
Deep Meditations:
Controlled navigation of latent space

Memo Akten (m.akten@gold.ac.uk)1, Rebecca Fiebrink (r.fiebrink@gold.ac.uk)1, and
Mick Grierson (m.grierson@arts.ac.uk)2

1Department of Computing, Goldsmiths University of London
2Creative Computing Institute, University of the Arts, London

Abstract

We introduce a method which allows users to creatively explore and navigate the
vast latent spaces of deep generative models. Specifically, our method enables users
to discover and design trajectories in these high dimensional spaces, to construct
stories, and produce time-based media such as videos—with meaningful control
over narrative. Our goal is to encourage and aid the use of deep generative models
as a medium for creative expression and story telling with meaningful human con-
trol. Our method is analogous to traditional video production pipelines in that we
use a conventional non-linear video editor with proxy clips, and conform with arrays
of latent space vectors. Examples can be seen at http://deepmeditations.ai.

1 Introduction

In recent years we have seen major progress in the capability of generative deep neural networks that
are able to train on vast datasets and produce high resolution images. The goal of these generative
models is to learn the distribution of the training data such that we can sample from the distribution
to generate new images. We refer to this distribution as the latent space of the model, where any
point in this space can be decoded to a unique image. We denote vectors in this space with z.

Depending on our goals, there are different ways in which we could explore such a space. We could
use a fully automated search whereby points of interest are found algorithmically based on heuristics,
such as novelty [1]. Alternatively, we could provide a target image and retrieve a corresponding
z. Some architectures—e.g. Variational Auto-Encoders (VAE) [2] or Glow [3]—have an encoder
which does this, while other architectures—e.g. Generative Adversarial Networks (GAN) [4]—do
not. However it is still possible either by manually adding an encoder—e.g. VAE/GAN [5], or using
gradient based optimization techniques to recover a corresponding vector [6]. Other methods for
exploring latent spaces include systematic visualizations of interpolations between key points [7].

Our paper is not an attempt to replace any of these methods for discovering interesting points in
latent space. Rather, we can incorporate them into our process to enable users to discover and design
interesting trajectories in latent space, to produce sequences with meaningful control over narrative.

We face a number of challenges: i) Latent spaces are vast and high dimensional (e.g. 512); ii) They are
not distributed ‘evenly’ or as one might expect or desire. If we were to sample uniformly across the
space, we might end up with many more images of one type over another (e.g. in our model, flowers
occupy a large portion of the space); iii) As a result, interpolating from zA to zB at a constant speed
might result in visually variable speeds in movement; iv) It is very difficult to anticipate trajectories
in high dimensions. E.g. interpolating from zA to zB might pass through zX and zY , which may be
undesirable; v) the mass of the distribution is concentrated in the shell of a hypersphere; and vi) The
latent space changes with subsequent training iterations. We discuss these in more detail below.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

http://deepmeditations.ai


2 Method

Overview: It is common practice in video editing and post-production pipelines to perform an
offline edit on a set of proxy clips (e.g. low quality video), and later conform the edit by applying it to
online material (e.g. high quality video). The conforming process is usually performed by transferring
the edit to an online system using a file such as an Edit Decision List (EDL) which contains reel and
timecode information as to where each video clip can be found in order to perform the final cut.

Our method is similar. Our offline clips are the video outputs from a generative model for given
z-sequences. Our online clips are numpy arrays of corresponding z-sequences. In other words, we
define (z-sequence, video) pairs. A z-sequence is a numpy array (saved to disk) containing a sequence
of z-vectors, i.e. a trajectory in latent space. A video is a QuickTime file where each frame is the
image output from the model decoding the corresponding z from the corresponding z-sequence. We
edit videos in a Non Linear Video Editor (NLE), and then run a custom script to conform the edit
with the corresponding z-sequences. The resulting conformed z-sequence then goes into our model
for final output. We perform the edit on keyframes, temporally sparse points in latent space, so that
after the conform, we can interpolate between them for smooth, continuous output.

Process: Below we outline an example process in more detail. This is merely a suggestion, as many
different workflows could work, however this is the process we used to produce the example videos.

In the following context ‘render’ refers to i) saving the z-sequence to disk as a numpy array, ii)
decoding the z-sequence with many snapshots of the model (from 28 different training iterations,
spaced 1000 iterations apart) and saving out a video where the output of each snapshot is tiled into a
grid (e.g. 7x4) and labelled with the corresponding training iteration. Rendering multiple snapshots
in a grid on a single frame in this way gives us an overview of how the latent space has evolved across
training iterations, and allows us to easily see and select the most aesthetically desirable snapshot(s)
(we go deeper into the motivations behind this in the Snapshots across time Appendix).

1) Take many (e.g. hundreds or thousands of) unbiased samples in latent space and render. This
produces a video (and corresponding z-sequence) where each frame is an entirely different ‘random’
image. This gives us an idea of what the model has learned, and how it is distributed. It also gives us
an idea of how the distribution changes across subsequent training iterations, and which snapshots
provide more aesthetically desirable images. 2) Edit the video in a NLE to remove undesirable
(i.e.‘bad’) images or to bias the distribution (e.g. remove some frames containing flowers if there
are too many, or duplicate frames containing bacteria if there’s not enough of them etc.) 3) Run the
script to conform the edit with the original z-sequence and re-render. This produces a new video (and
corresponding z-sequence) where each frame is an entirely different ‘random’ image, but which has
hopefully a desired distribution (no ‘bad’ images, and a desirable balance between different images).
4) Repeat steps 2-3 until we are happy with the distribution (one or two rounds is usually enough).
Optionally apply varying amounts of noise in z to explore neighbourhoods of selected frames. 5)
Load the final edited z-sequence (with desired distribution) and render many (e.g. tens or hundreds
of) short journeys interpolating between two or three random (or hand-picked) z (selected from
the z-sequence). This produces tens or hundreds of short videos (and corresponding z-sequences)
that contain smooth, slow interpolations between two or three keyframes where the keyframes are
chosen from our preferred distribution. This gives us an idea of how the model transitions between
selected images. E.g. The shortest path from a mountain to a face might have to go through buildings,
which might not be desirable, but inserting a flower in between might avoid the buildings and look
nicer—both aesthetically and conceptually. 6) Repeat step 5, honing in on journeys which seem
promising, optionally applying varying amounts of noise in z to explore neighbourhoods of selected
frames and journeys. The above steps produce an arsenal of video clips which can be further edited
and joined in a NLE, and then conformed with the corresponding z-sequences to produce a final
video. We have produced many hours worth of carefully constructed stories using this method.

3 Conclusion

Many aspects of this process can be improved; from theoretical, computational, and user experience
points of view. We present this research as a first step in many, towards enabling users to meaningfully
explore and control journeys in high dimensional latent spaces to produce time-based media, using
and building upon industry standard tools and methods with which they may already be comfortable.

2



Acknowledgments

This work has been supported by UK’s EPSRC Centre for Doctoral Training in Intelligent Games
and Game Intelligence (IGGI; grant EP/L015846/1).

References
[1] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through the search for novelty

alone,” Evolutionary Computation, vol. 19, no. 2, pp. 189–222, 2011.

[2] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv preprint
arXiv:1312.6114, 2013. [Online]. Available: http://arxiv.org/abs/1312.6114

[3] D. P. Kingma and P. Dhariwal, “Glow: Generative Flow with Invertible 1x1 Convolutions,” pp.
1–15, 2018. [Online]. Available: http://arxiv.org/abs/1807.03039

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014. [Online]. Available: http:
//papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[5] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels
using a learned similarity metric,” 2015. [Online]. Available: http://arxiv.org/abs/1512.09300

[6] Z. C. Lipton and S. Tripathi, “Precise Recovery of Latent Vectors from Generative
Adversarial Networks,” arXiv preprint arXiv:1702.04782, 2017. [Online]. Available:
http://arxiv.org/abs/1702.04782

[7] T. White, “Sampling Generative Networks,” arXiv preprint arXiv:1609.04468, 2016. [Online].
Available: http://arxiv.org/abs/1609.04468

[8] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of GANs for Improved
Quality, Stability, and Variation,” arXiv preprint arXiv:1710.10196, 2017. [Online]. Available:
http://arxiv.org/abs/1710.10196

[9] J. D. Cook, “Willie Sutton and the multivariate normal distribution,” 2011. [Online]. Available:
https://www.johndcook.com/blog/2011/09/01/multivariate-normal-shell/

3

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1807.03039
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1702.04782
http://arxiv.org/abs/1609.04468
http://arxiv.org/abs/1710.10196
https://www.johndcook.com/blog/2011/09/01/multivariate-normal-shell/


A Model architecture and data

We applied the approach mentioned in this paper on a number of different models and architectures,
however the primary test case we refer to (and from which we also show the results) is a GAN
(specifically, a Progressively Grown GAN [8]) trained on over 100,000 images scraped from the
photo sharing website flickr. The dataset is very diverse and includes images tagged with: art, cosmos,
everything, faith, flower, god, landscape, life, love, micro, macro, bacteria, mountains, nature, nebula,
galaxy, ritual, sky, underwater, marinelife, waves, ocean, worship and more. We include three
thousand images from each category and train the network with no classification labels. Given such a
diverse dataset without any labels, the network is forced to try and organise its distribution based
purely on aesthetics, without any semantic information. Thus in this high dimensional latent space we
find directions allowing us to seamlessly morph from swarms of bacteria to clouds of nebula, oceanic
waves to mountains, flowers to sunsets, blood cells to technical illustrations etc. Most interestingly,
we can perform these transformations across categories while maintaining overall composition and
form.

B Video editing and conforming the edit

We use the opensource Non Linear Video Editor Kdenlive (Figure 1) on Ubuntu. Unfortunately this
editor lacks support for exporting the industry standard EDL. However, Kdenlive’s native project file
format is XML based. This allows us to write a Python based parser to load the project file, inspect
the edits, retrieve the corresponding numpy z-sequences and conform by performing the same edits
on them and exporting a new z-sequence. At this point the conform is very simple and only supports
basic operations such as trimming, cutting and joining, and does not include cross-fades or other
more advanced features or transitions. However, to implement such additional features is relatively
trivial and left as future work (e.g. a cross-fade between two images in the NLE can be thought of as
an interpolation between the two corresponding points in latent space).

Figure 1: An example project in Kdenlive

4



C Interpolation

We use generative models with high dimensional (512D) multivariate Gaussian distributed latent
spaces. Because these distributions are concentrated around the surface of a hypersphere [9], when we
wish to interpolate between points in this space, we have to make sure that our trajectory stays within
the distribution. A common solution is to use spherical instead of linear interpolation. However
this produces visibly noticeable discontinuities in the movement of the output images due to sudden
changes in speed and direction. The images below are two different z trajectories, i.e. journeys in
latent space, created by interpolating between a number of arbitrary keyframes. In both images, a
single pixel wide vertical slice represents a single z vector, and time flows left to right. Figure 2
visualises the results of spherical interpolation. We can see notch-like vertical artifacts that happen
when the interpolation reaches its destination and we set a new target, creating a sudden change in
speed and direction. To remedy this we introduce a simple physics based system, the results of which
can be seen in Figure 3. In the high dimensional latent space we create a particle connected to both
the surface of the hypersphere and the next destination point with damped springs. This ensures that
the particle stays close to the distribution, but also moves without discontinuities at keyframes.

Figure 2: z sequence using spherical interpolation

Figure 3: z sequence using physical interpolation

5



D Snapshots across time

As the network trains, the latent space changes with each training iteration, to hopefully represent
the data more efficiently and accurately. However a noticeable change across these iterations also
includes transformations and shifts in space. E.g. what may be an area in latent space dedicated to
‘mountains’ at iteration 70K, might become ‘flowers’ at iteration 80K, while ‘mountains’ slide over
to what used to be ‘clouds’ (this is a bit of an exaggerated oversimplification). To investigate the
effects of these transformations, we render the same z-sequence decoding from a number of different
snapshots across subsequent training iterations (e.g. the last 28 snapshots spaced 1000 iterations
apart), and we tile the outputs in a grid (e.g. 7x4) when saving a video. An example video can be seen
at https://www.youtube.com/watch?v=DVsf0ooqFWE and Figures 5-14 show example frames.

Figure 4: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Here, every tile within a frame is the same z-vector decoded from a different snapshot in time (i.e.
training iteration). The small number in the top left of each tile (in both black and white) is the
iteration number. We can see in many cases the images are relatively similar with slight variations. In
other cases there are more radical shifts, where earlier snapshots are hinting at generating one type of
image while later snapshots are producing another for the same z-vector. Interestingly, even while
semantically the images might be radically different, sometimes the overall form and composition is
similar. E.g. in Figure 6 we can see that the space occupied by the current z-vector briefly gives way
from mountains to flowers, however the images maintain the valley-like shape.

When editing our videos in the NLE, we edit these videos containing the outputs from multiple tiled
snapshots. This gives us an overview of the aesthetic qualities from the different training iterations,
and allows us to choose the most aesthetically desirable snapshot(s) to use for our final output.

6

https://www.youtube.com/watch?v=DVsf0ooqFWE


Figure 5: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Figure 6: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

7



Figure 7: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Figure 8: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

8



Figure 9: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Figure 10: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

9



Figure 11: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Figure 12: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

10



Figure 13: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

Figure 14: An example frame where the same z-vector is decoded from 28 snapshots spaced 1000
training iterations apart.

11


	Introduction
	Method
	Conclusion
	Model architecture and data 
	Video editing and conforming the edit
	Interpolation
	Snapshots across time

