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This article aims to lay a foundation for the research and practice of machine learning education for creative
practitioners. It begins by arguing that it is important to teach machine learning to creative practitioners
and to conduct research about this teaching, drawing on related work in creative machine learning, creative
computing education, and machine learning education. It then draws on research about design processes in
engineering and creative practice to motivate a set of learning objectives for students who wish to design
new creative artifacts with machine learning. The article then draws on education research and knowledge
of creative computing practices to propose a set of teaching strategies that can be used to support creative
computing students in achieving these objectives. Explanations of these strategies are accompanied by
concrete descriptions of how they have been employed to develop new lectures and activities, and to design
new experiential learning and scaffolding technologies, for teaching some of the first courses in the world
focused on teaching machine learning to creative practitioners. The article subsequently draws on data
collected from these courses—an online course as well as undergraduate and masters-level courses taught at a
university—to begin to understand how this curriculum supported student learning, to understand learners’
challenges and mistakes, and to inform future teaching and research.
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1 INTRODUCTION
Machine learning (ML) systems that autonomously create new works of art, music, video, or text—
some that reasonably mimic creators (e.g., [9], [14]), others that create content imbued with a novel
machine “style” [52]—have recently captured significant public interest. But ML has in fact been
used for many years in a wide range of human creative practices. These include building new
digital musical instruments controlled by sensors [47], creating computer-based “accompanists” for
human acoustic musicians [61], tracking and responding to dancers’ movements [12], and building
interactive art influenced by data such as audience actions or emotional states [39].
Historically, applying ML in creative work—as in other domains—has required deep knowl-

edge of ML and programming. While some recent software can enable people without extensive
programming expertise to use ML in new creative projects (e.g., [10, 25, 29]), these tools still
require some familiarity with ML—for instance, to “debug” an ML system that is not working,
and to understand when ML is likely to be useful. But there is little research about teaching ML
to non-computer-scientists, and especially little work examining how or what to teach creative
practitioners about ML. Indeed, there is little evidence of any courses about ML being designed for
creative practitioners prior to the MOOC (“massively open online class”) described in this paper,
which began in 2016.
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Still, providing appropriate ML education and tools to creative practitioners presents many
potential benefits: by enabling more people to use ML more effectively, ML education can lead
to new creative outputs and means for self-expression, and also to economic impact as creative
entrepreneurs discover opportunities for using ML in creative technologies (e.g., at least one MOOC
student has started a company making creative ML technology [60]). By better understanding how
to teach creative practitioners about ML, we can also inform the teaching of ML to other groups.

As early work on this subject, this article thus aims to contribute an inaugural understanding of
why, what, and how to teach creative practitioners about ML. Section 2 begins with an overview of
the uses of ML in creative work, of creative computing education, and of ML education research.
Section 3 then draws on research about design processes in engineering and creative practice
to motivate a set of learning objectives for students who wish to design new creative artifacts
with ML. Section 4 then draws on education research and knowledge of creative computing
practices and practitioners to argue for a set of teaching strategies that can be used to support
these objectives, particularly for students doing creative work who may lack strong programming
and/or math backgrounds. Examples of how these strategies have been employed in teaching
are provided; in several cases, this has entailed development of new experiential learning and
scaffolding technologies that have been made freely available online. These strategies and tools
have been integrated into a new curriculum of lectures and activities for teaching supervised
learning [63] to students in creative disciplines. This curriculum has been used in some of the
first courses in the world focused on ML for creative practice: a MOOC, and university courses
for undergraduate and masters students studying creative computing and digital arts (described in
Section 5, with curriculum details in the Appendices).
Section 6 provides some initial analysis of three student activities in these courses in order

to better understand the student learning and engagement supported by this curriculum. This
analysis contributes to understanding the efficacy of some of the representations, explanations, and
methods of informal assessment used in the curriculum, and it reveals information about student
conceptions and mistakes. It also investigates how some students thought about and used ML in
their creative work at the end of the course. Analysis of each activity is accompanied by reflections
on its implications for future teaching and research. Section 7 draws on the previous sections and
prior work to identify future research needs to further understand creative ML education, and to
argue for an expanded list of pedagogical content knowledge [66] components for ML teaching.

2 BACKGROUND
2.1 ML in Creative Work
Throughout this article, I use the terms “creative practitioner” and “artist” to refer to people creating
ideas or artifacts in a broad set of domains. They include creators in the fine arts, music composition
and performance, and theater and performance art, as well as creators of new indie games and
“makers” of other hard-to-pigeonhole artifacts and experiences. The teaching described here is
aimed at students spanning all these domains, who may have various levels of expertise, and who
engage in creative activities for personal enjoyment as well as for professional recognition or profit.
The remainder of this section provides an overview of how and why ML may be used in these
types of creative practices.

2.1.1 Creative projects may use ML for conventional or unconventional reasons. In many creative
applications, ML is used for the same reasons it is conventionally used in most other domains, for
instance to build models from data in order to accurately apply predictions to new data. Creative
domains involve many types of data (e.g., audio, image, human movement) that are difficult to
analyze computationally without ML, so ML can enable creative practitioners to work with this data
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more accurately and efficiently. For instance, ML might underpin a computer vision system that
identifies the number of faces looking at a digital art piece, enabling the piece to change its behavior
in response to the number of people present. Or ML might be used to build a computer listening
system that identifies the musical phrase a musician is performing, triggering the automated
playback of accompanying material [61]. There is also a long history of creative works whose
content is influenced by data from “non-creative” domains1, such as works that use data from the
natural world [18] or social media [16] to drive changes in sound. ML offers powerful tools for
reasoning about such data, in creative and non-creative domains alike.
Other creative work employs ML for reasons that are quite different from the those above. For

instance, deep learning algorithms capable of generating new visual art, music, and other content
have received much media and research attention in the past few years, and creative content
generation has also been performed using simpler methods like Markov processes for decades
[2, 46]. An artist using generative algorithms may rely on the accurate modeling ability of the
algorithm to produce new content that is “similar” to the training set, but this is embedded in a
context of broader artistic goals, such as generating content that is striking [67], humorous [65],
or likely to elicit creative behaviors in response from a human partner [54]. (This article does not
focus on deep learning algorithms for a number of practical reasons2).
Supervised learning algorithms can also be useful to design completely new responsive or

interactive digital systems for a variety of creative applications. The designer of a new system can
specify its behavior not by programming, but by providing a supervised learning algorithm with
examples of inputs to the system along with the outputs or actions he would like the computer
to produce in response to those inputs. For instance, a digital musical instrument designer might
provide data demonstrating how certain human movements, perceived via sensors, should result in
changes to the control parameters of a sound synthesis algorithm [47]. An audiovisual performance
artist might provide examples demonstrating how different live sounds should result in changes
to a generative graphics program. Or the creator of a new dance piece could provide examples of
dancer movements that will trigger changes in stage lighting. For such applications, there may not
be a pre-existing “ground truth” dataset; the creation of a dataset that accurately communicates the
designer’s intentions for the system becomes a crucial part of the machine learning process.

2.1.2 Interactive ML can support creative work. When a creator is capable of generating reason-
able training examples (e.g., when the creator can anticipate and replicate the variations likely to
be contained in future data, or when building a system that will respond only to the actions of the
creator herself), interactive machine learning (IML) approaches [20] can become very useful. Using
IML, a creator can iteratively provide training examples, train a model on those examples, test the
model on new examples to identify errors or model behaviors they would like to change, and then
provide additional training examples that are likely to improve the model—for instance specifying
correct behaviors for inputs handled incorrectly (Figure 1). Many machine learning tools aimed at
creative practitioners support such an IML approach [10, 13, 25, 30].

By allowing iterative changes to the training data, IML approaches also make it easy for creators
to experiment with different design ideas and communicate their evolving goals for what should
1The term “non-creative domains” is used as shorthand in this article to refer to domains in which creative expression is
not a primary goal. This should not be interpreted as implying that more conventional ML application domains such as
science and engineering do not involve substantial human creativity.
2Most significantly, at the time of teaching these courses, most deep learning tutorials and tools required extensive math
knowledge (e.g., linear algebra, multivariate calculus), numerical programming proficiency, proficiency with Docker, and
access to GPUs or expensive cloud computing resources. These requirements exclude many of the creative practitioners
targeted by the courses described here. Yet work is already being done to create more accessible deep learning tools (e.g.,
ml5.js [38]) and learning resources (e.g., Google’s Machine Learning Crash Course [31]).
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Fig. 1. Interactive machine learning is a human-in-the-loop approach involving iterative modification of
training examples, algorithms, and features.

be learned [21]. This is crucial, because in any creative domain, creators’ goals are likely to evolve
with experimentation [62] (e.g., as they discover that the interaction in their installation does not
feel quite right now that they have built it, or as they decide they would like to know what a
four-gesture classifier feels like now that they have seen what a three-gesture classifier can do).
Of course, IML is not always a suitable approach for applying ML in creative work. When the

goal is to accurately model an existing dataset, or to model a phenomenon for which a creator
cannot easily create or curate appropriate examples (e.g., to accurately model states or actions of
diverse people), a practitioner may need to use more conventional ML approaches to improve ML
performance (e.g., choosing a different algorithm or features).

2.1.3 Supervised learning offers several benefits to creative work. ML’s ability to accurately model
complex relationships in example data may be useful even when ML is used for unconventional
purposes such as designing new interactive systems “by example.” ML can make it easier to
accurately model data that is noisy and/or high-dimensional, yielding model functions that better
represent creators’ intentions than functions implemented in programming code. Instantiating
new systems from examples can bring system designers other potential benefits, as well, including
facilitating faster implementation and iterative modification compared to writing and editing code,
making it possible for non-programmers to build sophisticated systems, and making it easier to
build systems that understand or respond to embodied practices such as music or dance (which are
often hard to describe in code but easy for practitioners to demonstrate) [21].

2.2 STEAM and Creative Computing Education
Interest in teaching computing skills using creative applications of technology is growing as a
result of the “STEM to STEAM” movement, which advocates for the inclusion of the arts and design
alongside the STEM (science, technology, engineering, and mathematics) disciplines that are more
often the focus of research and policy initiatives. As Yee-King et al. [73] note, creative arts education
often engages students in “inductive, exploratory process[es] driven by self-defined goals,” and
the perspectives of experiential education [17], constructionism [33], and inquiry-based learning
[19] all suggest that engaging STEM students in such processes is likely to be beneficial. Some
STEAM teaching also aims to exploit the capacity for creative applications to motivate students
from diverse backgrounds to engage with technology [27, 59].
Pairing the teaching of programming and other CS skills with creative instruction is also a

key feature of programs in “creative computing” and “creative coding.” Such programs typically
target students aspiring to use computers to make new creative work—for instance as digital
artists, electronic musicians, or creators of experimental theater or games. A number of universities
(including Goldsmiths University of London, where two of the courses described in this article
were taught) now offer degrees in creative computing or similar topics. Many online courses
have also emerged to serve such students: for instance, MOOC provider Kadenze currently offers
over two dozen creative computing courses [37]. (Note that “creative computing” involves people
using computing in creative activities, whereas “computational creativity” is the term for using
computational approaches to mimic human creative actions [36].)
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Paper section
PCK Component 2 3 4 6.1 6.2 6.3
G1: Why teach this subject? X X
G2: What should be taught? X X X X X
K1: Useful representations for concepts in machine learning X X
K2: Effective analogies, examples, and explanations of machine learning X X
K3: Knowledge of which concepts in machine learning are difficult and why X X
K4: Knowledge of conceptions that learners bring to learning machine learning X
K5: Methods of informally assessing knowledge of machine learning concepts X X X
K6: Common mistakes the learners make when applying machine learning X X X

Table 1. The first column lists components of pedagogical content knowledge from Grossman (G1, G2) [32]
and Ko (K1–K6) [42]. Subsequent columns indicate the sections of this paper relating to each component.

.

Many creative computing programs aim to prepare students for innovative practices in which
proficiency with mass-market tools such as PhotoShop or Logic Pro is insufficient, so their students
require a number of the same skills as CS students who will become technology creators in other
domains. Creative computing programs typically include a substantial focus on programming
using environments such as OpenFrameworks, Processing, Max/MSP, or Unity, and they often
teach physical computing with platforms like Arduino. A few organizations such as the Processing
Foundation [26] support the development of software tools and educational resources for creative
computing, but little research has explicitly studied the learning and teaching of computational
skills within creative computing courses. Further, most research on STEAM approaches to CS
teaching (e.g., [27, 73] has focused on teaching programming. This paper contributes to this space
by showing how other CS topics can be adapted and evaluated within a creative computing context.

2.3 ML Education
Little published research examines how to teach ML effectively to any population. One participant
in a workshop on machine learning education at the 2017 International Computing Education
Research conference, Andy J. Ko, published a version of his workshop paper as a blog post [42]. In it,
he writes “We still know little about what students need to know [about ML], how to teach it, and
what knowledge teachers need to have to teach it successfully. To correct this, I argue that we need
to discover the pedagogical content knowledge (PCK) necessary for teaching concepts in machine
learning.” According to Shulman [66], PCK “embodies the aspects of content most germane to its
teachability,” including “the most useful forms of representation of those ideas, the most powerful
analogies, illustrations, examples, explanations, and demonstrations,” and “an understanding of
what makes the learning of specific concepts easy or difficult” [p. 9]. The concept of PCK has been
used in CS to understand and advance the teaching of a variety of topics—including programming,
algorithms, and problem-solving—at secondary and tertiary levels [35]. However, the concept does
not appear to have been employed in published research on ML teaching.
Ko [42] lists six desired components of PCK for ML, shown in Table 1 as K1–K6. Each of these

components is relevant to teaching ML to creative practitioners. Yet, as Hubbard [35] notes, different
researchers have conceptualized PCK differently; there is no definitive enumeration of what PCK
entails, even within CS education. Other formulations of PCK suggest additional components that
seem relevant to understanding creative ML teaching. In particular, Grossman’s [32] reformulation
of PCK includes knowing why a subject should be taught and what should be taught. These
seem important to understand when considering the teaching of ML to students whose goals and
backgrounds differ from the computer scientists for whom ML classes are typically designed.

Pre-print for ACM Transactions on Computing Education. Accepted November 2018.



6 Fiebrink

This article aims to contribute to developing an understanding of PCK for Creative ML, and
of PCK for ML more broadly. Section 2 has previously argued for why it is useful to teach ML to
creative practitioners. Section 3 will next outline a proposal for what students should learn, and
Section 4 will propose strategies for how this content may be taught, including specific examples of
representations, explanations, and informal assessments. Sections 6.1–6.3 present brief analyses
of three student activities: an early brainstorming exercise by MOOC students, a mid-course lab
activity by undergraduates, and final creative projects by masters students. The analyses provide
some initial evidence for the efficacy of the approach to teaching proposed in Sections 3–4; they
also also help deepen understanding of how students thought about and used ML, of ways the
abstractions and activities influenced and revealed student learning, and of learners’ conceptions
and mistakes. The analyses thus inform future pedagogical improvements and a research agenda
for ML education in creative domains and beyond. Table 1 summarizes these relationships between
PCK components from Ko and Grossman and the sections of this paper.

3 PROPOSED LEARNING OBJECTIVES FOR CREATIVE ML
Numerous frameworks have been proposed to characterize the processes people employ when
engaged in the creative design of a new artifact. Howard, Culley, and Dekoninck [34] review a large
body of literature in engineering design as well as cognitive psychology research about creativity,
and they synthesize a single description of a “creative design process” that characterizes innovative
artifact creation across a variety of domains. This process consists of five main “design operations”:
formulation (i.e., specifying the desired behavior of the system, based on pre-established design
requirements), synthesis (implementing a system that aims to achieve this behavior), analysis (ob-
serving the implemented system’s actual behavior), evaluation (comparing the observed behavior
with the desired behavior), and documentation (producing the artifacts necessary for manufactur-
ing the final product). The process model emphasizes that creators also reformulate—iteratively
changing the implementation, formulation, or design requirements, then cycling back through the
other operations in a non-linear way. (Notably, this model is quite similar to the “design think-
ing” frameworks commonly used to describe creative problem-solving; for instance, the Stanford
“d.school” framework entails Empathize, Define, Ideate, Prototype, and Test activities [8]).

Learning objectives for any student creating new systems with ML (whether or not they are
working in a “creative” domain such as the arts) can thus be derived by considering what ML
knowledge or expertise is necessary to most effectively engage in each of the above operations,
as well as the necessary preceding work to establish the design requirements. These objectives
can then be refined for students in a particular domain of practice. In creative domains, the use of
ML in a completed work seems unlikely to appreciably change an artist’s approach to performing,
exhibiting, or presenting the work, so objectives related to documentation may not be needed.
However, an awareness of how ML has been used in other creative work is useful in enabling artists
to contextualize their work (and is also likely to be practically helpful in demonstrating the variety
of ways creative ML projects can be conceptualized and implemented), so an additional learning
objective entailing awareness of other work seems appropriate. Table 2 thus enumerates the set of
learning objectives established for creative ML students studying supervised learning, of which
objectives LO1–LO7 are also applicable to other students building ML systems in “non-creative”
domains.
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Design
Operation

Learning Objectives

Establishing
design
requirements,
Formulation

LO1. Understand the structure of supervised learning problems and the capabilities of super-
vised learning algorithms (e.g., recognize that models compute outputs from inputs, and that
algorithms create models from examples of input/output pairs; recognize that classification
models output discrete labels).
LO2. Identify feasible uses for ML in new projects, and map a new idea for applying ML onto
the structure of supervised learning (e.g., map real-world problem characteristics onto inputs,
outputs, training data, model).

Synthesis LO3. Reason about properties of learning algorithms, data, and the problem domain to make
sensible choices about learning algorithms and features for a new project.
LO4. Apply knowledge of ML workflows and practical skill with an existing ML tool/library
to create a ML model by generating/curating training data, then employing an algorithm to
build a model from that data.
LO5. Use appropriate mechanisms to pass data between the ML tool/library and the other
components of a project (e.g., sensors, software for sound or art, filesystem, etc.), in order to
integrate ML into fully-functioning projects.

Analysis,
Evaluation

LO6. Choose appropriate methods to evaluate a trained model against the design criteria most
relevant to the project, and apply these within the ML tool/library.

Reformulation LO7. When a model implementation does not satisfy these criteria, reason about and exercise
appropriate mechanisms to improve it (e.g., by changing the training data, features, or learning
algorithm, within the ML tool/library).

Other LO8. Understand ways ML has been used in other creative work, and draw on this to contex-
tualise one’s own work.

Table 2. Proposed learning objectives for creative students studying supervised learning, organized by the
“design operations” in [34] that they support.

4 STRATEGIES AND RESOURCES FOR SUPPORTING STUDENT ACHIEVEMENT OF
LEARNING OBJECTIVES

Due to the lack of research on creative ML education, there is no existing roadmap for how a course
might support students in achieving these learning objectives. This section therefore draws on prior
research in teaching and learning, known practices in ML teaching, and knowledge of creative ML
practices to propose a set of strategies for supporting learning. It also describes how these strategies
have been integrated into the design of new lectures, activities, and technologies for creative ML
students. Section 5 summarizes how these components have been employed a MOOC (which was
developed first) and two university courses (which were taught using materials adapted from the
MOOC). Syllabi for these courses appear in Appendices C and D. In presenting these resources in
detail, this article aims to contribute to a “case literature” on ML teaching, following Shulman’s
advocacy for educational cases to “provide teachers with a rich body of prototypes, precedents,
and parables from which to reason” [66, p. 14].

The strategies described below aim primarily to support creative computing students and creative
professionals who wish to use ML to create work like that described in Section 2.1. Little other
student expertise is assumed; most notably, these strategies have been developed to ideally support
students who may not have extensive prior programming or math knowledge. While students
without programming expertise will undoubtedly face barriers to making highly original creative
projects, it seems possible to support their achievement of the learning objectives through the use
of GUI-based tools and pre-compiled examples for connecting ML to interesting data sources (e.g.,
sensors) and simple multimedia programs (e.g., for influencing sound, visuals, or games).
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Fig. 2. The ML Pipeline abstraction used extensively in teaching.

4.1 Teach Appropriate Abstractions
Ben-Ari [3, p. 259] writes of a significant obstacle to learning and constructivist engagement
with programming for beginning CS students: the fact that students do not “come to class with
an effective model of a computer,” thinking instead of computers as “grossly anthropomorphic
‘giant brain[s]’.” Pea [57, p. 32–33] describes “the idea that there is a hidden mind somewhere in
the programming language that has intelligent, interpretive powers” as a “superbug” that drives
misunderstandings in beginning coders. These obstacles can be combatted by teaching students the
abstraction of a “notional machine,” which Sorva describes as “an idealized abstraction of computer
hardware and other aspects of the runtime environment of programs” that “serves the purpose of
understanding what happens during program execution” [69, p. 3]. It is plausible that beginning
ML students likewise may not begin with an effective model of what supervised learning is, and
they may be especially susceptible to the fiction that ML has a “hidden mind.” Therefore, early
teaching of appropriate abstractions seems important to help students use ML effectively.
In order to work effectively with existing supervised learning tools and libraries, and in order

to reason about the structure of problems in which supervised learning may be applied, students
should arguably be familiar with—at minimum—the concepts of a model (e.g., as a function that
computes output values from input values), of training examples (pairs of input and output values),
and of a learning algorithm (a thing that creates a model function, using the training examples to
inform what sort of function it should make). Further, these concepts can be understood as having
a strict sequential relationship: an algorithm must create a model via the “training process” before
the model can be used, and after training has occurred, the model does not change.
Figure 2 shows a visual representation of these concepts and the relationships between them.

In the courses described here, this collective abstraction is referred to as the “ML pipeline.” This
abstraction has been used in teaching elsewhere (e.g., [64]). The “pipeline” terminology is also used
in some ML programming environments [49] and in writing about ML tools [55], where it may
alternatively emphasize the whole sequence of data processing operations that transform raw data
into the feature representation used by a model, followed by applying the model (and potentially
also post-processing model outputs). Here, though, the abstraction is kept deliberately simple so
that it can be introduced at the beginning of a course; it may be made more complex later on when
topics such as feature engineering are introduced.
This abstraction is too simple to accommodate all supervised learning paradigms (e.g., online

learning and active learning do not fit here). However, it can describe basic classification and
regression, as well as sequence labeling and segmentation as performed by hidden Markov models
or dynamic time warping [53]. With this abstraction, students do not need to know anything about
how a learning algorithm actually builds a model in order to understand which sequences of actions
with ML are sensible, or to reason about the training data and learning algorithm as two separate
components (either of which might be changed to cause a change to the model). And this very
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Fig. 3. Stills from the animations and video used to illustrate nearest-neighbor (left) and decision stumps
(right).

restrictive formulation does not leave much room for egregious anthropomorphizing: for instance,
it doesn’t easily accommodate a machine that imagines new artwork.

In the creative ML classes discussed here, the ML pipeline was introduced as the first major topic
in the first lecture. Section 6.1 explores how this abstraction enabled new MOOC students to reason
about what types of systems they could build with supervised learning (learning objectives LO1,
LO2), without yet learning about how algorithms build models from data.

4.2 Explain Learning Algorithms Without (Much) Math
A deep understanding of ML theory or algorithm implementation does not directly support any
of the learning objectives in Table 2. However, some understanding of how algorithms work can
help students reason about which algorithms are most suitable for a particular problem, or about
how to adjust algorithm parameters (e.g, k in k-nearest neighbor, or the complexity constant of a
support vector machine) (LO3). Furthermore, a thorough understanding of how some very simple
algorithms build models from data may be helpful in preventing students from attributing a “hidden
mind” to ML algorithms. For instance, it may be preferable for students to reason about most ML
algorithms as “better” ways of doing what they know a nearest-neighbor or decision stump does,
rather than as magical black boxes that might be doing anything at all inside.

For students comfortable with algebra, geometry, probability, and calculus, these mathematical
tools can be useful for clearly communicating how an algorithm works and when it may or may
not be well-suited for a particular problem. And for students who are good programmers, writing
an implementation of a learning algorithm may also deepen their understanding of how it works.
However, it seems reasonable to hope that students without these skills could also develop enough
intuition to make sensible decisions about which algorithms to use, especially if they are also able
to experimentally compare algorithms when they are unsure. (After all, even professional software
developers with high ML proficiency rely heavily on experimentation to guide decisions about
algorithms and features to use in their software [56, Ch. 3]).

The video lectures for these courses therefore employ the following approach to describing clas-
sification algorithms to students with a practical interest in ML and varied math and programming
expertise: (1) Nearest-neighbor and decision stumps are first explained in detail using animations
of their operation in 2D feature spaces (Figure 3). The expectation that students can perfectly
understand these algorithms is communicated and tested by intermittently asking students to
take on the role of the algorithm: i.e., finding the nearest neighbor point, or deciding where to
draw a horizontal or vertical decision boundary. Decision stumps are also explained as if-then-else
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Fig. 4. “Scorecards” summarize practical considerations for each algorithm.

statements to help programmers understand that model functions act essentially like the func-
tions they write in code. (2) Other classification algorithms are then described at a higher level,
also relying heavily on visual representations of the learning process and the resulting decision
boundaries in a 2D feature space (Figure 3; Appendix A). For instance, AdaBoost [28] is described
in an animation in which a sequence of simple decision stump boundaries are fitted to examples
whose importance (represented visually by size) is adjusted over time according to the accuracy of
previous iterations. The basic principle of support vector machines [11] is described by drawing a
training dataset on a deflated balloon, then stretching the balloon into a third dimension so that
the two classes of examples can be separated with a plane (here, a pair of scissors). (3) Equations
are used sparingly and always presented as a way to deepen understanding for students who
are comfortable with the notation. For instance, the equation for Euclidean distance is presented
for nearest-neighbor, to illustrate that moving from a 2D feature space to a higher-dimensional
one is a simple matter of adjusting the distance equation. (4) The description of each algorithm
is concluded with a “scorecard” (Figure 4). Rather than summarizing the learning procedure or
theoretical motivation of an algorithm, the scorecard summarizes the algorithm’s practical benefits
(and drawbacks) as they may intersect with properties of the learning problem or user goals.

The explanation of regression is similar. Linear regression is first explained in detail. Students are
asked to imagine how they would fit a line to a visualization of points in two dimensions; this drives
a discussion of what it means to “fit” a line, and when a straight line may prove too simple a model.
Polynomial regression and neural networks are then presented as increasingly flexible methods
for fitting points with lines of other shapes. Optional supplemental lecture videos are available
for interested students; these motivate the problem of finding a line of best fit as an optimization
problem and describe at a high level how gradient descent is used to solve this optimization problem
for neural networks. Likewise, the explanation of sequence modeling algorithms relies heavily on
visual representations of the algorithms working on low-dimensional data (Appendix A).

This visual understanding of how algorithms create models in low-dimensional feature spaces
is reinforced and explored through hands-on activities described in Section 4.6. Visualizations of
algorithms in higher-dimensional feature spaces are not attempted. Instead, students are exposed
to higher-dimensional problems through lecture demonstrations and hands-on activities using
models that work with larger numbers of features from sensors, webcams, and audio.

4.3 Recognize Distinct Knowledge Needed by Creative Practitioners
Most learning objectives in Table 2 are applicable to people building ML systems in any domain.
However, using ML in creative practice requires a distinct (and arguably broader) set of knowledge
than using ML in other domains. First, many creative practitioners may benefit from using IML
approaches (Section 2.1.2) in which they iteratively change the training data to improve and refine
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models. Students should therefore be taught about IML and about how to reason about whether it
is appropriate for a particular context. There are also human skills that can lead to IML being more
effective, such as creating training data as free from noise as possible, or (when feasible) choosing
phenomena to classify that are easy to discriminate within the given feature space.
Second, prior research has shown that cross-validation can be a surprisingly poor measure of

model quality within certain IML contexts, where training sets may be very small and creators
may deliberately place examples to have particular effects (e.g., placing examples close to intended
decision boundaries) [24]. IML users may sometimes benefit more from creating new test data on
the fly and observing model behavior on that data, as this allows them to assess models against
diverse and subjective criteria (e.g., presence of mistakes in high- or low-stakes areas of the feature
space, or the comfort or “interestingness” of a new gestural controller). Further, the emphasis on
generalization accuracy as the top priority, and on using metrics such as cross-validation that
estimate generalization accuracy, is inappropriate for some (though certainly not all) creative ML
applications [24]. Creative practitioners should therefore learn about a variety of model evaluation
strategies and learn to reason about which strategies are appropriate for a given context.
Third, many creative practitioners are interested in working with data from sensors, audio,

images, and video. These data present particular challenges, in that raw data (e.g., audio samples,
video pixels) are often not a suitable representation to pass directly to ML algorithms. (An exception
arises with certain deep learning approaches that can learn good representations directly from raw
media data—e.g., [44, 71]—but this is infeasible for many creative applications in which no large
datasets exist.) Therefore, creative practitioners require instruction on basic strategies for “feature
engineering”—i.e., applying common transformations to the raw data to render it possible to learn
from. This can include simple operations such as segmentation, thresholding, or computing average
or standard deviation over a sliding time window; processing with digital filters; or applying
transformations commonly used to extract information that is relevant to human perceptual
processes. These include the computation of Fast Fourier Transform (FFT) or Mel-Frequency
Cepstral Coefficients (MFCCs) [48] from audio, or edge detection or optical flow from video.
In the courses described here, IML was the primary approach discussed in lectures and used in

lab activities. Lectures described contexts in which IML is and is not appropriate. Although the
concept of generalization accuracy and the use of cross-validation were presented in detail, lecture
content also discussed circumstances in which cross-validation accuracy may be an inappropriate
metric. Hands-on lab activities in which students experimented with IML (e.g., Figure 5) were
the primary mechanism for learning how to provide “good” training data and to reason about
what is easily learnable with given algorithms and features. Some lectures also provided practical
tips on how to structure ML problems to be easily learnable (e.g., describing how multiple simple
classifiers could be used in parallel instead of a single complex classifier, for labeling tasks entailing
combinations of non-mutually-exclusive labels).
One of the seven video lectures was exclusively dedicated to feature engineering for sensors,

sound, and video. Furthermore, a number of scaffolding tools were developed to enable students
without programming or signal processing expertise to meaningfully experiment with multimedia
features and feature engineering. A GUI-based software tool called Input Helper3 was developed,
which allows students to interactively apply common operations to raw data (e.g., average, standard
deviation, first- and second-order difference, digital filter equations, and mathematical operations
entered as text formulas). A number of standalone, real-time extractors for common audio and
video features (e.g., FFT, MFCCs, facial keypoints) were developed and provided to students as
executables and source code in OpenFrameworks and Max/MSP.

3http://www.wekinator.org/input-helper/
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Fig. 5. Abbreviated instructions for MOOC assignments A4.1–A4.3 (see Appendix C)

4.4 Use Technologies Appropriate To Creators
Achieving the learning objectives entails hands-on proficiency applying ML in one’s own creative
work. Enabling students to develop this proficiency is challenging when students work in diverse
domains with different digital tools and have varying levels of programming expertise. Effort
was made to ensure that the technologies chosen for illustrating concepts in teaching, as well as
supporting hands-on activities and student project work, could support both a wide variety of
creative practices and appropriate approaches to using ML.
These considerations underpinned the choice of the Wekinator software [25] as the primary

ML tool to support lectures, activities, and projects in these courses. Wekinator provides general-
purpose learning algorithms for classification (kNN, AdaBoost, SVM, Decision Trees, Decision
Stumps, Naive Bayes) and regression (linear and polynomial regression, neural networks), and
dynamic time warping (DTW) for sequence matching. It encourages an IML workflow, enabling
users to create new training examples in real-time, and to iteratively re-train on modified training
sets. It is GUI-based and accessible to non-programmers, but it still provides fine-grained control
over ML (e.g., setting algorithm parameters and selecting features can be done in the GUI). It allows
the creation of complex creative systems with ML. For instance, multiple models can be created
within a single project, and they can be trained individually or as a set; multiple Wekinator projects
can be run in parallel or in series; trained models from one project can be loaded into another.
Wekinator uses Open Sound Control (OSC) [72] to connect to a wide variety of sensors and

software environments. It uses OSC both to receive feature values and sendmodel outputs. (That is to
say, the two vertical arrows in Figure 2 connect the feature extractor toWekinator, andWekinator to
the output process, via OSC messages.) OSC is supported in most creative computing environments
and conventional programming languages (e.g., Processing, OpenFrameworks, Max/MSP, PD, Unity,
Python, C++). Many creative programmers already use OSC. The Wekinator website [23] contains
dozens of examples of compatible feature extractors and output processes in many programming
languages; these may be run as-is or serve as example code for programmers to modify. New
examples for students in these classes were added to this site as well.

Alternative toolchains could support different cohorts in achieving the same learning objectives,
while presenting different tradeoffs. For instance, ml.lib [10], RAPID-MIX API [4], and scikit-learn
[58] can be used by students who are proficient programmers to employ many of the same learning
algorithms, without the need to run multiple programs communicating via OSC. Yet to support
the same type of lab activities and creative projects, students or instructors would need to write
significant additional code to implement functionalities such as control over iterative IML data
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collection, training and evaluation; interfacing with sensors and other data sources; and connecting
to other creative software (e.g., game engines or music environments).

4.5 Integrate Creative Perspectives
Seeing examples of creative work using ML should help students better understand how ML can be
used creatively (LO2) and gain familiarity with the landscape of existing practice (LO8). Several
lecture videos therefore include demonstrations of ML systems used in real-world performances,
with technical descriptions of how they use ML as well as discussion of how the implementation
supports the works’ creative aims. Further, approximately 1 hour of the last video lecture is led by
composer Laetitia Sonami. In this segment, titled “Developing a Practice with Machine Learning,”
Sonami discusses why she uses ML in her practice and describes how she implements several of
her pieces using Wekinator and Max/MSP.

We can also view students’ creative experiences and practices as resources that may be drawn on
to deepen their knowledge of ML, similarly to how Moll et al. propose “ethnographically informed
classroom practices” that draw on the “funds of knowledge” within students’ households and
communities [51]. One way the creative ML courses described here attempt to do this is by telling
stories that map abstract considerations about ML into a space that is both physical concrete
and creatively relevant: the stage. The 2D feature space visualization used to ground discussion
of classification algorithms, features, and noise (Section 4.2, Figure 3) is initially described as a
stage, and each data point represents a dancer standing in a specific position on that stage. In this
environment, a classifier could be used to change the sound or stage lighting according to where the
dancer stands, and its decision boundaries partition the stage into segments. Different classification
algorithms present different trade-offs regarding the possible shape of the decision boundaries,
the number of examples needed to build a useful classifier, and the quality of the classifier that is
possible when the sensor acquiring dancer position is noisy.

4.6 Support Experiential Learning of ML
Most of the learning objectives in Table 2 seem ripe to be addressed via activities that support
experiential learning [43], in which learners iterate through a cycle of concrete experience, reflective
observation, abstract conceptualization, and active experimentation. A number of technologies
were therefore created to support experiential learning with ML regardless of math or programming
expertise, and activities were structured around these technologies to explicitly support cycles
of experimentation and reflection. For instance, a “Classification Explorer” software application
(Figure 6) was developed to allow students to interactively create training examples in a 2D feature
space (analogous to the “dancer’s stage” described in lecture), train a classifier on this dataset,
plot the decision boundary of the classifier on the same space, then explore how the classification
boundary changes in response to changes in the training data, algorithm, or algorithm parameters.
A “Regression Explorer” was similarly created to enable students to experiment with regression in a
1D feature space (Appendix B), and a “DTW Explorer” was created for experimenting with sequence
labeling of shapes drawn with the mouse. The Input Helper (Section 4.3) was developed to enable
engineering of higher-level features from raw data. A number of new example feature extractors
were released as executables to enable students to experiment with different sensors and input
modalities. Similarly, executables were released that use outputs from Wekinator to drive changes
in graphics, animations, music, sound, and games. Students who are not strong programmers can
thus still experiment and build many novel systems with ML. Students who are programmers can
efficiently experiment without worrying about code, and can also adapt the source code from these
many examples for their own use. All technologies developed for these courses have been released
as open-source software and are available on the Wekinator website.

Pre-print for ACM Transactions on Computing Education. Accepted November 2018.



14 Fiebrink

Fig. 6. The Classification Explorer interface allows students to record new training data by clicking on screen
(left) and to evaluate the trained model by either clicking to add test points individually, or automatically
generating many test points to illustrate the decision boundary (shown at right). Here, a 1-nearest-neighbor
classifier is used.

Several hands-on activities were designed to intersperse use of the “Explorer” programs with
reflective exercises (often with a social component involving peer discussion) and building small
creative projects with sensors or other real-time data. For instance, Figure 5 shows an abbreviated
version of the instructions for the fourth MOOC assignment (also employed in the university
course’s labs), which took place after all classification algorithms had been introduced in lectures.

An automatic assessment system (“autograder”) was also developed for all MOOC lab activities,
and made available to University students as well, to provide students with feedback to supplement
their own reflections. For instance, the autograder used Wekinator logs to compute an accuracy
score for each classifier created in the MOOC assignment in Figure 5 (computed by applying the
logged classifier to unseen examples matching the target boundaries). Students had the option of
submitting activities to the autograder multiple times to try to improve their classifiers’ accuracies.

5 USING THESE STRATEGIES AND MATERIALS TO TEACH THREE NEW CLASSES
5.1 MOOC
A MOOC titled “Machine Learning for Musicians and Artists”’ [22] was the first course developed
using these strategies. Appendix C details the organization of video lectures and assignments in
this seven-session course with approximately 8.5 hours of lecture content. The MOOC launched in
2016, and it is still running. As far as can be determined, this was the first course explicitly devoted
to ML for creative practitioners ever to be offered. As of June 2018, 12,834 students had enrolled, 852
of whom were “subscribing” students able to submit assignments for marking (though completing
the MOOC does not lead to credit at any degree-granting institution). Of these, 363 students had
submitted at least one assignment and 59 had submitted all assignments. This completion rate is
comparable with other MOOCs [40].

5.2 Undergraduate Class
MOOC content was used support a 10-week class titled “Data and Machine Learning for Creative
Practice” at Goldsmiths, offered in Autumn 2017 as an optional elective to final-year undergraduates.
Thirty-five students enrolled from the following degree programs: Creative Computing (11 students),
Music Computing (11), Computer Science (7), Digital Arts Computing (5), Games Programming (1).
All students had at least two years of university-level programming instruction. Math skills among
these cohorts are generally not advanced (e.g., students have been exposed to summation but many
struggle with it; none have taken a university course in linear algebra or calculus).
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The course used a “flipped-classroom” [6] format: students watched MOOC lectures indepen-
dently before coming to class, and class time was devoted to hands-on activities and discussion.
Appendix D shows how the MOOC lectures and assignments were integrated into the course. Many
of the MOOC assignments were used as in-class activities done in pairs. The autograders used for
the MOOC were integrated into Goldsmiths’ online learning environment so that students could
submit MOOC assignments for automated formative assessment. A number of additional activities
were added to the undergraduate course. For instance, in one set of activities, students designed
their own “decision trees” for choosing an ML algorithm; this is discussed further in Section 6.2.

All students independently completed a final creative project. The project brief was open-ended,
accommodating creativeML projects in any domain and built with any tools. Supplemental resources
(including web tutorials and alternative in-class activities) were created for the seven students who
expressed a strong interest in content generation with deep learning, and who self-identified as
having the technical skills necessary to install and program with TensorFlow [1].

5.3 Masters Class
A very similar class was run as an option for masters students at Goldsmiths in Spring 2018.
Twenty-eight students chose to enroll, 22 of whom were enrolled on the MA/MFA in Computational
Arts program, 3 on the “Independent Games and Playable Experience Design” MA, 2 on the MSci
in Creative Computing, and 1 on the MSci in Data Science. Programming ability varied widely;
the majority of students did not have STEM undergraduate degrees and many had only begun
to program in the previous term. However, these students generally had well-developed creative
practices, often in a professional capacity. The weekly activities and final project requirements
were nearly identical to the undergraduate class. However, three of the ten in-person sessions were
canceled due to a nation-wide academic strike. Students were advised to complete the in-class
activities for these weeks on their own or in groups outside of the university.

6 UNDERSTANDING LEARNING AND TEACHING
In this section, student work in these three classes is examined to better understand teaching
and learning in terms of the PCK components in Table 1. Section 6.1 examines a brainstorming
exercise performed by 30 MOOC students at the beginning of the course. Section 6.2 examines
an undergraduate activity (from 10 students) performed in the middle of the course. Section 6.3
examines 21 masters students’ final creative projects. Each of these sections concludes with remarks
about threats to validity and implications for future teaching and research. Quotes are attributed to
students using a “U” prefix for undergraduates and “M” for masters (e.g., “U3” is undergraduate 3).

6.1 How Do Beginners Reason About Using ML After an Introduction to the ML
Pipeline and Basic Tools?

6.1.1 Motivation, research questions, and method. The first video lecture introduces the ML
pipeline (Section 4.1), a foundational abstraction used throughout these courses. It also uses this
concept to describe the Wekinator software (i.e., as the tool for building the models, then running
the models to compute outputs from inputs), and to explain three short demos of building and
running models in Wekinator. In the MOOC, this is followed by assignment A1.1, in which students
train and run Wekinator using an example “input” program (the position of their face tracked with
a webcam, or the position of an object on screen) and an example “output” program (in which
Wekinator’s outputs influenced sound synthesis or animation). Then, in assignment A1.2, MOOC
students brainstorm three scenarios in which supervised learning could be used to make a piece of
interactive art or music, then write one-paragraph descriptions of each scenario. Students must
post these descriptions on the assignment forum to receive credit.
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This section examines a selection of these brainstorming scenario texts to explore the follow-
ing questions: How do this abstraction and the accompanying explanations support students in
identifying feasible uses for ML in new projects? Do the scenarios differ from the applications
presented in the class? (i.e., How do the abstraction and explanation support LO2 in Table 2?) What
does the brainstorming exercise reveal about learners’ conceptions and mistakes, and what are the
implications of these for the content that should be taught and for the future use of this exercise?
(These questions correspond to K1, K2, K4–K6, and G2 in Table 1).

One scenario was selected from each of 30 randomly-selected students enrolled in the first MOOC
offering. First, the author coded each scenario text as to whether it described a feasible application
of supervised learning. Second, the author used an open coding procedure [15, p. 561] to identify
properties of the scenarios that revealed unexpected or potentially problematic conceptions about
ML. One prominent pattern that emerged was that a number of students’ scenario ideas could
feasibly be built without ML. Therefore, the author then coded all feasible scenarios according to
whether ML was likely necessary, unnecessary but possibly helpful, or unnecessary and unhelpful.
Third, the author used open coding to identify properties of scenarios that might present practical
challenges should students attempt to implement them (as this could suggest a need to teach
students the additional skills required for such projects, or to manage students’ expectations).
A prominent pattern that emerged is that many scenarios would be difficult to realize without
substantial skill in feature engineering. The author therefore coded all feasible scenarios according
to whether they would likely present a feature engineering challenge to a creative computing
student without substantial signal processing expertise. Finally, a second researcher with expertise
with creative ML and signal processing reviewed the choice and application of all codes, and all
disagreements between the two researchers were resolved via discussion.

6.1.2 Findings. 27 of the 30 scenarios included a feasible application of supervised learning.
Each of the 3 exceptions appeared to stem from a different misconception about the capabilities
of supervised learning. One student assumed that supervised learning could learn by example to
compute functions such as the coherence between two oscillating signals; in reality, this would be
better implemented by explicitly programming the desired functions, since their mathematical form
is known. Another student assumed that supervised learning could generate webpage layouts that
dynamically adapt to users’ preferences; this seems better suited to formulation as a reinforcement
learning problem. A third assumed that supervised learning could be used to implement a full
natural language communication system, capable of interpreting voice commands such as “move
a little more to the right.” A fourth student identified some feasible uses of supervised learning,
but in another component of their scenario proposed that ML could be used to de-mix a complex
musical track into its constituent parts. Like natural language processing, this is a very difficult
problem whose complexity may not be apparent to students who have not studied it.
Scenarios described diverse applications that differed substantially from those presented in

the class. Scenarios included using a microbial fuel cell to drive sound synthesis, a Dali-inspired
interactive installation in which participants’ movements influence the appearance of melting
clocks, and a piece for a Catholic church in which congregants are illuminated with light patterns
based on whether they have entered confession or performed penance. Music, sound, and art figured
prominently in the scenarios; students also described ideas for health and accessible interface design.

Just 6 of the 27 feasible scenarios seemed likely to require ML: these seemed too complex to be
implemented with manually-written code (e.g., analysis of brain wave patterns, identifying mood
shifts in guitar playing). In 3 other scenarios, ML seems likely to be neither necessary nor helpful:
these tasks could be accomplished with very simple code (e.g., detecting whether a hand is touching
a sensor). In the remaining 18 scenarios, someone with sufficient technical skills (e.g., competent
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programming, understanding of sensors and/or signal processing) could likely implement a working
version by writing code. However, these scenarios were complex enough that ML seemed potentially
helpful, for instance making it easier to build a sufficiently accurate system, or making it faster to
build the system. For instance, one scenario involved building a sensor glove to control a music
system or video game using hand gestures. Such gloves have been made by professional musicians
in the past without machine learning (e.g., [68]), but the most well-known commercial musical
glove controller at present uses ML for gesture recognition [70].
14 of the 27 feasible scenarios would almost certainly present a feature engineering challenge;

these involved tasks such as tracking objects in video, detecting musical pitches in audio, or analyz-
ing EEG data. 3 other scenarios could possibly present a challenge (depending on interpretation).

6.1.3 Implications for teaching and research. The success with which students could identify
diverse and feasible applications of supervised learning lends some preliminary support to the
ML Pipeline abstraction and its use in the first lecture and activity. Analysis suggests that student
misconceptions at this stage may include attributing too much power to ML and not recognizing
the difficulty of working with certain types of data. However, nothing is known about these
students’ prior exposure to ML, and MOOC students who complete assignments may differ in their
backgrounds and aims from the many who do not [41]. Future research should therefore study other
students about which more is known, to more confidently understand how the ML pipeline and
early course content shape student reasoning, and to identify misconceptions that other students
may bring. Such work should also explore differences across students with different disciplinary
backgrounds, since the pipeline’s modular structure and notions of “inputs” and “outputs” are likely
to be more familiar to students with prior computer science study.
It is perhaps not surprising that so many students proposed scenarios that did not require ML.

Students at this stage are unlikely to have a precise idea of what ML is capable of, but they may have
learned through experience about creative systems that are difficult to build using programming.
The question of how to interpret students’ use of ML in real projects for which ML is not necessary
is explored in Section 6.3.3.
It seems reasonable that students who have not worked extensively with media or sensor data

may lack good intuition about what information can be easily extracted from the raw data without
ML, what information can be extracted by applying ML to the raw data, and what information is
best extracted by applying ML to higher-level features computed on the raw data. For instance, the
concept of pitch may seem simple to a human musician, but using the algorithms here to build
a pitch detector requires first extracting features such as FFT from the raw audio. The number
of scenarios presenting feature engineering challenges supports the argument (Section 4.3) that
creative practitioners will benefit from feature engineering instruction, and from tools like the
media-specific feature extractors produced for these courses. However, many student scenarios
would still require more specialized domain knowledge and/or substantial experimentation to find
good features, and it is hard to see how a general course in creative ML (rather than one specifically
devoted to audio or video, for instance) could better meet the needs of these students. Future
creative ML teaching would benefit from teaching students when and how they might exploit deep
learning algorithms capable of learning good models directly from raw data (e.g., image pixels or
audio samples) [44, 71]. However, for modeling problems where large datasets are not available
for applying deep learning, manual feature engineering may continue to present challenges for
creators and for teaching.
As an informal assessment, the scenario brainstorming reveals a great deal about students’

proficiency using the ML Pipeline to generate new ideas, and about possible application areas of
interest to students. However, reading and interpreting the rich scenario prose was painstaking. A
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Fig. 7. Algorithm decision tree by student U7, digitally transcribed for readability.

lighter-weight, easier-to-evaluate version of this assessment was therefore developed for future
students, in which students explicitly list (1) the input data they imagine using; (2) what they
imagine the model function will do; and (3) how the model outputs will be used.

6.2 What Can We Learn About Student Reasoning from “Algorithm Decision Trees”?
6.2.1 Motivation, research questions, and method. In week 3, Goldsmiths undergraduates were

asked to do the following exercise independently: “Draw a decision tree (i.e., a flow-chart) for
choosing a supervised learning algorithm for a new creative application. This chart should show
someone how to decide which algorithm to use (of those seen so far). That is, the leaves at the
bottom of the tree should correspond to one of the above algorithms (or possibly ‘use something
else’ if none of these algorithms are appropriate).” Students collaboratively revised this decision
tree in class, then updated it again in week 5 after additional algorithms were introduced. Ten
students (1 female) chose to submit their final decision tree for a grade (students could choose any
four in-class activities to submit). A fairly typical submission appears in Figure 7.

The ten trees were examined to answer the following questions: Do the trees present a reasonable
and actionable plan for choosing an algorithm based on properties of the algorithms and learning
problem (i.e., LO3 Table 2)? What do the trees reveal about student learning and misconceptions?
What are the implications of these for the content that should be taught, and for the future use of
this exercise? (These questions correspond to K3, K6, G2, and K5 in Table 1.)
Due to the number of nodes and leaves, it was infeasible to examine the reasonableness and

actionability of each full decision path. Analysis of the trees therefore proceeded as follows: First,
the author examined all 96 leaves and assessed whether the immediately preceding node led to
that leaf using a decision that was reasonable, not reasonable, or possibly reasonable. (For instance,
in Figure 7, it is reasonable to choose Naive Bayes if one answers “YES!” to “Would you like
probabilities?”) Second, the author applied an open coding scheme to all 110 decision nodes (at
all levels of all trees), coding for the types of decisions employed within them. Third, the author
coded each of these nodes according to whether it was actionable—that is, employing a question
that could be answered using information about algorithms and the learning problem that might
reasonably be available. A second researcher with ML expertise reviewed the choice and application
of all codes, and all disagreements between the two researchers were resolved via discussion.

6.2.2 Findings. 66 of the 96 leaf-level decisions were coded as reasonable, 19 possibly reasonable,
and 11 not reasonable. The majority of final decisions were reasonable in all but one tree.
As Table 3 shows, students drew on a wide variety of properties of the algorithms, features,

data, and higher-level user goals to reason about choosing an algorithm. 9 of the 110 nodes were
nonsensical or insufficiently clear to code (e.g., “Are multiple inputs combining 1 output?” [U3]).
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Code description # Code description #
Related explicitly to type of output data (e.g., labels vs.
numeric values)

21 Explicitly mentions probability as being
needed/relevant

7

Explicitly about classifier decision boundary shape 10 Explicitly about regression line shape 9
Otherwise related to complexity/capacity of algorithm 16 Related explicitly to noise or outliers 15
Related to properties of features (e.g., no. of features) 5 Explicitly related to dataset size 5
Explicitly about unbalanced training data 2 Explicitly about training or running speed 6
About some other practical requirement or preference
(e.g., computing power)

13 Essentially about the algorithm strategy, rather
than some property of the data or problem

25

Something else 1
Table 3. Open codes applied to the types of decisions employed in every student decision tree node, and the
count of nodes matching each one. Some nodes matched more than one code.

Otherwise, most of the properties captured in Table 3 can be helpful for informing algorithm choice
in at least some contexts.
40 of the 110 decision nodes did not seem to be actionable without additional information

obtained by experimentally evaluating algorithm performance. The majority of these were the
25 nodes coded in Table 3 as describing characteristics of algorithm strategy. Examples include
“Would you like to classify by boundary or by nearest data point?” (U5), “Should classes be chosen
by probability?” (U4), “Will it use if/else statements?” (U3). One might occasionally have an a
priori reason for choosing a particular algorithmic strategy (e.g., selecting an algorithm that “uses
if/else statements” so the trained model function can be interpreted by a human). But in most cases,
one simply prefers the algorithm that provides the best model (e.g., has the best generalization
accuracy), and it is unknown in advance what type of algorithm strategy will provide that. Instead,
experimental comparison of algorithms is necessary.

6.2.3 Implications for teaching and research. Overall, this analysis suggests these students can
correctly identify a variety of relevant properties of algorithms, but they may struggle to apply
this knowledge to synthesize an actionable plan for choosing an algorithm in practice. This is
not at all surprising; even ML experts rely on extensive experimentation rather than their ML
knowledge alone to choose an algorithm for a new problem [56]. It is interesting that students did
not simply insert decisions based on experimentation into their trees, and instead listed correct
but unhelpful facts about algorithm strategy. It could be that they felt pressure to show that they
had some relevant knowledge, even if it was insufficient to make all decisions. But in several class
discussions with both undergraduate and masters students, it appeared that students were troubled
that they could not deduce precisely which algorithm was the “right” one based on properties of
the problem domain, and they often expressed bewilderment at statements that even experts might
not know the “right” algorithm for a problem without experimentation.

The following changes are therefore planned for future teaching: (1) The importance of experi-
mental comparison of different algorithms will be emphasized more strongly in lectures and lab
exercises, so that students see this as a matter of good practice rather than a “failure” to sufficiently
understand the algorithms. (2) The algorithm decision tree exercise will be revised to explicitly
encourage students to choose nodes that describe decisions about the problem that they are likely
to be able to answer (rather than decisions about algorithm strategy), and to encourage them to
incorporate experimental comparison into their trees where necessary.

As an informal assessment activity, evaluation of the decision trees is time-consuming. A more
constrained version of the activity could be created in which students choose decision nodes from
a pre-defined set; this could employ paper cards to support collaborative construction of trees, or a
software version could enable automatic assessment of correctness for each leaf. Such an automated
version could be used to efficiently study reasoning and misconceptions by different and larger
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cohorts (particularly important since only 10 undergraduates were studied here), and to understand
how specific lab and lecture activities lead to changes in reasoning.

6.3 How Did Masters Students Use ML in Creative Projects?
6.3.1 Motivation, research questions, and method. Masters students had to complete an indepen-

dent creative final project, which could use any technologies and and any type of machine learning
and/or data analysis. Students submitted a written project report and all project files (e.g., source
code, Wekinator projects). Of the 26 masters students who finished the course, 21 used supervised
learning in their final project (2 were female; 19 of the 21 were Computational Arts students and 2
were Indie Games students). 4 other students used generative methods and 1 did not use ML. This
section examines project work by these 21 students to investigate the following questions: How and
why did these students use ML? What challenges did they encounter? What are the implications of
these for future teaching and research? This section thus addresses G1, G2, K3, and K6 in Table 1.
Each project report was therefore examined to identify sections that related to the following

questions: What were students’ motivations and criteria for success? What was the role of ML in
the project? What technologies were used? What challenges did students report, and how did they
navigate them? How successful did they feel they were, and what would they do if they had more
time? Project files were examined to identify the algorithms and features used, and to view the
history of training example creation and modification within Wekinator. The author also looked for
cases in which students could have made better choices about aspects of the ML implementation
(e.g., cases when choosing different features would have better satisfied their goals).

Sections 6.3.3–6.3.5 discuss some of the themes emerging from this data. First, though, Section
6.3.2 describes three projects in detail, illustrating some of the nuanced thinking and working
exhibited by these students and providing exemplars to ground the subsequent discussion.

6.3.2 Three exemplar projects. Student M9 used a Leap Motion to create a hand gesture
controller for a modular synthesiser. His goal was to improve audience experience for “semi-
improvisational generative ambient music”: “[s]eeing a performer physically interact with whatever
is generating or modulating sounds in real time would add a much more engaging dimension to
any performance.” At the beginning of the project, he envisioned using hand height and tilt as well
as finer-grained finger movements to control sound. He had originally intended to use DTW, but
after experimentation he chose regression: “I found that more interesting and usable results came
from having fluctuating smooth [control signals], as opposed to the yes/no messages of DTW and
the stepped numbered outputs from classification.” The ML component ended up being quite simple
in the final version: one neural network used all five fingertip (x ,y,z) cordinates to predict hand
height, and another used these same features to predict hand tilt. The main challenge he described
was deciding how to translate Wekinator outputs into synthesiser controls; ultimately, he wrote his
own software to smooth and scale Wekinator outputs, and to route individual Wekinator models
onto control over multiple synthesizer parameters. M9 stated “Overall, I am very happy with how
the project ultimately came together. It has given me a new interest in creating interesting ways to
interact with synthesizers, particularly in ways that not only make the instrument more expressive,
but make performing with it more engaging to the [audience].”

Student M16 used a webcam to create a “digital stress ball,” in which an on-screen 3D shape
distorts to reflect the level of stress detected in the user’s face. Inspiration for the piece came from
the “stress and frustration” he experienced in learning to code earlier that year. His intention was
“to make a piece of software that was intuitive to use, where the interaction could feel physical and
instinctive.” He initially explored Leap Motion and Kinect to sense hand manipulations of a virtual
stress ball, but he ultimately chose a webcam as he was “keen to build a system that encouraged use
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by anyone” without special hardware. He built three neural networks for regression, all of which
used 132 facial key points (from one of the example feature extractors) as inputs. One estimated the
amount of stress or distortion of the face, one the degree of tilt of the face, and one the degree of
rotation (looking left or right). M16 reported providing many training examples containing subtle
variations of his face, to “give a broader range of stressed faces for the algorithm to learn from.”
He experimented with linear regression but found the results from neural networks to be more
“intuitive” with “less perceived error when using the program.” The main challenge he described was
the presence of jitter in the model outputs, which led to “choppy” visual behaviors; he addressed
this by using the InputHelper to smooth Wekinator outputs before sending them to the animation.
Ultimately, he wrote that “While it’s clear the algorithm is not 100% accurate, the model has learned
the basics of recognizing the user’s facial gesture patterns and is able to accurately translate these
into readable values for the [animation]. His stated that the project “does somewhat achieve my
original design goals and creative aims,” though he noted that the animation “is not as clean and
smooth as could be.”
In M21’s project, the motion of a hand-held smartphone influences an on-screen 3D particle

system of flocking spheres, which can be paused at any time and sent to Blender [7] for 3D printing.
A painter by training, M21 wanted to create “a tool driven by the affordances of moving your
whole body through space.” She desired a tool that was “playful and influenced by randomness
and chance. I wanted to be surprised by the tool rather than have full control of it, creating some
mappings that I could intuit rather than consciously break down into component parts while I was
using it.” She initially experimented with DTW but was unhappy with the level of accuracy that
could be obtained; she also experimented with other inputs (including a webcam and iPad) before
settling on the phone (e.g., finding that moving an iPad in the air felt “precarious”). She “found that
regression made for more intuitive spatial mappings” by “mapping physical space to the simulated
3D space.” Yet through experimentation, she found that “creating too ‘tight’ a mapping between
real-world acceleration and simulated [particle] velocity made for boring and uninteresting results.
It was the tying of real-world spatial motion to the flocking behavior and probability of [particle]
attraction that finally pushed the tool into a playful and interesting space.” She ultimately used
20 phone motion and touch features, extracted with a third-party app [45]. She crafted 4 linear
regression models to each provide simple and predictable controls from one sensor dimension to
one control dimension (e.g., the phone z-axis controlled the flocking algorithm sensitivity). She
also used 4 polynomial regression models to implement a “many-to-many” mapping where several
input features influenced a group of simulation parameters in a more complex way. M21 wrote
that “I found myself spending a lot of time playing and exporting the results, which is a good sign
for me... I did question whether I needed machine learning for this particular project, especially
on some of the one-to-one mappings, however it did make working with the accelerometer and
rotational velocity much easier.”

6.3.3 How and why students used ML. All 21 projects used ML to implement a real-time system
that responded to actions or states of people or the environment. 5 students used ML to accurately
model real-world categories or phenomena: this includes M16 above, as well as projects identifying
common hand gestures (e.g., “thumbs-up”), modeling the relationship between a pop song’s structure
and popularity, and (cheekily) classifying whether an image is “art.” The 16 other students used ML
to model actions or concepts that they defined themselves. For instance, like M9 and M21 above,
a number of projects reacted to gestures that were not part of any cultural vocabulary and that
lacked intrinsic meaning. Others among these 16 used ML to map from data in one domain to
another for artistic rendering; this includes turning real-time weather data from a chosen city into
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an abstract visualization, and turning the motions of a painter’s hand into an abstract sonification
of the painting process.
Two projects used RAPID-MIX [4] (a C++ library); all others used Wekinator. Students used a

variety of algorithms, and several used multiple algorithms simultaneously. 14 projects ultimately
used regression (4 linear regression, 3 polynomial, 11 neural network). 8 used classification (6
kNN, 3 AdaBoost, 1 decision tree). 1 used DTW. 6 students (including M16) used example feature
extractors from the course as-is or with slight modifications, 4 used third-party apps, and 9 wrote
their own (often using existing, high-level APIs for specific sensors, such as Leap Motion).
All 5 students modeling real-world phenomena mentioned model accuracy as being important.

Additionally, accuracy appeared to be relevant to at least 9 of the 16 students modeling self-defined
concepts. For instance, one student (M11) created a virtual “I-Ching Divination” system that must
classify which of three types of throwing motions a user has made above a Leap Motion, in order
to choose which divination symbols to display. Yet all students’ reports revealed that they were
attempting to make models that satisfied goals in addition to (or other than) accuracy: these included
providing “intuitive” (M10, M16, M21) or “fluid” (M16, M24) control, ensuring that relationships
between input and output domains were perceptible to performers or audience (M4, M6, M8, M18,
M25), and satisfying other aesthetic criteria (e.g., M16’s desire for animation smoothness and M21’s
desire for playfulness).
ML did not appear to be necessary in all projects. For a handful of projects such as M9’s, the

final project behavior could arguably be implemented more accurately by explicitly programming
model functions. One student first drew a paper sketch of the decision boundaries he wanted
in a 2D feature space, then carefully hand-crafted examples to build this classifier, even though
these boundaries would have been easy to implement using if-statements. At least two others used
regression to simply re-scale one-dimensional data; this can be accomplished with a single function
call in many creative coding languages, such as map() in Processing.

6.3.4 Self-reported challenges. All students had been asked to describe the challenges they
encountered in their final report. Very frequently, students described challenges inherent to any
creative project, especially—like M9, M16, and M21—deciding what precise form their projects
should take in order to reach their high-level design goals (e.g., to make something that felt intuitive
or engaging). Additionally, nine mentioned specific challenges related to obtaining or processing
inputs; these included choosing features for noisy sensors, and choosing which input device to
use. Five mentioned challenges deciding how to process and use model outputs, including deciding
whether to apply post-processing (like M16), and simply determining how to write programs that
used outputs in an interesting way. Four students (including M16, M21, and the pop song student)
explicitly reported improving the accuracy of their ML model(s) to be a challenge.

6.3.5 Other observed challenges. Simple feature selection and engineering approaches would
have likely improved accuracy (or required fewer training examples) for some students. For in-
stance, using z-axis (height) coordinates of fingers, relative to the palm, would have made M9’s tilt
model more accurate (compared to using absolute x-, y-, and z-coordinates), and M16 would have
benefited from using facial key-point positions relative to the centre of the face (rather than their
absolute position). Students had seen these techniques in lecture and could implement themwithout
programming using the InputHelper. It is unclear whether students were not yet comfortable with
these techniques, or whether they perceived changing the features as offering too little practical
payoff for the amount of extra work required. (Notably, when a Wekinator user opts to change the
features used, a new project must be created with new examples, as there is no way to efficiently
re-compute features for training examples already recorded.)
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Making different choices about the number of models and the precise problem each one was
used to solve could also have benefited some students. One such student made a Max/MSP voice
harmonizer in which the computer responds to a new sung pitch by a playing a complementary
three-note chord. It would have likely been straightforward to implement this using a single
classifier, with one class per sung pitch, whose output is used by Max/MSP to select which chord to
play. Instead, the student used twelve binary classifiers, each of which was responsible for turning
one possible chord pitch on or off. Changing the chord choice for a single pitch therefore required
retraining of several classifiers. Also, because each classifier was typically trained to be ‘on’ for
a number of sung pitches, re-training a classifier to produce a different output for a given sung
pitch could inadvertently introduce false negative or false positive errors for that classifier when
applied to other sung pitches. Structuring projects like this more successfully requires pairing ML
knowledge with skill in decomposing a complex implementation project into smaller components—a
skill more commonly associated with software engineering than with ML.

6.3.6 Implications for teaching and research. The above analysis provides some insight into into
the types of creative work that learning ML can facilitate, and into the ways of using ML that were
supported by this curriculum and toolset. Feature engineering and project structuring emerged
as challenges that could be addressed with changes to the curriculum. For instance, a lab activity
could ask students to sketch out structures for example hypothetical projects on paper, without
implementing anything (and therefore being less influenced by what is easy or hard in a given
ML tool). This finding has also motivated changes to tools: a new fork of Wekinator is currently
being implemented to make it easier for students to visualize and change features without using
InputHelper, starting a new project, or re-recording the training examples.

It is unclear why some students used ML in projects that could have been implemented without
ML. Did these students not fully grasp the potential of ML to make new types of projects? Was
it not relevant to their goals? Or, did using ML still provide some value to them—for instance,
by making work with sensors and other data sources more tractable for students who were not
advanced programmers (as reported by M21)? Or by making it easier to prototype a wider range of
designs than could have been efficiently explored using programming? Tracking students’ work
beyond the course should help to understand the reasons for this phenomenon. For instance, do
students continue to use ML when it is no longer required? Do they stop using ML—or change how
they use it—as their programming skills improve?
Although only four students reported challenges in building an accurate model, one cannot

conclude that this is because the other students were capable of making ML do everything they
wanted. When changing training data through IML fails to improve a model that is not doing what
a student wants, they are faced with many options. One option is to reformulate the ML component
of the system: reasoning about ML algorithms, features, and data to identify ways to improve the
model (i.e., LO7 in Table 2). But students may also reformulate other aspects of the design, such
as changing the input device or data source, or changing the type of gestures or actions used for
control. For students not committed a priori to modeling a specific phenomenon, changing these
other aspects of design might offer a faster and more predictable improvement than spending time
debugging an ML model through changes to its feature representation or algorithm. Indeed, most
students—like those in Section 6.3.2—changed many aspects of their design over time in response to
a number of factors, including finding that they were dissatisfied with the current implementation.
These observations carry two implications for teaching: First, the fact that students can creatively
“work around” ML failures implies that activities other than the final project are needed to assess
students’ achievement of the learning objectives in Table 2. Second, given that many students still
cared about model accuracy, activities that help support students’ skills in reformulating ML are
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still likely to be useful. As students find it easier to build and reformulate models to satisfy their
goals, they may avoid unnecessary and unwanted reformulations of other aspects of their design.

7 DISCUSSION
7.1 Improving Understanding of Creative ML Teaching and Learning
The brief analyses in Section 6 have improved understanding of learner experiences in ways that
have driven a number of changes to teaching, as discussed above. Yet there is much more to do. Each
analysis considered a small number of students from a single cohort, and especially little is known
about the backgrounds of students in the MOOC. Repeating analyses with different cohorts—and
examining how student experiences and outcomes differ across cohorts—will be valuable.
Further, Section 4 has presented a number of strategies and tools for teaching creative ML.

Evaluation of more of these strategies and tools is now necessary in order to discover whether
they are functioning as intended. Crucially, the proposed approaches to explaining algorithms and
supporting experiential learning without requiring math and programming rely heavily on 2D
visual representations of learning algorithms and models. It has been assumed that the proposed
explanations and activities enable students to reason effectively about learning algorithms in two
dimensions—e.g., about the types of decision boundaries an algorithm will make, how it will be
affected by noise or outliers, how properties of the learning problem may make one algorithm
a better choice than another. It has also been assumed that students’ ability to reason in two
dimensions will be sufficient to enable them to do practical work higher dimensions without too
many problems. If these assumptions are true, such approaches to teaching ML could be useful to
other populations of students, as well.

It is therefore important to test these assumptions and discover where they break down. Exami-
nation of student lab activities from these courses is a possible first step. For instance, assignment
A4 (Figure 5) asks students to write a short reflection following the creation of decision boundaries
in the Classification Explorer (e.g., noting how sensitive each algorithm is to outliers in the training
data, and observing how the model changes as they add more examples). It then asks students to
experiment with multiple classification algorithms while building a “classification system you find
useful and/or interesting,” then to answer some reflective questions about this process (e.g., about
the biggest challenge they encountered, and about the advice they would give to another student
doing this task). Together, this data should provide some insight into whether working with the
Classifier Explorer seemed to help students reason effectively in two dimensions, and into how
their reasoning changed when working on an open-ended task in higher dimensions.

Having more scalable ways of evaluating student reasoning would also be valuable to test such
assumptions for larger cohorts. For instance, a software version of the “algorithm decision tree”
exercise (Section 6.2) could be used to identify common misconceptions, as could simple quizzes.
Efficient and validated instruments for assessing students’ progress towards mastery of the learning
objectives will also enable monitoring how student reasoning evolves in response to different
course activities, and how it differs across cohorts.

7.2 Developing an Understanding of PCK for ML
Ko’s call for developing an understanding of PCK for ML was influential in motivating this research,
and the components of ML PCK that he enumerates have provided a useful structure for framing
the contributions of this paper. This paper has proposed a number of representations, analogies,
examples, and explanations of ML, as well as methods of informally assessing knowledge of ML
concepts. The analyses in Section 6 have informed a better understanding of how these support
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and reveal student learning, and they have uncovered some of learners’ conceptions, mistakes, and
challenges.
Yet Ko’s list does not include consideration of “why” or “what” to teach—two components of

Grossman’s [32] formulation of PCK. As Section 2.3 argues, it was important to consider these
components as well when motivating, structuring, and beginning to evaluate a curriculum for
creative ML, in which the rationale for teaching is so different from more conventional ML teaching.
However, I would argue that the questions of “why” and “what” to teach are also important
components to consider for ML teaching to other cohorts, including to computer science students.
Why should computer science students learn ML? To become ML researchers? To prepare them
for jobs that require making accurate models of data? To develop an aesthetic appreciation for
a fascinating family of algorithms? Different ML classes taught to different cohorts are likely to
entail different answers. The question of what to teach is contingent on these, and also deserving of
explicit consideration. For instance, like creative ML students, computer science ML students may
benefit from instruction on topics beyond ML itself. This can include instruction on techniques for
data processing and visualization, or managing ML at scale using GPUs or distributed computing.
This paper has also considered some aspects of how to teach ML that are not well captured

by the above components. Most notably, the technology chosen and developed for these courses
strongly influenced the ways that concepts were represented and explained in lectures, demos, and
lab activities, as well as the scope of lab and project work that could be supported. For instance,
Wekinator was chosen in part because it supports IML workflows and experimentation by students
who lack strong programming skills. The Classification and Regression Explorer programs were
designed to build fluency in reasoning about algorithms in two dimensions, and about how IML
approaches can modify models. The example feature extractors were created to enable student
experimentation and project work using a wide variety of sensors and input devices. Affordances of
these technologies also encouraged certain ways of working at the expense of others. For example,
Wekinator encourages creation of real-time projects, it discourages frequent changing of features,
and it cannot be used to run ML projects on mobile devices or the web.
The concept of “technological pedagogical content knowledge” (TPCK) is therefore relevant:

Mishra et al. describe TPCK as “the basis of good teaching with technology”; it “requires an
understanding of the representations of concepts using technologies; pedagogical techniques that
use technologies in constructive ways to teach content; knowledge of what makes concepts difficult
or easy to learn and how technology can help redress some of the problems that students face.” [50,
p. 1029]. These concepts are relevant not only to the structuring and evaluation of the curriculum
described here, but to other ML courses as well, where the choice of tools (e.g., ML programming
libraries, scaffolding examples created by educators) will also strongly impact how and what
students learn. I therefore argue that any conception of PCK for ML should also consider how
technology intersects with each of the components in Table 1.

8 CONCLUSIONS
This article has argued for the importance and feasibility of teaching ML to creative practitioners. It
has proposed a set of learning objectives and a set of strategies for the effective teaching of creative
ML, and it has described how these have been applied within three courses (among the first in
the world to address this subject in depth). Inaugural analysis of data from these courses have
been used to inform a deeper understanding of why, what, and how to teach creative practitioners
about ML. This work provides a number of practical resources—including syllabi, activities, and
open-source learning technologies—that can be adopted and adapted by others. It also contributes
to a nascent body of research on ML education, helping to deepen understanding of how ML may
be taught, and to whom.
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A ADDITIONAL EXAMPLES OF VISUAL ILLUSTRATIONS
Stills from additional animations used to illustrate algorithms appear below. Clockwise, from top
left: AdaBoost, support vector machines, dynamic time warping, decision trees.

B REGRESSION EXPLORER
The Regression Explorer interface allows users to create new training data by clicking on screen
(left) and to evaluate the trained model by clicking to add test points or by automatically generating
many test points to illustrate the regression line (right). Here, linear regression is used.
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C MOOC COURSE SYLLABUS
The syllabus for the seven-session MOOC appears below:

MOOC Lectures (L) and Assignments (A) with Learning Objectives (LO)
Assignment marking approach listed as: auto-graded logs (AG), forum participation (F), peer feedback (P)

L1: Introduction (LO1, LO2, LO5)
Course overview. ML Pipeline. Wekinator. Using OSC to pass data to/from Wekinator.
A1: Getting Started with ML (LO1, LO2, LO4, LO5)
A1.1: Follow detailed instructions to train and run a very simple ML system using Wekinator with online
examples for input (e.g., webcam) and output (e.g., sound or animation). (AG)
A1.2: Brainstorm 3 possible creative ML projects and describe on the forum. (F)
L2: Classification, Part 1 (LO1, LO2, LO3, LO4, LO8)
What is classification? Nearest-neighbor and Decision Stump algorithms. Artistic applications of classification.
What are features? Description and demo of a musical piece using classification.
A2: Creating Classifiers (LO1, LO2, LO3, LO4, LO5, LO6, LO7)
A2.1: Engage in free-form experimentation with Classification Explorer, observing how decision boundaries
change with different training sets and algorithms. (AG)
A2.2: Generate training sets to re-create specific decision boundaries in Classification Explorer using kNN and
Decision Stumps. (AG)
A2.3: Use Wekinator and a real-time input of your choice to create an accurately controllable classifier, then
demonstrate yourself using it to produce a specific sequence of class outputs. (AG)
A2.4: Post a question, insight, or other contribution to the forum. (F)
L3: Regression (LO1, LO2, LO3, LO4, LO8)
What is regression? Linear and polynomial regression. What makes a “good” regression model? Intro to neural
networks. Using regression to create “mappings” for new expressive controllers. Description and demo of
a musical instrument that uses regression for mapping. Practical tips for using regression with Wekinator.
Optional additional content: Training as solving an optimisation problem; overview of neural networks training
procedure.
A3: Regression (LO1, LO2, LO3, LO4, LO5, LO6, LO7)
A3.1: Engage in free-form experimentation with Regression Explorer, observing how regression lines change
with different training sets and algorithms. (AG)
A3.2: Generate data points to re-create specific regression lines using Regression Explorer with linear and
polynomial regression. (AG)
A3.3: Use Wekinator and a real-time input of your choice to create an accurately controllable regression model,
then demonstrate yourself using it to produce a specific sequence of regression outputs. (AG)
A3.4: Post a question, insight, or other contribution to the forum. (F)
L4: Classification, Part 2 (LO1, LO2, LO3, LO4, LO6, LO7)
What is a “good” classifier? Reasoning about feature spaces. Naive Bayes. Decision stumps and decision
trees. AdaBoost. SVMs. Evaluating classifiers using training accuracy, cross-validation. Using probability
distributions over classes (why it can be useful, how to do it in Wekinator). Using more than one classifier at
once in a project (why this can be useful, how to do it in Wekinator).
A4: More Classification Fun (LO1, LO2, LO3, LO4, LO5, LO6, LO7) (See Figure 5)
A4.1: Generate data points to re-create specific classification boundaries using Classification Explorer with
kNN, Decision Trees, AdaBoost, and SVM. (AG)
A4.2: Use Wekinator and any real-time input of your choice to “build a classification system that you find
useful and/or interesting.” Spend at least 30 minutes experimenting, then answer some reflective questions
(e.g., “What was the biggest challenge you encountered?” “How successful were you in building a classifier
that worked the way you wanted?” “If you were to give advice to another student trying to build a similar
system, what advice would you give?” (AG)
A4.3: Post a question, insight, the answers to your reflective questions, or other contribution to the forum. (F)
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L5: Sensors and Features: Generating Useful Inputs for ML (LO1, LO2, LO3, LO7)
Simple features. Basic feature engineering principles and strategies (e.g., normalising, smoothing, segmen-
tation). Common audio and video analysis features. Demos of feature engineering using Input Helper for
projects using audio and sensor inputs.
A5: Creating Your Own Feature Extractor (LO1, LO2, LO3, LO4, LO5, LO6, LO7)
A5.1: Choose one of the following:
Option A: Implement a useful feature extractor in the environment of your choosing, then post it to the forum
with instructions on how to run it. (AG, F)
Option B: Use Input Helper to create a useful modification of features from one of the input examples, then
post your Input Helper project to the forum with instructions on how to run it (AG, F)
A5.2: Choose 3 other students’ feature extractors from A.5.1 and write each of them 150 words of constructive
feedback. (P)
L6: Working with Time (LO1, LO2, LO3, LO4, LO6, LO7, LO8)
Using features that encode change over time. Dynamic time warping [53]. Hidden Markov Models. Gesture
Follower [5] and Gesture Variation Follower (GVF) [13]. Demo using GVF to design sonic interactions.
Designing custom algorithms for music.
A6: Dynamic Time Warping (LO1, LO2, LO3, LO4, LO5, LO6, LO7)
A6.1: Train DTW Explorer to distinguish between 4 shapes drawn with mouse (AG)
A6.2: Build a DTW system that “you find useful and/or interesting.” Answer questions similar to A4.2. (AG)
L7: Developing a Practice with ML; Wrap-up (LO1, LO2, LO8)
Overview of other topics (unsupervised learning, computational creativity, deep learning). How is ML in the
arts different from more conventional domains? Guest lecture by well-known composer discussing how and
why she uses ML in projects (e.g., how she structures projects, how she goes about training models, what
advantages ML brings to her work).
A7: Final Creative Project (LO1–LO8)
A7.1: Make a creative project with Wekinator. Answer some reflective questions about it. Write instructions
so that someone else (who has the required hardware/software) could run your project. Optionally create a
demo video. (AG)
A7.2: Provide constructive written feedback on at least 3 other students’ final projects. (P)
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D UNDERGRADUATE COURSE SYLLABUS
The undergraduate syllabus makes use of lectures (L) and assignments (A) from the MOOC (Appen-
dix C). The undergraduate syllabus also includes some content about deep learning and generative
methods (Weeks 5, 7, 8) that is not discussed in this article.

Before-Class (BC) and In-Class (IC) Learning Activities in Undergraduate Course
with learning objectives (LO) listed for activities not included in the MOOC

Week
1. BC: Watch L1

IC: A1.1 (in pairs), brainstorm creative applications of supervised learning in small groups (LO1, LO2)
2. BC: Watch L2

IC: A2.1, A2.2, A2.3 (in pairs)
3. BC: Watch L3

IC: A3.1, A3.2, A3.3 (in pairs). Draw “algorithm decision tree” (Section 6.2) individually, then discuss in
small groups (LO3). Additional creative project brainstorming in small groups (LO2).

4. BC: Watch L4
IC: A4.1, A4.2 (in pairs). In small groups, come up with 1-sentence descriptions of each learning
algorithm studied so far (LO3).

5. BC: Update “algorithm decision tree” (LO3). Watch very short video about creative deep learning.
IC: Small group discussion and refinement of algorithm decision tree (LO3). Work in groups to experi-
ment with sensors: acquiring and plotting data from Arduino, Leap Motion, WiiMotes (LO2, LO3, LO5).
Optionally discuss advanced topics with staff (biosignals, deep learning).

6. BC: Watch L5
IC: Work in small groups to use Input Helper and a data visualizer to explore feature engineering for
sensors and game controllers, then answer reflective questions about features; build an end-to-end
system with sensors or controller (LO2, LO3, LO4, LO5, LO7).

7. BC: Watch L6, and optionally an online lecture about creative deep learning
IC: A6.1, A6.2 (in pairs)

8. BC: Option 1: Install TensorFlow. Option 2: Read through web tutorials on Markov generation.
IC: Option 1: Experimentation in pairs with TensorFlow for image generation. Option 2: Experimenta-
tion in pairs with web-based content generation tools (no programming).

9. BC: L7; Find an existing creative project that uses ML that you find inspiring, and post it to the forum
(LO8).
IC: Small group discussion of inspiring projects (LO8). Peer feedback on final project ideas (LO2).

10. BC: Work on final project.
IC: Work on final project in class.
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