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Abstract 

From the noisy information bombarding our senses our brains must construct percepts that 

are veridical – reflecting the true state of the world – and informative – conveying what we did 

not already know. Influential theories suggest that both challenges are met through 

mechanisms that use expectations about the likely state of the world to shape perception. 

However, current models explaining how expectations render perception either veridical or 

informative are mutually incompatible. While the former propose that perceptual experiences 

are dominated by events we expect, the latter propose that perception of expected events is 

suppressed. To solve this paradox we propose a two-process model in which probabilistic 

knowledge initially biases perception towards what is likely, and subsequently upweights 

events that are particularly surprising. 
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The Computational Challenge of Perception  

Our sensory receptors are constantly bombarded with enormous quantities of information that 

change rapidly across space and time [1]. This information is noisy, partly due to imperfect 

signal transmission in the brain but also due to indeterminacy in the signals that reach our 

receptors. For example, parts of an object we need to grasp may be visually occluded or the 

sound of the metro may mask our conversational partner. The brain must make sense of this 

noisy information rapidly if it is to be useful – it is not worthwhile to generate perceptual 

representations of a cup slipping from our fingers if it is already broken on the floor, or to 

register that an acquaintance has smiled when passing us if they are halfway down the street.  

Our sensory systems face two principal challenges. First, they must construct percepts that 

are veridical – reflecting what the world is actually like. A largely accurate model of the 

extracranial world – including the external environment and our own and others’ bodies – is 

often important for effective behaviour. Second, the perceptual representations must be 

informative – telling the organism what it needs to know for updating its models and beliefs, 

i.e., what it did not already know. Theories from psychology and neuroscience propose that 

we achieve these aims by using expectations about what we are likely to encounter to shape 

our perceptual experiences. However, current models explaining how expectations render 

perception either veridical or informative are mutually incompatible. While the former propose 

that our perceptual experiences are dominated by events we expect, the latter propose that 

perception of expected events is suppressed. In the present article we first outline this conflict, 

before considering how ideas from research on learning and inference may suggest a two-

process model that could resolve the paradox – enabling us to use our expectations to 

optimise both veridical and informative perception. More broadly, we argue it is essential that 

models from learning and perception begin to inform each other systematically and outline 

ways in which they could be coordinated.    
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Current Theoretical Accounts of Perceptual Optimisation 

Bayesian Theories 

In recent years researchers have been particularly interested in how we use our expectations 

(see Box 1) to generate veridical perceptual experiences rapidly in an inherently ambiguous 

sensory world. According to Bayesian theories, we increase the accuracy of our perceptual 

representations by biasing them in line with our prior expectations [2,3]. For example, if we 

are currently at work, the figure waving at us in a shady corridor is more likely to be a colleague 

than an old classmate from school. Biasing perception in line with these statistical likelihoods 

will render it more veridical on average, even if such a mechanism may lead to occasional 

misperceptions when these regularities are disrupted. In other words, while it may seem 

counterintuitive that biases make perception more accurate, this will in fact often be true given 

high sensory noise and indeterminacy. If we simply perceived the input without bringing to 

bear our prior expectations, we may not perceive the correct words through a noisy radio 

transmission or road signs at dusk, and perception would often be too slow to be useful. This 

optimisation may be realised through mechanisms that alter the weights on sensory channels 

– effectively turning up the volume (or ‘gain’) on expected relative to unexpected inputs 

([2,4,5]; Figure 1, Key Figure).  

These Bayesian theories are supported by psychophysical findings that we are biased to 

report the presence of predicted over unpredicted events [6,7], are more sensitive to their 

presence [8–10], and perceive them to have higher clarity [11]. For example, concave faces 

are frequently misperceived to have the more typical convex structure ([12,13]; see Figure 1) 

and we report ambiguously-coloured fruit in line with its typical colour [14]. Aberrations in these 

illusions are observed across certain clinical conditions – e.g., schizophrenia and autism – and 

interpreted as evidence for atypical sensory prediction [12,15–17]. At the neural level, 

concurring evidence demonstrates higher fidelity representations of expected sensory events 
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[5,18] and sensory representations biased towards expected inputs [19] – with neural biases 

predicting the perceptual biases [13]. 

Cancellation Theories 

These Bayesian theories provide a plausible account of how we may generate veridical 

representations of our world rapidly, but in fact they conflict with ‘Cancellation’ models (also 

referred to as ‘Dampening’ theories) that have been popular across cognitive sciences for the 

last few decades [20–22]. These models outline how – given the limited capacity of our 

sensory systems – we focus on the most informative perceptual information, prioritising 

unexpected sensory inputs that signal the need for belief updating and new courses of action. 

This function is achieved by suppressing (not facilitating) processing of expected inputs. For 

example, when reaching out to grasp a cup, reduced processing of the predicted sensation of 

the cup touching our fingers enables us to focus on unexpected events – like the cup slipping. 

This prioritisation enables rapid updating of models – and new courses of action where 

appropriate – when the unexpected occurs. These theories are especially prominent in the 

action control literature (although are also found in the wider sensory cognition literature [22–

24]), focusing on the benefit of cancelling out predictable self-generated inputs, and thereby 

optimising detection of potentially crucial externally-generated (unexpected) signals [25]. Such 

a cancellation mechanism is thought to explain why we cannot tickle ourselves ([20]; Figure 

1).  

The theories have drawn wide support from studies reporting that predictable tactile, auditory 

and visual inputs evoke lower sensory cortical activation [20,22,23,26–28] and are perceived 

less intensely [21,29–31, see also 32] than unexpected inputs. The theories are particularly 

popular in computational neuropsychiatry where aberrant cancellation mechanisms are 

thought to generate atypicalities in the sense of agency in delusional populations [28,33] – by 

making the (predictable) outcomes of actions appear unusually intense.   
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A Perceptual Prediction Paradox? 

While Bayesian and Cancellation theories in isolation appear adaptive ways to optimise 

veridical and informative perception, respectively, they cannot both be true. When it comes to 

the contents of perception, monolithic Bayesian theories that suggest perception is dominated 

by what we expect conflict with monolithic Cancellation theories making the opposite 

suggestion. This conflict extends to adaptive arguments that motivate both kinds of theories – 

what we expect to be there is more likely, but also less informative. As such, any mechanism 

that uniformly biases what we perceive towards or away from our expectations forfeits one 

adaptive advantage to secure another. Most work reporting support for Bayesian or 

Cancellation theories simply ignores the paradox, only outlining reasoning why predicted 

information may be perceptually facilitated or attenuated, respectively [e.g., 2,3,25]. However, 

given the conflict, these models can only be partially complete and it is necessary to consider 

how the paradox can be resolved.   

The first possibility to consider is that there is in fact no paradox – Bayesian and Cancellation 

mechanisms both operate, but in different domains. For example, it may be adaptive for 

Bayesian mechanisms to optimise veridical perception of the wider environment using sensory 

context and for Cancellation mechanisms to optimise informative perception during action 

using sensorimotor predictions. Indeed, while Cancellation models are found in the broad 

sensory cognition literature [22–24] they predominate in action disciplines. However, we 

believe the adaptive arguments and recent empirical results do not support domain-specific 

interpretations.  

First, the Bayesian adaptive arguments – rapid generation of veridical perception from noisy 

inputs – would appear just as useful during action. For example, if we are drinking a cup of 

coffee in a dark kitchen before sunrise, we will generate more veridical estimates of our 

ongoing actions if we are biased to perceive the sight of a moving hand approaching a cup. 

Similarly, a Cancellation mechanism that highlights the unexpected in a limited capacity 
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system would prove useful regardless of whether we predict the contents of perception on the 

basis of action or not. If we open our front door to a tiger lying on our sofa, we need to update 

our beliefs (and act).  

Second, the theoretical distinction between sensorimotor and other predictions may not 

actually be supported by empirical discrepancies. The paradigms and analyses typical in the 

two fields differ. Specifically, Bayesian accounts frequently consider evidence of event 

detection and quality of neural representation [e.g., 5,7], whereas Cancellation accounts are 

typically supported by reports of perceived intensity and quantity of neural activation [e.g., 

20,21]. Use of paradigms and analyses popular in the normative sensory cognition literature 

can yield similar support for Bayesian models in action [18,34–36]. There are also findings 

from the wider sensory cognition literature that may be incompatible with a Bayesian account, 

e.g., cancelled neural responses for predicted visual sequences in lateral occipital cortex 

[22,23].  

We believe that some of the apparent differences between fields have arisen due to 

distinctions in other processes that do operate differently during action [37]. Most notably, 

there are mechanisms that attenuate perception during action but do not differentially influence 

expected and unexpected events. They are therefore dissociable from prediction mechanisms 

(Box 1). For example, when we move, we suppress all tactile input to a moving effector – 

regardless of whether or not it is a predicted outcome of action [29,38–40] – perhaps due to 

spinal gating mechanisms ([41]; see also ‘active inference’ theories [42–44]). Studies cited in 

support of Cancellation theories frequently compare either the processing of predictable 

events presented during action against events when passive, or processing where the action 

and sensory events overlap less due to temporal misalignment. Generalised suppression 

mechanisms may therefore contribute to effects found in studies using these comparison 

conditions. We thus contend that to isolate the functional influence of predictive mechanisms 

on perception of action outcomes, empirical efforts should directly compare predicted and 

unpredicted events always in the presence (or absence) of action [34,45]. 
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To sum, it seems an unlikely solution for Cancellation logic to prevail in action disciplines and 

Bayesian logic elsewhere. Well-controlled experiments must further interrogate any 

differences in the action domain, but we assume here that both veridical and informative 

perception will be required in any perceptual domain – even if there turn out to be nuances in 

relative weighting of the two requirements in the action domain [see also 46].  

A Theoretical Resolution: The Opposing Process Theory  

Given that we believe current Bayesian and Cancellation logic is mutually incompatible, here 

we consider a possible resolution that allows the adaptive functions of both models to co-exist. 

We propose that insights can be gained by considering reasoning and findings from the 

learning and inference literature. Learning theorists are concerned with understanding how 

we update our models of the world rather than the contents of perception per se. This field 

has made great progress in establishing how we establish causal relationships between 

events (model uncertainty, e.g. Does being in the arctic predict the sight of polar bears? 

[47,48]). This type of inference is different from perceptual inferences, which relate instead to 

how we establish what is present in our environment right now (sensory uncertainty, e.g. Am 

I looking at a polar bear? see [48]). However, it is undisputed that learning and perception are 

related. As already outlined, our current learnt models about environmental contingencies 

inform perceptual processing, and we will only update our learnt models to the extent that we 

perceive information that contradicts them [49]. 

Learning models frequently focus on the concept of ‘surprise’, developing formal descriptions 

of the extent to which an event is unexpected. Computational models often operationalise 

surprise as the ‘Kullback Leibler Divergence’ (KLD) – a quantity that captures the change 

between beliefs about environmental states before (priors) and after (posteriors) the sensory 

evidence in question has been processed. Importantly, surprise operationalised in this way 

reflects both the deviation between the modal value of the prior and posterior, and the 
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‘precision’ (inversely related to variance) of these representations. In other words, it 

conceptualises the extent of overlap between prior and posterior distributions (see Figure 1). 

When surprise is high (or overlap is low), the organism should learn [50]. KLD thus captures 

the intuition that you cannot be very surprised when you did not have strong expectations in 

the first place, nor can you be surprised by an event unless you are sure it actually occurred.  

The learning and inference literature reports processes that operate upon the receipt of 

surprising information that would influence one’s propensity to learn about it. These processes 

would also influence perception. For example, a number of learning studies demonstrate 

phasic catecholamine release shortly after the presentation of surprising events, which is 

thought to mediate learning by relatively increasing the gain of sensory inputs [47,51–54]. 

These findings are relevant to understanding perception because higher gain on sensory 

inputs would be hypothesised to generate higher intensity percepts [42,55]. It has also been 

demonstrated [50,54] that we saccade towards events generating surprise (high KLD) – 

perhaps facilitated by phasic catecholamine release [52,54]. Again, this work is of relevance 

to the perception community because foveating surprising events will increase visual 

processing of them. Due to crossmodal spatial representations, such saccades may also 

increase perceptual processing in other sensory modalities [56]. These surprise-driven 

mechanisms may thus alter perception by highlighting unexpected, informative inputs, thereby 

aiding learning and updating of models. When surprising input is detected they allow ‘double 

checking’ of sensory evidence or increase vigilance to further change to support adaptive 

model updating.  

We therefore propose that a two-process model could resolve the paradox concerning how to 

optimise perception so that it is both veridical and informative. As outlined in Bayesian 

accounts, perception is first biased towards prior knowledge. This aids the rapid generation of 

largely accurate perceptual experiences. This process may be operational from the point at 

which predictions can be made, that is, often before an event is presented, through pre-

activation of expected units [1,57,58]. However, when an event generates high surprise – as 
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would be the case only for highly ‘unexpected’ events (see below) – later processes are 

triggered (after event presentation) which highlight these events. Engaging these processes 

only for events that are sufficiently surprising will highlight unexpected inputs but only insofar 

as they are likely informative for model updating. As such, the rationale motivating 

Cancellation models – that focusing on unexpected inputs makes perception more informative 

– applies only when the unexpected inputs are likely informative rather than the result of noise. 

In short, we broadly perceive what we expect unless we have good reason not to, in which 

case we then divert extra perceptual processing resources to the unexpected to determine 

whether it is appropriate to update our models. This account therefore allows the adaptive 

functions of both Bayesian and Cancellation models to co-exist, but shifts the ‘Cancellation’ 

mechanism to a later process engaged only by some unexpected stimuli. 

Empirical Support 

There is some evidence supporting the hypothesis that opposing perceptual processes 

operate on different timescales. One psychophysical study demonstrates that while expected 

events are perceived with greater intensity 50 ms after presentation, this bias reverses by 200 

ms such that unexpected events are perceived with greater intensity [45], and an 

electroencephalography (EEG) study suggests neural switches may operate at similar 

timescales [59]. The classically reported expectation suppression effects in the EEG and 

magnetocephalography (MEG) signal – perhaps more in line with Cancellation accounts – are 

also most commonly found ~150 ms after event presentation or later [30,60–63, see also 64]. 

Furthermore, an interesting EEG study in 12-month-old infants [65] found early enhanced 

perceptual processing of expected events, followed by a later switch to favouring unexpected 

events. Note that the timescale of this switch was longer than in the adult studies, in line with 

frequent reports of temporal shifts in developmental work.  

Empirical support for this account can also be gleaned from differences in the types of 

paradigms in which evidence for Bayesian and Cancellation theories is typically reported. 
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Behavioural paradigms demonstrating facilitated perception of the expected often present low 

intensity stimulation in signal detection paradigms, where we hypothesise this later opposing 

process would not operate [e.g., 7]. That is, ‘unexpected’ inputs in these studies have low 

sensory precision and any surprise is correspondingly low (Figure 2). Conversely, paradigms 

reporting cancellation often present unexpected events that will generate high surprise and 

therefore where we predict the later process would operate. For example, in the action 

literature researchers often measure perceived intensity of suprathreshold stimulation rather 

than detection of noisy events [e.g., 21,29]. Under situations of strong (or intermediate) 

surprise and time insensitive methods (e.g., fMRI) it is less clear which process should 

dominate and therefore more difficult to form hypotheses about the influence of expectation 

on perceptual processing, so in principle it could also explain null findings under these 

conditions [66].     

Future Directions 

We propose that future work should focus on temporally sensitive experiments to address this 

theory directly. It would be interesting to apply the model to a range of related disciplines 

currently employing conflicting Bayesian and Cancellation models (Box 2) – e.g., those 

examining language processing, pain perception and social cognition, and ask whether it can 

account for the complex perceptual symptomatology present in a range of psychiatric 

disorders.  

Additionally, it will be essential to determine the level of overlap and interaction between 

expectation-based and attention-based processes when examining these mechanisms. 

Predictive mechanisms – operating on the basis of probabilities – may appear conceptually 

similar to attention mechanisms given that many classic attentional manipulations are 

probabilistic, e.g., the Posner cueing task [67] and oddball paradigms [68]. However, recent 

work aiming to differentiate these concepts considers attentional mechanisms to be only those 

that highlight task-relevant input [4,5,7,18,66,69–70]. Dissociating mechanisms in this way 
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may be key, given that many apparent effects of probability could be the result of confounded 

task-relevance – events that are likely are also often important for task performance [7]. 

Nevertheless, there may sometimes be good reason to define attention in a different way (e.g., 

labelling effects of task-irrelevant probabilities on neural gain as ‘attentional’ [71]), which may 

often render attention and expectation mechanisms conceptually and empirically 

indistinguishable. Regardless of how one draws the distinction, under our theory mechanisms 

generating upweighting of the expected and unexpected rely on probabilistic information, not 

information about task–relevance, but empirical efforts must examine whether the operation 

of these mechanisms is altered when task relevance is manipulated.  

We have focussed on how specific insights from learning research could resolve the 

perceptual paradox generated by Bayesian and Cancellation reasoning. However, the 

learning literature is much broader than that outlined above and there are a multitude of 

bidirectional insights to be gained between communities. Currently researchers who study 

perception frequently assume that expectations reflect conditional probabilities present in the 

environment, but a more accurate characterisation must account for how we learn and 

represent these probabilities. For example, debate has raged around which cues we learn 

about – those that precede predictable versus uncertain information [72–74] – and 

neurochemical processes have been characterised that may operate differently according to 

whether uncertainty itself was expected [47]. The boundary conditions are difficult to establish 

concerning the expectedness of uncertainty [47], but if a distinction proves crucial for these 

learning mechanisms it is likely to prove crucial for perception as well. For example, we have 

focussed on opposing processes that operate on the timescale of hundreds of milliseconds 

within a single event, but sensory processing may also change on a longer timescale 

according to whether we believe we are in an environment where the cue-outcome mappings 

are stable or volatile [47,75]. Conversely, our Opposing Process theory makes specific 

predictions about processes that will bias perception in specific ways. Learning models will 

benefit from considering these kinds of influence on perception, because it will be our 
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perception of events – rather than their objective properties – that determines whether and 

how we update models.  

If the Opposing Process theory turns out to be broadly correct, it will also be important to test 

a precise model of exactly how these processes operate. Predictive coding schemes [76–78] 

of cortical functioning have become popular in recent years and our Opposing Process theory 

could certainly be implemented using such a scheme. Under predictive coding assumptions, 

the brain contains distinct units representing the ‘best guess’ about the outside world 

(hypothesis units) and the discrepancy between these guesses and incoming sensory 

evidence (error units). Perception unfolds as error units pass information up the cortical 

hierarchy and hypotheses are refined to reflect the external world with greater fidelity. It is 

frequently suggested that the contents of perception reflect activity across the hypothesis 

population [10]. If this is the case, our theory would predict that hypothesis units are initially 

more strongly weighted towards what we expect – i.e., ‘representational sharpening’ [77]. 

However, when agents encounter events that elicit surprise, increased gain on surprising 

inputs leads to high fidelity representations of unexpected events across hypothesis units – 

perhaps with even greater fidelity than when events unfold as we thought they would. 

Therefore, we suggest that future work establishes precisely how to fit the Opposing Process 

theory into predictive coding frameworks.  

Finally, insights into the role of expectations in shaping our perceptual beliefs will likely be 

gained by separating out the relative influences of decisional, primary perceptual, and 

memory-based processes on perceptual decisions [79–82]. Importantly, most psychophysical 

experiments reported in this article are unable to dissociate these processes, and when we 

discuss ‘perception’ we cannot know whether it is primary perceptual processes that are 

influenced, or whether it is subsequent memory- or response-based representations of that 

information. For instance, does our expectation that a face has a convex structure lead us to 

perceive convexity at the specific time when the ambiguous stimulus is presented, remember 

it as being convex, or simply report it as being so – because we believe it should have been? 
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The paradox associated with the need to generate beliefs that are both veridical and 

informative holds regardless of the specific stage in processing. Certainly decisional 

processes likely contribute to many of these observed effects [83] and it will be necessary to 

dissociate the influences empirically, as well as determine the functional role played by the 

different processes.    

Concluding Remarks  

Bayesian and Cancellation models in the cognitive sciences suggest that observers use 

probabilistic knowledge to optimise perception in a rapidly changing and ambiguous world. 

Though appealing, monolithic Bayesian and Cancellation models cannot both be true, yet they 

are both apparently supported by large bodies of literature. Here we have outlined a theory 

that could solve this paradox, with separate mechanisms using the same probabilistic 

knowledge to bias perception initially towards what is likely, and subsequently to upweight 

events that elicit high ‘surprise’. Future experiments should crucially examine the timecourse 

of processing, as well as consider whether ‘unexpected’ events in fact elicit high surprise (see 

Outstanding Questions). This account therefore allows the adaptive functions of both 

Bayesian and Cancellation models to co-exist and articulates necessary experiments to 

determine how top-down knowledge shapes perception of the world around us in health and 

disease.    
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Box 1. The Nature of a Prediction 

This article considers a sensory prediction to be a sensory state expected by the organism on 

the basis of environmental regularities. Concurring with predictive coding frameworks, we 

assume that predictions have a mean and variance. When moving our index finger towards a 

piano key we might have a highly ‘precise’ tactile prediction, such that we expect stimulation 

only on the index finger. However, depending upon our ability, our auditory prediction may be 

less precise, expecting probably a G, but possibly an F or A. These predictions will typically 

be learnt through domain-general processes based upon contingencies and contiguities 

between sensory states and any predictive information [49] – e.g., actions performed [84] and 

other sensory states [2,3]. We assume a cognitive definition of prediction – with effects 

mediated by representations of what is probable, even if these probabilities are represented 

by subpersonal mechanisms (i.e., not necessarily consciously accessible).  

We also assume that it is theoretically possible to have no predictions at all, such that the prior 

distribution is flat. Adults will rarely exhibit flat priors – even if listening to the avant-garde 

composer John Cage for the first time we will hold expectations on the basis of other 

composers and likely establish the new set of regularities swiftly. Nevertheless, when 

comparing perception of expected and unexpected events it is frequently queried where to 

place a hypothetical ‘neutral’ (flat) baseline. For example, when poorer processing of expected 

relative to unexpected events is found, researchers often consider whether the processing of 

the expected has been enhanced or the unexpected suppressed [22,85]. We concur that this 

is an interesting discussion point but is likely to represent a quantitative rather than qualitative 

distinction. If one holds an imprecise flat prior then all sensory events are equally unexpected, 

but will be less surprising than events that are wrongly predicted. Whether events yield 

sufficient surprise to trigger the opposing process will not require simply knowing the shape of 

the prior distribution but also the shape of the posterior distribution, and therefore there may 

not be a qualitative distinction between processing in wrongly predicted and unpredicted 
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scenarios. Considering the level of surprise (KLD) evoked by sensory events may prove a 

fruitful line of enquiry for drawing hypotheses about these differences.        

Box 2. Wider Applications 

This article has focussed on the literature from low-level visual cognition and action cognition, 

but the Opposing Process model has the potential also to resolve debates and inconsistencies 

in related disciplines. For example, the conflict between Bayesian and Cancellation theories 

is also debated by those examining speech perception, with neural and behavioural findings 

in line with both accounts ([11,86,87]; Figure I). Similar arguments are raised by those aiming 

to understand how we perceive and interpret the actions of others – when we have information 

about their likely underlying intentions [88, see also 89] – and how expectations influence pain 

[90] and threat [91] perception. The reasoning presented in the present article would apply to 

any domain aiming to understand how expectations influence perception. It may therefore 

inform some of these current controversies, as well as related debates in the memory literature 

concerning whether expected or unexpected events should be remembered with greater 

accuracy [92,93]. 

It would be particularly interesting to determine whether the Opposing Process theory could 

also provide a more accurate description of pathological processing in psychiatric and 

neurological disorders. For example, recent predictive coding models propose that unusual 

experiences seen in psychosis could arise because some kinds of predictions (e.g., about the 

self) are weakened and others (e.g., about the external world) strengthened [15]. It may prove 

crucial to consider how altering the balance between different kinds of predictions interacts 

with our suggestions concerning when expected events will be up- or down-weighted. It may 

also help to explain detail-focussed perception [94], atypical learning [75,95] and atypical 

action [96] in autism, all of which have been proposed to relate to atypical sensory prediction, 

and associations between neurochemical and cognitive change in Parkinson’s disease [97].  
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Furthermore, it would be interesting to establish whether current debates concerning the 

influence of event repetition on perceptual processing could be informed with such opposing 

process assumptions [cf. 63,98]. It has been disputed whether repetition of events should 

facilitate or attenuate the neural response, as well as whether it should lead to priming or 

habituation in perception [99,100]. An Opposing Process model may shed light on this dispute. 

Specifically, if a repeated event typically reflects an expected scenario, there may be initial 

biases towards perceiving repetitions followed by later upweighting of surprising non-repeat 

events. Testing this theory would require using time resolved methods in repetition paradigms, 

as well as varying the expectedness of repetition.  
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Figure 1, Key Figure. Existing conflicting theories and a proposed resolution. (a) 

Bayesian theories propose that perception is biased towards what we expect (e.g., a polar 

bear in the arctic) – and therefore, on average, most likely to be true – by increasing the gain 

on expected relative to unexpected units (optimising veridicality). Matrices with higher contrast 

reflect stronger sensory representations (high signal to noise ratio). These models can explain 

illusions when typical regularities are disrupted, e.g., perceiving concave faces to be convex 

(reproduced with permission from [13]). (b) Cancellation theories propose that the limited 

resources of our perceptual systems are devoted to unexpected signals (e.g., an elephant in 

the arctic) that may require us to update our beliefs and perform corrective actions, by 

suppressing – not increasing – expected sensory activity (optimising informativeness). These 

theories have been used to explain why we cannot tickle ourselves. These theories are in 

conflict with Bayesian theories. (c) Our Opposing Process theory proposes a resolution. It 

posits that perception is initially biased towards the expected to aid rapid generation of largely 

veridical experiences. When the input is sufficiently in line with expectations such that any 

deviation is likely attributable to sensory noise, no other process operates. (d) However, if the 

input is different enough from the prediction to generate surprise (high KLD), catecholamine 

release boosts perception of these surprising inputs, thus aiding learning.   
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Figure 2. Dependency of the opposing process on signal strength. (a) When an 

unexpected signal is weak – i.e., low precision – then surprise (KLD) is low and we will typically 

simply continue to perceive what we expect. (b) When an unexpected signal is strong – i.e., 

high precision – then this highly surprising input will generate processes characterised in the 

learning literature that increase sensory gain, upweighting processing of these inputs to aid 

model updating. In this way, unexpected events in our environment that may signal the need 

for model updating are perceptually highlighted, but ‘unexpected’ events that are inline with 

sensory noise (and therefore less informative for model updating) are not. Matrices with higher 

contrast reflect stronger sensory representations (high signal to noise ratio), but relative 

comparisons should only be made within panel (a) or within panel (b) - i.e., all signal to noise 

ratios will be higher in (b). 

 

Figure I, Box 2. Domain-generality. We assume that both veridical and informative perception 

will be required in any perceptual domain, and therefore that the same opposing processes 

operate regardless of whether we generate expectations on the basis of (a) sensory context, 

(b) the actions we perform, or (c) the words and syllables that we hear.  
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