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Abstract 

The ubiquity of smartphones have opened up the possibility of widespread use of the Experience 

Sampling Method (ESM). The method is used to collect longitudinal data of participants' daily life 

experiences and is ideal to capture fluctuations in emotions (momentary mental states) as an 

indicator for later mental ill-health. In this study, ESM data of patients with psychosis spectrum 

disorder and controls were used to examine daily life emotions and higher order patterns thereof. 

We attempted to determine whether aggregated ESM data, in which statistical measures represent 

the distribution and dynamics of the original data, were able to distinguish patients from controls 

in a predictive modelling framework. Variable importance, recursive feature elimination, and 

ReliefF methods were used for feature selection. Model training, tuning, and testing were 

performed in nested cross-validation, based on algorithms such as Random Forests, Support 

Vector Machines, Gaussian Processes, Logistic Regression and Neural Networks. ROC analysis 

was used to post-process these models. Stability of model performance was studied using Monte 

Carlo simulations. The results provide evidence that patterns in emotion changes can be captured 

by applying a combination of these techniques. Acceleration in the variables anxious and insecure 

was particularly successful in adding further predictive power to the models. The best results were 

achieved by Support Vector Machines with radial kernel (accuracy=82% and sensitivity=82%). 

This proof-of-concept work demonstrates that synergistic machine learning and statistical 

modeling may be used to harness the power of ESM data in the future. 
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1. Introduction 

The evolution of mobile technology opens up new avenues for psychosis research. The 

ubiquitous smartphones and wearables provide researchers with convenient, low-cost tools 

for collecting rich longitudinal data of various measures: momentary mental states through 

the Experience Sampling Method (ESM), cognition, physiological parameters (e.g., sleep, 

heart-rate), mobility traces via global positioning system (GPS), and smart-phone user data 

(e.g., patterns of social media use and texting) (Torous and Keshavan, 2018). 

Prior to advances in mobile technology, ESM (also called Ecological Momentary Assessment 

[EMA]) has been extensively used in psychosis research to unravel contextualized dynamical 

changes. These studies have shown that the method is feasible and valid to assess psychotic 

experiences in daily life, offering the unique opportunity to link symptom variability to 

environmental experiences (Oorschot et al., 2009). ESM research helped unravel differences 

between stress-sensitivity in psychotic patients, ultra-high risk patients and healthy controls, 

particularly showing a stronger influence of momentary stress on affective and psychotic 

symptoms in the early phases of psychosis (van der Steen et al., 2017). With technological 

advances, clinical implementations of ESM are possible (Hartmann et al., 2015) and 

personalized networks can be created revealing in-debt insight in how momentary 

experiences and symptoms are related, informing treatment strategies for psychosis on an 

n=1 level (Bak et al., 2016). ESM, a structured diary approach, offers several advantages 

over traditional self-report questionnaires used in mental healthcare and research, including 

reduced recall bias and assessment error due to the frequent recording of momentary mental 

states at multiple time points, which increase the validity and reliability of the method 

(Verhagen et al., 2016). Recently, technology has expanded to smartphone use (Pot-Kolder et 
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al., 2018) enabling to obtain larger samples with increased response rates, high accuracy, and 

less bias. We recently discussed how ESM could be utilized to address several clinical 

challenges across diagnosis, and proposed this method as a regular, low-cost and high-impact 

mHealth tool for clinical practice, involving patients in the process of diagnosis and 

treatment (van Os et al., 2017b). In this conceptualization paper, an example was shown how 

change in momentary mental states and reactivity to contextualized factors (current location) 

could be used to differentiate depressed patients from controls (van Os et al., 2017b).   

However, the intense ESM assessment produces a massive amount of information at an 

individual level. The complexity of data poses a challenge for traditional statistical 

approaches to provide optimal solutions for prediction and classification purposes using ESM 

data. In this regard, statistical machine learning (ML) may offer improved solutions for 

harnessing ESM data to gain insight into psychosis at a person-level. To the best of our 

knowledge, apart the study that we propose, there exists no research that applied ML to ESM 

data. 

In fact, aside from the neuroimaging field (Winterburn et al., 2017), the exploration of ML in the 

field of clinical psychosis research is still at its early stage (Iniesta et al., 2016; Schnack, 

2017), but the field is rapidly adopting these contemporary methods to handle challenges of 

psychosis research (Tandon and Tandon, 2018). With a pragmatic approach, the first ML 

applications aim to identify predictors of treatment, clinical outcomes, and diagnostic 

classifications (Alghamdi et al., 2016; Stamate et al., 2017; Cannon et al., 2016; Fusar-Poli et 

al., 2017; Jauhar et al., 2018; Koutsouleris et al., 2016; Mothi et al., 2018; Stamate et al., 

2018b). These early findings demonstrate the potential of ML in handling complex data in 

clinical psychosis research. 
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Given that, in this proof-of-concept study and in our  preliminary work that this study extends 

(Stamate et al., 2017), we leveraged a large ESM dataset —for the first time— to build a 

predictive modelling approach to differentiating patients with psychosis spectrum disorder 

(PSD) from controls and aimed to explore whether it is possible to capture the patterns and 

the dynamics in changes in intensity rating of emotions (velocity, acceleration) by applying 

ML algorithms to ESM data.  

 

 

2. Methods 

2.1. Study sample  

Data were derived from the pooled ESM-MERGE dataset, which consisted of 510 variables and 

98,480 observations. The original data came from 11 studies, however, as 4 of  them did not 

provide the emotion variables we were interested in, we finally chose to include 7 studies in 

our dataset. Detailed information on characteristics of individual studies included in the 

pooled ESM-MERGE dataset were provided elsewhere (Wigman et al., 2015). The 7 studies 

used in our work are the following: Aripiprazole study (Lataster et al., 2011), Maastricht 

Coping Study (Bak et al., 2009), Maastricht Psychosis Study (Myin-Germeys et al., 2001), 

ZAPP study (Thewissen et al., 2008), Genetic Risk and Outcome of Psychosis study (Collip 

et al., 2011), Stress-reactivity in Psychosis study (Lataster et al., 2013) and PREVENT study 

(van der Steen et al., 2017). Although the data was collected through different studies, the 

conditions were very similar, which made it possible for us to use them as one large merged 

dataset. ESM is characterised by uncontrolled settings, and there is no site involved. 

Moreover, a major requirement of ESM data is that all interventions are minimised, and data 
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collection happens while participants live their normal everyday life. To rate the intensity of 

emotion, the same Likert scale with 7 levels  was provided in all studies, in which the 

minimum, maximum and middle levels were also expressed verbally to help a uniform 

understanding. We kept 2 categories from the outcome variable status: patients with 

psychotic disorders and controls. This reduction retained 472 individuals including 260 

patients diagnosed with psychotic disorders and 212 controls. 

  

2.2. Experience Sampling Method   

The Experience Sampling method (ESM), is a validated, structured diary approach to capture 

momentary mental states (emotions) in the context of daily life, using repeated assessments and 

alerting participants by means of prompts (Delespaul, 1995; Oorschot et al., 2009; van Os et al., 

2017a). 

The participants answered a set of questions (emotion, current context, company, and appraisal of 

the current situation) at quasi-random moments signaled by the beep of their smart phone, 10 

times a day for a period of six consecutive days, which resulted in a maximum of 60 

observations from each individual. Our main interest was to examine ten of the emotion 

(momentary mental state) variables: three positive (cheerful, relaxed and satisfied), six negative 

(anxious, down, guilty, insecure, irritated, lonely) and one psychosis specific item (suspicious). 

The wording of the questions was as follows: “At this moment I feel (e.g. insecure)”. All these 

variables were measured on a Likert scale with an uneven scale of 1-7 representing the intensity 

of the feeling (1 = not at all to 7 = very). 

 

2.3. Variables 
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The 10 emotion variables, demographic variables age and sex, and outcome variable status were 

included in the predictive model training.  

 

2.4. Data pre-processing 

Only data from the first six ESM days were used to ensure that solely initial patient records were 

considered (not monitoring treatment outcome). 

As a result of the beep schedule (semi-random beeps were programmed between 7.30 AM and 

10.30PM) and participants not always being able to respond to beeps due to their  varying 

day rhythms, there were natural missings in the data set (Delespaul, 1995).  75% of the 

observations were fully complete, i.e. included data for all emotion variables, which is an 

expected completion rate for this type of intensive ESM data collection (Delespaul, 1995). 

Looking at all emotion variables, 27.3 % of patient data and 20.5% of control data were 

missing, which provided us with sufficient data for both groups, even though the missing 

data related to patients were slightly higher. The amount of missing data was nearly the same 

in all emotion variables, as typically data was missing for a whole row due to not responding 

to a beep, which means that the effect of missing data on the various variables was similar, 

with no risk of causing a bias. We were only interested in obtaining sufficient consecutive 

observations per participant that could be used for aggregation by examining short term 

emotion changes. The missing data did not affect the analysis, as the ML algorithms were not 

directly applied to the raw dataset, but to an aggregated version of it. 

 

2.5. Person-level data aggregation 
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As highlighted by previous work, fluctuation in the intensity rating of emotion is able to 

characterize patients versus controls (van Os et al., 2017b). Our aim was to capture these 

characteristics and use them for classification. As nested data can not be directly used as 

input for the ML modeling, for each individual we used aggregation on the emotion variables 

for the values to be represented by statistics. 

To prepare our dataset for aggregation, we first grouped the data by individuals, and sorted the 

observations to keep the longitudinal order within each person. These 10 columns will be 

referred as the “base” data.  Additionally, we introduced “velocity” (changes in the intensity 

rating of emotion between successive beeps) and “acceleration” (the change rate of the 

velocity) to represent the dynamics in the data (Supplementary Table S1). Velocity was 

defined as the difference between the value of the respective beep and the previous beep in 

the base data. To consider only short-time changes in the intensity rating of emotion, only 

differences for consecutive beeps within a day were calculated, otherwise N/A was recorded. 

Acceleration was defined as the difference between the velocity of the respective beep and 

the previous beep, while the absolute value of acceleration (irrespective of the direction of 

change) was defined to focus on the size of the change. We note that  velocity only considers 

emotion levels at two consecutive beeps, and acceleration considers three. If an emotion was 

changing in the same rate in the same direction (e.g., both positive increases on the Likert 

scale) within three consecutive beeps, the acceleration score was small, but if an emotion 

changed direction (e.g. a decrease instead of an increase on the following moment), the 

acceleration score was higher. This way acceleration is able to capture ‘emotion spikes’ (‘up-

and-downs’), while velocity only captures one step of emotion change (‘up’ or ‘down’).  
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Velocity, acceleration and absolute value of acceleration was calculated for each base emotion 

variables, resulting in 40 columns nested within each individual. Four different datasets were 

created including subsets of the above 40 columns, which we will refer to as below: 

Base=Base data (10 columns) 

Velo=Base data+velocity (20 columns) 

Acc=Base data+velocity+acceleration (30 columns) 

Acc_abs=Base data+velocity+ absolute value of acceleration. (30 columns) 

 

Following this, data aggregation to the person-level was carried out on all four  versions of the 

emotion variables (i.e., base, velocity, acceleration, and absolute value of acceleration). Each 

person was therefore represented by one row of descriptive statistics reflecting the 

distribution of the data within that person’s observations. Two different rules,version 1 (V1) 

and version 2 (V2) as defined below, were applied to the above four datasets, thereby 

creating eight different aggregated datasets: 

V1: six new measures were introduced to represent each variable: the minimum and maximum 

value of all observations, the 0.25, 0.5, and 0.75 quantiles, and the interquartile range within 

each person.  

V2: four new measures were used to represent each variable: the 0.1, 0.5, and 0.9 quantiles, and 

the interquartile range.  

Sex and age as predictors and status as outcome variable were also added to each dataset. These 

eight aggregated datasets were used for further processing(Fig.1), and they will be referred to 

as “aggregated datasets”. 
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2.6. ‘No variance’ and high correlation removal 

Some 0.5 quantile (median) velocity and acceleration variables showed almost no variation with 

most observations being zero, they were considered non-informative and thus removed to 

eliminate noise. 

As positive and negative emotions usually fluctuate together, correlation was generally strong 

within the variables. Spearman rank correlation was computed on the variables to remove 

very high correlation as an option for pre-processing. Different correlation cut-offs were 

considered, such as 0.9, 0.85 and 0.8, to see which worked better for the predictive modelling 

performance.  

 

2.7. Feature selection 

Some models such as Logistic Regression, Neural Networks and Support Vector Machines are 

negatively affected by a large number of variables (Kuhn and Johnson, 2013), therefore we 

performed feature selection on datasets  prior to developing the predictive  models. Note that 

we did not create new versions of the eight datasets at this stage, as the feature selection was 

part of the modeling script and was applied to the training set (Fig.1). 

Three feature selection methods were considered for dimensionality reduction: (i) Feature 

ranking by importance using Learning Vector Quantization (LVQ) with repeated sampling, 

(ii) Recursive Feature Elimination (RFE) built on the Random Forest algorithm, (iii) ReliefF 

(Kononenko, 1994) feature selection with permutation test (Rudolph, 1995) based on 2000 

random permutations.   
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In a separate process from modeling, we also utilised the feature selection methods and applied 

them to the best performing dataset to gain a better understanding of which predictors have 

strong associations with the outcome variable status. 

2.8. Principal component analysis 

As an alternative dimensionality reduction method, principal component analysis (PCA) was 

performed on the eight  aggregated datasets. As many variables had a skewed distribution, 

Box-Cox transformation (Kuhn and Johnson, 2013) was first applied. The most important 

principal components were selected to cover over 80% of the variance in the data. The 

coordinates for the new dimensions were calculated for each row, and with the outcome 

variable status added, eight new datasets were created, which we will refer to as “PCA 

datasets”. The number of principal components used in the new datasets varied between 8 

and 15.    

Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gaussian 

Process (GP), and Neural Network (NN) algorithms were applied to the new datasets to 

determine whether there was a significant association between the outcome variable status  

and the principal components. 

We further extended the data analyses process by creating eight additional datasets, where PCA 

datasets were combined with the original data sets; we will refer to these sets as “mixed 

PCA” datasets. They were only used for model building with the RF algorithm. Adding PCA 

variables to a decision tree-based model such as random forest  allows using linear 

combinations of variables (given in this case by the principal components) in the decision 

trees’ test nodes. In this case the decision borders do not have to be parallel with the variable 

axes, allowing more flexibility in predicting  the outcome variable with the RF model. 



 

12 

 

2.9. Machine Learning based predictive modeling process 

Model training and tuning, and testing were performed in a nested cross-validation, comprising a 

5-fold outer cross-validation, and a 10-fold inner-cross validation. Models were based on RF, 

SVM with linear, polynomial and radial kernels, GP with linear, polynomial and radial 

kernels, LR with and without stepwise model selection by Akaike Information Criterion, and 

NN with one hidden layer. Models were tuned in the inner cross-validation based on 

maximizing the area under the ROC curve (AUC). ROC analysis was then applied to post-

process these models by further splitting the hold-out folds from the outer cross validation, 

and using parts of these hold-out data for finding the best probability cut-offs for balancing 

sensitivity and specificity, and the other parts for testing the models. Figure 1 provides an 

illustration of the ML-based prediction modeling process. 

 

2.10. Monte Carlo simulation 

The stability of the models was tested using Monte Carlo simulation. The method involved a 

number of repetitions of the nested cross-validation (100 times). Performance metrics of 

accuracy, AUC, Cohen’s kappa statistic, sensitivity, and specificity were evaluated and 

recorded in each experiment, and those models were chosen that consistently provided the 

best results.  

 

2.11. Hardware and software 

Monte Carlo simulation involving model tuning as part of the nested cross-validation is a 

computationally expensive procedure, therefore a robust framework was required. Parallel 
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processing was performed on a data analytics cluster of 11 servers with Xeon processors and 

832GB fast RAM. R software was used with a number of packages, including caret, pROC, 

MASS, e1071, CORElearn, randomForest, ggplot2, data.table, mclust, stringi, spatstat, plyr, 

DMwR, arm, AppliedPredictiveModeling, doParallel, and kernlab. 

 

3. Results 

3.1. Predictive modelling 

It stands out that nearly all of the 20 best performing models were based on datasets produced by 

the V2 aggregation rule. This indicates that minimum and maximum values of mood ratings 

were not among the important characteristics to distinguish psychotic patients and controls. 

Secondly, the 0.1 and 0.9 quantiles of the mood ratings were more informative to predict 

psychosis than the first and third quartiles. 

It’s also noticeable that datasets including acceleration information were more likely to produce 

a higher performance predictive model than sets with only base and velocity data.  

The top 20 models were based on algorithms such as RF, GP, and SVM with radial and 

polynomial kernels. Many models built with principal components also achieved good 

results. This confirms that patterns with predictive value exist in the data, as several different 

techniques were able to capture them. The best performing feature selection technique was 

the ReliefF method (Kononenko, 1994), therefore it was our major feature selection method 

in this study. 

All the best three results were achieved by the datasets including base, velocity and acceleration, 

and with the V2 aggregation rule applied (Figure 2). The best result was produced by a SVM 

model with radial kernel (SVM Radial) on the dataset with Spearman correlation over 0.9 
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removed and feature selection performed by the ReliefF method, in which only variables 

with an observed Relief score corresponding to a p-value lower than 0.1 in the permutation 

test were retained. The second-best result was achieved by a SVM model with polynomial 

kernel (SVM Poly) on the dataset after the same correlation removal and feature selection 

process. The third best performer was a GP model with radial kernel (GP Radial), performed 

on the principal components of the dataset. The performances of the best three models are 

displayed in Table 1, Figure 2 and 3. Predictive models obtained with the other algorithms, 

i.e. RF, NN and LR, were behind in performance. Generally, the RF algorithm worked best 

on the datasets comprising the principal components or a mixture of principal components 

and base emotion variables, and achieved accuracy results around 73%. NN and LR 

algorithms performed with around 70% accuracy. 

 

3.2. Feature analysis 

Feature analysis was carried out on the acceleration dataset with the V2 aggregation rule applied, 

as this dataset proved to be the most successful in predicting the outcome variable status. 

Table 2 shows the top results of feature selection with variable importance of the LVQ 

model, RFE, and ReliefF methods applied to this dataset. Both the varImp(LVQ) and RFE 

methods show several acceleration measures amongst the top features, while none of them 

highlighted importance of any of the velocity measures. The ReliefF method showed only 

velocity-related variables amongst the top ten, and no acceleration measures.  

According to our results, accelaration often better distinguishes patients with a psychotic 

disorder from controls than velocity, which means that quick jumps in emotion (i.e., a large 

value in velocity) is more likely to normally occur in both statuses, while only patients with a 
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psychotic disorder are likely to have these dramatic changes also in the opposite direction 

within the short period of three beeps time (Stamate et al., 2017). 

As suggested by Table 2, the most informative statistical measure was the 0.9 quantile, and for 

acceleration variables also the interquartile range. The most frequently occurring variables 

were anxious and insecure, both in their emotional level as well as in their acceleration 

forms. Suspicious occurred in its emotional level and its velocity forms. Cheerful, feeling 

down and lonely carried information in their emotional level form. Satisfied and relaxed 

variables also held some predictive information in their level form. The least power was 

shown by irritated, guilty and sex (Table 2). 

 

4. Discussion 

To the best of our knowledge, this is the first study that applied machine learning to ESM data to 

build predictive modeling for psychosis spectrum disorder (we reported preliminary results 

of this study in the extended abstract Stamate et al., 2017). With the aim of establishing 

feasibility and preliminary performance of predictive modeling for efficient ESM use in 

clinical trials, this proof-of-concept study leverages a subset of existing ESM data from 

patients with PSD and healthy controls to generate an actionable output.  

 

4.1. Interpretation of findings 

Several machine learning methods were explored, and all of them were able to recognize patterns 

differentiating patients from controls to a certain level, which shows that this is a sound 

ground for further exploration. These models were further tested using Monte Carlo 

simulations, and they consistently yielded adequate predictive power and stability. The best 
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performing models were SVM with radial kernel, achieving as high as 82% accuracy in some 

cases, and an average performance of 78% accuracy in Monte Carlo simulation with 100 

experiments. 

By evaluating the discriminative power of variables across models, we revealed that the level of 

emotions shows good predictive power for several emotion items: anxious, insecure, 

suspicious, down, lonely, and cheerful. Rather than relying only on the intensity rating  of 

emotion, in this study we also attempted to inspect the effect of mood changes onto our 

predictive model performance; therefore, we implemented the measure of velocity (i.e., 

change in mood) and acceleration (i.e., change in velocity), and both were successful in 

increasing the predictive power of the models. This is consistent with previous research, 

which showed that the fluctuation in the intensity rating of emotion could distinguish patients 

suffering from mental illness from controls (van Os et al., 2017b). Feature selection methods, 

variable importance, and the most successful models highlighted that acceleration often 

better represents the dynamics of mood changes than velocity in predictive models. This 

indicates that inspecting mood changes in three steps rather than two—being able to capture 

successive “up-and-downs” rather than individual “ups” or “downs”—helps to yield better 

predictions. The acceleration in variables anxious and insecure was especially successful in 

adding further predictive power to the models. 

 

4.2. Limitations  

Although this proof-of-concept study used a large ESM dataset, it has several limitations that 

need to be addressed in forthcoming phases of the work.  
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First, the current algorithms should be applied to completely independent datasets for external 

validation. We should however note here that the methodology that we employed based on 

nested cross-validation which is repeated 100 times in a Monte Carlo simulation as illustrated 

in Figure 1, leads to an extended internal validation. The latter could provide good estimates 

of the performance of the predictions that would be obtained on an external dataset if it were 

available, if we reasonably assume that the external dataset’s underlying variable 

distributions would not change with respect to the used dataset. This is one of the main 

advantages of the use of the nested cross-validation, although it is more computationally 

intensive especially if repeated in a Monte Carlo simulation as in our approach. 

Second, the current predictive modeling approaches could be tested against multi-level models 

(repeated observations at each beep nested within days that were further nested within 

individuals). In the future, we aim to leverage readily accessible data from a large general 

population cohort consisting of six days of ESM data and a wide-range of clinical, 

behavioral, genetic, environmental variables collected from over 800 participants (Pries et 

al., 2017). 

 

4.3. Implications for clinical and research practice  

There is a growing interest in mobile health and smartphone applications for mental disorders 

(Torous et al., 2017). Owing to increasing access to affordable mobile devices and 

development of computational data processing for uncovering patterns at an individual level, 

ESM may emerge as an extremely cost-effective and easy to implement mHealth tool at 

large. 
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Several feasibility studies showed that mobile device delivered ESM assessments are well 

accepted even among patients with serious mental illness, with similar completion rates to 

those in other diseases(Edwards et al., 2016; Kimhy et al., 2006; Moitra et al., 2017).  

ESM data are able to capture the ability to bounce back from mental disturbance (e.g., suddenly 

feeling scared as an effect of hearing voices). For instance, healthy people normally show 

resilience and stability, returning to their baseline state rapidly. On the contrary, consistent 

with our current findings, patients and population at-risk spend a longer time in the altered 

state, not only with lower mood levels than controls but also with higher reactivity to the 

daily-life stressors (van de Leemput et al., 2014; van Os et al., 2017b). Similarly, a greater 

autocorrelation (i.e., the similarity of states as a function of a time-lag between them) in 

positive emotions is associated with a better recovery rate and prevention of depressive 

episodes (Hohn et al., 2013). Therefore, ESM data can be very useful in the assessment of 

subtle and transitory manifestations of behavioral and emotional changes that may be early 

warning signs of psychopathology, with the ability to capture contextualized momentary 

variation of mental states (Nelson et al., 2017).  

Given the sufficient performance of generic ESM items (excluding the psychopathology specific 

mental state item: “suspicious”) in current models, the future project will seek to extend the 

current analyses attempting to build a detection system for early recognition of psychosis 

using mobile ESM technology. The future project will also attempt to tackle an important 

challenge that poses a threat to sustained engagement to ESM application: burdensome data 

collection procedure. Although fine-grained assessment of various context-dependent 

emotions and behaviors enhances delineating the current mental state, a fraction of 

participants often stop using mobile applications after several weeks of use. To improve 
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application usability, we propose three solutions to be tested in future implementation trials: 

(I) using an abbreviated version with a particular focus on fluctuating emotional items rather 

than an extensive list of emotional items; (II) reducing the number of beeps per day; (III) 

leveraging sensor and user data from mobile devices to construct a two-level detection 

system.  

Modern mobile platforms (e.g., smartphones and wearables) produce a massive amount of 

personal data from sleep and activity levels to social media use and basic phone usage (text 

and voice call); however, this raw material alone is of minimal value for predicting mental 

health problems due to low specificity and high between-person variance (Mohr et al., 2017). 

In this regard, a two-level detection system combining an abbreviated ESM technique and 

unobtrusive collection of smartphone user data may offer a feasible yet accurate active 

learning algorithm for predicting clinical vulnerability and mental health problems. In this 

system, once these two layers of data are successfully paired after a personal optimization 

period aimed to maximize within-individual consistency, active learning algorithms 

processing passive user data in the background can be trained to activate an ESM protocol 

when deviations from personal routine were observed. A recent study analyzing sensor data 

collected by a smartphone up to 8.5 months in a sample of 21 patients with schizophrenia 

showed that passive sensing data (e.g., levels of physical activity, changes in sleep rhythm, 

voice-call activity) were associated with responses to ESM items, and therefore might be of 

use in predicting mental health outcomes (Wang et al., 2016). By applying ESM approach 

along with wearable technology for measuring cardiac autonomic regulation over 36 hours, 

researchers demonstrated that momentary increases in autonomic arousal forecasted 

increases in ESM-measured auditory hallucinations severity (Kimhy et al., 2017).  
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4.4. Conclusion 

In this proof-of-concept work, we demonstrated that machine learning could harness the power 

of ESM data in predicting mental illness as a low-cost, high-impact self-monitoring tool with 

the ease and convenience of current mobile technology. We are still in the very early stages 

of  mobile-health implementation in psychiatry; however, if successfully developed, a mobile 

platform for early detection has the potential to help achieve major translational goals, such 

as early recognition of mental problems, accelerating access to care, and personalized 

monitoring of relapse. Given the high rates of mobile platform use in adolescents and young 

adults, the degree of the impact would be higher in the target population for early detection. 
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[FOR ALL FIGURES: PLEASE USE SEPARATELY SUBMITTED HIGH RESOLUTION 

FIGURES FOR PUBLICATION] 
 

Figure 1. Illustration of the machine learning process applied to one of the aggregated, PCA or 

mixed PCA datasets. Input Dataset represents one of the eight aggregated datasets or one of 

the eight datasets that were created from the aggregated datasets using Principal Component 

Analysis (PCA datastes) or one of the eight datasets that include variables from both the 

aggregated datasets and PCA datasets (mixed PCA datasets). Support Vector Machines 

(SVM), Gaussian Processes (GP), Neural Networks (NN), Logistic Regression (LR) and 

Random Forests (RF) predictive models are trained and tuned / optimized in an inner 10-fold 

cross-validation. Prior to model training, the important predictors are selected with feature 

selection techniques such as ReliefF or Recursive Feature Elimination (RFE) on the training 

folds. The outer 5-fold cross-validation embeds the model post-processing with ROC 

(Receiver Operating Characteristic) curves and evaluates model performances. The double 

cross-validation called nested cross validation, repeated 100 times in a Monte Carlo 

simulation, is used also to reliably validate the predictive models. 
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Figure 2. Boxplots showing performance result of the top three models in Monte Carlo 100 

experiments: SVM Radial (Support Vector Machines with Radial kernel), SVM Poly 

(Support Vector Machines with Polynomial kernel) and GP Radial (Gaussian Process with 

Radial kernel). 

Figure 2a. Accuracy  
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Figure 2b. Sensitivity 
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Figure 2c. Specificity 
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Figure 2d. Kappa 
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Figure 3. ROC curves of the three top models 
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Model AUC Sens Spec Acc Kappa AUC* Sens* Spec* Acc* 

SVM 
Radial 

0.8639 0.8192 0.8255 0.8220 0.6419 0.8459 0.7706 0.7957 0.7819 

SVM 
Poly 

0.8435 0.7885 0.8113 0.7987 0.5959 0.8300 0.7481 0.7828 0.7637 

GP 
Radial 

0.8216 0.7808 0.7925 0.7860 0.5700 0.8157 0.7582 0.7535 0.7561 

Table 1. Performances for the three top models  
All the best three predictive models’ results were achieved by the datasets including base, velocity and acceleration 
data, and with the V2 aggregation rule applied. 
*Monte Carlo (n=100) experiments average results. AUC, Sens, Spec, Acc stand for Area Under Curve, Sensitivity, 
Specificity and Accuracy, respectively. 
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Table 2. Variable rank with Learning Vector Quantization (LVQ), Recursive Feature Elimination (RFE) and 
ReliefF feature selection methods applied  on the dataset including base, velocity and acceleration data in 
normal values, with V2 aggregation applied 

Rank varImp(LVQ) RFE ReliefF 

1 acc.anxious.interq cheerful.q0.1 cheerful.q0.1 
2 insecure.q0.9 Age relaxed.med 
3 acc.anxious.q0.9 acc.anxious.interq velo.guilty.q0.1 

4 down.q0.9 satisfied.q0.1 relaxed.q0.9 
5 lonely.q0.9 lonely.q0.9 velo.irritated.q0.9 
6 cheerful.q0.1 acc.satisfied.inter down.q0.9 

7 anxious.q0.9 suspicious.q0.9 insecure.q0.9 

8 acc.insecure.interq acc.anxious.q0.9 velo.suspicious.interq 
9 insecure.interq acc.insecure.interq suspicious.q0.9 

10 down.interq lonely.interq velo.suspicious.q0.1 

Common in top 20: cheerful.q0.1, insecure.q0.9 

 

 


