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The Lie group approach to solving differential equations 
Introduction 
Certain ideas recur in many areas of mathematics. One example is groups of symmetries, 
which appear in the Galois theory of equations and in Lie groups. Lie groups are of great value 
in physics, where Noether’s theorem enables us to derive a conservation law for every case in 
which a function known as the Lagrangian is invariant under a one-parameter Lie group. The 
importance of this approach can be seen from the fact that the laws of the conservation of 
energy, linear momentum and angular momentum are all outcomes of Noether’s theorem, 
though they can of course be derived by simpler methods. The full power of Noether’s 
approach is shown in its applications to quantum field theory, where it can be used to find 
conserved currents and charges.  
Despite their central place in mathematical physics, Lie groups are generally regarded as 
requiring a long apprenticeship in the theory of differentiable manifolds and topological 
groups. However, this is not how they arose historically. Sophus Lie was prompted to study 
these structures in the late nineteenth century. He became convinced that the power of Galois 
theory in the investigation of the solutions of algebraic equations could be harnessed to the 
study of differential equations, and could be made to yield equally striking results there. This 
application has been almost forgotten today, or relegated to the province of specialists, but the 
purpose of this paper is to argue that an elementary treatment is both possible and enlightening. 
It is hoped that this treatment will help to motivate students to believe that Lie groups can be 
not only useful, but natural, objects of study, with an intuitive interpretation in terms of 
phenomena that can be visualized at a physical level, certainly in the one-parameter case.  
This paper is not necessarily meant for consumption neat, as it were, by students. However, it 
the author’s hope that it all or part of it might serve as the basis for classroom exposition by 
teachers or lecturers at senior sixth form or first year university levels. The content is based on 
my reading of both classical and modern texts. I have found Cohen [1] to be invaluable. It 
appears to be close to the spirit of Lie’s original papers. A somewhat more concise treatment is 
available in Ince [2, chapter 4]. The present paper aims to cover roughly the ground of that 
chapter, but informed by the more modern approach inspired by the notes of an illuminating 
lecture by Helgason [3]. All of these sources are available online, and can be downloaded free 
from academic electronic resources.   
I have included a discussion section which contains an admittedly conjectural attempt to 
explain, from a heuristic viewpoint, why Lie’s methods work as well as they do.  

Motivation 
Historically, mathematicians sought in vain to find a general method of calculating explicit 
solutions for ordinary differential equations (ODEs) of the form  dy/dx = f(x, y), or 
equivalently, Mdx + Ndy = 0 (where M, N are functions of x and y). By analogy with the 
particular devices used to solve algebraic equations up to the fourth degree, mathematicians 
resorted to looking for particular approaches which would at least suffice to solve specific 
types. Some varieties, such as linear or homogeneous equations, yielded to fairly simple 
treatments.  These methods fell into one of two broad categories: a change of variables in 
which an equation would become separable, or the discovery of an “integrating factor” I which 
would enable I (Mdx + Ndy) to be expressed as a so-called “exact differential”, i.e. in the form 
d(F(x, y)), from which the solution could be found immediately as F(x, y) = const. 
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Lie was inspired by the approach of Evariste Galois, which enabled the solution of an algebraic 
equation to be understood as the application of properties of the group under which the 
equation was invariant, in the sense that the solutions of the equation were permuted amongst 
themselves by elements of the group. Lie discovered that integrating factors for ODEs could be 
calculated once a group of transformations could be specified under which the ODE was 
invariant, in the sense that the elements of the group permuted the solution curves of the ODE 
amongst themselves.  
At first sight it may seem that this approach simply replaced one difficult problem, that of 
finding an integrating factor for an ODE, with another equally difficult one, that of finding a 
group under which it is invariant. However, it turns out that Lie groups do simplify the 
problem, provided one approaches it from a different angle.   
The key idea is to turn the problem on its head. Although one might begin with an ODE and 
seek a Lie group which leaves it invariant, it turns out to be more fruitful to begin by seeking 
Lie groups that act on the real plane, and then finding which ODEs they preserve. Felix Klein 
famously defined a geometry in terms of the group of transformations which left certain 
entities invariant. This leads one in a natural way to look at groups of transformations of the 
real Euclidean plane such as the affine transformations, the rotations about the origin, and the 
group of dilations (in which the position vectors of points are multiplied by a constant). These 
are all Lie groups, though in the case of the affine maps one has to take subgroups to obtain 
one-parameter Lie groups. It turns out that each such group gives rise to not just one, but a 
whole class of differential equations which are invariant under the group in question. Better 
still, it is possible to find the general form of these ODEs explicitly from the group itself.  
So by starting with Lie groups, one automatically finds the solution to whole categories of 
ODEs, whereas starting with an ODE one may only succeed in solving that particular equation. 
The Lie group approach therefore yields great economy of effort. But it does much more than 
this. It provides an underlying mechanism which unites a number of apparently random and 
unconnected methods of finding integrating factors and shows why these methods work. It can 
even be used to show that the two broad categories of the separation of variables method and 
the discovery of an integrating factor, are underlying manifestations of the same principle. This 
paper proposes to explore at an intuitive level the integrating factor methodology. Identifying 
in detail how it equates to the separation of variables would take us too far afield, but we will 
indicate briefly how this arises.  

Vector fields 
We introduce the notion of a one-parameter Lie group acting on the real plane R2, and the 
vector field to which it gives rise, as follows. Imagine that the plane is covered with a thin 
layer of some fluid, which is flowing across the surface of R2 like a river running across its 
flood plain, except that this river is infinitely large so that its flood plain is the whole of R2. 
Imagine also that the flow is in a steady state, so that at each fixed point, the velocity is 
constant over time.  
We make no assumptions about the fluid being like water in any physical sense; it is not, for 
instance, assumed to be incompressible; moreover, we are not interested in the depth, simply 
the horizontal flow velocity at any point. We do, however require that the fluid moves in a 
smooth continuous manner. This means that if you drop a cork into the fluid at some point, its 
subsequent journey is along a curve that is smooth, and that the cork’s velocity varies smoothly 
with time. (The assumptions of smoothness can be made concrete for more sophisticated 
students by specifying that the curves are C∞).  
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At each point of the plane there is a velocity defined, which is constant over time if one focuses 
on a fixed point of the plane. Since velocity is a vector, each point gives rise to a vector. This 
association between points and vectors can be regarded as a map defined with domain as the 
entire plane, which takes a point of the plane onto the vector of the flow velocity at that point. 
This mapping from the plane to the two dimensional vector space of velocities, is called a 
vector field.   

The group of the vector field 
The flow clearly defines a series of what in hydrodynamics are called streamlines. The 
streamline through a point P is the path that a small object such as a cork would take if placed 
at P at some instant, and then allowed to travel with the flow for as long as we like. Intuitively, 
there is a streamline through each point, and two distinct streamlines cannot intersect: if they 
did intersect at a point, it would mean that the flow at that point must be in two directions at 
once, which contracts our assumption that there is a well defined velocity everywhere 
(streamlines may, however, intersect at points where the velocity is zero. We will usually 
exclude such points in what follows). Therefore the streamlines are a congruence of curves, or 
a congruence for short, defined to be a set of curves such that there is one and only one curve 
through each point (again, we may have to exclude certain exceptional points). 
So far, we have defined streamlines as generated only in one time direction, that of increasing 
time, but it is easy to see intuitively that they “go backwards” as well. Reversing the flow by 
taking a flow field the exact negative of the given field would give the other half of each 
streamline. These definitions are consistent, because if the flow takes a cork from point A to 
point B in time t, the reverse flow takes it from B to A in time t.  
It is intuitively clear that for any given time t, there is a map defined from R2 to itself defined 
by the flow of the fluid over time t. The image of a point P in R2 can be envisaged as the 
location of a cork placed in the flow at P at a certain time and carried along in the flow for a 
time t. This is a “nice” map of R2 onto itself (technically, a diffeomorphism of R2). Call this 
map arising from a flow for time t, g(t). When t is zero, g(0) is clearly the identity map, and for 
each t, g(-t) is the inverse of g(t). The maps g(t) as t varies form a group under composition, the 
one-parameter group associated with the flow, and this group behaves under composition like 
the additive group R, because it is clear intuitively that g(s + t) = g(s)○g(t). We refer to this 
group as G. 
 
In the traditional treatments, the vector field is referred to as the “infinitesimal transformation” 
defined by the group. The group itself is referred to as the one-parameter group  “generated” by 
the infinitesimal transformation. The motivation for this definition is that in a certain sense the 
vector field generates the group, in the same way that a single element can generate a finite 
cyclic group. This is because the effect of g(t) is to displace a point sequentially along an 
infinite number of small paths, each one given by the flow velocity at that point.  
In practice, a one-parameter Lie group is usually given in terms of the vector field, that is, the 
infinitesimal transformations that define it, rather than explicitly as a set of functions g(t) for 
real t. Certain vector fields are, as we have mentioned, natural and obvious ones to adopt in the 
plane. The next obvious step is to integrate these infinitesimal transformations and derive the 
functions g(t). This is generally not difficult. The task is made easier by the fact that the 
functions g(t) are uniquely defined by their infinitesimal transformations, as is intuitively clear 
if one thinks of them as fluid motions over a given time interval. However, we will see that in 
order to use these groups to find integrating factors for ODEs, even this explicit construction of 
the group is not essential; only the vector field is required. We will, however, carry out the 
process of constructing the group in the simple instances of Lie groups examined below.  
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The following examples may help to make the concepts clearer.  
Example 1. If the flow is one of constant velocity u parallel to the x-axis, so that the velocity at 
any point is given by v(x, y) = (u, 0), the group it generates is very simple: g(t) takes the point 
(x, y) to the point (x + ut, y), so the group is that of translations parallel to the x-axis. The 
streamlines are the horizontal lines.  
Example 2. Likewise, a flow with constant speed v parallel to the y-axis gives rise to the group 
of transformations h(t) where h(t) takes (x, y) to (x, y + vt). The streamlines are the vertical 
lines.  
Example 3. If the flow is a “rigid” rotation around the origin with unit angular velocity, the 
actual velocity at the point (x, y) is (-y, x). The group is most easily described using polar 
coordinates. The element g(t) takes the point (r, θ) to the point (r, θ + t). The streamlines are 
the concentric circles centred on the origin.  
Example 4. If the flow is directed radially outwards from the origin with velocity equal to the 
radius vector, then v = (x, y). In terms of radial coordinates, dr/dt = r, dθ/dt = 0, so r(t) = r(0)et 
and g(t) takes (x, y) to (xet, yet), the streamlines being the set of straight lines through the 
origin. Since et attains every positive real value, this consists of the group of “dilations” with 
centre at the origin.  
A reader who wishes to follow the argument in the work of, for example, [2], will find a 
different notation. There, the equivalent of our vector field v defined on the plane with 
components   (u, v) at each point, is presented as a set of infinitesimal transformations              
u ∂/∂x + v ∂/∂y. This refers to the fact that u ∂f/∂x + v ∂f/∂y represents the rate of change of an 
arbitrary scalar function of position, f, when the point at which it is evaluated is carried along 
by the flow generated by the vector field. Our notation is simpler, and mathematically 
equivalent.  

Effect of the one-parameter group elements on subsets of R2 
Just as each element of the group maps a point of R2 to another point, so also it maps subsets of 
R2 to other subsets. In particular, it maps any curve in R2 to another curve. Given a congruence 
of curves C, having just one curve through each point, g(t) will always map a member c of C 
into another curve in R2, but in general c will not lie in C. If it is the case for every t that g(t) 
does map a curve of C into another curve of C, we will say that C admits the group G. Given 
an arbitrary curve c in R2 which intersects each streamline in a single point, there is an obvious 
way to create a congruence C which admits G. To be explicit, let C be the set of images under 
g(t) of c, as t varies. C will admit G because if k is a curve in the congruence equal to the 
image of c under g(t), then for another element g(s) of the group, g(s) will take k into 
g(s)(g(t)(c)) = g(s + t)(c). We need to insert one caveat. C will be a congruence provided that 
the flow does not have zero velocity at any point. If, as in examples 3 and 4 above, this 
condition is violated, we must agree to exclude these points from the analysis.  
The congruence of streamlines of G admits G, but trivially, each curve being mapped to itself 
by each element of G. Other examples are more revealing. In example 1, G acts non-trivially 
on the set of vertical straight lines, and in example 2, on the set of lines parallel to the x-axis. 
There are other congruences admitting G, which can all be found by taking a suitable curve and 
taking all its images under G. For instance with example 2, the parabola y = x2 generates the 
congruence consisting of the set of curves y =  x2 + c.  In example 3, the set of lines through 
the origin admits G, and in example 4, the set of circles concentric with the origin admits the 
group, though again, other congruences of curves also admit G.  
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Defining a canonical coordinate on R2 
We can use the idea of congruences admitting G to change the (x, y)-coordinates defining R2 
into a pair of what are called “canonical coordinates” for G. As mentioned earlier, there are 
two alternative routes to solving simple differential equations, those of an integrating factor 
and the separation of variables. If we were following the second option, it would be possible to 
use the canonical coordinates to achieve such a separation. The first step in this procedure 
would be to obtain an equation for the streamlines in the form s(x, y) = c as c varies, and then 
using c as one of the coordinates.  
 
Here, however, we will focus only on the second coordinate, t, defined in the following three 
paragraphs. It turns out that this will provide the key to finding the solutions of certain ODEs, 
namely those whose solution curves admit G. The curves t = constant will in fact provide 
precisely the solutions to such ODEs. However, some of the ideas can be developed in the 
more general context of arbitrary congruences admitting G, and it may be simpler to 
understand what is going on if the principles are first outlined using this approach, narrowing 
the application to ODEs only in the later stages. 
 
Take an arbitrary curve c in R2 which is a section of the streamlines, that is, c intersects each 
streamline in a single point without cutting any streamline twice. Consider the set C whose 
members are the images of c under the elements of G. As outlined above, C will necessarily, 
by its very construction, admit G. There is a natural definition of the points at which t = 0: 
these are just the points lying on the original curve c, which represents the “starting line” for 
defining t. One can imagine setting the clock running at t = 0, and then observing the way the 
curve c is carried forward with time under the motion of the fluid. For each value of t, we will 
see a new curve, that is a new member of C, the image of c under g(t).  
 
As t varies, the images of c will sweep out an area of the plane. By taking also the images 
under negative values of t, we can see that the whole plane will, in general, be accounted for in 
this way (though we may have to exclude some exceptional points or regions). For a given 
value of t, we can observe the set of points (x, y) lying on the appropriate image curve, g(t)(c). 
These are all given the value t for their canonical coordinate. Conversely, for a point (x, y), we 
can find the value of t such that (x, y) lies on g(t)(c). The map from (x, y) to this value of t 
gives a function t(x, y) on the plane.  
 
It is intuitively clear that this map t(x, y) is in general a well-defined function from R2 into R. 
In some cases the function is not well defined, as in example 3. In this case we could take c to 
be the radius extending from the origin along the positive half of the x-axis, but in that case it 
is not possible to define t at the origin, and t takes multiple values elsewhere, since under the 
action of G, the images of the radius will cross any given location at multiple time points. 
However, in this and similar cases we can define t uniquely if certain points are removed, 
leaving an open region of R2.  

In example 1, take c to be the y-axis, x = 0. Then the lines of constant t are the lines parallel to 
this, and for a point (x, y) the t-coordinate is x/u. 

In example 2, a similar result can be found, with the x and y-axes interchanged. 
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In example 3, if c is the line (in polar coordinates) θ = 0, the value of t at (r, θ) is just θ; in this 
case we must exclude the origin and confine the range of values of θ to the semi-closed interval 
[0, 2π). 

In example 4, if c is the circle of unit radius centred at the origin, the value of t at (r, θ) is ln(r). 

 

Finding grad(t) determined by a congruence that admits G  
Given that students may not have encountered the idea of a gradient before, it may be worth 
introducing the topic in heuristic terms. Imagine a relief map which is intended to give the 
height h(x, y) above sea level at points (x, y) within the area of the map. In practice, this is 
done by drawing contour lines on the map indicating the locus of points (x, y) where             
h(x, y) = c, the values of c varying in a regular stepwise manner, with a constant difference 
between neighbouring values. In this context, grad(h) at each point is defined to be the vector 
which points in the direction of the line of steepest ascent at that point, and whose magnitude is 
the gradient, in the usual sense, of a path taken in this direction of steepest ascent. One can 
estimate the direction of grad(h) at any point by taking the direction at right angles to the 
contour lines in the neighbourhood of that point, and its magnitude is then inversely 
proportional to the distance between the contour lines there. Anyone familiar with maps will 
know that “crowded” contour lines mean tough ascents (or descents), whereas widely spaced 
lines indicate relatively flat terrain. It is not too hard to show that the rate of ascent along a path 
in a certain direction is equal to the projection of the gradient vector in that direction, and from 
this it follows that the x and y components of grad(h) are ∂h/∂x and ∂h/∂y. 
This and the following sections are devoted to showing how a function t, related to the group 
parameter, can be defined for the plane when we are given a congruence C which admits G. In 
fact, we will not need to know the whole family C of curves explicitly; we need only have the 
direction of the normal to the curve of the congruence which passes through any given point. 
From this, we may find an expression for grad(t). We then show how this can be solved for t as 
a function of x and y using integration: “solution by quadratures” in the classical terminology. 
In the case where C is the set of solution curves of an ODE compatible with the group, this will 
yield the solutions of the ODE, but for the moment we do not confine ourselves to this case.  
If a curve is used to define the function t as described in the previous section, then the function 
will clearly depend on the choice of the curve c which is taken as the locus of points for which 
t = 0. However, there is one very useful property which always holds whatever curve is chosen. 
Clearly, if we have an expression for c, we will expect to be able to find an expression for the 
curves of the congruence that it generates: they are just the images of  c under the actions of G, 
and from this, t can be calculated. But it turns out that remarkably, we do not need to have an 
explicit form for the curve c to calculate t. We do not in fact require the “global” detail 
embodied in the form of an equation for the whole curve. It is sufficient to have some “local” 
information, in terms of an expression for the normal to the curve at the relevant points of the 
plane.    
Looking ahead to the application to ODEs, this fact is important for in this case, the 
congruence of interest is that of the solution curves to the ODE in question. Given the 
differential equation, it is a simple matter to find the direction of the normal to the solution 
curve through each point; this local information is available to us from the equation in the form 
Mdx + Ndy = 0: the vector (M, N) is normal to the vector (dx, dy) and therefore normal to the 
solution curve through (x, y). (This will not of course in general be the unit normal). It is 
finding the global description, the curve itself, that is the problem.  
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And yet calculating t(x, y) gives precisely a set of solution curves for the ODE, in the form   
t(x, y) = const, so that the Lie group provides the mechanism to lift us from the local to the 
global level. This can be done even if the Lie group is defined in terms of its infinitesimal 
transformations, that is, its vector field. “Solving” the group by finding the form of its finite 
(non-infinitesimal) maps g(t) from the vector field is not required. To anticipate, finding the 
solution curves for the ODE still requires an operation which lifts us from the local to the 
global level, but this can be done by carrying out two integrations, which is conceptually much 
simpler than attempting to find the form of the integral curves direct.  
We have claimed to be able to find the value of t at each point given the normal to the 
congruence curve through that point. As an intermediate step, we will find the value of grad(t), 
the gradient function of t, at each point. Given the gradient, it is relatively straightforward to 
find t, using a method which is given in the following section, involving the two quadratures 
mentioned above. 

The first step is to observe that since by their definition, the curves of the congruence C are the 
curves of constant t, representing the “contour lines” of constant t, grad(t) at a given point must 
be normal to the curve passing through that point. Therefore, if we are given an expression for 
the direction of the normal to the curve, we already have the direction of grad(t). However, this 
is of little use without also knowing its magnitude. For this, we need one additional equation 
involving grad(t). Fortunately, such an equation can be found. In what follows, we give two 
derivations of it. 
Let v be the velocity vector at any point defined by the group action. It is known that for a 
particle moving with a velocity v, the rate at which the value of a function φ(x, y) is changing 
for the particle as it moves across different values of x and y, is v.grad(φ). The rate at which t 
is changing for a particle of the fluid moving along a streamline is therefore v.grad(t). But this 
must equal one, because the way the function t is defined, the rate at which it is changing for a 
particle moving with the fluid is the rate at which time is changing per unit of time, which of 
course is unity, expressing the undoubted truth that time passes at the rate of one second per 
second. Therefore  v.grad(t) = 1, and this is the second equation required to determine grad(t).  
However, since this derivation is somewhat abstract, we give a geometrical picture which may 
make the situation clearer.  
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Figure 1: heuristic proof that grad(t) . v = 1 
 
Suppose we are given two congruence curves for values of t separated by one unit, represented 
by the lines in figure 1. For simplicity, assume that v is constant and that the curves are straight 
lines. This assumption will be dropped below as we go to the limit where the time difference 
tends to zero, but the calculation is simplified and the essential points made clearer if the time 
interval is unity. If point A is carried under the flow to point B in unit time, then the distance 
vector AB is clearly equal to the velocity vector v.  
grad(t) is proportional to the unit normal to the curve at A, represented by the vector u. If the 
two curves are separated by a perpendicular distance δ, then by the definition of the grad 
function, grad(t) has magnitude 1/δ. Thus, grad(t) = u/δ, or u = δ grad(t). 
But δ is equal to the component of the vector AB in the direction of u, so that δ = u . AB, the 
scalar product of the two vectors, and since AB = v, in fact δ = u . v. 

Substituting δ.grad(t) for u, we have δ = δ grad(t) . v, and therefore grad(t) . v = 1.  
If instead of taking a unit time interval we take a small interval Δt, in the limit the assumptions 
that v is constant and that the curves are linear are valid, and the derivation goes through with 
factors 1/Δt which cancel, giving the same result. If a more rigorous proof is needed, this can 
be provided by using a Taylor’s expansion of t(x + uΔt, y + vΔt), where u, v are the 
components of v, and dropping terms of higher order in Δt. Here it is necessary to use the fact 
that the components of grad(t) are ∂t/∂x and ∂t/∂y. 
Now suppose that we have an expression w = w(x, y) giving vectors which are normal to the 
set of curves of the congruence at each point (as noted, these arise naturally in the ODE 
application). We do not require w to be a unit vector. Since grad(t) is normal to the curve 
through a given point, grad(t) = μ.w, for some μ (μ will in general depend on x and y). We also 
know that grad(t) . v = 1. So μw . v = 1, and μ = 1/(w . v).  

 
                                     Finally, grad(t) = w/(w . v)                                                            (1) 

 

v 

t = τ 

t = τ + 1 

δ 

u 
A 

B 
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Since by assumption both w and v are known, we have an expression for grad(t). (1) will be 
crucial to finding the integrating factor for an ODE whose solution curves admit G. 

Incidentally, grad(t) is unchanged if we take a different curve k from the congruence as the 
arbitrary starting point, the locus of points for t = 0. This is because the change is equivalent to 
adding an arbitrary constant to the values of t for the original curve, which does not alter 
grad(t). 
The scalar factor μ introduced above is referred to as an “integrating factor” in the classical 
texts (see [2, p. 27]). 

 
Finding t from grad(t) 

This section gives the final step in the challenge of “solving for t”, that is, of finding the value 
of the function t everywhere, at least up to the addition of an arbitrary constant (and with the 
exclusion, if necessary, of certain exceptional points or areas in which the solution may not be 
well defined). In fact the method of calculating t from grad(t) is perfectly general.  
Reverting to the cartographic analogy with which the concept of the gradient was introduced, 
let h be the height above some datum point, and suppose that one is given the values of grad(h) 
everywhere on some map. One is required to find h, at least up to an additive constant. It is 
possible, given grad(h), to reconstruct h in various ways. One might, for example, take line 
elements orthogonal to grad(h) at each point and join them up in curves, which would represent 
the contour lines, and then ensure that the spacing of the lines was inversely proportional to the 
magnitude of grad(h). However, this is not very precise mathematically, and a better method is 
to use a technique one might call “walking the grid”.  
Start at some datum point, for example the lower left hand corner of the map, which we take as 
the origin (0, 0). Given that we know grad(h) and therefore ∂h/∂x and ∂h/∂y at each point, we 
know how the ground slopes up or down, as we move due East and due North. ∂h/∂x is the 
slope at each point as we go due East, and likewise ∂h/∂y is the slope going due North. We 
want to calculate the height at any given point (x, y), within the area of the map (ensuring that 
both x and y are non-negative).  
Starting at (0, 0), go due East until you reach the point (x, 0), integrating the value of ∂h/∂x 
along the path with respect to x as you go. Integrating the slope in the direction of travel gives 
you the total change in height, by the fundamental theorem of calculus, so the definite integral 
will give you the value of h(x, 0) – h(0, 0).  
Now turn and proceed due North along the path (x, λy), for 0 < λ < 1, until you reach the point 
(x, y), integrating the value of ∂h/∂y with respect to y as you go. As before, the integral of the 
slope will give the change in height, so you have found h(x, y) – h(x, 0).  
Adding this to h(x, 0) – h(0, 0) gives h(x, y) – h(0, 0), and this can be calculated for any point 
(x, y). So h(x, y) is determined uniquely, up so some fixed constant h(0, 0). In the application 
where we are trying to find t from a known functional expression for grad(t), this will give the 
value of t throughout the region of interest, up to an arbitrary constant. Taking a particular 
curve of the congruence and defining it to be the locus t = 0 will determine the value of t for 
each point uniquely.  
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Solution curves of first order ODEs with solution curves admitting G 
Before applying Lie group theory to solving some first order ODEs, we need to sketch an 
intuitive theory of the solution of such equations.  
The general form of a first order ODE is f(x, y, dy/dx) = 0. This can often be solved for dy/dx, 
to give an equation of the form dy/dx = F(x, y). This expresses the fact that if a particular 
solution passes through the point (x, y), then the slope of the tangent to the solution curve at 
that point is F(x, y).  
Intuitively, we can find the whole solution curve that passes through a specific point by 
drawing a little line element (dx, dy) parallel to the tangent to the curve there, that is, a line 
element such that dy/dx = F(x, y). Moving along this line element from the point (x, y) one 
arrives at the “next” infinitesimally close point of the curve, at (x + dx, y + dy). The equation 
tells us that the tangent to the solution curve at this point should be a pair (δx, δy) such that 
δx/δy =  F(x + dx, y + dy), and moving along this we arrive at a further point of the solution 
curve, at (x + dx + δx, y + dy + δy). (This is essentially the argument given in [2, p.13]).  
 
Though not rigorous, this argument should make it plausible that at least for “nice” functions F, 
there is in general just one solution curve that passes through each point in R2. In such cases, 
the set of solutions C is therefore a congruence in R2.  
 
Now for the payoff. We will show that if we can find a group G such that C admits G, then we 
can find an explicit solution to the ODE. In fact, this will amount to finding what in traditional 
language is called an “integrating factor” for F.  

At first sight, it may seem that this gets us no further forward, because in order to prove that C 
admits G, we apparently need to know what curves C consists of, and we can only know that if 
we have already solved the ODE. However, it is a remarkable fact that for a given G and an 
ODE dy/dx = F(x, y), we can tell whether C admits G without knowing anything about the 
individual solution curves.  
We will show with an example how this may be done. First, however, let us assume that the 
ODE admits G and show how this enables us to find the solutions (we will use the phrase “the 
ODE admits G” as shorthand for “the set of solution curves of the ODE admits G”). 
An ODE of the form Mdx + Ndy = 0 can be written (M, N).(dx, dy) = 0, where the “.” refers to 
the scalar, or inner, product between the two vectors. If (dx, dy) is viewed as a tangent element 
of the integral curve at the point (x, y), then this equation tells us that the vector (M, N) is 
normal to the solution curve at that point. 
 
We have assumed that the ODE admits the group G. Therefore, we know that there exists a 
way of defining t on the plane such that the curves in the congruence of solution curves are 
precisely the curves t = const. Since the vector (M, N) is normal to the solution curve passing 
through a given point, we saw above in equation (1) that  
 
grad(t) = w/(w . v), where in this case w = (M, N). If the vector v is written v = (u, v), then  
 
                                                        grad(t) = (M, N)/(uM + vN)                                              (2) 
 
Since all the quantities on the right hand side of this equation are known, grad(t) is also known, 
from which t can be found by integration, and the solutions to the ODE expressed in the form      
t(x, y) = const.  
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Classical texts refer to 1/(uM + vN) as the “integrating factor” for the equation. To see why 
this term is justified, consider the ODE in the form Mdx + Ndy = 0. Multiplying by the 
integrating factor yields 
 

(Mdx + Ndy)/(uM + vN) = 0. 
 
The expression on the left of this equation is the scalar product of the expression on the right 
hand side of (2) with the line-element vector (dx, dy).  
 
If we take the scalar product of (dx, dy) with the left side of (2), and use the fact that  
grad(t) = (∂t/∂x, ∂t/∂y), we obtain the expression ∂t/∂x.dx + ∂t/∂y.dy, which is just the 
derivative dt.  
 

                                    So (Mdx + Ndy)/(uM + vN) = dt                                                     (3) 
 

This means that the expression (Mdx + Ndy)/(uM + vN) is in classical language an “exact 
differential”, and the line elements (dx, dy) comprising the solution curve lie on the curve 
given by dt = 0, i.e. t = const. The two approaches are equivalent, as they must be, and the 
expression (Mdx + Ndy)/(uM + vN), which is the scalar product of two vectors, conceals the 
fact that it is the first of these two vectors – the gradient – that is really of interest to us. The 
usual method of integration of an exact differential involves precisely the same procedure as 
we have sketched above for the calculation of grad(t).  
 
The use of our notation appears preferable because the expression (3), involving the additional 
terms dx and dy, is apt to cause confusion, especially when we have been using them as the 
components of the line element of a solution curve. When the exact differential is integrated to 
find the solution curves t = const, dx and dy are taken to be perfectly general terms. It seems 
better to isolate the gradient function as a vector and then integrate it separately. We refer to 
the classical expressions simply to make the connection between the two treatments, to make it 
easier to understand the older treatments (see [1, 2]), and to emphasise that our approach is 
essentially identical.  
 
 
Demonstration of the method 
General methods exist for determining whether a particular ODE admits a given group as we 
will show below, but meanwhile it may be helpful to show how this may be possible in 
particular cases from elementary considerations, and how the method will then enable us to 
apply the integration procedure to find the family of solution curves.  
 
The group of dilations 
 
Consider the case of the group of dilations in example 4. We will show that any ODE of the 
form dy/dx = f(y/x), which is the definition of the so-called homogeneous equations, is 
invariant under G. 
 
Let us take at random a line element AB in the plane corresponding to the ODE, at the point A 
(see Figure 2). For the purposes of this illustration, I will assume A is located in the top right-
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hand quadrant, and that the slope of the line element is negative, simply to make for a clearer 
diagram.  
 
 

 
 
Figure 2: finding equations invariant under the group of dilations 
 
 
Imagine the angle AOB to be small, so that the side AB approximates to a small line element. 
Consider the image of triangle OAB under the action of an element g of the group of dilations. 
O is fixed by g, and the lengths of sides OA, OB are multiplied by the same factor under g. 
Therefore the image of OAB under g will be a triangle OCD which is similar to OAB, and so 
CD, the image of line element AB, will be parallel to AB.  
 
Suppose now that the line element AB is part of the solution curve through A for the ODE 
considered earlier. Then the slope of AB is f(y/x), where A is the point (x, y). Let C be the 
point (x', y'). Then y/x = y'/x', since O, A, C are collinear, and the slope of CD is equal to the 
slope of AB as shown above. Therefore  
 

f(y/x) = f(y'/x'), dy/dx = dy'/dx', 
 
and if dy/dx = f(y/x) then dy'/dx' = f(y'/x').  
Therefore the line-element AB is carried by g into another line element CD of the solution 
curve, and the ODE admits G.  
 
Converting the ODE to the form Mdx + Ndy = 0, it takes the form  
 

–f(y/x).dx + dy = 0. 
 
Recalling that in Example 4 the vector field of G is given by v = (x, y) at the point (x, y), we 
find that the integrating factor given by the formula arising from the group action is the inverse 



 13 

of the scalar product (–f(y/x), 1)∙(x, y) = (y – xf(y/x)), so that the formula (2) for grad(t) 
becomes  
 

grad(t) = (–f(y/x).(y – xf(y/x))-1, (y – xf(y/x))-1) 
 
and this gives the solutions in form t(x, y) = const, where  
 

∂t/∂x =  – f(y/x).(y – xf(y/x))-1   and 
 

∂t/∂y = (y – xf(y/x))-1 
 
The solution can be found by two integrations.  
 
Helgason [3] cites this example and asks the reader to find the solution for the specific case    
f(z) = z2 + 2z. I will show how this can be found as an illustration of the method. (Note that [3] 
uses the notation U(x, y) in place of our t(x, y). [2] uses the notation Ω(x, y) to represent this 
concept, and uses U to represent the infinitesimal transformation of the Lie group).  
 
For f(z) = z2 + 2z, the equations for t become  
 

∂t/∂x =  (2x + y)/(x2 + xy)   and 
 

∂t/∂y =  – x/(xy + y2) 
 
We will apply the method of finding t at a general point suggested above. We employ the 
terminology (X, Y) for the point at which we wish to calculate t. The obtrusive use of capitals 
is adopted here to avoid confusion with the variables used in the integrations used to find the 
form of t. The first step is to integrate the first of these two expressions, that for ∂t/∂x, with 
respect to x, to find the value of the definite integral between the points (0, 0) and (X, 0), and 
then integrate the second term, for ∂t/∂y, between the points (X, 0) and (X, Y).  
 
In this case, the procedure gives problems if the lower limit of the integral involves values of x 
or y = 0, giving expressions containing ln(0). But this is not a problem for us since the value of 
t is only determined up to an additive constant, so we can take the initial point to be another 
value, say (1, 1), for which the integral is well behaved.  
 
The indefinite integral of the expression for ∂t/∂x for which y = 1 is ln(x2 + x).  
 
So its integral between (1, 1) and (1, X) is  
 

ln(X2 + X) – ln(2) 
 
To find t(X, Y) we have now to integrate ∂t/∂y between (X, 1) and (X, Y) and add it to the 
expression just obtained.  
 
The indefinite integral is ln(X + y) – ln(y), as can be easily checked, giving for the definite 
integral of ∂t/∂y the expression 
 

ln{(X + Y)/(XY +  Y)} 
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Adding these two expressions yields t = ln{(X2 + XY)/Y} – ln(2),  
 
And the general form obtained by setting this equal to an arbitrary constant and simplifying is  
 

X2 + XY = cY 
 
Whence Y = X2/(c – X), the result cited in [3].  
 
It can be shown without too much difficulty by examination of Figure 2 that any ODE that 
admits the group of dilations must be of the form dy/dx = f(y/x) for some function f, so 
confining ourselves to equations of this form exploits the full power of the method of Lie 
groups in this case.  
 
 
The group of rotations 
 
It is simpler to use the notation in [2] and refer to the line-element dy/dx henceforth as p. Now 
consider the group of example 3, that is, the group G of all rotations about the origin. What can 
we say about the general form of an ODE which admits this group? 
 
One way to approach this problem is to observe that any non-identity element of G maps OA 
onto a different ray OB. It can never map a point of the ray OA to a different point on OA. 
Therefore, if we are trying to construct an ODE on which G acts invariantly, we are free to 
specify the value of p along a ray. For the sake of clarity, suppose we choose the positive x-
axis as our ray OA. Define p along OA to be a smooth function f(x) of x.  
 
It is simpler to work from now on in polar coordinates. We have specified p along OA as a 
function f(r) of the distance r. The line element p = f(r) at (r, 0) has a direction, namely the 
angle arctan(p) = arctan{f(r)}. Consider some different ray OB. There is a unique element g of 
G which rotates OA into OB, through an angle θ say. Evidently g takes the point (r, 0) at a 
distance r from the origin on OA, to the point (r, θ) on OB. What does it do to the line element 
at (r, 0)? Clearly it rotates it by the same angle, θ.  
 
Therefore the angle of the line-element at (r, θ) must be arctan(p) = arctan{f(r)} + θ. 
But in Cartesian coordinates, θ = arctan(y/x)  
 

So arctan(p) = arctan{f(r)} + arctan(y/x) 
 
Taking tangents of both sides and using the usual expansion for tan(A + B), we get  
 

p = (f(r) + y/x)/(1 – f(r)y/x) 
 
Substituting for r in terms of x and y, and writing F for the function given by taking the square 
root followed by f, and simplifying,  
 
                                          p = (xF(x2 + y2) + y)/(x – yF(x2 + y2))                                           (4) 

 
Rearranging and solving for the expression F(x2 + y2), this can be written equivalently as  
 

F(x2 + y2) = (xp – y)/(x + yp) 
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which is the form for the general equation invariant under the rotation group (as derived in [2, 
p. 111]). 
 
In order to solve such equations, the previous method can be used to find an expression for 
grad(t), or in terms of the presentation in [2], to find an integrating factor.  
 
Our expression (2) gives  

grad(t) = (M, N)/(uM + vN). 
 
In this case, for the rotation group (u, v) = (–y, x). When the equation (4) is recast in the form   
Mdx + Ndy = 0, we find that M = – (xF(x2 + y2) + y), N = (x – yF(x2 + y2)), and uM + vN 
simplifies to (x2 + y2), so the integrating factor is (x2 + y2)-1 (as in [2, p.111]). 
 
The solution curves in the form t = const. could now be found in general terms by integrating 
with respect to x and y as outlined above. However, in this case it is more illuminating to solve 
for t from grad(t) by using polar coordinates.  
 
We will write F(x2 + y2) in the form f(r).  
 
∂t/∂r is the component of grad(t) in the direction of the unit radius vector  
r/r = (x/r, y/r), i.e., it is the scalar product grad(t).(x/r, y/r). 
 
Using (2), this in turn is the scalar product ((– xf(r) – y)/r2,  (x – yf(r))/r2).(x/r, y/r), 
 
which simplifies to –f(r)/r. 
 
1/r.(∂t/∂θ) is the component of grad(t) along the orthogonal unit vector in the direction of  
increasing θ, and since this unit vector is (–y/r, x/r), we have  
 

1/r.(∂t/∂θ) = ((– xf(r) – y)/r2,  (x – yf(r))/r2).(–y/r, x/r). 
 
The terms in f(r) cancel and we find that ∂t/∂θ = 1.   
It turns out that we have separated the variables in polar coordinates (a more advanced 
treatment would show that r and θ are canonical coordinates for the rotation group and that this 
outcome is a predictable consequence of that fact).  
 
Solving for t is now comparatively simple: in fact, t = θ – ∫f(r)/r.dr, and the solution curves are   
     

θ = ∫f(r)/r.dr + const. 
 
As an illustration, suppose f(r) is identically equal to a constant α. We find the solution curves 
to be  
 

r = ceθ/α. 
  
This is a family of equiangular spirals, which can also be seen from first principles, since the 
condition on f(r) means that the line-elements along the x-axis are all at a constant angle α to 
the horizontal, and therefore the line elements along a radius vector are therefore all at that 
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same angle to the radius vector. It is well known that this is sufficient to specify the family of 
equiangular spirals.  
 
The extended group G' 
We have already shown the effectiveness of the method, and how in particular cases it may be 
possible to derive the general ODE admitting G from first principles, given G. We will now 
sketch the method whereby, given G, one may find the form of any ODE admitting it, and 
therefore soluble by quadratures. We supply no more than the barest outline of how this is 
carried out in practice: for demonstrations of its use, we refer the reader to [1] and [2]. 
 
We may visualize the effect of g(t) on R2 by imagining that a little cork is placed at a given 
point P, and noting the point P' that it has reached after a time t. This point can be described via 
the formula P' = g(t)(P). Similarly, the effect of g(t) on a curve c can be visualized as the final 
location of a whole series of corks placed along that curve, when the corks flow along the 
streamlines for time t. Under this flow process, the tangent to c at P will be transformed into a 
tangent to the image of c at P'. It will not of course in general be a tangent in the literal sense of 
the word, because it will no longer be a straight line, but it will at least be a curve that is 
tangent to the image of c at P'. In fact, if two curves c and d are tangent to one another at P, it 
is not hard to see, at least heuristically, that their images must be tangent to one another at P'.  
 
This means that the elements of G not only act on the points of the plane, but they also act on 
line-elements of the plane. A rigorous approach would require us to define a line-element as 
an equivalence class of curves tangent to a give curve at P; the action of elements of G on the 
set of such line elements would be well defined since G preserves tangency. The images of the 
curves under elements of G would transform line-elements at P into line elements at P'. But at 
our present basic level, similar to [2, p. 13], we merely define a line-element at a point as being 
a “direction” at a point which may be written in the form of an infinitesimal vector (dx, dy). If 
this is tangent to a curve c at (x, y), then the image of the line element under g(t) is an 
infinitesimal vector tangent to the image of c at P'.  
 
We will not require to know the magnitude of a line element (indeed, the magnitude of an 
infinitesimal vector makes little sense) but simply its direction. In fact, the classical approach  
(see [1, 2]) refers to the line elements as dy/dx, in which only the ratio and not the magnitudes 
of the elements are relevant. This is really a misuse of mathematical language, because the line 
elements are not referring to the derivative of a function y dependent on x, but merely to a 
direction defined at points of the plane. In order to remove the unwanted association between 
line elements and the operation of differentiation, the classical treatments adopt the convention 
of referring to line elements using the variable p.  
 
It is not hard to see that as the group G acts on the elements of the plane, it also acts on the 
line-elements. The group G, conceived as acting on the line-elements in addition to the points 
of the plane, is referred to as the extended group, and written G'. A very approximate idea of 
the action of G' can be obtained by imagining a line-element to be a tiny straw placed in the 
flow, which is not only carried from one position to another but also perhaps rotated by the 
action of the flow, a consequence of the flow vector being slightly different at the two ends of 
the straw.   
The classical treatment proceeds by deriving an equation for the action of group elements on 
the line-lements p. This may be found by considering the action of an “infinitesimal 
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transformation” acting over a small time period under which the flow takes the point (x, y) to 
(x + uδt, y + vδt).  
A line-element can be visualized as the point pair (x, y) and (x + dx, y + dy). The action of G' 
is defined to be the image of this point pair under the action of G on the two points of which it 
is composed.  
The infinitesimal flow just described takes the neighbouring point (x + dx, y + dy) to the point 
(x + dx + u'δt, y + dy + v'δt), where the velocities u', v' are evaluated not at (x, y) but at (x + 
dx, y + dy). If p can be conceived as the point pair comprising (x, y) and (x + dx, y + dy), the 
image p' of p is therefore the point pair comprising (x + uδt, y + vδt) and (x + dx + u'δt, y + dy 
+ v'δt). The value of p' is then found by taking the difference between the y-coordinates of 
these points and dividing by the difference betwen their x-coordinates.  
This is a tedious but essentially elementary exercise in evaluating first order expansions, 
discarding all terms of higher order. It uses the identity u' = u + ∂u/∂x.dx + ∂u/∂y.dy, and a 
similar expression for v'. We find  

p' – p = δt{∂v/∂x + p(∂v/∂y – ∂u/∂x) – p2∂u/∂y}, whence 
δp/δt = ∂v/∂x + p(∂v/∂y – ∂u/∂x) – p2∂u/∂y = w, say. 

Looking at the group G in terms of its action on points in the plane, if the velocity vector at 
some point is (u, v) then the rate of change of the position vector (x, y) can be written as     
δx/δt = u, δy/δt = v. In the same way, the rate of change of p is δp/δt = w, and we may regard 
the triple (u, v, w) as a vector field acting on the points of the extended (x, y, p)-space in the 
same way as the original vector field acts on the points of the real plane. Integrating the flow 
along the streamlines in this three dimensional space then gives the action of the one-parameter 
extended group G'. 
Suppose now we have an ODE in the form p = f(x, y). G' acts on both sides of this equation. 
The question of whether the ODE admits G can now be found by evaluating the action of an 
infinitesimal tranformation in G' on x, y and p, giving new elements x', y' and p', and checking 
whether or not it is the case that p' = f(x', y') or not. If this equation holds then the ODE admits 
G, otherwise not.  

 
Finding the general form of the ODE that admits G 
We supplement this sketch by the merest suggestion of how the final step can be taken 
forward. Consider the three dimensional (x, y, p)-space where p is the third, vertical 
coordinate. In this space, a first order ODE of the form p = f(x, y) is in general represented by a 
surface, namely the graph of the function f. A given point of this space can be seen in two 
ways. It is both a point in   (x, y, p)-space and also a point of the plane coupled with a line-
element, corresponding to the given value of p. If these two aspects are identified, then since 
any element g' of the extended group G' acts on line-elements, it also acts on points of (x, y, p)-
space.  
 
Just as G gives rise to streamlines in the plane, which are the orbits of points under the group 
G, the group G' generates similar streamlines in (x, y, p)-space. The projections of these onto 
the     (x, y)-plane are just the original streamlines generated by G. Just as in the case of the 
plane, no two G'-streamlines cross, and in fact the streamlines fill the space in a non-
overlapping manner. They form, in other words, a partition of the space. One might imagine 
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this as being like an infinitely large optical fibre cable running throughout the space, with each 
orbit under G' comprising one fibre. 
 
The payoff for this geometrical approach is that one can now describe precisely what it means 
for an ODE to be invariant under G. Take a specific ODE, p = f(x, y), with its associated 
surface in  (x, y, p)-space. Take a point (x0, y0, p0) on this surface. The action of a group 
element g' on this point is represented by shifting the point (x0, y0, p0) a certain distance along 
the streamline for G' that passes through this point.  
 
Suppose the shifted point has coordiates (x1, y1, p1). This point lies on the surface if and only if    
p1 = f(x1, y1), that is, if and only if the group element g' takes the original line-element of the 
ODE represented by (x0, y0, p0) onto another line-element for that ODE. Varying the element 
g', we can see that the elements of G' take a point on the surface to other points on the surface, 
if and only if the G'-streamline passing through the original point lies wholly within the 
surface.  
 
This argument carries through whatever the original point (x0, y0, p0), and it shows that the 
ODE is invariant under the group G if and only if the ODE surface consists of nothing but G'-
streamlines: it is the union of a set of streamlines. Seen another way, for an invariant ODE, a 
streamline either lies wholly within the surface of the ODE, or does not intersect it at all.  
 
Using the optical fibre analogy, an ODE invariant under the group can be created by taking a 
subset of the fibres given by G' in the (x, y, p)-space and taking the union of all the points on 
the fibres, provided this union gives a surface of points (x, y, p) corresponding to a one-valued 
function p = f(x, y), and provided this surface satisfies the usual smoothness requirements for 
an ODE. A general surface in (x, y, p)-space will cut across the fibres: this cut surface will be a 
two-dimensional array of the cut ends of the optical fibres. By contrast an invariant ODE will 
give a surface which does not cut any fibres. The appearance of the fibres on such a surface is 
not an array of “cut ends”, but a series of fibres lying wholly within the surface.  
 
We are now reduced to finding ways to generate suitable sets of streamlines to generate our 
surface. To do this rigorously would require some strenuous mathematics, but given that we 
are attempting to provide a heuristic rather than a perfectionistic proof, the following outline 
may suffice. Suppose then that we have an invariant ODE and its corresponding surface in                  
(x, y, p)-space. It consists of the union of a set of streamlines. What can we say about this set? 
Avoiding technicalities involving manifolds we can describe the surface heuristically as a two-
dimensional “thing”, and the individual streamlines as one-dimensional “things”. How do we 
choose a set of one-dimensional things that add up to a two-dimensional thing? The same way 
that we would choose a set of zero-dimensional things (points) to add up to a one-dimensional 
thing (a curve or path): by taking a one-parameter set of them. That is, if the streamlines 
generated by G' that fill (x, y, p)-space are regarded as “points”, we want to somehow generate 
a “curve” out of these points.  
 
Using the fibre analogy for these streamlines, imagine cutting across the fibres to examine 
them. We have a two-dimensional array of “cut ends”. Now draw a one-dimensional smooth 
curve across the cut ends, giving a one-parameter set of fibres, namely those whose cut ends lie 
on the curve. If we now take this set of fibres for our surface, we can guarantee at least that it 
satisfies the conditions for G' to leave it invariant.  
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The problem now reduces to this: how do we generate all the possible one-parameter sets of 
streamlines of G'? The answer was hinted at in the cut fibre bundle analogy. The whole set of 
streamlines is a two-dimensional “thing”. If we consider the surface obtained by cutting across 
the fibres, and identify a “cut end” with the fibre of which it is a part, then the streamlines can 
be concretely represented as this two-dimensional surface. If we can actually find two 
parameters that represent these two dimensions, say α and β, then each streamline is 
represented by a pair of numbers (α, β). Suppose we now draw a curve on this (α, β)-space of 
streamlines. This will give a one-parameter subset. The points lying on this subset of 
streamlines in (x, y, p)-space will now be a surface, and provided it satisfies certain 
smoothness conditions it will correspond to an invariant ODE.  
 
The question now resolves into: how do we describe a general curve on (α, β)-space? The 
answer given in [2] is that we take a smooth function H and look at the streamlines 
corresponding to the graph of H, i.e. those for which β = H(α). This is certainly a one-
parameter set of streamlines. Admittedly this procedure may not give all the one-parameter 
subsets but it will sweep up a useful chunk of them. The final step is to find out how to 
parametrize the streamlines.  
 
The group G' generates a vector field in (x, y, p)-space, which was written above as having 
components (u, v, w) where u, v are the velocity components given by G and w is given by      
∂v/∂x + p(∂v/∂y – ∂u/∂x) – p2∂u/∂y. Therefore the motion of a point of (x, y, p)-space can be 
described as moving in the direction given by this vector. We could say that if this motion is 
given by the infinitesimal translation (dx, dy, dp), then (dx, dy, dp) is a vector proportional to 
(u, v, w), or in the notion used in [2],  
 

                                            dx/u = dy/v = dp/w                                                 (5) 
 
Note: if any of u, v or w is zero, this involves an illicit division. However, we can regard this 
terminology as simply a shorthand for the statement regarding the proportionality of vectors, 
given in the previous sentence.  
 
The classical method (see [2, pp. 104-105]) proceeds as follows.  
 
Taking the first pair of equations in (5), solve the equation dx/u = dy/v, i.e. dy/dx = v/u, and 
obtain a solution in the form U = α. U will be a function of x and y, but not p.  
 
Now obtain a distinct solution to the equations (5): in practice this will be done by solving the 
pair dx/u = dp/w, or the pair dy/v = dp/w. The solution has the form V = β, where V will now 
involve p explicitly.  
 
Ince [2] gives little motivation for what follows, but essentially the argument appears to be that 
for each value of α and β, the corresponding equations U = α and V = β represent surfaces in 
(x, y, p)-space. Since the equations (5) represent the streamlines under G' in this space, these 
surfaces consist of unions of streamlines. The intersection of two such surfaces gives a single 
streamline, and the parameters α, β specify this streamline. They can therefore be regarded as 
its coordinates, and as the parameters vary, they give rise to the whole set of streamlines. We 
are looking for "one-dimensional" sets of streamlines, which correspond to ODEs invariant 
under G, as remarked above. Such one-dimensional sets arise when the two parameters α and β 
do not vary independently, in other words, when they are functionally dependent on one 
another, say β = H(α) for some function H.  
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By virtue of the equations U = α and V = β, this translates into the equation  
 

                                                           V = H(U)                                                                   (6) 
 
or V – H(U) = 0, which is the form derived in [2, p. 105] (there the notation uses the letters u, v 
rather than U, V, but in this paper the lower case letters have been pre-empted above by their 
use in describing the velocity field). The function H is arbitrary, and this gives rise to the 
family of ODEs admitting G. 
 
The method can best be demonstrated by applying it to the earlier examples.  
 
Example 1.  
 
In this case, it is evident that G' acts as the identity on line-elements p, so the streamlines in the   
(x, y, p)-plane are horizontal lines parallel to the x-axis. (u, v, w) = (u, 0, 0) so the equations (5) 
have the form dx/u = dy/0 = dp/0.  
 
Taking the first two equations we find y = const., and taking the first and third gives  p = const. 
The condition (6) now gives p = H(y), which describes line-elements that depend only on y, 
and are therefore invariant under translation horizontally.  
 
Example 2.  
 
This, by a similar derivation, gives equations of the general form p = H(x).  
 
 
Example 3. 
 
For the rotation group, we have (u, v) = (-y, x) and so w = 1 + p2. 
 
Therefore (5) yields  
 

dx/-y = dy/x = dp/(1 + p2). 
 
From this, we can derive a solution in the form  
 

(xp – y)/(x + yp) = F(x2 + y2) 
 
 
(see [2, pp. 110-111] for details). We have already derived this form above from first principles 
in a previous section.  
 
Example 4.  
 
In this case (u, v, w) = (x, y, 0) and the integration is simpler. The first pair of equations in (††) 
gives y/x = const, and the final one, dp = 0, gives p = const, so we obtain the result as p = 
F(y/x) (see [2, pp. 108-109]).  
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Discussion 

Why does the approach work? It might at first appear that when attempting to solve a difficult 
problem, it can only make the problem harder if one imposes additional constraints on the 
possible solutions. Paradoxically, it can, on the contrary, sometimes make it easier. In the case 
of an ODE, the difficulty is that there are too many functional forms for the solution curves. All 
these functions may give rise to the same set of solution curves, but in order to solve the ODE, 
we must come up with some particular one of these functions. For example, the equation  
dy/dx = 1 is satisfied by functions of the obvious form y – x = c, but it is also satisfied by  
ln(y – x) = c, e(y – x) = c and many others. We might liken the problem to that faced by a 
predator seeking its prey among a shoal of fish, a flock of birds or a herd of animals. There are 
too many functional forms for the solution in the one case, and too many targets in the other 
(which is precisely why prey animals adopt this flocking behaviour, to baffle predators). To be 
successful, a predator must somehow identify a particular individual for pursuit. The Lie group 
performs the same task: it singles out a particular function which gives the solution curves to 
an ODE which admits the group.   
 
Bertrand Russell defined the analytic method as assuming the answer to a problem to be 
known, and then acting on the consequences of this assumption. Applied to an ODE, this 
means assuming that a solution of the ODE is known in the form f(x,y) = const., and then 
finding properties that f must satisfy. If sufficiently many such properties are specified, then f 
might be unique, and in that case there is a good chance that it can be calculated. However, if 
there are too few constraints as to the form of f, this may be difficult. In this case, making the 
problem apparently harder by specificing that f must satisfy additional constraints, may limit 
the possible functions to lie within a small set, whose nature can be explicitly described. If 
there are enough constraints such that the form of f is specified uniquely, then one can often 
deduce sufficient information about this unique form, to enable it to be evaluated. All that is 
needed then is to verify that one or all of these explicit functions satisfies the conditions of the 
original problem.  
 
But this involves narrowing down the choice of functions so that the conditions specify a 
function uniquely. The conditions may be too onerous, and such a function may not exist. But 
if the limitation is just right, the narrowing down process may give rise to a function which is 
both uniquely specified, and discoverable. This is the case with Lie’s approach. Here, 
specifying that a solution is invariant under a certain Lie group implies, as we have seen, that it 
must satisfy sufficiently many constraints to be unique up to the addition of a constant. All that 
is then needed is to show that the function does indeed satisfy the original equation. For an 
arbitrary Lie group this will not in general be the case but if the group leaves the equation 
invariant, then an invariant solution must indeed satisfy the equation. And this is the heart of 
the method.  
 
To attain a deeper understanding of the effect of the Lie condition requires more mathematical 
sophistication than can be expected in the student audience for this approach, but it might be 
worth indicating for readers of this paper who would appreciate the context. Very briefly, 
given a one-parameter Lie group G acting on R2, one can look on the plane as having an “R-
action” defined upon it. Namely, given a point (x, y), the element τ of R acts to take it to the 
point (g(τ)x, g(τ)y). There is also a natural R-action on R itself, which takes r to r + τ. An 
element of R acts on points of R2 by “translating” them along streamlines, and acts on points of 
R by translation in the normal sense of the word.  
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The Lie constraint can now be stated as follows: limit the acceptable solutions f(x, y) = const. 
of the ODE to those in which f, considered as a map from R2 into R, is a homomorphism for 
this R-action.  
 
This is just a restatement of the condition that:  
 

If f(x, y) = c, then f(g(τ)x, g(τ)y) = c + τ. 
 
It is not hard to see that this is equivalent to the definition of f given above as t, which can be 
restated, taking c = 0, in the form  
 

f(g(t)x, g(t)y) = t(x, y). 
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