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Abstract Since the introduction of cellular automata in the
late 1940s they have been used to address various types of
problems in computer science and other multidisciplinary
fields. Their generative capabilities have been used for simu-
lating and modelling various natural, physical and chemical
phenomena. Besides these applications, the lattice grid of
cellular automata has been providing a by-product interface
to generate graphical contents for digital art creation. One
important aspect of cellular automata is symmetry, detect-
ing of which is often a difficult task and computationally
expensive. In this paper a swarm intelligence algorithm—
StochasticDiffusionSearch—is proposed as a tool to identify
points of symmetry in the cellular automata-generated pat-
terns.
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1 Introduction

Creating aesthetically pleasing imagery has been domi-
nated by the application of evolutionary computing. The
“Bimorphs” of Dawkins (1986),“Mutators” of Latham Todd
et al. (1991), and “Virtual Creatures” of Sims (1994) are the
classical examples. Although some impressive results have
been achieved, there still remain problems with the aesthetic
selection. That is devising a fitness function to replace human
adjustment in the process of generation and evaluation.

In this study we investigate the aesthetics of cellular
automata (CA) behaviour. CA invented by von Neumann in
the late 1940s as material-independent systems to investigate
the possibility of self-reproduction. A cellular automa-
ton consists of a lattice of uniformly arranged finite state
automata each of which taking input from the neighbouring
automata; they in turn compute their next states by utilising
a state transition function. A synchronous or asynchronous
interactive application of state transition function (or rule)
over the states of automata (or cells) generates the global
behaviour of a cellular automaton that sometimes can be very
complex with high aesthetic quality.

The property of CA that makes them particularly inter-
esting to digital artists is their ability to produce visually
appealing and logically deep patterns on the basis of very
simply stated preconditions. Traditional scientific intuition,
and early computer art, might lead one to assume that sim-
ple programs would always produce pictures too simple and
rigid to be of artistic interest. But extrapolating from Wol-
fram’s work on CA, “it becomes clear that even a program
that may have extremely simple rules will often be able to
generate pictures that have striking aesthetic qualities some-
times reminiscent of nature, but often unlike anything ever
seen before” (Wolfram 2002, p. 11). This is a new way of
generating imagery which has no precedent in human cul-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2752-y&domain=pdf


5586 M. A. Javaheri Javid et al.

ture (Roth and Deutsch 2011). CA have been used as artistic
tool since the 1960s. The most notable examples are “Pix-
illation”, one of the early computer-generated animations
(Schwartz and Schwartz 1992), the digital art works of Struy-
cken (Scha 2006; Struycken 1976) and Brown (Beddard and
Dodds 2009; Brown 2001) [a review of the application of
CA in digital art provided in Javaheri Javid et al. (2015)].
Images generation by CA has unique qualities compared to
imagery generated by other approaches like evolutionary art.
This is due to processing elements which are pixels in evo-
lutionary approaches where in CA the processing elements
are cells. In addition there is always an implicit relationship
between cells and its surround because of the neighbour-
hood relation. Although classical one-dimensional CA with
binary states can generate complex behaviours, experiments
with multi-state two-dimensional (2D) CA have shown that
adding more states significantly increases the complexity of
behaviour, therefore, generating very complex symmetrical
patterns (Javaheri Javid et al. 2014; Javaheri Javid and te
Boekhorst 2006) which are extremely challenging to gener-
ate using conventional mathematical methods. A recent work
by Adamatzky and Martínez (2016) offers insights in the
production of art works, using simple computational models
with morphological behaviour, at the edge of mathematics,
computer science, physics and biology,whereCA is explored
in further details.

In this study we approach the problem in the framework
of dynamical systems and define a criterion for aesthetic
selection in terms of its association with symmetry. The
association of aesthetics and symmetry has been investi-
gated from different points of view. In this paper, a brief
account on cellular automata is presented, followed by
a section on symmetry and its significance in aesthetics.
Then, a swarm intelligence algorithm—Stochastic Diffusion
Search—is explained, highlighting its main features, includ-
ing its unique partial function evaluation aspect. Afterwards,
the application of the algorithm in detecting points of sym-
metry is detailed, illustrating the performance of the method
proposed.

2 Cellular automata

For the purpose of this study we provide a formal definition
for 2D CA as follows and for the rest of the paper all the
notions will be referring to this definition.

Definition 1 A deterministic finite automaton is formally
defined (Linz 2001) as a quintuple ofM such that:

M =〈Q,Σ, δ, q0, F〉 (1)

1. Q is a finite set of states,
2. Σ is a finite set of symbols as input alphabet,

Fig. 1 Formation of virtual torus shape in a latticewith periodic bound-
ary conditions

3. δ : Q × Σ �→ Q is the state transition function,
4. q0 ∈ Q is the start or initial state,
5. F ⊆ Q is a set of accepting or final states.

The state transaction function δ determines the transitions
from one state to another state. It takes two arguments as
q ∈ Q and an input symbol a ∈ Σ then maps them to a final
state q1 ∈ Q (i.e δ(q, a) = q1).

Definition 2 A lattice (L) is a regular tiling of a space by a
unit cell.

The Euclidean plane is considered so the lattice L is over Z2.
Lattices can have square, hexagonal or triangle for their unit
cells. A lattice can be infinitewith open boundary conditions
or finite with periodic boundary conditions. A finite lattice
with periodic boundary conditions where the opposite bor-
ders (up and down with left and right) are connected, forms
a virtual torus shape (Fig. 1).

Definition 3 A cellular automaton is a lattice of regularly
tiled by deterministic finite state automaton as unit cell.

A cellular automaton is presented as a quadruple of A such
that:

A = 〈L , S, N , f 〉 (2)

1. L is a finite square lattice with periodic boundary condi-
tions,

2. S ⊆ N
0 is a finite set of non-negative integers as states,

3. N ⊆ N
+ is a finite set of non-negative integers as neigh-

bourhood,
4. f : S|N | �→ S is the state transition function.

The state transition function f maps from the set of neigh-
bourhood states S|N | where |N | is the cardinality of neigh-
bourhood set, to the set of states S = {s0, . . . , sn−1} syn-
chronously indiscrete time intervals of t = {0, 1, 2, 3, . . . , n}
where t0 is the initial time of the cellular automaton. By con-
vention every automaton on the lattice is in neighbourhood
relation with itself. A mapping that satisfies f (s0, . . . , s0) =
s0 where s0 ∈ S is called a quiescent state. In other words,
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ba

Fig. 2 von Neumann (a) and Moore (b) neighbourhood templates

if a lattice is considered as a set, then its elements are deter-
ministic finite automata such that L = {m1,m2, . . . ,mn}.
The state of each cell at time (t + 1) is determined by the
states of immediate neighbouring cells (nearest neighbour-
hood) at time (t) given a neighbourhood template. There are
two commonly used neighbourhood templates considered for
2D CA. A five-cell mapping ( f : S5 �→ S) known as von
Neumann neighbourhood (Eq. 3; Fig. 2a) and a nine-cell
mapping ( f : S9 �→ S) known as Moore neighbourhood
(Eq. 4; Fig. 2b).

st+1
i, j = f

⎛
⎜⎝

st(i, j+1)

st(i−1, j) st(i, j) st(i+1, j)

st(i, j−1)

⎞
⎟⎠ (3)

st+1
i, j = f
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t
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st(i−1, j) st(i, j) st(i+1, j)

st(i−1, j−1) s
t
(i, j−1) s

t
(i+1, j−1)

⎞
⎟⎠ (4)

A function F : SL �→ SL which gives the global state
as configuration C over the lattice L at time t is the global
transition function. F maps the configuration at time t to the
configuration at time t + 1 where C ∈ SL .

Ct+1 = F
(
Ct) (5)

The sequence (c0, c1, c2, . . . , cn−1) collectively is the
behaviour of a cellular automata (also referred as the global
behaviour) where c0 is the initial configuration at t = 0. The

graphical representation of the sequence of configurations as
the behaviour of a cellular automaton by assigning a colour
for cell states over the lattice called a space–time diagram
(Fig. 3).

The total number of possible state transition functions as
the size of rule space Φ can be obtained from

Φ = |S||S||N |
(6)

where |S| is the cardinality of S and |N | is the cardinality
of N . For instance given a two state (|S| = 2) map-
ping with Moore neighbourhood template (|N | = 9), then
Φ = 22

9 = 2512 ≈ 1.3 × 10154. In order to put this number
in perspective it can be noted that the number of atoms in
visible universe is ≈ 1080. This excessively large number of
state transition functions neither can be stored in any modern
computer nor it can be algorithmically defined. A common
approach to overcome this problem is to define a subset(s) of
all possible state transition functions by a formula. Two com-
monly applied formulas to generate such subsets are totalistic
rules and outer totalistic rules where the state of each cell is
updated according to the sumof the states of the neighbouring
cells in given template. Equations 7 and 9 show the gener-
ation of totalistic (tot) and outer totalistic (outer-tot) rules
for Moore neighbourhood template. The new state by apply-
ing an outer totalistic rule depends on a tuple, namely the
old state (sti, j ) and the sum of the neighbourhood without the
current state. It does not only depend on the neighbourhood’s
sum as in the totalistic rule.

Totalistic rules: st+1
i, j = ftot (σtot ) (7)

where

σtot =
∑

⎧⎪⎨
⎪⎩

st(i−1, j+1) s
t
(i, j+1) s

t
(i+1, j+1)

st(i−1, j) st(i, j) st(i+1, j)

st(i−1, j−1) s
t
(i, j−1) s

t
(i+1, j−1)

⎫⎪⎬
⎪⎭

(8)

Outer totalistic rules: st+1
i, j = fouter−tot(σouter−tot) (9)

c0 c10 c20 c30 c40 c50

Fig. 3 A space–time diagram depicts the behaviour of a cellular automaton as the sequence of configurations
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Table 1 A Comparison of the
rule spaces for two state 2D CA
using formulas

Rule type von Neumann Moore

All 22
5 = 232 ≈ 4 × 109 22

9 = 2512 ≈ 1.3 × 10154

Outer totalistic 210 = 1024 218 = 262144

Totalistic 25 = 32 29 = 512

Table 2 Specifications of cellular automaton 1

Cellular automaton 1

S = {0, 1}∗
fouter−tot = S8 �→ S

st+1
i, j =

{
1 if st(i, j) = 0 and σ = 1
0 otherwise

}

*Colour assignments are white for quiescent state (0) and red for (1)

Table 3 Specifications of cellular automaton 2

S = {0, 1, 2}∗
fouter−tot = S8 �→ S

st+1
i, j =

⎧⎨
⎩
1 if st(i, j) = 1, 2 and σ = 0 − 8
2 if st(i, j) = 0 and σ = 3
0 otherwise

⎫⎬
⎭

*Colour assignments are white for quiescent state (0), red for (1) and
green for (2)

where

σouter−tot =
∑

⎧⎪⎪⎨
⎪⎪⎩

st(i−1, j+1) s
t
(i, j+1) s

t
(i+1, j+1)

st(i−1, j) st(i+1, j)

st(i−1, j−1) s
t
(i, j−1) s

t
(i+1, j−1)

⎫⎪⎪⎬
⎪⎪⎭

(10)

Table 1 demonstrates the reduction in the size of rule space
by formulas to generate subset of state transaction functions.

The behaviour of a particular cellular automaton is con-
strained by initial configuration, transaction function, the
number of states and the number of time intervals. In the
lack of any viable model to evaluate the behaviour of 2D CA
given state transition function, the only available method is
to run simulations. Given the vast size of the rule space and
the fact that rule space is an unstructured space such that
by knowing the behaviour a particular cellular automaton or
a set of CA, the behaviour of other CA cannot be induced.
CA examples (Tables 2 and 3) demonstrate the formation
of patterns from a single cell (Fig. 4) and glider as initial
configurations (Fig. 5). And Fig. 6 shows experimental pat-
terns generated by the authors to demonstrate the generative
capabilities of CA in creating very complex symmetrical pat-
terns.

3 Symmetry and aesthetics

The association of aesthetic preferences and symmetry of a
stimulus has been investigated extensively in the literature.
Symmetry having proportionality and balance is considered
to be an important element of aesthetics. The role of sym-

Fig. 4 Formation of patterns
from a single cell as initial
configuration

c0 c1 c2 c3

c0 c1 c2 c3 c4 c5

Fig. 5 Formation of patterns from a glider as initial configuration
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Fig. 6 Sample complex symmetrical patters generated by CA

metry in art, architecture and its association with aesthetic
preferences is a well-known concept (Møller 1998). Natu-
ral objects displaying symmetry evoke wonder and surprise
because of their intricacy. For example, architecture and
architectural details, such as stain windows, mosaics, and
friezes, visual arts, pottery and ceramics, quilts, textiles, and
carpets, make a varied use of symmetry as an important prin-
ciple in their design. An examination of architecture and cell
biology in terms of biosemiotics, with architectural struc-
tures, discussed as context-dependent semiotic objects with
functional and/or aesthetic values. Both the natural and man-
made environment can be perceived as locus, place, site, or
a part of a mental map of a cultural framework. Maybe for
that reason symmetry is so often seen not only beautiful but
also conducive to visual communication (Ferreira 2012).

People find symmetrical patterns more beautiful than
asymmetrical patterns (Jacobsen et al. 2006). A study inves-
tigating the effect of symmetry on interface judgements, and
relationship between a higher symmetry value and aesthetic
appeal for the basic imagery shows preference of symmetric
over asymmetric images (Bauerly and Liu 2006). Further
studies found that if symmetry is present in the face or
the body, an individual is judged as being relatively more
attractive and if the body is asymmetric the face is rated
unattractive, even if the person doing the rating never sees
the body (Randy and Steven 1993; Gangestad et al. 1994).
Symmetry plays a crucial role in theories of perception and is
even considered a fundamental structuring principle of cog-
nition (Leyton 1992). From evolutionary perceptive physical
appearances like as symmetry, and perceived level of aesthet-

ics as an indirect measure in mate selection (Møller 1998;
Møller and Cuervo 1999). It is not surprising that humans
find sensory delight in symmetry, given the world in which
we evolved. In our world the animals that have interested us
and our ancestors (as prey, menace, or mate) are overwhelm-
ing symmetric along at least one axis (Railton 1998). Studies
demonstrate the direct effects of symmetry on attractiveness
(Grammer and Thornhill 1994). In other words symmetry is
positively linked with both psychological and physiological
health indicators (Shackelford 1997). The processing fluency
theory states that a person has a certainmental state that facil-
itates the processing of specific information. This state may
emerge from both stimulus attributes (e.g. it is easier to pro-
cess symmetrical stimuli; Reber et al. 2004). In particular,
symmetric objects aremore readily perceived (Carroll 2003).

In geometry a shape is attributed as symmetrical if it
is invariant to the application of one or more symmetry
operations like translation, rotation, reflection, and glide
reflection. The type of a symmetrical object is also speci-
fied with respect to a given symmetry operation(s) applied to
the object when this operation preserves some property of the
object. Such operations form a symmetry group of the object.
In geometry symmetrical shapes are generated by applying
symmetry operations like translations, rotations, reflections,
and glide reflections. There are several types of symmetry,
for example, the line or the radial mirror symmetry. Mir-
ror symmetry, a symmetrical object is often defined as the
correspondence in size, form, and arrangement of similar
parts on the opposite sides of a point, line (axis), or plane.
A figure that has line symmetry has two halves which coin-
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cide if folded along its line of symmetry, and these halves
are congruent, it means, they are the same size and shape.
Symmetrical objects show elements of symmetry, for exam-
ple, a shape of a crystal may show rotation axes, a centre
of symmetry, or mirror planes, imaginary planes that sep-
arate an object into halves. Radial symmetry in an object
occurs when it can be rotated around the rotation axis and
retain the same appearance as before rotating, repeating itself
several times during a complete rotation. Symmetry exists
not only in geometry but also in natural world and human
works.

Scientists and artists see a purpose in symmetry investiga-
tions, for example, mathematicians, anthropologists, artists,
designers, architects who conduct computer analysis of the
facades, friezes, and some architectural details, as well as
researchers in many fields of natural sciences, medicine,
pharmacology, biology, geology, or chemistry. Many artists
have created masterpieces this way. Artists used to transform
patterns and repetitions to apply the unity or symmetry in
their compositions (for example, by examining a Fibonacci
sequence, prime numbers and magic squares, a golden sec-
tion, or tessellation techniques). Mathematicians, computing
scientists, and artists used to apply visual metaphors as a
cognitive tool to visualise the world’s structure and our
knowledge. The theme of symmetry can certainly be consid-
ered inspirational to create biologically inspired art, because
symmetrical forms and shapes possess an aesthetic beauty
and an order reflected by their geometry. We can appreci-
ate these forms finding the importance of adaptations that
animals develop as an answer to the conditions of life,
examining mathematical order in natural forms, and re-
creating it in our own artwork. With generative approach,
artists draw fromnatural phenomena observed in biology and
physics, and their creative processmayevolve into a sequence
of iterative solutions and modifications transforming the
artwork.

However, developing computational methods which gen-
erate symmetrical patterns is still a challenge since it has
to connect abstract mathematics with the noisy, imperfect,
real-world; and few computational tools exist for dealing
with real-world symmetries (Liu 2002). Applying evolu-
tionary algorithms to produce symmetrical forms leaves the
formulation of fitness functions, which generate and select
symmetrical phenotypes, to be addressed. Lewis describes
two strategies in evolutionary algorithms approach for gener-
ating and selecting symmetrical forms: “a common approach
is to hope for properties like symmetry to gradually emerge
by selecting for them. Another strategy is to build in sym-
metry functions which are sometimes activated and are
appearing suddenly. However, this leads to a lack of con-
trol, as offspring resulting from slight mutations (i.e. small
steps in the solution space) bear little resemblance to their
ancestors” (Lewis 2008).

The next section explains the swarm intelligence algo-
rithm which will be used in detecting symmetrical patterns.

4 Swarm intelligence

The swarm intelligence algorithm used in this work is
Stochastic Diffusion Search (SDS) (Bishop 1989; al-Rifaie
and Bishop 2013) which is a probabilistic approach for solv-
ing best-fit pattern recognition andmatching problems. SDS,
as a multi-agent population-based global search and opti-
misation algorithm, is a distributed mode of computation
utilising interaction between simple agents. Its computa-
tional roots stem from Geoff Hinton’s interest 3D object
classification and mapping. See Hinton (1981) for Hinton’s
work and Bishop and Torr (2004) for the connection between
Hinton mapping and SDS. SDS algorithm has been used
in various fields including optimisation, generative arts and
medical imaging (e.g. al-Rifaie et al. 2012a, b). SDS has a
strong mathematical framework

Unlike many natured inspired search algorithms, SDS
has a strong mathematical framework, which describes the
behaviour of the algorithm by investigating its resource
allocation (Nasuto 1999), convergence to global optimum
(Nasuto and Bishop 1999), robustness and minimal conver-
gence criteria (Myatt et al. 2004) and linear time complexity
(Nasuto et al. 1998). The full mathematical model and proof
of SDS convergence are elaborated in al-Rifaie and Bishop
(2013).

4.1 SDS architecture

Similar to other swarm intelligence algorithms, SDS com-
mences a search or optimisation by initialising its population.
In any SDS search, each agent maintains a hypothesis, h,
defining a possible problem solution. After initialisation, the
two phases of SDS are followed (see Algorithm 1 for a high-
level description of SDS):

– Test phase
– Diffusion phase

In the test phase, SDS checks whether the agent hypothesis
is successful or not by performing a partial hypothesis eval-
uation and returning a domain-independent boolean value.
Later in the iteration, contingent on the strategy employed,
successful hypotheses diffuse across the population and in
this way information on potentially good solutions spreads
throughout the entire population of agents.

In other words, in the Test phase, each agent performs
partial function evaluation, pFE, which is some function of
the agent’s hypothesis, pFE = f (h), where f is the function
and h is the hypothesis; and in the diffusion phase, each agent
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recruits another agent for interaction and potential commu-
nication of hypothesis.

Algorithm 1 SDS Algorithm

01: Initialising agents
02: While (stopping condition is not met)
03: Testing hypotheses
04: Determining agents status (active/

inactive)
05: Diffusing hypotheses
06: Exchanging of information
07: End While

4.2 Standard SDS and passive recruitment

In standard SDS, passive recruitment mode is employed. In
this mode, if the agent is inactive, a second agent is ran-
domly selected for diffusion; if the second agent is active, its
hypothesis is communicated (diffused) to the inactive one.
Otherwise there is no flow of information between agents;
instead a completely new hypothesis is generated for the
first inactive agent at random (see Algorithm 2). Therefore,
recruitment is not the responsibility of the active agents.
Higher rate of inactivity boosts exploration, whereas a lower
rate biases the performance towards exploitation. Details of
the test phase and the fitness function is described later in
this paper.

Algorithm 2 Passive Recruitment Mode

01: For each agent ag
02: If ( !ag.isActive )
03: r_ag = pick a random agent
04: If ( r_ag.isActive )
05: ag.hypothesis = r_ag.hypothesis
06: Else
07: ag.hypothesis = generate random

hypothesis
08: End If
09: End For

4.3 Partial function evaluation

One of the concerns associated with many optimisation algo-
rithms (e.g. GeneticAlgorithm, Particle SwarmOptimisation
and etc.) is the repetitive evaluation of a computationally
expensive fitness function. In some applications, such as
tracking a rapidly moving object or generation of CA patters,
the repetitive function evaluation significantly increases the
computational cost of the algorithm. Therefore, in addition
to reducing the number of function evaluations, other mea-
sures can be used in an attempt to reduce the computations
carried out during the evaluation of each possible solution,
as part of the overall optimisation (or search) processes.

The commonlyusedbenchmarks for evaluating the perfor-
mance of swarm intelligence algorithms are typically small
in terms of their objective functions computational costs
(Digalakis and Margaritis 2002; Whitley et al. 1996), which
is often not the case in real-world applications (examples of
costly evaluation functions are seismic data interpretation,
selection of sites for the transmission infrastructure of wire-
less communication networks and radio wave propagation
calculations of one site, etc.).

Costly objective function evaluations have been investi-
gated under different conditions (Jin 2005) and the following
two broad approaches have been proposed to reduce the cost
of function evaluations:

– The first is to estimate the fitness by taking into
account the fitness of the neighbouring elements, the
former generations or the fitness of the same element
through statistical techniques introduced in Branke et al.
(2001).

– In the second approach, the costly fitness function is sub-
stituted with a cheaper, approximate fitness function.

When agents are about to converge, the original fitness func-
tion can be used for evaluation to check the validity of the
convergence (Jin 2005).

The approach that the standard SDS algorithm uses is
similar to the second method. Many fitness functions are
decomposable to components that can be evaluated sepa-
rately. During the test phase of SDS, in partial function
evaluation (pFE, which is some function of the agent’s
hypothesis, pFE = f (h), where f is the function and h is the
hypothesis), the evaluation of one or more of the components
may provide partial information to guide the subsequent opti-
misation process.

In other words, instead of evaluating the hypothesis in its
entirely, part of it, which is called micro-feature, is selected
and evaluated accordingly. Therefore, during the test phase,
only the randomly selected micro-features of the hypotheses
are evaluated and the status of each agent is thus determined.
Thus, if the micro-feature of each hypothesis consists of,
say, 1

10 of the entire hypothesis, the computational expense
for the evaluation process of each hypothesis would be 9

10
computationally cheaper.

Next, details of the process through which SDS performs
its spatial-independent symmetry detection is presented.

5 Experiments and results

This section explains the design of the experiments con-
ducted along with the results of applying SDS to identify
partial or full symmetries on the cellular automata-generated
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patterns1. The inputs to the system are sample patterns used
as proof of principle to show the functionality of the method;
afterwards, some real-world cellular automata-generated pat-
terns are fed in the system to evaluate the overall performance
of the algorithm in detecting the aforementioned types of
symmetries.

In order to adopt SDS to identify symmetries, the fol-
lowing important considerations are taken into account (see
Algorithm 3 for more details):

– the search space comprises of the entire cells on the grid
(see Fig. 7-left where the search space size is 5 × 5)

– SDS hypothesis is a cell index (x, y). For instance the
coordinate (x, y) = (2, 2) could be the hypothesis and
micro-features2 can be selected by specifying the xd
and yd distances from the hypothesis; for instance if
the (xd , yd) distance is (2, 0), this micro-features can be
found at the following coordinates: (x − xd , y − yd) and
(x + xd , y+ yd); therefore, the coordinates of the micro-
features in this example will be (2 − 2, 2 − 0) and (2 +
2, 2 + 0) resulting in (0, 2) and (4, 2). See Fig. 7-right.

– the environment in cellular automata is torus, which
means ifmoving downwards along the search spacewhen
we reach the last raw, the next row to be visited is the
top row. The same is applicable when moving between
columns (see Fig. 1 shows the 2D representation of the
cellular automata and its real structure as torus).

Algorithm 3 Detecting symmetry by SDS algorithm

01: Initialising agents
02: Each agent picks a cell as its

hypothesis *
03: Test Phase
04: xd and yd distances are picked randomly

for each agent
05: If C(x-xd , y-yd) = C(x+xd , y+yd) **
06: Agent becomes active
07: Else
08: Agent becomes inactive
09: Diffusion Phase
10: Exchanging of information

* Agent hypothesis refers to their (x,y)
coordinate

** C(i,j) returns the colour of the pixel at
position (i,j)

The patterns in Fig. 8 show the hypothesis (3, 2) and the
various possible micro-features, some of which resulting in

1 The technique presented in this paper is applicable to any CA-
generated patterns. In this work a few sample CA-generated represen-
tations are used to illustrate the application of the method introduced.
2 Micro-features are used in the test phase of SDS to determine the
status of the agent (i.e. active or inactive). Micro-features, in this paper,
refer to the pixels surrounding the hypothesis’s (x, y) coordinate; these
pixels can be at the distance (xd , yd ) from the hypothesis.

Fig. 7 Left: search space (5 × 5); right: active hypothesis is shown in
green; and the selected micro-features are highlighted in blue (colour
figure online)

the hypothesis’ status to be truewhile some others lead to the
hypothesis’ status to be false. In other words, various micro-
features are selected to test the symmetry of the pattern along
various axes of symmetry. Figure 9 shows the four axes of
symmetry in a fourfold symmetrical pattern on the centre of
the pattern and Fig. 10 shows each of these axes separately,
again on the centre of the pattern. The torus structure of cel-
lular automata is demonstrated in the choice of some of the
corresponding micro-features; see, for example, Fig. 8 top-
right corner, where the micro-feature is chosen at (−1,−1)
distance. Thus the corresponding cell is chosen at (1, 1) dis-
tance from the hypothesis, which means moving out of the
2D canvas from the right border and entering again from the
left.

Having considered the details above, the process through
which SDS commences with the initialisation phase and
then cycle through the two phases and test and diffusion is
explained next.

5.1 Initialisation phase

During the initialisation phase each one of the agents in the
population is assigned a hypothesis which is a random (x, y)
coordinate from the search space. Additionally, the status of
all agents are initially set to false.

5.2 Test phase

In the test phase, each agent, which is already allocated a
hypothesis, picks a random xd and yd distances from the
hypothesis cell as its micro-feature; the randomly selected
micro-feature is then compared against its corresponding
mirrored cells to check if the mirrored cell has the same
value. If the values are the same, the status of the agent is set
to true, otherwise false

5.3 Diffusion phase

The process in the diffusion phase is the same as the one
detailed in the algorithm description: each inactive agent
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Fig. 8 Sample hypothesis set to be (3, 2); active hypotheses are shown in green and the inactive ones are displayed in red; the selectedmicro-features
are highlighted in blue (colour figure online)

Fig. 9 Four axes of symmetry in a fourfold symmetrical pattern

picks an agent randomly from the population; if the randomly
selected agent is active, the inactive agent adopts the hypoth-
esis of the active agent (i.e. the (x, y) coordinate), otherwise
the inactive agent picks a random coordinate from the search
space.

After n number of iterations, agents converge on the (x, y)
coordinates with the most symmetrical quality.

5.4 Experiments and discussion

One of the main features of SDS is partial function evalua-
tion which here manifests itself in the following: each time
comparing one cell on one side of the symmetrical point
to its corresponding cell on the other side. Therefore, even
when an agent is active, in the next iteration it picks another

Fig. 10 Individual axes of symmetry

micro-feature and checks the point from “a different perspec-
tive” to ensure that the symmetry still holds. In other words,
using this approach, the algorithm allocates its resources
“wisely” and repeatedly tests the already maintained points
of interest against any asymmetrical discovery. Therefore,
the agents’ focus is guided towards the more promising area
of the search space, where the algorithm identifies partial
symmetry. The area with the identified partial symmetry is
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input

n = 10

n = 30

Fig. 11 SDS agents convergence on the point of symmetry. Top: two
input patterns;middle: SDS agents after n = 10 iterations; bottom: SDS
agents after n = 30 iterations

further investigated; the repeated exploration of the promis-
ing areas guarantees the agents’ convergence to the location
of symmetry.

For the experiments reported in this work, the population
size is empirically calculated using the following formula:

pSize =
⌈

w2

4

⌉
(11)

where pSize is the population size and w is the width of the
search space. Using this setup, the agents land on fourth of
the search space; therefore, for the search space introduced

earlier, the population size will be set to pSize =
⌈
52
4

⌉
= 6.

Figure 11 shows two patterns which are processed by SDS
algorithm and the results are shown after n = 10 and n = 30
iterations3. The figures in the last row show better conver-
gence to the point of symmetry as they are allowedmore SDS
iterations. As illustrated in the figures, some agents became
active on (x, y) coordinates which do not represent the full
fourfold symmetry; these agents will eventually pick differ-
ent micro-features in the next iterations and become inactive;

3 Further details about the number of iterations are given later in the
paper.

Fig. 12 Passive recruitment mode

consequently, when they are inactive, they need to choose
random agents; given that the number of active agents on the
centre of symmetry increases over time (thanks to the diffu-
sion phase), it is likely that an active agent is chosen. This
would lead to the inactive agents pickingmicro-features from
the centre of symmetry in their next iterations and become/s-
tay active. Note that in these experiments, alpha is used for
the transparency of the agents’ colour (where α = 200);
therefore, as shown in the figures, the cell with the largest
number of active agents can be distinguished from others.

There are occasions when more than one centre of sym-
metry exists, or there exist some partial symmetries in the
image alongwith full centre of symmetry; in this case another
flavour of the recruitment strategy is deployedwhich is called
context-sensitive mechanism. This strategy frees up some of
the agents who are active and share the same hypothesis and
therefore allows the algorithm to constantly check for traces
of symmetry in the input pattern.

In other words, the use of context-sensitive mechanism
biases the search towards global exploration. Therefore, if
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Fig. 13 Context-sensitive mechanism

an active agent randomly chooses another active agent that
maintains the same hypothesis, the selecting agent is set inac-
tive and adopts a random hypothesis. This mechanism frees
up some of the resources in order to have a wider exploration
throughout the search space as well as preventing cluster size
from overgrowingwhile ensuring the formation of large clus-
ters in case there exists a perfect match or good sub-optimal
solutions (see Algorithm 4).

Algorithm 4 Context-Sensitive Mechanism

01: If ( ag.activity )
02: r_ag = pick a random agent
03: If ( r_ag.activity AND
04: ag.getHypothsis == r_ag.

getHypothsis )
05: ag.setActivity ( false )
06: ag.setHypotheis ( randomHypothsis )
07: End If
08: End If

The next set of experiments use more complex patterns,
generated by cellular automata techniques. Initially an exper-
iment is run that utilises thepassive recruitmentmodewithout
the introduced context-sensitive mechanism and later, the
impact of context-sensitivity is discussed.

The graph in Fig. 12 illustrates the behaviour of the agents’
activities; this graph demonstrates that after the initialisa-
tion phase, the number of active and inactive agents are
balanced; however, over time, and due to the presence of a
centre of symmetry in the pattern, the number of active agents
increases and the number of inactive agents decreases. There-
fore, ultimately, once the absolute centre of symmetry (where
symmetry holds irrespective of the micro-features chosen) is
identified, the entire agent population becomes active and the
number of inactive agents drops to zero.

In the next experiment, the graph in Fig. 13 illustrates
the behaviour of SDS algorithm using the context-sensitive
mechanism, where the populations are biased towards global
exploration. In this graph, while the increase in active agents
and the decrease in inactive agents are visible, it is evident
that there are always agents which are released back from
the centre of symmetry to the search space to explore the
possibility of further symmetrical points. This feature is par-
ticularly useful in dynamic environments, andwhere there are
more than one absolute point of symmetry. The figure shows
many active (green) and inactive (red) agents throughout the
search space. On the other hand, there are no roaming agents
in Fig. 12 and all agents are drawn to the centre of symmetry.

The next experiment, which uses a more symmetrically
complex CA-generated pattern, demonstrates the crucial dif-
ferencewhenusingSDSwith orwithout the context-sensitive
mechanism. As stated before context-sensitive mechanism
reduces the greediness of the agents and allows the agents
to explore the search space for any undetected symmetry,
while the passive mechanism is greedy and once it finds the
absolute point of symmetry (where symmetry holds no mat-
ter which micro-feature is picked), it gradually pulls all the
agents and stops them from locating partial symmetries in
the canvas.

The new input to be used in this experiment has two iden-
tically CA grown patterns one on the top-left quarter and
another on the bottom-left quarter. When running the SDS
algorithm, it becomes clear that the passive recruitment strat-
egy (see Fig. 14) initially locates two points of symmetry
(when n = 100 iterations) and later (when n = 200 itera-
tions) all agents are drawn to the absolute point of symmetry
(note that the search spaces in cellular automata are torus).

However, by using the context-sensitive approach, the
largest partial symmetries are also identified and highlighted
(see Fig. 15). The graphs at the bottom of Figs. 14 and 15
show clearly the behaviour of the agents in both modes.

As displayed in the graph of Fig. 15, while the number
of active and inactive agents are distinguishably far from
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n = 100 n = 200

Fig. 14 Passive recruitment mode: finding the absolute symmetry at iterations n = 100 and 200

one another, yet it is shown that the number of active agents
does not reach the maximum possible4 and the number of
inactive agents does not drop to zero. Thismechanism insures
the identification of other symmetrical points in the input.
Therefore, depending on the functionalities needed, either of
these approaches could be used.

Whenever there is a full-match, SDS has been proven
mathematically to converge (Nasuto and Bishop 1999) to the

4 Given the size of the side of search space is ssSi ze = 129, the

population size for this pattern is pSize =
⌈
1292
4

⌉
= 4, 160

optimum solution. This proof is strongly based on the pres-
ence of the partial function evaluation aspect of SDS where a
micro-feature is selected and evaluated individually of other
micro-features. This makes the algorithm robust in dealing
with false positive or false negative.

Another observation to be expanded in the future work
is the direct proportionality of the agents’ activity to
the ‘strength’ of the symmetry. Therefore, while context-
sensitive mechanism finds partial symmetries, it is able to
rank the various clusters formed over the pattern.
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n = 100 n = 200

Fig. 15 Context-sensitive mechanism: finding partial symmetry at iterations n = 100 and 200

6 Conclusion

CA provide perspective and powerful tools in generating
graphical contents. The multi-state CA rule space is a vast
set of possible rules which can generate interesting patterns
with high aesthetic qualities. The interaction of CA rules
at local level generates emergent global behaviour that can
sometimes demonstrate attractive complexity. Some charac-
teristics of CA, such as the regularity and complexity of the
rules that are employed locally, suggest that they could be
well suited to generate artificially generated aesthetic images.

This paper demonstrates the capability of a swarm intelli-
gence algorithm—StochasticDiffusionSearch—indetecting
absolute symmetries (when present) and the centre of partial
symmetrical patterns within the input image. Evaluating the
symmetry of cellular automata-generated patterns is often a
difficult task partly due the large size of the search space,
and partly due to the constantly changing, dynamic environ-
ment in which the cellular automata patterns are generated.
These factors contribute to making the detection of symmet-
rical patterns computationally expensive. One of the main
features of Stochastic Diffusion Search is partial function
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evaluation which is particularly useful when dealing with
large problems with high dimensions and costly evaluation
function (e.g. in this case, the expensive computational cost
of detecting symmetry in cellular automata-generated pat-
terns). The performance of this algorithm is explained in the
paper and the results are accordingly demonstrated.

Following the introduction of this novel technique, among
the future research topics are: conducting a comparison with
other evolutionary and non-evolutionary techniques; com-
puting the correlation between the size of the search space
and the computational complexity of the process as well as
ranking the quality of the symmetries detected.
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