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To better support creative software developers and music technologists’ needs, and to

empower them as machine learning users and innovators, the usability of and developer

experience with machine learning tools must be considered and better understood. We

review background research on the design and evaluation of application programming

interfaces (APIs), with a focus on the domain of machine learning for music technology

software development. We present the design rationale for the RAPID-MIX API, an

easy-to-use API for rapid prototyping with interactive machine learning, and a usability

evaluation study with software developers of music technology. A cognitive dimensions

questionnaire was designed and delivered to a group of 12 participants who used the

RAPID-MIX API in their software projects, including people who developed systems for

personal use and professionals developing software products for music and creative

technology companies. The results from questionnaire indicate that participants found

the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and

good for rapid prototyping with interactive machine learning. Based on these findings, we

present an analysis and characterization of the RAPID-MIX API based on the cognitive

dimensions framework, and discuss its design trade-offs and usability issues. We use

these insights and our design experience to provide design recommendations for ML

APIs for rapid prototyping of music technology. We conclude with a summary of the

main insights, a discussion of the merits and challenges of the application of the CDs

framework to the evaluation of machine learning APIs, and directions to future work which

our research deems valuable.

Keywords: application programming interfaces, cognitive dimensions, music technology, interactive machine

learning, user-centered design

1. INTRODUCTION

Research on the design of music systems with artificial intelligence techniques goes back more
than 30 years (Dannenberg, 1985). Much of this work has been motivated by the exploration and
discovery of new sounds, music, and new forms of musicianship and performance (Miranda and
Wanderley., 2008). Within this domain, research focused on the design of mapping strategies with
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interactive machine learning (IML)—i.e., using supervised
machine learning (ML) for mapping between different kinds
of inputs (e.g., sensor data, motion descriptors, audio features)
and parameters of sound and music processes (e.g., Fiebrink
et al., 2011; Françoise et al., 2013; Caramiaux et al., 2014)—
has uncovered very meaningful advantages. They include, for
instance, workflows with increased celerity and ease-of-use,
intuitive exploration of complexmappings and high-dimensional
parameter spaces, and increased utility of small training data sets.
These findings are promising not only on their own, but also
when considering the opportunities to broaden and accelerate
innovation in music technology with ML (Bernardo et al., 2017).
However, in order to facilitate the adoption of ML by music
and creative software developers, the usability and the developer
experience with new tools for designing, developing and using
ML, must be considered and better understood.

IML approaches to building ML systems involve rapid cycles
of human actions modifying an ML model and interactive
examination of the outcomes of those modifications (Fails and
Olsen, 2003). Unlike algorithm-driven approaches such as active
learning, IML approaches entail human-driven cycles of model
creation, change, and evaluation. As Amershi et al. (2014) write,
IML enables “even users with little or no machine-learning
expertise [to] steer machine-learning behaviors through low-
cost trial and error or focused experimentation with inputs and
outputs” (p. 106). IML approaches often provide ways for users to
incorporate information about their goals or domain knowledge
into the creation of an ML system, for instance by creating or
curating training datasets that encode their understanding of the
target behavior to be learned by an ML algorithm.

IML can be useful for ML problems in which the user’s
goal is to encode a human-understandable behavior into the
system, and the user is capable of iteratively creating or curating
training data to steer the model toward achieving the desired
behavior. This is the case for many problems in music technology
involving the analysis of audio, visual, and sensor data, in which
a human user is capable of providing a supervised learning
algorithm with examples of data paired with the desired labels.
A musician could, for instance, pair examples of music clips, or
segments of gestural data, with classifier labels indicating mood
or instrumentation. Musicians and creative technologists have
frequently used IML to support the creation of new sensor-based
systems for embodied interaction andmusical expression, such as
the design of new musical instruments and new creative physical
computing systems (Hartmann et al., 2007; Fiebrink et al., 2011;
Katan et al., 2015).

In this paper, we present the design rationale and a usability
evaluation of the RAPID-MIX API, a toolkit and application
programming interface (API) for rapid prototyping music
technology with interactive machine learning (IML). Our main
objective is to explore how the design decisions and trade-offs
of an API for rapid prototyping with IML affect its usability and
the developer experience.We also identify specific design features
in other ML APIs and toolkits and provide recommendations
which our research and design experience suggests can be applied
to other work. This work contributes a deeper understanding
of ML API usability and its impact on the experience of music

technologists and creative developers who are not ML experts
and lack ML background. This work thus informs research
and practice in the domains of API usability, human-centered
ML, and music technology, where (to our knowledge) there is
little research about human-centered design and evaluation of
ML APIs.

The paper is structured as follows. This section introduces
readers to concepts with background material on the design
and evaluation of APIs, and contextualizes our work with
information about other ML API and toolkit designs used in
music technology. Section 2 describes the RAPID-MIX API as
the main material and its underlying design assumptions. Section
3 describes the study with an adapted Cognitive Dimensions
questionnaire. Section 4 presents a qualitative analysis of the
results of the CDs questionnaire. In section 5, we discuss the
main insights about the RAPID-MIX API design trade-offs and
usability issues identified by the study. We also provide a set
of recommendations for the design of ML APIs for prototyping
music technology. We conclude in section 6 with a summary of
the main insights and future work.

1.1. Design and Evaluation of APIs
Software developers integratingmachine learning (ML) into their
applications are likely to resort to third-party infrastructural
software—that is, software that supports the development and
operation of other software (e.g., middleware, software libraries
and frameworks, online services, toolkits) (Edwards et al.,
2003). The use of APIs—the developer-facing constituents of
infrastructural software—is a standard and important practice
in software engineering that prevails modularity and reusability
(Fowler, 2004). Developers use API calls within their application
code to extend their applications’ capabilities with infrastructural
software functionality.

APIs can provide potential savings in time and effort for
common development tasks. However, developers making an
informed decision about adopting an API may have to consider
their previous experience with a specific API and API domain, as
well as with the API conceptual model and the available design
cues and patterns (Blackwell, 2002). Accessing the efficiency
gains that APIs provide in relation to the cost of programming
a custom solution is not straightforward though. Furthermore,
the structure of the API and its documentation may have a
significant impact on the API learning experience, given the
ingrained assumptions about prior conceptual knowledge, target
application scenarios, code examples, and learning resources
provided (Robillard and Deline, 2011). When designing an ML
API, the lack of consideration for these aspects can lead to a
challenging and overwhelming learning experience.

Designing an API is a challenging task, let alone an
ML API. An API must meet users’ technical requirements—
e.g., performance, robustness, correctness, stability, security
(Henning, 2009). An API must be usable (Myers and Stylos,
2016) and provide effective learning (Robillard andDeline, 2011).
An API must also be useful and provide an appropriate set of
features for a space of potential client applications (Edwards
et al., 2003). An ML API should provide the ability to train and
evaluate existing ML algorithms on new data. A ML API can also
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incorporate a certain degree of domain expertise; for instance,
by making available complete ML pipelines with predefined
choices of algorithms and parameters (Mellis et al., 2017), pre-
trained models for transfer learning (Jialin and Yang, 2010), or
other functionalities that are likely to be useful for supporting
application development in particular domains.

There exist different approaches to API design and evaluation.
A designer-centric approach to API design is mostly based on
the designer’s taste or aesthetics1. This can be successful when
the designer has an extensive experience in both API design
and in the API application domain. Approaches based on API
design heuristics use empirically-based knowledge that has been
compiled into prescriptive guidelines or recommendations (e.g.,
Tulach, 2008; Cwalina and Abrams, 2009) There is, however,
contradicting empirical evidence about the usability of certain
API design heuristics (Myers and Stylos, 2016). User-centered
design (UCD) approaches inform and drive API design with
usability data (e.g., Clarke, 2010; Myers and Stylos, 2016). This
can be useful to counteract misleading assumptions about API
users who are not represented within the API designers’ group.
Nevertheless, usability approaches excessively focused on specific
design features might fail to deliver in a more holistic way1.

Myers and Stylos (2016) provide a comprehensive review
of different methods to measure and improve the design of
APIs. One traditional approach is API peer reviews (Wiegers,
2002), where technical peers examine and give feedback.
An alternative is the API Concepts framework (Scheller and
Kühn, 2015), which automatically evaluates both the API and
samples of client code, considering user characteristics (e.g.,
learning style, programming experience) among the critical
factors of evaluation. Other methods have been adapted
from traditional HCI and usability engineering, including
empirical and task-specific evaluation techniques (e.g., think-
aloud protocol, cognitive walkthrough) as well as heuristics-
based techniques (Myers and Stylos, 2016).

Other approaches to API evaluation are based on the
Cognitive Dimensions (CDs) of Notations framework (Green,
1989; Green and Petre, 1996). CDs are a “broad-brush” set of
evaluation tools that support discussion about the design trade-
offs of notations and information structures. The CDs have
been previously to applied to the analysis and assessment of
different types of music technology, including amusic typesetting
package (Blackwell and Green, 2000), music notation systems
(Blackwell et al., 2000), sequencing interfaces (Nash, 2014),
algorithmic composition software (Bellingham et al., 2014). API
studies based on CDs typically either used the questionnaire
originally developed by Blackwell and Green (2000), or a shorter
or partially refactored version, specialized to a specific domain.
For instance, the original CDs questionnaire Blackwell and Green
(2000) was used by Austin (2005), who assessed the usability
of a functional shading language for graphics programming.
Diprose et al. (2017) used it to assess the abstraction level of
an end-user robot programming API. Clarke and Becker (2003)
derived a framework from the original CDs to characterize

1Venners, B. and Eckel, B., The C# Design Process: A Conversation with Anders

Hejlsberg – Part I, https://www.artima.com/intv/csdes2.html, (accessed September

15, 2019).

specifically how API design trade-offs met the expectations
of the API users, and applied it to evaluate Microsoft ·NET
class libraries. Watson (2014) applied Clarke’s framework for
improving API documentation planning. Wijayarathna et al.
(2017) adapted Clarke’s questionnaire for evaluating the usability
of a cryptography API.

There is little research focusing on the human-centered design
and evaluation of ML APIs. To our knowledge, there is no prior
research which applies the Cognitive Dimensions framework in
the evaluation of the usability of an ML API.

1.2. Machine Learning APIs and Toolkits for
Music Technology
Developers are users of ML when they configure learning
algorithms, and when they train, evaluate, and export models,
or import the resulting pre-trained models into their music
technology applications. When building IML or other
“intelligent” systems for personal use in music performance
and composition—i.e., end-user development (Lieberman
et al., 2006)—or for others to use, in commercial applications
of music technology, developers can employ custom-built
learning algorithms. However, many developers will use general-
purpose ML infrastructural software via API calls to build their
applications, regardless of the specific end-user goal or end-user
application usage.

Over the years, a number of general-purpose ML tools have
been developed, including R packages such as Caret (Kuhn,
2008), graphical user interfaces (GUIs) such as Weka (Hall et al.,
2009), and APIs such as scikit-learn (Buitinck et al., 2013).
With the recent breakthroughs in deep learning, we observe
an intensive push of ML development toolkits and APIs into
the hands of developers—e.g., Google Tensorflow (Abadi et al.,
2016), Apple CoreML2 and TuriCreate3, Pytorch4. While most
of these APIs target ML experts, some of them cater to an
audience of ML non-expert users. However, many of these APIs
still remain difficult to use.

Other initiatives push for the democratization of ML using
a domain-specific approach, i.e., within certain domains of
application and more creative endeavors, which include the
generation and control of media, such as image, video, andmusic.
MnM (Bevilacqua et al., 2005) is a toolkit which allows users
to create custom gesture-to-sound mappings using statistical
methods such as principal components analysis5, hiddenMarkov
models6 and other algorithms. This toolkit is implemented as
a suite of externals for Max7, which is used extensively in the
context of experimental music technology. These externals (i.e.,

2Core ML, https://developer.apple.com/documentation/, (accessed September 15,

2019).
3Turi Create, https://github.com/apple/turicreate, (accessed September 15, 2019).
4Pytorch, https://pytorch.org/, (accessed September 15, 2019).
5Principal component analysis (PCA) is a statistical method which converts

observations of potentially correlated variables into a set of linearly uncorrelated

variables (the principal components). PCA is often applied for dimensionality

reduction high-dimensional data sets.
6A hidden Markov model is a Markov chain for which the state is only

partially observable. A Markov chain is a method for modeling complex systems

using random processes and probability, sequences of possible events and

interdependent states.
7Max, https://cycling74.com/products/max/
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processing components that are used within Max’s graphical
patching environment) enable users to program ML pipelines in
the data-flow paradigm.

Fiebrink et al. (2011) used the Weka API in the development
of Wekinator, a general-purpose standalone application for
applying supervised machine learning. The Weka API is an
object-oriented API, written in Java which provides standard
implementations of learning algorithms. Wekinator provides a
high-level interface to a workflow which that enables users to
rapidly create and edit datasets, and to employ these algorithms
(and others such as SVM, Dynamic Time Warping) to train and
run ML models in real time. It also supports the configuration
and mapping of sensor data to end-user musical software,
using high-level application pipelines connected through the
OSC communication protocol. This end-user programming
(Lieberman et al., 2006) approach to IML has been employed in
the exploration of user interactions with machine learning in the
context of music composition and performance.

TheGesture Recognition Toolkit (GRT) (Gillian and Paradiso,
2014) is an OSS, cross-platform C++ library aimed to
make real-time machine learning and gesture recognition
more accessible for non-specialists. GRT adopted core design
principles which include:

• Simplicity and accessibility, provided by a minimal code
footprint and consistent coding conventions.

• Flexibility and customizability, supported by modular
architecture structured around the metaphor of a real-time
multimodal data pipeline.

• A supporting infrastructure offering a wide range of
algorithms and functions for pre- and post-processing, feature
extraction and data set management.

Although GRT provided benefits and advantages over more
typical ML development environments (e.g., Matlab) it remained
difficult to utilize by people who had not the C++ and
software engineering skills for the lower-level parts of the code.
Nevertheless, it paved the way for other approaches to ease user
adoption. For instance, ml.lib (Bullock and Momeni, 2015) is an
OSS machine learning toolkit designed for two domain-specific
data flow programming environments, Max and Pure Data8.
ml.lib was implemented as a set of modules that wrap up GRT
library components (Gillian and Paradiso, 2014) and execute
within these environments as external components. Besides
GRT’s core principles which ml.lib builds upon (Bullock and
Momeni, 2015), other aspects of its design rationale include:

• enabling users without ML background to experiment
with and integrate a wide range of ML techniques into
their projects.

• taking advantage of the affordances of data-flow programming
environments, including (a) rapid prototyping and (b)
multimedia integration, (c) high-level abstraction which hides
away threading and memory management, and (d) integrated
documentation with interactive examples.

• maximizing learnability and discoverability through “a simple,
logical and consistent, scalable interface.”

8Pure Data, https://puredata.info/

• providing portability and maintainability through the use
of a cross-platform and multi-target technology stack that
supports different desktop operating systems and embedded
hardware architectures and processors.

Another ML toolkit which builds upon GRT and takes another
approach to bridge the gap for ML-non-expert developers is
ESP (Mellis et al., 2017). The ESP approach intensifies the
domain-specific and adoption orientation through the provision
of augmented code examples of end-to-end ML pipelines (e.g.,
audio beat detection). These examples are written by experts
using the GRT library and the OpenFrameworks creative coding
framework. This approach makes a few assumptions such
as the existence of a community of vested experts willing
to contribute their ML design expertise to the creation of
augmented code examples. Another assumption concerns the
tight coupling of the augmented code examples with high-level
GUIs, which is deemed fundamental to the learning of the
machine learning workflows.

Other ML toolkits have been designed with usability as a
primary concern. For instance, Keras is an open-source deep
learning API which, according to the author F. Chollet9, was
designed for usability and with usability principles in mind—
consistent and simple APIs, end-to-end pipelines with minimal
number of user actions required for common use cases, and
clear and actionable feedback upon user error. The usability-
focused innovation in ML API design of Keras led to its recent
adoption as one of the main interfaces of Tensorflow ecosystem
(Abadi et al., 2016). The Layers API from Tensorflow.js (Smilkov
et al., 2019) is modeled after Keras, also building upon the
advantages of Javascript (JS)—e.g., WebGL-accelerated end-to-
end ML pipelines supporting both training and inference in
the browser; predefined layers with reasonable defaults; ease
of distribution and deployment; portability, server-side and
client-side execution in the browser; the wide adoption and
relatively low-entry barrier of the JS programming language for
novice programmers.

As part of the Tensorflow ecosystem, Magenta.js (Roberts
et al., 2018) is an API for pre-trained music generation
models. This library was also positioned to bridge the ML-
non-expert developers gap through the provision of an even
higher abstraction level. One important design assumption
is its abstraction-level; hiding away “unnecessary complexities
from developers [...] would remove the need for machine
learning expertise” (p. 1). Magenta.js employs a transfer learning
approach (Jialin and Yang, 2010)—i.e., enables the integration
of pre-trained models to trivialize end-user adoption—with
model weights, parameters, and description made accessible
from an URL (remote js-checkpoints). Magenta provides music-
specific data structures such as NoteSequences—an abstract time
representation of a series of notes, characterized by attributes
pitch, instrument and strike velocity (akin to MIDI). It also
provides API objects which wrap up deep learning models
for musical application—e.g., music variational auto encoder
MusicVAE, MusicRNN, Music Transformer, etc. These are at the
core of a growing list of examples—both developed in-house

9https://blog.keras.io/user-experience-design-for-apis.html
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and by the community—of the application of the library to
demonstrate cutting-edge deep learning techniques for music
generation through a carefully crafted set of interactive example
applications with publicly available code.

ml5.js is another example of an ML API which also
builds on Tensorflow.js. However, ml5.js provides an even
higher-level of abstraction to empower artists and creative
coders. According to Daniel Shiffman10, the two main barriers
to the adoption of ML which ml5.js aims overcome, are
“having to install and configure a development environment
and secondly, having to implement low-level mathematical
operations and technical code.” ml5.js aims to support an
accelerated learning experience by providing an integrated
set of online resources—e.g., the API documentation linking
collections of code examples with relevant applications in the
P5.js online code editor, video tutorials. There are introduction
to complementary technologies (e.g., javascript, the library P5.js,
webservers) and to more challenging programming concepts
such as asynchronous operations and callback functions. The
code examples which are enable training in the browser employ
the Tensorflow Visor, an interactive visualization utility that
provides feedback on the neural network training and loss
function minimization.

There are common traits to these ML APIs and toolkits which
have been created using a domain-specific approach to music
technology. They share usability principles and accessibility
concerns reflected in the ease of deployment, higher-level of
abstraction, constraints to the ML pipeline building. They
also share code examples grounded on musical or sound
applications, which also show interactivity playing a fundamental
role in improving the accessibility and understandability of
the ML API for ML -non-expert developers. For instance,
in the case of ml.lib, this happens through the affordances
of the interactive data-flow environments, which are effective
at conveying information structures with a pipeline metaphor
(Green and Petre, 1996). In ESP, the GUIs are not just API
client code; rather, they play an essential role in the illustration
of the main functional code blocks and in enabling the training
and inference workflows supported by an augmented code
example ML pipeline. In ml5.js, ML model pipelines are built
according pre-defined configurations based on the specific task
(e.g., classification or regression). In Magenta, code examples
feature pre-trained models such as recurrent neural networks
for melody generation and musical accompaniment, automatic
music generation from performance MIDI datasets, and for
interpolation between melodic lines, drum sequences, and
music styles.

ML APIs can influence the features and interaction style of
the resulting applications. They can also impact the developers’
working processes and experience with ML. However, the
challenges and experience of developers working with ML APIs
remain under-explored, particularly for the development of IML
systems for creative and musical technology.

10https://itp.nyu.edu/adjacent/issue-3/ml5-friendly-open-source-machine-

learning-library-for-the-web/

2. THE RAPID-MIX API

The RAPID-MIX API is a toolkit comprising ML libraries
and learning resources (Figure 1) that were designed and
implemented in the context of RAPID-MIX11, an EU innovation
project focused on the creative industries. The RAPID-MIX
project stakeholders identified a variety of potential scenarios for
an API that would support rapid prototyping with interactive
machine learning for creative and music applications. The
API was intended to support both product development
by small and medium companies (SMEs)—including music
technology companies, e.g., ROLI12, AudioGaming13, and
Reactable Systems14—aswell as by individual developers working
in creative and musical technology. Domains of use included
education, games development, music technology, e-health,
and sports. Use cases included potential creative products
from the previous domains where sensor-based interaction,
expressive multimodal control, mapping and rich audiovisual
output could benefit from a flexible rapid-prototyping API.
Target environments could be desktop, mobile or web apps, or
embedded processors.

2.1. User-Centered Infrastructural Software
The design of the RAPID-MIX API followed a user-centric
approach, where different stakeholders were engaged early
and throughout the process, including academics, end-user
developers—people developing systems for personal use
(Lieberman et al., 2006)—and professional developers working
in creative and music technology companies. The design of the
API targeted students, “hackers,” and “makers” who might wish
to develop other new technologies using ML. The RAPID-MIX
API aimed to explicitly support IML approaches to systems
development, in which developers can iteratively create, curate,
and modify supervised ML training sets in order to influence
model behavior.

Design iterations were informed by lightweight formative
evaluation actions (Bernardo et al., 2018) using techniques
such as direct observation, interviews and group discussions
in workshops and hackathons, and remote Q&A sessions
between API designers and users. This work contributed to
a better understanding of the needs, goals and values of the
target users of the RAPID-MIX API, which spanned a breadth
of software development skills, experience, motivation, and
technical approach expected from creative and music technology
developers. Most notably, target RAPID-MIX API users had little
to no prior ML expertise, which strongly informed the design
considerations and trade-offs.

Early uses of the RAPID-MIX API by creative developers
included the integration of the IML workflow in ultra-low-
latency audio applications in embedded systems, driving visual
parameters of video jockey apps with audio and multimodal

11RAPID-MIX: Realtime Adaptive Prototyping for Industrial Design of

Multimodal Interactive eXpressive technology, http://rapidmix.goldsmithsdigital.

com/
12ROLI, https://roli.com
13AudioGaming, http://www.audiogaming.net/
14Reactable Systems, https://reactable.com
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FIGURE 1 | General structure of the RAPID-MIX API.

feature analysis, and browser-based audio synthesizers and
sequencers using real-time sensor data (e.g., Leap Motion15 hand
pose data, Myo16 electromyography and inertial measurement
data, BITalino17 data), applications for custom control of 3D
mesh animation, the rock-paper-scissors game, etc. Additional
illustrative use cases have been developed by participants of this
study (section 4.1) which include the creation of commercial
musical software products.

2.2. API Design Decisions and Architecture
The RAPID-MIX API aims to facilitate rapid prototyping by
developers in ways that are similar to how Wekinator (Fiebrink
et al., 2011)—a popular GUI-based tool for creative IML—
supports its users. For instance, it aims to minimize the number
of actions a user needs to take to develop a working prototype
(see Listing 1). Users need only to create an instance of an ML
class, train a model, and run it on new data; no additional
setup is required. Further, default values that support common
use cases are provided for all configurable algorithm parameters
so that developers do not need to make initial choices when
building a working system. For example, by default themultilayer
perceptron (MLP) has one hidden layer and the same number of
hidden nodes as input nodes. If users find that this architecture
is not suited to their needs, they can use additional functions to
adjust either of these parameters.

The RAPID-MIX API aims to focus developers’ attention on
their intended system design, rather than on ML algorithms or
architectures. It presumes an ML architecture common to many

15LeapMotion, https://www.leapmotion.com/
16MYO, https://support.getmyo.com/
17BITalino, https://bitalino.com/en/

applications involving real-time audio, visuals, or sensor-based
interaction, in which inputs (i.e., vectors of values representing
current sensor or media features) are sent to a trained model or
set of models, which in turn produce a vector of outputs that are
passed to some other real-time process. For instance, the sensor
values generated by a specific hand position sensed with a Leap
Motion (inputs) might be associated with a set of parameters for
an audio synthesizer (outputs). The designer of a new system
should primarily be focused on reasoning about what inputs
are expected, what outputs are desired, and whether the current
trained model is sufficient given these criteria—not about which
specific ML algorithm should be used.

The API therefore makes a distinction between two types of
design tasks (classification or regression tasks, corresponding to
the assignment of discrete categories or continuous numerical
values), and, separately, between two types of inputs (static or
temporal data, which for instance would correspond to a hand
position or a hand movement over time). The core API classes
reflect this structure, for example “rapidmix::staticClassification.”
When we must ask users to learn ML terminology, we take care
to use standard terms, such as classification or regression.

The RAPID-MIX API wraps new and existing supervised
ML algorithms in a modular fashion, allowing them to be
configured for different use cases. Specifically, it includes
FastDTW (Salvador and Chan, 2007), XMM (Françoise et al.,
2013), Gesture Variation Follower (Caramiaux et al., 2014), k-
nearest neighbor, and neural networks. These algorithms were
chosen to have low training and run times, and the ability to
create expressive models from small training data sets (Fiebrink
et al., 2011). They have been integrated as module components
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and made available in the different API subsets (i.e., RapidLib
C++, RapidLib JS, XMM C++, mano-js).

Further classes are provided alongside the ML classes. For
instance, there is a single class that provides an API for creating
and managing sets of training data. This class is compatible
with all of the ML classes, allowing users to switch easily
between ML algorithms while keeping the same training set.
The API provides signal processing and feature extraction
functionality for audio and multimodal sensor data, ranging
from basic processes (e.g., low-pass filters or RMS values) to
audio segmentation and Mel frequency cepstral coefficients
(Logan, 2000). It also provides methods for serializing and
deserializing training data and trained models using JavaScript
Object Notation (JSON).

The RAPID-MIX API is designed to allow users to test, train,
and use algorithms onmultiple devices andmove easily from one
device to another. In order to support native desktop, browser-
based, mobile, and embedded applications, the API is available
in both JavaScript (JS) and C++. The JS API provides client-side
and server-side libraries, targeting desktop and mobile browsers.
C++ is intended for low-level audio and media developers, native
mobile apps, and embedded processors. It has been tested in
openFrameworks and JUCE, as well as on Raspberry Pi and Bela
embedded hardware (Bernardo et al., 2018).

The need to support such a wide range of users and
use cases inevitably led to compromises. One substantial
subset of the RAPID-MIX API functionality, RapidLib, includes
the functionality for classification using k-nearest neighbor,
regression using multi-layer perceptrons, temporal classification
using dynamic time warping, and signal stream processing. The
RapidLib subset is implemented in C++ and transpiled into
asm.js using Emscripten (Zakai, 2011). This approach provides
advantages such as reduced development time, a great deal of
consistency across C++ and JS versions of API components, and
more efficient JS code (Zbyszyński et al., 2017). The compromises
that such approach entails is that RapidLib generated asm.js code
base is opaque to JS users. Furthermore, some features that are
idiomatic to one specific language such as multithreading and
JSON support are difficult to implement across two languages.

In addition to the software libraries, the RAPID-MIX API
comes with documentation and examples to help users learn
about and experiment with the API. Working examples show
users exactly how to implement common use cases, such as using
a Leap Motion sensor to control multiple synthesis parameters
(Figure 2), or applying classification to an incoming video
stream. In addition to describing the API, the documentation
also explains many relevant concepts behind the API, such
as the application of filters to multimodal input, what a
machine learning model is, or how to construct a training
data get. Interactive online examples are provided so users can
experimentally apply IML workflows to data created in real time
in the browser.

In contrast to other ML APIs, the RAPID-MIX API does
not provide built-in functionality for quantitative analysis of
the performance of trained models. The RAPID-MIX IML
workflow is intended to develop quick prototypes and allow

users to subjectively evaluate whether the resultant model is
performing adequately, by applying the trained model to new
data in real-time and observing the results. When training data
are provided interactively, as in the main workflow encouraged
by RAPIDMIXAPI, such direct observation of amodel’s behavior
on new data is often the most effective way to assess a model’s
performance (and evaluation using more conventional metrics
such as cross-validation can bemisleading) (Fiebrink et al., 2011).

Listing 1 presents a “Hello World” example of the RAPID-
MIX API in C++. Where practical, the same functions are
part of the JavaScript API, although obvious differences (e.g.,
std::vectors) are not duplicated.

LISTING 1 | RAPID-MIX API “Hello World” example in C++.

#include <iostream>
#include "rapidmix.h"

int main(int argc, const char * argv[]) {

//Create a machine learning object for regression
rapidmix::staticRegression mtofRegression;

//Create an object to hold training data
rapidmix::trainingData myData;

//Set up the first element of training data
std::vector<double> input = { 48 };
std::vector<double> output = { 130.81 };
myData.addElement(input, output);

//Add more elements
input = { 54 };
output = { 185.00 };
myData.addElement(input, output);

//Train the machine learning model with the data
mtofRegression.train(myData);

//Get some input
int newNote = 0;
std::cout << "Type a MIDI note number.\n";
std::cin >> newNote;

//Run the trained model on new input
std::vector<double> inputVec = { double(newNote) };
double freqHz = mtofRegression.run(inputVec)[0];

std::cout << "MIDI note " << newNote;
std::cout << " is " << freqHz << " Hertz" << std::endl;

}

3. METHOD

The overall objective of this work was to obtain a deeper
understanding about how the design decisions and trade-offs of
an API for rapid prototyping of creative technology with IML
affect its usability and developer experience. We refined this
objective into the following key research questions:

1. What usability issues can we find with the RAPID-MIX API?
2. How do users perceive the RAPID-MIX API design trade-offs

and how do these relate to usability and developer experience?

To answer these questions we designed a study with participants
who used the RAPID-MIXAPI in their work and who were asked
to report on their experience using an adapted version of the CDs
framework questionnaire by Clarke (2010). The questionnaire
answers were analyzed using a qualitative approach that is
detailed in sections 3.2 and 4.
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FIGURE 2 | RAPID-MIX API demonstrator for a regression model mapping Leap Motion sensor data streams to a multi-parametric browser-based sampler and

synthesizer.

3.1. Participants
We selected participants who had used at least one subset of the
RAPID-MIX API within a creative software project. Participants
signed a consent form to participate on the study. Our sample set
of 12 participants (1 female, 11 males) comprises 6 professional
developers working in 3 small and medium-sized enterprises
(SME) in creative technology, and 6 creative non-professional
developers creating systems for their own personal use (students
of different levels, spanning undergraduate, masters level and
PhD students; see Table 1). Participants had varying software
development experience, varying ML experience (from none at
all to experience with frameworks such as tensorflow, scikit-
learn, etc.). Participants had used different subsets of the API
(i.e., RapidLib C++, RapidLib JS, XMM C++, or mano-js) for
varying amounts of time (for less then 1 month to a little
more than a year). Some participants used the API in personal
projects or proofs-of-concept outside the commercial sphere;
other projects were developed for commercial purposes in a
professional context.

Commercial products created by participants include: a
JS front-end component that integrated the IML workflow
into a commercial biosignal analysis toolkit for rehabilitation
engineers working with patients (P03, P04); an intelligent
drum sequencer for iOS with custom gesture activation (P05,
P08, P12); and a software-as-a-service that coordinates sonified
movement workshops and soundwalks, using the multimodal
and multimedia capacities of these collective events attendees’
mobile devices (P09).

TABLE 1 | Listing of study participants.

ID Software dev.

experience

(years)

ML

experience

API subset

used

Time

using API

(months)

Use

(personal,

commercial)

P01 4 Some RapidLib C++ 8 Personal

P02 1 Some RapidLib C++ 11 Personal

P03 6 Some RapidLib JS 1 Commercial

P04 6 Some RapidLib JS 6 Commercial

P05 14 Some XMM C++ >12 Commercial

P06 5 Some RapidLib JS 5 Personal

P07 3 Some RapidLib JS <1 Personal

P08 5 None XMM C++ 1 Commercial

P09 5 None mano-js <1 Commercial

P10 1 Some RapidLib JS <1 Personal

P11 1 Some RapidLib C++ >12 Personal

P12 7 None XMM C++ 6 Commercial

3.2. The Cognitive Dimensions
Questionnaire
We employed an adapted version of the CDs framework
questionnaire (Clarke, 2010) as our research instrument, which
appears in Appendix A. This questionnaire has been developed
to support a comprehensive and systematic understanding
of participants’ experiences with the API, broken across
several different dimensions. Clarke’s questionnaire provides
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TABLE 2 | The adapted Cognitive Dimensions framework used in our study.

Learning

Abstraction Level Magnitude of abstraction and style of abstractions

of the API

Learning Style Learning requirements and style encouraged by the

API

Penetrability Ease of access, retrieval, exploration, analysis, and

understanding of the API components

Understanding

Consistency Similar semantics are expressed in similar syntactic

form

Role-expressiveness Purpose of an API component is readily inferred

Domain Correspondence Clarity of domain mapping of API components

Usage

Working Framework Size of conceptual chunk or amount of context

necessary to work effectively

Elaboration Extent to which API must be adapted to meet

developer needs

Viscosity Resistance to change in refactoring

Premature Commitment Constraints in the order of implementing API code

Error-proneness Error incidence, recoverability and support

Application

Work Step Unit Amount of programming task completion achieved

in a single step

Progressive Evaluation Work-to-date can be checked at any time

Testability Types of evaluation and assessment metrics that are

adopted

several benefits over the original CDs questionnaire, as it
is tailored for API evaluation, and it also has an increased
focus on learnability (Clarke, 2010)—i.e., introducing additional
dimensions including Learning Style, Penetrability. We were
inspired by prior studies that fine-tuned Clarke’s questionnaire
to specific domains—e.g., Watson (2014) introduced high-level
groupings of dimensions for amore effective distillation of results
for improving API documentation planning; Wijayarathna et al.
(2017) aimed to evaluate aspects of their API that were specific to
cryptography by introducing additional dimensions (e.g., End-
user protection, Testability). We have also adopted some of
these dimensions with minor changes. Table 2 summarizes the
14 dimensions used in our questionnaire, grouped into four
high-level themes. Each dimension was addressed by several
questions (Appendix A).

We first delivered a pilot version of our questionnaire to two
participants. This version was longer and closer to the original
version by Clarke (2010), and we received complaints about its
length. We therefore shortened the questionnaire by removing
some redundancies. The final questionnaire was delivered online,
on paper, or through in-person or remote interviews, due to the
geographical spread of the participants.

4. RESULTS

In this section, we report our findings about each of the
dimensions included in our questionnaire. We employed content

analysis using NVivo to analyses responses. We adopted a
deductive analytical approach in which we used codes based on
the CDs framework and on the higher-level themes of Table 2,
and on an auto-encoding analysis performed with NVivo.

We also tried to find correlations between the variables
Software Development Experience, ML Experience, API subset,
and time using the API, in the closed-end questions of
each dimension (e.g., Q1—perceived level of abstraction, Q8—
learning experience, Q11—experience with amount of context,
etc.;Appendix A). Given the size of our sample, we ran Pearson’s
chi-squared test with Yates correction, and Fisher’s exact test.
We found no support for contingency between those variables
in the dimensions’ quantitative results as none of the tests yielded
statistical significance.

4.1. Abstraction Level (Q1–Q2)
Questions pertaining to this dimension aimed to investigate
the appropriateness of the abstraction level of the RAPID-MIX
API. We asked how appropriate the abstraction level was for
participants’ development needs and why (Q1,Appendix A), and
whether participants felt they needed to know about the API’s
implementation details (Q2).

In responses to Q1, 7 of 12 participants found the overall API
abstraction level “just right,” and 5 of 12 found it “too high level.”
No one found it “too low level.” Five of the 7 participants who had
used the API for longer than 2months found the abstraction level
“just right.” Participants who used different subsets of the API
differed in their responses; all the participants using RapidLib
C++ (4 participants) or mano-js (1 participant) considered these
had the right abstraction level, and 3 of 4 participants using
RapidLib JS considered it too high-level.

Participants who found the abstraction level just right
described how the abstraction level enabled them to achieve
their development goals (P01, P02, P06, P11). These included
rapid prototyping (...“I was able to do rapid prototyping,
rapidly!", P06), simple implementations (“for a quick and simple
implementation the abstraction level works well”, P03), and
proofs-of-concept (P04). Participants also referred to the positive
development experience the API provided, having found it
“extremely easy to use in C++, which is usually a very confusing
language” (P02), or non-obtrusive to the creative process— “I was
able to implement most of the RapidLib functionality without
losing my creative flow” (P06). P04 indicated that the API
“facilitates the final programmer use" and saved her a lot of time
by preventing her from having to handle implementation details.

Participants who found the RAPID-MIX API too high level
(P03, P05, P07, P08, P10) experienced problems mainly because
they needed further understanding of lower level details—“when
I tried to learn a little more, knowing, for example, which model
was being used, I saw the abstraction level as a hindrance” (P03)—
or finer-grained control over certain API features—I found that
while the algorithms work, I would have liked a bit more control
over certain algorithms” (P10). Some participants complained
about the lack of transparency of RapidLib JS’s high-level objects
(Classification and Regression) which prevented them from
knowing which algorithms were in use. Because RapidLib JS is

Frontiers in Artificial Intelligence | www.frontiersin.org 9 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bernardo et al. Usability of Machine Learning APIs

transpiled from C++ to asm.js, the source code and algorithm
implementation is more opaque than the C++ version.

Participants who stated that they needed to know the
underlying implementation (Q2) presented different reasons for
this. Three participants (P05, P07, P10) found undocumented
algorithm parameters—e.g., k in the k-nearest neighbor
algorithm, the number of hidden units in the hidden layers of the
multi-layer perceptron—and needed to understand how to use
them, so had to look further into the implementation. Some of
these participants worked on a product and related their reasons
to needing a deeper understanding for customer-facing projects
(P03, P08). For instance: “I needed to know what was behind
the object. If I am going to make a product or give a chance to a
customer to use one of our solutions based on the result of the
api, and for some reason, something wrong happens it would be
necessary to have a deeper knowledge of the whole object.” (P03).

One professional developer, P05, considered the
understanding of the underlying implementation vital—
“The API is very concise and there’s not much to learn, however
choosing the correct parameters is a ‘dark art”’ (P05). One
participant found the library opinionated (“it is intended to work
in a specific manner”) and had to look to the implementation to
adapt it to their needs.

Participants who mentioned not needing to know the
underlying implementation either mentioned that they already
knew it, or, that they had the sufficient knowledge to be able to use
the API successfully—“I felt that I needed general knowledge of
how regression and classification algorithms worked. However,
for my purposes this was enough. I could then just use the API
without needing to know the exact implementation.” (P11).

4.2. Learning Style (Q3–Q9)
The questions about learning style aim to determine what
knowledge was essential to use the API successfully, how much
new knowledge participants had to acquire, and how participants
went about using API documentation to attain this knowledge.

Participants perceived knowledge of the following ML
concepts to be important in facilitating use of the API
(Q3): the probabilistic nature of ML (P05); the greater
importance of the choice of data in comparison to the
choice of algorithm (P01, P05); basic ML concepts such as
the difference between regression and classification (P02, P04,
P11); the stages of the supervised learning workflow, such as
collection and preprocessing of data, training and running the
models (P01, P03, P04); and understanding the ML algorithms’
implementation and inner workings (P01, P03, P07). They also
identified the following knowledge of non-ML topics as useful
(Q4): threading and non-blocking async architectures (P06),
client/server architectures (P09), deeper programming language
knowledge (e.g., using generics) (P12), statistics for modeling
data (P05), and practical knowledge about sensors, and human-
computer interaction (P11).

Participants’ responses about their learning strategies (Q6)
indicated that both novice and experienced developers tended
to adopt an opportunistic approach (Clarke, 2007) to learning
about the API: they frequently learned by copying sample code
and employing hands-on exploration. The more experienced

developers appear to have complemented this with a more
top-down approach to learning about the API components
or architecture.

The majority of participants (9 of 12) indicated that they had
to learn “just [the] right” amount to use the API (Q8). These
participants defended this response with answers that mentioned
the simplicity, ease of use, and beginner-friendliness of the API.
For instance, participants wrote that the “code of the API is
simple and concise” (P05), that it was “straightforward to use
without having to read too much documentation” (P07), and that
“I didn’t have to learn anything new to use the API and I didn’t
want to learn a lot to train such simple models” (P02). The other
3 participants stated that the RAPID-MIX API documentation
did not provide enough resources to support their learning,
particularly regarding choosing appropriate algorithms and their
parameterizations for a given problem. P12 wrote “one is left
guessing numbers and trial and error exploration, if there’s
no previous ML experience,” and P01 wanted “more complex
examples so that people can try different ML structures.”

4.3. Working Framework (Q10, Q11)
Q10 aims to elicit an understanding of the amount and type
of information (i.e., “context”) a user needs to maintain or
keep track of while working with the API. Eleven participants
responded, choosingmultiple elements from the list of contextual
information (one participant did not respond). The top 5 classes
of context identified as necessary by respondents were: API
methods (10 of 11 participants), API classes (8), data structures
for training and model input/output (7), database (e.g., JSON,
XML, CSV, database management service) (7), and types of
ML algorithm (6). Less common responses included: local
scope variables (4 of 11), system configuration settings (4), app
configuration settings (3), global scope variables (2), registered
events (1).

When we asked participants to describe this “amount of
context” was “too simple,” “too complicated,” or “just right”
(Q11), 8 of 12 participants reported it was “just right”. Participant
explanations suggest this was driven by the simplicity of the API
interface—“not very demanding, inasmuch asmethods presented
simple syntax. When developing, I didn’t usually keep track of
them. When problems arose, it was always easy to navigate to
tutorial examples and spot where scope or method syntax was
not correct.” (P03). Contrastingly, the participant with the most
ML expertise conveyed his reasons for what is important about
context using more of a conventional rationale around context—
“I needed to keep all the context in mind that is relevant to using
the algorithm. I guess I don’t care that much about the particular
data structure that the API expects, so it would be nice to not
have to think about that. I don’t see how you could avoid that
though” (P06).

Two respondents found that the amount of context they
needed to keep in mind was too complicated. One of them, the
less-experienced, found difficulties with developing architectural
support for an increasing number of model outputs—“adjusting
the output parameters of my application took a bit of time
and thought to figure out what parameters needed to be global
and what parameters needed to be local.” (P10). The other

Frontiers in Artificial Intelligence | www.frontiersin.org 10 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bernardo et al. Usability of Machine Learning APIs

respondent, a more seasoned developer, implemented a non-
blocking asynchronous threading architecture for making a
robust use of the API—e.g., “Training with large amounts of data
can take a long time and should be non-blocking e.g., a future.
However, it also needs to be cancellable.” (P04)—which entailed
the use of a more comprehensive and complex “context.”

Interestingly, one participant referred specifically to training
data and its specificities for the IML workflow as part of the
‘context’ to be kept in mind—“Often in the Application I would
visualize the training data or rely on remembering it. So just being
able to save the model without the training data was not useful
and caused complexity issues. Especially when the training time
of the models is very short and the datasets are small” (P02).

4.4. Work Step Unit (Q12)
Q12 asked participants whether the overall amount of code they
had to write to integrate the API into their projects was toomuch,
too little, or just right. Eight of 11 participants mentioned that
their experience was just right.

The remaining participants answered that they had to write
too much code. Their explanations identified several tasks that
appeared to require too much code: (a) validation, (b) data
management, (c) concurrency management, and d) management
of model outputs. Three participants mentioned validation code
as necessary to make their application safe and robust—e.g.,
“there’s not too much error handling, or check on the data
format/range” (P12). Two participants referred to concurrency—
e.g., “not ‘too much’ code directly related to the API, just
too much boilerplate wrapper code in order to use the API
successfully in the context of a large multithreaded mobile app
with GUI and audio” (P05). Three participants mentioned having
used an extensive amount of code for creating data structures and
performing data management in the application. For instance, “I
had to write lots of code for formatting training data, I feel like
the API could have given an interface for recording, building and
editing data sets rather than needing to be given the whole dataset
at once or relying on user-written C++ vector functions to edit
training data” (P02).

4.5. Progressive Evaluation (Q13)
Q13 asked participants about the amount of work needed to
evaluate progress in using the API. Notably, though participants
knew the questionnaire was focused on evaluating the API
itself, we found that the majority of responses related to the
task of evaluating progress of the IML workflow outcomes
(i.e., the quality of training data, the training process, and
the model results) rather then just progress in establishing a
functional pipeline.

Participants identified the simple API interface as facilitating
progress evaluation—e.g., “It was very easy to evaluate the
integration of the API with my application. Because of the simple
user interface of the API, I knew exactly what to expect from each
method of the API.” (P02); “there is very little code required to
use the API. Evaluating the performance of the tool, selecting the
source data inputs, choosing a frame rate, ensuring orthogonality
took up 10% of our time.” (P05).

Responses that expressed difficulty in evaluating progress
shared some common themes. For instance, respondents
complained about the lack of integrated visualization tools—
“I evaluated my progress in using the API by implementing
visualizations in D3 [...] I would probably like to minimize
the amount of time spent on visualization code” (P07).
Others complained about the lack of functionality to provide
feedback about model accuracy improvements—“There’s no
proper visualization of improvement, one is left with the trial
and error to determine if the classification is improving or
not, and no information on how good/bad it is.” (P12). One
participant referred to the high abstraction level as a hindrance
for progressive evaluation—“Because some of the functionality of
the API is hidden for advanced or personalized use cases, I wasn’t
completely sure about my own progress” (P06).

4.6. Premature Commitment (Q14–Q17)
Q14–Q17 examined how participants perceived the level of
premature commitment required by the API—i.e., the need to
make certain decisions too far in advance, and inflexibility in the
order in which decisions had to be made.

Eight of 12 participants reported that they were forced to
think ahead and make early decisions (Q14). Most participants
found it necessary to make early decisions about data sources and
preprocessing, data structures for inputs and outputs and their
dimensionality, and the state machine architecture that supports
switching between the modes of training and running the models
(Q15). Some of the more advanced users, or users with more
complex requirements for commercial product implementations,
referred to planning the integration of the API components
according to specific aspects of their use case—for instance,
within a client-server or concurrent architecture.

4.7. Penetrability (Q18–Q23)
Questions about penetrability aim at understanding the degree of
ease with which developers could access information about API
components, and explore, analyse and understand their working
details in order to achieve specific development goals.

Eight participants encountered some difficulties in finding
necessary information about API details (Q18, Q19), indicating
that the documentation of API subsets was insufficient.
Most of these respondents had, at some point, finer-grained
implementation requirements for which necessary details about
the API became hard to find. Seven participants indicated
having to learn about specific ML algorithms and parameter
configurations (Q20). Some participants learned about these as
they worked—e.g., “Online tutorial materials and examples were
very helpful. However, should deeper potential of the API be
explored, I can’t say that all questions would be easily answered.”
(P02); “As my own knowledge [of IML] progressed I would
have liked to be able to find out more detailed information
about the neural network and how it performed the regression
analysis” (P03).

Participants reported working to improve their understanding
of the API (Q22) mainly through the process of trial-and-error
exploration (5 participants) and by reading through the API
source code (4 participants)—“Largely through trial and error I
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began to get a sense of how the regression model worked” (P08);
“By breaking it, using intellisense to find functions that were
templated to exist, but did not have implementations in some
models, so I started reading more of the API’s source” (P01).
Some participants reported needing to use direct communication
with the API developers (P01, P06, P09) and resorting to external
documentation resources (P05).

Four participants believed the API and its documentation
provided enough information for their needs (Q23), found easy
access to that information (Q19), and that there was no lack of
information about details (Q18). Most of these participants either
had simple goals and remained at a high implementation level,
or their exploration was technical-driven rather than design-
driven—“My original interest [lay] in the C++ API, but resources
and adaptation to the final product needs made me shift toward
Javascript, which had magnific learning materials” (P04). Some
participants admitted not understanding the working details but
were satisfied working with a “black box”—e.g., “I didn’t fully
understand then. The results were adequate enough for our
application” (P09); “I had no knowledge of the implementation
details or how the API is generally structured apart from what
was obvious from the code examples” (P05).

4.8. Elaboration (Q24)
Q24 asked about the ways that participants had adapted the API
to fulfill their design goals (if any). Five of 12 respondents used
the API “as-is.” Five others reported having wrapped the API in
adapter classes to add the necessary functionality to overcome
specific limitations of the API. Three of these respondents had
added error handling and support for asynchronicity.

Two participants reported having forked the API and
changing the library file structure. One respondent hacked the
API to improve the learning capacity of the default regression
object. His hack approximated the functionality provided by
an undocumented MLP parameter—“The hack was to increase
the dimensionality of the input vectors by duplicating their
content. This would artificially increase the number of hidden
units and allow the model to learn more complex patterns” (P06).
No respondents reported trying to derive classes or override
class methods.

4.9. Viscosity (Q25)
Q25 aims at understanding how is easy it is to make changes to
code that uses API calls. Seven of 12 respondents mentioned it
was easy and two mentioned it was very easy to make changes
to API integration code (Q25)—“Easy, there was barely any code
to write to implement the API.” (P02); “Very easy. The interface
is minimal and the actual parameters that one can change are
few” (P12). Three respondents mentioned they did not need
to refactor their code. The other two respondents described
challenges around understanding the code in the context of
refactoring it—“Easy as I wrote the code [...] When debugging
issues though, I needed to check examples a lot to understand the
described Test-Train-Run structure that I needed to implement.
As in ‘to train only once and not to run the model when testing or
training’.” (P01); “It was easy but needed a lot of understanding of
the code.” (P08). One participant referred to the growing amount

of outputs as a difficulty for change—“As the amount of output
parameters grew I found it sometimes difficult to keep track.
Otherwise it was very easy” (P11).

4.10. Consistency (Q26)
Q26 asked participants if they noticed API elements that
offered similar functionality, andwhether the differences between
them were clear (Q26). Five of 11 respondents mentioned
having noticed consistent method names across classes. Three
of the aforementioned 5 found lack of clarity between certain
API classes—e.g., “Model set, Regression and Classification.
The difference between these objects was not clear. The
implementation[s] were all very similar and it was not clear
which one to use” (P02). There were also issues around the use
of the different kinds training data structures. The other two
who noticed consistency of methods felt they understood the
differences between them. For instance: “I like that there were a
train, run functionalities in the code as this help me understand
the models in similar way apart from the inner workings of
course” (P01). The remaining respondents (6 of 11) did not
noticed such similarities; one participant did not respond.

4.11. Role-Expressiveness (Q27–Q29)
We asked participants if it was easy to read and understand
code that uses the API (Q27), and whether it was easy to know
which classes andmethods to use (Q29).We obtained unanimous
responses to both questions—“Everything was very easy to
interpret.” (P02); “Code is pretty self-explanatory and comments
are concise enough” (P04) “Classes methods are efficiently named
to understand what they are doing” (P08).

4.12. Domain Correspondence (Q30–Q32)
Questions about domain correspondence aim to determine
whether API classes and methods map easily onto the conceptual
objects in the users’ implementation.

We obtained unanimous positive responses about the ease of
mapping the API code into developers’ conceptual objects (Q30).
Two respondents provided reasons that related the simplicity of
the API interface and the IMLworkflow to the ease of mapping to
domain and conceptual objects of their implementation (Q31)—
“the simple user interface made prototyping very quick making
building a conceptual idea very easy and simple.” (P02); “I
think because the training and the recognition phase is the
same workflow, it’s easy to come up with concepts that match
both.” (P07).

Participants seemed to have had a particular understanding of
what was meant by the “mapping” of the API to an application
domain (Q30); the majority of responses mention mapping
API objects to classification or regression tasks, or to the
IML workflow tasks. Most likely, participants have understood
ML learning functions such as classification and regression, as
enablers of functional mappings between domains (e.g., mapping
gesture to sound, visuals, and discrete application events). This
seems to be confirmed by the results of asking participants
to provide examples of conceptual objects (Q31); only a few
participants were able to refer to conceptual objects that did not
overlap directly with ML domain concepts—“Once I had a clear
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idea how I wanted to activate certain functionality, this made the
process easier for me.” (P01). “Because the API enable separation
between “recording" the data (i.e., training) and estimating the
probabilities of category membership for an unknown example
(recognition)” (P03).

4.13. Error-Proneness (Q33–Q36)
Questions about error-proneness aimed to elicit the participants’
experiences with encountering and recovering from errors in
their use of the API.

Eight of 10 respondents reported that they had used the
API incorrectly (Q33). Errors included: using an inconsistent
number of data features between training data sets and test
data sets (P05, P06, P09), using malformed data (P04), using
labels inconsistently (P12) or malformed JSON (P05, P08),
using a large-size training datasets which caused a crash (P11),
attempting to predict from a model in an untrained state (P02),
and using a higher-abstraction level object as a primitive (P02).
Many of these incidents were caused by limitations in input
validation of API methods.

Four of these respondents indicated that the API did not
provide sufficient help to identify misuse (Q34)—e.g., no
error messages, some “undefined behavior” output. Participants
reported having experienced crashes of the API-client application
without any notification with the subsets XMM C++ (P04, P10,
P11) and XMM JS (P09). One participant resorted to logging
(P09) and contacted the API developers directly to find and
resolve the issue.

Most respondents indicated they were able to find a way to
correct their use of the API (35). For instance, where participants
encountered errors due to lack of input validation, they adapted
the library to implement validation (P05, P12). Other participants
simply becamemore aware of problems andmore careful (e.g., in
structuring the training data, choosing the correct dimensionality
of inputs and outputs, validating model state, etc).

4.14. Testability (Q37–Q39)
Questions about testability aim to determine the types of
evaluation and assessment metrics that were adopted by
participants as they used the API and concluded their
implementation of integration code.

Most participants indicated having used subjective evaluation
to assess the results of the trained models (9 of 12), with
criteria such as correctness (3), cost (3), decision boundary
characteristics (1). Several participants referred to other criteria
such as expressivity (1) or more creative ways of evaluation—
e.g., “No testing was done on the models, just eyeing up the
output and judging it creatively whether it works or not for the
desired output” (P01). One participant mentioned having used
seam tests for assessing training data. One participant did an
objective accuracy evaluation of the models built with the API
using unit tests with another ML library.

Seven of 11 participants found the API did not provide
guidance on how to test the resulting application. The remaining
respondents did not look for guidance for testing—e.g., “We
tested very informally since there’s no effective way to test more
objectively” (P12).

5. DISCUSSION

According to Clarke (2010), the CDs inspection can tell whether
there are significant differences between what an API exposes and
what a developer using the API expects. In this section, we use
the results of applying the CDs questionnaire with RAPID-MIX
API users to discuss design trade-offs with respect to developer
experience and ML API usability. We use these insights together
with our experience designing the RAPID-MIX API to provide
recommendations for the design of ML APIs for prototyping
music technology.

5.1. ML API Design Trade-Offs in Relation
to Learnability and Understandability
Results indicate that the RAPID-MIX API qualifies as an ML API
with a high or aggregate abstraction level. The high abstraction
level is supported by its minimal surface area comprising a small
number of classes, methods and parameters. These elements
have been subsumed into a simple conceptual model of high-
level design tasks and basic data structures. An ML API has
direct domain correspondence if ML is considered its domain of
correspondence. In the understanding of most users, RAPID-
MIX API entities map directly onto ML learning tasks.

The high abstraction level appears to be consistent with
the learning style of the RAPID-MIX API, which is more
of incremental and step-wise. Both novice and experienced
developers reported an opportunistic learning approach (e.g.,
having hands-on exploration and progressing through code
examples, exploring, changing or copying sample code to their
projects). Arguably, given that ML learning tasks and the
algorithms require extensive description from API providers
and learning from the users, this indicates that the learning
and assimilation of ML concepts was successful. ML APIs
with these characteristics can provide ML -non-expert users
with adequate scaffolding for a more satisfactory and forgiving
learning experience.

However, more experienced developers reported to have
complemented their learning strategies with a more systematic,
top-down structured learning approach to the components and
architecture of the API. More advanced developers and more
technically complex scenarios might require the flexibility and
control that a lower-level ML API with more primitives, more
ML algorithms and more exposed parameters for finer-grained
control can provide. We found that a few respondents, the
more experienced developers or the ones who had specific
implementation requirements (e.g., finer-grained control, strict
end-user concerns within customer-facing projects) needed to
go “beyond the interface” to inspect the API source code and
learn more about underlying ML algorithms. In that exploration,
a few of them found useful parameters that had not been
exposed. This finding informed a subsequent re-design to expose
the parameters.

In scenarios of exploration and intuition building about
ML, ML APIs with surface-level penetrability may appear to
provide everything that is required to enable successful use
and integration with client application code. Nevertheless,
surface-level ML APIs may allow “black box” approaches in
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its application and use. We found that the RAPID-MIX API
was no exception to this. As developers build up knowledge
and understand the IML workflow, which ML tasks to apply,
or the number of inputs and outputs to use in a ML pipeline,
they may seek to push forward their understanding of a ML
model behavior. They may engage in a deeper exploration and
experimentation to learn about the ML API intricate working
details, such as the impact of choice of underlying ML algorithms
and parameter change.

In the RAPID-MIX API, the overall penetrability is mostly
sensitive to context and to implementation needs. with
different RAPID-MIX API subsets providing distinct levels of
penetrability. There were cases of deeper exploration fraught with
fragmented documentation, and unclear dependencies between
API primitives and abstractions. This gives the RAPID-MIX API
a core consistency rather than full consistency. These issues affect
the perceived consistency of an ML API, and consequently, its
learnability. For instance, some participants resorted to external
resources to understandML concepts and algorithms, which may
be considered resorting to a top-down approach to learning ML.

Different areas of an ML API may have distinct levels of role
expressiveness which also affects its consistency. In most cases,
the purpose of the RAPID-MIX integration code was correctly
interpreted and matched user’s expectations. Nevertheless, there
issues which prevented it to fully match users expectations which
gives it a lower role expressiveness as an ML API. One opaque
subset (i.e., RapidLib transpiled from C++ to asm.js) prevented
one user from determining the underlying implementation.
As mentioned before, other users found undocumented lower-
level methods or lacked configuration settings. The transparency
at the level of the ML algorithm—or ML explainability—is
another layer that may entangle with the overall ML API role
expressiveness. However, ML explainability is a current and
significant research problem that is out of the scope of this paper.

5.2. ML API Design Trade-Offs in Relation
to Usability and Applicability
An ML API with a high-level, easy-to-acquire conceptual model
can cater well to the opportunistic approach and needs of
ML non-expert developers. In the case of RAPID-MIX API, a
simple conceptual model based on ML tasks and simple data
structures with inputs and outputs, makes it suitable for simple
implementations and rapid and pragmatic prototyping with IML.
It also helps us to uncover and better understand usage and
application of ML APIs by ML non-expert users.

ML APIs with a high API elaboration should not impede
any kind of user from achieving their design goals. They should
enable great flexibility to the more proficient end of the user
spectrum, such as the implementation of custom behaviors,
custom ML pipelines and parameterization. Almost half of
participants reported using the RAPID-MIX API “as-is” to
meet their design goals. The other half required further API
elaboration (e.g., more ML algorithms, more parameters, better
error reporting). This tells that for users with simple goals
the RAPID-MIX API was sufficient. Alternatively, it can tell
that, for more critical users, or, users with more sophisticated
implementation goals, the API was not sufficient.

Arguably, the RAPID-MIX API exhibits a medium level
of API elaboration as advanced users may use its extensible
architecture to extend the API default capabilities with custom
implementations. The few participants who extended the API
default objects did so using adapter classes to extend the default
objects and methods with validation, concurrency, and error
reporting. However, these users improved upon base limitations
of the ML API. For a user, extending an ML API might defeat the
whole purpose of using it in first place. Users who do not expect,
or do not have the know-how to extend the existing functionality,
might find problematic in doing so. They may opt for using a
different ML API or framework altogether, or resort to integrate
independent ML algorithms.

Developers integrating an ML API in their client application
code need to keep track of the information which enables them
to work effectively (i.e., the working framework). Interestingly,
half of the respondents did not mention ML algorithms as
part of their working framework. This might reflect a trade-
off with the abstraction level of the API; or alternatively, the
adoption of specific ML API design assumptions (i.e., in the case
of RAPID-MIX API, data and use cases on the foreground of
users’ attention and ML algorithms on the background). The
lack of preponderance of the ML algorithm may be unsurprising
if it reflects minimal ML requirements or a local working
framework (i.e., ML API objects and methods, local variables)
that suffices for simple implementations. However, the working
framework may not be entirely or directly represented by the
ML API or the scope of the ML API integration code—
e.g., extrinsic elements such as the ML training data, or in a
global or system-level working framework, client application and
system configuration settings, external device data specifications,
performance requirements, etc.

In a minimal test (e.g., hello world example, unit tests with
a ML API) the work-step unit might be local and incremental.
Despite the minimal surface area of a ML API, developers may
have design requirements that scale the quantity of ML API
integration code extensively. In these cases, anMLAPI can have a
parallel work-step unit, where the steps to implement and achieve
the full design goals are distributed throughout different scopes
in the integration code. Given the interactive nature of the IML
workflow, the ML API integration code will most likely scale up
to comprise multiple and independent code blocks. This was the
case with a few of the implementations with the RAPID-MIX
API, e.g., asynchronous event handlers for collecting data and
building an ML data set on the fly, for triggering evaluation of
new data, or persistence to data repository. ML API integration
code may also require the instantiation of multiple auxiliary
objects that interact together (e.g., GUI, data management,
validation, concurrency), which make using and understanding
more challenging.

Similarly, an ML API may support a progressive evaluation
of the integration code at local level, functional chunk (that
is, after the implementation of certain groups of tasks, such
as setting data structures and training data set, or after the
train and run methods), or parallel components (i.e., multiple
and independent code blocks). The majority of respondents
reported needing a fully functional pipeline and to experiment
with IML workflow in order to check progress on the overall
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implementation task with the RAPID-MIX API. An ML API
may support progressive evaluation at parallel components, as
it requires a fully functional implementation and interaction
between different ML API objects.

An ML API that presents the user with a small number of
choices about how to accomplish design goals with minimal
implementation differences between alternatives, can expose
a minor and reversible level of premature commitment. The
RAPID-MIX API also has a low level of viscosity that allows
users to easily make changes and refactor integration code.
This is consistent with the notion that raising the abstraction
level reduces viscosity (Green and Petre, 1996); low viscosity is
also supported by the API small-surface area. Such ML API
qualities invite a trial-and-error exploration and an opportunistic
approach, and are supportive for ML-non-expert users.

The RAPID-MIX API situates at a medium level of
error-proneness given the reports about recurrent issues of
misuse, error support and recoverability. These findings indicate
opportunities and the direction for technical improvements,
such as providing more robust validation of inputs, and better
communication of error status through error messages.

Concerning testability, the RAPID-MIX API promotes more
of a direct and informal evaluation using subjective criteria.
This confirms its alignment with the IML approaches that the
API is inspired on. In any case, most developers seem to be
unaware of different methods or evaluation alternatives, and
seem find the concept difficult to articulate. Also noted was the
lacking of guidance about evaluation alternatives, which seems to
require specific ways to be successfully transmitted, such as with
richer media.

5.3. Recommendations for the Design of
ML APIs for Prototyping Music Technology
1. Adopt a user-centered infrastructural software design

approach—find domain-specific core test applications
early on which might be compelling to users and help them
to understand, and that can inform the ML API core design
features (Edwards et al., 2003). In the music technology
domain, these could consist of, for instance, a range of new
sensor-based interaction applications with complex mappings
to music processes (e.g., the main focus of RAPID-MIX API,
GRT, and related toolkits), automatic music composition
applications (e.g., Magenta), or other types of automation
for music production environments. These applications can
help to determine many of the ML API design features such
as the surface area, its elaboration level (or extensibility) or
abstraction level.

2. Reduce the skills and usage barriers with a minimal code
footprint and reasonable defaults—design the ML API
abstraction level to lower the entry barrier for ML-non-
expert-users by abstracting details away. Design for improved
readability, efficiency and reduce cognitive load with terse ML
API code and minimal boilerplate. Users starting with ML
API functions should experience a default or typical behavior
with default parameters. For instance, RAPID-MIX API offers
a high abstraction level, in which ML tasks are high-level
objects and data structures are simple arrays. This contrasts
with the abstraction level of Tensorflow and GRT, with tensors

as data structures or low-level math operations. Reducing the
complexity and the number of possibilities of building ML
pipelines can accelerate the immediate engagement with the
ML algorithm and data, both programmatically and via an
IML workflow. This can foster a bottom-up learning style, and
provide an increased focus on their design goals.

3. Facilitate the first contact through an immediate hands-on-
code experience—minimize the cognitive load associated with
installation issues to accelerate the first contact at structuring
an ML pipeline and fully experiencing an IML workflow
for a musical application. Users find it difficult to adopt
a tool if they are not able to see it working quickly and
providing compelling results, and the installation steps can
drastically undermine the developer experience. ML APIs
such as tensorflow.js, ml5.js, and the RAPID-MIX API, which
offer “zero-install” access to model building and inference in a
browser environment can be very compelling for novice users
to start with. Similarly, users can benefit from plugins which
wrap up ML API components and ease the integration with
environments such as Max, Pd, or OpenFrameworks.

4. Provide adequate conceptual scaffolding for the ML API
code—help the user build an adequate mental model for
the ML integration code using different abstractions, if
possible from the domain of application, such as end-to-
end pipelines, modular building blocks, and training and
inference workflows. This can help users to better understand,
not only the alternatives which the API makes available (i.e.,
ML algorithms, objects, and data structures) but how they
fit within the working framework required to accomplish
their design goals when building musical applications. ML
API users building intelligent music systems will develop a
working framework of how to set integration hooks between
the inputs and outputs of an ML pipeline and areas of the
client code (e.g., the controller data streams, the UI event
handlers, the audio engine).

5. Provide many code examples of real-time interactivity between
user, data and ML algorithms that can be applied to musical
processes—provide support for the development of intuition
and basic understanding with an experiential approach and
contrasting ML API code examples that gradually disclose
complexity. This will provide users with a smooth learning
curve and experience to building ML pipelines and workflows
for musical applications. A real-time IML workflow where
the end-user creates, curates, and modifies training data
iteratively to build MLmodels mapped to musical parameters,
and steer their behavior based on direct observation, trial-
and-error and hands-on-exploration, can yield a smaller
gulf of execution and evaluation (Norman, 2013) than
other workflows. Code examples can support opportunistic
approaches—i.e., hacking, appropriation, e.g., ESP (Mellis
et al., 2017)—to ML systems development, which might
be more enticing to novices or aligned with the goals of
rapid prototyping musical applications. Novice users tend
to use code examples as the basis and starting point of
their music technology creation, so they might be written as
building blocks.

6. Design your API documentation with relevant ML terminology
and curated external resources— design the documentation
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with an adequate level of penetrability to support an effective
learning experience—e.g., navigation, content structure, links
to API code (Meng et al., 2019). Limit the use of specific
ML terminology conforming with standard terms, while
aiming “at the most common case”—e.g., the Glossary
of Terms (Kohavi and Provost, 1998)—applied to the
music domain. For example, understanding the meaning of
classification both as an ML task and musical design task (e.g.,
musical gesture recognition) may lead to cognitive benefits—
standardization for improved memorability (Norman, 2013),
a general principle which claims usability can be increased
by having to learn about a term only once, which potentially
lowers the barrier to participation. Documentation includes
code commenting practices and the curation of links to
third-party content which can provide competent and
alternative means of explanation—broader, deeper, or more
interactive and engaging (e.g., Youtube, StackOverflow, online
playground tutorials).

7. Error reporting, progressive evaluation and feedback
mechanisms—reduce the evaluation gap of the ML API
integration code and help users to recover from errors by
providing them with error messages for the relevant parts
of the ML API. Most errors identified during usage of
RAPID-MIX API were related to ill-structured data sets, and
inconsistency in labeling, types and number of input and
outputs. Build input validation on the methods of your API
to help users recover from run-time errors. Error messages
should be clear, objective, and indicative of the problem
and the context where it appeared, and propose a solution.
The lack of progress and termination feedback in the ML
model training stage was considered problematic. Methods
or functions which complete asynchronously such as ML
model training, benefit from progression and completion
feedback. Provide API methods and complementary tooling
(e.g., visualization libraries) for accessing the configuration
and state of the ML pipelines and workflows. Use them in the
examples and documentation to help users build a correct
mental model from a solid pattern and prevent errors.

8. Support the diversity of user engineering skills for ML -non-
experts users–novice developers require a strong proposition
with regards to the conceptual scaffolding. This might
entail creating more visual and holistic resources, which
might convey more effectively the “big picture,” and creating
minimal and simple examples, with a standard code styling
and no optimization for readability. Experienced developers
require another level of elaboration and penetrability to reach
their design goals. They will value lower-level primitives for
control and configuration of ML algorithms and pipelines,
a wider selection of ML algorithms and more sophisticated
data structures, which may yield more expressiveness in the
final result. To strike this challenging balance between both
ends of the spectrum of user developer-skills, it is fundamental
to build an extensible and modular ML API architecture. It
is also important to differentiate documentation and guides
according to user development skill levels and to tailor and
provide support for a more adequate learning journey.

9. Build a thriving community and ecosystem comprising
documentation, resources and infrastructure—an active

community can support new users with the on-boarding
process and with troubleshooting issues. It can also give more
experienced users opportunities to contribute with solutions,
mentor, network, and peer-review open-source contributions
and extensions to anML API. Online fora and Q&A platforms
such as StackOverflow provide the media for the community
to engage and interact and keep a history of answers to issues
previously raised by other users. Meetups, workshops, and
hackathons can grow the community offline and strengthen
its bonds.

6. CONCLUSION

This study employed a qualitative and user-centric approach
to explore and better understand how ML API design may
facilitate the learning, use and rapid adoption by creative software
developers andmusic technologists. The design of anMLAPI can
impact its adoption, the user-developers’ working processes, and
the client application features and interaction style. Current ML
API designs and designers show awareness about the importance
of adopting design principles which guide usability, learnability
and accessibility. However, research focused on the human-
centered design, evaluation and developer experience with ML
APIs is fundamentally under-explored, in particular, of ML
APIs specialized in the development of systems for creative
and musical technology. This kind of user study is therefore
important for how it builds upon a more nuanced connection
between designers and end users of an ML API. We used an
adapted version of the CDs questionnaire to explore how the
design decisions and trade-offs of an API for rapid prototyping
with IML relate to its usability and the developer experience.

The application of the CDs to the usability assessment
of ML APIs helped uncover problems and directions of
improvement, mostly related to documentation fragmentation,
support for understanding intricate working details, error
support and recoverability, and lack of evaluation guidance.
Results also indicate that the RAPID-MIX API caters well to
beginners and ML-non-expert users in general. It appears to
support incremental learning approaches and to provide a low
entry barrier and smooth learning curve to ML. The direct
correspondence of the API to a high-level conceptual model
which focuses on supervised ML learning tasks, end-to-end ML
pipelines and simple data structures for datasets, appears to
support effective learning, understanding and use. The structure
and set of entities of this ML API support usage with minimal
amount of code and context, trial-and-error exploration, easy
refactoring and easy adaptation to custom user needs. This
facilitates opportunistic development approaches, which are
driven by design and rapid experimentation goals, and prone
to happen in contexts of learning and creative and music
technology development.

The CDs framework opens up interesting perspectives of
analysis that support a rich and deep discussion about ML
API design. However, we faced some challenges in the general
application of the CDs, mostly related to communication and
interpretation issues with the CDs vocabulary, and validity
and reliability issues, which typically occur in questionnaire
and survey methods with small samples (Adams and Cox,
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2008). Other challenges relate to the difficulty to establish a
scale and rate a ML API for each cognitive dimension of
analysis. We also found limitations to the CDs concerning
the interactions of an ML API with other artifacts, such
as the text-editor or programming environment where ML
API integration code is programmed, or its documentation
media. Although a CD assessment cannot lead to full usability
validation (Dagit et al., 2006) of an ML API, it can lead
to new insights which may trigger new design iterations
and thus become a useful and pragmatic resource to ML
API designers.

Future work includes avenues of research which build on the
CDs and quantitative methods as pragmatic methodological tools
for ML API and notation designers. One avenue is to investigate
a more focused and formalizable set of dimensions, which may
help to analyse the use of IML and ML APIs more adequately.
Another avenue of research is to explore ways to augment the
cognitive dimensions framework to account more holistically
for a set of interdependent artifacts—including language
notations, programming interfaces, development environments,
documentation and other high-level aspects which Petre (2006)
has identified. Finally, we are exploring new research tools
for conducting online quantitative usability studies with ML
APIs which may scale to more participants and provide more
generalizable outcomes.
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Copyright © 2020 Bernardo, Zbyszyński, Grierson and Fiebrink. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 18 April 2020 | Volume 3 | Article 13

https://doi.org/10.1145/2643204
https://doi.org/10.1016/j.jvlc.2006.04.006
https://doi.org/10.1016/j.jvlc.2016.07.005
https://doi.org/10.1109/MS.2004.1270764
https://doi.org/10.13140/2.1.4216.2886
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1506409.1506424
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1145/3064663.3064735
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/2896587
https://doi.org/10.1016/j.jvlc.2006.04.003
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.5555/1367985.1367993
https://doi.org/10.1016/j.infsof.2015.01.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Designing and Evaluating the Usability of a Machine Learning API for Rapid Prototyping Music Technology
	1. Introduction
	1.1. Design and Evaluation of APIs
	1.2. Machine Learning APIs and Toolkits for Music Technology

	2. The RAPID-MIX API
	2.1. User-Centered Infrastructural Software
	2.2. API Design Decisions and Architecture

	3. Method
	3.1. Participants
	3.2. The Cognitive Dimensions Questionnaire

	4. Results
	4.1. Abstraction Level (Q1–Q2)
	4.2. Learning Style (Q3–Q9)
	4.3. Working Framework (Q10, Q11)
	4.4. Work Step Unit (Q12)
	4.5. Progressive Evaluation (Q13)
	4.6. Premature Commitment (Q14–Q17)
	4.7. Penetrability (Q18–Q23)
	4.8. Elaboration (Q24)
	4.9. Viscosity (Q25)
	4.10. Consistency (Q26)
	4.11. Role-Expressiveness (Q27–Q29)
	4.12. Domain Correspondence (Q30–Q32)
	4.13. Error-Proneness (Q33–Q36)
	4.14. Testability (Q37–Q39)

	5. Discussion
	5.1. ML API Design Trade-Offs in Relation to Learnability and Understandability
	5.2. ML API Design Trade-Offs in Relation to Usability and Applicability
	5.3. Recommendations for the Design of ML APIs for Prototyping Music Technology

	6. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


