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Abstract
Wedevelop aunified approach to classical, quantumandpost-quantumsteering.The framework is based
onuncharacterised (black-box)parties performingquantummeasurements on their shareof a (possibly
unphysical)quantumstate, and its startingpoint is the characterisationof general no-signalling assemblages
vianon-positive local hidden-statemodels,whichwill bedefined in thiswork.Bydeveloping a connection
to entanglementwitnesses, this formalismallows fornewdefinitionsof families of assemblages, inparticular
via (i)non-decomposable positivemaps and (ii)unextendible product bases. The formerproves tobeuseful
for constructingpost-quantumassemblageswith thebuilt-in featureof yieldingonlyquantumcorrelations
inBell experiments,while the latter always gives certifiablypost-quantumassemblages. Finally, our
framework is equippedwith an inherent quantifier of post-quantumsteering,whichwe call thenegativity of
post-quantumsteering.Wepostulate that post-quantumsteering shouldnot increaseunderone-way
quantumoperations fromthe steeredparties to the steeringparties, andwe show that, in this sense, the
negativity of post-quantumsteering is a convexpost-quantum-steeringmonotone.

The concept of steeringwasfirst introducedbySchrödinger in 1935 [1] in response to theEinstein et alparadox [2]. It
refers to thephenomenonwhere oneparty,Alice, byperformingmeasurements ononepart of a shared system,
seemingly remotely ‘steers’ the state of the systemheldby adistant party, Bob, in awaywhichhasno explanation in
termsof local causal influences. Steeringhasonly recently been formally defined in aquantum information-theoretic
setting [3], as awayof certifying the entanglement of quantumsystemswithout theneed to trust oneof theparties, or
whenoneof theparties is usinguncharacteriseddevices. In this setting, theuncharacterisedparty convinces the other
party that they shared entanglementbydemonstrating steering. Furthermore, if all parties are uncharacterised (or
untrusted) thenone recovers thedevice-independent settingof a standardBell test. Steering thusmaybe seen as one
in a family of non-classical phenomena, closely related to entanglement andBell non-locality [4]. Indeed, Bell non-
locality implies steering, and steering implies entanglement, however all three concepts are inequivalent [3, 5].

It is well-known that, in spite of demonstrating non-locality, localmeasurements on entangled quantum
systems cannot be used to communicate superluminally. That is, correlations that are generated by varying the
choice of localmeasurements on space-like separated quantum subsystem—whichwe define to be quantum
correlations—satisfy the principle of no-signalling.Wewill call no-signalling colleations all correlations that do
not permit signalling. One can conceive of no-signalling correlations that cannot be realised by local
measurements on quantum states, hence called post-quantum correlations; this possibility wasfirst pointed out
in a seminal work by Popescu andRohrlich [6]. A pertinent question at the heart of quantum foundations since
then has regarded the reasonwhywe do not seem to observe these post-quantum correlations in nature [7]. This
line of questioning has resulted in the proposal of physical and information-theoretic axioms that aim to single
out the set of quantum correlations among the no-signalling correlations [8–14].
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Since Bell non-locality implies steering, it is natural that there should also exist post-quantum steering, i.e.
steering that does not lead to superluminal signalling yet cannot be realised through localmeasurements on a
quantum system. In the standard steering scenario—only two parties, one of whom is uncharacterised and the
otherwho holds a quantum system—there is no such thing as post-quantum steering: the onlyways inwhich a
single Alice can steer a quantumBobwithout leading to signalling have a quantum explanation [15]. However,
when consideringmultipartite generalisations of steering [16] (see also [17]), it is possible to have post-quantum
steering [18]. Such situations involve three ormore parties, with at least two uncharacterised parties.
Remarkably, it is possible to have post-quantum steeringwithout the presence of post-quantumnon-locality,
demonstrating that these two concepts are in fact intrinsically distinct [18].

The question of how to best understand post-quantum steering, including its possibilities and its limitations
—which could ultimately lead to an information-theoretic reasonwhy post-quantum steering does not appear
in nature—is still open.Onemain reason for this is the lack of a frameworkwithinwhich to study quantumas
well as post-quantum steering in a unifiedmanner. Thismakes the implications of post-quantum steering
difficult to address.We cannot take a black-box approach—that is, based solely on the use of conditional
probability distributions, as in the case of Bell non-locality—since there is the assumption that one ormore
parties have a quantum system and their devices arewell-characterised. Nevertheless, in the steering framework
there is a natural analogue to conditional probability distributions: the assemblage. The latter is the collection of
states of the characterised parties for each possiblemeasurement outcome ofmeasurementsmade by the
uncharacterised systems. Another obstacle on the path towards understanding the power of post-quantum
steering in information tasks is the lack of examples of (large families of) post-quantum steering assemblages.

In this workwe develop a framework for steering based on that of [19] (see also [20]) for Bell non-locality. In
this formalism, the parties share a (potentially non-quantum) system in the (potentially unphysical) state r̃,
where some parties steer the others by performing quantummeasurements on their share of the system. By
unphysical state wemean that r̃ is not necessarily positive semi-definite, but it is Hermitian and has unit trace.
We show that different families of assemblages arise naturally within the framework depending on the properties
of the operator r̃, and in this waywe can identify assemblages with a local hidden state (LHS)model, as well as
quantumand general no-signalling assemblages.

Furthermore, we describe a new family of assemblages, whichwe call Gleason assemblages, in analogue to
Gleason correlations [19]. These are assemblages that arise when r̃ is an entanglement witnesses.Motivated by the
fact that every positive (but not completely positive)map can generate an entanglement witness [21], we
consider a novelmeans of generating post-quantum assemblages: the application of positive (but not completely
positive)maps to the quantum systems held by the characterised parties-equivalently, to the assemblage.We
show that this construction automatically leads to quantum correlations uponmeasuring the characterised
systems, yet can lead to post-quantum assemblages when a special class of positivemaps is considered (so-called
non-decomposablemaps). In otherwords, we present a constructive way of generating post-quantum
assemblages that only produce quantum correlations. This provides thefirst general analytic construction of
post-quantum steeringwithout post-quantumnon-locality, with the only known examples to date being
obtained through numerical optimisation [18].

We also study assemblages that arise when the parties perform localmeasurements on entanglement
witnesses constructed from anunextendible product basis [22]. This is a simple construction that always yields
certifiable post-quantum assemblages (althoughwith post-quantum correlations). In addition, we provide a
characterisation of general no-signalling assemblages as affine combinations of LHS assemblages. This result,
which generalises that of [23] for Bell scenarios, not only provides an operational interpretation for non-classical
assemblages but also serves as a useful tool for developing ourwork further. Finally, our framework also provides
an inherent post-quantum steering quantifier in terms of theminimal negativity of the operator r̃ necessary to
reproduce a given assemblage.We prove that such a quantifier does not increase under processing of the
assemblage bymeans of one-way quantumoperations from the steered party to the steering party, whereas
standard steering is postulated not to increase under one-way local operations and classical communication.

The outline of the paper is as follows. In section 1we introduce the concept of steering and LHSmodels.
Then in the next two (sections 2 and 3)we introduce a generalisation of LHSmodels that can account for general
no-signalling assemblages. The tools developed in these sections allow us to introduce our general formalism for
steering in quantum theory and beyond in section 4, and then introduce the notion ofGleason assemblages. The
direct connection between entanglement witnesses and positive but not completely positivemaps is then
exploited in section 5 to generate new examples of post-quantum steeringwithout post-quantumnon-locality.
In section 6we generate post-quantum assemblages using entanglement witnesses constructed from
unextendible product bases. In section 7we introduce a quantifier of post-quantum steering, proving its
monotonicity under one-way quantumoperations.We concludewith some remarks and open problems.
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1. Steering

Let us start by describing the simplest steering scenario consisting of two separated parties, Alice and Bob. The
roles these parties play in the experiment are different: Alice (a.k.a. the ‘steering’ party) is thought of as having a
black-box, where she decides on an input x and obtains an outcome a. Nothing is assumed about the inner
workings of this device. On the other hand, the situation at Bob’s lab (who is known as the ‘steered’ party) is fully
described bymeans of quantummechanics: he has access to a systemwhosemarginal state is given by rR. Each
round in the experiment consists of Alice choosing an input x and obtaining an outcome a, with probability

( ∣ )p a x , and Bob obtaining the conditionalmarginal state r ∣a x intowhich his systemhas been steered. It is
convenient toworkwith the unnormalised steered states s r≔ ( ∣ )∣ ∣p a xa x a x which contains information
both about the probabilities of the steering party, s=( ∣ ) { }∣p a x tr a x , and the conditionalmarginal
states r s= ( ∣ )∣ ∣ p a xa x a x .

Thefirst relevant question in such a set-up is: given a set s s≔ { }∣ ∣A X a x a x, of conditional states s ∣a x, whichwe
shall refer to as an assemblage, prepared in Bob’s lab, could it have arisen byAlice and Bob performing
measurements on a classically correlated shared system?

In general, in a quantum scenario, the elements of the assemblage are given by

s r= Ä{( ) } ( )∣ ∣Mtr , 1a x A a x

where ρ is a state shared byAlice and Bob, and ∣Ma x is the ath element of a generalmeasurement onAlice’s
subsystem—i.e., a positive-operator valuedmeasure (POVM)—Mx≔{ }∣Ma x a x, , with ∣M 0a x

and å =∣Ma a x .
A separable (or classically correlated) bipartite state has the structure

år r r= Ä
l

l l l ( )p , 2A B

with l{ }p a probability distribution, and each rl
A a normalised state forA (similarly forB).

If ρ in (1) can be chosen to be separable, that is, as in (2), the experiment is said to have a LHSmodel, and the
members of the assemblage can bewritten as

ås s=
l

l l( ∣ ) ( )∣ p a x , 3a x

where sl 0 are sub-normalised quantum states such that l sl( ) ≔ { }p tr satisfies lå =l ( )p 1, and l ( ∣ )p a x
arewell-defined conditional probability distributions for allλ.With respect to the notation of (2), onewould
have l ( ∣ )p a x = rl{ }∣Mtr a x

A and sl= rl lpB .
Conversely, whenever the conditional states s ∣a x do not admit an LHSmodel—that is, they cannot arise

from localmeasurements on a separable state—it is said that steering has been demonstrated fromAlice to Bob,
and in this case, a state ρ that is entangled is necessarily shared betweenAlice and Bob in order to satisfy (1).

In the literature, the steering (resp. steered) party is also sometimes said to be uncharacterised (resp.
characterised) or untrusted (resp. trusted), depending on the particular context inwhich the steering experiment
is performed (for instance, a cryptographic scenario). In thismanuscript, wewill use these names synonymously
without inheriting any of their implicit assumptions on the nature or circumstances of the set-up.

We are also interested in situations beyond the standard bipartite steering scenario, involving an arbitrary
but fixed number of parties, where some are characterised and some are not. Characterised parties then
describe their local systems bymeans of quantummechanics, i.e. themarginal states of their systems is
specified by a density operator to which they have access. On the other hand, uncharacterised parties only
rely on the classical labels of the inputs and outputs of their devices, and their outcome statistics. As such, in a
scenario with n uncharacterised parties, the object of interest is themultipartite assemblage s ¼ ¼∣A A X Xn n1 1

≔
s ¼ ¼ ¼ ¼{ }∣a a x x a a x x, , , , ,n n n n1 1 1 1

, the ensemble of unnormalised states s ¼ ¼∣a a x xn n1 1
, which are conditionally prepared

for the characterised parties by the uncharacterised ones, when they input ¼x xn1 on their devices and obtain
outcomes ¼a an1 (see figure 1). Analogously to the bipartite setting, s ¼ ¼{ }∣tr a a x xn n1 1

= ¼ ¼( ∣ )p a a x xn n1 1 .
In the followingwewill consider the case where there is only one characterised party, referred to as Bob. In
general, our results will also apply to the case ofmore than one characterised party, by considering these as just
one (larger) effective characterised party.Wewill explicitly discuss the details when the number of
characterised parties plays a relevant role.

Multipartite steering experiments lead to richer phenomena than the bipartite experiments [16, 17]. In the
former case it is possible to have steering that goes beyondwhat quantummechanics allows for, while still
complyingwith the principle of no superluminal signalling [18], while in the latter case this is impossible [15].
One of the primary goals of this paper is to develop a formalismwhich can deal with both quantumand post-
quantum steering in a unifiedmanner. To that end, in the next sectionwe introduce a representation of general
multipartite assemblages in terms of affine combinations of LHSs. This is a generalisation of similar results in
Bell scenarios [23], andwill be useful for us to introduce a general formalism for steering later.
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2. Pseudo LHSmodels

In this section, we present a characterisation of general (i.e. no-signalling) assemblages as affine combinations of
LHSs.Wewill denote these by pseudo-LHSmodels.

Consider hence a general steering scenario where nuncharacterised parties, henceforth denoted as Alices,
steer a characterised one, denoted as Bob. Assume that each of the nAlices operates a devicewhose input can
assumem different values and returns one out of d outcomes, hence producing the assemblage s ¼ ¼∣A A X Xn n1 1

for Bob.
Whenever the Alices and Bob share a classically correlated system, the assemblages thatmay arise by the

Alices performing localmeasurements on their share of the system are said to have an LHSmodel, asmentioned
in the previous section. The formal definition of such amodel in themultipartite scenario is the following.

Definition 1 LHSmodel.An assemblage s ¼ ¼∣A A X Xn n1 1
has an LHSmodel if it can be decomposed as

ås s= ¼
l

l l l¼ ¼ ( ∣ ) ( ∣ ) ( )∣
( ) ( )p a x p a x , 4a a x x

n
n n

1
1 1n n1 1

where l ( ∣ )( )p a x 0j
j j is a conditional probability distribution for everyλ and every uncharacterised party j, and

sl (the LHSs) are unnormalised quantum states that satisfy

s l"l ( )0 , 5

å s =
l

l

⎧⎨⎩
⎫⎬⎭ ( )tr 1. 6

The purpose of this work is to develop a general framework for steering that goes beyond LHS and quantum
assemblages. A possible strategy for this is to generalise the definition of an LHSmodel to include quantum
assemblages and potentially some post-quantumones, in a similar spirit as previously done in non-locality
[23, 24]. Thus, we propose the following generalisation, whichwe denote as pseudo-LHSmodels.

Definition 2Pseudo-LHSmodel.An assemblage s ¼ ¼∣A A X Xn n1 1
has a pseudo-LHSmodel if it can be decomposed

as

ås s= ¼
l

l l l¼ ¼ ( ∣ ) ( ∣ ) ( )∣
( ) ( )p a x p a x , 7a a x x

n
n n

1
1 1n n1 1

where l ( ∣ )( )p a x 0j
j j is a conditional probability distribution for everyλ and every uncharacterised party j, and

the LHSs satisfy

å s =
l

l

⎧⎨⎩
⎫⎬⎭ ( )tr 1. 8

Note that in definition 2, if we demand in addition that sl 0 l" , we recover definition 1 of a LHSmodel.
Hence, we are relaxing themodel by allowing LHSs that are not positive semidefinite. In particular, this implies
that we allow the hidden variablesλ to have negative probabilities, since l( )p = sl{ }tr 8.

Note however that, when generalising LHSmodels we encounter a freedom that was not present in Bell
scenarios. Indeed, from equation (4) one could either relax the LHS assumption by considering assemblages that
are (i) convex combinations of non-positive semidefinite states, or (ii) affine combinations of positive

Figure 1. Steering scenario with +n 1distant parties: n steering parties each having access to an uncharacterisedmeasuring device
(box) and one steered party having a characterised quantum systemwith full quantum control. Each steering party performs a
measurement xk on their device, obtaining an outcome ak. The characterised party’s systems are steered into the conditional states
s ¼ ¼∣a a x xn n1 1 with probability ¼ ¼( ∣ )p a a x xn n1 1 = s ¼ ¼{ }∣tr a a x xn n1 1 .

8
Anatural question is what would happen if the local hidden states are allowed to not be positive semidefinite but constrained to l( )p 0.

The set of assemblages that admit such amodel is strictly containedwithin the pseudo-LHS set, since they only allow for local correlations for
the output statistics of the uncharacterised parties.
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semidefinite states. Definition 2 corresponds to (i). In Bell scenarios, in contrast, the corresponding formalism
admits only the analogue to (ii), in terms of affine combinations of local correlations. This freedom, however,
does not introduce any ambiguity in the formalism since they turn out to be equivalent, as we shownext.

Lemma3. Let s ¼ ¼∣A A X Xn n1 1
be an assemblage in a steering scenario wheren uncharacterised parties steer a

characterised one. The assemblage has a pseudo-LHSmodel iff it can be written as an affine combination of quantum
states.

Proof. First, consider an assemblage that has a decomposition as an affine combination of quantum states:

ås l r= ¼
l

l l l¼ ¼ ( ) ( ∣ ) ( ∣ ) ( )∣
( ) ( )q p a x p a x , 9a a x x

n
n n

1
1 1n n1 1

where rl are, for eachλ, normalised hidden quantum states on Bob’s system and l( )q is a pseudo probability
distribution onλ, i.e. l Î( )q for allλ and lå =l ( )q 1. By defining s l rl l≔ ( )q it follows that the
assemblage has a pseudo-LHSmodel.

For the converse, start from an assemblagewith a pseudo-LHSmodel:

ås s= ¼
l

l l l¼ ¼ ( ∣ ) ( ∣ ) ( )∣
( ) ( )p a x p a x . 10a a x x

n
n n

1
1 1n n1 1

Each sl can be expressed as

s r r l= - "l l l l l+ + - -c c ,, , , ,

where the operators rl +, and rl -, are normalised quantum states and l +c , and l -c , non-negative reals such that
l = -l l+ -( )p c c, , for allλ.
By introducing an auxiliary binary hidden variable m = + -{ }, , equation (10)may be rewritten as

ås l m r= ¼
l m

l l l m¼ ¼ ( ∣ ) ( ∣ ) ( ) ( )∣
( ) ( )p a x p a x q , , 11a a x x

n
n n

,

1
1 1 ,n n1 1

where l m m l m( ) ≔q c, , . The fact that this is a pseudo probability distribution onλ andμ follows from the fact
that l mål m ( )q ,, = sål l{ }tr =1.Hence, the assemblagemay bewritten as an affine combination of
normalised quantum states. ,

This allows us to understand the problem in a semi-classical way (see figure 2). An unphysical source
produces the hidden variables l m( ), with pseudo probability l m( )q , [25] and sends them to the +n 1parties.
The uncharacterised parties produce the outcomes via the response functions l ( ∣ )( )p a xj

j j whereas the
characterised one produces locally the states rl m, . The assemblage is then explained by equation (11) as just an
affine combination of such semi-classical preparations. Note that all the non-classicality of the assemblage is
contained in the negativity of the pseudo-probability distribution q. In the casewhere the steering scenario
consists ofmore than one characterised party (say, t), we can take a step further and express each of the quantum
states rl m, as affine combinations of product states rl m n, , ≔r Äl m n

( )
, ,

1 K rÄ l m n
( )t

, , with pseudo-probabilities

Figure 2. Semi-classical approach to a no-signalling assemblage. (a)One characterised party: an unphysical source produces the
hidden variables l m( ), with pseudo probability l m( )q , and sends them to the +n 1parties. The uncharacterised parties produce
the outcomes via the response functions l ( ∣ )p a xj j , whereas the characterised ones produce the states rl m, locally. The no-signalling
assemblage is then explained by equation (11) as an affine combination of such local preparations. (b) t characterised parties: a source
produces the hidden variables l m n( ), , with pseudo probability l m n( )q , , and sends them to the +n t parties. The uncharacterised
parties produce the outcomes via the response functions l ( ∣ )p a xj j whereas the characterised ones produce locally the states rl m n

( )i
, , . The

non-signalling assemblage is then explained by equation (12) as an affine combination of such local preparations. In both (a) and (b),
all the non-classicality of the assemblage is contained in the negativity of the pseudo-probability distribution q.

5

New J. Phys. 20 (2018) 083040 AB Sainz et al



l m n( )q , , [26]. Hence, the assemblagemay in this case be expressed as

ås l m n r= ¼
l m n

l l l m n¼ ¼ ( ∣ ) ( ∣ ) ( ) ( )∣
( ) ( )p a x p a x q , , . 12a a x x

n
n n

, ,

1
1 1 , ,n n1 1

This generalises the possibility to express as affine combinations both conditional probability distributions for
non-locality scenarios [23] and shared quantum states [26]. A similar semi-classical interpretation of the steering
experiment withmany characterised parties is presented infigure 2(b).

3.No-signalling assemblages

The formalism that we present in this work provides a unified framework for the study of no-signalling
assemblages in general steering scenarios. In this sectionwewill review the basics of no-signalling assemblages
and relate them to the pseudo-LHSmodels from the previous section.

A general assemblage that complies with the no-signalling principle is defined as follows:

Definition 4No-signalling assemblage.An assemblage s ¼ ¼∣A A X Xn n1 1
is no-signalling if it satisfies

å s r= " ¼
¼

¼ ¼ ( )∣ x x , 13
a a

a a x x nR 1

n

n n

1

1 1

where rR is the (normalised) reduced state of the characterised party’s system, and for every subset
 = ¼{ }i ir1 of r uncharacterised parties, with  <r n1 ,


å s s= " ¼
Î

¼ ¼ ¼ ¼ ( )∣ ∣ x x . 14
a j

a a x x a a x x i i
,j

n n i ir i ir r1 1 1 1 1

Condition (14) says thatwhen disregarding the outcomes obtained by some uncharacterised parties, the state of
the characterised party’s subsystem should not depend on the choice ofmeasurement of the disregarded parties.
Moreover, when all the uncharacterised parties are traced out, condition (13) says that the state of the
characterised one should be a normalised quantum state equal to his subsystem’s reduced state. Note that we do
not need to impose any no-signalling conditions from the characterised party to the uncharacterised party, since
the quantum formalism (which governs the behaviour of the characterised parties) is non-signalling, and does
not allow for any signalling in this direction.We are now in a position to present one of ourmain results.

Theorem5. Let s ¼ ¼∣A A X Xn n1 1
be an assemblage in a steering scenario wheren uncharacterised parties steer a

characterised one. The assemblage is no-signalling iff it has a pseudo-LHSmodel.

Proof.Given an assemblagewith a psuedo LHSmodel, equation (7) guarantees that it satisfies the no-signalling
constraints, hence thefirst implication follows.

For the converse, let us assume that s ¼ ¼∣A A X Xn n1 1
is no-signalling. For party Î ¼{ }j n1, , , define a local

hidden variable lj , taking values in the set

È xL = {[ ]} { } ( )a x, , 15j j j a x,j j

i.e. the set of ordered pairs [ ]a x,j j in unionwith a single-element set composed of an arbitrary dummy symbol,
denoted by ξ. There are m d pairs [ ]a x,j j , so L = +∣ ∣ m d 1j .

Then, take the local hidden variableλ of equation (7) as the tuplel≔ l l¼( ), , n1 , and in turn define the
weights in decomposition (7) as

å
d

d=
<

- =l

l

l
<

⎧
⎨⎪
⎩⎪

( ∣ ) ( )( )
[ ]

˜
[ ˜ ]

p a x
a d

a d

if

1 if . 16j
j j

a x j

a d
a x j

, ,

, ,j

j j j

j j

These are well-defined conditional probability distributions of every lj and party j, since å =l ( ∣ )( )p a x 1a
j

j jj j
.

Given the global hidden variablel , define S λ to be the set of indices l x¹{ }j: j .With this, define the
hidden pseudo-states as

s s-l
- l

l l
≔ ( ) ( )∣ ∣

∣m1 , 17n S
a xS S

where the laS and lxS involve the parties that belong to the set S λ, i.e. thosewhose hidden variable does not take
the dummy value ξ. For instance, when =l∣ ∣S n,

s s=¼ ¼ ¼[ ] [ ] ∣ ,a x a x a a x x, , , ,n n n n1 1 1 1
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andwhen = -l∣ ∣S n 1with l x=1

s s= -x ¼ ¼ ¼( )[ ] [ ] ∣m1 .a x a x a a x x, , , , ,n n n n2 2 2 2

Note that s
l l∣a xS S

is well-defined since the original assemblage is no-signalling, and s
l l∣a xS S

arises from it by
tracing out the parties that are not in S.

Nowweneed to prove that these sl are suitably normalised and that, together with the l ( ∣ )( )p a xj
j j

j
from

equation (16), they reproduce the assemblage. For the former:

å å å

å

å

å

s s

r

= -

= -

= -

= -

=

l
l

Í

-

Í

-

Í

-

=

-⎜ ⎟

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎧⎨⎩
⎫⎬⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝

⎞
⎠

( )

( )

( )

( )

{ }

∣ ∣
∣

{ }

∣ ∣ ∣ ∣

{ }

∣ ∣ ∣ ∣

m

m m

m m

n

r
m m

tr tr 1

tr 1

1

1

1.

S n

n S

S n

n S S

S n

n S S

r

n
n r r

a x
a x

1 ,..., ,

1 ,...,
R

1 ,...,

0

S S

S S

For the latter, it is sufficient to show that themodel reproduces the assemblage and itsmarginals for every
subset of the parties, for every choice ofmeasurement per party, when the outcomes satisfy <a di " i. This
statement follows from a similar argument to that of [23], andwemake it explicit in the following. Let
Ì ¼{ }R n1, , be a subset ofK parties. For simplicity in the exposition, we take = ¼{ }R K1, , , and the proof for

other subsets follows similarly. First note that the assemblage that the pseudo-LHSmodel reproduces is

ås s= ¼
l

ll l¼ ¼˜ ( ∣ ) ( ∣ )∣
( ) ( )p a x p a x ,a a x x

n
n n

1
1 1n n n1 1 1

and hasmarginals

ås s= ¼
l

ll l¼ ¼˜ ( ∣ ) ( ∣ )∣
( ) ( )p a x p a x .a a x x

K
K K

1
1 1K K K1 1 1

Plugging in the explicit expressions for sl and l ( ∣ )( )p a xj
j j

j
when <a dj we obtain

å

å

å

å å å

å å å

å å

å

s s

d d s

d d s

s

s

s

s

s

= ¼

= ¼

= ¼

= -

= -

= -

=
-

-

=

l
l

l
l

l

l l

l l

l
l l

¼ ¼

Î

=

-
- -

Í + ¼
=

Î

¼ ¼ ¼ ¼

=

-
- -

Í + ¼
=

=

Î

¼ ¼

=

-
- -

Í + ¼
=

¼ ¼

=

-
- -

¼ ¼

¼ ¼

= -

=

⎜ ⎟⎛
⎝

⎞
⎠

˜ ( ∣ ) ( ∣ )

( )

( )

( )

( )

∣
( ) ( )

[ ] [ ]

[ ] [ ]

{ }
∣ ∣

∣

{ }
∣ ∣

∣

{ }
∣ ∣

∣

∣

∣

p a x p a x

m

m

m m

n K

k
m m

1

1

1

1

.

a a x x
K

K K

a x a x

j R

a x a x

k

n K
n K k

S K n
S k

i S

a a a a x x x x

k

n K
n K k

S K n
S k

x m

i S

a a x x

k

n K
n K k

S K n
S k

k
a a x x

k

n K
n K k k

a a x x

a a x x

1
1 1

, , , ,

, , , ,

0 1, ,

0 1, , 1:

0 1, ,

0

K K K

K K K

j

K K K

aij d

xij m

j

K i ik K i ik

ij

j

K K

K K

K K

K K

1 1 1

1 1 1

1 1 1

1: 1

1:

1 1 1 1

1 1

1 1

1 1

1 1

Hence, the assemblage s ¼ ¼˜ ∣a a x xn n1 1
that the pseudo-LHSmodel reproduces has the same state andmarginals

than s ¼ ¼∣a a x xn n1 1
for every subset of the parties and any choice ofmeasurements when <a di " i. Hence

s ¼ ¼˜ ∣a a x xn n1 1
= s ¼ ¼∣a a x xn n1 1

" ¼ ¼a a x x,n n1 1 , and the claim is proven. ,

4. A formalism for non-signalling steering

In this section, we develop a formalism for non-signalling steering, similar to the one presented in [19] (see also
[20]) for non-signalling correlations in Bell scenarios.
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Theorem6. Let s ¼ ¼∣A A X Xn n1 1
be an assemblage in a steering scenario wheren uncharacterised parties steer a

characterised one (labelledB). The assemblage is no-signalling iff there exist POVMelements ∣
( )Ma x

j
j j

for each

uncharacterised party j (i.e. positive operators satisfying å =∣
( )Ma a x

j
j j j

) and a unit traceHermitian operator r̃ such
that:

s r= Ä¼Ä Ä¼ ¼ ¼ {( ) ˜} ( )∣ ∣
( )

∣
( )M Mtr , 18a a x x n a x a x
n

1,
1

n n n n1 1 1 1

where the partial trace involves the n uncharacterised subsystems (see figure 3(b)).

Proof. If an assemblage can bewritten as in equation (18), it is straightforward to see that it is no-signalling. The
‘only-if’ part of the proof relies on the constructions of theorem 5 and lemma 3, aswe explicitly show inwhat
follows.

First, write the no-signalling assemblage as an affine combination of quantum states, as in lemma 3 by
further using the hidden variablemodel from theorem5:

å ls m r= ¼
l

l
m

l l m¼ ¼ ( ) ( ∣ ) ( ∣ ) ( )∣
( ) ( )q p a x p a x, , 19a a x x

n
n n

,

1
1 1 ,n n n1 1 1

with l ( ∣ )( )p a xj
j j

j
as in equation (16).

Then, assign to each uncharacterised party j an +( )md 1 -dimensional Hilbert space spanned by the
orthonormal basis l lñ Î L{∣ }:j j j , where Lj defined in equation (15) is the set of values that the hidden variable
for party j can take. Define

å lr m l l l l rñá Ä¼Ä ñá Ä
l

l
m

m˜ ≔ ( ) ∣ ∣ ∣ ∣ ( )q , , 20n n
,

1 1 ,

and

å l lñá
l

l≔ ( ∣ )∣ ∣ ( )∣
( ) ( )M p a x . 21a x

j j
j j j jj j

j

j

Since the l ñ{∣ }j bases are orthonormal, it follows by direct calculation that one correctly obtains a pseudo-
LHSmodel for the desired assemblage. ,

Here, theHermitian operator r̃ plays the role of the operatorO in [19]. Figure 3 presents a graphical
depiction of the formalism, restricted to only one steering party for the sake of clarity. Note that for a given
assemblage, the choice of r̃ is not unique. The construction presented in theorem6produces a specific r̃ which
works in all situations.

By definition, r̃ in equation (18) can be chosen to be positive semidefinite if and only if the assemblage is
quantum.On the other hand, it also follows that an assemblage has an LHSmodel if and only if r̃ can be chosen
to be a fully +( )n 1 -separable quantum state across themultipartition ¼∣ ∣ ∣A A Bn1 .

Once the nature of the assemblages is identifiedwith the properties of the operator r̃, one can study the
families of assemblages for different families of r̃ that have particular properties. Of particular interest is the set
ofGleason assemblages, which contains the set of quantum assemblages:

Figure 3.Graphical (circuit) depiction of a non-signalling assemblage and of its representation in the formalismof theorem 6. Time
goes from left to right. For the sake of simplicity and clarity we focus on the case of just one steering party. Classical systems are
denoted by double-lines and quantum systems by just a single line. Classical variables are represented by double-line boxes; quantum
processes (whichmay also have a classical input register and a classical output register, besides quantumones) are represented by
single-line boxes. (a)Adepiction of a non-signalling assemblage: Alice’s classical data for choice of ensemble, x, and index of element
of the ensemble, a, are connected by a stochastic classical process with conditional probabilities ( ∣ )p a x ; Bob’s quantum system is
correspondingly prepared in the conditional state r ∣a x

B .We recall that the conditional probabilitiesmay be included in the definition

of an unnormalized conditional state s r= ( ∣ )∣ ∣p a xa x
B

a x
B , which appears in theorem 6. (b)How anon-signalling assemblage is

represented in our formalism: r̃AB is the unit traceHermitian operator in theorem 6, and { }∣Ma x
A

a is a local POVMon systemA for
each x; the double line just carries the classical choice ofmeasurement and the outcome of such ameasurement. The quantum system
B is correspondingly prepared in the conditional state r ∣a x

B =  rÄ{( ) ˜ }∣MtrA a x
A

B AB / ( ∣ )p a x , with ( ∣ )p a x = trAB  rÄ{( ) ˜ }∣Ma x
A

B AB .
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Definition 7Gleason assemblage.An assemblage s ¼ ¼∣A A X Xn n1 1
is aGleason assemblage if and only if there exist

POVMelements ∣
( )Ma x

j
j j

for each uncharacterised party j (i.e. positive operators satisfying å =∣
( )Ma a x

j
j j j

) and a
unit trace entanglement witnessW such that:

s = Ä¼Ä Ä¼ ¼ ¼ {( ) } ( )∣ ∣
( )

∣
( )M M Wtr , 22a a x x n a x a x
n

1,
1

n n n n1 1 1 1

where the partial trace involves the n uncharacterised subsystems (see figure 4(a)), andW is an entanglement
witness with respect to the +( )n 1 -partition ¼∣ ∣ ∣ ∣A A A Bn1 2 .

This definition is in analogywith theGleason correlations defined in [19]. The key property of Gleason
assemblages is that even if themeasurements of the uncharacterised parties were to be changed to other arbitrary
measurements, the resulting assemblagewould remainwell-defined. This is a stronger requirement than that
imposed in general by theorem6,where the operator r̃ need only produce valid assemblages for the specific
measurements ∣

( )Ma x
j

j j
. The fact that r̃ can be taken to be an entanglement witness for the +( )n 1 -partition

¼∣ ∣ ∣ ∣A A A Bn1 2 is because this constitutes the necessary and sufficient property for it to producewell-
defined assemblages for all localmeasurements [27, 28].

Sincewe demand thatW defines valid assemblages for all localmeasurements (not just some particular
subset ofmeasurement), the set of Gleason assemblages is in general smaller than the no-signalling set. Also,
sinceWmay be non-positive, the set of Gleason assemblages is in general larger than the quantum set.

One can see that for bipartite steering scenarios, the set of Gleason assemblages coincides with both the
quantumand the no-signalling set. Following [19], this can be seen by considering that any unit trace bipartite
entanglement witnessWAB can be expressed as the action on the steering side of a trace-preserving positivemap
 on a bipartite normalised quantum state,WAB =  rÄ( )[ ]A B AB . Hence,





s

r

= Ä

= Ä

{( ) }
{( [ ] ) }

∣ ∣
†

∣

M W

M

tr

tr

a x A a x B AB

A a x B AB

with †, the dual of  , a positive unitalmap, so that {( [ ]}†
∣Ma x a is also a POVMfor all x. However, for steering

scenarios withmore than one uncharacterised party this is no longer the case, as we see next.

Example 8.Consider the four three-qubit states:

ñ ñ ñ ñ^ ^ ^∣ ∣ ∣ ∣ ( )e e e e e e000 , 1 , 1 , 1 , 23

where ñ ñ^{∣ ∣ }e e, is an arbitrary basis different from ñ ñ{∣ ∣ }0 , 1 . Denote byPUPB the projector onto the subspace
spanned by all four states in equation (23). Construct now the tripartite entanglement witness




=
-

P -( ) ( )W
1

4 8
, 24UPB

where  abg abg= á P ñabgñ ∣ ∣∣min UPB , with añ∣ , bñ∣ , and gñ∣ arbitrary single qubit states and
abg a b gñ ñ Ä ñ Ä ñ∣ ≔ ∣ ∣ ∣ . Define now the assemblage:

s Ä Ä≔ {( ) } ( )∣ ∣
( )

∣
( )M M Wtr , 25a a x x a x a x1,2

1 2
1 2 1 2 1 1 2 2

where = ñá∣ ∣∣
( )M 0 0i

1 1 , = ñá∣ ∣∣
( )M 1 1i
2 1 , = ñá∣ ∣∣

( )M e ei
1 2 , and = ñá^ ^∣ ∣∣

( )M e ei
2 2 , for =i 1, 2.

This assemblage is post-quantum, since by Bob performingmeasurements in the same basis as the Alices,
one obtains post-quantum correlations ( ∣ )p a a b x x y, , , ,1 2 1 2 , as proven in [19]. Hence, already for the simplest
multipartite case, the set of Gleason assemblages is larger than the quantumone.

Remark 9.Consider an arbitraryGleason assemblage in a steering scenariowhere two uncharacterised parties
steer a characterised one. This has the form

s = Ä Ä{( ) }∣ ∣
( )

∣
( )M M Wtr .a a x x a x a x1,2

1 2
1 2 1 2 1 1 2 2

If we now trace out the steered party we have that

= Ä( ∣ ) {( ) }∣
( )

∣
( ) ( )p a a x x M M W, , tr ,a x a x1 2 1 2

1 2 12
1 1 2 2

where ( )W 12 is an entanglement witness for Alice’s two subsystems. Such ( ∣ )p a a x x, ,1 2 1 2 belong to the so called
set of Gleason correlations [19], which for bipartite Bell scenarios coincides with quantum correlations.Hence,

( ∣ )p a a x x, ,1 2 1 2 are quantum correlations.
Therefore, we see that Gleason assemblages, even if post-quantum, only generate quantum correlations

between the two uncharacterised parties. Note however that when considering the full tripartite Bell scenario
that includes Bob (i.e. not tracing himout) the correlationsmay be post-quantum.Hence, the post-
quantumness of the assemblagemay nevertheless be certified in a Bell experiment.

9
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Anatural question is whether post-quantum steering is a newphenomenon in its own right, or if it is just
another consequence of post-quantumnon-locality. In [18], the authors show the former to be the case. They
gave an example of a post-quantum assemblage in a tripartite steering scenario with two uncharacterised parties,
which cannot give rise to post-quantumnon-locality in a tripartite Bell scenario, where the characterised party
performs any set ofmeasurements on their system.

In the next section, we use the relation betweenGleason assemblages and entanglement witnesses to provide
a general construction for post-quantum steering that never gives rise to post-quantumnon-local correlations.
This is thefirst general construction of this type, and sheds thefirst light on the structure underlying post-
quantum steeringwithout post-quantumnon-locality.

5. Post-quantum steering frompositivemaps

Herewe present amethod for generating post-quantum assemblages without post-quantumBell non-locality.
The insight we use is the fact that positive, but not completely positive,maps are in correspondencewith
entanglement witnesses.Wewill see that starting from this perspective, we can identify a subset of Gleason
assemblages which cannot give rise to post-quantumBell non-locality. Furthermore, by checking simple
examples of positivemaps, wefind that we indeed produce post-quantum steering, and hence that there is a link
between positivemaps and post-quantum steering.

Wemay obtain aHermitian operator r̃ to be used in equation (18) by acting partially on a quantum state
with a positive trace-preserving (PTP)map that is not completely positive (CP).More in detail, consider a
quantum state ρ shared by +n 1parties, and define themap:

  Ä Ä Ä L[·] ≔ [·]( ) ( ) ( ) ,n B1

where L [·]( )B is a PTPmap. If L [·]( )B is not CP,  r[ ]may be not positive semi-definite. Nevertheless, the
conditional states

 s rÄ¼Ä Ä¼ ¼ ¼≔ {( ) [ ]} ( )∣ ∣
( )

∣
( ) ( )M Mtr 26a a x x n a x a x
n B

1,
1

n n n n1 1 1 1

s=L ¼ ¼[ ] ( )( )
∣ 27B

a a x x
Q

n n1 1

form awell-defined assemblage (i.e. with s ¼ ¼∣ 0a a x xn n1 1
). Here,

s ¼ ¼∣a a x x
Q

n n1 1
≔  rÄ¼Ä Ä¼ {( ) }∣

( )
∣

( ) ( )M Mtr n a x a x
n B

1, ,
1

n n1 1
are the elements of the assemblage obtained by the

measurements of the Alices acting on ρ rather than on  r[ ], and by construction they constitute a quantum
assemblage. In otherwords, assemblages s ¼ ¼∣A A X Xn n1 1

arising from this construction can always be thought of as
being generated from a quantumone s ¼ ¼∣A A X X

Q
n n1 1

by the application of a PTPmap L [·]( )B on the characterised
party.

Now, note that





r

r

r

¼ ¼ = Ä¼Ä Ä

= Ä¼Ä Ä

= Ä¼Ä Ä L

( ∣ ) {( ) [ ]}

{ [ ] }

{ [ ] } ( )

∣
( )

∣
( )

∣
( )

†
∣

( )
∣

( )
∣

( )

∣
( )

∣
( ) †( )

∣
( )

p a a b x x y M M M

M M M

M M M

tr

tr

tr 28

n n a x a x
n

b y
B

a x a x
n

b y
B

a x a x
n B

b y
B

1 1
1

1

1

n n

n n

n n

1 1

1 1

1 1

are correlations that have a quantum realisation, for any set of POVMs { }∣
( )Mb y
B

b y, for Bob. This is due to the fact

that the dualmap  [·]† ≔ Ä Ä( )1  Ä( )n L [·]†( )B , with L [·]†( )B the dual of L [·]( )B , factorises into a tensor
product of localmaps each of which is unital, since L [·]( )B is trace-preserving. Hence, itmaps each tensor
product of local POVMelements Ä ∣

( )Ma x
1
1 1

Ä Ä∣
( )Ma x
n
n n ∣

( )Mb y
B to a tensor product of local POVMelements

Ä ∣
( )Ma x
1
1 1

Ä Ä∣
( )Ma x
n
n n

L [ ]†( )
∣

( )MB
b y

B .
Thus, assemblages that are constructed in this way can only produce quantum correlations by construction.

In the following subsection, we discuss how the the properties of L [·]( )B impart properties onto s ¼ ¼∣A A X Xn n1 1
.

5.1.Decomposable PTPmaps
A crucial property of amap for our purposes is the notion of decomposability. Amap L [·]( )B is said to be
decomposable whenever it admits a decomposition as L [·]( )B = L [·]1 + L◦ [·]T 2 , where [·]T denotes the
transpositionmap9 and L [·]1 and L [·]2 areCPmaps. If L( )B is trace preserving—like in the case we are interested
in—then the twoCPmaps L1 and L2 form an instrument, that is, L + L1 2, besides being obviously completely
positive, is also trace preserving. If L [·]( )B is decomposable, the assemblage it generates via equation (26) is always
quantum, nomatter which initial quantumassemblage is used, as we are about to prove.

9
Transposition is definedwith respect to some chosen local basis; such choice is irrelevant for our purposes as transpositionmaps in

different bases are unitarily related.
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First, note that the transpositionmap cannot generate a post-quantum assemblage. This follows from the
fact that









r

r

r

r

Ä¼Ä Ä

= Ä¼Ä Ä

= Ä¼Ä Ä

= ¢ Ä¼Ä ¢ Ä ¢

¼

¼

¼

¼

¼

{( ) }

{( ) }

{( ) }

{( ) }

∣
( )

∣
( ) ( )

∣
( )

∣
( ) ( )

∣
( )

∣
( ) ( )

∣
( )

∣
( ) ( )

M M

M M

M M

M M

tr

tr

tr

tr ,

n a x a x
n B T

n a x a x
n B T T

n a x
T

a x
n T B T

n a x a x
n B

1, ,
1

1, ,
1

1, ,
1

1, ,
1

n n
B

n n
n

n n

n

n n

1 1

1 1
1

1 1

1

1 1

whereTB andT denote partial transposition over Bob’s subsystem and global transposition over all systems,
respectively, ¢{ ≔ }∣

( )
∣

( )M Ma x
k

a x
k T

k k k k

k are POVMs, and r r¢ ≔ T is a quantum state. Hence, the assemblage obtained by
localmeasurements of the steering parties on a partially transposed (on the steered party) quantum state, admits
a fully quantum realisation.

Now consider a generic decomposable PTPmap L [·]( )B = L [·]1 + L◦ [·]T 2 , and an arbitrary quantum
assemblage s ¼ ¼∣A A X X

Q
n n1 1

≔ s ¼ ¼{ }∣a a x x
Q

n n1 1
. Then,

s s

s s

s s

= L

= L + L

= + -

¼ ¼ ¼ ¼

¼ ¼ ¼ ¼

¼ ¼ ¼ ¼

[ ]

[ ] ◦ [ ]

( ) ( )

∣
( )

∣

∣ ∣

∣ ∣

T

p p1 , 29

a a x x
B

a a x x

a a x x a a x x

a a x x a a x x

Q

1
Q

2
Q

Q Q

n n n n

n n n n

n n n n

1 1 1 1

1 1 1 1

1 1

1

1 1

2

where

å s

s
s

s
s

L

L

L

-

¼
¼ ¼

¼ ¼
¼ ¼

¼ ¼
¼ ¼

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

≔ [ ]

≔
[ ]

≔
◦ [ ]

∣

∣
∣

∣
∣

p

p

T

p

tr ,

,

1
.

a a
a a x x

a a x x
a a x x

a a x x
a a x x

, ,
1

Q

Q 1
Q

Q 2
Q

n

n n

n n

n n

n n

n n

1

1 1

1 1

1 1 1

1 1

2 1 1

Since s ¼ ¼∣A A X X
Q

n n1 1
is a quantumassemblage and L [·]( )B is PTP, p is a valid probability, i.e., Î [ ]p 0, 1 . This,

togetherwith the fact that L [·]1 and L [·]2 areCP (trace-non-increasing)maps and that transposition preserves
quantumassemblages, implies that both s ¼ ¼∣A A X X

Q
n n1 1

1 and s ¼ ¼∣A A X X
Q

n n1 1

2 are quantum assemblages. By
convexity of the set of assemblages, it follows then that the assemblage s ¼ ¼∣A A X Xn n1 1

in equation (29) is a
quantumassemblage too. A direct consequence of this is that no positive PTPmaps fromqubits to qubits10 can
generate post-quantum assemblages by the above construction, since all suchmaps are decomposable [29, 30].

5.2. Non-decomposable PTPmaps and examples of post-quantum steering
The observation of section 5.1 demonstrates that, if wewant tofind examples of post-quantum steering by
means of the application of positivemaps to quantum states, thenwemust focus on non-decomposablemaps.

The question that remains to be answered is whether there exist non-decomposable PTPmaps that produce
assemblages which are post-quantum. In this sectionwewill provide such an example.

Consider a steering scenario with two uncharacterised parties, who can choose among twodichotomic
measurements each. The characterised party will be taken to have aHilbert space of dimension four.

Wefirst define a quantumassemblage, assuming that the uncharacterised parties each hold qubits, i.e. the
shared system consists of two qubits and a ququart. The shared state is r = YñáY∣ ∣, where

Yñ =
Y ñ + Y ñ - Y ñ

∣
∣ ∣ ∣

( )
i

14
, 301 2 3

with

åY ñ = ¢ñ =
¢Î

+ + + ¢=

∣ ∣
{ }

a a b b kfor 1, 2, 3,k
a a b b
a a b b k

, , , 0,1 ,
1 2

1 2

1 2

andwherewe have introduced the shorthand notation ¢ñ∣a a b b1 2 ≔ ñ Ä∣a A1 1
ñ Ä ¢ñ∣ ∣a b bA B2 2

.

10
Or fromqubits to qutrits, or qutrits to qubits, for thatmatter.
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Themeasurements the uncharacterised parties performon their qubits are:

 

 

=
+ -

=
+ -

=
+ +

=
+ - +- -

( ) ( )

( ) ( )
( )

∣
( )

∣
( )

∣
( )

( )

∣
( )

( )

M
X

M
Z

M
X Z

M
X Z

1

2

1

2

2 2
, 31

a

a

a

a

a a

0
1

1
1

0
2

1

2
1

2

1

2

a a

1

1

1

1

2

2

2

2

whereX andZ are Pauli operators. Nowdefine the PTPmap L [·]B as

r r r rL - -[ ] ≔ ( { } ) ( )( ) †U Utr , 32B T1

2

where = ÄU X Y is an antisymmetric unitary. The ability of the extended reduction criterion to detect states
that are positive under partial transposition certifies that L [·]B is non-decomposable [31–33].

The claimnow is that s ∣A A X X1 2 1 2
≔ s{ }∣a a x x a a x x, , ,1 2 1 2 1 2 1 2

, with

s sL≔ [ ]∣
( )

∣ ,a a x x
B

a a x x
Q

1 2 1 2 1 2 1 2

for s ∣a a x x
Q

1 2 1 2
≔ Ä Ä YñáY{( )∣ ∣}∣

( )
∣

( )M Mtr a x a x12
1 2
1 1 2 2

, is a post-quantum assemblage. This can be certified
numerically via a semidefinite programme (SDP). In particular, although the set of quantum assemblages has a
complicated structure, it is possible to construct approximations to this set, which have amuch simpler
structure, and containwithin them the set of quantumassemblages [18].Whether or not an assemblage is inside
such an approximation can be checked efficiently using an SDP, and hence if an assemblage is found to be
outside the approximation, then it is also certified to be post-quantum.Using thismethod, we found that
s ∣A A X X1 2 1 2

does not belong to the set of quantumassemblages, and therefore demonstrates post-quantum
steering. All details of the calculation, and the codes necessary to reproduce the results, can be found online [34].

We emphasise that this is the first analytical example of a post-quantum assemblage that can only produce
quantum correlations in a Bell experiment where the characterised partymakesmeasurements. Althoughwe
will not discuss the details of this, we have verified in a similar fashion that also thewell-knownChoimap
[35, 36] can generate post-quantum assemblages.

6. Post-quantum steering fromunextendible product bases

In this sectionwe present a family of certifiable post-quantum assemblages for arbitrarymultipartite steering
scenarios, which arises naturally fromour formalism.Wewill consider themore general scenario, where instead
of a single characterised party, we have t characterised parties, who are steered by nuncharacterised parties
performingmmeasurements of d outcomes.

We take a local-orthogonality (LO) inequality [22] in the +( )n t m d, , Bell scenario. Following [22], one can
findanunextendible product basis (UPB)or aweakUPB (for scenarioswithnondichotomicmeasurements) for
 = Ä +( ) ( )d n t from theLO inequality. Such aweakUPB can be constructed as follows [22]. In each localHilbert
spaced, wedistinguishmdifferent orthogonal bases, denoted by Bj = f ñ =

-{∣ }( )
i

j
i
d

0
1, where = ¼ -j m0, , 1.11

These bases are chosen such that if twobasis vectors are orthogonal, then they are from the samebasis: f fá ñ¢
¢∣( ) ( )

i
j

i
j

= = ¢⟹ j j0 . Given anoptimal LO inequality represented by a set ofmutually orthogonal events  , the
correspondingUPB consists of the following elements: f fñÄ¼Ä ñ ¼ ¼ Î+ +

+

+{∣ ∣ ∣( ∣ ) }( ) ( ) a a x xa
x

a
x

n t n t1 1
n t

n t

1

1 .

This UPB then defines a normalised entanglement witness = ( )W f P -( )UPB , where  =
y yñÄ¼Ä ñ+∣ ∣min

n t1
yá Ä∣1 K yÄ á + ∣n t yP ñ Ä∣UPB 1 K yÄ ñ+∣ n t , and ( )f =  - + -(∣ ∣ )dn t 1. Indeed, since

 Î +( )∣ ∣0,
dn t , r{ }Wtr gives non-negative values when ρ is a fully separable state, and ber <{ }Wtr 0 for the

bound entangled state be 


r - P
-+≔ ( )

∣ ∣d

1
UPBn t .Themethod of example 8 can then be applied to this weak

UPB to construct an assemblage. This is defined by the uncharacterised parties performing themeasurements
f fñá≔ ∣ ∣∣

( ) ( ) ( )Ma x
j

a
x

a
x

j j j

j

j

j , = ¼j n1 , onW:

s f f f f= ñá Ä¼Ä ñá Ä¼ ¼ ¼
Ä{(∣ ∣ ∣ ∣ ) }∣

( ) ( ) ( ) ( ) Wtr .a a x x n a
x

a
x

a
x

a
x t

1n n n

n

n

n
1 1 1

1

1

1

The post-quantumness of the assemblage is certified by the correlations obtainedwhen the characterised
partiesmeasure ∣

( )Ma x
j

j j
≔ f ñ∣ ( )

a
x
j

j fá ∣( )
a
x
j

j , = + ¼ +j n n t1 , that is:

f f f f¼ ¼ = ñá Ä¼Ä ñá+ +
+

+

+

+( ∣ ) {(∣ ∣ ∣ ∣) }( ) ( ) ( ) ( )p a a x x Wtr .n t n t a
x

a
x

a
x

a
x

1 1
n t

n t

n t

n t

1

1

1

1

Indeed, these correlations violate the original LO inequality



å ¼ ¼
¼ ¼ Î

+ +
+ +

( ∣ )
( ∣ )

p a a x x 1,
a a x x

n t n t1 1

n t n t1 1

11
For simplicity, we take these to be the same for all sites.
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since

 


å f f f fñá Ä¼Ä ñá = -
¼ ¼ Î+ +

+

+

+

+{∣ ∣ ∣ ∣ } ( ) ∣ ∣( )
( ∣ )

( ) ( ) ( ) ( ) W ftr 1 ,
a a x x

a
x

a
x

a
x

a
x

n t n t

n t

n t

n t

n t

1 1

1

1

1

1

which is larger than unity since  Î +( )∣ ∣0,
dn t .

Even though the post-quantum assemblages that arise in this family produce post-quantum correlations, the
fact that they admit such an elegant analytical formmakes them interesting, as thismay be useful for potential
applications.

7. A post-quantum steering quantifier

A crucial issue in the theory of steering is its quantification—i.e. a notion of whether one assemblage
demonstratesmore steering than another in somewell-defined sense. A number of quantifiers have recently
been explored [18, 37–40], arising fromdiffering operational tasks or geometrical constructions.

The formalism presented in section 4 naturally leads to a novel steering quantifier, similar in spirit to that
proposed in [41] for Bell correlations, whichwe refer to as the steering negativity. The steering negativity is
specially tailored to quantify the amount post-quantum steering an assemblage demonstrates (as opposed to the
amount of steering), as we see next.

By virtue of theorem 6, any assemblage can be reproduced by local quantummeasurements on aHermitian
operator r̃. This operator, which is not unique, can always be decomposed in terms of its negative and positive
parts, i.e. r r r= -+ -˜ , with r 0. Then, for an arbitrary no-signalling assemblage s ¼ ¼∣A A X Xn n1 1

, we define its
steering negativity as





sn r

r r r
r

s r

= -

= Ä¼Ä Ä

r
¼ ¼ -

+ -



¼ ¼ ¼

( ) ≔ { }

˜

{( ) ˜} ( )

∣
{ } ˜

∣ ∣
( )

∣
( )

( )

M M

min tr

s.t. ,

0,

tr , 33

A A X X
M

a a x x n a x a x
n

,

1,
1

n n
xi
i

n n n n

1 1

1 1 1 1

where ( )Mx
i
i
stands for a POVMwith elements ∣

( )Ma x
i
i i
, and theminimisation runs over all such ( )Mx

i
i
, for

 i n1 , as well as over r̃. Note that since all quantum assemblages admit a decomposition as in equation (18)
with a positive semidefinite r̃, their steering negativity by definition, is zero.Hence, in contrast to othermeasures
of steering, thisfigure ofmerit is relevant for quantifying the post-quantumness of an assemblage.

Since the operator r̃ is normalised, the negativity can equivalently be computed as



sn
r

s r

º
-

= Ä¼Ä Ä

r
¼ ¼

¼ ¼ ¼

 
( ) ˜

{( ) ˜}

∣
{ } ˜

∣ ∣
( )

∣
( )

( )

M M

min
1

2

s.t. tr ,

A A X X
M

a a x x n a x a x
n

,

1

1,
1

n n
xi
i

n n n n

1 1

1 1 1 1

where · 1denotes the trace norm. This alternative expression for νmakes the connectionwith thewell-known
negativity [42, 43] from entanglement theory explicit. In fact, if r̃ is taken as the partial transpose of a given state
ρ, then r -∣∣ ˜ ∣∣ 1

2
1 defines precisely the entanglement negativity of ρ.

In the following, wewill show that the steering negativity is a convex quantifier of post-quantum steering.
We do so by putting forward the study post-quantum steering from a resource-theoretic perspective, whereby
Alice and Bob are allowed to performoperations which are deemed unable to increase the amount of post-
quantum steering they share (so called free operations), similar towhat has been done for (quantum) steering
[39]. In [39], the free resources were local operations and one-way classical communication (denoted one-way
LOCC), where the communication is only allowed from the steered party to the steering parties. It was
postulated that quantum steering exhibited by a quantum assemblage does not increase under these free
operations.Wewill generalise these free operations to study post-quantum steering.

In a steering scenario, if the assemblage is compatible with localmeasurements on a shared entangled state,
then there is no post-quantum steering, by definition. Furthermore, if all parties are in addition given access to
an auxiliary entangled state, then this should not lead to post-quantum steering. However, given the existence of
phenomena like ‘super-activation of non-locality’ [44]—where entanglingmeasurementsmade onmultiple
copies of a local, entangled quantum state can result in non-locality—one has to address the possibility of an
‘activation of post-quantum steering’; that is, entanglingmeasurementsmade by the steering party could
generate post-quantum steering. To avoid this we take inspiration from resource theories of non-locality
[45, 46], where untrusted devices are treated as classical black boxes and inputs and outputs are ‘wired’ together.
In such a non-locality framework, given copies of black boxes that can be realised by localmeasurements on a
local quantum state,multiple copies of these boxeswhenwired together do not give non-locality; going even
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further, if the boxes are non-local but admit a quantum realisation, then the samewiring process will not
demonstrate post-quantumnon-locality. That is, since the ‘uncharacterised’ parties just classically process the
inputs and outputs, there is no opportunity for the activation of post-quantumnon-locality.

With this ‘box-processing’ inmind, infigure 4we introduce themost general one-way quantum
communication operation for processing assemblages. These operations are broadly described as one-way
LOCCwith entanglement, butwith the extra constraint that an untrusted party only interacts classically with the
assemblage.We notice that, thanks to quantum teleportation [47], unrestricted shared entanglement assisted by
one-way LOCC is equivalent to local operations aided by one-way quantum communication.

Now,much in the same fashion inwhich quantum steering is postulated not to increase under one-way
LOCC,we postulate that post-quantum steering does not increase under one-way quantumoperations, with the
communication going from the steered party to the steering parties. Notice that, since classical communication
is a subset of quantum communication, a post-quantum steering quantifier that respects our request is
necessarily also a standard steeringmonotone.Moreover, given that one-way quantum communication allows
for the sharing of an arbitrary quantum state, and hence for the creation—even from scratch—of an arbitrary
quantumassemblage, a post-quantum steering quantifier necessarily assumes a constant value for all quantum
assemblages, and such a value can be set to zero.Whatwe exactlymean by processing of an assemblage by one-
way quantumoperations is shown in detail infigure 4, where for the sake of simplicity and clarity we depict
explicitly only one steering party.

Figure 4.The processing of a steering assemblage by one-way quantum communication, in the same graphical, circuit-like
representation as infigure 3. Time goes from left to right. For the sake of clarity we focus on the case of just one steering party. The
elements of the original assemblage (seefigure 3) are represented in red. Dotted blue boxes identify the effective elements of thefinal
result of the processing. (a)Themost general quantumprocessing of an assemblage as represented infigure 3(a), bymeans of one-way
quantum communication fromBob toAlice, giving rise to a new assemblage characterised by a stochastic classical process ¢ ¢ ¢( ∣ )p x a
and conditional states r ¢ ¢

¢
∣a x

B : Bob applies a generic quantum channel on his quantum systemB, with output systems ¢B , to be kept by

Bob, and ¢A , to be sent toAlice. System ¢A is generically quantum, but itmay be trivial (no communication) or include (or even be
limited to) classical information. Alice then uses ¢A to transformher original classical process ( ∣ )p a x into a new classical process
¢ ¢ ¢( ∣ )p a x . This is done by deciding an input x based on the classical outcome of an instrument  ¢

¢{ }∣x x
A

x , with the choice ¢x of the
instrument corresponding to the input of the new stochastic classical process ¢ ¢ ¢( ∣ )p a x .We recall that an instrument has both a
quantumoutput and a classical output. The output a of the original classical process is then used to decidewhich finalmeasurement
(POVM) ¢

¢
¢{ }∣Na a

A
a to apply to the quantumouput of the instrument  ,finally producing a classical outcome ¢a . Notice that we sum

over the indices a and x of the internal classical lines. (b)How the processing in (a) is representedwithin our formalismof theorem 6
based on an operator r̃AB and a POVM { }∣Ma x

A . Notice the similarity with the representation infigure 3(b) of the circuit representation
of a non-signalling assemblage of figure 3(a).
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Aswithmany quantum resource theories, it is also convenient and reasonable—although not strictly
necessary [48]—to ask that a post-quantum steering quantifier is convex.

Wewill see below that the steering negativity is a valid convex post-quantum steering quantifier, in the sense
that it respects the requests delineated above.

Theorem10 (Convexity ofν).The steering negativity is a convex steering quantifier. That is, it is non-increasing
under arbitrary convexmixings,

  s s s s s sn n n+ - ¢ + - ¢ ¢( ( ) ) ( ) ( ) ( ) ( )q q q q q1 1 , for all and , and all 0 1. 34

Proof. Let r r r= -+ -˜ and r r r¢ = ¢ - ¢+ -˜ be optimalHermitian operators attaining theminima in
equation (33) for the assemblages s ¼ ¼∣A A X Xn n1 1

and s¢ ¼ ¼∣A A X Xn n1 1
, respectively, for two suitable sets of POVMs

{ }( )Mx
i
i
≔ ¼ ¼{ }∣

( )
∣

( )M M, ,a x a x
n

a x a x
1

, , ,n n n n1 1 1 1
and ¢{ }( )M x

i
i
≔ ¢ ¼ ¢ ¼{ }∣

( )
∣

( )M M, ,a x a x
n

a x a x
1

, , ,n n n n1 1 1 1
.This implies that

sn ¼ ¼( )∣A A X Xn n1 1
= r-{ }tr and sn ¢ ¼ ¼( )∣A A X Xn n1 1

= r¢-{ }tr . Now, consider the state

* * * * * *

* * * *

* * * *

r r r

r r

r r

ñá Ä ¼ ñá Ä + - ñá Ä ¼ ñá Ä ¢

= ñá Ä ¼ ñá Ä + - ñá Ä ¼ ñá Ä ¢

- ñá Ä ¼ ñá Ä + - ñá Ä ¼ ñá Ä ¢

¼

+ +

- -

˜ ≔ ∣ ∣ ∣ ∣ ˜ ( )∣ ∣ ∣ ∣ ˜

( ∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ ) ( )

q q

q q

q q

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 , 35

A A A A B A A A A

A A A A

A A A A

, , , ,n n n n

n n

n n

1 1 1 1

1 1

1 1

where a local ancillary qubit *Ai , in state either *ñ∣0 Ai
or *ñ∣1 Ai

, has been given to eachAlice, with  i n1 . This
state realises a decomposition of the form equation (18) for s ¼ ¼∣q A A X Xn n1 1

+ s- ¢ ¼ ¼( ) ∣q1 A A X Xn n1 1
, where a

suitable set of POVMs can be taken to be *ñá Ä{ ∣ ∣ ∣
( )q M0 0 A a x
1

1 1 1
+ *- ñá Ä( )∣ ∣q1 1 1 A1

*¢ ¼ ñá Ä∣ ∣∣
( )M q, 0 0a x A
1

n1 1

*+ - ñá Ä( )∣ ∣∣
( )M q1 1 1a x
n

An n n
¢ ¼}∣
( )M a x
n

a x a x, , ,n n n n1 1 . Therefore, even though such a decomposition is not guaranteed
to be optimal, it is nevertheless the case that

s sn r
r

r r

+ - ¢ ñá Ä ¼ ñá Ä
+ - ñá Ä ¼ ñá Ä ¢

= + - ¢

¼ ¼ ¼ ¼ ¢ ¢ -

¢ ¢ -

- -

( ( ) ) { ∣ ∣ ∣ ∣
( )∣ ∣ ∣ ∣ }
{ } ( ) { } ( )

∣ ∣q q q

q

q q

1 tr 0 0 0 0

1 1 1 1 1

tr 1 tr . 36

A A X X A A X X A A

A A

n n n n n

n

1 1 1 1 1

1

Note that the last term equals the right hand of equation (34), which proves the theorem’s statement. ,

Theorem11 (Monotonicity ofν).The steering negativity ν is a post-quantum steeringmonotone under processing
by one-way quantum operations.

Proof. Let the pseudo-state r ¼˜ A A A Bn1 2
be optimal for the sake of computing the steering negativity of a given

steering assemblage. Figure 4(a) shows howprocessing such assemblage by one-way quantumoperations from
the steered party to the steering parties leads to a new assemblage thatmay be thought as originating froma
shared (pseudo-)state

r r¢ = L¢ ¢¼ ¢ ¢  ¢ ¢¼ ¢ ¢ ¼˜ [ ˜ ],A A A A A A B B A A A B A A A Bn n n n1 1 2 2 1 2 1 2

where L  ¢ ¢¼ ¢ ¢B A A A Bn1 2
is a completely-PTPmap.While such an r¢˜ may not be optimal for the sake of the steering

negativity of the new assemblage, since the trace normdoes not increase under the partial action of a completely
positive and trace-preservingmap, this is enough to prove that the steering negativity does not increase under
processing by one-way quantumoperations. ,

8.Discussion

The scope of the steering phenomenon has beenwidely studiedwith respect to its applications, for instance to
engineer one-sided device independent information theoretical protocols robust to loopholes [49–56].
However, questions about its implication for our fundamental understanding ofNature have beenmuch less
addressed. In this workwe developed a framework that allows us to understand steering inmore general set-ups
and potentially in theories beyond quantummechanics. Our formalism starts from the usual formulation of a
quantum steering experiment, where the uncharacterised parties performmeasurements on their share of a
system. By relaxing the properties of themathematical object r̃ that represents the state of the system, one can
simulate steering experiments beyondwhat quantummechanics allows, while still complyingwith physical
assumptions such as no-signalling. This framework provides away to understand classical, quantum and post-
quantum steering in a unifiedmanner, each of which can be recovered as special cases of the formalism. In
particular, our approach comes equippedwith an inherent functional that quantifies the post-quantumness
of an assemblage, the negativity of post-quantum steering.We postulate that post-quantum steering should not
increase under one-way quantumoperations from the steered parties to the steering parties, whereas standard
quantum steering is postulated not to increase under one-way LOCC [39].We prove that the negativity of
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post-quantum steering respects such a postulate, andmore precisely that it is a convex post-quantum-steering
monotone.

By exploring the connections between entanglement witnesses and positive but not completely positive
maps, our framework especially succeeds in representing post-quantum assemblages thatmay only generate
quantum correlations. Using thismethod, wewere able to generate the first analytical examples of post-
quantumassemblages which cannot exhibit post-quantumBell non-locality. An open question is whether every
non-decomposable positivemap can produce post-quantum assemblages given a suitable initial quantum
steering experiment (i.e. localmeasurements on a quantum state). Along these lines lies the question of what
type of entanglement properties should the state ρ of the system shared by all the parties have such that, when the
steered one applies a non-decomposable positivemap to their quantum system, the generated assemblage is
post-quantum.More broadly, our formalism also allows for the definition ofGleason assemblages, which
generalise quantumones.We provided a family of entanglementwitnesses andmeasurements, constructed
fromunextendible product bases and local orthogonality inequalities, such that theGleason assemblages they
generate are provably post-quantum.

Although post-quantumnon-locality and post-quantum steering are fundamentally distinct concepts, there
are stillmany opportunities to explore their relationship. For example, if we take a post-quantum assemblage
that can never exhibit post-quantumnon-locality, is it possible to takemultiple copies of this assemblage and
apply some filtering process to reveal post-quantumnon-locality?We dub this concept hidden post-quantum
non-locality, and it remains openwhether this can occur and, furthermore, whether itmight be the case that in
fact all post-quantum assemblages exhibit it.

It would also be fascinating to try andfind tasks for which post-quantum steering gives a clear advantage over
standard quantum steering. One candidate task is entanglement-assisted sub-channel discriminationwith one-
waymeasurements [38], where it is known that it is steering, rather than simple entanglement [57], that gives an
advantage. Post-quantum steeringmight also help trivialise certain communication tasks (see [58]).We leave it
for futureworkwhether post-quantum steering ismore useful for any of these tasks, andwhether the formalism
introduced heremight facilitate the study of this question.

It is worthmentioning that recently another framework to formalise steering has been introduced [59].
There, the starting point is the connection between quantum channels and steering scenarios. Such a framework
is well suited to explore the so called almost quantumassemblages (a set that strictly contains the quantumones),
as well as assemblages that can only generate local correlations in the Bell sense among the parties. Hence, the
analysis of [59] regards complementary aspects of steeringwith respect towhat is done in this paper.

In conclusion, these analytical formulations of post-quantum assemblages provide a starting point from
where to explore the possible physical or information-theoretical consequences that the phenomenon could
have.We believe that such an approachmay shed light on the problemof characterising quantum steering from
basic physical principles and of understanding the possibilities and limitations of the steering phenomenon in
Nature.
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