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a b s t r a c t

We present OntoDT, a generic ontology for the representation of scientific knowledge about

datatypes. OntoDT defines basic entities, such as datatype, properties of datatypes, specifica-

tions, characterizing operations, and a datatype taxonomy. We demonstrate the utility of On-

toDT on several use cases. OntoDT was used within an Ontology of core data mining entities

for constructing taxonomies of datasets, data mining tasks, generalizations and data mining

algorithms. Furthermore, we show how OntoDT can be used to annotate and query dataset

repositories. We also show how OntoDT can improve the representation of datatypes in the

BioXSD exchange format for basic bio-informatics types of data. The generic nature of On-

toDT enables it to support a wide range of other applications, especially in combination with

other domain specific ontologies: the construction of data mining workflows, annotation of

software and algorithms, semantic annotation of scientific articles, etc. OntoDT is open source

and is available at http://www.ontodt.com.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license
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1. Introduction

Data processing is at the heart of science. Scientific research workflows rely heavily on datatype representations. Especially in

data mining research it is impossible to efficiently (semi-) automatically connect parts of workflows, such as data preprocessing

and data mining, perform analysis of the research results and communicate the research outputs, without machine process-

able representation of datatypes and their properties. There is a need for a standardized semantically-defined and machine

amenable representation of scientific datatypes to support cross-domain applications. Unfortunately, the existing representa-

tions of datatypes do not fully address such a need.

In the literature, there exist different definitions of datatypes. In computer science, a datatype is usually defined as a “clas-

sification that identifies various types of data, such as boolean, integer, discrete and others, that determines the possible values

for that type, operations on the values of the data, and the way the values of that type can be stored” [56]. Nell and Walker [8]

discuss the difference between a data structure and datatype in the sense that “data structure refers to the study of data and

how to represent data objects within a program; that is, the implementation of structured relationships” while a datatype de-

fines “the properties of classes of objects in addition to how these objects might be represented in a program”. Martin [36] also
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discusses the difference between data structures and datatypes and states that “depending on the point of view, a data object is

characterized by its type (for the user) or by its structure (for the implementer)”.

In this paper, we present OntoDT, a generic ontology of datatypes. OntoDT defines the semantics, i.e., meaning of the key

entities and represents the knowledge about datatypes in a machine friendly way. The OntoDT ontology is based on the latest

revised version of the ISO/IEC 11404 standard for datatypes [23].

This paper is organized as follows. In Section 2, we present the background related to the development of the OntoDT on-

tology. In Section 3, we review and discuss the related work. Next, in Section 4, we present the ontology design principles and

implementation, and in Section 5 we present the key OntoDT classes. In Section 6, we present the OntoDT datatype taxonomy.

Finally, we present the ontology evaluation (Section 7), and three use cases of the ontology (Section 8). We conclude the paper

with a discussion (Section 9) and a summary of contributions and points for further work (Section 10).

2. Background

The OntoDT development started within the frame of an ontology for data mining (OntoDM) [44]. The main idea of using a

formalized description of datatypes for the domain of data mining was to characterize the types of data contained in a dataset,

the applicability of a data mining task on data from a given datatype, and the applicability of a data mining algorithm on a

dataset. Due to generality and reuse purposes, OntoDT has evolved to become an independent ontology.

The OntoDT ontology aims to address the need for a machine-friendly standard representation of general-purpose datatypes.

It is based on the International Standard ISO/IEC 11404 for representing datatypes in computer systems [23]. The standard spec-

ifies the terminology and the semantics for a collection of data types commonly occurring in programming languages and soft-

ware interfaces. The datatypes defined in the standard are general in nature and serve a wide variety of information processing

applications. The standard specifies both primitive datatypes, being defined without a reference to other datatypes, and non-

primitive datatypes, which are completely or partially defined in terms of other datatypes.

The ISO/IEC 11404 standard includes a list of 62 definitions of datatype related terms. It also specifies the conditions that

have to be fulfilled by an information processing entity in order to conform to the standard directly or indirectly. The standard

describes fundamental notions such as a definition of a datatype, a value space, datatype properties, a datatype generator, char-

acterizing operations, etc. We extracted the key terms from the standard, organized these terms into a logically consistent is-a

hierarchy of ontological classes, defined their properties and relations to other entities, re-used suitable textual definitions from

the standard, where possible, and added new ontological definitions, where necessary.

3. Related work

The problem of data typing is an important problem that has been addressed from different aspects and in different forms.

For example, the research data alliance (RDA) [50], whose major goal is to speed up the international data-driven innovation

and discovery by facilitating research data sharing and exchange, has identified that the problem of data typing is an important

problem that deserves attention. For this purpose, the RDA formed a data type registy (DTR) working group [11] with the goal to:

compile a set of use cases for datatype use and management, formulate a data model and expression for datatypes (prototype

registry available at [10]), design a functional specification for type registries, and propose a federation strategy among multiple

type registries.

Meek [37] discussed a proposal for a taxonomy of datatypes using as a base the first version of the ISO 11404 standard [22].

The taxonomy starts with a number of primitive datatypes that are then used to construct others. The proposed taxonomy is

given only in the form of an overview and a discussion, without any formal representation.

The W3C XML Schema Definition Language (XSD) [67] is widely used for the recording of data on the semantic web, and it

is also based on the ISO 11404 standard [23]. XSD supports simple, complex, and custom-defined datatypes. It is a simple and

flexible language, but it is not based on a formal model and consequently many aspects are left to interpretation. XSD terms are

not formally defined. For example, a definition of the term attribute (‘Defines an attribute’) is circular and does not explain how

an attribute is different from e.g. an element [68].

XSD is flexible and does not strictly regulate the custom-defined datatypes; it also does not enforce the separation of data

and its semantic meaning. A side effect of those features is an unnecessary proliferation of custom-defined datatypes. The issue

is that different users may create different data models for the same data, and it may be hard to reconcile those models. For

example, users can define datatypes such as start of the project, beginning of the project, start date. All these datatypes are of the

same type date datatype and the data encoded with these custom datatypes have the same semantic meaning. A formal ontology

can serve as a reference model and resolve such an issue.

The RDF data cube vocabulary is focusing on the publication of multidimensional data on the web [51]. It enables the exchange

and sharing of statistical data encoded in a tabular form. The adopted cube model has a set of properties for the description of

statistical datasets composed of observations. These include dimensions (e.g. time, age, sex), attributes (e.g. unit measure), and

measures (values of observations). A dataset can have reference metadata (e.g. a SPARQL endpoint where it can be accessed, its

publisher). This purpose-specific vocabulary is well defined and sufficient for recoding of statistical information. However, its

strict statistic-oriented model prevents the extension of this vocabulary for other non-tabular datatypes.

An attractive feature of this vocabulary is a distinction between the semantic meaning of observations, the measurement units

used, and the data structure specification. The dimension property links observations to other resources, i.e. Simple Knowledge
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Organization System (SKOS) [57], which defines the semantics of the data. The attribute property is used to record information

about the units. OntoDT adopts a similar approach for the defining semantic meaning of the data and also for modeling units. Un-

fortunately, the RDF Data Cube Vocabulary does not have a clear separation between operational information (e.g. if a data item

is an estimate or an accurate measurement) and the specification of datatypes. A better approach would be to capture the infor-

mation about data pre-processing, processing and post-processing separately and then link it to the data items (observations)

[45].

Several ontologies that include data-related aspects have been developed in various domains, but they are typically too do-

main specific and do not have representations of arbitrary complex datatypes. Below we briefly discuss some of such ontologies.

The EMBRACE Data and Methods (EDAM) is an ontology of bioinformatics operations, types of data, formats, and topics

[13,24,46]. The data branch of EDAM has the following key classes: core data, identifier, parameter, report, search and retrieval.

These terms do not correspond to conventional datatypes and are rather labels for the capturing the semantic meaning of the

data. There is also no clear distinction between data and knowledge items. The core data class has subclasses that correspond

to what is conventionally considered as knowledge, e.g., biological model, ontology, workflow, schema. It also includes subclasses

such as data index, experimental measurement, structure that are more relevant to datatypes, and are intended to be used for data

annotation. One cannot apply data mining algorithms to the data of the type experimental measurement without specifying the

datatype (e.g., numerical datatype).

Linked Models is a web resource for publishing RDF/OWL models of commonly used industry and government standards

[33]. The work is motivated by the desire to use semantic web technologies for interoperability, information aggregation and

validation of specifications created with UML and/or XML schema tools. Linked Models include the Dtype ontology that specifies

datatypes required for dealing with OWL representations of data structures based on the XML schema.

Several ontologies have been produced for sensor observation services [53]. For example, the Semantic Sensor Network Ontol-

ogy (SSN) describes sensors in terms of capabilities, measurement processes, observations and deployments [6,55]. SSN focuses

mainly on tabular data, i.e. Sensor Data Sheet, and considers Observation as a social construct (a subclass of the class Situation). An

ontology for ecological observational data (OBOE) defines the notion of scientific observation as a unifying concept for capturing

the basic semantics of ecological data [34]. Observations are distinguished at the level of the entity (e.g., location, time), and the

characteristics of an entity (e.g., height, name, color) are classified as data.

Many biomedical ontologies available at BioPortal include a class named datatype [4]. These include: the NanoParticle On-

tology (NPO) [65], the Health Level Seven Reference Implementation Model [17], the Syndromic Surveillance Ontology [64],

the Microarray and gene expression data ontology (MO) [38], the Phylogenetic ontology [47], and the National Cancer Institute

Thesaurus [39]. Unfortunately, the representations and semantic meanings of the term datatype across these resources are not

consistent. For example, MO defines DataType as “Primitive data types found in computing languages such as float, boolean, etc.”

Image and Data Quality Assessment Ontology (IDQA) [21] defines Data Type as “Superclass for different type of data: data itself

and images (TS)”. Such representations are very domain-specific and not always accurate.

Finally, ontologies designed to support data mining studies, e.g., the Data Mining OPtimization ontology (DMOP) [9,19,28] and

Data Mining Workflow ontology (DMWF) [29], include representation of datatypes only on a basic level. Thus there is a limited

number of formal representations of data types and these representations are not sufficiently generic to ensure cross-domain

interoperability required by data mining research, and particularly mining of complex biomedical data. We have developed

OntoDT to address the need for a consistent representation of datatypes across various domains.

4. Design and implementation

The design of the OntoDT ontology follows best practices in ontology engineering, such as the OBO Foundry principles, which

are widely accepted in the biomedical domain [60]. These include ontology completeness, the absence of multiple inheritance,

the absence of orphan classes, extensibility, the use of formally defined relations, the use of upper-level ontology, orthogonality

with other ontologies, version management, a unique identifier space, and others. OntoDT is developed to be complementary to

and integrated with state-of-the-art ontologies for representing scientific knowledge. This ensures interoperability with other

resources and facilitates cross-domain reasoning.

We used the information artifact ontology (IAO) as the upper level ontology [20]. IAO has been designed to support the rep-

resentation of information entities, and it is compliant with the basic formal ontology (BFO) [3] and the OBO relational ontology

(RO) [52,61]. There are several other upper level ontologies, i.e. SUMO [40,62], DOLCE [12], but they are focused on modeling

primarily real world entities. In contrast, OntoDT aims to represent information content entities, such as datatypes. Such entities

have different properties compared to the real world objects. They do not occupy a physical space and they do not have physi-

cal dimensions. Therefore, we adopted the IAO framework for the representation of information content entities that stay in a

relation of aboutness with the corresponding real world entities. This framework enables a formally defined representation of

data (as information content entities) and its semantic meaning (what entity this data is about). In this way, we achieve a firm

ontological foundation for the proposed representation of datatypes, operations on datatypes and datatype properties.

The use of an upper level ontology and a set of widely accepted formally defined relations eases the interoperability of OntoDT

with other external ontologies, e.g., the Software Ontology [63], where possible. OntoDT re-uses existing ontological resources,

such as Open Biomedical Ontologies [42]. For example, it reuses the OBI ontology [41], i.e., the class OBI:0000658: data repre-

sentational model. Classes that are reused in OntoDT are imported following the Minimum Information to Reference an External
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Table 1

OntoDT competency questions.

Qn Query

1 What is the set of characterizing operations for a datatype X?

2 What is the set of datatype qualities for a datatype X?

3 What is the value space for a datatype X?

4 What is the set of datatypes that have a datatype quality X?

5 What is the set of datatypes that have a characterizing operation X?

6 What is the set of datatypes that have a datatype quality X and characterizing operation Y?

7 What are the aggregated datatypes that have an aggregate generator property X?

8 What is the set of aggregate properties for an aggregate datatype X?

9 What are the field components for a tuple datatype X?

10 What is the base datatype for a set/bag/sequence datatype X?

11 What is the base datatype for an extended datatype X?

12 What is the subtype generator for an extended datatype X?

13 What is the set of extended datatypes that have datatype X as their base datatype?

14 What is the set of extended datatypes that are generated by a subtype generator X?
Ontology Term (MIREOT) principle [7]. The ontology is developed in the OWL ontology language using the Protégé tool [48].

OntoDT is open source and is available at http://www.ontodt.com.

For the design and evaluation of OntoDT, we followed a methodology proposed by Grüniger and Fox [16]. Their method-

ology proposes first to define the ontology’s requirements in a form of informal questions (or queries). Next, the terminology

of the ontology (its classes and relations) is specified using some first order logical language (e.g., description logics). The

language must provide the necessary terminology to formally restate the informal competency questions. This allows us to

formulate the competency questions as an entailment queries with respect to the axioms in the ontology. In this way, one can

evaluate the ontology and claim that it is adequate.

The design of OntoDT has been governed by a set of competency questions. Examples of such questions is as follows: “What

is the set of characterizing operations for a datatype X?” and “What is the set of datatypes that have a datatype quality X and

characterizing operation Y?” (see Table 1 for a full list). In order to support the formulated competency questions, OntoDT in-

cludes information on datatypes, datatype properties, characterizing operations, datatype generators, properties of generators

and other support specification entities.

5. The key OntoDT classes

In this section, we describe the key entities for the representation of datatypes. In addition, we discuss the most important

representational issues identified in the process of modeling.

5.1. Datatype and value space

In the OntoDT ontology, the datatype class is modeled as a subclass of the OBI: data representational model class. It defines

the type of data, with the set of distinct values that the data can take, the properties of those values, and the operations on

those values. The datatype class is represented with the has-member relation to the value space specification class and the has-

operation relation to the characterizing operation class. In addition, OntoDT models datatype properties as subclasses of the quality

class and connects them using the has-quality relation. In Fig. 1a, we present the structure of the datatype class and in Fig. 1b

the OWL Manchester syntax of the class definition.

The value space specification class is modeled in OntoDT as a subclass of the OntoDM: specification entity class. It specifies the

collection of values for a given datatype. The value space of a given datatype can be defined in different ways: by enumerating the

values; with axioms using a set of fundamental notions; as a subset of values defined in another value space with a given set of

properties; or as a combination of arbitrary values from some other defined value space by specifying a construction procedure

[23].

5.2. Characterizing operations

A characterizing operation is defined as IAO: directive information entity that specifies those operations on the datatype that

distinguish it from other datatypes having identical value spaces. The characterizing operation of a datatype can be: niliadic,

monadic, dyadic and n-adic (see Fig. 1a). A niliadic operation specifies an operation that yields values of a given datatype. A

monadic operation specifies an operation that maps a value of a given datatype into a value of the given datatype, or into a value

of the boolean datatype. A dyadic operation specifies an operation that maps a pair of values of a given datatype into a value of

the given datatype, or into a value of the boolean datatype. An n-adic operation specification specifies an operation that maps an

ordered n-tuple of values (n > 2), each of which is of a specific datatype, into values of a given datatype. Finally, all characterizing

operation classes have defined subclasses, which represent datatype specific operations.

http://www.ontodt.com


904 P. Panov et al. / Information Sciences 329 (2016) 900–920

Fig. 1. Representation of datatypes in OntoDT. The rectangular boxes represent ontology classes. Unlabeled arrows represent is-a relations, while labeled arrows

have the following meaning: h/o represents has-operation relation, h/q represents has-quality, h/a represents has-attribute, and h/m represents has-member.

Full lines denote existential relations.
5.3. Datatype properties

A datatype property is defined as a quality that specifies the intrinsic properties of the data units represented by the datatype,

regardless of the properties of their representations in computer systems. Each datatype has a set of unique datatype properties.

These include property classes such as: order, numericalness, cardinality, exactness ,equality, and boundedness (see Fig. 1a).

Order is a datatype property that denotes whether there exists an order relation defined on its value space. Numericalness

denotes whether the values in the value space are quantities expressed in a mathematical numbering system. Cardinality denotes

the notion of cardinality of the value space. Exactness denotes whether every value from the value space is distinguishable from

every other value in the value space. Finally, boundedness is a property that denotes the boundaries of the value space.

All datatype property classes have defined subclasses. For example, the boundedness class has the following subclasses:

bounded (bounded below, bounded above) and unbounded (unbounded below, unbounded above).1

5.4. Example of a datatype class: integer datatype

In Fig. 1c, we present the representation of the integer datatype in OntoDT and in Fig. 1d we present OWL Manchester syntax

of the integer datatype class definition. The integer datatype is a subclass of the numeric ordered primitive datatype class and
1 See the OntoDT ontology for the definitions.
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Fig. 2. Representation of extended datatype in OntoDT. The rectangular boxes represent ontology classes. Unlabeled arrows represent is-a relations, while

labeled arrows have the following meaning: r/o represents role-of relation, h/q represents has-quality, h/a represents the has-attribute, and h/m represents

has-member. Full lines denote existential relations.
represents a mathematical datatype, whose value space is composed of exact integral values. It is ordered, unbounded, and exact,

and its values are numeric. Furthermore, the integer datatype is characterized by a set of monadic and dyadic operations. The

monadic operations include the following operations: Equal, InOrder, Add, and Multiply; while the dyadic operations include

the operations: NonNegative and Negate. Finally, we explicitly state that the integer datatype is disjoint with the other numeric

ordered primitive datatypes (real datatype, rational datatype, and scaled datatype).

5.5. Extended datatype

In OntoDT, an extended datatype (named ‘subtype’ in the ISO standard) is defined as a IAO: data representational model that is

derived from an existing datatype by restricting the value space to a subset of the base datatype, while maintaining all operations

(see Fig. 2a and b). The base type denotes the role of a datatype as a parametric datatype on which a generator operates to produce

a new datatype (see Fig. 2b). An extended datatype is defined by a subtype generator that represents the relationship between

the value spaces of the base type and the extended datatype.

In OntoDT, we define the following classes of subtype generators: range generator, selection generator, exclusion generator, size

generator, extension generator, and explicit subtype generator. Subtype generators can change the set of datatype properties valid
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for the base datatype, and this is the reason we do not represent them simply as subclasses of the datatype class. For example,

applying the range generator to an unbound datatype will make it bounded.

Using these notions, we can represent an extended datatype of any previously defined type. For example, by using a range

subtype generator we can place a new upper and/or lower bound on the value space of a chosen base datatype. The positive

integer datatype is an extended datatype of the integer datatype obtained by limiting the value space with a lower bound of zero

(see Fig. 2c).

5.6. Querying OntoDT

OntoDT can be queried using the Description Logic (DL) [1] query plug-in available in the Protégé software. For the purpose

of querying, we classified the ontology using the HermiT 1.3.8 reasoner [18]. The DL queries have the form of class expressions.

It is possible to run various queries that concern the datatypes, datatype components, properties and operations, e.g. “Find all

subclasses of datatype that have as part aggregate generator”; “Find all characterizing operations of integer datatype”; “Find all

datatype qualities of ordinal datatype”; “Find all datatypes that have non-numeric datatype quality and one dyadic operation”.

Below we analyze several queries in more detail.

Example 1. “Find all datatypes that have dyadic arithmetic operations.”

has_operation some ‘dyadic aritmetic operation′

The dyadic arithmetic operation class contains subclasses of arithmetic operations that require two operands. The query

execution returns 5 datatypes that have such operations. These include: complex datatype, integer datatype, rational datatype,

and scaled datatype.

Example 2. “Find all generated datatypes whose generators have a direct access property.”

has_member some (has_quality some ‘direct access property′)

The direct access property is an access type property which determines how component values can be extracted from a given

aggregate-values directly. It has two subclasses: index access and key access. The query execution returns 3 datatypes that have

this property: array datatype, class datatype and record datatype.

Example 3. “Find all datatypes that have dyadic comparison operations and are bounded”.

has_operation some ‘dyadic comparison operation′ and has_quality some bounded

The dyadic comparison operation class contains subclasses of comparison operations that require two operands. The bounded

class is a datatype property that characterizes bounded datatypes and has two subclasses. The query execution returns 2

datatypes that have this property: enumerated datatype and ordinal datatype.

6. The OntoDT datatype taxonomy

In the OntoDT ontology, we define a taxonomy of datatypes (see Fig. 3). The top-level ontology classes include primitive

datatypes, generated datatypes, and user defined datatypes. Primitive datatypes are defined by explicit specification and are in-

dependent of other datatypes. Generated datatypes are syntactically and semantically dependent on other datatypes, and are

specified implicitly with datatype generators. User defined datatypes are defined by a datatype declaration and allow defining

additional identifiers and refinements to both primitive and generated datatypes. At the lower levels, the datatypes are distin-

guished with respect to their datatype properties. In this section, we describe in more detail all three major classes of datatypes.

6.1. Primitive datatype

A primitive datatype is-a datatype whose value space is defined either axiomatically or by enumeration [23]. All primitive

datatypes are conceptually atomic and therefore are defined in terms of well defined abstract notions. According to the definition

of a datatype, each primitive datatype class has a set of datatype properties, a set of characterizing operations, and a value space

specification.

The ISO 11404 standard defines twelve primitive datatypes, some of which are defined as datatype families.2 In the OntoDT

ontology, we model all primitive datatypes from the standard as classes (see Fig. 3). The classes of primitive datatypes can be

further instantiated by specifying additional parameters that are different for each class of primitive datatypes. For example, to

define an instance of the real datatype, we additionally need to specify the radix and the factor, which taken together, describe

the precision to which values of the datatype are distinguishable. Both radix and factor are represented as subclasses of the value

expression class.
2 The discrete (or state), enumerated, character, date-and-time, scaled, real, and complex datatypes are defined as datatype families, while the mathematical

datatypes (boolean, ordinal, integer, and rational) and the void datatype are defined atomically.
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Fig. 3. The OntoDT datatype taxonomy. The rectangular boxes represent ontology classes. Unlabeled arrows represent is-a relations.
Example. In Fig. 4, we present an example of representation of one subclass of primitive datatype – the discrete datatype. The dis-

crete datatype has the following datatype properties: unordered, non-numeric and exact (see Fig. 4a). Additionally, this datatype

has one characterizing operation (equal). The instances of the discrete datatype differ between each other in the discrete-value-list

specification. It is specification entity that specifies the discrete-value identifiers for the datatype.

For example, if we want to describe, formally represent and reason about datasets, we would need to represent the datatypes

describing the data examples contained in the datasets. If we take the well known Iris dataset3 from the UCI repository [2], we

can formally represent datatypes describing the Iris data examples by defining instances of OntoDT datatype classes.

Here, we show a representation of the datatype representing the Iris-class attribute, as an instance of the discrete datatype

class (see Fig. 4a). It has as member a discrete-value-list specification, which includes three discrete-value identifiers: ‘Iris Setosa’,

‘Iris Versicolour’, and ‘Iris Virginica’. Finally, in Fig. 4b, we present the OWL Manchester syntax of the Iris class datatype instance.

6.2. Taxonomy of primitive datatypes

We propose a taxonomy of primitive datatypes,4 with respect to the datatype properties (see Fig. 3). At the first level, with

respect to the numeric property, we distinguish between numeric primitive datatype and non-numeric primitive datatype. In addi-

tion, we define the void datatype class as a primitive datatype representing an object whose presence is required, but carries no

information.

On one hand, at the second level of the taxonomy with respect to the order property, we distinguish between numeric ordered

primitive datatype and complex datatype.5 Numeric ordered primitive datatype has four subclasses: real datatype, scaled datatype,

integer datatype, and rational datatype.

On the other hand, we distinguish between non-numeric ordered primitive datatype and non-numeric unordered primitive

datatype. Non-numeric ordered primitive datatype has three subclasses: date-and-time datatype, enumerated datatype, and ordi-

nal datatype. Non-numeric unordered primitive datatype has three subclasses: character datatype, discrete datatype, and boolean

datatype.

6.3. Generated datatype

A generated datatype is a datatype that is defined with a datatype generator. A datatype generator is an IAO:directive information

entity, which specifies the conceptual operation on one or more datatypes which yields a datatype [23]. It specifies the criteria

for the number and properties of datatypes to be operated upon. Next, it defines a construction procedure which creates a

new value space from the value space of the element datatypes. Finally, it specifies the set of characterizing operations for the

resulting datatype.
3 Iris dataset: https://archive.ics.uci.edu/ml/datasets/Iris, accessed 7.12.2014.
4 Definitions of all primitive datatype classes, presented in this section, are given in the ontology.
5 A complex datatype represents complex numbers and is an unordered datatype.

https://archive.ics.uci.edu/ml/datasets/Iris
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Fig. 4. Representation of the discrete datatype class and instance in OntoDT. The rectangular boxes represent ontology classes. The rectangular boxes with

dashed lines represent instances. Unlabeled arrows represent is-a relations, while labeled arrows have the following meaning: h/o represents has-operation

relation, h/q represents has-quality, i/o represents instance-of, and h/m represents has-member. Full lines denote existential relations. Dashed lines denote

relations between instances.
Each of the datatypes from a collection of datatypes, to which the datatype generator is applied, is called a paramet-

ric datatype. An important characteristic of all datatype generators is that they can be applied to many different parametric

datatypes. Parametric (or component) datatypes in OntoDT are modeled as roles of datatypes.

In general, we distinguish between two groups of generators: aggregate generators and non-aggregate generators. Aggregate

generators generate datatypes whose values can be decomposed, while non-aggregate generators generate datatypes whose values

are atomic. This leads to two main groups of generated datatypes: aggregate datatypes and non-aggregate datatypes.

6.3.1. Aggregate datatypes

An aggregate datatype (or a structured datatype) is a generated datatype, each of whose values is made up of values of other

datatypes (parametric or component datatypes) joined together by an aggregate generator. An aggregate generator is a datatype

generator that specifies the algorithmic procedure applied to the value spaces of the component datatypes to yield the value

space of the aggregate datatype, and a set of characterizing operations specific to the generator. The component values of an

aggregate value are accessible through characterizing operations.

Subclasses of aggregate generator in OntoDT include: the record generator (or tuple generator), the class generator, the set

generator, the bag generator, the sequence generator, the array generator, and the table generator. Every aggregate generator defines

a separate aggregate datatype class6: record datatype, class datatype, set datatype, bag datatype, sequence datatype, array datatype,

and table datatype.

Aggregate datatypes are distinguished by properties that describe the relationships among the component datatypes, the

relation between each component and the aggregate, and the sets of characterizing operations. The aggregate specific properties

are independent of the component datatype properties. They are defined as qualities of the aggregate generator. The aggre-

gate specific properties include the following quality classes: homogenity, aggregate size, uniqueness, aggregate-imposed identifier

uniqueness, aggregate-imposed ordering, access type, recursiveness, structurness, and component mandatoriness.

Example. In Fig. 5a, we present an example of the record datatype (also called a tuple datatype). The record generator specifies

the procedure for generating the record datatype and has a set of aggregate generator properties. These include properties such
6 See OntoDT for the definitions of all aggregate datatypes.
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Fig. 5. The record datatype in OntoDT. The rectangular boxes represent ontology classes. The rectangular boxes with dashed lines represent instances. Unla-

beled arrows represent is-a relations, while labeled arrows have the following meaning: h/o represents has-operation relation, h/q represents has-quality, i/o

represents instance-of, h/m represents has-member, h/i represents has-identifier, and r/o represents role-of. Full lines denote existential relations.
as: heterogenous, unordered aggregate,non-unique values, fixed size, and key access. The values of the record datatype are hetero-

geneous aggregations of values of the component datatypes. Each aggregation has one value for each component datatype. The

component datatypes are keyed by an identifier and are organized in a field-list. Each field component contains a unique identifier

of the component and its datatype. Finally, in Fig. 5b, we present the OWL Manchester syntax of the record datatype class.

In Section 6.1, we presented an example of datatype representation of the class attribute of the Iris dataset, which is an

instance of a primitive datatype. Here, we present an example of a record datatype instance, describing data examples from

the Iris dataset (see Fig. 5a). The Iris-record instance inherits all the characterizing operations, and datatype qualities from the
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Table 2

Statistical metrics for the OntoDT ontology.

Metrics Value

Class count 417

Axioms count 3086

Disjoint classes axioms count 115

Equivalent classes axioms 27

SubClassOf axioms 761

Object properties count 14

Annotation axioms count 1606

DL expressivity ALCHOIQ(D)
parent class. Additionally, the Iris-tuple datatype has a specification of the component datatypes. For example, the Iris field-list

contains Iris-field-component instances for each component datatype. Each component specification includes an identifier (e.g.,

‘sepal length’) and denotes the datatype of the component (e.g., real(f:def,r:def), where f:def and r:def represent the fraction and

radix parameters needed to define an instance of a real datatype class). Finally, the class component is described by the Iris-class

datatype instance discussed in Section 6.1.

6.3.2. Non-aggregate datatypes

A non-aggregate datatype is a generated datatype that is specified by a non-aggregate generator. Examples of non-aggregate

datatypes include: the choice datatype, the pointer datatype, and the procedure datatype. A choice datatype is a non-aggregate

datatype, each of whose values is a single value from any of a set of alternative datatypes. A pointer datatype is a non-aggregate

datatype, each of whose values constitutes a means of reference to values of another datatype and are atomic. A procedure

datatype is a non-aggregate datatype, each of whose values is an operation on values of other datatypes and is atomic.

6.4. Taxonomy of generated datatypes

We propose a taxonomy of generated datatypes (see Fig. 3), by using datatype properties and properties of aggregate gen-

erators.7 At the first level, we distinguish between non-aggregate datatypes and aggregate datatypes. At the second level, if we

focus only on the aggregate datatypes, with respect to the homogenity property, we distinguish between a heterogenous aggregate

datatype and a homogenous aggregate datatype. Heterogenous aggregate datatype has three subclasses: a tuple datatype, a class

datatype, and a table datatype.

At the third level, if we focus only on a homogenous aggregate datatype, with respect to the size property, we distinguish

between a homogenous aggregate datatype with variable size and an array datatype (which has fixed size). At the next level, with

respect to the aggregate ordering property, we distinguish between a homogenous unordered aggregate datatype with variable

size and a sequence datatype (which is ordered). Finally, homogenous unordered aggregate datatype with variable size has two

subclasses: a bag datatype and a set datatype.

6.5. User defined datatypes

A user defined datatype is a datatype that is defined by a type specification [23]. A type specification defines a new datatype that

refers to an existing datatype or a datatype generator. This specification can be used to rename an existing datatype, to define

a new datatype and to define a new datatype generator. It includes a type identifier, a type-parameter list and a type definition.

Examples of defined datatypes in OntoDT include the labeled graph class and its two subclasses: a tree datatype and a Directed

Acyclic Graph (DAG) datatype, a natural number datatype, a modulo datatype, a bit datatype and others.

7. Ontology evaluation

We assess the quality of OntoDT from three different aspects. We analyze a set of ontology metrics; assess how well the

ontology meets a set of predefined design criteria and ontology best practices; and assess the ontology with respect to a set of

competency questions.

A variety of ontology metrics is available for assessing ontologies [15]. We used statistical ontology metrics from the Protégé

software [48] and the BioPortal web service [4], such as the number of classes, the number of axioms, the number of disjoint

classes, the number of equivalent classes, the number of annotation axioms, and others. The values of these statistical ontology

metrics for the OntoDT ontology are presented in Table 2. The Description Logics (DL) expressivity [1] of the ontology language

defined by the ontology is ALCHOIQ(D).
7 Definitions of all generated datatype classes are given in the ontology.
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In the design and implementation phases of ontology development, we used a set of predefined ontology best practices and

design criteria. After the ontology was constructed, we assessed it against these principles in order to see how the finalized on-

tology fits them. We concluded that OntoDT fits to the assessment criteria from the OBO Foundry and other commonly accepted

ontology engineering criteria. The results of the evaluation are summarized in Tables A.1–A.4 of the Appendix A.

Following the methodology for the design and evaluation of ontologies proposed by Grüniger and Fox [16], we specified a set

of competency questions in the design phase. We evaluated the ontology after the implementation phase against the competency

questions as an entailment queries with respect to the axioms in the ontology and concluded that the ontology is adequate. In

Section 5.6, we showed examples of formalized queries expressed as Description Logic class expressions.

8. Use cases

In this section, we present three use cases of the OntoDT ontology. The first use case is about the use of OntoDT as a mid-level

ontology by the ontology of core data mining entities (OntoDM-core). In the second use case, we present how OntoDT is used for

annotating and querying dataset repositories. Finally, in the third use case we discuss the use of OntoDT for representation and

annotation of bio-informatics datatypes.

8.1. Use of OntoDT as a mid-level ontology by the OntoDM-core ontology

In data mining, the data used for analysis are organized in the form of a dataset. Every dataset consists of data examples. An

individual data example has its own structure described with a datatype. The datatype describes the type of data contained in the

data examples, with the set of distinct values they can take, their properties and operations. The task of data mining is to produce

some type of a generalization from a given dataset (i.e., predictive model, set of patterns, clustering, probability distribution). A

data mining task is solved by using a data mining algorithm, which is implemented as a computer program and when executed

takes as input a dataset and gives as output a generalization. In this use case, we show how the OntoDT ontology can be used in

context of describing the domain of data mining.

8.1.1. The OntoDM-core ontology

OntoDM-core is a domain ontology that defines the most essential data mining entities such as dataset, data mining task, gen-

eralizations, data mining algorithms, and constraints [45]. It provides a representational framework for the description of mining

structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and

constraints, based on the type of data. For this purpose, OntoDM-core uses the OntoDT ontology as a mid-level8 ontology for the

representation of datatypes.

8.1.2. The role of OntoDT in OntoDM-core

The OntoDT ontology has a key role in OntoDM-core [45, see Fig. 2]. In OntoDM-core, the data is modeled using a data

specification entity. It describes the datatype of the underlying data and is connected to the OntoDT datatype class via the

is-about relation. In this way, the OntoDM-core ontology exploits the OntoDT mechanism for representing arbitrary complex

datatypes, in the context of representing the mining of structured data.

In the case of datasets, the datatype information is needed to specify the type of data contained in the dataset. For the case of

data mining tasks (predictive modeling, pattern discovery, probability distribution estimation, clustering), the information about

a datatype is needed to specify on which type of data the data mining task at hand is applicable. For the case of generalizations

(patterns, models, probability distributions, clusterings), the information about a datatype is needed to specify on which type of

data the generalization is defined. Finally, a datatype information is important in order to provide a recommendation of a set of

applicable data mining algorithms given a specific dataset.

8.1.3. Data mining datatypes

For the data mining domain, the OntoDT ontology provides a set of data mining specific datatypes which are derived from

the OntoDT basic datatypes by subclassing. These include: tuple of primitives (record of primitive components), set of discrete

datatype, sequence of real (time series), labeled graph with boolean edges and discrete datatype nodes, tree of discrete datatype

nodes, Directed Acyclic Graph (DAG) of discrete datatype nodes and others. Furthermore, OntoDT provides a flexibility to define

an arbitrary datatype, that can later be used to define a specific data mining task, applicable only to that datatype. For example,

the hierarchical classification task [58] can be only applied to data having a record of primitive components on the descriptive

side and a labeled graph (or tree) with boolean edges and discrete datatype nodes on the target side. Consequently, a set of

applicable algorithms on a dataset are all algorithms that can solve a data mining task on that dataset.
8 A mid-level ontology serves as a bridge between more general entities defined in the upper level ontology and the low-level domain entities from the domain

ontology.
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Fig. 6. OntoDM-core dataset taxonomy obtained by using the OntoDT datatype taxonomy. The labels on the arrows denote the datatypes used to define the

dataset types. The meaning of the labels is presented in the legend.
8.1.4. Taxonomy of datasets

In Fig. 6, we show the taxonomy of datasets from OntoDM-core that was obtained by using the OntoDT taxonomy of datatypes.

At the first level of the taxonomy of datasets, we have the unlabeled dataset (a dataset that has only descriptive data and is usually

used for clustering and pattern discovery tasks) and the labeled dataset (a dataset that has both descriptive and output/target data

and is usually used for predictive modeling tasks).

At the second level of the unlabeled dataset taxonomy, we distinguish between a feature-based unlabeled dataset and a

structure-based unlabeled dataset. A feature-based unlabeled dataset is a dataset that has record of primitives as the underly-

ing descriptive datatype. A structure-based unlabeled dataset is a dataset that has some aggregate datatype (other than record

of primitives) as the underlying descriptive datatype.

At the second level of the labeled dataset taxonomy, we distinguish between a labeled dataset with primitive output and a

labeled dataset with structured output. The first type can have any primitive datatype as its output data specification, while the

second type can have an aggregate datatype on the output side. Both dataset types can have an arbitrary datatype on the de-

scriptive side.

If we focus only on labeled datasets, the taxonomy can be further extended based on the datatypes on the descriptive and

output part of the data. The labeled dataset with a primitive output class is extended with two subclasses: feature-based labeled

dataset with primitive output and structure-based labeled dataset with primitive output. The first subclass has a record of primitives

on the descriptive side, while the second subclass can have any aggregate datatype (other than record of primitives) on the

descriptive side. Feature-based labeled datasets with primitive output are further extended based on the type of primitive output.

This includes the following subclasses: regression dataset (having a real datatype as output), binary classification dataset (having

a boolean datatype as output), and multi-class classification dataset (having a discrete datatype as output).

In analogy, the labeled dataset with structured output class is extended with two subclasses: feature-based labeled dataset with

structured output and structure-based labeled dataset with structured output. The first subclass has a record of primitives on the

descriptive side, while the second subclass can have any aggregate datatype (other than record of primitives). Feature-based

labeled datasets with structured output are further extended based on the type of structured output. This includes the following

subclasses: multi-target prediction dataset (having as output datatype a record of primitives), multi-label classification dataset

(having as output datatype a set of discrete), feature-based time series prediction dataset (having as output datatype a sequence of

reals), and hierarchical classification dataset (having as output datatype a labeled graph with boolean edges and discrete nodes).

Finally, a multi-target prediction dataset is further extended depending on the primitive datatypes that compose the record. This

includes the following subclasses: multi-target regression dataset, multi-target binary dataset, and multi-target multi-class dataset.

To summarize, in this use case we showed how the OntoDT ontology is used by a domain ontology of data mining. Further-

more, OntoDT has a key role in data specification, which is then base for specifying datasets, data mining tasks, generalizations,

and data mining algorithms. OntoDT supports the retrieval of suitable DM algorithms for a dataset with the specified datatype

properties. Finally, we showed how the structure of the OntoDT taxonomy of datatypes can be used to produce a taxonomy of

datasets.
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8.2. Annotation and querying machine learning dataset repositories using OntoDT

There is a large number of datasets, used for different machine learning and data mining tasks, available on-line. The best

known dataset repository for machine learning is the UCI Machine Learning Repository9 [2]. It stores more than 300 datasets

used for the empirical analysis of machine learning algorithms. The datasets in the repository are annotated with several de-

scriptors, including: machine learning task (classification, regression, clustering, other), attribute type (categorical, numerical,

mixed), and datatype (multivariate, univariate, sequential, time series, text, domain-theory, other). The descriptors used in this

repository are not based on any taxonomy (or ontology) of machine learning tasks, nor taxonomy of datatypes, which limits their

applicability and interoperability. For example, one cannot describe a multi-target prediction dataset, whose data examples have

as target/class part a tuple of values instead of just one value, as is the case for a traditional predictive modeling dataset. Here,

we show how OntoDT can be used for annotation of datasets with datatype information, and show how the annotations can be

used to query dataset repositories.

8.2.1. Annotation scheme

We propose a scheme for annotating machine learning and data mining datasets with information about datatypes using

classes from the OntoDM-core and the OntoDT ontology. From the OntoDM-core ontology, we use the class for representing

datasets (OntoDM-core: DM-dataset) and the class that contains the specification of the dataset (OntoDM-core: dataset specifica-

tion), which is connected to the DM-dataset class via the is-about relation. A dataset specification includes information about

the datatype of the data examples by using relations to the classes from OntoDT. The OntoDT taxonomy of datatypes was used to

produce a taxonomy of datasets (see Section 8.1).

To show the benefit of using the OntoDT ontology, we annotated 193 instances of labeled datasets,10 used in predictive mod-

eling experiments by Kocev et al. [30, see Tables 3–5] and Madjarov et al. [35, see Table 1]. In the experiments, one dataset was

used for several different learning tasks. We represented each variant of a dataset in a concrete learning setting as a dataset

instance. All different variants of the same dataset were grouped under the same dataset class (as instances of that class). For

example, the EDM dataset [27] has 16 continuous descriptive attributes and 2 continuous target attributes. This dataset was

used for the tasks of multi-target regression, multi-target classification (using the discretized target attributes), and traditional

regression and classification for both target attributes separately. We represent all 6 variants of this dataset as separate dataset

instances of the EDM dataset class, as each dataset instance is characterized by a different datatype.

In Fig. 7, we present an example annotation of one dataset instance of the EDM dataset, which has continuous descriptive

attributes and two continuous target attributes. Each labeled dataset instance is described by a labeled dataset record datatype,

which is a subclass of the record datatype with the distinctive feature that it contains only two field components, one describing

the datatype on the description side and one the datatype on the target side. In that sense, the dset:EDM-MCT dataset instance is

described by the labeled dataset record datatype instance containing an instance of the record of real datatype in both descriptive

and target field components.

8.2.2. Inferred ontology

After annotating the dataset instances with OntoDT terms, we imported the annotations in the ontology using the Populous

tool [25]. Next, we performed reasoning using the HermiT reasoner version 1.3.8 [18] and produced an inferred ontology that

was used for running queries about datasets and datatypes.11 By using reasoning, some of the knowledge that was implicitly

encoded in the ontology was made explicit. The transitivity of the is-a relation is one example of the implicit knowledge built

inside the ontology. This allows us to ask queries about datatypes that are higher in the taxonomy and the result would include

all of its subclasses as well. For example, if we would query for datasets that have some homogenous aggregate datatype on the

output/target side, by using the inferred ontology, we would get all datasets that contain target datatypes that are subclasses of

the homogenous aggregate datatype class to the lowest levels as answer of our query. In this case, this would include the set

datatype, the bag datatype, the sequence datatype, and the array datatype.

8.2.3. Querying annotated dataset repositories

We queried OntoDT by using the OWL2Query Protégé plug-in [43], which employs SPARQL-DL [59]. The OWL2Query plug-in

is a conjunctive query, meta-query and a visualization engine that facilitates the creation of SPARQL queries using an intuitive

graph based syntax and evaluates them by using an OWL-API compliant reasoner [31]. In addition, we also used the built-in

SPARQL Protégé engine to run SPARQL queries.

For example, a query “Give me all labeled datasets that have a record datatype on the output/target side” can be encoded in

SPARQL-DL as follows:

Q(datasetClass) : −PV(is-about, ?datasetSpecInstance, ?datasetInstance),

PV(has-member, ?datasetSpecInstance, ?datasetDtypeInstance),
9 URL: http://archive.ics.uci.edu/ml/datasets.html, accessed 02.12.2014.
10 The annotations of the datasets are available on the ontology web page.
11 The inferred ontology is available on the ontology web page.

http://archive.ics.uci.edu/ml/datasets.html
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Fig. 7. Annotation of datasets using OntoDT. An example of a EDM dataset instance. The rectangular boxes represent ontology classes. The rectangular boxes with

dashed lines represent instances. Unlabeled arrows represent is-a relations, while labeled arrows have the following meaning: i/o represents the instance-of

relation, h/m represents has-member, h/i represents has-identifier, i/a represents is-about, and r/o represents role-of. Full lines denote existential relations.

Dashed lines denote relation between instances.
PV(has-member, ?datasetDtypeInstance, ?fieldListInstance),

PV(role-of, ?fieldComponent, ?targetFieldDatatypeInstance),

PV(has-member, ?fieldListInstance, ?fieldComponent),

T(‘labeled dataset record datatype′, ?datasetDtypeInstance),

T(‘field list′, ?fieldListInstance),

T(‘labeled dataset target field component′, ?fieldComponent),

T(‘record datatype′, ?targetFieldDatatypeInstance),

T(?datasetClass, ?datasetInstance),

SCO(?datasetClass, ‘DM-dataset′).

where PV is a property value query atom, T is a type query atom, and SCO is a subclass of query atom. The result of executing

this query is a list of 18 dataset classes, which have instances with a record datatype on the output side. Without the OntoDT

annotations, and the inferred ontology axioms, provided by the reasoner, it would be difficult to retrieve datatype information

about labeled datasets from the repository.

This use case demonstrates that OntoDT provides logically consistent descriptors for annotating machine learning datasets

and facilitates information retrieval about the datasets. This approach can be generalized and extended to annotate and query

arbitrary datasets, learning tasks, and algorithms with datatype information (e.g., for semantical annotation in the OpenML

platform12[66]). Furthermore, by using the ontology one can search the annotated datasets depending on the datatype. OntoDT

can thus serve as a reference model for the consistent annotation of dataset repositories with datatype information.

8.3. The representation of bioinformatics datatypes

OntoDT is a generic ontology and it allows easy extensions to represent domain specific datatypes. This can be done by directly

extending the OntoDT datatype taxonomy and defining the semantic meaning of the domain datatypes by linking them to the

corresponding entities in domain ontologies. For example, we can define an amino-acid sequence datatype as a subclass of the

character sequence datatype class (which is a sequence datatype having characters as its base type). Its semantic meaning can be
12 OpenML is a collaboration platform through which scientists can share, organize and discuss machine learning experiments, data, and algorithms.
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Fig. 8. Representation of bio-sequence and bio-sequence record datatypes from BioXSD in OntoDT. The rectangular boxes represent ontology classes. Unlabeled

arrows represent is-a relations, while labeled arrows have the following meaning: r/o represents role-of relation, i/a represents is-about relation, and h/m

represents has-member relation. Full lines denote existential relations, while dashed lines denote universal relation.
defined via the is-about relation to the amino acid sequence entity provided by the National Cancer Institute Thesaurus [39]. In

this way, OntoDT can be used for representation of bioinformatics datatypes.

Currently, BioXSD is used to define the basic bio-informatics types of data [26], but it inherits the limitations of XSD (see

Section 2). BioXSD does not support arbitrary datatypes and it does not provide a clear framework for the representation of the

semantic meaning of the data. We propose to enhance the representation of bioinformatics datatypes by exploiting the rigorous

taxonomy of datatypes defined in OntoDT and the framework for the representation of semantic meanings adopted by OntoDT

following the RDF data cube vocabulary [51]. OntoDT is fully interoperable with OBO bio-ontologies because it was developed by

following the OBO Foundry recommendations (see Section 4) and therefore it fully supports the representation of the semantic

meaning of the data by the corresponding entities defined in domain-specific bio-ontologies.

For example, the BioXSD datatype sequence represents a string of 1-letter coded nucleotides or amino-acids. A sequence record

is a datatype containing a sequence, and optionally some metadata about the sequence (for the purpose of identification). The

semantic meanings of the terms sequence and nucleotide are curtail for the capturing of the semantic meaning of the data of

the datatype sequence. However, this datatype sequence is not explicitly linked to the classes nucleotide and amino-acid defined

in the ChEBI ontology [5], which is recommended by OBO Foundry as a reference ontology.

In Fig. 8, we present the extension of OntoDT to represent the bio-sequence and bio-sequence record datatypes from

BioXSD. We represent the bio-sequence datatype class as a subclass of the character sequence datatype class with the defined
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semantic meaning in the NCI Thesaurus [39] and EDAM ontology [13] (see Fig. 8a). In order to define the nucleotide and amino

acid sequences datatypes, we define two subclasses of the character datatype class: nucleotide character datatype and amino acid

character datatype. In order to define their semantic meaning, we explicitly link them to the nucleotide and amino acid classes

from the ChEBI ontology [5]. Consequently, the bio-sequence datatype class has two subclasses: nucleotide sequence datatype and

amino acid sequence datatype. Furthermore, both datatypes have two subclasses, depending on whether they include ambiguous

bases (in the case of nucleotides) or ambiguous and additional residues (in the case of amino acids). For example, the nucleotide

sequence datatype class has two subclasses: nucleotide sequence with ambiguous bases (relates to general nucleotide sequence in

BioXSD) and nucleotide sequence without ambiguous bases (relates to nucleotide sequence in BioXSD).

We represent the bio-sequence record datatype class as a subclass of the record datatype class (see Fig. 8b). This datatype

is defined by a record generator and the bio-sequence-field-list. As defined in BioXSD, the datatype contains a bio-sequence as

a mandatory component and a set of metadata (such as name, note, species, translationalData, reference, inlineBaseQuality) as

non-mandatory components. In OntoDT, we model the bio-sequence field component class is as a role of the bio-sequence datatype

(defined previously).

Having in mind that we can have sequences of nucleotides and amino acids, bio-sequence record datatype has two subclasses:

nucleotide sequence record datatype and amino acid sequence record datatype. Both datatypes have two subclasses, depending

on whether they include ambiguous bases (in the case of nucleotides) or ambiguous and additional residues (in the case of

amino acids). For example, nucleotide sequence record datatype has two instances, nucleotide sequence record with ambiguous

bases (relates to general nucleotide sequence record in BioXSD) and nucleotide sequence record without ambiguous bases (relates

to nucleotide sequence record in BioXSD). In a similar way, we can define other datatypes from BioXSD as subclasses or instances

of the OntoDT datatypes.

This use case demonstrates that OntoDT provides logically consistent representation of bioinformatics datatypes from BioXSD

and enables an accurate representation of the semantic meanings of the data of the specified datatypes. OntoDT has been de-

signed as a generic and comprehensive ontology of datatypes and consequently any datatype from other resources can also be

represented by OntoDT. We suggest that OntoDT can serve as a reference model for the consistent representation of datatypes

used within biomedical domains and wider.

9. Discussion

In this section, we discuss several aspects of OntoDT that concern its integration with other ontological resources and the

potential application areas and in e-science. First, we discuss the integration of OntoDT with other ontologies. Next, we focus

on a discussion of how OntoDT can be used to enrich BioXSD annotations. Finally, we discuss the prospects of using OntoDT for

web-services, cloud computing and laboratory automation.

Integration of OntoDT with other ontologies. OntoDT adopts a modular approach where not only the information about

units of measurements but also other operational information and the semantic meaning of the underlying data is captured and

maintained separately. Following best practices, OntoDT clearly separates the semantic meaning of the data from the data itself

and its structure. Data processing becomes increasingly complex and accurate recording of how the data have been processed is

vital for data analysis. A modular approach for the recording of information is flexible, extensible, and also reduces the complexity

of the underlying representational model. The employed designing approach (see Section 4) facilitates a seamless integration of

the relevant resources. For example, OntoDT can be easily linked with ontologies of quantities and units (e.g. [32,49]) and also

with ontologies defining operations on the data, e.g. OntoDM-core [45].

Using OntoDT annotations in BioXSD. BioXSD uses a combined approach of a pure XML Schema annotated by a data-type

ontology using Semantic Annotations for Web Services Description Language (WSDL) and XML Schema [54]. SAWSDL defines a

set of extension attributes for the WSDL and XML Schema definition languages. Application of attributes allows the description

of additional semantics by using references to conceptual semantic models, e.g., ontologies. BioXSD datatypes are annotated

with terms from the EDAM ontology [24] using SAWSDL. In the same way, BioXSD datatypes can be annotated with OntoDT

terms. By adding OntoDT annotations to BioXSD, we would allow the web services (such as MaxAlign, ProP, NetNES, BLAST and

others) that use BioXSD as representational formalism, to utilize the information about datatypes, their properties and operations

that can be performed on them, which is not available when using only EDAM ontology annotations.

For example, by annotating the datatype bio-sequence record from BioXSD with terms from the OntoDT ontology, the web

services would have the information that bio-sequence record is in fact a record datatype that is heterogenous and has com-

ponents (in this case sequence as mandatory, and other non-mandatory ones), its values are unordered, it has fixed size, and

each component can be accessed by keying. In addition, web services can also get information about the possible operations on

that datatype (in this case equality operation, field select operation and field replace operation). Finally, web services could also

get information about the properties and operations on the component datatypes. For example, for the mandatory component

bio-sequence, web services can get the information that it is a homogeneous ordered datatype with variable size where each

element can be accessed by its position.

Service oriented architectures. With the increasing complexity of scientific workflows, where different web services and

other computer programs have to exchange data, there is a need for a reference model of data and datatypes. An ontology of

datatypes is a step towards such a model. The ontology could be used to enhance various IT solutions, for example the orches-

tration in service oriented architecture, cloud computing and laboratory automation. Orchestration describes the automated
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arrangement, coordination and management of complex computer systems and services [14]. In order to identify what software

components or services are capable of performing a required task, the orchestration module needs to know the functionality

of the software, it inputs and outputs, including datatypes it can operate with. The OntoDT ontology, we propose in this paper,

could provide more structured information about the datatypes and consequently can improve the orchestration of software

components and services.

Cloud computing. Another application area for OntoDT is cloud computing. Cloud computing is a network-based service that

involves a large number of computers connected through a communication network, i.e., the Internet.13 The popular models of

cloud computing service include software as a service and infrastructure as a service. It is vital for the functioning of such ser-

vices to specify the available resources, including what datatypes they can work with. Therefore, the sophisticated description

of datatypes provided by OntoDT could contribute to the improvement of cloud computing. There are a number of open stan-

dards under development, with the aim of delivering interoperability and portability of cloud software.14 OntoDT can contribute

towards the representation of datatypes within those standards.

Laboratory automation. Finally, another potential application domain for OntoDT is laboratory automation. Laboratory au-

tomation typically comprises many different automated laboratory instruments, devices, software and methodologies to expe-

dite the efficiency and effectiveness of scientific research in laboratories. Unfortunately, those laboratory instruments, devices

and software often do not communicate with each other and with the users effectively. One of the reasons is that they operate

with different and sometimes proprietary datatypes that other components of the laboratory workflow cannot input directly. A

reference model of datatypes would contribute to the solution of this serious problem. OntoDT could thus be used to improve

the communication between various pieces of equipment and software in a biological laboratory.

10. Conclusions

In this paper, we have presented OntoDT, a proposal for a generic ontology of datatypes. The ontology is based on the ISO/IEC

11404 standard for datatypes in computer systems. It defines the key entities for representation of datatypes, such as datatype,

extended datatype, datatype properties, datatype characterizing operations, datatype value space. In addition, it defines also

the support entities needed for representing specific datatypes. The ontology has been constructed by following best practices

in ontology design so that it is complementary and can be easily integrated with other state-of-the-art ontologies for science.

Finally, the ontology has been evaluated from several different aspects, such as ontology metrics, assessment in terms of design

principles, and assessment in terms of competency questions.

The contributions of this paper are as follows. First, we propose a taxonomy of datatypes based on the properties of datatypes

and their structure. Second, we show the suitability of OntoDT for querying about datatypes. Next, we demonstrate how OntoDT

is crucial in defining the key entities in the domain of data mining such as data specification, data mining task, generalization

and implicitly data mining algorithm, and we show how the OntoDT taxonomy of datatypes is used to produce a taxonomy of

datasets. Finally, we demonstrate how OntoDT is used for annotation of dataset repositories and for representing bioinformatics

datatypes.

We envision several dimensions of further development of OntoDT that would overcome the current limitations of the on-

tology. First, we want to further establish the connection with domain ontologies and represent domain dependent semantic

datatypes for different domains (e.g., biology, ecology, economics) using the OntoDT ontology and the semantics of the domain

entities from domain ontologies. Next, we want to populate the OntoDT ontologies with more complex datatypes such as text,

audio, images, video, and to include their specific operations and properties. Finally, we would like to link the representation of

data formats and datatypes by re-using the ontologies that deal with different data formats (e.g., EDAM) and integrating them

with OntoDT.
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Table A.1

Scope and structure assessment.

# Principle Assessment

1 Coverage OntoDT provides a representation of datatypes commonly used in programming languages and software. It is

based on the ISO/IEC 11404:2007 standard for datatypes.

2 Upper-ontology OntoDT uses the classes from IAO, which has the BFO ontology as an upper-level ontology.

3 Relations OntoDT uses relations defined in RO, IAO and OBI. The relations defined in IAO and OBI are candidates for

inclusion into RO.

4 Ontology reuse OntoDT reuses classes and relations from OBI and IAO.

5 Modularity OntoDT is part of the OntoDM ontology, which contains also the OntoDM-core and the OntoDM-KDD

subontologies. It can be used independently.

6 Use of disjoint classes In OntoDT, we extensively use disjoint class axioms.

7 Use of single inheritance In OntoDT, each class has only one superclass. This reduces the potential inconsistency and errors in reasoning

processes.

8 is-a completeness All OntoDT classes are connected via the is-a relation. There are no orphan classes.

9 Domains and ranges for

relations

Imported relations from RO, IAO and OBI have defined ranges and domains.

10 Inverse relations Most of the imported relations from RO, OBI, and IAO have defined inverse relations.

11 Orthogonality with other

ontologies

OntoDT is orthogonal to other ontologies already lodged within OBO.

12 Instantability More extensive population of the ontology with instances is planned for the future.

Table A.2

Naming and vocabulary assessment.

# Principle Assessment

1 Ontology language OntoDT is expressed in the W3C standard Web Ontology Language OWL-DL.

2 Use of annotation properties We reuse the OBI consortium defined meta-data (http://obi-ontology.org/page/OBI_Minimal_metadata) to

provide additional semantic annotation of the classes and relations.

3 Label annotations We use label annotations to provide human readable names of classes and relations in the ontology.

4 Ontology namespace OntoDT has its own namespace http://www.ontodm.com/OntoDT#. The classes and relations that are

imported from other ontologies have kept their source ontology namespace and ID.

5 Ontology term IDs The IDs of the ontology terms include a combination of an ontology module ID and a multiple digit code. For

the OntoDT we use OntoDT_xxxxx.

6 Multi-lingual capabilities At this moment the OntoDT ontology does not provide multi-lingual capabilities.

7 Naming conventions The ontology uses set of naming conventions provided by the OBO Foundry.

8 Referencing external classes The external classes are referenced by using the MIREOT principle.

Table A.3

Documentation and collaboration assessment.

# Principle Assessment

1 Definitions Most of the OntoDT classes have textual definitions that are taken from the ISO/IEC 11404. They are regularly

updated and revised. The source of the definitions is properly referenced in the annotations.

2 Documentation The ontology is documented on its dedicated web page.

3 Collaboration efforts OntoDT still does not participate in any collaboration effort.

Table A.4

Availability, maintenance and use assessment.

# Principle Assessment

1 Use of reasoners We use the HermiT reasoner to test the class and relations consistency and for producing the inferred ontology.

2 Openness and availability OntoDT is open and is available in its web page http://www.ontodt.comand additionally at BioPortal

(http://bioportal.bioontology.org/).

3 Versioning For tracking the changes in the ontology we use the industry standard Subversion tool.

4 Users of the ontology The ontology is reused by the OntoDM-core ontology.

5 Maintenance The ontology has a dedicated person that cares about its maintenance.

6 Handling of obsolete classes Deleted classes in the OntoDT class hierarchy are listed under the obsolete class, so that applications based on

them can still use the terms. The domain terms that have been collected so far but are still not represented

in the ontology are listed under the non-curated class in the OntoDT class hierarchy.
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