
Measurement-based classical computation

Matty J. Hoban,1 Joel J. Wallman,2 Hussain Anwar,3 Naı̈ri Usher,3 Robert Raussendorf,4 and Dan E. Browne3
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Measurement-based quantum computation (MBQC) is a model of quantum computation, in which compu-
tation proceeds via adaptive single qubit measurements on a multi-qubit quantum state. It is computationally
equivalent to the circuit model. Unlike the circuit model, however, its classical analog is little studied. Here
we present a classical analog of MBQC whose computational complexity presents a rich structure. To do so,
we identify uniform families of quantum computations (refining the circuits introduced by Bremner, Jozsa and
Shepherd in Proc. R. Soc. A 467, 459 (2011)) whose output is likely hard to exactly simulate (sample) classi-
cally. We demonstrate that these circuit families can be efficiently implemented in the MBQC model without
adaptive measurement, and thus can be achieved in a classical analog of MBQC whose resource state is a prob-
ability distribution which has been created quantum mechanically. Such states (by definition) violate no Bell
inequality, but nevertheless exhibit non-classicality when used as a computational resource—an imprint of their
quantum origin.

There is a strong belief that quantum computers can ef-
ficiently perform certain tasks that cannot be performed ef-
ficiently on a classical computer, such as integer factoriza-
tion [1]. One of the central questions of quantum informa-
tion theory is to better understand which aspects of quantum
evolution are efficiently classically simulatable and which are
not [2]. One important aspect of this investigation has been
to learn when a computational model cannot possess a super-
classical speed-up, by showing that it can be simulated effi-
ciently on a classical computer. For example, Jozsa and Lin-
den showed that in pure state circuit-model quantum computa-
tion, restricting the multi-partite entanglement in certain ways
renders the model classically efficiently simulatable [3]. In
contrast, a number of striking recent results [4–6] have given
rigorous evidence that certain models of quantum computa-
tion (that have circuits with unrestricted entanglement) are un-
likely to admit an efficient classical simulation.

A distinct way to question the role of entanglement in
quantum computing is to consider it within the model of
Measurement-based Quantum Computation (MBQC) [7]. In
MBQC, computation proceeds via a sequence of single-site
measurements on a (usually entangled) many qubit resource
state. Certain entangled resource states, such as the cluster
state [8] are known as universal resources since they enable
universal quantum computation in this model. It has been
shown that the computational properties of a resource state
can be linked to its entanglement properties [9], and minimal
criteria for a state to be a resource state for MBQC have been
proposed [10]. Here, we consider the computations that can
be performed in the MBQC framework when no entanglement
is present in the resource state by developing and studying a
classical analog of MBQC.

It is important to define clearly what we mean by non-
classical in the context of computation. In this paper, we
denote a standard classical computing device (formal defini-
tion in App. A) as a classical computer that has access to uni-
formly random bits (i.e. as is used to define the complexity

class BPP). We then define non-classical computation as any
family of computations which cannot be achieved efficiently
(i.e. in polynomial time) with such a device.

The connections between MBQC and classical computa-
tion was studied from one perspective in [11], where it was
shown that casting classical computations within the MBQC
model illuminated a close connection between MBQC and
GHZ-type paradoxes (see also [12]). Here we take an alter-
native approach. MBQC can be split into three components: a
multi-qubit resource state; adaptive local measurements; and
the classical side-computation which processes input and out-
put and allows adaptive measurement [13]. In a full quantum
realisation of MBQC, the first two components are quantum,
and the latter classical. In this paper we consider the conse-
quences of making all three components classical.

What is the classical analog of an entangled resource state?
When we measure a quantum state, the output is usually ran-
dom. Moreover, we can only make a measurement once—
in entangled-state MBQC, measurement always changes the
state. Due to the single-use property of the entangled re-
source states MBQC is often called the “one-way quantum
computer” [7]. The classical object which shares these proper-
ties is a single sample from a multi-bit probability distribution.
Like a set of single qubit measurements on an entangled state,
it returns a random bit-string, similarly it supplies this only
once. There are significant fundamental differences between
a classical sample and an entangled state, however, both can
be considered as resources in an MBQC-like framework. In
this paper we define measurement-based classical computa-
tion (MBCC) as a model of computation consisting of polling
a single sample from a multi-bit probability distribution and
performing classical post-processing on these bits. Further-
more, we restrict classical post-processing to the sub-class of
computations utilised in cluster state MBQC [13], linear com-
putations (generated by XOR and NOT-gates alone).

Two of us showed in [14] that, under this restriction, if an
MBQC resource violates no Bell inequality then no non-linear
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computation can be achieved. The computation is restricted to
convex combinations of linear functions of the input bits. The
expressiveness of MBCC (the types of computations it can
perform), in which, as a classical model, no Bell inequality
can be violated, is therefore limited in the same way. Can
we then prove that MBCC can be simulated efficiently by a
classical computer?

The resource in MBCC is a classical multi-bit probability
distribution. Such distributions are of exponential size and
include distributions unlikely to by efficiently realisable even
by a quantum resources. We thus say that an n-bit distribution
is efficiently quantum preparable when there exists a quan-
tum circuit with a polynomial in n description, upon which
the output of single qubit measurements can can prepare the
distribution exactly. It follows that MBCC is equivalent to
a quantum MBQC where all measurements are non-adaptive
and of fixed basis.

In this paper, we give strong evidence that MBCC with an
efficiently preparable resource can be computationally non-
classical. More precisely we show that:

Theorem 1. There exist uniform families of MBCC compu-
tations with efficiently quantum preparable resources which
cannot be efficiently exactly simulated via a standard classical
computing device unless the polynomial hierarchy collapses
to the third level.

By standard classical computing device we mean a classical
Turing machine whose sole random element is a supply of
uniformly random bits. This is a probabilistic Turing machine,
and is used to define complexity classes BPP and PP. MBCC
is also a fully classical computational model, but crucially the
multi-bit probability distribution may have an (efficient) non-
classical preparation.

The Polynomial Hierarchy is a family of classes in compu-
tational complexity theory [15]. It is believed, although not
proven, that this family of classes is distinct. Aaronson and
Arkipov (AA) recently called this a “generic, foundational”
assumption of computer science [4], and this has been used
to provide strong evidence that universal quantum computers
[5], and certain restricted sub-classes of quantum computers
[6] and quantum processes [4] are hard to exactly simulate on
a classical computer.

Hypothesis 1. The third level of the polynomial hierarchy is
strictly smaller than at least one other level in the hierarchy.

Under the assumption of Hypothesis 1, Bremner, Jozsa and
Shepherd (BJS) showed that uniform families of a very re-
stricted family of quantum circuits, Instantaneous Quantum
Polytime (IQP) circuits, could not be exactly efficiently sim-
ulated on a standard classical computer, where by simulate
we mean that the classical devices outputs a sample from an
identical distribution to the simulated quantum circuit (weak
simulation in Jozsa and Van Den Nest’s classification [16]).

Our technical results include a strengthening of BJS’s result
by introducing a new and much stricter uniformity condition
defining uniform families of circuits which we call (IQP∗).
We show that IQP∗circuits also cannot be classically sim-
ulated unless Hypothesis 1 is violated. We then show that
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FIG. 1: a) Standard form of an IQP circuit, where each gate is diag-
onal in the Pauli-X basis and (x1, x2) is the two bit input string. All
measurements are in the computational (Pauli-Z) basis. The boxed
gates give the unitary D. b) A MBQC implementation of the circuit
in a), where each circle represents a qubit prepared in the state |+〉
and edges between circles represent the application of a controlled-Z
gate. The contents of the circles represent the basis in which the cor-
responding qubit is measured, where X represents the Pauli-X basis,
and θj represents the basis UX(−θj)ZUX(θj), where UX(θj) is a
rotation by θj about the Pauli-X axis. The angles θj are in one-to-
one correspondence with the θz in the representation of Dj in Eq.
(1). All of these measurements can be implemented simultaneously
(non-adaptively) in MBQC.

IQP∗circuits can be implemented in cluster-state MBQC us-
ing fixed-basis measurements. We thus demonstrate that the
same computations can be implemented in MBCC, the classi-
cal analog of MBQC introduced above.

We begin by defining IQP (Instantaneous Quantum Poly-
time) circuits [17], introduced by BJS, which will play a cen-
tral role in our argument.

Definition 1. An IQP circuit with classical input bit string x
of size n acting on q ≥ n qubits consists of:

1. a quantum register prepared in the input state
|x〉|0〉⊗q−n; and

2. the application of a unitary operator U to the register,
where U is diagonal with respect to the eigenbasis of
Pauli-X operators.

We denote the output of this computation, obtained via com-
putational basis measurements on every qubit, by the q-bit
string m, whose jth element mj ∈ {0, 1} is the outcome of
the computational basis measurement on the jth qubit.

An example of an IQP circuit is illustrated in Fig. 1a. Such
circuits are called instantaneous because D can be decom-
posed into a product of commuting gates, which can thus be
applied in any order (or simultaneously) [17].

When studying the computational power of families of cir-
cuits, it is often useful to ensure that unreasonable computa-
tional power is not hidden in the description of the circuits
themselves. This can be ensured via a uniformity condition
which ensures that a description of each circuit in the family
can be (classically) efficiently generated. While BJS intro-
duce a uniformity condition in Ref. [6], we adopt a different
one here, and we denote the set of uniform circuit families
obtained under this condition by IQP∗.

Definition 2. An IQP∗ circuit family is a family of IQP cir-
cuits, with input x and input size n = |x|, followed by com-
putational basis measurements on every qubit, such that the
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number of qubits q is polynomial in n, and where the unitary
operatorUn (which has an explicit n-dependence) is a poly(n)
product of gates of the form

D(θz, z) = eiθzX[z], (1)

where each angle θz ∈ (0, 2π] has a description polynomial-
size in n, z is a q-bit string, and we introduce the nota-
tion X[z] =

⊗
j X

zj , where zj is the jth bit of z. E.g.
D(θ101, 101) = exp[iθ101(X ⊗ 11⊗X)].

In other words, the description of every member of an IQP∗

circuit family is a polynomial list Ln of q-bit strings z and
corresponding angles θz . This list then defines the circuit for
input size n. If we adopt the notational shorthand that θz = 0
for all bit strings z not in Ln, then the unitary transformation
for the circuit Un is given by

Un =
∏
z∈Zq2

D(θz, z). (2)

Operators of this form have a useful symmetry in their matrix
elements, which we will exploit below, namely,

〈w ⊕ y|Dn|w〉 = 〈y|Dn|0〉 (3)

for all bit strings w and y, with |0〉≡|0〉⊗q and where ⊕ rep-
resents a bit-wise sum modulo 2.

This is different from the uniformity condition introduced
by BJS [6] in some significant ways. Most importantly, BJS’
uniformity condition allows the circuit to depend on individ-
ual values of input string x, rather than (the more common
choice of) the length of x. This means that the circuit con-
struction itself can play a very siginificant role in the compu-
tation, for example evaluating an arbitrary polynomial-sized
classical circuit. In contrast, due to their much weaker “pre-
computation” stage, IQP∗ circuit families cannot even achieve
a single non-linear logic Boolean function, such as AND.
Lemma 1 is thus a considerable strengthening of the theorems
in [6].

Lemma 1. The output probability distributions generated by
IQP∗ circuit families cannot be efficiently and exactly sim-
ulated on a standard classical computing device unless Hy-
pothesis 1 is false.

The full proof of Lemma 1 is presented in Appendix B. The
technical definition of a classical computing device is pro-
vided in Appendix A along with other useful notions from
computational complexity theory. To summarize the proof for
readers familiar with Ref. [6], under postselection of mea-
surement outcomes of a subset of qubits, the families of IQP∗

circuits can be mapped to general quantum circuits satisfy-
ing the standard uniformity condition for the complexity class
BQP. We then utilize a similar proof technique to Ref. [6].

As in Ref. [6], Lemma 1 may be generalized to include
multiplicative error up to a certain factor on the individual
probabilities. However, we shall not consider such multiplica-
tive error here. We discuss the issue of approximate simula-
tions and finite numbers of samples at the end of this paper.

Lemma 1 presents strong evidence that IQP∗ circuit families
may not be efficiently and exactly simulated on a classical
computer.

Before proceeding to our main result, we note a related phe-
nomenon in Corollary 1, namely that there exist efficiently-
preparable families of quantum states for whom the statistics
of computational basis measurements are unlikely to be effi-
ciently and exactly simulated on a classical computer.

Definition 3. An IQP∗ zero-input state family is the set of
quantum states created by an IQP∗ circuit family, when the
input is set to the all zeros string 0 . . . 0.

Corollary 1. The statistics of computational basis measure-
ments on IQP∗ zero-input state families cannot be efficiently
and exactly simulated on a standard classical computer unless
Hypothesis 1 is false.

Proof. We use a special property of IQP circuits, namely that
the output statistics of an IQP circuit with input x, defined
according to Definition 1, may be realized by the same IQP
circuit acting on the n-bit all-zeros string by performing some
simple extra post-processing of the output bits of the measure-
ments.

Observe that the probability that the measurement output
string is a bit string m given input x is

Prob.(m|x) = |〈m|Dn|x̄〉|2,
= |〈m⊕ x̄|Dn|0〉|2,
= Prob.(m⊕ x̄|0), (4)

where x̄ is x appended by q − n zeros and we obtained the
second line from Eq. (3).

Thus identical output statistics to an IQP circuit given input
x can be obtained via the same circuit with input 0 and post-
processing of the output bit string m to string m ⊕ x̄. This
post-processing comprises at most n bit-flips and can be (triv-
ially) efficiently performed on a classical device. From this,
the corollary follows directly from Lemma 1.

Corollary 1 is an important preface to our main result, and
captures many of its features. Note that the subject of the
corollary is a classical probability distribution. Even though
the distribution is classical, its statistics have inherited the
(likely) hardness of exact simulation of the IQP∗quantum cir-
cuit families.

We now turn to MBQC (and then MBCC) implementations
of IQP∗circuit families. We show the general result that any
MBQC which can be achieved using measurements in a fixed
basis can be achieved in MBCC (though possibly requiring a
resource state that cannot be efficiently generated classically).

IQP circuits have a special form in MBQC, first derived
in [18] and illustrated in Fig. 1. We will show below that
IQP∗families also have the property that they can be achieved
in MBQC with a non-adaptive fixed measurement basis.

Lemma 2. For every instance of MBQC on an n-qubit re-
source, where every measurement basis is fixed, there is a cor-
responding instance of MBCC with an n-bit resource, whose
output statistics simulate it exactly.
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The proof of Lemma 2 follows immediately from the fact
that the statistics of any projective measurement upon a quan-
tum state relies solely on matrix elements which are diagonal
with respect to the measured basis. Given the state, a fully de-
phasing channel in this eigenbasis may be applied, which sets
all off-diagonal elements to zero. This channel will not change
the statistics of the measurement which follows but outputs a
state which is separable and discord-free [19]. Measurements
on a separable and discord-free quantum state define a multi-
bit probability distribution. MBCC utilising a sample of this
distribution will exactly simulate an instance of the MBQC.

The final step in the proof of Theorem 1 is to show that
IQP∗circuits can be implemented in MBQC with fixed mea-
surements.

Lemma 3. Given a member of an IQP∗circuit family, there is
an efficient implementation in MBQC whose measurements
are fixed and non-adaptive.

Proof. From Eq. (4), we can place all of the dependence on
x into classical post-processing. For convenience, we insert
H2 = 11 between every state, unitary and measurement in an
IQP∗circuit to change the input state from |0〉⊗q to |+〉⊗q , the
final measurements into Pauli-X measurements and to make
all gates diagonal in the Pauli-Z basis (rather than the Pauli-
X basis). Then, noting that CZ2 = 11, where CZ is the
controlled-phase gate, we can add CZ gates after each input
state, so that the IQP∗circuit is equivalent to preparing a clus-
ter state, applying gates that are diagonal in the Pauli-Z basis
and then measuring in the Pauli-X basis.

In [18], it is shown that any unitary gate of the form

Dz(θz, z) = eiθzZ[z], (5)

where Z[z] =
⊗

j Z
zj and zj is the jth bit of z, can be

achieved in MBQC with simultaneous measurements, and
with byproduct operators which are a tensor product of Z and
11. Since the byproduct operators commute with the logical
gates (5), they can be applied at the end of the computation
and measurements do not need to be adaptive. Therefore all
the gates in an IQP∗circuit can be implemented in MBQC
without adaptivity.

Combining Lemma 2 with Lemma 3 implies that
IQP∗circuit families can be realized in MBCC, with a resource
distribution which is efficiently quantum preparable. Together
with Lemma 1 this proves Theorem 1.

Discussion. What is the relationship between MBCC and
MBQC - its fully quantum counterpart? From one perspec-
tive, MBCC can be seen as a special case of MBQC, since
dephased states are a sub-set of quantum states. In both mod-
els the classical side-processing is of secondary importance
(and of weak computational power) and the driver of the com-
putation is the correlations in the measurement outcomes.

In other aspects the two models are strikingly different. In
response to an early pre-print of this present work, Rieffel
and Howard introduce criteria which divides MBQC instances
into superficial and inherently measurement based [10]. Us-
ing their criteria, MBCC would be superficially measurement-
based. We agree that MBCC is of an intrinsically different

nature to universal MBQC. It is thus all the more remarkable
that it exhibits non-classical computational attributes.

Can we identify further instances of MBCC which achieve
hierarchy collapse, or other evidence of non-classical compu-
tation? Rieffel and Howard [10] note that the output distribu-
tion of Shor’s algorithm might be of this category, since it is
very likely that Shor’s algorithm cannot be efficiently simu-
lated by a classical computing device. However, such a distri-
bution is very different to those considered above. Firstly, the
simplicity of this distribution (peaked at integer multiples of
the inverse order r−1) means that post-selection is unlikely to
enable strong computations that collapse the polynomial hier-
archy. Second, given a single piece of classical information,
(the order r), the Shor algorithm distribution can be efficiently
classically generated [23] – whereas no equivalent simulation
method is known for IQP∗output distributions. Finally, a sin-
gle instance of Shor’s algorithm has a fixed input whereas a
single distribution allows for IQP∗computations via MBCC
on any input bitstring (of a particular length). We empha-
sise that the dependence on input for IQP∗is simple (due to
equation 4) it is far from trivial under post-selection, enabling
highly non-trivial computations on that input.

Conclusions. Theorem 1 gives strong evidence that MBCC
cannot be simulated efficiently on a gate-model classical com-
puter whose sole randomness source is a supply of uniformly
random bits. The MBCC model can exploit the correlations
in probability distributions to achieve non-classical computa-
tion. This seems paradoxical, since MBCC is described in
fully classical terms. The resolution of this apparent paradox
is that this probability distribution can be created by quan-
tum means. From a computational perspective, any family of
distributions which do not have an efficient classical imple-
mentation have a non-classical character. For a probability
distribution, the key marker of non-classicality is typically the
violation of a Bell inequality. MBCC reminds us that distri-
butions which violate no Bell inequality may still possess a
non-classical character.

From the perspective of quantum information, these results
have direct implications for MBQC. They provide a concise
argument that adaptive measurement is necessary for univer-
sal MBQC (otherwise MBQC and MBCC would be equiva-
lent), and demonstrate that, in spite of this, adaptive measure-
ment is not required for the model to exhibit characteristics of
non-classical computation.

Does this work have experimental relevance? Can one ver-
ify that the desired probability distribution has been produced?
This question has been considered for boson sampling [4, 21]
and needs to be addressed in our future work. However, for a
small-scale demonstration experiment a convincing verifica-
tion procedure would be to implement the post-selection and
confirm a non-trivial computation. Another important issue
associated with experimental realizations is that of approxi-
mation. While the approximation model (multiplicative errors
on individual probabilities) considered in Ref. [6] can be im-
mediately applied here, it does not provide an analysis of the
most physically relevant error model, namely, additive error
on the whole probability distribution. We note that AA [4]
have made progress in this direction.
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The relationship between entanglement and quantum com-
putational speed-up has been debated since the early days of
quantum computing theory. These results emphasize the intri-
cacies of this question. They illustrate that the quantum speed
up in Shor’s algorithm is of a qualitatively different charac-
ter to the hardness of the sampling distributions in this paper,
and show that even an ostensibly fully classical model, such
as MBCC, can have a quantum computational character if its
resource distribution is quantum mechanically generated. The
relationship between quantum computational power and cor-
relations appears even more subtle than previously thought.
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Appendix A: Some computational complexity definitions

It is important that we define what we mean by “classical
computing devices”. By this expression we include general
probabilistic processes since quantum circuits will, in general,
not give deterministic outcomes and we want to simulate the
statistics of quantum circuits. We follow [6] in making the fol-
lowing definition (where Boolean circuits are defined in [15]):

Definition 4. A standard classical computing device takes
an input x ∈ {0, 1}n of size n and produces a bit string y ∈
{0, 1}s of size s by performing the following operations:

1. Flip r1 fair coins to produce a random bit string z ∈
{0, 1}r1 of size r1 where we make the assignment
“heads” to 0 and “tails” to 1;

2. Prepare the bit string x′ = (x, 0̃, z) where 0̃ is the bit
string of size r2 with all elements equal to 0; and

3. Apply a Boolean circuit Bn that takes bit string x′ of
size n + r1 + r2 as an input and outputs the bit string
y ∈ {0, 1}s of size s, where the description of Bn is
generated in poly(n) by a classical Turing Machine.

All variables n, s, r1, r2 are positive integers. If the compu-
tational resources of this device are polynomial in n then i.e.
s = poly(n), r1 = poly(n), and r2 = poly(n).

There is a classical computational complexity class asso-
ciated with these devices if the computational resources they
use are polynomial in n, and this is the class of decision prob-
lems known as BPP. Since these classical computing devices
involve nondeterministic processes, the correct answer to a de-
cision problem may not be obtained deterministically; there is
a probability of giving the wrong answer. A problem is in BPP
if this error probability is less than or equal to some constant
c < 1/2. A related and potentially larger complexity class
of probabilistic classical computations is PP where the error
probability is bounded from above by 1/2 but may not be a
constant, i.e. can depend on the input size n. This last class
will also be important in later discussion.

Similar to BJS [6] and AA [4], our proof makes use of com-
plexity classes defined using post-selection. Post-selection
cannot be achieved deterministically in a physical realization,
but is an extremely useful technical concept. Post-selection
is the act of demanding that the outcome of a quantum mea-
surement is a fixed value, and that the state of the system then
evolves via a fixed projector and a renormalization. Aaron-
son introduced the class POSTBQP, which, loosely speak-
ing, represents the problems solvable on a quantum computer
given polynomial resources if we were given the extra power
of post-selecting measurement outcomes. BJS introduced the
complexity class POSTIQP, which applies a similar treatment
to their uniform IQP circuits.

The formal definitions of the classes POSTBQP, POSTIQP
and POSTIQP∗ are as follows.

Definition 5. A BQP circuit family {Cn : n ∈ N} is a set of
quantum circuits such that for each input bit string x of size

n ∈ N, Cn is a quantum circuit acting on q = poly(n) qubits
(initiated in the state |x〉|0〉⊗q−n) with a sequence of gates
chosen from the universal gate set {CZ,H,Z, P} which has
a description generated in poly(n) time by a classical Turing
Machine.

Here CZ is the controlled-Z gate, H is the Hadamard gate,
Z is the Pauli-Z gate and P = ei

π
8 Z . We now define the afore-

mentioned complexity classes under post-selection utilizing
the definitions above and following the work of Aaronson in
[20].

Definition 6. A language L ⊆ {0, 1}∗ is in POSTBQP iff
there exists a BQP circuit family {Cn|n ∈ N} such that for all
inputs x ∈ {0, 1}n:

1. after Cn is applied to the state |x〉|0〉|0〉...|0〉, there is
a non-zero probability that a qubits (excluding the last
qubit) at the end of the circuit are in the state |0〉⊗a for
a = poly(n);

2. if x ∈ L and these a qubits are in the state |0〉⊗a, the
last qubit when measured in the computational basis is
|1〉 with probability ≥ 2/3;

3. if x /∈ L and these a qubits are in the state |0〉⊗a, the
last qubit when measured in the computational basis is
|1〉 with probability ≤ 1/3;

where the last qubit is the bottom qubit line in a quantum cir-
cuit diagram such as in Fig. 1. These are postselected circuits
because we postselect on a number of qubits all being in the
state |0〉, and then accept the outcome of a measurement on
the last qubit. Therefore, the set of qubits upon which we
postselect never includes the last qubit.

To define POSTIQP, BJS use a near identical definition,
replacing “a BQP circuit family” with their definition of “a
uniform IQP circuit family” in Definition 6. Similarly, we
define POSTIQP∗ by replacing, “a BQP circuit family” in this
definition by “an IQP∗ circuit family”.

Appendix B: Proof of Lemma 1

In this section we provide a proof of Lemma 1. This section
utilizes some of the technical concepts defined in Appendix A.
To prove Lemma 1 we use the arguments presented in [6].

One of the key lemmas which underpin BJS’s main result
(see Corollary 3.3 in [6]) is the complexity class equation:

Lemma 4. POSTIQP = POSTBQP = PP

where POSTIQP, POSTBQP and PP are defined in Appendix
A and in [6]. The right-hand equation is due to Aaronson [20].

To prove Lemma 1, we need to show that:

Lemma 5. POSTIQP∗=POSTBQP=PP.

Lemma 1 then follows directly from all other steps of the
proof of Corollary 3.3 in [6]. We shall not reproduce those
steps of the proof here.
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In order to prove POSTIQP∗ = POSTBQP, it is necessary
to prove that POSTIQP∗ ⊆ POSTBQP and that POSTBQP ⊆
POSTIQP∗. It is clear that the former is true. To prove the
latter, recall that any BQP circuit can be expressed in the for-
malism of MBQC [13]. The physical realization of any BQP
circuit family in MBQC comprises the generation of a graph
state of sufficient size and appropriate structure, followed by
adaptive single-qubit measurements in the bases X , Y and
(X ± Y )/

√
2.

Graph state generation comprises:

1. preparation of a set of qubits in state |+〉 = (|0〉 +

|1〉)/
√

2; and

2. implementation of CZ gates between certain qubits.

The measurements can be implemented by rotating about
the Z axis by 0, π/4, −π/4 or π/2 followed by a measure-
ment in the X basis.

The sequence of measurements corresponds to the chosen
BQP circuit. Notice that from Definition 6 the initial state and
the gates depend on n and not the specific value of x. The
dependence on x is introduced by having measurements of
the following form (via a simple application of gate identities
in [13]): there are n qubits that each correspond to each el-
ement xj of x, and if xj = 0 we make the measurement in
the X basis, and if xj = 1 then we implement a π-rotation
about the Z axis and measure in the X basis. Since the rota-
tion commutes with the CZ gates, it can be incorporated into
the preparation of that qubit by preparing |+〉 if xj = 0 and

|−〉 = 1√
2

(|0〉 − |1〉) otherwise. For the rest of the qubits in
the graph state, the rotation about the Z axis and measurement
in the X basis is only defined by size n, the size of x.

If we could post-select on measurement outcomes
in MBQC then we remove the need for adaptive
measurements—computations are accepted only if cer-
tain outcomes occur. We now show that non-adaptive
computations in MBQC are instances of IQP∗ circuits.
This can be easily shown if one writes out the computation
in MBQC as a quantum circuit, and for all qubits after
preparation of states |+〉 and |−〉 and before measurements in
the X basis two Hadamard gates are applied, yielding exactly
the same circuit. The action of a Hadamard on these state
preparations gives the mapping 1√

2
(|0〉+ (−1)xj |1〉)→ |xj〉.

In a computation in MBQC all unitaries prior to measurement
are diagonal in the Z basis, so the action of a Hadamard
on every qubit prior to and after these unitaries maps these
unitaries diagonal in the Z basis to unitaries that are diagonal
in the X basis; those unitaries that appear in IQP∗ circuits.
Finally the action of a Hadamard prior to measurement in the
X basis results in a measurement in the computational basis.
In Fig. 2 we give an example of this equivalence between
MBQC circuits without adaptivity and IQP circuits.

Therefore, under the action of post-selection MBQC com-
putations are instances of IQP∗ circuits. To complete the proof
of Lemma 1 we insert Lemma 5 into the proofs of Theorem
3.2 in [6] and Corollary 3.3 in [6].
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FIG. 2: The top circuit where DZ is a unitary that is diagonal in the
Pauli-Z basis is equal to the bottom circuit where DX is a unitary
that is diagonal in the Pauli-X basis. The top circuit is of the form
of a circuit in MBQC but without adaptivity. Since H · H = 11
we immediately see that the bottom circuit is an example of an IQP
circuit.


