X
x1;xnþ1

ð−1Þx1þxnþ1hA1A1
2 � � �A1

nAnþ1i;

and hA1A
x2
2 � � �Anþ1i ¼

X
ð−1Þa1þanþ1þ

P
n
i¼2

a
xi
i

Pða1; a02a12;…; anþ1jx1; xnþ1Þ; ð2Þ
where the above sum ranges over a1, anþ1;…; a0na1n.
Inequality (1) was derived in [36,37,40], and is the analog
of a Bell inequality for this particular DAG. Note that is
nonlinear in the joint conditional probability distribution—
hence the name polynomial Bell inequality.
Now, if all sources are claimed by the eavesdropper to

emit singlet states jψ−i, devices held by agents A1 and Anþ1

to be carrying out measurements ðσz þ σxÞ=
ffiffiffi
2

p
for

x1 ¼ 0 ¼ xnþ1 and ðσz − σxÞ=
ffiffiffi
2

p
for x1 ¼ 1 ¼ xnþ1 and

(a) (b)

(c) (d)

FIG. 2. (a) Repeater network: xi and Ai denote the possible
inputs and outcomes of agent i. (b) Repeater network with
eavesdropper holding a system correlated with each source: zi
and Ei denote the possible inputs and outcomes of the meas-
urement on each eavesdropper’s system. (c) Eavesdropper hold-
ing system correlated with all but last source. (d) Eavesdropper
correlating first and last sources.
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all remaining devices to be carrying out Bell state mea-
surements (BSMs), the generated correlations are [40]

1þ ð−1Þa1þanþ1

�
ð−1Þ

P
n
i¼2

a0
i þð−1Þ

P
n
i¼2

a1
i
þx1þxnþ1

�
2

22n
: ð3Þ

Plugging this into Eq. (2) yields I ¼ J ¼ 1=2 [40], which
results in R ¼ ffiffiffi

2
p

> 1, a violation of Eq. (1).
Suppose, as depicted in Fig. 2(b), the eavesdropper holds

n independent systems each correlated with one of the n
sources. Furthermore, we allow the systems held by the
eavesdropper to be postquantum (that is, nonsignaling), as
long as the form of the DAG from Fig 2(b) is enforced.
Each system can be measured by a device with input zi and
output Ei. As the purpose of repeater networks is to allow
agents 1 and nþ 1 to communicate, can such an eaves-
dropper learn the outputs of agents A1 and Anþ1?
Result 1. A violation of inequality (1) constitutes a

bound on an eavesdropper’s information about agents’
outcomes for the network of Fig 2(b): letting DðP;QÞ ≔
1
2

P
xjPðxÞ −QðxÞj denote the total variational distance,

this bound on the information corresponds to

D½PðE1 � � �EnjA1; Anþ1x1; xnþ1; z1;…; znÞ;
PðE1jz1Þ � � �PðEnjznÞ� ≤ 2ð2 −RÞ: ð4Þ

While the above bound is quite weak [63], it formally
relates polynomial inequality violation to the amount of
information an eavesdropper can possess about agents’
outcomes. It will be shown in the star network section that
increasing the number of measurement settings increases
the amount of violation; hence, the more measurement
settings one has, the more stringent the bound on the
eavesdropper’s information.
Result 2. By correlating only the i ¼ 1 and n sources, an

eavesdropper can simulate the correlations of Eq. (3).
By introducing such correlations, an eavesdropper can

learn all agents’ outcomes without alerting them [64].
Moreover, the sources only need to emit classical variables.

Such a model is provided in the Supplemental Material and
shown to correspond exactly to the quantum correlations
Eq. (3). As the eavesdropper manufactured the devices and
holds a copy of each source, they can infer each agent’s
output.
There are two ways to combat this: (i) having agents

perform measurements that maximally violate the Clauser-
Horne-Shimony-Holt (CHSH) inequality ensures their out-
puts are uncorrelated from an eavesdropper; (ii) take as a
security assumption that the eavesdropper does not hold a
system correlated with both first and last sources, as
depicted in Fig. 2(d). Even by holding a system correlated
with all sources excluding the last one (or the first one), an
eavesdropper cannot simulate the correlations of Eq. (3).
Indeed, a variant of Eq. (4), in which the left-hand side is
replaced by D(PðE1; E2jA1;…; z2Þ; PðE1jz1ÞPðE2jz2Þ),
with E and E1 as depicted in Fig. 2(c), easily follows
from the proof of Eq. (4) in the Supplemental Material.
Given the above, one might wonder why violating the

CHSH inequality is not always advocated over violating
inequality (1). If the sources are replaced with “noisy” Bell
states ρi ¼ vijϕ−ihϕ−j þ ð1 − viÞI=4, the above two cases
provide an interesting trade-off between source visibility vi
and security. Indeed, postselecting intermediate BSMs
results in another noisy Bell state shared between agents
A1 and Anþ1, but with lower visibility V ¼ Q

n
i¼1 vi. The

CHSH inequality can only be violated by this induced noisy
Bell state if V > 1=

ffiffiffi
2

p
. For visibilities below this threshold

no security can be established. Equation (1), however, can
be violated for visibilities V > 1=2 [36,40]. Hence, noisy
sources that do not ensure security in the Bell network can in
principle establish some security in repeater networks.
Star networks.—Consider the star network depicted in

Fig. 3(a), first studied in [36,37,39], consisting of n
independent sources, each shared between a central agent
B and one of n external agents Ai. The devices held by each
agent have k possible inputs, denoted y for the central agent
and xi for the external agents, and two potential outputs,
denoted b and ai for external and internal.
Result 3. The following inequality bounds the classi-

cally achievable correlations in Fig. 3(a):

(a) (b) (c)

FIG. 3. (a) Star network: y and B denote input and output of central agent and xi and Ai denote the inputs and outcomes of each
remaining agent. (b) Star network with eavesdropper holding system correlated with each source: zi and Ei denote possible inputs and
outputs of eavesdroppers’ measurements. (c) Eavesdropper holding system correlated with multiple sources.
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S ≔
Xk−1
i¼0

jIij1=n ≤ k − 1; ð5Þ

where, Ii ¼ ð1=2nÞPiþ1
x1;…;xn¼ihA1

x1 � � �An
xnBii, for i ranging

from 0 to k − 1, with Ai
k ¼ −Ai

0 and hA1
x1 � � �An

xnByi ¼Pð−1Þbþ
P

n
i¼2

aiPða1;…; anbjx1;…; xn; yÞ.
All sources are claimed to be in the singlet state

jψ−i. The supplied devices are claimed to function by
projecting onto the basis ½cosðrπ=2kÞj0i þ sinðrπ=2kÞj1i;
− sinðrπ=2kÞj0i þ cosðrπ=2kÞj1i�, where r is an integer
equal to xi for the ith external agent and y for central agent,
outputting 0 for the first basis element and 1 for the second.
Here, the central agent performs a separable measurement
consisting of simultaneously performing the same basis
measurement on each of their joint systems, outputting the
parity of individual outcomes. This implies that the operator
corresponding to the central agent’s measurement factorizes
[65] as By¼B1

y⊗ � ��⊗Bn
y resulting in hAx1 �� �AxnByi¼

hA1
xB1

yi���hAn
xBn

yi. Inequality (5) is upper bounded by
k cosðπ=2kÞ [66]. This upper bound is achieved by the above
measurements [67,68].
In what follows the simplifying assumption that the

central agents measurement device implements a separable
measurement will be made. Note that, using the same
approach as Sec. III A 3 of [39], it can been shown that all
possible violations of Eq. (5) can be achieved using
separable measurements on the center node. Hence our
assumption of separable measurements is not unjustified.
Suppose, as depicted in Fig. 3(b), the eavesdropper holds

n independent (possibly postquantum) systems, each cor-
related with a single source. By using devices with inputs zi
and outputs Ei to measure these systems, can an eaves-
dropper learn the outputs of agents Ai?
Result 4. Violating inequality (5) bounds an eavesdrop-

per’s information:

D½PðE1 � � �EnjA1;…; An; x1;…; xn; z1;…; znÞ;

PðE1jz1Þ � � �PðEnjznÞ� ≤ nðk − SÞ ≈
k→∞

O

�
1

k

�
: ð6Þ

Hence, as the number of measurement settings grows,
the eavesdropper becomes increasingly uncorrelated from
each agent’s outcome.
In the repeater network section, an eavesdropper was

able to learn agents’ outcomes by introducing a bit α which
correlated the first and last sources, depicted in Fig. 2(d).
Could a similar eavesdropping attack work here? In fact,
the same level of security as Eq. (8) can be established
against an eavesdropper who correlates m ≤ n sources by
sharing a random variable with q < k values—each taken
with probability pl—among the m sources, as illustrated in
Fig. 3(c). This is formalized by demanding that an eaves-
dropper’s information about agents’ outcomes takes the
following form:

PEjA1���Am
¼

Xq
l¼1

plPEl
1
jA1
…PEl

mjAm
: ð7Þ

With this formalization of the eavesdroppers attack, our
final result can now be stated.
Result 5. Given Eq. (7), the following bound can be

derived:

D½PðEEn−m � � �EnjA1; x1;…; z; zn−m…; znÞ;
PðEjzÞ � � �PðEnjznÞ� ≤ ½nþmðq − 1Þ�ðk − SÞ: ð8Þ

As in Eq. (6), this bound goes as 1=k for large k. Thus, if
an eavesdropper introduces correlations between sources,
their information of agents’ outcomes can be bounded as
long as the number of measurement settings is large enough.
Conclusion.—Monogamy relations using the degree of

violation of a Bell inequality to bound an eavesdropper’s
information are central to standard device-independent
information processing [8,17,18,69]. Thus, the results
presented in this work pave the way for device-independent
information processing on multisource quantum networks.
Indeed, Eq. (3) states that once intermediate outcomes are
announced, agents A1 and Anþ1 share a bit. Moreover, an
eavesdropper’s information about this bit is bounded by the
degree of violation of polynomial Bell inequality (1).
Hence device-independent key distribution is possible in
repeater networks. Moreover, security can be established
using entangled sources with lower visibilities than that
required for key distribution in the Bell network. Future
work will focus on establishing a full security proof for
device-independent key distribution on repeater networks.
However, for multisource quantum networks, there are

new avenues for eavesdropping attacks; by correlating
sources an eavesdropper can simulate quantum correlations
consistent with the original DAG. Fortunately, it was
demonstrated that increasing the number of measurement
settings, or ensuring the eavesdropper does not hold a
system correlated with a specified subset of sources, can
prevent this attack. As large-scale quantum networks—a
primer for a quantum internet—are becoming possible with
current technology, developing novel information process-
ing protocols on such networks is critical. Moreover, as
component networks making up future large quantum
networks are likely to consist of diverse technologies,
having protocols that are independent of specific techno-
logical implementations is critical.
Beyond generalized monogamy relations, can violation

of polynomial Bell inequalities be related to advantages in
other information processing tasks? References [11–13]
have related nonlocal correlations in the Bell network to
quantum advantages over classical computers. This was
established in the measurement-based paradigm—where
adaptive measurements are performed on a single source.
Relating computational advantages to violation of
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polynomial inequalities would be quite practical: it is more
feasible to create an entangled state consisting of multiple
sources of few-body entangled systems than of a single
source of many-body entangled systems.
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