

Synthetic Sensor Data for Human Activity
Recognition

Fayez Alharbi
Department of Computing

Goldsmiths, University of London
London, United Kingdom

E-mail: falha011@gold.ac.uk

Lahcen Ouarbya
Department of Computing

Goldsmiths, University of London
London, United Kingdom

E-mail: l.ouarbya@gold.ac.uk

Jamie A Ward
Department of Computing

Goldsmiths, University of London
London, United Kingdom
E-mail: j.ward@gold.ac.uk

Abstract— Human activity recognition (HAR) based on
wearable sensors has emerged as an active topic of research in
machine learning and human behavior analysis because of its
applications in several fields, including health, security and
surveillance, and remote monitoring. Machine learning
algorithms are frequently applied in HAR systems to learn from
labeled sensor data. The effectiveness of these algorithms
generally relies on having access to lots of accurately labeled
training data. But labeled data for HAR is hard to come by and
is often heavily imbalanced in favor of one or other dominant
classes, which in turn leads to poor recognition performance.

In this study we introduce a generative adversarial network
(GAN)-based approach for HAR that we use to automatically
synthesize balanced and realistic sensor data. GANs are robust
generative networks, typically used to create synthetic images
that cannot be distinguished from real images. Here we explore
and construct a model for generating several types of human
activity sensor data using a Wasserstein GAN (WGAN). We
assess the synthetic data using two commonly-used classifier
models, Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM). We evaluate the quality and diversity
of the synthetic data by training on synthetic data and testing on
real sensor data, and vice versa. We then use synthetic sensor
data to oversample the imbalanced training set. We demonstrate
the efficacy of the proposed method on two publicly available
human activity datasets, the Sussex-Huawei Locomotion (SHL)
and Smoking Activity Dataset (SAD). We achieve improvements
of using WGAN augmented training data over the imbalanced
case, for both SHL (0.85 to 0.95 F1-score), and for SAD (0.70 to
0.77 F1-score) when using a CNN activity classifier.

Keywords—human activity recognition, wasserstein

generative adversarial network, imbalance sensor data

I. INTRODUCTION

A. HAR Background
Due to the prevalent use of mobile devices with built-in

inertial measurement unit (IMU) sensors, like in
smartphones, wearables and other on-body devices [1],
human activity recognition (HAR) has gained extensive
attention and plays a significant role in several domains,
including human–computer interaction (HCI) [2], mobile and
ubiquitous computing [3] [4], and human behavior analysis
[5]. HAR has empowered researchers to better understand
and analyze individual behavior [6]. Thus, HAR has been
used in numerous applications in people’s daily lives in
various areas such as healthcare, elderly monitoring, physical
therapy, fitness trackers, and sleep quality monitors [7].

HAR is typically considered a pattern recognition system
and uses machine learning methods to acquire useful
representations of sensor data that correspond to feature
extractions so that the characteristics of pre-defined activities
are well recognized by machine learning methods [2].

Human activity data can be described as a multivariate
time-series, with further categorical divisions according to the
duration and complexity of activities. In this work we
consider three categories of activity: hand-to-mouth (HMG),
basic, and transportation.

The first category of activity, HMG, is characterized by
short durations, less-repetitive and activities frequently
confound with each other because of their similar gestures.
For example, drinking, eating, smoking while drinking or
talking can present similar hand movement.

The second category of activity that we consider are basic
activities. Basic activities are characterized by a long interval
and come in two forms: static or dynamic. For example,
standing still and sitting are static and less-repetitive
activities, but running and walking are dynamic and repetitive
activities.

The third category that we consider are transportation
activities. The period of activity is also long, such as on a bus
or on a train where the subject might be sitting or standing.

HAR has been extensively studied in fields like HCI,
mobile and ubiquitous computing and human behavior
analysis [8]. Traditional machine learning methods are
commonly used, such as K-nearest neighbor (KNN), support
vector machines (SVM), and decision trees (DT) [8]. In
recent years, deep learning methods such as a convolutional
neural network (CNN), recurrent neural network (RNN) and
Long short-term memory (LSTM) has been used to classify
human activities using sensor data and have achieved
favorable recognition performance [2] [9]. Since LSTMs in
[10] and [11] and 1-D CNN in [12] and [13] have been
successful in recognizing activity from raw sensor data and
were implemented in both [14] and [15] for sensor data
generation, we adopted them for this study.

Traditional machine learning methods depend on
handcrafted features. In order to achieve desirable results
when using those methods, more feature extraction
techniques must be explored to find well-designed and hand-
crafted features [16]. Plenty of effort has been devoted to
study and design effective features to enhance HAR
performance [2] [17]. In contrast, deep-learning methods are
capable of automatically learning feature representation and
extracting features directly from the sensor data [9].

Consequently, deep learning classification models have been
introduced to recognize human activities and replace hand-
crafted features, greatly improving the performance of HAR
[18].

B. HAR Dataset Challenges
HAR research relies entirely on the amount and the

quality of the collected sensor data. Sensor data quality is
mostly imperfect and is often with missing data. This occurs
due to several factors, such as an individual not wearing a
sensor, or a sensor is malfunctioning [19]. Likewise, the
sensor data may be extremely imbalanced due to huge
individual differences, with limited labels for some activities
[7]. Thus, collecting a large enough sample of sensor data of
human activity can effectively enhance the performance of
HAR models. In this paper we use GANs to produce synthetic
data for several types of human activity and we use this data
to rebalance the training set.

The overall performance of HAR classifiers can be
negatively impacted by a large class imbalance, where
classifiers can be skewed towards performing well on the
dominant class and less on the minority class.

To overcome the negative impact of imbalanced training
data, different approaches have been employed, such as data
level resampling. Here data is resampled to make the data
more balanced. The Synthetic Minority Over-sampling
Technique (SMOTE) was proposed to create synthetic data
points from the minority class in a training set [20].

SMOTE defines a neighborhood for each data point of the
minority class by identifying its k nearest neighbors. Then
SMOTE employs these neighbors to create synthetic data
samples using an interpolation of those neighbors [20].

SMOTE was previously used to fix data imbalance in
HAR, and was shown to improve classifier performance [5].

The success of extracting appropriate features, or
applying deep-learning methods to automatically find
features from sensor data, relies on having access to a large
quantity of labeled sensor data [21]. However, collecting and
labeling such a large amount of sensor data is both difficult
and time consuming. As a result of these limitations, some
inevitable challenges appear, such as insufficient sample
information as well as imbalanced data.

Recently, several data generation approaches have
emerged based on deep neural networks. The generative
adversarial network (GAN) is the most powerful method that
has attracted much interest to generate synthetic data. GAN
was introduced by Goodfellow [22] to generate images. GAN
is learned by competition between two neural network
models. The two neural network models are known as the
generator and the discriminator. The generator model during
the learning process is used to produce new data samples by
capturing the distribution of the real data, and the
discriminator model is employed to distinguish whether data
samples are real or synthetic.

GANs have largely been used to produce synthetic
samples in several applications, such as image synthesis [23]
and text generation [24]. Yet, few works have been done to
develop GANs models for the aim of producing sensor data.
SenseGen [14] was the first effort at using GANs to
synthesize sensor data. However, the proposed model trained
both the generator and the discriminator separately.
Subsequently, during the training process, the generator did

not learn from the feedback of the discriminator. Recently,
researchers have developed a model called SensoryGAN for
generating sensor data [15]. SensoryGAN models are capable
of capturing the distribution of the original sensor data of
human activity, consequently enabling them to generate
synthetic sensor data. Yet, SensoryGAN suffers from
instability while training.

In this work we use an extended variation of GAN, called
the Wasserstein Generative Adversarial Network (WGAN),
which has been shown to improve stability when training
generator and discriminator networks [25]. We focus on
generating synthetic sensor data based on the idea of
generative adversarial model and evaluating the quality of the
synthetic sensor data using a supervised classifier. This study
attempts to shed light on using WGAN for synthesizing
sensor data.

An increasing number of studies on HAR attempt to
develop and optimize activity recognition models using deep
learning [18]. However, there has been little attention paid to
investigate the potential of using GANs to both create
synthetic sensor data and to rebalance the training data using
synthetic data in HAR.

Existing over-sampling methods usually work from
training data features (typically extracted by applying a
sliding window over the raw data), but in cases where the
input is raw sensor data, over-sampling methods might not
fully consider the temporal dependencies.

Given that sensor data is multivariate time-series and
since the raw data used as input in our study, using GAN
approaches based on Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) will preserve the
temporal dependencies in the training data [26]. As far we
know, no study considered before augmenting the training
data for human activities context using GAN approaches,
therefore, this study explored on adopting a stable method
and demonstrated the effectiveness of GAN approach as an
up-sampling method for imbalanced human activity training
data.

In particular, we investigate whether it is possible to
generate sensor data by applying the WGAN method to
several forms of human activity, and to augment real training
data with WGAN-generated data. We explore reducing the
impact of data imbalance by using WGAN to generate
synthetic data of the minority class and examine if the
supervised model’s performance improves.
The main contributions of this study are the following:

• We explore, and assess, the potential of using
WGAN to generate synthetic multimodal sensor
data of various activities.

• We built two supervised classification models (1D
CNN and LSTM) to validate that the synthetic data
preserves the underlying pattern as well as the
structure of the original data.

• We resample the imbalanced training data with
synthetic data and show how this can be used to
improve classifier performance.

The paper is structured as follows. Section II gives a brief
overview of GAN. Section III describes our method; we
describe the two proposed WGN models to generate synthetic
sensor data. Also, we describe the classifiers to evaluate the
quality of the produced sensor data as well as the activity

recognition models. Section IV explains the experimental
setup in our study. Section V presents the results, and Section
VI discussed our findings and presents the conclusions.

II. GENERATIVE ADVERSARIAL NETWORK
GAN is based on the game theory concept of a minimax

game, where two networks, the generator (G) and the
discriminator (D), are trained in an adversarial fashion [27].
The objective of G is to generate synthetic data that D would
be unable to differentiate from real data. Contrarily, the aim
of D is to distinguish real data from generated synthetic data.
Consequently, the objective function of GAN is identified as:

min	max
'							(

	 𝐸*~,-[log2𝐷(𝑥)7] + 𝐸:~,; [log(1 − 𝐷2𝐺(𝑧))7] (1)

Where 𝑥 is real data, 	𝑧 is sampled data form random
noise, such as Gaussian distribution or uniform distribution
[28] 𝑃A is the real data distribution and 𝑃: is the generated
data distribution.

Kullback–Leibler (KL) divergence and Jensen–Shannon
(JS) divergence [28] are important probability measurement
metrics that GAN uses when the discriminator is optimized.
Those metrics estimate the distribution distance between the
real samples and the produced samples. Mode collapse is the
problem that constrains the capability of the generator model,
which occurs by only allowing the generator models to
generate a partial range of samples of the original data
distribution. GAN suffers from mode collapse, and this
potential limitation leads to learning instability. A possible
source of mode collapse is because of the use of KL in GAN
training [25].

To overcome mode collapse, the authors in [25] proposed
the Wasserstein GAN (WGAN), which uses the Wasserstein
distance instead of KL to measures the distance between the
original sample and the created sample. WGAN enhances the
stability of learning and overcomes the difficulty of mode
collapse. The Wasserstein distance is defined as :

𝑊2𝑃A, 𝑃D7 = inf
G∈I(,-,,J)

𝐸(*,K)~G [‖𝑥 − 𝑦‖] (2)

where Π(𝑃A, 𝑃D) represents the set of all joint distributions
𝛾(𝑥, 𝑦) and the distance to transform the distribution 𝑃A into
the distribution 𝑃D is represented by 𝛾(𝑥, 𝑦) . Because the
Wasserstein distance is intractable in practice, the
Kantorovich-Rubinstein duality can be used instead as an
approximation [25]:

𝑊(𝑃A, 𝑃P) = sup
	∥(∥U	VW

Ε	[𝐷(𝑥) − 𝐷(𝑔P(𝓏))] (3)

where 𝑠𝑢𝑝 is the least upper bound and 𝐷 is the set of
Lipschitz continuous functions that follow this constraint:

|𝐷(𝑥W) − 𝐷(𝑥_)| ≤ |𝑥W − 𝑥_| (4)
The WGAN objective is obtained as:

min	max	
'							(∈U

E
*~,-

[𝐷(𝑥)] − E
*b~,J

𝐷(𝐺(𝑥b))] (5)

In order to apply the Lipschitz constraint on the
discriminator, which is also called the critic in WGAN, the
authors suggest implementing the parameter to clip the
weights of the discriminator. The weights of the discriminator
have to be within a specific range [-c, c], where c is controlled
hyperparameters [25].

A major variance between WGAN and original GAN is
the role of D [28]. The D purpose in GAN is applied as a
binary classifier, which differentiates between real and
generated samples. However, the function of D in WGAN is
to estimate the Wasserstein distance between the generated
and the actual data distribution, which is a regression task.

Hence, in the last layer of D, in the WGAN, the sigmoid
function is eliminated.

III. METHOD

A. Data Processing
In our study we consider two different types of input data

to evaluate our proposed models: raw input (e.g. direct
accelerometer or gyroscope derived readings), and feature
data (extracted handcrafted features from the raw data, such
as the mean over a sliding window).

 Fig.1 shows the pre-processing pipeline for each of the
two types of data. For both, the first step is to low-pass filter
the data using a 3rd-order Butterworth filter. We then
calculate the root-sum-squared magnitude (c𝑥_ + 𝑦_ + 𝑧_)
for each 3-axis sensor to ensure the data is invariant to
shifting orientation of the smartphones. The data is then
segmented into non-overlapping windows, or frames. For the
raw data, each frame is a matrix of size: length of the window
× the number of sensor channels.

Five features are calculated over each frame: mean,
standard deviation, minimum, maximum, and zero crossing
rate. These features are computationally cheap and proven to
be effective for HAR [29]. Each frame is then a vector of size:
number of extracted features	× number of sensor channels.

Both raw and feature data is then scaled using min-max
normalization [30].

Figure 1. PIPELINES FOR RAW (TOP) & FEATURES (BOTTOM)

Finally, the dataset is split into training, validation and
testing sets (70 % for training, 15 % for validation and 15 %
for testing), using the stratified split data method from scikit-
learn [31]. This method balances the number of data samples
of the classes in each split. We used Python [31] and Keras
[32] to implement our models.

B. WGAN
Human activities are heterogeneous [2], therefore a

unified WGAN model might not be enough to learn several
distributions of different human activities. To counter this, we
build two different types of activity-specific WGAN model,
one designed for relatively HMG (e.g. smoking while in a
group conversation), plus static activities lasting a relatively
long time (e.g. sitting), and another for more dynamic, short-
term activities (e.g. running).

We fine-tuned a WGAN model on each activity class to
find suitable layers of the generator and the discriminator, the
dimension of the noise vector, learning rate, and epochs. The
hyperparameters for each model were obtained over a number

of trials, validated using the validation set.

Figure 2 shows the two models we use. Model-1 has a
generator based on one LSTM layer with 25 memory cells
and uses a Tanh activation on its output. The generator’s
responsibility is to generate data from the noise data that has
a similar structure to the real sensor data.

The discriminator has a single 1D CNN layer using 10
filters with ReLU activation function and a dense layer with
Tanh activation function. The output layer has a single neuron
without an activation function. The discriminator’s
responsibility is to predict if its input is real or not based on
its Wasserstein distance.

Figure 2. WGAN MODEL-1 (left) AND MODEL-2 (right)

Model-2, by contrast, has a generator built based on a 1D
CNN with 32 filters. The model utilized dense layer with 32
units and sigmoid activation function. We applied dropout
with a rate of 50% and a dense layer with 8 units that used
sigmoid activation function. We then added a batch
normalization layer and a dense layer with 4 neurons, which
applied sigmoid activation function. We again applied batch
normalization layer. The output layer of the generator was
dense with the Tanh as activation function.

The discriminator used 1D CNN of 32 kernels with ReLU
activation and a dense layer of 16 units with Tanh activation
function. We also added a dense layer of one unit with
sigmoid activation function. The output layer is a further
dense layer of one neuron, but without an activation function.

C. Assessing Synthetic Sensor Data
To evaluate the synthetic sensor data, we used the GAN-

train and GAN-test methods [33]. GAN-train involves
training on synthetic sensor data but testing on real sensor
data. A high performance with this reveals that the GAN is
capable of producing a realistic and diverse output, and is
consequently not suffering from mode collapse. Conversely,
GAN-test is trained on real data and tested on synthesized
data. This gives a complementary measure of synthesized
data quality [33].

We evaluate two commonly used classifiers: 1D CNN and
LSTM. CNNs are formed by stacking several processing
units, including convolutional layers, pooling layers, and
fully connected (dense) layers [34]. These stacked layers
enable CNNs to extract features automatically from raw
sensor data. As a comparison we also evaluate synthetic
sensor data in a dynamic RNN-based model. We used LSTM
which can learn long-term dependencies by using a memory
cell that is comprised of an input gate, output gate, and forget

gate. LSTM is specifically designed to model temporal
dynamics in sequences such as sensor data [35].

We used categorical cross-entropy as the loss function for
training both 1D CNN and LSTM classifiers. The training
hyperparameters, including the number of epochs, learning
rates, and optimizer functions, differed between datasets and
classification tasks. When evaluating classes with a limited
number of samples, for example, the number of epochs had
to be limited to avoid overfitting. Some hand-tuning of these
hyper parameters was therefore required.

1) 1D CNN Supervised Model
Figure 3 shows the CNN layout for n sensor streams. Each

individual input sensor, such as accelerometer magnitude or
extracted features from accelerator magnitude, is first passed
to a single 1D CNN layer. The first layer uses 9 filters with
ReLU activation function. A dropout layer is then added with
a rate of 50%. We also implemented a max-pooling layer
(with a kernel of 2). The output of each subnet is then
flattened, concatenated, and passed to a dense layer with 15
units with ReLU activation functions. The output SoftMax
activation layer is finally used for classification [36].

Figure 3. CNN MODEL ARCHITECTURE

2) LSTM Supervised Model

Figure 4 shows the LSTM stacked layers in the second
classification model. Each sensor stream is also
independently processed to extract features and to capture
longer temporary patterns. The LSTM layer uses 15 units and
a Tanh activation function. We apply a dropout layer with a
rate of 10%. Another layer of LSTM has 10 units and a Tanh
activation function. The patterns from the individual
pipelines are then concatenated together. We use a final
dropout layer with a rate of 50%, and a dense layer with 8
neurons and a ReLU activation function. Finally, the output
layer uses a SoftMax activation function.

Figure 4. LSTM MODEL ARCHITECTURE

9 filters,
ReLU a.f.

50%

2 kernel

15 units, ReLU a.f.

SoftMax a.f.

Sensor 1 Sensor 2 Sensor n

1D CNN 1D CNN 1D CNN

Dropout Dropout Dropout

MaxPool MaxPool MaxPool

Output

Dense

Concatenate

...

...

...

...

15 units,
Tanh a.f.

10%

15 units,
Tanh a.f.

50%

8 units, ReLU a.f.

SoftMax a.f.

Sensor 1 Sensor 2 Sensor n

LSTM LSTM LSTM

Dropout Dropout Dropout

LSTM LSTM LSTM

Dropout

Output

Dense

Concatenate

...

...

...

...

D. Oversampling Training Set with Synthetic Sensor Data
After we generate and evaluate the quality of the synthetic

sensor data produced by WGAN, we use it to oversample the
minority activity in the training set. We then evaluate the
entire oversampled dataset using the two classifiers, CNN
and LSTM. As a baseline comparison, we also run these
classifiers using the original, imbalanced, data.

E. Extracting Features from Synthetic Sensor Data
We extract features (mean, standard deviation, minimum,

maximum, and zero crossing rate) from the synthetic sensor
data of the minority class and use these to oversample the
activity that is least represented in the training set. We refer
to this as the WGAN-Features method.

To investigate the efficiency of WGAN-Features, we
compare it to a commonly used oversampling method,
SMOTE. SMOTE is used to mitigate the problems caused by
imbalanced training data by oversampling classes that are less
well represented. First, SMOTE selects a random data sample
from a minority activity and determines k nearest neighbors
for that data sample, typically k = 5. Then, an arbitrarily
chosen neighbor is selected, and a synthetic data sample is
generated at a randomly selected point on the line connecting
the two data samples in feature space [20].

The study makes three evaluations: an evaluation of
WGAN-Features, an evaluation using SMOTE, and a
baseline evaluation using features calculated from the
original data. As before, we use CNN and LSTM classifiers.

F. Performance Measures
Typically, accuracy is used as a measure of classifier

performance, however, in the case where a dataset is
imbalanced, accuracy is unsuitable as it is skewed towards
more common classes [37]. To counter this, we use precision
and recall for each class, and then the weighted mean of these
over all classes (the F1 score) [38]. Precision records the
proportion of class predictions that are correct, and Recall
records the proportion of actual class instances that are
correct. The balanced F1 score used here treats classes
equally, irrespective of how frequently a class appears:

F1	score =
1
𝑚
	 j

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛s ∗ 𝑅𝑒𝑐𝑎𝑙𝑙s
				𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛s + 𝑅𝑒𝑐𝑎𝑙𝑙s

wxyzz{z

s|W

IV. EXPERIMENT SETUP

A. Datasets
Two public datasets are used in this study: the Sussex-

Huawei Locomotion (SHL) [39], and the Smoking Activities
Dataset (SAD) [40].

SHL records real-life activities of three subjects over
three days, and includes eight different locomotion and
transportation activities, including walk, run, still, bike, car,
bus, subway, and train. The subjects carried four smartphones
at four locations (hand, hip, torso, and bag). Of the 16
recorded sensor modalities, we use 6: accelerometer,
gyroscope, magnetometer, linear acceleration, orientation,
and gravity, from both hand and hip. We use a subset of the
dataset from the days where the same activities are performed
by subjects one and three. These activities are walk, run, still,
bike, and bus. Figure 5 (left) shows the proportion of each
class in the dataset (with, e.g., run making up 3% of samples).

SAD was collected from 11 participants over 3 months.
Each participant wore a smartwatch on the right wrist as well
as a smartphone in the right pocket to capture data. These
were embedded with accelerometers and gyroscopes, which
were the sensors adopted in this study.

The SAD dataset is divided into three subsets according
to the activities performed. Here we use only one of these
(Subset 2) because it includes more activities and participants
Figure 5 (right) shows the imbalanced activity distributions
for SAD. Participants performed 8 activities, divided into
complex and simple. Complex activities include: smoking
while standing (SmokeST), smoking while sitting (SmokeSD),
smoking while in a group conversation (SmokeGP), drinking
while standing (DrinkST), drinking while sitting (DrinkSD).
The simple activities are stand, sit, and eat.

Both datasets were preprocessed using the pipeline
described above. The SHL data is low-pass filtered, using a
3rd-order Butterworth filter with a corner frequency 20Hz.
This was then segmented using a 3s window [41]. The SHL
dataset is sampled at 100Hz, the length of the window size
was 3 seconds, and there are 12 sensor channels, so the raw
matrix size for each frame is (300,12). When we extract
feature from each frame the shape of the vector becomes
(5,12). The total dataset size is 15280 frames (~13 hours).

Figure 5. DISTRIBUTION FOR SHL (LEFT) AND SAD (RIGHT)

The SAD dataset is sampled at 50 Hz. We adjust the low-
pass filter with a corner frequency of 10Hz, with segment
windows of 9s (to capture the longer-term complexities of
activities). Given the 4 sensor channels, each raw data frame
is sized (450, 4). The feature-extracted vector is then (5,4).
The total dataset size for SAD is 11776 frames (~30 hours).

B. Evaluation Setup
We evaluate our approach in three stages: first we

generate and evaluate the quality and diversity of the
synthetic data. Then we evaluate the raw synthetic data when
used to oversample imbalanced datasets. Finally, we evaluate
the synthetic data when it is converted into features.

1) Evaluation of Synthetic Data
We assess the quality and diversity of our synthetic data

in two ways: by using generated data to train our classifiers,
which we then evaluate using real test data (GAN-train), and
using real data to train, which we then evaluate on generated
data (GAN-test). Because we are interested in producing the
best quality data for each class, separate WGAN models were
fine-tuned to match each minority class of interest. For
relatively long-term static data in both datasets, like still and
bus (in SHL), and smokeGP and stand (in SAD), the WGAN
Model-1 worked best. The faster-changing data of run (SHL)
was better characterized using Model-2. TABLE 1 and
TABLE 2 show the parameters used for each class model.

Bike
32%

Walk
32%

Bus
6%

Still
27%

Run
3%

DrinkSD
14%

DrinkST
14%

SmokeST
14%

Sit
14%Eat

14%

SmokeSD
14%

SmokeGP
14%

Stand
2%

The SHL activity generator produced 100 frames of
synthetic sensor data for bus, still, and run. The SAD activity
generator produced 50 frames of synthetic data for two
activities: smokeGP and stand.

TABLE 1. SHL HYPERPARAMETERS FOR WGAN MODELS

TABLE 2. SAD HYPERPARAMETERS FOR WGAN MODELS

TABLE 3. HYPERPARAMETERS FOR MODELS ASSESSING THE
QUALITY OF SYNTHETIC DATA FOR BOTH DATATSETS

Classifier 1D – CNN LSTM
Optimizer SGD ADAM

Learning Rate 0.00001 0.0001
Epochs 15 15

Once generated the data is evaluated using the two
classifiers, 1D-CNN and LSTM, with the respective
hyperparameters shown in TABLE 3.

2) Raw Data Oversampling Evaluation
We evaluate how our method might be used in a real-

world situation. We use the WGAN models to oversample
each minority activity in the training set (run in SHL, stand
in SAD), and we use the new, oversampled, datasets to
compare classifier performance. As a baseline, we also
calculate the performances without oversampling.

3) Feature Data Oversampling Evaluation
We evaluate our oversampling method when applied to

features extracted from the raw data. We compare three
approaches. First, we extract features from the oversampled
synthetic sensor data produced by our WGAN method (we
call these WGAN-Features). Second, we compare these
against those obtained using the, state-of-the-art, SMOTE
method. Third, we evaluate a baseline using features from the
imbalanced dataset.

C. Classifier Setup
Both the raw data and feature data oversampling

evaluations are carried out using 1D-CNN and LSTM
classifiers. TABLE 4 and TABLE 5 show the hyperparameters
for the classification models on SHL data and SAD,
respectively.

TABLE 4. SHL HYPERPARAMETERS FOR CLASSIFICATION

Classifier 1D - CNN LSTM

Input data Raw Input Feature
Input Raw Input Feature

Input
Optimizer SGD SGD ADAM ADAM

Learning Rate 0.001 0.001 0.001 0.0001
Epochs 20 50 35 50

TABLE 5. SAD HYPERPARAMETERS FOR CLASSIFICATION

Classifier 1D - CNN LSTM

Input data Raw Input Feature
Input Raw Input Feature

Input
Optimizer SGD SGD ADAM ADAM

Learning Rate 0. 0001 0.01 0.001 0.001
Epochs 20 100 50 100

V. RESULTS

A. Evaluating the Synthetic Data
TABLE 6 and TABLE 7 show the GAN-train classifier

results used to assess the diversity and quality of the new
sensor samples (trained on synthetic, tested on real). On the
SHL data, the F1 score using 1D-CNN was 0.76, but for
LSTM it was 0.59. On the SAD data, the F1 score for 1D-
CNN was 0.75, and for LSTM it was 0.99. The equivalent
GAN-test results, measuring how well the synthesized
samples match the real distributions, all returned perfect F1
scores (1.00) across all datasets and classes. These results
reveal that the characteristics of the synthesized data strongly
match real data, and that the samples are relatively diverse –
with the exception of the run and still classes when using
LSTM.

TABLE 6. CLASSIFIER PERFORMANCE FOR GAN-TRAIN (SHL)

Classifier 1D - CNN LSTM
Activity Recall Precision Recall Precision

Bus 0.98 0.87 0.99 0.63
Run 0.95 0.36 0.75 0.43
Still 0.69 1.00 0.29 1.00

F1 Score 0.76 0.59

TABLE 7. CLASSIFIER PERFORMANCE FOR GAN-TRAIN (SAD)
Classifier 1D - CNN LSTM
Activity Recall Precision Recall Precision

SmokeGP 0.91 0.98 1.00 1.00
Stand 0.77 0.44 0.97 1.00

F1 Score 0.75 0.99

B. Rebalancing the Training Set with Raw Data
TABLE 8 shows the SHL dataset results for CNN using

raw sensor data. The baseline F1 for this is 0.85, which
increases to 0.95 after oversampling the minority class, run.
Note that, by adding 100 synthetic samples of run to the
training set, the recall of this class rises dramatically from
0.20 to 0.71. Similarly, on the SAD results, shown in

Table 9, oversampling the minority class, stand, creates a
jump in stand’s recall from 0.25 to 0.83, and a 7% increase
in overall F1 score. This is achieved by adding only 50 new
samples.

TABLE 10 and TABLE 11 show the equivalent results for
each dataset when the LSTM classifier is used. Unlike the
CNN case, no improvement is had here from oversampling
the minority classes. However, here LSTM performs much
better on the baseline cases than CNN.

C. Rebalancing the Training Set with Features
TABLE 12 includes the results obtained using CNN on

features extracted from SHL data. The baseline (no
oversampling) F1 score is 0.93. By oversampling the
minority run activity using SMOTE, the F1 falls to 0.92. But
using WGAN-Features, the F1 rises to 0.94. The equivalent
results, shown in TABLE 13, for SAD, where stand is
oversampled, reveal an F1 increase from 0.88 (baseline),
through 0.93 (SMOTE), to 0.94 for WGAN-Features.

The LSTM results, however, are not improved by
oversampling. On the SHL dataset, shown in TABLE 14,
WGAN-Features is equivalent to the baseline (0.89 F1), with
SMOTE showing a marginal improvement (to 0.90 F1). With
SAD, displayed in TABLE 15, again WGAN-Features is

Activity Noise
Vector

Learning
Rate

Epochs WGAN
Model

Bus 10 0.0005 1000 1
Run 5 0.03 1000 2
Still 10 0.0005 1000 1

Activity Noise
Vector

Learning
Rate

Epochs WGAN
Model

SmokeGP 10 0.0005 1000 1
Stand 10 0.0005 1000 1

equivalent to baseline (0.95 F1), while SMOTE performs
slightly worse (0.93 F1).
TABLE 8. CNN PERFORMANCE ON SHL DATA, COMPARING
BASELINE VS. WGAN OVERSAMPLING.

Activity
Baseline

Oversampled with

WGAN
Recall Precision Recall Precision

Bike 0.99 0.93 0.98 0.97
Bus 0.96 0.99 0.96 0.99
Run 0.20 1.00 0.71 0.97
Still 1.00 1.00 1.00 1.00

Walking 0.99 0.95 0.99 0.94
F1 Score 0.85 0.95

TABLE 9. CNN PERFORMANCE ON SAD, COMPARING BASELINE
VS. WGAN OVERSAMPLING.

Activity Baseline Oversampled with
WGAN

Recall Precision Recall Precision
DrinkSD 0.88 0.67 0.88 0.73
DrinkST 0.77 0.73 0.83 0.74

Eat 0.29 0.59 0.29 0.62
Sit 0.96 1.00 0.96 1.00

SmokeGP 0.78 0.67 0.79 0.66
SmokeSD 0.85 0.89 0.85 0.90
SmokeST 0.77 0.69 0.76 0.69

Stand 0.25 1.00 0.83 1.00
F1 Score 0.70 0.77

TABLE 10. LSTM PERFORMANCE ON SHL DATA, COMPARING
CLASSIFER FOR BASELINE VS. WGAN OVERSAMPLING

Activity Baseline Oversampled with
WGAN

Recall Precision Recall Precision
Bike 0.99 0.99 0.98 0.99
Bus 0.99 0.96 0.97 0.99
Run 0.82 1.00 0.84 0.81
Still 0.96 0.99 1.00 1.00

Walking 0.98 0.97 0.99 0.95
F1 Score 0.96 0.95

TABLE 11. LSTM PERFORMANCE ON SAD, COMPARING
CLASSIFER FOR BASELINE VS. WGAN OVERSAMPLING

Activity Baseline Oversampled with
WGAN

Recall Precision Recall Precision
DrinkSD 0.94 0.73 0.90 0.78
DrinkST 0.73 0.67 0.82 0.68

Eat 0.18 0.60 0.08 0.54
Sit 0.97 1.00 0.96 1.00

SmokeGP 0.78 0.57 0.68 0.52
SmokeSD 0.78 0.99 0.81 0.82
SmokeST 0.78 0.65 0.78 0.62

Stand 0.88 1.00 0.96 1.00
F1 Score 0.74 0.72

VI. DISCUSSION
Using raw synthetic sensor data, produced by WGAN, to

oversample minority activities in imbalanced training data
can boost classifier performance. Extracting features from
this synthetic data also has the potential to boost performance,
however the choice of classifier plays a role in how well this
may work.

The CNN-based evaluation reveals just how well our
synthetic data oversampling method can work, both when
working on raw data and on feature data. When trained on

the baseline case of imbalanced raw data, the CNN classifier
tends to miss under-represented classes (see the low baseline

recall rates for run in TABLE 8 and stand in
Table 9). However, performance improves considerably

when these classes are oversampled using WGAN – with the

recall for run rising from 0.20 to 0.71, and stand from 0.25 to
0.83.

TABLE 12. CNN PERFORMANCE ON SHL DATA FEATURES,
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING.

Activity Baseline Oversampled
with SMOTE

Oversampled with
WGAN-Features

Recall Precision Recall Precision Recall Precision
Bike 0.98 0.96 0.99 0.95 0.97 0.95
Bus 0.98 0.98 0.96 0.97 0.96 0.98
Run 0.59 1.00 0.59 1.00 0.67 1.00
Still 0.99 0.98 0.97 0.96 0.99 0.97

Walking 0.99 0.97 0.98 0.98 0.99 0.98
F1 Score 0.93 0.92 0.94

TABLE 13. CNN PERFORMANCE ON SAD FEATURES, COMPARING
BASELINE, SMOTE, AND WGAN OVERSAMPLING

Activity Baseline Oversampled
with SMOTE

Oversampled with
WGAN-Features

Recall Precision Recall Precision Recall Precision
DrinkSD 0.86 0.96 0.93 0.97 0.92 0.95
DrinkST 0.95 0.88 0.98 0.88 0.98 0.87

Eat 0.92 0.90 0.96 0.93 0.94 0.93
Sit 0.94 0.98 0.94 1.00 0.95 1.00

SmokeGP 0.93 0.71 0.97 0.83 0.96 0.91
SmokeSD 0.70 0.93 0.83 0.99 0.93 0.95
SmokeST 0.87 0.86 0.89 0.95 0.89 0.97

Stand 0.83 1.00 0.92 0.96 0.92 1.00
F1 Score 0.88 0.93 0.94

TABLE 14. LSTM PERFORMANCE ON SHL DATA FEATURES,
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING

Activity Baseline Oversampled
with SMOTE

Oversampled with
WGAN-Features

Recall Precision Recall Precision Recall Precision
Bike 0.92 0.95 0.93 0.94 0.92 0.96
Bus 0.95 0.91 0.94 0.91 0.94 0.92
Run 0.53 1.00 0.61 1.00 0.53 1.00
Still 0.93 0.94 0.93 0.95 0.94 0.93

Walking 0.98 0.94 0.97 0.94 0.98 0.93
F1 Score 0.89 0.90 0.89

TABLE 15. LSTM PERFORMANCE ON SAD FEATURES,
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING

Activity Baseline Oversampled
with SMOTE

Oversampled with
WGAN-Features

Recall Precision Recall Precision Recall Precision
DrinkSD 0.91 0.97 0.88 0.99 0.91 0.97
DrinkST 0.95 0.93 0.90 0.93 0.96 0.91

Eat 0.95 0.97 0.92 0.98 0.96 0.95
Sit 0.98 1.00 0.98 0.99 0.99 0.99

SmokeGP 0.98 0.87 0.98 0.83 0.96 0.89
SmokeSD 0.92 0.97 0.88 0.96 0.93 0.97
SmokeST 0.94 0.95 0.96 0.85 0.92 0.94

Stand 0.96 1.00 0.92 1.00 0.92 1.00
F1 Score 0.95 0.93 0.95

When trained on feature data, CNN performs slightly

better than when trained on raw data. This is likely due to the
inclusion of features that capture signal dynamics, like zero-
crossing rate – which is particularly useful at capturing short-
term periodicity (or lack of) in classes like run.

Oversampling the minority classes and then generating
features improves the results even further, as demonstrated
by the higher recall rates using CNN for both run and stand
in TABLE 12 and TABLE 13. In both datasets, the proposed
WGAN-Features method produces superior results to
SMOTE.

As an aside, the usefulness of hand-crafted features can
also be seen in the vastly improved performance of
recognising the eat activity when comparing

TABLE 9 (raw) with TABLE 13 (features). This shows a
recall/precision rise from 0.29/0.59 to 0.92/0.90 for raw data

versus features on the baseline imbalanced case. This
improvement is largely due to the dynamic information
provided by the features.

The LSTM-based evaluation results are not as clear-cut as
they are for CNN. As a starting point, LSTM is better able to
capture the dynamics of activities like run and stand directly
from raw data, without the need for features as was the case
with CNN. Thus, the LSTM baseline results are already quite
high (e.g. the recall of run in TABLE 10 starts at 0.82). (One
caveat to this is that LSTM fails to adequately classify the eat
activity without the help of features, as shown in TABLE 11.
Because the eat activity is not as repetitive over short
timescales as dynamic activities (like walk and run), it may
be the case that using a longer window size might help LSTM
on raw eat activity data.)

The addition of extra samples using WGAN on the raw
data with LSTM has only a modest effect on some classes
(e.g. run) while reducing the performance on others (e.g.
stand), but overall there is a 1% to 2% drop in F1 score. And
on feature data, WGAN-Features has almost identical
performance as the baseline. SMOTE has a mixed result, with
a 1% improvement in F1 score on the SHL data, but a 2%
drop compared to baseline on SAD.

Further analysis needs to be done to ascertain why the
performance of our WGAN-based oversampling is poorer
when LSTM is used as the classifier versus CNN.

When evaluated using CNN, oversampling minority
classes using WGAN can reap great improvements to
classification performance. It can even outperform the state-
of-the-art SMOTE method. Also, unlike SMOTE, it can
perform just as well generating raw sensor data as well as
derived features. And unlike other GAN-based oversampling
methods, WGAN has the benefit of improved stability during
training [25].

In future work, we plan to investigate the computational
complexity, and potential overheads of using WGAN-based
oversampling. WGAN uses potentially more processing
power than alternatives like SMOTE. However, we would
argue that for such a small number of data channels, as is
typical in HAR, as opposed to the thousands typically used
with, say, video, then this overhead is negligible.

The two datasets used here are relatively diverse and
cover a fairy wide range of human activities. However here
we only consider 5 minority classes. In a further study, we
plan to explore the use of this method on a wider variety of
classes and datasets.

VII. CONCLUSION
In this study, we introduce the use of a Wasserstein

Generative Adversarial Network (WGAN) to generate sensor
data for human activity recognition. We investigated WGAN
on 5 different classes of human activity that were under-
represented across 2 publicly available datasets. We
evaluated the diversity and quality of the generated synthetic
sensor data, and found F1-scores of over 75% when a CNN
classifier is trained on synthetic and tested on real data, and
100% when it is trained on real data and tested on synthetic.
We also oversampled imbalanced training sets using
synthetic data and found overall F1 performance
improvements of between 7% and 10% (again using CNN
classifiers on raw data). More modest improvements (1% to
2%) were found when comparing CNN-classified WGAN-

features against features produced using SMOTE. However,
similar evaluations using LSTM found no immediate
advantage from our method. As there are currently no widely
recognized approaches or frameworks to evaluate synthetic
sensor data, the work in this paper makes some promising
steps, upon which we will explore further in future work.

REFERENCES
[1] O. Steven Eyobu and D. Han, “Feature Representation and

Data Augmentation for Human Activity Classification
Based on Wearable IMU Sensor Data Using a Deep LSTM
Neural Network,” Sensors, vol. 18, no. 9, p. 2892, 2018.

[2] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on
human activity recognition using body-worn inertial
sensors,” ACM Comput. Surv., vol. 1, no. June, pp. 1–33,
2014.

[3] M. Shoaib, S. Bosch, O. Incel, H. Scholten, and P. Havinga,
“A Survey of Online Activity Recognition Using Mobile
Phones,” Sensors, vol. 15, no. 1, pp. 2059–2085, 2015.

[4] T. Plötz, N. Y. Hammerla, and P. Olivier, “Feature
Learning for Activity Recognition in Ubiquitous
Computing,” Proceeding IJCAI’11 Proc. Twenty-Second
Int. Jt. Conf. Artif. Intell., vol. Volume 2, pp. 1729–1734,
2011.

[5] Y. Chen and C. Shen, “Performance Analysis of
Smartphone-Sensor Behavior for Human Activity
Recognition,” IEEE Access, vol. 5, pp. 3095–3110, 2017.

[6] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. M.
M. Havinga, “Complex human activity recognition using
smartphone and wrist-worn motion sensors,” Sensors
(Switzerland), vol. 16, no. 4, pp. 1–24, 2016.

[7] S. Ramasamy Ramamurthy and N. Roy, “Recent trends in
machine learning for human activity recognition—A
survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov.,
vol. 8, no. 4, pp. 1–11, 2018.

[8] Ó. D. Lara and M. A. Labrador, “A survey on human
activity recognition using wearable sensors,” IEEE
Commun. Surv. Tutorials, 2013.

[9] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep
learning for sensor-based activity recognition: A Survey,”
Pattern Recognition Letters, 2018.

[10] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep,
Convolutional, and Recurrent Models for Human Activity
Recognition using Wearables,” Ijcai, pp. 1533–1540, 2016.

[11] A. Murad and J. Y. Pyun, “Deep recurrent neural networks
for human activity recognition,” Sensors (Switzerland),
vol. 17, no. 11, 2017.

[12] M. Zeng et al., “Convolutional Neural Networks for
Human Activity Recognition using Mobile Sensors,” 2014.

[13] F. Moya Rueda, R. Grzeszick, G. Fink, S. Feldhorst, and
M. ten Hompel, “Convolutional Neural Networks for
Human Activity Recognition Using Body-Worn Sensors,”
Informatics, vol. 5, no. 2, p. 26, 2018.

[14] M. Alzantot, S. Chakraborty, and M. B. Srivastava,
“SenseGen: A Deep Learning Architecture for Synthetic
Sensor Data Generation,” Proc. First Int. Conf. on. IEEE,
pp. 66–73, 2017.

[15] J. Wang, Y. Chen, Y. Gu, Y. Xiao, and H. Pan,
“SensoryGANs: An Effective Generative Adversarial
Framework for Sensor-based Human Activity
Recognition,” in Proceedings of the International Joint
Conference on Neural Networks, 2018.

[16] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, and D.
Howard, “A comparison of feature extraction methods for
the classification of dynamic activities from accelerometer
data,” IEEE Trans. Biomed. Eng., 2009.

[17] V. Elvira, A. Nazábal-Rentería, and A. Artés-Rodríguez,
“A novel feature extraction technique for human activity

recognition,” in IEEE Workshop on Statistical Signal
Processing Proceedings, 2014.

[18] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo,
“Deep learning algorithms for human activity recognition
using mobile and wearable sensor networks: State of the art
and research challenges,” Expert Systems with
Applications, vol. 105, no. August. pp. 233–261, 2018.

[19] D. Wu, Z. Wang, Y. Chen, and H. Zhao, “Mixed-kernel
based weighted extreme learning machine for inertial
sensor based human activity recognition with imbalanced
dataset,” Neurocomputing, vol. 190, pp. 35–49, 2016.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: Synthetic minority over-sampling
technique,” J. Artif. Intell. Res., 2002.

[21] N. Jaques, S. Taylor, A. Sano, and R. Picard, “Multimodal
autoencoder: A deep learning approach to filling in missing
sensor data and enabling better mood prediction,” in 2017
7th International Conference on Affective Computing and
Intelligent Interaction, ACII 2017, 2018.

[22] I. J. Goodfellow et al., “Generative Adversarial Networks,”
arXiv e-prints, p. arXiv:1406.2661, Jun. 2014.

[23] A. Odena, C. Olah, and J. Shlens, “Conditional Image
Synthesis with Auxiliary Classifier GANs,” in Proceedings
of the 34th International Conference on Machine Learning
- Volume 70, 2017, pp. 2642–2651.

[24] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN:
Sequence Generative Adversarial Nets with Policy
Gradient,” Sep. 2016.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
GAN,” eprint arXiv:1701.07875. p. arXiv:1701.07875, 01-
Jan-2017.

[26] F. Li, K. Shirahama, M. A. Nisar, L. Köping, and M.
Grzegorzek, “Comparison of Feature Learning Methods
for Human Activity Recognition Using Wearable Sensors,”
Sensors, vol. 18, no. 3, p. 679, 2018.

[27] Y. B. Ian J. Goodfellow, Jean Pouget-Abadie∗, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair†,
Aaron Courville, “Generative Adversarial Nets Ian,” Vet.
Immunol. Immunopathol., 2013.

[28] Z. Wang, Q. She, and T. E. Ward, “Generative Adversarial
Networks: A Survey and Taxonomy,” arXiv e-prints, p.
arXiv:1906.01529, Jun. 2019.

[29] M. Arif, M. Bilal, A. Kattan, and S. I. Ahamed, “Better
physical activity classification using smartphone
acceleration sensor,” J. Med. Syst., 2014.

[30] F. Li, K. Shirahama, M. A. Nisar, L. Köping, and M.
Grzegorzek, “Comparison of feature learning methods for

human activity recognition using wearable sensors,”
Sensors (Switzerland), 2018.

[31] F. Pedregosa and G. Varoquaux, Scikit-learn: Machine
learning in Python, vol. 12. 2011.

[32] F. Chollet, “Keras,” GitHub Repos., 2015.
[33] K. Shmelkov, C. Schmid, and K. Alahari, “How Good Is

My GAN?,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2018.

[34] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S.
Krishnaswamy, “Deep convolutional neural networks on
multichannel time series for human activity recognition,”
in IJCAI International Joint Conference on Artificial
Intelligence, 2015.

[35] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “LSTM
Networks for Mobile Human Activity Recognition,” Int.
Conf. Artif. Intell. Technol. Appl., no. Icaita, pp. 50–53,
2016.

[36] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher,
“DeepSense: A unified deep learning framework for time-
series mobile sensing data processing,” in 26th
International World Wide Web Conference, WWW 2017,
2017.

[37] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–
1284, 2009.

[38] M. Sokolova and G. Lapalme, “A systematic analysis of
performance measures for classification tasks,” Inf.
Process. Manag., 2009.

[39] H. Gjoreski et al., “The University of Sussex-Huawei
Locomotion and Transportation Dataset for Multimodal
Analytics with Mobile Devices,” IEEE Access, 2018.

[40] M. Shoaib, H. Scholten, P. J. M. Havinga, and O. D. Incel,
“A hierarchical lazy smoking detection algorithm using
smartwatch sensors,” in 2016 IEEE 18th International
Conference on e-Health Networking, Applications and
Services, Healthcom 2016, 2016.

[41] A. Das Antar, M. Ahmed, M. S. Ishrak, and M. Atiqur
Rahman Ahad, “A comparative approach to classification
of locomotion and transportation modes using smartphone
sensor data,” in UbiComp/ISWC 2018 - Adjunct
Proceedings of the 2018 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2018 ACM International Symposium on
Wearable Computers, 2018.

