TECHNOLOGY MADE LEGIBLE

A Cultural Study of Software as a Form of Writing in

the Theories and Practices of Software Engineering

Federica Frabetti

Goldsmiths College, University of London

Submitted for the degree of PhD

2009




Abstract

My dissertation proposes an analytical framework for the cultural understanding of
the group of technologies commonly referred to as ‘new’ or ‘digital’. 1 aim at
dispelling what the philosopher Bernard Stiegler calls the ‘deep opacity’ that still
surrounds new technologies, and that constitutes one of the main obstacles in their
conceptualization today. I argue that such a critical intervention is essential if we
are to take new technologies seriously, and if we are to engage with them on both
the cultural and the political level.

I understand new technologies as technologies based on software. 1 therefore
suggest that a complex understanding of technologies, and of their role in
contemporary culture and society, requires, as a preliminary step, an investigation
of how software works. This involves going beyond studying the intertwined
processes of its production, reception and consumption — processes that typically
constitute the focus of media and cultural studies. Instead, I propose a way of
accessing the ever present but allegedly invisible codes and languages that
constitute software. I thus reformulate the problem of understanding software-based
technologies as a problem of making software legible.

I build my analysis on the concept of software advanced by Software Engineering, a
technical discipline born in the late 1960s that defines software development as an
advanced writing technique and software as a text. This conception of software
enables me to analyse it through a number of reading strategies. I draw on the
philosophical framework of deconstruction as formulated by Jacques Derrida in
order to identify the conceptual structures underlying software and hence
‘demystify’ the opacity of new technologies.

Ultimately, I argue that a deconstructive reading of software enables us to recognize
the constitutive, if unacknowledged, role of technology in the formation of both the
human and academic knowledge. This reading leads to a self-reflexive interrogation
of the media and cultural studies’ approach to technology and enhances our
capacity to engage with new technologies without separating our cultural
understanding from our political practices.




Chapters Outline

1. From Technical Tools to Originary Technicity: The Concept of
Technology in Western Philosophy

In this chapter I suggest that the problem of ‘new technologies’, and of the kind of
knowledge that can be produced about them, cannot be addressed without radically
reconsidering what we mean by ‘knowledge’ in relation to ‘technology’ in a
broader sense. What kind of knowledge can we produce about technology in the
context of media and cultural studies, apart from the analysis of the discourses and
practices of producers and consumers? What kind of knowledge are we interested
in? To answer these questions, I argue that, as a preliminary step, the received
concepts of technology need to be put into question. By received concepts of
technology I mean the ways in which technology has been understood primarily by
the Western philosophical tradition. I also argue that media and cultural studies can
highly benefit from a productive dialogue with philosophy on the subject of
technology.

I outline two traditions of philosophical thought about technology: the dominant
Aristotelian conception of technology as an instrument, and an alternative line of
thought based on the concept of the ‘originary technicity’ of the human being.
Subsequently, I draw on the work of thinkers belonging to the latter tradition
(Martin Heidegger, Bernard Stiegler, André Leroi-Gourhan, Jacques Derrida) to
develop a different way of thinking about technology, one that will ultimately prove
more productive for my investigation of software.

2. Language, Writing and Code: Towards a Deconstructive Reading of
Software

This chapter deals with the concept of ‘writing’ in relation to ‘language’ and ‘code’,
and with the usefulness of these concepts for the understanding of software. It asks
to what extent and in what way software is legible, and it proposes a deconstructive
reading strategy of software.

I start this chapter with a discussion of the use of ‘language’, ‘code’ and ‘writing’ as
explanatory concepts for software-based technologies. I draw mainly on N.
Katherine Hayles’ understanding of the ‘regime of code’ as opposed to the regimes
‘of speech’ and ‘of writing’, and on her suggestion that writing and code are




intertwined in software (Hayles 1999, 2002, 2005). Nevertheless I question her
assumption that software, as a technical object, is ‘beyond metaphysics’.

I subsequently take recourse to Derrida’s understanding of writing as a material
practice to point out that every code is material, and propose that, to understand
software, we need to engage in a deconstructive reading of software.

3. Software as Material Inscription: The Beginnings of Software
Engineering

In Chapter Three I show how, at the end of the 1960s, Software Engineering
established itself as a discipline through the attempt to control the constitutive
fallibility of software-based technology. I develop a close reading of the technical
literature related to the first two conferences on Software Engineering ever held, the
NATO Conference on Software Engineering held in Garmisch (Germany) in 1968
and the one held in Rome in 1969. These conferences, which were attended by
many of Software Engineering’s ‘founding fathers’, are considered the foundational
moment of the discipline. The conferences are very well documented. What is more
interesting is that all the most controversial issues concerning software’s
ontological status and its ways of working were already discussed at that event. In
this chapter I argue that in the foundational texts of Software Engineering
‘software’ was constituted as a process of material inscription through the
continuous undoing and redoing of the boundaries between ‘software’ itself,
‘writing” and ‘code’.

4. From the Cathedral to the Bazaar: Software as the Unexpected

In this chapter I investigate how the mutual co-constitution of ‘software’, ‘writing’
and ‘code’ develops in the Software Engineering of the 1970s and 1980s. I argue
that Software Engineering gradually emerges as the locus for a continuous
suspension and reconfirmation of the instrumentality of software. I also show how
software escapes its own definition as a ‘tool” by generating unforeseen
consequences, one of which is the emergence of open source programming in the
1990s. I then examine two of the fundamental texts on the management of time in
software development, both written by Frederick Brooks in the mid-1970s and mid-
1980s respectively. Subsequently, I investigate a classic of Software Engineering in
the ‘open source era’, Eric Steven Raymond’s The Cathedral and the Bazaar,
which responds to Brooks’ theories from the point of view of the mid-1990s.




5. Writing the Printed Circuit: For a Genealogy of Code

In this chapter I investigate the process of linearization at work in programming
languages, in order to question current understandings of digitization and digitality.

I start by focusing on the position of programming languages and formal notations
within Software Engineering. I then examine two classical works by J. D. Ullman
on programming languages and compilers (Hopcroft and Ullman 1969; Aho and
Ullman 1979) and discuss the concepts of formal notation, formal grammar,
programming language and compiler. I concentrate on the process of ‘compiling’ -
that is, the process through which a program is made executable through its
‘translation’ from a high-level programming language into machine-language, and
ultimately into physical transformations that are both sequences of on/off circuits
and streams of Os and 1s. I also investigate the role of the ‘blank’ in the text of the
program and the way in which the blank originates discreteness in time (that is, at
the time of the execution of the program).

Drawing on Derrida’s understanding of the materiality of signification, I argue that
the distinction between 0 and 1 is always already material, since it is enabled by the
mark. By considering the distinction between 0 and 1 as ‘material transcendence’ I
break free of the dilemma regarding the ontological status of code (Hayles 2005). I
also propose we understand the distinction between 0 and 1 as externalized
memory, and I investigate the implications of thinking this distinction as the
constitution of time in/as software.




Contents

Acknowledgments

Introduction

1 From Technical Tools to Originary Technicity: The Concept of
Technology in Western Philosophy

2 Language, Writing and Code: Towards a Deconstructive Reading
of Software

3 Software as Material Inscription: The Beginnings of Software
Engineering

4  From the Cathedral to the Bazaar: Software as the Unexpected
Writing the Printed Circuit: For a Genealogy of Code

Conclusions: The Unforeseen Consequences of Technology

Appendices
Bibliography

10

20

69

119

180

234

289

305
310




Acknowledgements

This thesis has been inspired by almost fifteen years of ‘writing’ software as a
Software Engineer for telecommunications. The people I wrote software with are
too many to be named; nevertheless, I would like to thank them here because I learnt

so much from them while also having so much fun.

Goldsmiths, University of London, has provided an exciting and stimulating
environment for the much more critical questioning of technology over the past few
years. First and foremost I am grateful to Joanna Zylinska for being an exceptional
supervisor, a demanding interlocutor, an inspiring guide and a friend. More often
than not she seemed to know where [ was heading before I did, which made me
work really hard in order to surprise her. Her work remains for me a model of
intellectual and political engagement. I have also been enriched by feedback and
comments from many other people in the Department of Media and
Communications, in particular from Sarah Kember. Janet Harbord and David

Morley have also provided insightful and provocative readings of my work.

In 2003 I had the privilege to discuss the early stages of my project with N.
Katherine Hayles at a Masterclass organized by Rosi Braidotti at the University of
Utrecht. Although over time my thought on technology has taken a different
direction from Hayles’, I maintain the greatest admiration for her work and feel

fortunate to have been in dialogue with her.




I also want to express my gratitude to Gary Hall for his generous comments on my
work on so many occasions and for sharing with me some of his tremendous

insights on technology (not least the one about ‘quasi-malfunctioning’ software).

Very special thanks are due to Liana Borghi at the University of Florence for being
my first mentor and an inestimable friend. She has changed my life in more than one

way and continues to do so.

Many friends in Italy and in England have stayed assiduously in touch and have put
up with my constant drifting around Europe. I am particularly grateful to Amy
Elizabeth Barksdale (for her unfailing emotional support and extraordinary sense of
humour), Dilek Basgurboga (for being a friend and a sister throughout), Sandra
Gaudenzi (for memorable discussion and a couple of very enjoyable trips to
Northern Europe) and Laura Cellini (whose life-long friendship I treasure). Special
thanks go to Roberto Camano for providing priceless feedback on grammars and

compilers - and for much more.

Through thick and thin over these years I have had the close support of a superb
team: my gratefulness goes to Rosie Harman, David Mabb, Black One and Other

One for seeing me through all this with so much love, wit and understanding.

A big thank you to Emma Inch for sharing with me monsters and aliens - and for

bringing so much love and beauty into my life.
Finally, I want to express all my gratitude to my feisty and fiercely humorous
mother Carla for her unconditional support. She and my late grandmother have been

models of determination, optimism and cheerfulness throughout my life.

This thesis is dedicated to my mother with love.




Introduction

This thesis is inspired by my experience of more than a decade of designing
software for telecommunications for a number of companies across two continents. I
was fortunate enough to have witnessed, and made a small contribution to, the birth
of the second generation of mobile telephony, or GSM (a geological stratum of
current G3/UMTS).! In the early 1990s I wrote the SS7 TCAP (Transaction
Capabilities Application Part) protocol for Italtel-Siemens telephone exchanges and
enjoyed a protracted struggle with C language, UNIX, a few types of Assembler
languages and a range of European and world-wide standards and recommendations.
I also experienced the expansion of digital mobile telephony into Russia and China
in the early to mid-1990s and developed software for SMS (Short Message Service)
at a time when nobody used the term ‘texting’ and when adding text messaging to
mobile communications was considered by many (including myself) an unpromising

idea.?

! GSM was originally a European project. In 1982, the European Conference of Postal and
Telecommunication Administration (CEPT) instituted the Groupe Spécial Mobile (GSM) to develop a
standard for a mobile telephone system that could be used across Europe. In 1989 the responsibility for
GSM was transferred to the European Telecommunications Standards Institute (ETSI). GSM was re-
signified as the English acronym for Global System for Mobile Communications and Phase One of the
GSM specifications were published in 1990. The world first public GSM call was made on 1 July 1991 in
a city park in Helsinki, Finland, an event which is now considered the birthday of second-generation
mobile telephony — the first generation of mobile telephony to be completely digital. In the early 1990s
Phase Two of GSM was designed and launched, and GSM rapidly became the world-wide standard for
digital mobile telephony. A decade later it led to the third-generation mobile telecommunication systems
— the Universal Mobile Telecommunication System (UMTS) (Kaaranen et al. 2005).

2 TCAP is a digital signaling system that enables communication between different parts of digital
networks, such as telephone switching centers and databases. SMS is a communication service
standardized as part of the GSM network (the first definition of SMS is to be found in the GSM standards
as early as 1985), which allows for the exchange of short text messages between mobile telephones. The
SMS service was developed and commercialized in the early 1990s. Today SMS text messaging is the
most widely used data application in the world.

10




However, over time I started questioning my own engagement with technology.
Perhaps a mix of my background in the humanities, my general wariness of the
corporate environment and the political commitment to ‘think differently’ that came
from my involvement with the Italian left, with the unions and also with the queer
movement throughout the 1990s made me quite conscious of the limits of the
merely technical understanding of technology. Thus, this thesis also stems from my
desire to ask different questions of technology from those posed by the technical
environment in which I had an opportunity to work. In 2004, when I first began
investigating the nature of software from a non-technical point of view, the context
of media and cultural studies presented the most interesting academic framework for
such an enquiry - although I have actually ended up questioning media and cultural

studies’ approach to technology.

The principal aim of this thesis is to propose an analytical framework for the
cultural understanding of the group of technologies commonly referred to as ‘new’
or ‘digital’. Taking into account the complexity and shifting meanings of the term
‘new technologies’, I understand these technologies as sharing one common
characteristic: they are all based on software. The currency of the term ‘software’ in
public and academic discourses does not yet match that of ‘new technologies’,
although its appearance is more and more frequent. However, its meaning seems to
be equally shifting and unclear. I argue that, in order to understand what new

technologies are, we need first of all to focus on what software is.

Therefore, throughout the course of my argument I primarily ask the question ‘what
is software?’. I argue that this question needs to be dealt with seriously if we want
to begin to appreciate the role of technology in contemporary culture and society. In
other words, I call for a radical ‘demystification’ of new technologies through a
demystification of software. I also maintain that in order to understand new
technologies we need first of all to address the mystery that surrounds their
functioning and that affects our comprehension of their relationship to the cultural
and social realm. This will ultimately involve a radical rethinking of what we mean

by ‘technology’, ‘culture’, and ‘society’.

11




The reason I believe such an intimate engagement with new technologies is needed
1s not only related to their pervasiveness in our world, but also to the fact that we are
constantly being asked or even forced to make decisions about software-based
technologies in our everyday life: for instance, when having to decide whether to
use commercial or free software, when to upgrade our computer, or whether we
should own one at all. I am particularly interested in the political significance that

our — conscious and unconscious - involvement with technology carries.

Therefore, with this thesis I also seek a way to think new technologies politically.
More precisely, I argue that the main political problem with new technologies is that
they exhibit - in the words of Bernard Stiegler — a ‘deep opacity’ (Stiegler 1998:
21). As Stiegler maintains, ‘we do not immediately understand what is being played
out in technics, nor what is being profoundly transformed therein, even though we
unceasingly have to make decisions regarding technics, the consequences of which
are felt to escape us more and more’ (21).> I suggest that, in order to develop
political thinking about new technologies, we need to start by tackling their

opacity.’

To be able to elaborate further on what I mean by demystifying the opacity of new
technologies, and particularly of software, let me start by examining the place of

new technologies in today’s academic debate.

3 We can provisionally assume here that the word ‘technics’ (belonging to Stiegler’s partially
Heideggerian philosophical vocabulary) indicates in this context contemporary technology, and therefore
includes what I am referring to here as ‘new technologies’.

* Alfred Gell (1992) develops an interesting reflection on the relations between art, technology and magic.
Drawing on the example of Trobriand canoe-boards, Gell argues that the foundation of art is a technically
achieved level of excellence that a society misrepresents to itself as a product of magic. Gell views art as
a special form of technology and art objects as devices to obtain social consensus. For Gell ‘the power of
art objects stems from the technical processes they objectively embody: the technology of enchantment is
founded on the enchantment of technology’ (Gell 1992: 44). The magical prowess, which is supposed to
have entered the making of the art object, depends on the level of cultural understanding that surrounds it.
The same can be said of technology: ‘the enchantment of technology is the power that technical processes
have of casting a spell over us so that we see the real world in an enchanted form’ (44). This is what Gell
names the ‘halo effect of technical difficulty’ (Gell 1992: 48; Pinney and Thomas 2001: 3). He argues
that art objects are made valuable precisely by virtue of the ‘intellectual resistance’ they offer to the
viewer (49) and that ‘technical virtuosity is intrinsic to the efficacy of works of art in their social context’
because it creates an asymmetry in the relationship between the artist and the spectator (52). Gell’s
reflection contributes to show the cultural character of the sense of enchantment that surrounds
technology. Furthermore, by suggesting that such sense of enchantment has a role in the creation of social
consensus, it provides evidence to the fact that any attempt to change the processes through which we
understand technology has significant political consequences.

12




New technologies are an important focus of academic reflection, particularly in
media and cultural studies. With the formulation ‘media and cultural studies’ I mean
to highlight that the reflection on new technologies is positioned at the intersection
of the academic traditions of cultural studies and media studies. Nevertheless, to
think that technology has only recently emerged as a significant issue in media and
cultural studies would be a mistake. In fact, I argue that technology (in its broadest
sense) has been present in media and cultural studies from the start, as a
constitutional concept. The intertwining between the concepts of ‘medium’ and
‘technology’ dates back to what some define as the ‘foundational’ debate between
Raymond Williams and Marshall McLuhan (Lister 2003: 74). While a detailed
discussion of this debate would divert us from the main focus of this introduction, it
must be noticed that in his work McLuhan was predominantly concerned with the
technological nature of the media, while Williams emphasized the fact that
technology was always socially and culturally shaped. At the risk of a certain
oversimplification, we can say that British media and cultural studies has to a large
extent been informed by Williams’ side of the argument — and has thus focused its
attention on the cultural and social formations surrounding technology, while
rejecting the ghost of ‘technological determinism’, and frequently dismissing any
overt attention paid to technology itself as ‘McLuhanite’ (Lister 2003: 73). Yet
technology has entered the field of media and cultural studies precisely thanks to

McLuhan’s insistence on its role as an agent of change.

One must be reminded at this point that, in the perspective of media and cultural
studies, to study technology °‘culturally’ means to follow the trajectory of a
particular ‘technological object’ (generally understood as a technological product),
and to explore ‘how it is represented, what social identities are associated with it,
how it is produced and consumed, and what mechanisms regulate its distribution
and use’ (DuGay 1997: 3). Such an analysis concentrates on ‘meaning’, and on the
way in which a technological object is made meaningful. Meaning is understood as
not arising from the technological object ‘itself’, but from the way it is represented
in the discourses surrounding it. By being brought into meaning, the technological
object is constituted as a ‘cultural artefact’ (10). Thus, meaning emerges as intrinsic
to the definition of ‘culture’ deployed by media and cultural studies. This is the case

in Williams’ classical definition of culture as a ‘description of a particular way of

13




life’, and of cultural analysis as ‘the clarification of the meanings and values
implicit and explicit in particular ways of life’ (Williams 1961: 57), as well as in a
more recent understanding of ‘culture’ as ‘circulation of meanings’ (a formulation
that takes into account that diverse, often contested meanings are produced, shared
and communicated within different social groups, and that they generally reflect the

play of powers in society) (Hall 1997; DuGay et al. 1997).

When approaching new technologies, media and cultural studies has therefore
predominantly focused on the intertwined processes of production, reception, and
consumption, that is on the discourses and practices of new technologies’ producers
and users. From this perspective, even a technological object as ‘mysterious’ as
software is addressed by asking how it has been made into a significant cultural
object. For instance, in his 2003 article on software, Adrian Mackenzie
demonstrates the relevance of software as a topic of study essentially by examining

the new social and cultural formations that surround it (Mackenzie 2003).”

Although I recognize that the above perspective remains very important and
politically meaningful for the cultural study of technology, I suggest that it should
be supplemented by an alternative, or I would even hesitantly say more ‘direct’,
investigation of technology — although I will raise questions for this notion of
‘directness’ later on. In other words, as I have suggested above, in order to
understand the role that new technologies play in our lives and the world as a whole,
we also need to shift the focus of analysis from the practices and discourses
concerning them to a thorough investigation of how new technologies work, and, in
particular, of how software works and of what it does. Let me now explain how

such an investigation of software can be undertaken.

* An analogous claim is made by Lev Manovich in his recent book, Software Takes Command (2008). In
this book Manovich argues that media studies has not yet investigated ‘software itself’, and advances a
proposal for a new field of study that he names ‘software studies’. Manovich actually claims to have been
the first to have used the term in 1999. He goes on to propose a ‘canon’ for software studies that includes
Marshall McLuhan, Robert Innis, Matthew Fuller, Katherine Hayles, Alexander Galloway and Friedrich
Kittler among others. However, when he speaks of ‘software itself’, Manovich is adamant that ‘software’
does not mean ‘code’ — that is, computer programs. For him, software studies should focus on software as
a cultural object - or, in Manovich’s own terms, as ‘another dimension in the space of culture’ (Manovich
2008: 4). Software becomes ‘culturally visible’ only when it becomes visual — namely, ‘a medium’ and
therefore ‘the new engine of culture’ (4).

14




By arguing for the importance of such an investigation, I do not mean that a ‘direct
observation’ of software is possible. I am well aware that any relationship we can
entertain with software is always mediated, and that software might well be
‘unobservable’. In fact, I intend to take away all the implications of ‘directness’ that
the concept of ‘demystifying’ or ‘engaging with’ software may bring with it. I am
particularly aware that software has never been univocally defined by any
disciplinary field (including technical ones) and that it takes different forms in
different contexts.® In my own study I start from a rather widely accepted definition
of software as the totality of all computer programs as well as all the written texts
related to computer programs. This definition constitutes the conceptual foundation
of Software Engineering, a technical discipline born in the late 1960s to help
programmers design software cost-effectively. Software Engineering describes
software development as an advanced writing technique that translates a text or a
group of texts written in natural languages (namely, the requirements specifications
of the software ‘system’) into a binary text or group of texts (the executable
computer programs), through a step-by-step process of gradual refinement (Brooks
1987; Humphrey 1989; Sommerville 1995). As Professor of Software Engineering
at St Andrews University lan Sommerville explains, ‘software engineers model
parts of the real world in software. These models are large, abstract and complex so
they must be made visible in documents such as system designs, user manuals, and
so on. Producing these documents is as much part of the software engineering

process as programming’ (Sommerville 1995: 4)

This formulations show that ‘software’ does not only mean ‘computer programs’. A
comprehensive definition of software also includes the whole of technical literature
related to computer programs, including methodological studies on how to design
computer programs - that is, including Software Engineering literature itself. The
essential move that such an inclusive definition allows me to make consists in
transforming the problem of engaging with software into the problem of reading it.
In my thesis I will therefore ask to what extent and in what way software can be

described as legible. Moreover, since Software Engineering is concerned with the

8 For instance, a computer program written in a programming language and printed on a piece of paper is
software. When such a program is executed by a computer machine, it is no longer visible, although it
might remain accessible through changes in the status of the machine (such as the blinking of lights, or
the flowing of characters on a screen) — and it is still defined as software.

15




methodologies for writing software, I will also ask to what extent and in what way
software can actually be seen as a form of writing. Such a reformulation will enable
me to take the textual nature of software seriously. In this context, concepts such as
‘reading’, ‘writing’, ‘document’ and ‘text’ are no mere metaphors. Rather, they are
Software Engineering’s privileged mode of dealing with software as a technical
object. It could even be argued — as I shall throughout this dissertation - that in the
discipline of Software Engineering software’s technicity is dealt with as a form of

writing.

As a first step it is important to notice that, in order to investigate software’s
readability and to attempt to read it, the concept of reading itself needs to be
problematized. In fact, if we accept that software presents itself as a distinctive form
of writing, we need to be aware that it consequently invites a distinctive form of
reading. But to read software as conforming to the strategies it enforces upon its
reader would mean to read it like a computer professional would, that is in order to
make it function as software. I argue that reading software on its own terms is not
equal to reading it functionally. For this reason, I develop a strategy for reading
software by drawing on Jacques Derrida’s concept of ‘deconstruction’. However
controversial and uncertain a definition of ‘deconstruction’ might be, I am
essentially taking it up here as a way for stepping outside of a conceptual system
while simultaneously continuing to use its concepts and demonstrating their
limitations (Derrida 1980). ‘Deconstruction’ in this sense aims at ‘undoing,
decomposing, desedimenting’ a conceptual system, not in order to destroy it but in
order to understand how it has been constituted (Derrida 1985).” According to
Derrida, in every conceptual system we can detect a concept that is actually
unthinkable within the conceptual structure of the system itself — therefore, it has to
be excluded by the system, or, rather, it must remain unthought to allow the system

to exist. A deconstructive reading of software therefore asks: what is it that has to

7 In “Structure, Sign, and Play in the Discourse of the Human Sciences’ (1980), while reminding us that
his concept of deconstruction was developed in dialogue with structuralist thought, Derrida speaks of
‘structure’ rather than of conceptual systems, or of systems of thought. Even though it is not possible to
discuss this point in depth here, I would like to point out how, in the context of that essay, ‘structure’
hints at as complex a formation as, for instance, the ensemble of concepts underlying social sciences, or
even the whole of Western philosophy.

16




remain unthought within the conceptual structure of software?® In Derrida’s words
(1980), such a reading looks for a point of ‘opacity’, for a concept that escapes the
foundations of the system in which it is nevertheless located and for which it
remains unthinkable. It looks for a point where the conceptual system that
constitutes software ‘undoes itself”’. For this reason, a deconstructive reading of
software is the opposite of a functional reading. For a computer professional, the
point where the system ‘undoes itself’ is a malfunction, something that needs to be
fixed. From the perspective of deconstruction, in turn, it is a point of revelation, in
which the conceptual system underlying the software is clarified. Actually, I want to
suggest that Derrida’s point of ‘opacity’ is also simultaneously the locus where
Stiegler’s ‘opacity’ disappears, that is where technology allows us to see how it has
been constituted. Being able to put into question at a fundamental level the premises
on which a given conception of technology rests would prove particularly important
when making decisions about it, and would expand our capacity for thinking and

using technology politically, not just instrumentally.

Let me consider briefly some of the consequences that this examination of software
might have for the way in which media and cultural studies deals with new
technologies. We have already seen that the issue of technology has been present in
media and cultural studies from the very beginning, and that the debate around
technology has contributed to defining the methodological orientation of the field.
For this reason, it is quite understandable that rethinking technology would entail a
rethinking of media and cultural studies’ distinctive features and boundaries. A
deconstructive reading of software will enable us to do more than just uncover the

conceptual presuppositions that preside over the constitution of software itself. In

¥ I am making an assumption here - namely that software is a conceptual system as much as it is a form of
writing and a material object. In fact, the investigation of these multiple modes of existence of software is
precisely what is at stake in my dissertation. In the context of the present introduction, and for the sake of
clarity, I am concentrating on the effects of a deconstructive reading of a ‘structure’ understood in quite
an abstract sense.

o According to Derrida, deconstruction is not a methodology, in the sense that it is not a set of immutable
rules that can be applied to any object of analysis — because the very concepts of ‘rule’, of ‘object’ and of
‘subject’ of analysis, themselves belong to a conceptual system (broadly speaking, they belong to the
Western tradition of thought), and therefore are subject to deconstruction too. As a result,
‘deconstruction’ is something that ‘happens’ within a conceptual system, rather than a methodology. It
can be said that any conceptual system is always in deconstruction, because it unavoidably reaches a point
where it unties or disassembles its own presuppositions. On the other hand, since it is perfectly possible
to remain oblivious to the permanent occurrence of deconstruction, there is a need for us to actively
‘perform’ it, that is to make its permanent occurrence visible. In this sense deconstruction is also a
productive, creative process.

17




fact, such an investigation will have a much larger influence on our way of
conceptualising what counts as ‘academic knowledge’. To understand this point
better, not only must one be reminded that new technologies change the form of
academic knowledge through new practices of scholarly communication and
publication as well as shifting its focus, so that that the study of new technologies
has eventually become a ‘legitimate’ area of academic research. Furthermore, as
Gary Hall (2002: 111) points out, new technologies change the very nature and
content of academic knowledge. In a famous passage, Jacques Derrida wondered
about the influence of specific technologies of communication (such as print media
and postal services) on the field of psychoanalysis by asking ‘what if Freud had had
e-mail?’ (Derrida 1996). If we acknowledge that available technology has a
formative influence on the construction of knowledge, then a reflection on new
technologies implies a reflection on the nature of academic knowledge itself. But, as
Hall maintains, paradoxically ‘we cannot rely merely on the modern “disciplinary”
methods and frameworks of knowledge in order to think and interpret the
transformative effect new technology is having on our culture, since it is precisely
these methods and frameworks that new technology requires us to rethink’ (Hall
2002: 128). According to Hall, cultural studies is the ideal starting point for a study
of new technologies, precisely because of its open and unfixed identity as a field. A
critical attitude toward the concept of disciplinarity has characterized cultural
studies from the start. Such a critical attitude informs cultural studies’ own
disciplinarity, its own academic institutionalisation (115)."° Yet Hall argues that
cultural studies has not always been up to such self-critique, since very often it has
limited itself to an ‘interdisciplinarity’ attitude understood only as an incorporation
of heterogencous elements from various disciplines - what has been called the
‘pick’n’mix’ approach of cultural studies -but not as a thorough questioning of the
structure of disciplinarity itself. He therefore suggests that cultural studies should
pursue a deeper self-reflexivity, in order to keep its own disciplinarity and
commitment open. This self-reflexivity would be enabled by the establishment of a
productive relationship between cultural studies and deconstruction. The latter is

understood here, first of all, as a problematizing reading that would permanently

19 For the scope of the present Introduction, I assume Hall’s term “cultural studies’ as roughly equivalent
to what I have previously named ‘media and cultural studies’, since this passage refers to a constitutive
debate around the field’s conceptual framework.

18




question some of the fundamental premises of cultural studies itself. Thus, cultural
studies would remain acutely aware of the influence that the university, as a
political and institutional structure, exercises on the production of knowledge
(namely, by constituting and regulating the competences and practices of cultural
studies practitioners). It is precisely in this awareness, according to Hall, that the
political significance of cultural studies resides. Given that media and cultural
studies is a field which is particularly attentive to the influences of the academic
institution on knowledge production, and considering the central role played by
technology in the constitution of media and cultural studies, as well as its potential
to change the whole framework of this (already self-reflexive) disciplinary field, I
want to argue here that a rethinking of technology based upon a deconstructive
reading of software needs to entail a reflection on the theoretical premises of the

methods and frameworks of academic knowledge.

To conclude, in this thesis I propose a reconceptualization of new technologies, that
is of technologies based on software, through a close, even intimate, engagement
with software itself, rather than through an analysis of how new technologies are
produced, consumed, represented and talked about. To what extent and in what way
this intimacy can be achieved and how software can be made available for
examination are the main research problems of this thesis. Taking into account
possible difficulties resulting from the working of mediation in our engagement
with technology as well as technology’s opacity and its constitutive, if
unacknowledged, role in the formation of both the human and academic knowledge,
I want to argue via close readings of selected software practices, inscriptions and
events that such an engagement is essential if we are to take new technologies
seriously, and to think them in a way that affects - and that does not separate —

cultural understanding and political practice.

19




1 From Technical Tools to Originary Technicity

The Concept of Technology in Western Philosophy

In this chapter I suggest that the problem of ‘new technologies’, and of the kind of
knowledge that can be produced about them, cannot be addressed without radically
reconsidering what we mean by ‘knowledge’ in relation to ‘technology’ in a broader
sense. What kind of knowledge can we produce about technology in the context of
media and cultural studies, apart from the analysis of the discourses and practices of
producers and consumers? To answer this question, I argue that, as a preliminary
step, the received concepts of technology need to be put into question. By received
concepts of technology I mean the ways in which technology has been understood

primarily by the Western philosophical tradition.

This turn to the philosophical conceptions of technology in the context of media and
cultural studies might seem somewhat daring or even misjudged. However, I argue
that media and cultural studies can highly benefit from a productive dialogue with
philosophy on the subject of technology. Although a detailed discussion of the
acceptability of interweaving philosophy and media and cultural studies would take
the present chapter too far, it must be noticed that a debate on the relevance of
philosophical thought has taken place , from time to time, throughout the history of
media and cultural studies. This debate has mainly focused on ‘theory’, that is on
specific developments in French structuralist and post-structuralist thought, such as
semiotics and deconstruction. Nevertheless, 1 argue that this capacity for

questioning its own conceptual framework is precisely what enables media and

20




cultural studies to think technology originally and innovatively, and therefore to

interrogate what we mean by technology in the first place.

To give but one example, in his famous essay ‘Cultural Studies and Its Theoretical
Legacies’, Stuart Hall takes into consideration the tension between theoretical and

political dimensions that for him determines the specificity of cultural studies:

Both in the British and the American context, cultural studies has drawn
the attention itself, not just because of sometimes dazzling internal
theoretical development, but because it holds theoretical and political
questions in an ever irresolvable but permanent tension. It constantly
allows one to irritate, bother, and disturb the other, without insisting on

some final theoretical closure.

(Hall 1992: 284)

According to Hall, the theoretical encounters with structuralism and post-
structuralism have forced cultural studies to constantly question itself and to keep its
identity open and heterogeneous. And yet what holds the field together is its
politically committed nature. “Not that there is one politics already inscribed within
it. But there is something af stake in cultural studies in a way that I think, and hope,

is not exactly true of many other very important intellectual and critical practices’
(Hall 1992: 278).!

In his book of 2002 entitled Culture in Bits, Gary Hall observes that, while
acknowledging the tension between theory and politics, Stuart Hall is actually
inclined to give priority to the latter: therefore politics remains that which limits the
destabilizing and decentering effects of theory (Hall 2002). Gary Hall takes a much
more far-reaching stance by suggesting that theory itself has political relevance in

cultural studies. For him, by enabling reflexivity within cultural studies, theory also

! For the scope of the present chapter, I take the term ‘cultural studies’ as roughly equivalent to what I
have previously named ‘media and cultural studies’, since this passage refers to a fundamental discussion
about the field’s methodology and conceptual framework. Also, in the UK academic context, the
discipline of cultural studies has morphed into a broader cross-disciplinary field of ‘media,
communications and cultural studies’ over the recent years.

21




enables cultural studies to become particularly aware of the influences that the
university as a political and institutional structure exerts on the production of
knowledge, including knowledge produced within cultural studies. Thinking
politically means first of all being attentive to the institutional forces that shape
thought itself, such as the constitution and regulation of cultural studies

practitioners’ competences by the university.

Therefore, since the ability to question inherited conceptual frameworks appears to
be one of cultural studies’ points of strength, and since this dissertation aims at
‘demystifying’ new technologies and developing new forms of knowledge about
technology within media and cultural studies, I want to argue here that a re-
examination of the philosophical conceptions of technology is a convenient starting

point for my argument.

Let me thus begin with a general proposition: Western philosophy has always found
it rather difficult to think about technology. For instance, in the first volume of his
book Technics and Time (1998), Bernard Stiegler remarks that, while the
extraordinary technological changes of our age need to be conceptualized and made
intelligible as soon as possible, in attempting to achieve this intelligibility one
cannot rely on any available account of technology in the Western philosophical
tradition: ‘at its very origin and up until now, philosophy has repressed technics as

an object of thought. Technics is the unthought’ (Stiegler 1998a: ix).2

Although later on in his work Stiegler identifies a few exceptions to this
philosophical refusal to openly approach technology — namely, the thought of
several French philosophers, including Jacques Derrida, and that of Martin
Heidegger - he nevertheless points out that philosophical reflection has traditionally
pushed technology to its own margins. And yet, a critical evaluation of such
reflection shows how the concept of technology has always been tightly connected

to the concepts of ‘knowledge’, ‘language’ and ‘humanity’.

? The term ‘technics’ belongs to Stiegler’s partially Heideggerian philosophical vocabulary. I take it here
as a synonym for what we commonly refer to as ‘technology’. I will point out specific uses of the term
where appropriate.

22




For this reason, in the present chapter I take into consideration a number of
philosophers who have attempted a conceptualisation of technology and dealt with
the difficulty of producing knowledge about it. I examine both the dominant
philosophical conception of technology based on the Aristotelian thought, which
substantially reduces technology to a mere instrument, and the work of those
thinkers who have distanced themselves from such an instrumental understanding
and have instead proposed a view of technology as a fundamental characteristic of
human beings. I refer mainly, but not exclusively, to the work of Heidegger,
Stiegler, Derrida and the French palaeontologist André Leroi-Gourhan. The work of
all these thinkers shows that philosophy has constituted itself precisely in relation
(and in opposition) to technological knowledge, and therefore it points to the need
for the radical rethinking of philosophy itself if an understanding of technology is to

be made possible.

Tracing a map of the philosophical thought on technology is not an easy task. In
order to start exploring this problem, let me initially follow the innovative
genealogy proposed by Stiegler (1998a). Stiegler’s position on the relationship
between philosophy and technology is quite striking. Although, as we have seen
above, he argues for the ‘urgency and necessity of an encounter between philosophy
and technology’ (Stiegler 1998a: xi), he actually views philosophy as traditionally
and constitutively incapable of thinking technology.

Stiegler identifies an interesting paradox in the contemporary way of understanding
technology: while on the one hand we keep conceptualizing technology in the
traditional terms of means and ends, on the other hand we are faced today by a new
technological ‘opacity’ (14). This opacity makes apparent the inadequacy of our
conceptual frameworks to understand contemporary technology. Furthermore,
Stiegler attributes this inadequacy to today’s ‘breakdown of knowledge into separate
domains’ (14). He emphasizes the insufficiency of the so-called ‘inter-disciplinary’
approach to the study of technology. In fact, he claims that today’s technology calls
for a profound rethinking of the relationship between technology itself and culture.’

3 Quite similarly, as I have pointed out in the Introduction, Gary Hall (2002) argues that ‘new
technologies’ stimulate a rethinking of the concept of disciplinarity.

23




Stiegler attributes the problematic character of today’s technology to its relation
with time. In other words, contemporary technology is problematic because the pace
of technological innovation has become very fast. New technologies emerge and
rapidly make obsolete more and more pre-existing technologies, as well as the social

and cultural practices associated with them. He writes:

Innovation is inevitably accompanied by the obsolescence of existing
technologies that have been superseded and the out-of-datedness of
social situations that these technologies made possible — men, domains of
activity, professions, forms of knowledge, heritage of all kinds that must

either adapt or disappear.

(Stiegler 1998a: 14)

I want to point out here how the experience that Stiegler describes in this passage is
all too familiar to anyone who has paid attention to the rapid succession of
‘generations’ of personal computers or mobile phones. Besides, the anxiety of
keeping up with innovation is particularly felt by computer professionals and other
practitioners of technological fields, who need to constantly ‘update’ and refresh

their competencies just to be able to keep their jobs.

The problem of obsolescence, of out-of-datedness, is key to our uncomfortable
relationship with technology today, Stiegler claims. Therefore, he identifies an
apparent divorce between technical and scientific knowledge on the one hand, and
culture on the other. Hence the urgency of needing to rethink the modalities of the

interaction between technology and culture.”

* A similar argument on technology and time has also been made by the French philosopher and media
theorist Paul Virilio. In his theory of the ‘visual machine’ Virilio focuses on the ‘automation of vision’ -
that is, the transferring to computers of perceptual functions traditionally bound up with the body. He
emphasises that, in contrast with earlier visual technologies (such as the telescope, the microscope, or
even cinema), which used to extend the perceptual capacities of the body, contemporary vision machines
bypass the constitutive limits of our body thanks to their ultrahigh-speed operations. The ultra-fast
machine vision neglects the longer time of exposure needed by the human ocular system to memorize an
image (Virilio 1994: 61). An original interpretation of Virilio’s theory is offered by Mark Hansen,
according to whom Virilio, rather than simply showing how machines are making the human superfluous,
actually argues for the right of humans to see ‘differently’ from machines (Hansen 2004; Virilio 1997).

24




To develop this point further, Stiegler draws on Bertrand Gille’s concept of
‘permanent innovation’ (in which new technologies continually spread in society) as
the basis of industrial civilization (Gille 1986; Stiegler 1998a). This process of
permanent innovation results in a difference in speed between technical and cultural
change. Moreover, according to Stiegler, contemporary technology has a totally new
relation with time. He expresses this fact with the image of a technological device
that ‘goes faster than its own time’. Stiegler’s favoured analogy is that of ‘a
supersonic device, quicker than its own sound’, whose breaking of the sound barrier

provokes ‘a violent sonic boom, a sound shock’ (Stiegler 1998: 15).

Stiegler indicates two instances of this transformed relationship between technology
and time: what goes under the name of ‘live’ media, and what we call ‘real-time’
computers. I do agree with Stiegler’s claim that both ‘live’ media and ‘real-time’
computers deeply modify (or, in his terms, ‘distort’) the taking place of time (what
he calls ‘event-ization’, événementialisation). Yet, it must be noted in passing that
here Stiegler overlooks the substantial difference between these two kinds of
technology. In fact, while ‘live’ media give us access to an event ‘without delay’,
the concept of ‘real-time’ defines the capacity of a computer to respond to changes
in its environment ‘as soon as they happen’ - that is, in a fast and effective way.
Since these changes may occur at a speed of milliseconds, the time of response
belongs to an order of temporality practically unperceivable by human beings.
Therefore, the concept of ‘live’ media seems to retain a ‘human’ measure of time
that ‘real-time’ computers have renounced. At the same time, the latter present a
level of risk in a certain way ignored by ‘live’ media (real-time systems are
technically defined as ‘systems for which time is critical’, and they are typically
involved in controlling complex apparatuses in potentially dangerous situations,

such as airplanes during flight).’

However, the profound involvement of technology with time becomes apparent
today through both the speed of technical change and the ruptures in event-ization

that this change provokes. In Stiegler’s words, ‘there is today a conjunction between

5 Again, a similar argument about the capacity of real-time technologies to bypass human perceptions has
been made by Virilio (1994, 1997).

25




the question of technics and the question of time’ that ‘calls for a new consideration

of technicity’ (17).

Before examining Stiegler’s chart of the philosophical thought on technology
further, let me point out how his emphasis on the particularly fast pace of
contemporary technological change resonates with the problem of defining the
‘newness’ of ‘new technologies’ and ‘new media’ - that is, with the question of what
actually is ‘new’ in ‘new technologies’ and ‘new media’, a problem that has been

widely discussed in media and cultural studies.

For instance, in her 1988 book When Old Technologies Were New, media theorist
Carolyn Marvin shows how the process of electrification, which started at the end of
the nineteenth century and led to the electrical technologies in use today, was
perceived by its contemporaries as extremely upsetting and challenging — in a word,
‘new’ (Marvin 1988). The deliberate anachronism of Marvin’s title indicates that the
technologies we now take for granted (to the point that they have become almost
invisible to us) were once regarded as tremendously innovative, and that the process
that led to their adoption involved a great deal of complex social and cultural

adjustment.

Albeit Marvin conceives her study as an historical monograph focusing on the
dynamics of the social reception of electricity, and although she does not propose
any explicit analogy with contemporary technology, her work effectively
destabilizes the rhetoric of ‘newness’ that can be found in contemporary discourses
around ‘new technologies’ (see, for instance, Lister et al. 2003). However, it seems
to me that Marvin’s analysis remains at the level of the social and cultural reception
of technological innovation, while Stiegler attempts to question the concept of
innovation itself, as well as the relationship between what we identify as

‘technology’ and ‘culture’.

In sum, according to Stiegler the speed of contemporary technology makes it
particularly difficult to understand it. His observation stimulates the following
questions: in what way can we think the relationship between contemporary

technology and time? Is this relationship distinctive of ‘new technologies’, or does

26




its relevance extend to all technology? How can we understand this relation more
generally, and in what way would such an understanding change our concept of
technology - and possibly even of time? In other words, Stiegler’s argument opens
up two orders of questions, one concerning the ‘newness’ of the relationship
between ‘new technologies’ and time, and the other regarding ways of framing the

relationship between technology and time in general.

According to Stiegler, the first philosopher to seriously think technology in relation
with time was Martin Heidegger. He was also the first to address some of the
reasons for philosophy’s incapacity to think technology. To understand this point
better, and before examining Heidegger’s argument on technology, let me spend a
little more time on Stiegler’s understanding of the relationship between technology

and philosophy.

For Stiegler philosophy has always ‘repressed’ technology as an object of thought.
What Stiegler means by this is that, from the very beginning, Western philosophy
has distinguished itself from technology, and has in fact identified itself as not
technology. It has done so by separating techné from epistémé. Epistémé is the
Greek word most often translated as knowledge, while techné is translated as either
craft or art (Parry 2003). The separation between techné and epistémé was rooted in
the political arena of fifth century Athens, and it associated techné with the
rhetorical skills of the Sophists. As professional rhetoricians, the Sophists were
skilled in the construction of political arguments. Their skillfulness (techné) was
perceived as indifference to establishing truth, or, worse, as an attempt to make truth
instrumental to power. As such, Sophists’ fechné came to be opposed to true
knowledge. Therefore, truth remained the only object of epistémé, which in turn was
identified with philosophy. This substantially political move deprived technical

knowledge of any value.
Stiegler emphasizes that the subsequent step in the devaluation of technology was

made by Aristotle through his definition of a ‘technical being’ as something that

does not have an own end in itself and that is just a tool used by someone else for

27




their ends.® It must be noted here that Stiegler leaves out the fact that Aristotle also
specifically addresses the distinction between fechné and epistémé in a few passages
of his work. As Richard Parry points out, the most obvious place to begin an
examination of epistémé and techné in Aristotle's writings is Book VI of the
Nicomachean Ethics, where Aristotle makes a clear distinction between the spheres

of scientific knowledge (epistémé) and craft (techné). Parry explains:

Scientific knowledge concerns itself with the world of necessary truths,
which stands apart from the world of everyday contingencies, the
province of craft. Although there are a few problems of interpretation
surrounding this description of scientific knowledge (mainly because
Aristotle is quite ambivalent in his use of the term epistémé in Posterior
Analytics and in Metaphysics), we have here a classic distinction
between the “purely theoretical” and the “purely practical”.

(Parry 2003: non-pag.)

However, this further analysis of Aristotle’s thought does nothing but reinforce
Stiegler’s argument that the exclusion of technology from philosophy has been
founded on the concept of instrumentality: technical knowledge has been interpreted
as instrumental, and therefore as non-philosophy. Timothy Clark synthetically
clarifies ‘the conception of technology that ... has dominated Western thought for
almost three thousand years’ (Clark 2000) as follows:

The traditional, Aristotelian view is that technology is extrinsic to human
nature as a tool which is used to bring about certain ends. Technology is
applied science, an instrument of knowledge. The inverse of this
conception, now commonly heard, is that the instrument has taken
control of its maker, the creation control of its creator (Frankenstein’s
monster).

(Clark 2000: 238)

¢ Nicomachean Ethics 6, 3-4 (Aristotle 1984).

28




Clark’s passage shows quite clearly the Aristotelian basis of the utilitarian model of

technology which is still in use today.

Moreover instrumentality has gained a new importance during the process of the
industrialization of the Western world. Accordingly, technology has slowly acquired
a new place in philosophical thought. Stiegler maintains that science has become
more and more instrumental (to economy, to war) in the course of the last two
centuries, therefore gradually renouncing its character of ‘pure’ knowledge. At the
same time, philosophy has become interested in the ‘technicization’ of science. As

an example of this Stiegler cites Edmund Husserl’s work on the arithmeticization of

geometry.

During the ascent of Nazism in Germany, Husserl conceptualized the emergence of
algebra (which had been ongoing since Galileo’s times) as a technique of calculation
that emptied geometry of its visual content. ‘In algebraic calculation,” he wrote, ‘one
lets geometric signification recede into the background as a matter of course, indeed
one drops it altogether; one calculates, remembering only at the end that the
numbers signify magnitudes’ (Husserl 1970: 44-45). According to Husserl, by
becoming viable to calculation, geometry renounces its capacity of visualizing
geometrical shapes — or, in Husserl’s terms, ‘spatio-temporal idealities’ (41).
Therefore, as Stiegler comments, ‘the technicization of science constitutes its eidetic

blinding’ (Stiegler 1998a: 3).’

I want to point out here how the concept of ‘calculation’ is a constitutive part of the
concept of instrumentality. For Husserl calculation seems to be the equivalent of
formalization and algebra, as a technique of calculation, is nothing but a formalism
that allows us to manipulate numerical configurations and to forget their visual
meaning. The emphasis here is not on a supposedly ‘mechanical’ character of
calculation; on the contrary, Husserl highlights the fact that algebra still makes
geometrical discoveries possible. Rather, the emphasis is on the forgetting of what

Husserl understands as the visual meaning of geometry.

7 The term ‘eidetic’ comes from the Greek eidos, which means form. Therefore, here Stiegler hints at a
loss of the “visual’ dimension of geometry.

29




Stiegler also points out how the Platonic conception of technicization as the loss of
memory is still at the basis of Husserl’s understanding of algebra (3). I will come
back to Plato’s understanding of technology later on in this chapter, particularly
when addressing Derrida’s conception of writing. For now it is worth remembering
that in his dialogue Phaedrus Plato famously associates writing, understood as a
technique to aid memory, with the loss of true memory, which for Plato is
anamnesis, or recollection of an ideal truth. From this perspective, which again
separates knowledge from technology, writing is devalued because of its

instrumentality.®

To recapitulate Stiegler’s argument so far, the devaluation of technology in Western
philosophy goes hand in hand with the devaluation of writing. Thus, Stiegler
establishes an important relationship between technology and writing as both
excluded by knowledge and encompassed by the concept of instrumentality. In the
context of my investigation of new technologies Stiegler’s argument seems to imply
that the question to be asked is not just whether an instrumental concept of
technology is adequate for an understanding of new technologies. Another question
needs to be posed at this point — namely, if new technologies exceed and destabilize
the concept of instrumentality, do they not also destabilize the concept of writing as
instrumental? And what would the consequences of such a destabilization be? I will
return to these two questions later on in this chapter and in the following one. For
now let me investigate Stiegler’s reconstruction of the philosophical tradition of

thought on technology a little further.

According to Stiegler, it is Heiddeger’s understanding of technology that offers the
first opportunity to rethink instrumentality and consequently the relationship
between technology and knowledge. Famously, Heidegger saw technology as
responsible for ‘the spiritual decline of the earth’. Nonetheless — as Stiegler
emphasizes — he was also the first philosopher to seriously think technology after
Marx. Mark Poster has pointed out that Heidegger’s antipathy towards technology
was accompanied by an enormous sensitivity to the problem of technology itself,

and that he was ‘no simple technophobe’ (Poster 2002: 17). Poster’s rereading of

8 Phaedrus 275 ff. (Plato 1989).

30




Heidegger’s influential 1955 essay, ‘The Question Concerning Technology’, is
particularly helpful since he seeks to explicitly test the validity of Heidegger’s
thought for an understanding of new technologies. In fact, Poster claims that
Heidegger’s thought is based on a homogeneous, ‘unified” idea of technology that
cannot give full account of actual, specific technologies, and that cannot thus be

applied to information technologies.

Poster shows how the central point of Heidegger’s argument in this essay is not
technology per se but modern humanity’s way of being. Technology characterizes
modern ‘culture’ — the term that Poster chooses for Heidegger’s Dasein (Poster
2002: 18). For Heidegger, humanity has to ‘bring itself forth’ in order to be, and it
does so in part through its use of things - that is, through technology. In this context,
technology is understood as a whole process of setting up the world. As long as
humanity is aware of this process, it has a free relation to itself. This was the case in
ancient Greece, where technology was openly visible and integrated into culture.
However, in the modern age, technology has become a way of using things which
brings humanity forth, while at the same time concealing this very process - that is,
concealing technology itself. Ultimately, modern technology ‘challenges’ nature: it
does violence to it and reduces it to an available resource. In so doing, it also
reduces humanity to the same status, since humanity as part of nature becomes a
servant of technology. Heidegger calls this process ‘enframing’. His hope is that
humankind recognises this process of enframing and becomes capable of developing
a kind of technology which would be completely different from today’s (Poster
2002: 18).

This brief, even schematic, synthesis of Heidegger’s thought nevertheless allows us
to see that he does not view technology as essentially instrumental. On the contrary,
technology is for him a way of being in the world. This is the sense of his famous
affirmation that ‘the essence of technics is nothing technical’ (Heidegger 1977: 35).
According to Stiegler, this is precisely what makes Heidegger’s understanding of
technology so interesting. Heidegger suggests that, if we keep thinking technology
as a ‘means’, we will never be able to understand what technology is. In other
words, we cannot think technology efficaciously as long as we remain in the frame

of mind of instrumentality.

31




Stiegler also emphasizes that Heidegger’s understanding of technology is deeply
connected to his conception of time. For Heidegger, calculation has its roots in our
relation to the future, and in our attempt to determine future possibilities, which we
fear precisely because they appear indeterminate. Heidegger describes this process
as ‘anticipation’ or ‘concern’: our attempt to control (or to anticipate) the
uncertainty of the future creates the basis for calculation, or for circumscribing the
realm of possible futures. Understood in a broader historical context, this is what
Heidegger identifies as the turning of Western thought into calculation in the
modern age. This is also why for Heidegger technology has a central role in defining
modernity. As Stiegler comments, ‘the modern age is essentially that of modern
technics® (Stiegler, 1998a: 7). On the other hand, according to Heidegger, modern
technology also opens up for us the possibility of radically reconceiving technology
itself by becoming conscious of the instrumental approach which has characterized
our understanding of technology since Aristotle. This is why Stiegler praises
Heidegger as the first philosopher who dares to propose a radical

reconceptualization of technology.

Importantly, Heidegger tracks the instrumental conception of technology back to the
classical theory of the four causes, as elucidated in Aristotle’s Nicomachean Ethics
and Physics (Heidegger 1977: 7). Simply put, in the Aristotelian perspective
technology is seen as instrumental because it is conceptualized in relation to ends
and means. The producer of the technical object (i.e. a tool) acts as its ‘efficient
cause’. But the technical object does not have its ‘final cause’ (that is, its end) in
itself — and the reason for this is again to be found in the artificiality of the technical
object: only natural beings are understood to have an end in themselves. The end of
the technical object belongs to the producer, and precisely for this reason the
technical object is nothing more than a means. For Heidegger, techné as production
(what the Greeks called poiesis) brings into being that which did not exist. In
Heidegger’s own terms, fechné ‘discloses’ it (13). It is worth noting that for
Heidegger ends are themselves part of this disclosure. Thus, as we have seen, the
main sense of techné has nothing to do with manipulating, making or using tools,
but rather signifies ‘revealing’. And yet modern technology treats nature as a

supplier of energy that must be extracted and stored. In this process, both nature and

32




humanity are put under the imperatives of technology. Technology becomes a
project of calculation intended to master nature and humanity, and this is what — as
we have seen earlier - Heidegger describes as the ‘enframing’ of nature and

humanity through calculation (19).

Stiegler also identifies a “Marxist offshoot’ to Heidegger’s thought -- developed for
instance by Jiirgen Habermas - which nonetheless did not manage to escape an
instrumental conception of technology. Let me now discuss Stiegler’s rereading of
Habermas’ work briefly in order to show how, on the one hand, Habermas’ theory
of technology, albeit extremely interesting, does not account for the way in which
contemporary technology works, and therefore does not contribute to its
demystification and, on the other hand, why Heidegger’s position seems to me to
hold a better promise for an understanding of ‘new’ technologies. Unlike Heidegger,
Habermas does not propose a radical reconceptualization of the philosophical
conception of technology. He identifies in modern society a form of technocracy,
that is of political domination which is not recognizable as such because it derives
its legitimation not from the political arena but rather from scientific and technical
knowledge. More precisely, the nature of technocracy is to confuse political
legitimation and techno-scientific legitimation, therefore making techno-scientific
knowledge the only visible source of legitimacy, and transforming any opportunity
for political debate into a malfunction in a society that needs to be fixed.
Technocracy substantially depoliticizes society. Furthermore, language itself is
‘technicized’, since technical and scientific frames of mind spread all over society
and include also communication. Habermas and Heidegger both conceptualize
technical modernity as a paradoxical situation in which technology ends up doing a
disservice to humanity rather than being in its service. Nevertheless, Habermas
continues to analyze technology in terms of ends and means. He suggests that we
pursue a liberation of language from its technicization, and that we turn technology
into an object of democratic debate in a free language. On the contrary, Heidegger
problematizes the very concept of ‘means’ and, much more radically, suggests that
we rethink ‘the bond originarily formed by, and between, humanity, technics, and
language’ (Stiegler 1998a: 13).

33




From the above formulation, it appears clear that for Habermas technology can be
treated as an object of a discussion that takes place in a transparent language and
that is based on what he calls ‘good reasons’, that is rationally convincing
arguments. He seems to believe that technology does not have any real effect on
language itself, or at the very least that the language of politics can be separated
from the language of techno-science. Furthermore, he does not really take into
account the transformation that information and communication technologies
introduce in the ‘public sphere’, which is supposed to be the space of a democratic

debate (Habermas 1989, 1991).

In order to make it even clearer why I consider Heidegger’s position more
promising than Habermas’, let me now leave Stiegler for a moment and examine
Habermas’ more recent work on technology. In his book of 2001, entitled The
Postnational Constellation, Habermas strives to understand the nature of
information and communication technologies. Although he generally views
contemporary technology in continuity with the past, he also recognizes that
information processing, the Internet, and in general the speed of today’s
communication give us a ‘new’ experience of space and time. Thus, on the one
hand, contemporary technology still runs ‘along familiar lines’: ‘[s]ince the
seventeenth century, the instrumental attitude toward a scientifically objectified
nature has not changed; nor has the manner in which we control natural processes,
even if our interventions into matter are deeper, and our ventures into space are
further, than ever before’ (Habermas, 2001: 41). On the other hand, in another
(albeit quite marginal) passage, Habermas acknowledges that the acceleration of

communication processes has an impact on our everyday life:

The acceleration effects of improved transport and communication
technologies have an entirely different relevance for the long-term
transformation of everyday experience. ... Digital communication finally
surpasses all other media in scope and capacity. More people have
quicker access to greater volume of information, and are able to process
it and instantly exchange it over any distance. The mental consequences

of the Internet ... are still very hard to assess.

(Habermas 2001: 41)

34




Nevertheless, it is not until his later work on biotechnologies that Habermas
develops an argument for the radical novelty of contemporary technology . Yet,
even there, his understanding of technology does not seem to escape the general
framework of instrumentality. In The Future of Human Nature (2003) Habermas
claims that biotechnologies generate unprecedented moral problems and that genetic
technologies are capable of affecting what it means to be human. To give but a
synthesis of Habermas’ position, enhancement-oriented genetic practices seem to
him to entail an asymmetrical relationship of influence between generations, since
the genetic programming of a child threatens his future freedom when it comes to
choosing and shaping his own destiny. The collective deliberative process that
seems to be Habermas’s favoured solution when dealing with both technology and
politics does not function here because future generations cannot take part in it.
Habermas’ attempt to solve this problem consists in proposing the concept of
‘species ethics’- that is, the domain of decisions made by the human species as a
whole about the question of what it means to be human. Our concern for ensuring
future persons’ status as free and equal beings is situated by Habermas at the level
of species ethics. Therefore, although Habermas understands genetic technology as
deeply troubling the very idea of humanity, he ultimately reinforces the latter by
simply shifting the traditional values of individuality, equality and freedom to the
level of the species. What it means to be human remains unquestioned, and so do the

possible political consequences of such questioning.

I have briefly examined Habermas’ position here in order to reiterate my earlier
point that a deeper understanding of technology and of its relation with the human is
needed if we are to understand the political implications of new technologies. In
other words, we need to rethink technology philosophically if we want to think it
politically. The question is not one of discussing technology ‘democratically’
through a ‘freed’ language. It is rather a matter of recognizing the mutually
constitutive implications of technology and language — possibly via the concept of
instrumentality — and therefore of radically rethinking both terms fogether, since

there is no way of (re)thinking one without the other.

35




In order to develop this point, I am going to continue with my examination of the
alternative tradition of thought on technology that, according to Stiegler, starts with
Heidegger and is not based on the concept of instrumentality. Clark (2000) calls this
the tradition of ‘originary technicity” — a term he borrows from Richard
Beardsworth (1996). This term assumes a paradoxical character only if one remains
situated within the instrumental conceptualisation of technology: if technology were
instrumental, it could not be originary — that is, constitutive of the human.
Therefore, the concept of ‘originary technicity’ resists the utilitarian conception of
technology. To clarify what he means by ‘originary technicity’, Clark refers to the
1992 novel, The Turing Option, co-authored by Marvin Minsky, a leading theorist in
the field of Artificial Intelligence (Harry and Minsky 1992).° In order to regain his
cognitive capacities after a shooting accident has severely damaged his brain, the
protagonist of the novel, Brian Delaney, has a small computer implanted into his
skull as a prosthesis. After the surgery he starts reconstructing the knowledge he had
before the shooting. The novel shows him trying to catch up with himself through
his former notes and getting an intense feeling that the self that wrote those notes in
the past is lost forever. Clark uses this story as a brilliant figuration of the fact that

no self-consciousness can be reached without technology:

Delaney’s experience in The Turing Option is only different in degree
from the normal working of the mind from minute to minute ... No
thinking — no interiority of the psyche — can be conceived apart from
technics in the guise of systems of signs which it may seem to employ

but which are a condition of its own identity.

(Clark 2000: 240)

This passage shows that Clark understands ‘technics’ not in terms of massive
engineering works but as ‘the subtler intimacy of the relation of technology to

human thinking’, and especially as ‘the intimacy between technology and language’

? Artificial Intelligence (AI) is a research area that aims at developing ‘intelligent machines’, that is,
broadly speaking, computers endowed with cognitive capabilities equivalent to those of human beings.
This definition of Al draws on the work of one of its founders, the English mathematician Alan Turing,
who in 1950 devised a test to assess the presence of intelligence in computers. This test, called ‘imitation
game’, basically established that a computer must be considered intelligent when it is capable of imitating
a human being convincingly in terms of linguistic behaviour (Turing 1950; Nilsson 1998; Callan 2003;
McCorduck 2004; Leavitt 2006).

36




(240). Such an understanding of technology ostensibly draws on Heidegger’s

thought, as well as on Derrida’s and Stiegler’s.

In order to clarify the concept of ‘originary technicity’ further and to investigate its
significance for my analysis of new technologies, let me now return to Stiegler’s
work. What Clark (2000) calls ‘originary technicity’, Stiegler names ‘originary
prostheticity’ of the human (Stiegler 1998a: 98-100). To understand the latter better,
1t is helpful to examine Stiegler’s essay ‘The Time of Cinema’ and the third volume
of Technics and Time, particularly where — in dialogue with Derrida - he reworks

Husserl’s philosophy of time (Stiegler 1998b, 2001a, 2003a).

Stiegler’s philosophy of technology is based on the central premise that ‘the human
has always been technological’ (Hansen 2003: non-pag.). Stiegler draws here on the
work of the French paleontologist André Leroi-Gourhan, who tightly connects the
appearance of the human with tool use. For Stiegler, too, the human co-emerges

with tool use. He writes:

Humans die but their histories remain — this is the big difference between
mankind and other life forms. Among these traces most have in fact not
been produced with a view to transmitting memories: a piece of pottery
or a tool were not made to transmit any memory but they do so
nevertheless, spontaneously. Which is why archaeologists are looking for
them: they are often the only witnesses of the most ancient episodes.
Other traces are specifically devoted to the transmission of memory, for
example writing, photography, phonography and cinematography.
(Stiegler 2003a: non-pag.)10

The above passage demonstrates that for Stiegler, technology carries the traces of
past events. In Mark Hansen’s words, it is ‘the support for the inscription of

memory’ (Hansen 2003: non-pag.) — that is, technology is always a memory aid, and

121 quote here from the English translation of Chapter 4 of Stiegler’s La technique et le temps 3. Le temps
du cinéma et la question du mal-étre, (2001a), published in Culture Machine (Stiegler 2003a). Stiegler’s
original intake on the correlation between the human and the technological informs his rereading of
Heidegger, as well as his divergence from Derrida’s own reworking of Heidegger (Hansen 2004).

37




only through memory do human beings gain access to their own past, and therefore

become aware of themselves, or gain a consciousness.

This understanding of technology as inscribing the memory of the past is further
illustrated by Stiegler in an interview included in the documentary The Ister,
directed by David Barison and Daniel Ross in 2004.!' Any technical instrument,
Stiegler states in this interview, registers and transmits the memory of its use. For
instance, a carved stone used as a knife preserves the act of cutting, thus becoming a
support for memory. In this sense, technology is the condition of the constitution of

our relation to the past.

In sum, according to Stiegler it can be said that human beings ‘exteriorize’ their
memory into technological objects, which in turn are nothing but memory
exteriorized. Importantly, by doing this the human species becomes able to suspend
its genetic program and to evolve through means other than animal instincts - that is,
in Stiegler’s words, to ‘pursue life through means other than life’ (Stiegler 1998a:
17). Stiegler gives the name of ‘epiphylogenesis’ to this process, (Stiegler 2003a:
non-pag). Epiphylogenesis is the transformation and evolution of the human species
through its relationship with technology, rather than only on the basis of its genetic

program.

Furthermore by functioning as a support for memory, a technical object for Stiegler
‘forms the condition for the givenness of time in any concrete situation’ (Hansen
2003: non-pag.). For this reason, Stiegler maintains that human beings can
experience themselves only through technology.'? This formulation becomes much
clearer if we consider cinema, which for Stiegler is the emblematic technology of

contemporaneity. Hansen (2003) comments:

" The Ister is a filmic philosophical meditation on Heidegger, the changing nature of European culture,
and the role of technology and philosophy. While taking the viewer on a journey from the mouth of the
Danube river (whose ancient name was Ister) in Romania to its source in the Black Forest, the film
incorporates interviews with Bernard Stiegler, Jean-Luc Nancy, Philippe Lacoue-Labarthe and the
German filmmaker Hans-Jiirgen Syberberg.

12 Such an experience of the self is what philosophers have called ‘self-affection’ (Kant) or - and this is
particularly important in Stiegler’s thought, as I will show in a moment - ‘internal time-consciousness’
(Husserl).

38




More than any other technology (and certainly more than literature), it is
cinema in its contemporary form as global television that frames time for
us and gives us a surrogate temporal object in whose reflection we
become privy to the flux of our own consciousness. At the same time, by
opening consciousness onto the past, onto the non-lived tradition of
historicality, onto otherness of that which does not belong to the
experience of consciousness, cinema gua temporal object captures the
contemporary manifestation of the interdependence of the who and the
what, of the human subject and the technical other. Put bluntly, we
become who we are by inheriting a past destined to us through cinema.

(Hansen 2003: non-pag.)

As Hansen explains in the above passage, for Stiegler cinema (and, by extension,
technology) makes available to us the experience of others, and therefore constitutes
a striking example of the relation between technological objects and time. This
complex passage is partly based on a Husserlian terminology, and on Stiegler’s
rereading of Husserl’s phenomenological thought, which in turn constitutes the basis
of Stiegler’s analysis of the relation between technology and time. Before
addressing Stiegler’s reworking of Husserl’s thought in detail, it is worth noting that
the above passage opens up a whole new series of questions in relation to my
investigation of new technologies. Firstly, by analogy, one could ask: what kind of
temporality becomes accessible to us through new technologies? Or, to be more
precise, and since - as I have explained in my Introduction - for the scope of the
present dissertation I take ‘new technologies’ as a synonym for ‘software-based
technologies’, what kind of temporality becomes accessible to us through software-
based technologies and, specifically, through software?"® As I have shown earlier on
in this chapter, software-based technologies, such as real-time technologies, can, on

the one hand, bypass the human perception of time. On the other hand, different

13 As I clarified in my Introduction, albeit not every aspect of new technologies can be reduced to
software, I maintain that digital codes and languages — known as ‘software’ as a whole — are central for
the functioning of new technologies. However, I do not presume to know in advance what ‘software’ is
and I do not take its accessibility for granted. In fact, I will investigate the different meanings of the term
‘software’, as well as the possibility and modes of engaging with it, in the next chapter and through the
whole course of my dissertation.

39




kinds of software-based technologies, such as word processors, operate on a much
more ‘human’ scale of temporality. Moreover, common to all software-based
technologies is the fact that, before they become operative, they must be
programmed — that is, software must be designed and developed. Therefore, one
could ask a second question: what kind of temporality do we access through
programming and what kind of relation to ourselves do we establish through
software? Here 1 want to argue that Stiegler’s rereading of Husserl’s

phenomenology can help with answering these questions.

As Hansen explains in his careful analysis of Stiegler’s thought, the experience of
others that we have not directly experienced but that becomes accessible to us
because it has been recorded is what Stiegler calls ‘tertiary memory’ (Hansen 2004:
254). Stiegler draws here on Husserl’s concept of ‘image-consciousness’. An
example of image-consciousness is for Husserl a painting ‘where the artist ...
archives her experience in the form of a memory trace’ (316). This trace is an image
of the past and of the memory of the artist, but it is not an image of the lived past of
the viewer. While for this reason Husserl excludes image-consciousness from any
role in time-consciousness, Stiegler reverses the argument: for him tertiary memory
(that is, memory that has not been lived through by us) is the very condition of time-
consciousness. In other words, Stiegler foregrounds a consequence of Husserl’s
thought that Husserl himself hesitated to recognize: namely, the intrinsically

technical basis of our consciousness of time.

To be more specific, Husserl recognizes that we cannot grasp temporality by a direct
analysis of consciousness, and that we necessarily need to examine ‘an object that is
itself temporal’. A temporal object is defined as ‘an object that is not simply in time
but is constituted through time and whose properly objective flux coincides with the
flux of consciousness when it is experienced by a consciousness. Husserl’s favoured

example is a musical melody’ (Hansen 2004: 254). As Hansen points out, by

40




focusing on the temporal object Stiegler can complicate Husserl’s analysis of time-

consciousness and introduce technology into it.'*

However, what is important here is that Stiegler reverses Husserl’s hierarchy. We
do not have a primary understanding of time and then technology: it is rather
technology that gives us an understanding of time. The reason for this is that we
always find ourselves in the midst of a horizon — a world already constituted by and
comprising both what we had experienced in the past and the past we never
experienced (but that was experienced by others and given to us through technical

memory supports)."

To recapitulate Stiegler’s argument, the relationship between time and technology is
for him a fundamental one, since technology constitutes the condition for our
experience of time. But to what extent is this understanding of technology as
recorded experience - that is, as memory - helpful in my investigation of software-
based technologies and of software? If software is exteriorized memory, what does
it record? Or — to rephrase the question — what would it mean to analyse software as
a ‘temporal object’ (in Husserl’s terms), or as ‘a technical object’ (in Stiegler’s

terms)?

To continue exploring the potentialities of the conceptual framework of originary
technicity, and particularly of the notion of technical object, for my

conceptualization of software let me now turn to one of Stiegler’s key sources — that

' In fact, Stiegler introduces a technological dimension (which he calls ‘technicity’) into Husserlian
‘primary retention’. In Hansen’s words, for Stiegler ‘tertiary memories — meaning, basically, all
experience that has been recorded and is reproducible — represent our means of inheriting the past, the
prosthetic already-there, and, for this reason, actually condition the other two forms of memory. Stiegler
emphasizes the technical specificity of tertiary memory, for it is only once consciousness has the capacity
to experience the exact same recorded experience more than once that we can appreciate how secondary
retention (the memory of the first or earlier experience(s)) influences a subsequent primary retention’
(Hansen 2003: non-pag.).

15 Stiegler’s complex argument, which mobilizes and transforms Husserl’s theory of time-consciousness,
is an extension of Derrida’s own deconstruction of Husserl’s distinction between primary retention and
recollection (or secondary retention), and therefore between perception and imagination, and between
presence and absence. Such deconstruction is the subject of Derrida’s early studies on Husserl (Derrida
1973, 1978).

41




is, André Leroi-Gourhan’s paleontological theory.'® As I have mentioned above,
Stiegler’s idea of the technical object draws on Leroi-Gourhan’s identification of the
vertical posture, the use of the hand for purposes other than locomotion and the
presence of tools and language as characteristics of the human species. While
examining the early stages of the evolution of the human species, Leroi-Gourhan
depicts locomotion as the determining factor of biological evolution (Leroi-Gourhan
1993: 25). For him freedom of the hand during locomotion implies the beginning of
technical activity, in the same way that manual expertise frees the mouth from
procuring nourishment and makes it available for speech. However simplified this
synthesis, we can say that Leroi-Gourhan views evolution as a series of liberations
taking place from the Paleozoic to the Quaternary eras, and from fish to human.
Even more importantly, he asserts ‘not only that language is a characteristic of
humans as are tools, but also that both are the expression of the same intrinsically
human property’ (113). Language and tools evolve together, for they are
‘neurologically linked and cannot be dissociated within the social structures of
humankind’ (114). In this context, Leroi-Gourhan proposes what is generally
considered to be his fundamental contribution to anthropology and archaeology, that

is the concept of operating sequence (chaine operatoire). He writes:

Techniques involve both gestures and tools, sequentially organized by
means of a ‘syntax’ that imparts both fixity and flexibility to the series of
operations involved. This operating syntax is suggested by the memory
and comes into being as a product of the brain and the physical
environment. If we pursue the parallel with language, we find a similar
process taking place.

(Leroi-Gourhan 1993: 114)

The above formulation makes clear that the ‘operating sequence’ is a kind of
sequential organization that underlies both language and technology. Therefore, for
him, language and technology are the two sides of the same process (‘the same

intrinsically human property’), and evolve together. What appears problematic in

16 1 eroi-Gourhan’s work left a powerful imprint on anthropology and paleontology in France. His 1964
book Le Geste et la Parole presents technology as a privileged point of access to the understanding of
human evolution — in fact, as the pivot of a unified theory of human evolution. For Leroi-Gourhan,
anthropology must be founded on technology, understood as the study of human material culture.

42




Leroi-Gourhan’s theory — as Stiegler notices - is his explanation of the way in which
the operating sequence comes into being:- that is, of how the ‘intrinsically human

property’ that presides over technology and language originated at a certain point in

time.

Leroi-Gourhan maintains that, with the emergence of Homo sapiens, the human
species breaks up into ethnic groups, and a social apparatus based on cultural values
appears. For Leroi-Gourhan, ethnicity is based on the concept of program. A
program is realized in animals at the level of instinct, while in an ethnic group (or
what could be more generally defined as a culture) it is expressed in the form of

social values communicated through language. He puts it as follows:

The whole of our evolution has been oriented toward placing outside
ourselves what in the rest of the animal world is achieved inside by
species adaptation. The most striking material fact is certainly the
‘freeing’ of tools, but the fundamental fact is really the freeing of the
word and our unique ability to transfer our memory to a social organism
other than ourselves.

(Leroi-Gourhan 1993: 235)

Thus, Leroi-Gourhan establishes an equivalence between culture and program: both
are to be understood as processes of exteriorization — that is, as the ‘placing outside
ourselves’, and consequent socialization, of what in the rest of the animal world
remains at the level of instinct. Importantly, this process of exteriorization, both of
tools and of memory, enables Leroi-Gourhan to integrate contemporary technology
into a unitary process of biocultural evolution. Today ‘both tool and gesture are ...
embodied in the machine, operational memory in automatic devices, and
programming itself in electronic equipment’ (238). In the last stage of evolution,
‘the hand is used to set off a programmed process in automatic machines that not
only exteriorize tools, gestures, and mobility but whose effect also spills over into
memory and mechanical behaviour’ (242). Leroi-Gourhan configures machines as
the next step of human evolution. Today — he states — ‘the main thrust of evolution
is massively oriented toward tools’ (251). For him, evolution has now entered a new

stage, that of the ‘exteriorization of the brain’ (Leroi-Gourhan 1993: 252). He

43




envisions a possible future in which human beings become simply outdated, and the

future of the species as species resides in intelligent machines.

It is worth emphasizing here that for Leroi-Gourhan not only does the
exteriorization of memory explain culture - ‘like tools, human memory is the
product of exteriorization, and it is stored within the ethnic group’ (258) - but that he
also proposes a distinction between animal, human and mechanical memory that
accounts for the evolution of the human species from the first kind of memory to the

last. He writes:

Animal memory is formed through experience within narrow genetic
channels prespecialized by the species, human memory is constituted
through experience based on language, and mechanical memory is
constituted through experience within the channel of a preexisting
program and of a code based on human language and fed into the
machine by a human being.

(Leroi-Gourhan 1993: 258)

Ultimately, Leroi-Gourhan is able to integrate the transmission of exteriorized (or
collective) memory - that is, of culture - into a historical progression through the
stages of oral transmission, written transmission and, finally, °‘electronic
transmission’. For him, computers belong to the latest phase, as the furthest example

of the exteriorization of memory.

Up to this point, Leroi-Gourhan’s theory proves rather interesting for my
examination of software-based technologies, because it explicitly addresses the
development of what I have called ‘software-based technologies’ — and what he
calls ‘intelligent machines’ - from an anthropological point of view, and because it
strives to position computers within the process of biocultural evolution. He
identifies in the principle of the Jacquard loom the model for early automatic
machines based on punched cards, and ultimately for computers. Interestingly, he
depicts computers as gradually evolving from the model of the book. Computers are
nothing but books that have become progressively autonomous from their human

reader. It is worth quoting him at length on this point:

44




Books in their ‘raw’ state are comparable to hand tools: however
sophisticated their presentation, the reader’s full technical participation is
still required. A simple card index already corresponds to a hand-
operated machine: some of the operations have been transformed and are
now contained in potential form in the index cards, which are the only
things the reader needs to activate. Punched index cards represent yet
another stage, comparable to that of early automatic machines. ... The
data are converted by means of a binary code (positive = no perforation,
negative = open perforation), and a sorting device separates the cards
according to a set of questions, releasing only those that produce an
affirmative response. The principle is that of the Jacquard loom, and it is
curious to note that documentary material waited for more than a century
to follow in the footsteps of weaving. ... A punched-card index is a
memory-collecting machine. It works like a brain memory of unlimited
capacity that is endowed with the ability — not present in the human brain
— of correlating every recollection with all others. ... The electronic
brain, although it employs different and more subtle processes, operates
on the same principles.

(Leroi-Gourhan 1993: 264)

As the above passage shows, for Leroi-Gourhan the process that leads to the
autonomization of the book takes the form of an exteriorization of ordering
operations, by which the book gradually becomes an automated device capable of
sorting out documentary material according to the same principles that inform loom

weaving. Computers represent the latest stage of this evolution.

The role of the loom in the history of the computer is well known (see, for instance,
Morrison and Morrison 1961). To give but one example, Sadie Plant writes that
‘[t]he loom is the vanguard site of software development’ (Plant 1995: 46; see also
Plant 1998). Weaving is a complex process that involves integrating several threads
into one cloth; thus, Fernand Braudel describes the loom as ‘the most complex
human engine of them all’ (Braudel 1973: 247). Jacquard’s automated loom was

based on the principle of punched cards, where the threads selected by each card

45




were the ones that passed through its holes. This principle was not new (it had been
used since early 18™ century), but Jacquard strung the cards together in sequences,
each of which constituted an ordered set of weaving operations — that is, in Leroi-
Gourhan’s words, a program. For this reason, when in the 1840s Charles Babbage
started working on his Analytical Engine (which is generally considered the
prototype of the computer), he modelled it on Jacquard’s strings of punched cards.
His own contribution was to introduce ‘the possibility of bringing any particular
card or set of cards onto use any number of times successively in the solution of one
problem’ (Morrison and Morrison 1961: 264). Thus, Babbage considered his
machine as characterized by memory and foresight - that is, by the possibility of
referring to past operations in order to act in the future (Morrison and Morrison
1961). However limited, this account of the relationship between the early
prototypes of the computer and the principles of the loom shows the presence of an

explicit connection between memory and time even in the early days of computing.

I want to suggest that Leroi-Gourhan’s fascinating theory should be credited for
stimulating the reconceptualization of software-based technologies within a general
frame of reference that escapes the concept of instrumentality and that regards
technology as constitutive of the human. In fact, I will come back to the important
connection established by Leroi-Gourhan between language and technology in the
second section of this chapter, in which I will analyse Derrida’s reworking of Leroi-
Gourhan’s thought and evaluate the relevance of such reworking for the study of
software. Yet for now it is important to notice that Leroi-Gourhan’s theory does not
seem able to answer the very question it opens up — namely, the question of the
emergence of the ‘operational sequence’ (and therefore of language, technology, and
ultimately of humanity) as a result of the interaction between the brain and the
physical environment. Therefore, as Stiegler shows in the first volume of Technics
and Time (1998a), it is precisely as a general frame of reference — that is, as a theory
of originary technicity - that Leroi-Gourhan’s thought proves less satisfactory. Let
me now turn to Stiegler’s critique of Leroi-Gourhan in order to continue apprising
the relevance of the framework of originary technicity for my investigation of

software.

46




Although Stiegler’s understanding of technology as ‘exteriorization’ parallels Leroi-
Gourhan’s paleontological theory, in Technics and Time Stiegler clearly
demonstrates that Leroi-Gourhan’s account of the co-evolution of the human and the
technological falls prey to the same difficulty that, in the eighteenth century, Jean-
Jacques Rousseau confronted in “The Origin of Languages’ - namely, the classical
question of ‘the origin of man’ (Stiegler 1998a: 117-141). To simplify Stiegler’s
argument, Rousseau developed a providentialist explanation of the origins of
humanity and of society, since he could not explain the passage to the human except
through the intervention of God (Stiegler 1998a: 115; Beardsworth 1995: 6).
According to Stiegler, in Leroi-Gourhan’s theory technology is similarly the écart
(or the rupture) that starts the process of hominization - that is, the process through
which the human species escapes its own genetic program, thus opening up the
horizon of humanity. But Leroi-Gourhan’s theory falls short precisely of explaining
this passage from the genetic to the non-genetic (and thus the passage to the human).
Its contradictory treatment of the prehominid (the Australopithecus, and more

accurately the Zijanthropicus) contributes to this impasse.

Put briefly, according to Stiegler Leroi-Gourhan grants the prehominid the
possibility of speech and of tool use, but he refuses it the status of the human. For
Leroi-Gourhan the prehominid is non-human because it has no faculty of
‘anticipation’ (namely, of thinking its own death), which in turn Leroi-Gourhan
assumes to be the basis of what he calls ‘the symbolic’ - that is, culture. Stiegler
unmasks here Leroi-Gourhan’s attempt to define culture as something altogether
different from technology - i.e. as a qualitative leap from the capability of using
tools to the capability of using symbols. This is obviously in flagrant contradiction
with Leroi-Gourhan’s main argument that humanity is nothing but a process of

exteriorization accomplished through technology (Stiegler 1998a: 152)."7

17 Stiegler’s reinterpretation of Leroi-Gourhan is an example of deconstructive reading, and is profoundly
indebted to Derrida’s work. However, Richard Beardsworth (1995) points out that Stiegler’s rereading of
Leroi-Gourhan differs from Derrida’s in their treatment of hominization. For Derrida hominization - that
is, the origin of the human - is unattainable and cannot be narrated; such a narrative would only be
fictional. Stiegler in turn maintains that it is possible to recount the origin of the human in terms of the
mutual constitutivity of the human and the technical as ‘organized inorganic matter’. I will return to this
concept later on in the present chapter.

47




Stiegler proposes his own answer to the dilemma of the origin of technology and of
the human. His solution is based on the concept of the ‘technical object’ as
‘organized inorganic matter’ (matiere inorganique organisée) — a further
clarification of the idea of technology as the support for consciousness. Richard
Beardsworth (1995) clarifies how Stiegler understands the material aspects of

technology as constitutive of the human. He explains:

Organized inorganic matter is matter which transforms itself in time as
technical object. Whilst in time, its transformations, however, are the
condition of the human temporalization of time. In this sense, matter is
constitutive of temporality. And this, in an explicit historical sense: each
‘time’ matter undergoes radical evolution, the temporalization of time
changes.

(Beardsworth 1995: non-pag.)

I want to emphasize here that Stiegler’s concept of the technical object holds two
orders of consequences: it allows us to think the transformation of technology
through time, while at the same time exposing the crucial role that technology plays
in the constitution of the human experience of time. According to Stiegler, material
objects from the stone instrument to the portable computer change our way of
perceiving time, and therefore affect the emergence of our identity and our
understanding of what it means to be human. The human can thus only be thought in
relation to material technologies that change over time, changing in turn what it
means to be human. Let me now analyse some of the implications of this part of

Stiegler’s argument for my investigation of software.

First of all, for Stiegler the co-implication with materiality distinguishes human
beings from other forms of life. In other words, human beings have a unique
relationship to their environment, and this relationship is mediated by technology.
Technical objects represent the interface between the human and its environment.
Moreover, technical objects, being at the same time organized and inorganic, are
neither living matter nor inert matter. They change through a specific kind of

evolution. In Stiegler’s words:

48




The zootechnological relation of man to matter is a particular case of the
relation of the living to the environment, that is, a relation of man to his
environment which passes through organized inert matter, the technical
object. The singularity of this relation is that the inert, although
organized matter which is the technical object evolves itself in its
organization: it is no longer simply inert matter, but it is not living matter
either. It is an organized inorganic matter which is transformed in time,
just as living matter is transformed in interaction with the environment.
Moreover, it becomes the interface through which the living matter

which is man enters into relation with the environment.

(Stiegler 1998a: 63)

Stiegler’s articulation of matter as ‘inorganic organized matter’ allows for a history
of human culture as — in Beardsworth’s terms - ‘the history of the differentiation of
the originary complex human-technical’ (Beardsworth 1995: non-pag.).
Beardsworth’s formulation is significant because it shows exactly how Stiegler
resolves Leroi-Gourhan’s impasse on the origin of technology. For Stiegler the
mutual constitutivity of technology and the human makes it impossible to decide
which is the origin of the other. Nevertheless, we can tell the history of how this
reciprocal ongoing constitution takes place over time. We can investigate how
human beings and technology co-evolve without having to decide which one to
prioritize. Stiegler names this process within which the human and the technical
mutually constitute each other ‘the originary complex who-what’ (Stiegler 1998a:
142). Beardsworth (1995) clarifies this point further:

The who of the human species is nothing less than the who-what of the
reflective relation between cortex and tool. This who-what is both a
differentiation within life (starting with the stone implement) and itself a
constant process of differentiation (the history of technics). It is in these
terms that the passage from the genetic to the non-genetic is to be

understood.

(Beardsworth 1995: non-pag.)

49




To summarize, human beings, technology and culture are part of the same process
of exteriorization, which, as we have seen earlier, Stiegler names
‘ephiphylogenesis’. For him, we have emerges as human beings as a ‘result’ of three
kinds of memory: our genetic memory, the ‘individual’ memory - or the memory of
our central nervous system (which is responsible for our remembering of
experiences, and which Stiegler names °‘epigenetic’), and the techno-logical
(‘epiphylogenetic’) memory, which preserves the experiences of past generations in
the tools and language we inherit from the past, and therefore is an ‘externalized’,

shared memory. In Stiegler’s words:

Epiphylogénesis, a recapitulating, dynamic and morphonegentic
(phylogenesis) accumulation of individual experience (epi) designates
the appearance of a new relation between the organism and its
environment, which is also a new state of matter. If the individual is
organic organized matter (une matiére organique et organisée), then its
relation to its environment (to matter in general, organic or inorganic),
when it is a question of a who, is mediated by the organized but
inorganic matter of the organon, the tool with its instructive role (its role
as instrument), the what. It is in this sense that the what invents the who
just as much as it is invented by it.

(Stiegler 1998a: 185)

This passage clarifies that only with epiphylogenesis the human being reaches a new
relationship with its environment — a relationship mediated through technology (‘the
technical object’). Technology carries with it memories of the past - not only of the
individual past, but of the past generations. In this sense, it can be said that the
‘who’ (the human being) invents technology, but at the same time it is invented
(‘instructed’) by it, by the memory of past experiences that technology carries. This
is the sense of the mutual co-constitution of the ‘who’ and the ‘what’, of technology
and the human. Stiegler’s answer to Leroi-Gourhan anthropological impasse on
technology is to emphasize that there is actually no way to distinguish between the
material aspects of technology and the temporality it carries with it — and therefore

there is no way to separate technology from culture, or technology from the human.

50




But what would it mean to investigate software as ‘organized inorganic matter’?
What would the consequences of thinking software within the framework of
originary technicity be? In what way is software a ‘what’ that constitutes the ‘who’
that interacts with it? In what way is one constituted by software as much as one
produces and uses it? To explore these issues further let me now examine how
Stiegler develops his theory in relation to new technologies’ in the third volume of
Technics and Time. For him, new technologies constitute a major break in the

history of technology. He explains:

[The] independence of mnenmotechnics from the technical system of
production no longer exists today: in becoming planetary, the technical
system is now also, and even foremost, a global mnemotechnical system.
In a sense, a fusion between the technical system, the mnemotechnical
system and globalization has occurred. ... The global technical system
has basically become a mnemotechnical system for the industrial
production of tertiary retentions, and thus for criteria of retentional
selection, of the flux of consciousness inscribed into processes of
adoption.

(Stiegler 2003a: non-pag.)

This complex passage is based on Stiegler’s distinction between ‘technics’ and
‘mnemotechnics’. For him, while all kinds of technology always transmit memories,
some have been produced expressly with a view to transmitting memories. Stiegler
gives the name of ‘mnemotechnics’ to technologies specifically devoted to the
transmission of memory (for instance, writing, photography, phonography and
cinematography). ‘[T]echnics is always a memory aid’, he maintains, ‘- this is what
we mean by epiphylogenesis. But not every technics is a mnemo-technics. The first
mnemotechnical systems appear after the Neolithic period. They form what will

later become the kind of writing we are still using today’ (Stiegler 2003a: non-pag.).

In Stiegler’s view, technical systems precede mnemotechnical systems. When he
investigates the historical transformation of technology, he focuses on technical
systems - that is, mainly technological systems of production. In the first volume of

Technics and Time he deploys Bertrand Gille’s concept of ‘technical system’ as a

51




moment of stability in time, or a point of equilibrium in the process of technical
change that characterizes history. This point of equilibrium is expressed in a
particular technology. In other words, every civilisation constitutes itself around a
technical system, which is in turn organized around a dominant technology. Every
technical system has in itself a potential for change, and actually undergoes
evolutionary transformations and periods of crisis. During a crisis, a technical
system evolves at great speed, causing ‘dis-adjustments’ with the other social
systems — such as economy, politics, education, and so forth, and it can only return
to (relative) stability when these other systems have ‘adopted’ the new technical

system (Stiegler 2003a: non-pag.).

I have shown earlier on in this chapter how for Stiegler the contemporary globalised
industrial technical system (whose beginnings took root in England at the end of the
eighteenth century) has entered an epoch of permanent innovation, becoming
‘fundamentally unstable’. Such globalisation of the industrial technical system has
been made possible, to a great extent, by information and communication
technologies, which facilitate, for instance, the automation and control of remote
production and distribution, the international circulation of capital and the opening
up of intercontinental markets. Stiegler refers to this globalised system as ‘a single
planetary set-up’ [dispositif] (Stiegler 2003a: non-pag.). But why does this set-up
constitute a break in the history of technology?

Such a break is due precisely to the newly acquired importance of information and
communication technologies. Until recently, mnemotechnics had always evolved
slower than the technical systems of material transformation. While the latter
underwent substantial changes from the age of ancient Greeks to the Industrial
Revolution, alphabetic writing remained more or less stable. This independence has
now ceased to exist, since communication and information industries have become
the centre of the technical system of production and — more generally — the decisive
element of the global technological system. This has in turn led to a change in our
perception of space and time. For instance, the distances and the delay in the
circulation of messages tend to be nullified by global networks, and ‘night and day

become interchangeable through artificial electric light and computer screens’

52




(Stiegler 2003a: non-pag.). Our mechanisms of orientation are therefore profoundly

disturbed.

The question of software as inorganic organized matter becomes thus the question of
the place of software in the globalised mnemotechnical system. Such a question
needs to be reformulated as follows: what kind of mnemotechnics is software? And
— even more importantly — is Stiegler’s distinction between technics and
mnemotechnics meaningful for an investigation of software in the first place? To
discuss this extremely important point, let me look again at Clark’s concept of
originary technicity which I have examined earlier on in this chapter (Clark 2000).
While commenting upon the novel The Turing Option, Clark describes technology
as ‘systems of signs’; thus, for him originary technicity seems to have an intrinsic
relation to what Stiegler calls mnemotechnics. Conversely, Stiegler’s distinction
between the two is based on the following argument: every technics (for instance,
pottery) carries the memory of a past experience; but only mnemotechnics (for
instance, writing) are conceived with the primary purpose of carrying the memory
of a past experience. In Stiegler’s argument, the emphasis is on the aim, or end, of
different technologies: some technologies are conceived just for recording, others

are not.

At this point I want to risk the following proposition: software transgresses
Stiegler’s distinction between technics and mnemotechnics. Although this thesis
needs to be proved, it is important to position it first of all as a problem. Let me
explain this point briefly. If one relies on the widely accepted definition of software
that constitutes the foundation of Software Engineering, for instance, one finds that
‘software’ is the totality of all computer programs as well as all the written texts
related to computer programs (Humphrey, 1989a; Sommerville, 1995). To give but
one example, lan Sommerville writes that ‘software engineers model parts of the
real world in software. These models are large, abstract and complex so they must
be made visible in documents such as system designs, user manuals, and so on.

Producing these documents is as much part of the software engineering process as

33




programming’ (Sommerville, 1995: 4).' According to this definition, software can
be thought of as a totality of ‘documents’ or ‘texts’ written in natural and formal
languages at every stage of software development. Thus, software can be considered
— in Stiegler’s terms — as mnemotechnics. On the other hand, it cannot be said that
the main purpose of software is recording in the same way that it is for writing or
cinema. It could be argued that the main purpose of software is to make things
happen in the world (for instance, to change the polarities of the electronic circuits
within a computer on which software is executed). This is why software might be
the point where Stiegler’s distinction between technics and mnemotechnics is

suspended.

A correlated question arises at this point: by introducing the distinction between
technics and mnemotechnics is Stiegler involuntarily reintroducing the separation
between the technical and the symbolic that he deconstructs in Leroi-Gourhan?
Certainly, in the third volume of Technics and Time, Stiegler speaks of a
convergence between technics and mnemotechnics, but in a much more general
sense - that is, as a convergence of technologies of production with information and
communication technologies. For him, undoubtedly, information and
communication technologies fall under the rubric of mnemotechnics — or
technology that has recording as its primary aim. I want to argue that ultimately, in
order to distinguish between technics and mnemotechnics, Stiegler resorts to the
concept of the aim (or the end) of technology, therefore seemingly falling back into
an instrumental conception of technology — which obviously contradicts his

understanding of technology as originary.

But, if software puts in crisis the distinction between technics and mnemotechnics,
how is one supposed to think software within the framework of originary
technicity? In what way is the relationship between the technical and the symbolic
articulated in software? As we have seen, Clark states that the thinkers of originary

technicity situate the question of technology ‘in the subtle intimacy’ of the relation

'8 As I highlighted in the Introduction, software has never been univocally defined by any disciplinary
field. However, the definition of software provided by Software Engineering is a very general one — as it
can be expected from a discipline that was established in the late 1960s with the purpose of helping
programmers designing software cost-effectively regardless of the specific applications and programming
languages they were working with.

54




between technology and language (Clark 2000: 240). Moreover, according to Clark,
Jacques Derrida is one of the most important thinkers of originary technicity
precisely because he ‘takes on the radical consequences of conceiving technical
objects (including systems of signs) as having a mode of being that resists being
totally understood in terms of some posited function or purpose for human being’
(Clark 2000: 240). By his refusal to explain either technology or language in
instrumental, functionalist terms Derrida resists the widespread denigration of the
‘merely’ technical in Western thought. In order to continue exploring the possibility
of conceptualizing software within the framework of originary technicity, let me
now leave Stiegler’s thought for a little while and turn to the examination of

Derrida’s understanding of technology.

Derrida makes references to technology and to the importance of technicity for the
definition of the human throughout his whole work. Importantly, his conception of
technology as something that cannot be understood within the conceptual
framework of instrumentality is inseparable from his understanding of writing.
Actually Derrida traces the devaluation of instrumentality back to the famous
devaluation of writing that I have examined earlier on in Plato’s Phaedrus (Derrida
1981). For Derrida, as for Stiegler, the devaluation of instrumentality cannot be

separated from the devaluation of writing.

Derrida’s reflection on writing is crucial to the whole of his theory, and lies at the
core of his criticism of Western metaphysics. Derrida’s goal is not a reversal of
priorities - namely, the prioritizing of writing over speech - but a critique of the
whole of Western metaphysics that he understands as ‘logocentric’. As Gayatri
Spivak points out in her introduction to Of Grammatology, the term ‘writing’ is used
by Derrida to name a whole strategy of investigation, not merely ‘writing in the
narrow sense’ as a kind of notation on a material support (Derrida 1976: Ixix). Thus,
Derrida writes Of Grammatology not to pursue a mere valorisation of writing over
speech, but to present the repression of writing ‘in the narrow sense’ as a symptom

of logocentrism that forbids us to recognize that everything is pervaded by the

55




structure of ‘writing in general’ - that is, an eternal escaping of the ‘thing itself’."
Derrida argues that speech too is structured like writing. There is no structural
distinction between writing and speech — except that, in the history of metaphysics,

writing has been repressed and read as a surrogate of speech.

In the chapter ‘The end of the book and the beginning of writing’ of Of
Grammatology Derrida maintains that today writing can no longer be thought as ‘a
particular, derivative, auxiliary form of language in general’, or as ‘an exterior
surface, the insubstantial double of a major signifier, the signifier of the signifier’
(Derrida 1976: 7). Making writing instrumental is a move of Western metaphysics,
and it is paired with the notion of speech as fully present. From this perspective,
writing is seen as an interpretation of original speech, as technology in the service of
language. However, Derrida suggests that language could only be a ‘mode’ or an

aspect of writing.

I will return to Derrida’s complex argument in Chapter Two in greater detail. For
now, suffice it to say that Derrida’s questioning of logocentrism is inseparable from
his questioning of the instrumental conception of technology. In Mémoires: for Paul
de Man he states that ‘[t]here is no deconstruction which does not ... begin by
calling again into question the dissociation between thought and technology,
especially when it has a hierarchical vocation, however secret, subtle, sublime or
denied it may be’ (Derrida 1986: 108). Thus, once again, Derrida makes it explicit
that the dissociation between thought and technology is — as is every other binary
opposition - hierarchical, since it implies the devaluation of one of the two terms of
the binary — in this case, technology. For this reason Clark (2000) suggests that
‘originary technicity’ can be considered another name for Derrida’s ‘writing in the

general sense’. As Derrida states in Of Grammatology:

Writing is not an auxiliary in the service of science — and possibly its
object — but first, as Husserl in particular points out in The Origin of

Geometry, the condition of the possibility of ideal objects and therefore

19 On the other hand, in the section of Of Grammatology about Lévi-Strauss, Derrida (1976) suggests that
no definite distinction between writing in the ‘narrow’ and the ‘general’ sense can be traced, for one slips
into the other.

56




of scientific objectivity. Before being its object, writing is the condition

of the episteme.

(Derrida 1976: 27)

This passage is crucial for clarifying the relationship that Derrida establishes
between writing and thought, and ultimately for his understanding of technology as
constitutive of the human. As Clark explains, for Derrida ‘writing enregisters the
past in a way that produces a new relation to the present and the future, which may
now be conceived within the horizon of an historical temporality, and as an element
of ideality’ (Clark 2000: 241).%° Thus, the written mark gives us the possibility of
keeping trace of the past and enables us to acquire a sense of time. Clearly Derrida
views writing — understood here as technology, or the technological capacity of
registering the past - as a constitutive condition of thought. Consequently,
technology cannot be understood through the opposition between fechné and
epistémé, because it precedes and enables such an opposition. But what would all
this mean for an investigation of software? To be more specific, in what way would
the reformulation of ‘originary technicity’ in terms of Derrida’s ‘writing in general’
advance my investigation of software? This reformulation of the problem amounts
on the one hand — as we have already seen - to asking what the significance of the
study of software for an understanding of the relationship between technology and
the human is. On the other hand, it opens up the methodological question of whether
and in what way software should be approached as a historically specific
technology. I want to argue that, in order to start addressing both of these questions,
it is useful to examine Derrida’s rereading of Leroi-Gourhan’s work in Of

Grammatology.

For Derrida, Leroi-Gourhan has shown in Le geste et la parole that the historical
perspective that associates humanity with the emergence of writing (and therefore
excludes peoples ‘without writing’ from history) is profoundly ethnocentric. In fact,
it shortsightedly denies the characteristic of humanity to peoples that do not actually
lack ‘writing’, but only ‘a certain type of writing’ (Derrida 1976: 83) - that is,
alphabetic writing. To explain this point Derrida draws on Leroi-Gourhan’s concept

of ‘linearization’. For Leroi-Gourhan the emergence of alphabetic writing must be

0 Again, I will return to Derrida’s rereading of Husserl’s phenomenology in Chapter Two.

57




understood as a process of linearization (Leroi-Gourhan 1993: 190). In his analysis
of the emergence of graphism, Leroi-Gourhan emphasises what he considers to be
the underestimated link between figurative art and writing. ‘[I]n its origins’, he
states, ‘figurative art was directly linked with language and was much closer to
writing (in the broadest sense) than to what we understand by a work of art” (190).
Given the difficulty of separating primitive figurative art from language, he
proposes the name ‘picto-ideography’ for this general figurative mindframe. Yet he
is very clear that such a mindframe does not correspond to writing ‘in its infancy’
(195). Such an interpretation would amount to applying to the study of graphism a
mentality influenced by four thousand years of alphabetic writing — something that
linguists have often done, for instance, when studying pictograms. But ‘picto-
ideography’ signals an originary independence of graphism from the mental attitude

that constitutes the basis of what Leroi-Gourhan calls ‘linearization’.

To understand the concept of linearization better, one must start from Leroi-
Gourhan’s concept of language as a ‘world of symbols’ that ‘parallels the real world
and provides us with our means of coming to grips with reality’ (195). For Leroi-
Gourhan graphism is not dependent on spoken language, although the two belong to
the same realm. Leroi-Gourhan views the emergence of alphabetic writing as
associated with the technoeconomic development of the Mediterranean and
European group of civilizations. At a certain point in time during this process
writing became subordinated to spoken language. Before that — Leroi-Gourhan
states - the hand had its own language, which was sight-related, while the face

possessed another one, which was related to hearing. He explains:

At the linear graphism stage that characterizes writing, the relationship
between the two fields undergoes yet another development. Written
language, phoneticized and linear in space, becomes completely
subordinated to spoken language, which is phonetic and linear in time. The
dualism between graphic and verbal disappears, and the whole of human
linguistic apparatus becomes a single instrument for expressing and
preserving thought — which itself is channelled increasingly toward
reasoning.

(Leroi-Gourhan 1993: 210)

58




By becoming a means for the phonetic recording of speech, writing becomes a
technology. It is actually placed at the level of the tool, or of ‘technology’ in its
mstrumental sense. As a tool, its efficiency becomes proportional to what Leroi-
Gourhan views as a ‘constriction’ of its figurative force, pursued precisely through
an increasing linearization of symbols. Leroi-Gourhan calls this process ‘the
adoption of a regimented form of writing’ that opens the way ‘to the unrestrained

development of a technical utilitarianism’ (212).

Expanding on Leroi-Gourhan’s view of phonetic writing as ‘rooted in a past of
nonlinear writing’, and on the concept of the linearization of writing as the victory
of ‘the irreversible temporality of sound’, Derrida relates the emergence of phonetic
writing to a linear understanding of time and history (Derrida 1976: 85). For him
linearization is nothing but the constitution of the ‘line’ as a norm, a model — and
yet, one must keep in mind that the line is just a model, however privileged. The
linear conception of writing implies a linear conception of time - that is, a
conception of time as homogeneous and involved in a continuous movement, be it
straight or circular. Derrida draws on Heidegger’s argument that this conception of
time characterizes all ontology from Aristotle to Hegel - that is, all Western thought.
Therefore, and this is the main point of Derrida’s thesis, ‘the meditation upon

writing and the deconstruction of the history of philosophy become inseparable’
(86).

However simplified, this reconstruction of Derrida’s argument demonstrates how, in
his rereading of Leroi-Gourhan’s theory, Derrida understands the relationship of the
human with writing and with technology as constitutive of the human rather than
instrumental. Writing has become what it is through a process of linearization - that
is, by conforming to the model of the line — and in doing so it has become
instrumental to speech. Since the model of the line also characterizes the idea of
time in Western thought, questioning the idea of language as linear implies
questioning the role of the line as a model, and thus the concept of time as modelled
on the line. It also implies questioning the foundations of Western thought (by
means of a strategy of investigation that, as we have seen, Derrida names ‘writing in

general’, or ‘writing in the broader sense”). At this point it becomes clear why, if we

59




follow Derrida’s reworking of the concept of originary technicity, a new
understanding of technology (as intimately related to language and writing) entails a

rethinking of Western philosophy — ambitious as this task may be.

It 1s worth noting here that in Of Grammatology Derrida expressly highlights how
the reconceptualization of the Western tradition of thought is particularly urgent
today. Such a rethinking is what Derrida famously calls ‘the end of the book’, or the
end of linear writing. According to Derrida, we are suspended today between two
eras of writing — and this is why we can also reread our past differently. Actually,
the ‘uneasiness’ of philosophy in the past century is due to an increasing
destabilization of the model of the line. He states that what is thought today cannot
be written in a book - that is, it cannot be thought through with a linear model - any
more than contemporary mathematics can be taught with an abacus (87). This
inadequacy does not only apply to the current moment in time, but it comes to the

fore today more clearly than ever. Derrida writes:

The history of writing is erected [by Leroi-Gourhan] on the base of the
history of the grammé as an adventure of relationships between the face
and the hand. Here, by a precaution whose schema we must constantly
repeat, let us specify that the history of writing is not explained by what
we believe we know of the face and the hand, of the glance, of the
spoken word, and of the gesture. We must, on the contrary, disturb this
familiar knowledge, and awaken a meaning of hand and face in terms of
that history.

(Derrida 1976: 84)

I will return to Derrida’s emphasis on the urgency of re-reading Western philosophy
in relation to new technologies in Chapter Two. For now suffice it to say that, as the
above passage makes quite obvious, for Derrida what is most relevant in Leroi-
Gourhan’s history of writing is that it problematizes our conception of the human
(‘what we believe we know of the face and the hand’). Yet the focus of Derrida’s
work is not the concrete analysis of historical systems of writing, since, as we have
seen, he differentiates ‘writing in general’ from any such system. With regard to my

investigation of software, then, Derrida’s understanding of what Clark calls

60




‘originary technicity’ has two important implications. On the one hand, it confirms
the fundamental relationship between technology and the human, and it supports
the need for a radical questioning of both concepts - and ultimately of Western
thought. On the other hand, Derrida leaves open the question of how to investigate a
historically specific technology (for instance, software) without losing its
significance for a radical rethinking of the relationship between technology and the

human.

What I want to suggest now is that, in Technics and Time, Stiegler rereads Derrida’s
thought on originary technicity in a way that allows for precisely such an
investigation. To illustrate this point further, I want to start from Hansen’s assertion
that ‘Stiegler’s conception of the originary prostheticity of the human, of its co-
emergence with tool use, performs a certain displacement of deconstruction’
(Hansen 2003: non-pag.). Such displacement has the effect of specifying, even
beyond Derrida’s own conception, the constitutive technicity of ‘writing in general’
(Hansen 2003: non-pag.). In fact, according to Hansen, Stiegler reinterprets
Derrida’s thought so that writing in general cannot be separated from its appearance
in a concrete technical inscription system. Let me now explain this point a little
further, in order to establish to what extent and in what way software can be

investigated as a historically specific technology.

As Hansen points out, for Stiegler transcendence ‘is constituted through technics as
the support for the inscription of memory’ (Hansen 2003: non-pag.). Beardsworth
(1995) regards this point as Stiegler’s ‘break’ with Heidegger. He acknowledges that
‘according to Stiegler ... it is technics which, as the support of the inscription of
memory, is constitutive of transcendence’ (Beardsworth 1995: non-pag.). These
comments by Hansen and Beardsworth need to be carefully examined. Not only
does Stiegler establish a relationship between technology and the possibility of
thought: he also articulates this relationship historically by arguing that techné and
epistémé — or, as 1 have shown earlier on in this chapter, ‘technology’ and
‘knowledge’ - are correlated through writing. In fact, for Stiegler ‘philosophical’
problems — that is, problems that historically arise with Thales and are associated
with philosophy as non-technical knowledge - ‘fundamentally proceed from the

appearance of a techno-logy’, and specifically a technique of writing (Stiegler

61




2003b: 154). The emergence of the technique of linear writing radically transforms
the modes of cultural transmission from generation to generation, Stiegler argues. In
fact, from the point of view of Greek pre-Socratic thought, which does not presume
the immortality of the soul, the dead can nevertheless return as ghosts that transmit
an inheritance, and such inheritance is deemed to come from a spirit (esprit) that
crosses generations. This is the pre-Socratic image of cultural transmission. In
contrast, the appearance of linear writing allows for the transmission of culture ‘as a
unified spirit, precisely through the unification of language enabled by literalization’
(154). Drawing on Leroi-Gourhan’s and Derrida’s thought, Stiegler insists that the
emergence of the model of the line has changed both the transmission of culture and

the modes of thought. He writes:

It is this mnemotechnics that makes possible the writing of laws, the
founding of cities, the construction of geometric reasoning (Thales
embodies the origin of geometry), the practice of philosophy. It involves
a massive transformation of the social group that raises a thousand
questions. It overturns, for example, the relation to tradition, to spirits,
and, more precisely, the articulation between the city and religion,
between the profane and the sacred, the place of the clans inside the city-

states or territories [demes], and so on.

(Stiegler 2003b: 154)

According to Stiegler, the sophists themselves are a by-product of this process. The
years between the seventh and the fifth century BCE are witness to the arrival of the
grammatists, the masters of letters, and later on of the sophists, who ‘go on
systematically to develop a technique of language that quickly acquires a critical
dimension, in so far as this technique of developed language will in turn engender a
moral crisis’ (155). Thus, sophistry is not an oral technique; rather, it presupposes
writing.?! Accordingly, Plato criticizes the sophists because they manage to speak
well, ‘but they learn everything by heart, by means of this techno-logical
“hypomnesis” that is logography, the preliminary writing out of speeches. It is

21 Stiegler’s assertion mirrors Derrida’s argument that we need to have a sense of writing in order to have
a sense of orality. I will develop this point further in Chapter Two.

62




because writing exists that the sophists can learn the apparently “oral” technique of
language that is rhetorical construction’ (155). In the Jon Plato even makes a
connection between poets and sophists, claiming that they work along the same lines
of falsehood: ‘[s]ophists, poets, are only liars, that is to say, technicians’ (155). This
powerful image of the technician as a liar constitutes the summation of Plato’s

devaluation of technology and writing.

To summarize, Stiegler points out that, on the one hand, the question of technology,
considered as the object of repression, ‘is a question that emerges with and by its
denunciation by Plato’ (155). It arises ‘above all as a demnial, and in this sense
therefore as a kind of forgetting’ — and this is quite paradoxical, since in Phaedrus
what Plato blames technology for is precisely its power of forgetting (155). On the
other hand, it can be said that the question of technology appears well before Plato:
as we have just seen, it arises in the context of the transformation of the Greek cities,
associated with the development of navigation, money, and above all
mnemotechnics, that is to say of technologies capable of transforming the conditions
of social and political life and of thought. Ultimately, fechné and epistémé — that is,
knowledge and technology - share a relationship with writing, the fundamental
mnemotechnics. In turn, mnemotechnics - and technology in general - reveal a
constitutive connection with temporality. Let me now go over Stiegler’s argument
one last time, in order to show how it provides a consistent foundation for the
concrete study of the transformation of technology in time — and, ultimately, for the

investigation of software as a historically specific technology.

As I have remarked earlier on, Stiegler’s understanding of the transformation of
technology in time is crucially related to his ‘displacement’ of deconstruction that

also results in his break with Heidegger (Hansen 2003: non-pag.). Stiegler explains:

Let’s say, for example, that one night I write the sentence: ‘it is dark’. I
then reread this sentence twelve hours later and I say to myself: hang on,
it’s not dark, it’s light. I have entered into the dialectic. What is to be
done here? ... That which makes consciousness be self-consciousness
(i.e. consciousness that is conscious of contradiction with itself) is the
fact that consciousness is capable of externalising itself.

(Stiegler 2003b: 163)

63




This passage is extremely important because it reformulates the concept of the
technical constitution of consciousness that Clark explores in his analysis of The
Turing Option (Clark 2000: 240), to which I have repeatedly referred throughout
this chapter. Here what Stiegler - and Leroi-Gourhan before him - call
‘exteriorization’ (which constitutes the basis of self-consciousness) is clearly
pursued through writing. One writes ‘it is dark’, and when one rereads the note
twelve hours later it is light. This produces, as Stiegler himself further clarifies, ‘a
contradiction between times’, namely the time of consciousness when one wrote this
and the time of consciousness when one reads this. Yet, one has the same
consciousness, which is therefore ‘put in crisis’ (Stiegler 2003b: 163), and this crisis
in turn raises self-awareness. The act of inscription - that is, of exteriorization -
ultimately constitutes interiority, which does not precede exteriority, and vice versa.
As I have explained earlier, for Stiegler (again drawing on Leroi-Gourhan) the
process of exteriorization constitutes the foundation of temporality, of language and
of technical production, and requires a basic neurological ‘competence’ - that is, ‘a

level of suitable cortical and subcortical organization’ (164).

Importantly, there exist three kinds of temporality: physical temporality (that is, the
temporality of the universe, which expands entropically), biological temporality
(that is, the temporality of the living, which fights against disorder to maintain its
organization) and technical temporality. In particular, as we have already seen,
technical temporality is constituted through the technical object, and it both ‘extends
and breaks with the living’, since it allows the human species to transcend its
genetic determination. This is fundamentally the sense of Stiegler’s famous
reinterpretation of the myth of Prometheus and Epimetheus (Stiegler 1998a, 2003b).
This myth, narrated in Plato’s Protagoras, shows that human beings are not
predestined to be what they are.” On the contrary, they are ‘prosthetic’ - that is,
endowed with artefacts and capable of altering them, and therefore also capable of
altering their destiny. It is this capacity that for Stiegler distinguishes — and actually

constitutes - the human experience of time.

22 Plato, Protagoras 320d ff. (Plato 1989)

64




This is Stiegler’s fundamental point of departure from Derrida’s theory. Through
this departure he lays the foundation for the concrete study of historically specific
technologies as fundamental to the understanding of the constitutive relationship
between technology and the human. To clarify this point, it is now worth examining
Stiegler’s interpretation of the myth of Prometheus and Epimetheus briefly.
According to the myth, Zeus gives Prometheus the task of distributing qualities and
powers to the living creatures, but Prometheus leaves it to his twin brother
Epimetheus to act in his place. Epimetheus hands out all the qualities to the living
and forgets to keep one for the human being. Human beings therefore appear here as
characterized by a ‘lack of quality’ (Stiegler 2003b: 156). Stiegler comments that
the human being is ‘a being by default, a being marked by its own original flaw or
lack, that is to say afflicted with an original handicap’ (156). For this reason,
Prometheus decides to steal technology - that is, fire - and gives it to human beings,
in order to enable them to invent artefacts and to become capable of developing all
qualities. With the gift of technology, a problem arises: mortals cannot agree on how
to use artefacts, and consequently start fighting and destroying each other. In
Stiegler’s words, ‘[t]hey are put in charge of their own fate, but nothing tells them
what this fate is, because the lack [défaut] of origin is also a lack of purpose or end’
(156). Stiegler’s reworking of the myth clearly demonstrates how for him
technology raises the problem of decision, and how this encounter of the human
with decision in turn constitutes time - or better, what Stiegler calls ‘technical time’.
Technical time emerges because human beings experience their capacity of making
a difference in time through decision. Temporality is precisely this opening of the
possibility of a decision, which is also the possibility of creating the unpredictable,

the new.

It is for this very reason that the historical specificity of technology is central to
Stiegler’s thought. The human capability of deciding ‘what to become’ constitutes
temporality. Moreover, human prostheticity - that is, the fact that human beings, to
survive, require non-living organs such as houses, clothes, sharpened flints, and all
that Stiegler calls ‘organized inorganic matter’ - forms the basis for memory, or
better, for technical memory. As I have shown earlier on, unlike genetic and
individual memory, technical memory coincides with the process of exteriorization

that ‘enables the transmission of the individual experience of people from

65




generation to generation, something inconceivable in animality’ (159). This
inherited experience is what Stiegler calls ‘the world’ - that is, a world that is always

already haunted by ‘spirits’ in the pre-Socratic sense, always already constructed by

the memories of others.

As 1 have pointed out earlier on in this chapter, Stiegler departs from Heidegger
precisely in his understanding of temporality. To simplify Stiegler’s complex
argument, his disagreement with Heidegger revolves around the different
importance that the two philosophers give to the historical specificity of technology.
Actually, Stiegler finds a contradiction in Heidegger’s thought on technology and
time - one that he also points out in The Ister. For Heidegger temporality is
originally technical, since to be a temporal being - that is, to exist - one has to be in
the world, which for Heidegger is fundamentally the world of tools — or of
technology. Nevertheless, Heidegger believes that the most authentic temporality is
experienced by human beings as a relation to death. As human beings, we are
structurally ignorant of the time and place of our own death, and this relation to
death plunges us into an ‘absolute indetermination’ (Stiegler 2003b: 159). We do
not know the end of our life, both in the sense of its limit and of its meaning. In
Stiegler’s terms, the content of our life is determined only after our death, that is,
‘too late’, when we are not able to witness it. According to Heidegger, human
beings try to flee the permanent anguish of the indeterminacy of their death, and
ultimately of their future. This is what Heidegger names ‘concern’ - namely, the
human beings’ attempt to foresee their unforeseeable future, to make certain the
uncertain, to calculate something that is not calculable. Technology is part of this
process, precisely because it is a means of controlling the future. Every technical
field, from weather forecasts to financial analysis, attempts such calculation. But
any such attempt tends to obscure human beings’ relation to death, and for this
reason Stiegler ultimately finds Heidegger’s argument inconsistent — since, on the
one hand, Heidegger views temporality as originally technical, while on the other

hand he believes that technology obscures ‘authentic’ temporality.
In sum, Stiegler’s departure from Heidegger is based on Stiegler’s own attention to

the historic specificities of technology. I have mentioned earlier on how Poster

similarly criticizes Heidegger’s conception of technology for not being attentive to

66




historical specificity. Stiegler, however, pays close attention to the fact that human
beings, as beings who deal with decision, ‘are continuously called into question by
the development of technics which overtake them’ (162). Here Stiegler brings to the
fore the problem of making decisions regarding technology that I confronted in my
Introduction and with which I have also opened this chapter — that is, the problem of
how to think technology in a politically meaningful way. The term ‘overtaking’ is
deployed by Stiegler with reference, once again, to Leroi-Gourhan’s and Gille’s
thought: ‘people form technical objects, he argues, but these objects, because they
themselves form a dynamic system, go on to overtake their makers’ (162).%
Technical objects form a ‘system’ because none of them is ever thinkable in
1solation: a cassette — Stiegler exemplifies — is of no use without a tape recorder,
which in turn is of no use without a microphone, electricity, and so on. Such systems
are also dynamic: they change according to different tendencies that combine

within society, and are negotiated through processes of decision.**

I want to highlight here how Stiegler’s approach is extremely helpful in order to
contextualize the necessity of making decisions about technology in the broadest
possible perspective. In fact, such decisions do not just affect technology; they also
change our experience of time, our modes of thought and, ultimately, our
understanding of what it means to be human. On the one hand, if understood as
originary, technology constitutes our sense of time — or, even better, we only gain a
sense of time and memory, and therefore of who we are, through technology. On
the other hand, technology as a system tends to overwhelm us, making it difficult to
make decisions. Ultimately, we gain a sense of time through technology, and in turn
every change in technology changes our sense of time - and this then changes the
meaning that we give to the fact of being human. For this reason, as I argued in my
Introduction, thinking technology in a politically effective and meaningful way
involves much more than, for instance, discussing technology in a neutral and ‘free’

language, as Habermas would have it. Rather, it implies a radical problematization

2 For the concept of technology overtaking its makers Stiegler relies on Marx as well as on Leroi-
Gourhan, Gille and Simondon (Stiegler 2003b: 162; Leroi-Gourhan 1993; Gille 1986; Simondon 1989,
2001).

* The system of technical objects, as Stiegler points out, corresponds to Heidegger’s ‘system of
reference’ which constitutes the system of the world (Stiegler 2003b: 162). The concept of tendency is
developed by Leroi-Gourhan drawing on Bergson’s own notion of ‘tendency’ (Stiegler 2003b; Leroi-
Gourhan 1993).

67




of the meaning of humanity. In fact, by making decisions on technology, we make
decisions about what it means to be human. Ultimately, this is the sense of my
affirmation that it is necessary to think technology philosophically in order to think
it politically.

To conclude, I argue that Stiegler’s rereading of Derrida calls for a concrete analysis
of historically specific technologies while keeping open the significance of such an
analysis for a radical rethinking of the relationship between technology and the
human. It therefore enables me to regard software in its historical specificity
without losing the possibility of investigating its relationship to ‘originary
technicity’ and, ultimately, to the question of what it means to be human. But to
what extent and in what way can such an investigation of software be pursued? An

attempt to answer this question will be the focus of the next chapter.

68




2 Language, Writing and Code

Towards a Deconstructive Reading of Software

In Chapter One I pointed out the importance of the study of software for the
understanding of the relationship between technology and the human. Drawing on
Bernard Stiegler’s work, I argued that software must be studied as a historically
specific technology precisely in order to establish its significance for the radical
rethinking of the above relationship. In this chapter I intend to investigate to what
extent and in what way software can be explored in its historical specificity without
overlooking 1its relevance for what Richard Beardsworth terms ‘originary
technicity’, Jacques Derrida calls ‘writing in general’ and Stiegler describes as ‘the

originary prostheticity of the human’.!

In order to do so, let me go back for a moment to Jacques Derrida’s exposition of
the relationship between the study of technology and the concept of originary
technicity. As I explained in Chapter One, according to Timothy Clark, Derrida can
be considered one of the most important thinkers of originary technicity because he

refuses to explain either technology or language in instrumental, functionalist terms,

! Let me recall part of my previous argument here. In Chapter One I showed how Western philosophical
thought has excluded technology on the basis of its ‘instrumentality’ — that is, as a tool used to bring
about certain ends. In the same way, philosophy has undervalued writing, also considered secondary to
language and therefore instrumental - namely, a technology in the service of language. Thus, I turned to
an alternative tradition of thought on technology (starting with Martin Heidegger and including Jacques
Derrida and Bernard Stiegler, among others). Timothy Clark (2000) calls this the tradition of ‘originary
technicity’ — a term he borrows from Richard Beardsworth (1996). This term assumes a paradoxical
character only if one remains within the instrumental understanding of technology: if technology were
instrumental, it could not be originary — that is, constitutive of the human. Thus, the concept of ‘originary
technicity’ resists the utilitarian conception of technology. The thinkers of ‘originary technicity’ point out
that technology is actually constitutive of philosophy, since, by providing the support for the inscription
of memory, it allows for transcendence and therefore for thought.

69




and by doing so he resists the widespread denigration of the ‘merely’ technical in
Western thought (Clark 2000: 240). As Clark also points out, Derrida’s thinking on
technology pursues the double strategy of recognizing originary technicity while at

the same time revealing technology’s complicity with metaphysics. Clark writes:

Derrida’s arguments on technology affirm an originary technicity or
supplementarity both constituting the human and transgressing any
would-be pure or essentialist distinctions between concepts of the human
and the machine. At the same time ... [deconstruction] works to reveal
and undo the profound complicity between metaphysical humanism and
projects which idealize the technical as the correlate of a totally assured
system of formal elements whose syntax or mechanics can be calculated
— the notion of a technics which can be completely subordinated to logic.

(Clark 2000: 248)

As the above passage shows, for Clark the first part of Derrida’s double strategy
consists in his conceptualization of originary technicity. Deconstruction ‘upsets
received concepts of the human and the technological by affirming their mutual
constitutive relation or, paradoxically, their constitutive disjunction’ (Clark 2000:
247). Neither term can be said to take precedence over the other. Thus, technology
cannot be understood as a tool for the human; nor can the human be understood as
an effect of technology. ‘The identity of humanity — Clark specifies - is a differential
relation between the human and technics, supplements and prostheses’ (Clark 2000:
247)2

The second aspect of Derrida’s double strategy is his questioning of technology and
technicist thought, in order to reveal their complicity with metaphysical humanism,
and particularly with the instrumental conception of technology that characterizes

Western philosophy. For Clark instances of such complicity are cybernetics and

2 As I showed in Chapter One, the argument for the originary technicity (or ‘originary prostheticity”) of
the human also plays a key role in Bernard Stiegler’s work (Stiegler 1998a; 1998b; 2001a; 2003a). This
formulation emphasizes the co-emergence of humanity and technology and resists the Aristotelian view of
technology as a mere tool.

70




artificial intelligence, ‘or other kinds of formal systems modelling” (Clark 2000:
248).

In sum, Clark points out that Derrida views technology both as constitutive of the
human and of knowledge, and yet complicit with the Western system of thought that
for centuries has excluded technology from knowledge and has viewed the human as

opposed to its tools. In Derrida’s words:

Computer technology, data banks, artificial intelligences, translating
machines, and so forth, all these are constructed on the basis of that
instrumental determination of a calculable language. Information does
not inform merely by delivering an information content, it gives form,
‘in-formiert’, ‘formiert zugleich’. It installs man in a form that permits
him to ensure his mastery on earth and beyond.

(Derrida 1983: 14)

In fact, the two parts of Derrida’s strategy cannot be easily separated. It is precisely
by unmasking and undoing — or, in Derrida’s words, deconstructing - the complicity
between metaphysical humanism and the ‘idealization’ of technology as something
totally predictable (‘calculable’) that one can make originary technicity — that is, the
constitutive relation between technology and the human - apparent. In fact, I want to
argue that Derrida’s double strategy helps me reformulating the question of how to
study software as such: whether and in what way does software display a certain
complicity with the instrumental understanding of technology? This question implies
a second one — namely, to what extent, by undoing this complicity, light can be shed
on the relationship between software (and more broadly technology) and the
constitution of the human. Although these questions will find a definitive answer
only in the following chapters, in order to set out the terms of the problem it is worth
examining here at length Derrida’s insight on new technologies and his clarification

of how difficult it is to conceive them merely in terms of instrumentality.

Quite strikingly, for Derrida new technologies are already ‘in deconstruction’ in

what he terms today’s ‘technological condition’. In his conversation with Bernard

71




Stiegler in Echographies of Television (Derrida and Stiegler 2002) Derrida awards
this process of deconstruction quite a broad meaning. For him the acceleration of
technological innovation in the contemporary world, coupled with the development
of information and telecommunication technologies (and more broadly with the
technologies of the global media system — which Derrida and Stiegler group under
the rubric of ‘tele-technologies’), constitute a ‘practical deconstruction’ (Derrida and
Stiegler 2002: 45) of the traditional political concepts of the public, the state, the
citizen, and ultimately of the instrumental conception of technology itself. On the
one hand, in the contemporary world technological innovation is massively
appropriated by multinational corporations and nation states, by means of their
‘research and development’ and ‘defence’ departments. Within this context,
technological products become obsolete very quickly and technological innovations
are constantly programmed to support such an economy of continual obsolescence.
On the other hand, although programmed and neutralized as controlled
‘development’, technological innovation still gives rise to unforeseen effects.
Derrida even propounds that the greater the attempt to control innovations, the more
unforeseeable the future becomes. This second point is well exemplified for him by
the relationships between telecommunications and the transformation of the public

space. For instance, in Echographies he states:

I believe that this technical transformation - of the telephone, of the fax
machine, of television, e-mail and the Internet - will have done more for
what is called ‘democratization’, even in countries in the East, than all
the discourses on behalf of human rights, more than all the presentations
of models in whose name this democratization was able to get started.

(Derrida and Stiegler 2002: 71)

Here Derrida refers explicitly to the relations between telecommunications and the
political transformations of the late 1980s and early 1990s in Eastern Europe.
However, as Clark points out, Derrida does not see this process as the realization of
liberal humanist values, but as ‘an accelerating process of spectralization’ (Clark
2000: 249). To understand this point better, it is important to examine what Derrida

argues in relation to spectralization and tele-technologies in other parts of his work,

72




and most significantly in Spectres of Marx (1994). In this text Derrida emphasizes
how older notions of the public sphere are being disrupted by tele-technologies and
by the new rhythms of information and communication, and how the analysis of the
public space today must take into account the role of new media and of their
‘spectral effects’ — that is, of ‘the new speed of apparition ... of the simulacrum, the
synthetic or prosthetic image, and the virtual event, cyberspace and surveillance, the
control, appropriations, and speculations that today deploy unheard-of powers’
(Derrida 1994: 54). For example, images and information are disseminated beyond
the borders of territorially delimited communities. Media power makes
contemporary politics dependent on the modes of its mass presentation. The main
function of national governments increasingly involves managing the state in the
interest of international capital. Broadly speaking, new technologies transform the
relationship between the public and the private. This last point is also touched upon
by Derrida in his essay of 1996 on psychoanalysis, entitled ‘Archive Fever: A
Freudian Impression’ (1996), where he muses over some of the ways in which
digital databases and electronic mail could have changed psychoanalysis, had they
been available in the early days of the discipline. Electronic mail would have
enabled extensive correspondence between psychoanalysts as well as an automatic
archivization of such exchanges (therefore transforming psychoanalytic stored
memory and — ultimately - knowledge). Even more broadly, electronic mail would
have changed ‘the entire public and private space of humanity’ (Derrida 1996: 17).
Although Derrida does not elaborate on this suggestion in ‘Archive Fever’, a number
of scholars have commented extensively upon the transformation of the relationship
between the private and the public brought about by new media. For instance, Mark
Poster has convincingly argued that electronic surveillance and digital databases
erase the dominion of the private (Poster 2006: 148). Joshua Meyrowitz has
pointed out how television introduces public occasions into the intimate, private
space of the living room (Meyrowitz 1985). Even more fittingly, Poster has also
shown how the modern subject’s sense of its exclusive awareness of its own
thoughts is restructured by electronic communication (Poster 2006). However, what
is particularly relevant in Spectres of Marx is Derrida’s argument that the speed and

pervasiveness of new media oblige us more than ever to think about the

73




virtualization of space and time, and prevent us from opposing an event to its

representation, and ‘real time’ to ‘deferred time’ (Derrida 1994: 169).?

Ultimately, according to Derrida the unforeseen effects of tele-technologies
deconstruct the perception of the human being as separate from his tools but also as

a master of them. Clark explains:

To conceive technology as a prosthesis that alters the very nature of its
seeming user is to be reminded how technical inventions have always
been in excess of their concepts, productive of unforeseeable
transformations. This deconstruction of the Aristotelian system enables
each invention to be seen as an irruption of the other, the unforeseen
disrupting the very criteria in which it would have been captured.

(Clark 2000: 249)

This passage clarifies that there are certain effects of technological innovation that
are beyond (‘in excess of”) what can be expected within (and produced by means of)
a procedural method. This leap beyond the programmable, which was once ascribed
to ‘genius’ or ‘inspiration’ and therefore recuperated as part of the philosophy of
subjectivity, is now the result of deconstruction as the bringing about of what cannot
be calculated or programmed.* The most striking example of such unexpected
consequences of technology is perhaps the Internet and its growth, out of a seminal
military structure of the 1970s (the ARPANET), into an extended network whose
expansion is only in part controllable. Poster (2006) points out that digital machines,

3 One must be reminded at this point that in Spectres of Marx Derrida instantiates a profound connection
between deconstruction and a commitment to justice and democracy. He insists that deconstruction is a
positive intervention in the sphere of the political, and, while acknowledging that Marx ‘is one of the rare
thinkers of the past to have taken seriously ... the originary indissociability of technics and language’
(Derrida 1994: 53) — and besides recognizing that we are all heirs of Marx to a certain extent, and
indebted to the line of thought we call ‘Marxism’ — he also emphasizes that Marx could not experience
tele-technologies as we can today (53). For Derrida the virtualization brought about by tele-technologies
entails a rethinking of the public space, of ‘live’ transmission and of its relationship to what counts as an
event. Such rethinking is the key to a new political thought which would entail the capacity of remaining
open to the future — that is, to a future event that cannot be determined in advance (what Derrida terms ‘a
new international’, ‘the promise’, or ‘democracy to come’). Ultimately, according to Derrida tele-
technologies require us to be able to think politics differently, to think ‘another space for democracy’ —
namely, to remain open to the unexpected (possibly engendered by the unforeseen consequences of
technologies), to the future, to ‘the coming of the other’ (169).

* Derrida makes such observations in relation to the romantic theory of genius in his essay ‘Psyche:
Inventions of the Other’ (Derrida 1989: 58-60).

74




even though originally funded by the military and subsequently appropriated by
corporations, have been implemented by academic researchers with the aim of
transferring information quickly and efficiently - that is, without any noise. They
have not been implemented to pay attention to ‘who is authorized to speak, when, to
whom, and what may be said on these occasions’ (Poster 2006: 51). These structural
aspects of technology ultimately enable technically noiseless channels of
communication on which digital cultural objects - that is, texts, images and sound -
circulate rather freely. Such circulation, in turn, endows global networking with the

potential for contrasting hegemonic agglomerations of power.’

Derrida names such a leap beyond the programmable ‘the coming of the other’
(Derrida 1994: 55). In order to understand this concept better, one must recall that —
as Clark explains - ‘[d]econstruction represents a rejection of the view, powerful
since the seventeenth century, that humanity necessarily understands what it has
made better than what it has not’ (Clark 2000: 251). This observation posits a
fundamental relationship between deconstruction and technology. Both Clark and
Derrida acknowledge that technology has the capacity for interrupting reason and
calculation, and for bringing forth something unexpected that cannot be totally
understood within the existing conceptual framework. For instance, tele-
technologies challenge the very concept of ‘invention’ as something that ‘is
assignable to a human subjectivity, individual or collective, responsible for the
discovery or production of something new and publicly available’ (Clark 2000: 251).
The concept of invention must therefore be re-invented, and it exceeds the

recognizability of the producer and of the product.

In sum, according to Derrida, today’s technology is ‘in deconstruction’ because,
with its capacity to generate unforeseen consequences, it challenges received notions
of invention and instrumentality, and in so doing it challenges the (Aristotelian)
notion of ‘tool” within which technology itself has been constricted for centuries.
This is also the reason why, as Clark makes explicit, technology cannot be simply an

‘object’ of deconstruction understood as a discrete methodology of analysis or

5 The fact that many communication protocols do embed discriminations as to who speaks, when and to
say what does not invalidate Poster’s argument, since ultimately such technical characteristics do not
introduce perceivable limitations on the circulation of cultural objects.

75




critique: ‘[t]echnology is “in deconstruction” as the condition of its being: for an
originary prosthetic supplemementarity or originary technicity both opens and
prevents realization of the Aristotelian and techno-scientific concepts of technology’
(Clark 2000: 252). Accordingly, Derrida’s argues that deconstruction is not a
methodology, because it is not a set of immutable rules that can be applied to any
object of analysis — since the very concepts of ‘rule’, of ‘object’ and of ‘subject’ of

analysis themselves are subject to deconstruction too.

One must be reminded at this point that - as I clarified in the Introduction -
‘deconstruction’ is something that ‘happens’ within a conceptual system, rather than
a methodology, and that any conceptual system is always in deconstruction, because
it unavoidably reaches a point where it disassembles its own presuppositions. On the
other hand, it is perfectly possible to remain oblivious to the permanent occurrence
of deconstruction. Therefore, there is a need for us to actively ‘perform’ it - that is,
to make its occurrence visible. In this sense deconstruction is also a productive
process. Therefore, although what Derrida terms ‘practical deconstruction’ is already
occurring in new technologies, there remains a need to make such occurrence visible
through an active investigation of new technologies’ ‘complicity’ with
instrumentality. But to what extent and in what way does software, both ‘open and
prevent the realization of instrumentality’ - as Clark would have it - that is, of the
traditional philosophical understanding of technology as a tool? To what extent and
in what way does software exceed its own instrumentality by giving rise to
unforeseen consequences? And, most importantly, in what way can a deconstruction

of software actually be performed?

In order to answer these questions, let me recall part of my argument from Chapter
One regarding the connection between writing and technology on the one hand and
instrumentality on the other. As we have seen, Western philosophical thought has
devalued technology as a mere instrument. The traditional, Aristotelian view is that
technology is extrinsic to human nature as a tool which is used to bring about certain
ends. At the same time, philosophy has devalued writing, also considered secondary
to language and therefore instrumental - namely, a technology in the service of
language. Conversely, those thinkers who have distanced themselves from such

instrumental understanding (mainly, but not exclusively, Heidegger, Stiegler,

76




Derrida, and André Leroi-Gourhan) have proposed a view of technology as a
fundamental characteristic of human beings. They have actually suggested that
philosophy has constituted itself precisely in relation (and in opposition) to
technological knowledge, and they have pointed to the need for the radical
rethinking of philosophy itself if an understanding of technology is to be made
possible. In particular, they have emphasized that technology is actually constitutive
of philosophy, since, by providing the support for the inscription of memory, it
allows for transcendence and therefore for thought. According to Stiegler,
transcendence is constituted through technology as the support for the inscription of
memory (Stiegler 2003b; Hansen 2003; Beardsworth 1995). Stiegler actually
establishes that technology and philosophy (techné and epistémé) share a connection
with writing, since, on the one hand, ‘philosophical’ problems (that is, problems that
historically arise with Thales) fundamentally proceed from the appearance of a
technique of writing, and, on the other, philosophy constitutes itself precisely as
non-technical knowledge, excluding both technology and writing from its domain.
Stiegler points out that the question of technology, considered as the object of
repression, emerges through its denunciation by Plato: in Phaedrus Plato blames
technology (identified with writing) for its power of forgetting (Stiegler 2003b: 154).
Ultimately, in Chapter One I argued that there is a fundamental relation between
technology and writing as both traditionally excluded by philosophy as
‘instrumental” while at the same time constitutive of it. In the present chapter I want
to establish to what extent this fundamental relation between technology and writing
is relevant for the study of software — and, specifically, for the study of how

software exceeds instrumentality.

In order to expand on this point, let me now turn to Katherine Hayles’ recent
conceptualization of the relationship that software entertains with Western thought
on the one hand and with writing on the other. In her 2005 book, My Mother Was A
Computer, Hayles reframes the problem of the relationship between software and
instrumentality in terms of the relation between ‘code’ and ‘metaphysics’, at the
same time introducing the concepts of language and writing as significant terms of
this relation. As it will become clearer throughout this chapter, Hayles’

understanding of ‘code’ is not identical to my understanding of ‘software’, although

77




they can be considered equivalent up to a certain point. For Hayles code is ‘the
language in which computation is carried out’ (Hayles 2005: 17) — whereby
‘computation’ is defined as ‘a process that starts with a parsimonious set of elements
and a relatively small set of logical operations’ which, instantiated into some kind of
material substrate (such as a computer), can build up increasing levels of
complexity, ‘eventually arriving at complexity so deep, multilayered, and extensive
as to simulate the most complex phenomena on earth, from turbulent flow and

multiagent social systems to reasoning processes one might legitimately call
thinking’ (18).

Hayles examines the relations of code with metaphysics, where the latter is defined
as a model ‘for understanding truth statements’ which is ‘so woven into the structure
of Western philosophy, science, and social structures that it continually imposes
itself on language and, indeed, on thought itself, creeping back in at the very
moment it seems to have been exorcised’ (17). Hayles is particularly interested in
‘the metaphysics of presence’ which, after Derrida, she defines as the metaphysical
yearning for the ‘transcendental signified” — that is, for ‘the manifestation of Being
so potent that it needs no signifier to verify its authenticity’ (17), or, in Derrida’s
terms, ‘a concept signified in and of itself, a concept simply present for thought,
independent of a relationship to language, that is of a relationship to a system of
signifiers” (Derrida 2004: 19). I will return to this definition during my analysis of
Hayles’ argument. For now, suffice it to say that, when referring to the metaphysics

of presence and to the transcendental signified, Hayles also uses the term ‘ontology’

as a synonym.

According to Hayles, code has a very loose relationship with metaphysics. She goes
as far as to say that code ‘inherit[s] little or no baggage from classical metaphysics’,
because it reduces ontological presuppositions to a minimum (Hayles 2005: 22). In
order to understand this complex proposition, Hayles’ argument needs to be
examined more closely. The question of the relationship between metaphysics and
code is considered by Hayles in the context of the broader analysis of the relations
between speech, writing and code. She starts from the issue ‘of how code can be

related to theoretical frameworks for the legacy systems of speech and writing’ (8).

78




She writes:

Unnoticed by most, new languages are springing into existence,
proliferating across the globe, mutating into new forms, and fading into
obsolescence. Invented by humans, these languages are intended for the
intelligent machines called computers. Programming languages and the
code in which they are written complicate the linguistic situation as it has
been theorized for ‘natural’ language, for code and language operate in

significantly different ways.

(Hayles 2005: 15)

As the above quotation makes clear, Hayles establishes a relationship between
natural language on the one hand and programming languages and code on the other.
She identifies a number of differences between the two: for instance, code is
addressed both to humans and to computers, it is developed by small groups of
technicians, and it is integrated into commercial production cycles and capitalist
economics. She notices: ‘[a]lthough virtually everyone would agree that language
has been decisive in determining the specificity of human cultures and, indeed, of
the human species, the range, extent, and importance of code remain controversial’
(15). On the one extreme of the spectrum there are people who see code as a niche
artificial language aimed at computers. On the other extreme, we can find scientists
such as Stephen Wolfram and Harold Morowitz, who advance the hypothesis that
the whole universe is fundamentally computational, therefore viewing code as the
language of nature — that is, as the lingua franca of all physical reality (5). Whether
we view code as something very specific or utterly pervasive, Hayles urges for a
theoretically sophisticated understanding of the interactions between code and
language. She points out that, while there exists an enormous body of literature
dealing with human languages and programming languages separately, scholarship
engaging with the relationship between the two is comparatively limited. Yet
interactions between language and code pervade our world. For example, human
communication over the Internet involves natural language (e.g. when writing an

email or using a chat line) as well as code (e.g. protocols of communications

79




between networked computers). The interactions between humans and computers are
carried out through interfaces that rely on code but normally involve the display of
messages in natural language. Interactions between natural language and code take
place nearly every time computers are relied upon in order to perform everyday
tasks, to the point that, according to Hayles, ‘[l]Janguage alone is no longer the
distinctive characteristic of technologically developed societies; rather, it is language
plus code’ (16). Hence the importance of developing a conceptual framework in

which language and code can be thought together.

Up to this point it looks like Hayles” main preoccupation is the relationship between
natural language and code. In fact, in the rest of the book she rapidly slips into a
triadic model which involves speech, writing and code. Hayles identifies throughout
history three main ‘discourse systems’ - namely, the system of speech, the system of
writing, and the system of digital computer code — all of which are still at work in
contemporary culture (16). According to Hayles, each of these systems is associated
with a specific ‘worldview’ — that is, a particular set of premises and implications
which can be detected, exemplarily and respectively, in the semiotic theory of
Ferdinand de Saussure, in the grammatological thought of Jacques Derrida, and in
the theories of a number of thinkers such as Wolfram and Morowitz, but also Ellen
Ullman, Matthew Fuller, Matthew Kirschenbaum and Bruce Eckel, who have dealt
with programming languages (Saussure 1988; Derrida 1976; Wolfram 2002;
Morowitz 2002; Ullman 1997; Fuller 2003; Kirschenbaum 2002a, 2002b, 2004;
Eckel 1995). Let me now examine Hayles’ argument a little closer in order to
evaluate its relevance for my investigation of the relationship between software and

instrumentality. Hayles observes:

From a systematic comparison of Saussure’s semiotics, Derrida’s
grammatology, and programming languages, implications emerge that
reveal the inadequacy of traditional ideas of signification for
understanding the operations of code. ... The result is a significant shift
in the plate tectonics of signification, with a consequent rethinking of the

processes through which texts emerge. The point is not simply to jettison

80




the worldviews of speech and writing — even if by some miraculous fiat
this were possible — but rather to understand the processes of
intermediation by which they are in active interplay with the worldview

of code.

(Hayles 2005: 8)

Thus, in order to understand the relationship between speech, writing and code it is
crucial to understand in what way their respective worldviews conceptualize the
process of signification. Before moving further into Hayles’ argument, it is
necessary to explain what she means by the term ‘intermediation’. Hayles is
interested in the interactions (which she describes as ‘feedback loops’) between
language and code, humans and machines, old technologies and new.® Her goal is
not to focus on any privileged point of view; for instance, she rejects the simplifying
tendency to view the computer as ‘the ultimate solvent that is dissolving all other
media into itself® (39) that characterizes the work of media theorists such as
Friedrich Kittler and Lev Manovich (Kittler 1999; Manovich 2002). On the contrary,
she claims that social and cultural processes are much more complex than the
convergence of all media into one via the process of digitisation - that is, the
conversion of sound, image, text and their respective media into digital code. With
the term ‘intermediation’ she points out that speech, language and code are in fact

connected to each other through entangled and complex relations.

Hayles’ concept of intermediation draws on what Jay Bolter and Richard Grusin
have called ‘remediation’ — that is, ‘the formal logic by which new media
technologies refashion prior media forms’ (Bolter and Grusin 2002: 273). According
to this logic, older media (such as print) respond to the development of new digital
media by seeking to reaffirm their status within a culture that challenges them. In
their efforts to remake themselves and each other, both older and new media invoke

a ‘double logic’ that involves the processes of ‘immediacy’ and ‘hypermediacy’ (5).

8 A feedback loop is a process that circulates the output of a system back into the system as input.
Although the idea of a system that governs itself by means of such process dates back to the Greeks, the
concept of the feedback loop found its broader theoretical development and practical applicability in
first-order cybernetics during the 1930s and 1940s. Hayles uses the concept both in relation to physical
systems and to recursive conceptual structures (Hayles 2005: 246).

81




The former is the tendency of media to represent their productions as transparent and
naturally accessible - for instance, live television and webcams aim at making
viewers feel as if they were ‘really there’. The latter is the opposite tendency of
media to draw attention to their own strategies of representation - multiple video
streams and split screen displays are also features of live television, and webcams
can be embedded in hypermediated websites, where users can select from a
‘jukebox’ of webcam images to create their own display (Bolter and Grusin 2002: 6;
Hayles 2005: 32). And yet, Hayles finds the term ‘remediation’ too restrictive for
her purposes, since it refers specifically to those feedback loops that operate via the
double logic of immediacy and hypermediacy and that assume as a starting point a
certain locality and medium. With the more comprehensive term ‘intermediation’
she wants to emphasize the multiple causalities that influence interactions among
media. Moreover, ‘intermediation’ also includes other kinds of interactions, such as
those between humans and intelligent machines through mediating interfaces
(Hayles 2005: 32 f.). However, the investigation of the processes of intermediation
between speech, writing and code assumes an understanding of the differences and
similarities between the three worldviews associated with them (8). According to
Hayles, such differences become mostly apparent precisely in the relationship that

these three worldviews entertain with metaphysics.

Thus, we are brought back to the initial question of the relation between code and
metaphysics. We have already seen that for Hayles computation has a very specific
relationship with metaphysics, and it must be understood in a much broader sense
than as something that goes on within a computer. In this view, computation is not
limited to digital machines and binary code, but can form the basis for the physical
universe. She refers to Stephen Wolfram, who, in his book 4 New Kind of Science,
makes the claim that the whole universe can be explained through processes of
computation and according to the theory of cellular automata. For Wolfram, the
complexity of the universe can be viewed as emerging through successive cycles of

computation, starting from binary elements. Complexity emerges not from the

82




variety of the starting elements but from the number of iterations and from the

unpredictability of their results (Wolfram 2002; Morowitz 2002).”

How does the worldview of computation position itself in relation to metaphysics
then? Has we have seen, according to Hayles, it basically reduces ontological

requirements to a minimum.

Rather than an initial premise (such as God, an originary Logos, or the
axioms of Euclidean geometry) out of which multiple entailments spin,
computation requires only an elementary distinction between something
and nothing (one and zero) and a small set of logical operations. The
emphasis falls not on working out the logical entailments of the initial
premises but on unpredictable surprises created by the simulation as it is

computed.

(Hayles 2005: 22f.)

The above passage clarifies that Hayles views the distinction between zero and one
as minimizing the need for metaphysical foundations. For her the computational
view of the universe requires no ontological foundations, other than the minimal
presuppositions needed to set the system running. ‘Far from presuming the
“transcendental signified” that Derrida identifies as intrinsic to classical
metaphysics’, she remarks that ‘computation privileges the emergence of complexity

from simple elements and rules’ (23).%

This last part of Hayles’ argument seems to me rather problematic. In fact, when

discussing the theory of computational universe, Hayles actually detects its

" Hayles does not embrace the theory of the computational universe as a plausible explanation of physical
reality, but treats it as a productive hypothesis that provides her with a means to articulate the worldview
associated with code (Hayles 2005: 30).

¥ For instance, Edward Fredkin’s ‘digital philosophy’ implicitly positions itself as an answer to
metaphysical questions — as Hayles remarks following Wolfram (2002). Drawing on the discrete nature
of elementary particles, Fredkin understands the whole universe as digital — that is, as ‘software running
on an unfathomable digital computer’ (Hayles 2005: 23). As he explicitly acknowledges, digital
philosophy ‘carries atomism to an extreme’ (23).

&3




fundamental ambiguity - that is, its uncertainty whether computation should be
understood as a metaphor (however pervasive it is in our culture) or as having an
‘ontological status as the mechanism generating the complexities of physical reality’
(20).° She explicitly avoids taking sides on such a controversial issue (especially
since the theory of the computational universe has not been proved). Rather, she
accepts that such a question remains undecidable as of today and that the
computational universe 1s able to function simultaneously as means and metaphor.
She argues that, regarded as a culturally potent metaphor, computation can actually
invest the social construction of reality, as is the case of the reorganization of the US
military according to ‘network-centric warfare’. The presupposition of information
as a key military asset leads to the reorganization of the military as a mobile and
flexible force and as ‘a continuously adapting ecosystem’ (21). Thus, Hayles

continues:

Anticipating a future in which code (a synecdoche for information) has
become so fundamental that it may be regarded as ontological, these
transformations take the computational vision and feed it back into the
present to reorganize resources, institutional structures, and military
capabilities. Even if code is not originally ontological, it becomes so

through these recursive feedback loops.

(Hayles 2005: 21f))

In this — again debatable — statement Hayles seems to have moved away from the
conception of information that she supported in her 1999 book, How We Became
Posthuman. In that book she showed how Shannon and Weaver’s understanding of
information as a mathematical function independent of its material substrate was
able to generate the possibility of ultimately thinking the human as a disembodied
entity. In her most recent book, conversely, she analyzes the formal definition of

computation in order to explore its potential to generate embodied social and cultural

® For instance, Wolfram’s work shifts from regarding computation as a way to conceptualize complex
system (as in the simulation of life processes by means of cellular automata running in a computer) to
thinking computation as a process that ‘actually generates reality” (Hayles 2005: 19).

84




(as well as physical) structures. In How We Became Posthuman she regarded Hans
Moravec’s desire to upload the human consciousness into a computer as emblematic
of a disembodied posthumanity, which she argued against. In My Mother Was A
Computer she embraces Richard Doyle’s observation in Wetware (Doyle 2003) that
the desire to upload one’s consciousness into a computer (and thereby achieve
immortality) has already provoked a new perception of one’s self and of the others,

or what Doyle calls a ‘techno-social mutation’ (Hayles 2005: 22).

What I want to emphasize here is that, ultimately, Hayles’ theory of computation
does not seem to break free from the dilemma of whether code has ‘ontological
status’. Even more importantly, I want to argue that she cannot get rid of it precisely
because she conceptualizes code within a triadic model that sets speech, writing and
code as three separate entities associated (as we have seen above) with three separate
worldviews that, albeit in complex interactions (which she calls intermediations),
can still be placed in a kind of temporal progression with respect to their relationship
with metaphysics. I believe that this triadic model needs to be rethought in order to
give account of the relationship between ‘code’ and ‘metaphysics’, as well as of the
one between technology (and specifically software) and instrumentality. Let me now
develop this point a little further by returning to the fact that Hayles associates a
specific reference text - and a specific theory - with each of the three worldviews,
which is presumed to give an account of that worldview’s relationship with

metaphysics.

According to Hayles, the worldview of computation shifts the locus of complexity
from Logos (that is, from the ideal originary point that both exceeds and generates
the world) to ‘the labor of computation that again and again calculates differences to
create complexity as an emergent property of computation’ (41). Here Hayles
acknowledges the importance of Derrida’s deconstruction of metaphysics, and yet
she claims that Derrida’s grammatology locates complexity in the ‘trace’, and that
therefore it cannot be relied upon in order to give an accurate account of the
processes of computation (41). Actually for her the different locations of complexity

in Saussurean linguistics, Derridean grammatology and computation ‘have extensive

85




implications for their respective worldviews’ (41). She starts from the examination
of Ferdinand de Saussure’s 1915 book, the Course in General Linguistics, which is
generally considered the foundational text of modern linguistics (Saussure 1988).
According to Saussure, the sign has no ‘natural’ or inevitable relation to that which
it refers to — that is, in his own words, ‘the linguistic sign is arbitrary’. It is for this
reason that Saussure excludes hieroglyphic and idiomatic writing from his
consideration (Hayles 2005: 42). He ‘regards speech as the true locus of the
language system (la langue) and writing as merely derivative of speech’ (42), and

explains:

A language and its written form constitute two separate systems of signs.
The sole reason for the existence of the latter is to present the former.
The object of study of linguistics is not a combination of the written word

and the spoken word. The spoken word alone constitutes that object.

(Saussure 1988: 25 f.)

I have discussed Derrida’s analysis of the subordination of writing to speech in
Chapter One, and I will return to it later on in this chapter. For now, suffice it to say
that Hayles follows Derrida’s critique of such prioritization. Moreover, she points
out how Saussure tends to underplay the role of ‘material constraints’ of any kind in
the functioning of the sign (Hayles 2005: 42). Briefly put, Hayles’ argument is that
the arbitrariness of the linguistic sign is much less valid in code than in speech and
writing. She emphasizes that material constraints play a productive role in
computation, ‘functioning to eliminate possible choices until only a few remain’
(42). Saussure ignores such constraints, and views meaning as emerging only from
differential relations between signs. As Jonathan Culler remarks, for Saussure signs
are ‘purely relational or differential entities’ (Culler 1986: 33). On the contrary, for
Hayles, although material constraints also work in speech and writing (for instance,
English, and natural languages in general, do not have words of one hundred or more
syllables, for the simple reason that it would be impossible to pronounce them), they
are much more important in code. While Saussure’s theory erases materiality, the

development of computers has been characterized by a dramatic centrality of it -

86




Hayles claims, ‘from John von Neumann in the 1950s agonizing over how to
dissipate heat produced by vacuum tubes to present-day concerns that the limits of
miniaturization are being approached with silicon-based chips’ (Hayles 2005: 43).
But the most significant example of the role that material constraints have played in
computation is the shift from analog to digital computers. For Hayles one important
instance of such shift is the Transistor to Transistor Logic (TTL). In principle — she
explains - it would be possible to build an analog computer, but this would make
error control far more complex. Simply put, in TTL chips the binary digit zero is
represented by zero volt, and the binary digit one by five volts. ‘If a voltage
fluctuation creates a signal of .5 volts - Hayles clarifies, it is relatively easy to
correct this voltage to zero, since .5 is much closer to zero than to five’ (43). Error
control is therefore quite straightforward and simple, compared to analog computers,
where voltages vary continuously. Hayles concludes: ‘[flor code, then, the
assumption that the sign is arbitrary must be qualified by material constraints that
limit the ranges within which signs can operate meaningfully and acquire

significance. ... In the worldview of code, materiality matters’ (43).'°

In sum, for Hayles code has a much stronger connection to materiality than speech
and writing. Moreover, she claims that Derrida’s grammatology does not take into
account the role of materiality in the process of signification. This part of Hayles’
argument deserves a careful analysis. In fact, not only I want to argue that Derrida’s
conception of writing is based on his recognition of the materiality of the sign.
Furthermore, as I began to show in Chapter One, Derrida’s grammatology has much
wider implications than Hayles recognizes, since it constitutes a problematization of
the whole of Western metaphysical thought. What I want to emphasize here is that
actually Derrida’s understanding of writing can lead to the questioning of Hayles’
own triadic model as well as to a radical reframing of her ‘ontological dilemma’ and,
even more importantly, to an understanding of ‘writing’ that is particularly helpful
for the conceptualization of what I name ‘software’ (and Hayles names ‘code’). In

order to elucidate this point, and before turning to the direct examination of

19 A thorough discussion of the role played by material constraints in programming (for instance in terms
of time and memory resources) is provided by Jay Bolter in his book Turing Man (Bolter 1984).

87




Derrida’s concept of writing, let me keep examining Hayles’ analysis of code for a

little while.

Her discussion of Saussure’s semiotics leads Hayles to ask whether any processes of
signification actually take place in computation, and, if so, what a sign in the
Saussurean sense (that is, as the unity of a signifier and a signified) would become in
code. She follows Kittler’s observation from his essay ‘There Is No Software’ that
ultimately everything in digital computers is reduced to changes in voltages (Kittler
1997), and advances the proposition that signifiers in code coincide with voltages,
while signifieds are ‘interpretations that other layers of code give these voltages’
(Hayles 2005: 45). In other words, Hayles views the microcircuitry in a digital
computer as a signifier, and the first layer of code (namely, sequences of binary
digits) as its signified. In turn, a higher level of code treats such sequences of binary
digits as a signifier and attributes a certain meaning to them, according to the rules
of the programming language in which that code is written. Programming languages
operating at still higher levels translate the lower levels of signification into
commands that more closely resemble natural language. Hayles explains that ‘[t]he
translation from binary code into high-level languages, and from high-level
languages back into binary code, must happen every time commands are compiled
or interpreted, for voltages and the bit stream formed from them are all the machine

can understand’ (45).

This passage contains a number of technicalities, including the distinction between
those kinds of programming languages that are interpreted and those that are
compiled. It is not important here to deal with all these aspects in detail. What is
worth noting is that Hayles views the correspondence between circuitry and binary
digits as a process of translation in which materiality plays a very important part. For
her in the computer the chain of zeroes and ones eventually ‘becomes’ circuitry. She

argues further:

Hence the different levels of code consist of interlocking chains of

signifiers and signifieds, with signifieds on one level becoming signifiers

88




on another. Because all these operations depend on the ability of the
machine to recognize the difference between one and zero, Saussure’s
premise that differences between signs make signification possible fits

well within computer architecture.

(Hayles 2005: 45)

That computation partly fits a Saussurean model should come as no surprise, since
historically programming languages have been developed according to structuralist
semiotics. As I will show in greater detail in Chapter Five, the modern theory of
formal languages (which is concerned with the specification and manipulation of
languages, be they natural languages such as English or programming languages
such as Pascal) was originated mainly by the work of the American linguist and
mathematician Noam Chomsky, who in the 1950s, at MIT, developed a model for
the formal description of natural languages based on what he called ‘replacement

rules’ and ‘transformations’ (Chomsky 1965; Tanenbaum 1999)."!

However, the relevant point here is that Hayles invokes a Saussurean understanding
of the sign throughout her analysis of code, while at the same time upholding a
stronger account of materiality within the Saussurean framework. In order to give an
account of the materiality of code, Hayles follows Alexander R. Galloway in
understanding code as executable. According to Galloway this is the essential
difference between code and any other language. This is also why code is ‘so
different from mere writing’: ‘[c]ode is a language, but a very special kind of
language. Code is the only language that is executable’ (Galloway 2004: 165).
Hayles relies on Galloway’s statement to substantiate her assertion that code has a
‘performative’ nature, at the same time turning to John Austin’s theory of

performativity as a way to take materiality into account in code. To understand her

' In the 1950s Chomsky also produced a classification of formal languages and grammars. One particular
category of grammars, which he called ‘context-free’, became central to software development in the
1960s. As I will show in Chapter Five, during the early 1960s computer scientists drew on Chomsky’s
description of natural languages in order to develop the programming language called ALGOLG60. In this
context, John Backus and Peter Naur proposed a notation that rapidly became widely used for the
specification of the syntax of programming languages. This notation is known as the ‘Backus-Naur
formula (BNF)’, and actually is a context-free grammar (Salomaa 1973; Fischer and LeBlanc 1988).

&9




move, let me take a step behind and briefly examine the theory of speech acts as it

was developed by John Austin from the 1930s onwards.

In 1955 Austin expounded his theory in a series of lectures he gave at Harvard
University, subsequently published under the title How to Do Things with Words in
1962. Austin’s theory was meant to oppose what he named the ‘descriptive fallacy’
— that is, the view that a declarative sentence always describes a certain state of
affairs, and thus must be either true or false (Austin 1972: 56). Austin establishes the
existence of declarative sentences that do not describe anything, and of which it
makes no sense to ask whether they are true or false. He points out that the utterance
of these sentences coincides instead with the ‘doing’ of an action that cannot be
described as the action of saying something. The classical example given by Austin
is the ‘I do’ uttered in a marriage ceremony. Such utterances he names
‘performatives’ (as distinct from ‘constatives’, which are descriptive). The
difference lays in the fact that, while constatives can be true or false, performatives
can only be ‘happy’ or ‘unhappy’. A performative is happy depending on the
conditions under which it is uttered: normally, there must be some accepted
conventions regarding the performative that are understood by the participants in the
conventional procedure, which in turn has to be carried out correctly and generate
the expected social behaviour in the participant themselves (112). Quite clearly, the
“felicity conditions’ of performatives unfold in the social realm. Accordingly, Hayles
stresses that, while performative language causes changes only in the mind and
behavior of people, code always has a very particular involvement with materiality,
since ‘it causes things to happen, which requires that it be executed as commands the
machine can run’ (Hayles 2005: 49). In other words, for her the materiality of code
is more straightforward than the materiality of performative utterances. ‘Code that
runs on a machine is performative in a much stronger sense than that attributed to
language’ (50). In fact, while the performative force of language is ‘tied to external

changes through complex chains of mediation’, by contrast

code running in a digital computer causes changes in machine behaviour

and, through networked ports and other interfaces, may initiate other

90




changes, all implemented through transmission and execution of code.
Although code originates with human writers and readers, once entered
into the machine it has as its primary reader the machine itself. Before
any screen display accessible to humans can be generated, the machine
must first read the code and use its instruction to write messages humans
can read. Regardless of what human think of a piece of code, the machine
is the final arbiter of whether the code is intelligible. If the machine
cannot read the code or if the program does not work properly, then the
code must be changed and corrected before the machine can make things

happen.

(Hayles 2005: 50)

The above passage presents a number of interesting points. First of all, Hayles
introduces the terms ‘writing’ and ‘reading’ in relation to code, without questioning
them. But what would it actually mean for a computer to ‘read’ code? And what
does it mean, exactly, for a human being to ‘write’ it? Moreover, while marking out
the difference between performative language and performative code, the above
passage also introduces a problem of agency — that is, it clarifies that, as far as code
is concerned, computers are the arbiters of the competence of the utterance. Hayles

already articulated this very point in her 1999 book, How We Became Posthuman:

In natural languages, performative utterances operate in a symbolic
realm, where they can make things happen because they refer to actions
that are themselves symbolic constructions, actions such as getting
married, opening meetings, or as Butler has argued, acquiring gender.
Computational theory treats computer languages as if they were, in
Austin’s terms, performative utterances. Although material changes do
take place when computers process code (magnetic polarities are changed
on a disk), it is the act of attaching significance to these physical changes
that constitutes computation as such. Thus the Universal Turing Machine,

which establishes a theoretical basis for computation, is concerned not

91




with how physical changes are accomplished but with what they signify

once they are accomplished.

(Hayles 1999: 274)

However careful these observations, I still find Hayles’ understanding of materiality
and of the relationship between materiality and code rather problematic. Importantly,
she describes the materiality of code as more ‘direct’, more straightforward than the
materiality of language and writing. This greater significance of materiality for code
is related to its being performative ‘in a stronger sense’ than language. According to
Hayles’ rereading of Butler, the performativity of gender is exemplary of a
‘mediated’ performativity - a performativity that has effects mainly in the ‘symbolic’
realm. An analogous assimilation of Derrida and Butler’s concepts of performativity
as limited to the ‘symbolic’ or ‘discursive’ realm comes back from time to time in
the theories of technology and gender (see for example Barad 2003; Sedgwick
2003). And yet I believe that here Hayles underplays the role of materiality in
Butler’s theory of performativity. As Butler herself remarked in her 1997 work,
Excitable Speech, language can produce very powerful effects on the materiality of
the human body — effect that Hayles would without doubt consider quite
‘straightforward’. To give but an example, in her poignant analysis of hate speech,
Butler argues that human beings can be injured by language, and that linguistic
injuries such as racial invectives can produce physical symptoms such as blushing
and rage (Butler 1997: 4). On the other hand, how can Hayles claim that code has a
‘direct’ relation with materiality? When stating that code causes changes in machine
behaviour ‘through networked ports and other interfaces’, she actually acknowledges

the mediated character of materiality in code.

I want to suggest here that the famous re-reading that Derrida gives of Austin’s
theory in his 1972 essay, ‘Signature, Event, Context’ (Derrida 1988) can be very
helpful in order to think the materiality of code differently. In this work Derrida calls
into question the traditional understanding of ‘communication’ as a vehicle that
circulates an identifiable content — that is, a meaning. The meaning or content can be

‘communicated’ by different technical means — namely, ‘by more powerful technical

92




mediations’, for example by writing (Derrida 1988: 3), without being affected. This
interpretation of writing is proper to philosophy, and views writing as something that
simply ‘extends’ the domain of communication. In this perspective, writing is
actually placed under the category of communication: it is the consequence of the
human capability to communicate (4). Derrida exemplifies this understanding of
writing through Condillac’s Essay on the Origin of Human Knowledge. He focuses

on the passage where Condillac states that

“[mlen in a state of communicating their thoughts by means of sounds,
felt the necessity of imagining new signs capable of perpetuating those
thoughts and of making them known to persons who are absent”. (I
underscore this value of absence, which, if submitted to renewed
questioning, will risk introducing a certain break in the homogeneity of
the system).

(Derrida 1988: 4)

According to Derrida, this notion of absence is not specific to writing; in fact, it is

characteristic of every sign. He explains:

In order for my ‘written communication’ to retain its function as writing,
i.e., its readability, it must remain readable despite the absolute
disappearance of any receiver, determined in general. My communication
must be repeatable — iterable — in the absolute absence of the receiver or
of any empirically determinable collectivity of receivers.

(Derrida 1988: 7)

In other words, a piece of writing must be repeatable in order to function as writing.
The capacity of writing to remain writing in the absence of its intended reader and/or
producer — this iterability - constitutes the capacity of the written sign to break free
from its context (that is, the ‘empirically determinable collectivity’ of receivers or
producers). For Derrida this capacity of functioning after having been severed from
their context pertains to every kind of sign. He states that ‘[e]very sign, linguistic or

non-linguistic, spoken or written (in the current sense of this opposition), in a small

93




or large unit, can be cited, put between quotation marks; in so doing it can break
with every given context, engendering an infinity of new contexts in a manner which

is absolutely illimitable’ (12). And again:

A written sign, in the current meaning of this word, is a mark that
subsists, one which does not exhaust itself in the moment of its
inscription and which can give rise to an iteration in the absence and
beyond the presence of the empirically determined subject who, in a
given context, has emitted or produced it. This is what has enabled us, at
least traditionally, to distinguish a ‘written® from an ‘oral’
communication. ... At the same time, a written sign carries with it a force
that breaks with its context, that is, with the collectivity of presences
organizing the moment of its inscription.

(Derrida 1988: 9)

At this point it becomes clear why for Derrida the structure of writing is the structure
of every possible mark. The possibility of disengagement from a context and of
citationality belongs to the structure of every mark, spoken or written — otherwise it
could not function as a mark. “What would a mark be that could not be cited?’

Derrida asks (12).

It is from this perspective that Derrida approaches the problematic of the
performative. Austin seems to consider the performative as something that does not
describe something pre-existent (something outside of language and prior to it);
rather, the performative ‘produces or transforms a situation, it effects’ (13). For this
reason, Austin was obliged to free the analysis of the performative from what
Derrida calls the ‘authority of the truth value’ and to substitute for it ‘the value of
force’ (13). As we have seen, a performative cannot be true or false, but only
felicitous or infelicitous. So, has Austin shattered the traditional concept of
communication? For Derrida, he has not. In fact, Austin’s performative always
requires a value of context (14), that is the intentionality of the speaker, the
communication of an intentional meaning. In Derrida’s words, Austin has not
‘interrogated infelicity as a law’ (15). Derrida thus asks ‘[w]hat is a success when

the possibility of infelicity ... continues to constitute its structure?” (15). In order to

94




prove this point, and to perform at the same time such an ‘interrogation of infelicity
as a law’, Derrida analyses Austin’s understanding of citationality. Austin excludes
the possibility of a performative being quoted. He actually considers a quoted
performative (such as the pronunciation of the nuptial ‘I do’ by an actor on stage) as
‘abnormal, parasitic’ (16). But — Derrida objects — all language is citational in order
to function as such, and especially a performative. A performative is only possible if
it is citational: how could the ‘I do’ function if it were not identifiable as the citation
of the marriage formula? Derrida writes: ‘[w]hat Austin excludes as anomaly,
exception, ‘non-serious’, citation (on stage, in a poem, or a soliloquy) is the
determined modification of a general citationality — or rather, general iterability —

without which there would not even be a ‘successful’ performative’ (17).

I will return to Derrida’s understanding of the materiality implicit in every sign later
on in this chapter. However, it should already be quite clear here that, if analysed
from this point of view, Hayles’ distinction between the performativity of language
and the performativity of code would not hold. In fact, for Derrida every process of
signification requires the sense of the material persistence of the sign, and there is no
opposition between performatives operating in ‘the symbolic realm’ (Hayles 1999:

274) and performatives that take place in computer processors.

Actually, Hayles’ analysis of code brings back a certain separation between
materiality and signification that I argue is untenable and not very helpful in
understanding how code works. For instance, drawing on such a distinction, Hayles
isolates two more characteristics of code: besides being material and executable,
code is also hierarchical and discrete. As for the first point, the hierarchical structure
of code seems to depend precisely on its proximity to materiality. The lower the
level, the closer code comes to the simplicity of zeros and ones. Conversely, it has
been the ability to build up from this simplified base that has enabled the creation of
high-level programming lamguages.12 Moreover, Hayles remarks, ‘[a]long with the

hierarchical nature of code goes a dynamic of concealing and revealing that operates

12 Starting from this point, Hayles makes also a more complex argument about electronic literature,
whose literariness appears to be built on a binary basis. She deploys Saussure’s distinction between the
syntagmatic/paradigmatic axes in an original way in relation to narratives stored in digital computers
(Hayles 2005: 53 f.).

95




in ways that have no parallels in speech and writing” (Hayles 2005: 54). Since
computer languages become more similar to natural languages (actually, more
English-like) as they move higher in the ‘tower of languages’ - an expression that
Hayles borrows from Rita Raley (2003) - they tend to hide ‘brute’ lower levels. Such
practice carries considerable advantages in terms of the easiness of programming.
‘Knowing how to conceal code with which one is not immediately concerned is an
essential practice in computer programming. ... At the same time, revealing code
when it is appropriate or desired also bestows significant advantage’ (Hayles 2005:
54). As for the benefits of the practice of concealing, Hayles gives the example of
object-oriented languages. These languages bundle code within ‘objects’ (that is,
within abstract entities that can be treated as building blocks in the practice of
programming). Therefore, any object is totally autonomous from all the others, and

the code within it can be altered without affecting other objects in the same domain.

I want to emphasize here that what Hayles observes for object-oriented languages is
also true for a lot of older languages. For instance, since the beginning of structured
programming, the creation of so-called ‘routines’ (that is, pieces of code that could
be recalled and inserted at any time into other code) responded to the same exigency.
The basic principle of classical ‘modular’ programming (which divides software into
parts, each of which performs a specific function with no need to know how other
parts internally work) is one of concealment. As I will show in Chapters Three and
Four, one of the principles of ‘good programming’, according to Software
Engineering literature, is precisely the concealment of unnecessary information
through a practice commonly known as ‘black-boxing’. This is actually a general
strategy through which software operates. On the other hand, and in relation to the
practice of ‘revealing’, Hayles gives the example of the ‘reveal code’ command in
HTML documents, which ‘allows users to see comments, formatting instructions,
and other material that may illuminate the construction and intent of the work under
study’ (Hayles 2005: 54). Again, many other examples could be provided, since this
is also a general feature of programming. For instance, when programmers run
debug software, a general practice is to look into the lower level of code to detect

‘bugs’ (that is, errors and malfunctions) that could not be found out just looking at

96




higher-level code.”> In general, it could be said that, without the practice of
concealment, the technology of computing would never have moved on from the use
of punched cards to the deployment of high-level programming languages.
Therefore, a certain degree of concealment seems to be embedded in software.
Nevertheless, in the next chapter I will show that this cannot be explained by means

of different degrees of ‘proximity to materiality’.

Also related to materiality is the fourth important characteristic of code that Hayles
identifies, namely ‘discreteness’, or the very fact that code is digital. Simply put,
digitization is the operation ‘of making something discrete rather than continuous,
that is, digital rather than analog’ (56). For Hayles, crucially, digitization is a
specific characteristic of code that can hardly be found in speech and writing, and is
scarcely mentioned by Saussure or Derrida. Although she acknowledges the
importance of the ‘blank’ in Derrida’s grammatological thought, and agrees that
spaces play an important role in the digitization of writing, she does not relate the

blank to software. Hayles writes:

The act of making discrete extends through multiple levels of scale, from
the physical process of forming bit patterns up through a complex
hierarchy in which programs are written to compile other programs.
Understanding the practices through which this hierarchy is constructed,
as well as the empowerments and limitations the hierarchy entails, is an

important step in theorizing code in relation to speech and writing.

(Hayles 2005: 56)

The question posed by Hayles is: how do practices of making discrete work in the
digital computer? (56). Basically, the bit stream in the computer inner circuitry is
formed from changing voltages channelled through logic gates. ‘From the bit pattern

bytes are formed, usually with each bite composed of eight digits — seven bits to

13 Hayles (2005) offers an interesting discussion of the potential held by such practices of revealing and
concealment for artistic exploration. It must also be noticed that Matthew Fuller (2003) builds a large
part of his theory of ‘critical software” on the concept of concealment. I will return to Fuller’s argument
later on in this chapter.

97




represent the ASCII code, and an empty one that can be assigned special
significance’ (56)."* At each stage of digitisation technology can ‘embody features
that were once useful but have since become obsolete’ (56). For example, the ASCII
code contains one of such features: that is, an encoding on seven bits which was
originally related to a seven-bit code for a bell ringing on a teletype. Albeit teletypes
are no longer in use, and therefore such code has become obsolete, it remain there,
since retrofitting the ASCII code to change it would require too much work.
Therefore, the ASCII code contains ‘a fossilized mark’ of an extinct technology
(57).8

Hayles’ general argument is that in the progression from speech to writing to code,
every successor regime introduces new features that we cannot find in the
predecessor, and that this is the case for discreteness. She acknowledges that for
Derrida spacing was what made writing not a simple transcription of speech but
something that exceeded speech. In the same way — she states — code exceeds both
speech and writing, and cannot be incapsulated in them (57). Another feature that
cannot be found in speech or in writing is compiling — that is, the process of
translation of high-level code into binary digits. Compilers are necessary if code has
to become operative. Hayles relates such specificity both to the process of
digitisation and to the fact that code implies a partnership between humans and

machines:

Compiling (and interpreting, for which similar arguments can be made) is
part of the complex web of processes, events and interfaces that mediate
between humans and machines, and its structure bespeaks the needs of
both parties involved in the transaction. The importance of compiling

(and interpreting) to digital technologies underscores the fact that new

4 The ASCII code is one of the international standard methodologies for coding alphabetical characters
and numbers in the computer memory. It takes into consideration 256 characters and expresses every
single one of them through a unique sequence of eight bits. In practice, it associates a numerical value
from 0 to 255 with each of the 256 characters, and represents this numerical value on 8 bits. The ASCII
code is particularly easy to use and can be effortlessly memorized by programmers because the capital
and minuscule letters and the decimal ciphers are coded in sequence: for instance, ‘A’ is coded with the
value 56, ‘B’ with 66 and do on; ‘a’ is coded 97, ‘b’ 98 and so on; the cipher ‘0’ is coded 48, ‘1 is coded
49 etc.

13 Teletypes were based on a seven-bit pattern because that was the technology available at the time.

98




emphases emerge with code that, although not unknown in speech and
writing, operate in ways specific to networked and programmable media.
At the heart of this difference is the need to mediate between the natural
languages native to human intelligence and the binary code native to

intelligent machines.

(Hayles 2005: 59)

As a conclusion, Hayles suggests that the process of making discrete has
‘ideological implications’ (60). She draws here on Wendy Hui Kyong Chun’s
assertion that ‘software is ideology’ and on her Althusserian reading of desktop
metaphors (Chun 2003). Drawing on Althusser understanding of ideology as the
subject’s imaginary relationship to his or her real conditions of existence, Chun
claims that desktop metaphors such as folders and trash cans create an imaginary
relationship of the user to ‘the actual command of the core machine’, that is, to the
‘real’ technical context within which the user’s actions are actually given meaning
and responded to. Following Chun, Hayles speaks of an ‘interpolation of the user
into the machinic system’, that is of a disciplining of the user by the machine to

become a certain kind of subject (Hayles 2005: 61).'°

Hayles’ argument is utterly accurate — nevertheless, I believe that it does not do
justice to the practice of ‘discreteness’ taking place in code. I actually want to argue
that what Hayles calls ‘discreteness’ can again be seen as a characteristic of every
sign. For instance, the emergence of alphabetic writing can be seen as a process of
‘making discrete’ in Hayles’ terms. As I showed in Chapter One following Derrida’s
rereading of Leroi-Gourhan’s work, alphabetic writing is the result of a process of
‘linearization’ that transforms ‘picto-ideography’ — that is, the early form of
graphism tightly associated with figurative art and independent from spoken

language — into a sequence of phonetic symbols subordinated to spoken language

1 Interestingly, here Hayles uses the term ‘interpolation’, supposedly meaning the ‘insertion’ of the user
into the context of the machine. Fuller (2003) also addresses the incorporation of a model of the user in
the computer in his proposal for a critical theory of software. I will return to this point later on in the
chapter.

99




and to its linear temporality.'” Before examining this important point further, let me

recapitulate Hayles’ argument so far.

In sum, Hayles basically depicts the relationship between ‘code’ and ‘metaphysics’
as a loose one, since code is characterized by the minimization of its ontological
premises. And yet, she seems to continue interpreting code through the
structuralistic version of linguistics (Saussure, Austin) that, albeit partially
explaining the functioning of code, does nothing to further our understanding of
how software exceeds instrumentality. Moreover, she establishes a relationship of
‘intermediation’ between code and writing, adding ‘speech’ as the third term of the
triadic model that is supposed to account for the development of contemporary
technology. In fact, she differentiates between language and writing on the one hand
and code on the other by arguing that the latter has a stronger relation with
materiality. In doing so, she seems to bring back the same distinction between the
material and the symbolic that we have seen as the foundation of Western thought
and of the philosophical (in Hayles’ words, ‘metaphysical’) devaluation of
technology (and writing).

Importantly, the tradition of originary technicity calls into question precisely such
distinction between the material and the symbolic, thus also questioning the
instrumental understanding of technology. What I want to suggest here is that, rather
than rethinking the relationship between ‘code’ and ‘metaphysics’ (in Hayles’
words) as a minimization of the ontological requirements of code - a conceptual
move that ultimately seems to trap Hayles’ argument in an ontological dilemma - it

would be more productive to approach the problem from the point of view of

17 Leroi-Gourhan views the emergence of alphabetic writing as associated with the technoeconomic
development of the Mediterranean and European group of civilizations. At a certain point in time during
this process writing became subordinated to spoken language. He writes: ‘[w]ritten language,
phoneticized and linear in space, becomes completely subordinated to spoken language, which is phonetic
and linear in time. The dualism between graphic and verbal disappears, and the whole of human linguistic
apparatus becomes a single instrument for expressing and preserving thought — which itself is channelled
increasingly toward reasoning’ (Leroi-Gourhan 1993: 210). By becoming a means for the phonetic
recording of speech, writing becomes a technology. As a tool, its efficiency becomes proportional to what
Leroi-Gourhan views as a ‘constriction’ of its figurative force, pursued precisely through an increasing
linearization of symbols. Leroi-Gourhan calls this process ‘the adoption of a regimented form of writing’
that opens the way ‘to the unrestrained development of a technical utilitarianism’ (212). Expanding on
Leroi-Gourhan’s view of phonetic writing as ‘rooted in a past of nonlinear writing’, and on the concept of
the linearization of writing as the victory of ‘the irreversible temporality of sound’, Derrida relates the
emergence of phonetic writing to a linear understanding of time and history (Derrida 1976: 85).

100




originary technicity. As I have shown at the beginning of this chapter, such an
approach opens up the following questions: firstly, In what way does software both
participate in instrumentality at the same time as exceeding it? and secondly, To
what extent can the relationship between technology and writing (as both
traditionally excluded by philosophy as ‘instrumental’ and constitutive of it) can

help us answer the first question?

With regard to the relation between software and instrumentality, Hayles’ argument
goes to great lengths to clarify how software works, but — as [ have remarked above
- falls short of taking into consideration software’s potentiality for producing
unexpected consequences that go beyond its ‘normal’ functioning. However, as I
have argued earlier on following Derrida, although programmed and neutralized as
controlled ‘development’, technological innovation still gives rise to unforeseen
effects — that is, to consequences that are beyond what can be expected within (and
produced by means of) a procedural method. Examples of this vary from the
relationship between telecommunications and the transformation of the public space
to the unanticipated development of the Internet out of the military structure of the
ARPANET into an extended network whose expansion is only in part controllable.'®
Thus, I want to suggest that the circumstances in which software does not function —
better, in which it does not function as expected — could tell us more about software
than those in which software ‘works’. But in order to understand such circumstances
a different approach is needed — namely, an approach that views malfunctions as
revealing points (or points where the conceptual system underlying software is

clarified) rather than just seeking to explain how software functions ordinarily.

If examined in relation to the second question — that is, what the relationship
between writing and technology means in the framework of originary technicity -
Hayles’ argument clearly acknowledges the need for an understanding of the
relationship between ‘code’ (which I still regard here as a synonym for ‘software’)
and writing. However, her attempt to place code and writing in a unitary framework

does not give an account of the role that materiality plays in writing itself, and

'8 In Chapter Three I will show how the attempt to control the unforeseeable consequences of software
development motivated the foundation of the field of Software Engineering in the late 1960s.

101




ultimately in software. Let me start from this second point and draw on Derrida’s
grammatological thought in order to investigate the role of materiality in software a
little further, thus clarifying my own understanding of the relationship between
‘code’ (or software) and writing. In turn, this analysis will prove useful for showing
how software participates in and exceeds instrumentality. Moreover, it will also
confirm that Hayles’ call for a ‘turn to materiality’ (Hayles 1999), which has had
great relevance in media studies, is in fact quite belated, and that, as I have already
hinted above, such a call actually results from a misreading of the post-structuralist

tradition Hayles draws on (but ultimately departs from).

As I showed in Chapter One, for Derrida the subordination of writing to speech (or
seeing writing as the representation of speech) has meaning only within the system
of Western metaphysics. According to Derrida, the premises of Western metaphysics
have been inherited by human sciences as well, and particularly by linguistics. In
Richard Beardsworth’s terms, for Derrida, ‘the theory of the sign is essentially
metaphysical’ (Beardsworth 1996: 7). In Of Grammatology, Derrida focuses on the
deconstruction of linguistics from this viewpoint. More precisely, according to
Derrida the deconstruction of linguistics, and of its central concept, the concept of
the sign, is exemplary for the deconstruction of metaphysics. Moreover, for Derrida
the sign is so important because it is exemplary of the metaphysical devaluation of
materiality. As Richard Beardsworth points out in his 1996 book, Derrida and the
Political, ‘the very possibility of the sign is predicated on an opposition between that
which is conveyed (the signified, the logos, the non-worldly) and the conveyor (the
signifier, the worldly)’ (Beardsworth 1996: 7). The signifier is a material entity, such
as a sound or a graphic sign; the signified belongs to the realm of concepts. For
Derrida this opposition is the foundation of all the other oppositions that characterize
Western metaphysics (infinite/finite, soul/body, nature/law, universal/particular,
etc.). For him deconstructing the sign is a fundamental and exemplary move
precisely because ‘metaphysics is derived from the domination of a particular
relation between the ideal and the material which assumes definition in the concept
of the “sign”’(7). The sign is central because it constitutes the foundation of the
distinction between signifier and thing, a distinction which in turn is the basis of

episteme and therefore of metaphysics. Again in Beardsworth’s words,

102




‘...metaphysics constitutes its oppositions (here: the non-worldly/worldly and the
ideal/material) by expelling into one term of the opposition the very possibility of
the condition of such oppositions’ (8). But how is such an expulsion performed?
This point deserves careful analysis through a close reading of Derrida’s text. In
particular, I want to examine Derrida’s analysis of Ferdinand de Saussure’s thought

at some length.

Saussure (1988) argues that linguistics (as a science of language) must exclude from
its objects of study the graphic sign. In fact, linguistics as a discipline is based for

Saussure on the very separation of

the abstract system of langue - a system of distinct signs corresponding to
distinct ideas, true of all languages — from the empirical multiplicity of
languages with their linguistic, physical and physiological variations. The
abstraction depends in turn on a distinction between what is internal and
essential, and what is external and accidental to the system of langue.

(Beardsworth 1996: 8)

In Of Grammatology Derrida detects some fundamental contradictions in Saussure’s
view. First of all, for Saussure lanmgue is underpinned by social conventions.
Nevertheless, in spite of it being conventional - ‘langue is a pure institution’
(Saussure 1988: 15) - langue for Saussure is based on the ‘natural unity’ between its
two components — that is, meanings and what he calls sound-images (/’image
acoustique). In other words, Saussure claims that there is a ‘natural’ correspondence
between the signifier and its meaning, or signified. The phonetic pronunciation of a
word is somehow more ‘natural’ than its written form. As Beardsworth points out,
‘it is this natural order that allows Saussure to set linguistics up as a science’
(Beardsworth 1996: 9). Furthermore, the natural relation between the signified and
the phonic signifier determines the reduction (which is supposedly natural too) of
written signs to ‘tangible forms of phonic signifiers, therefore ‘secondary
representations of them’, and ‘inessential to the object of linguistics’ (9). In sum,

Saussure seeks a foundation for linguistics in a supposed natural order of things.

103




According to Derrida, the exclusion of writing from linguistics must be viewed as an
‘ethico-theoretical decision’ (Derrida 1976: 61). Such a decision is masked under the
apparent naturality of the object under consideration, but ‘revealed by the obsessive
msistence with which the founder of linguistics wishes to expel writing from the
essence of language’ (Beardsworth 1996: 9). Beardsworth claims that Saussure has
an almost moralistic attitude in expelling writing from linguistics and in denying that
writing allows the most important access to language (9). However, what is
significant is not merely the devaluation of writing. Rather, such devaluation shows
that linguistics has been founded on a double movement: firstly, the making of a
decision, and secondly, the justification of such decision through the claim that it is

natural — therefore, a disguise of the decision itself under the pretence of naturality.

For Derrida, both linguistics and philosophy are predicated on the normative
exclusion of writing from truth. Once again, one must be reminded here of the
exclusion of writing from knowledge in Plato. Derrida’s rereading of Saussure is
based precisely on the recognition of this exclusion. Furthermore, according to
Beardsworth, in rereading Saussure Derrida recasts ‘the terms in which all
institutional violence is to be thought’ (Beardsworth 1996: 10). To understand this
formulation better let me now examine Saussure’s text and the contradictions that

Derrida detects in it in ‘Language and grammatology’ (Derrida 1976).

The first contradiction can be located in the natural hierarchy that Saussure poses

between speech and writing. Beardsworth explains:

For it is this notion of arbitrariness which makes of the sign an
institution, that is, something that is not natural. To say therefore that
there is a natural subordination of writing to speech — that writing is a
secondary representation of a primary unit of sound and meaning — whilst
propounding at the same time that all signs are arbitrary is contradictory.

(Beardsworth 1996: 11).

Furthermore, Saussure explicitly states that the word is a pragmatic decision

(Saussure 1988: 158), clearly admitting that to take the word as the minimum unit of

104




analysis is a decision made at the foundation of linguistics. Thus, he practically
removes the objectivity of linguistics while instituting it as science. As we have
seen, what Derrida terms ‘an ethico-theoretical decision’ is the movement that
institutes the object of a ‘science’ but pretends to be natural, whereas (being a
decision) it is not — and this is what Derrida means when he says that such a decision
is ‘violent’. Beardsworth comments: ‘The irreducibility of a decision shows that the
most innocent ‘theorist’ is always also a legislator and a policeman. It is in this sense
that any statement is a judgement which carries “political” force’ (Beardsworth
1996: 12). This passage clarifies very well why every theory is political. There is
always violence in theory, and every theorist is a legislator in so far as every theory
or discipline needs to police its boundaries. Derrida is not suggesting that we avoid
decisions, or that all decisions are equally violent. The point is rather that a decision
is always needed, but not all decisions are the same: some of them recognize their
legislative force, while others disguise it under a claim to naturality (affirming that
they are ‘objective science’). Moreover, ‘the acknowledgement of the prescriptive
force of one’s statements’ may make one more ready to transform a disciplinary
field, given that the field is not a natural representation of a pre-existing ‘real’ (12).
This is what Derrida terms the argument of a ‘lesser violence’ in ‘a general economy
of violence’ (12). ‘Lesser violence’, at the level of theory, means acknowledging the
normative force of one’s decisions — that is, the fact that such decisions shape the
field, the theory, the discipline. Through such recognition one may become more
ready to change the field itself. As I emphasized in the Introduction, this point has
been developed by Gary Hall (2002) in his analysis of cultural studies as a field
particularly attentive to the institutional forces that shape academic knowledge. Hall
also suggests that cultural studies should pursue a tighter connection with
deconstruction in order to strengthen such an awareness. Furthermore, drawing on
Derrida, Hall insists that technology influences disciplinarity and in particular that
new technologies are changing the very nature and content of academic knowledge
(Derrida 1996; Hall 2002). This is why in the Introduction I argued that a
deconstructive study of software can bring about a significant reconsideration of the

boundaries and contents of media and cultural studies.

105




However, according to Derrida, the force of Saussure’s decision is revealed in what
it suppresses, because what is suppressed returns as a contradiction, and causes
either repeated acts of violence - that is, the policing of the field - or ‘a radical
redescription of the tensions structuring Saussure’s legislative decision’
(Beardsworth 1996: 12). Derrida accomplishes such redescription in two steps.'® The
first step is the famous generalization of writing made by Derrida, which actually
finds its basis in Saussure’s own theory. In fact, Saussure actually argues that
writing covers the whole field of linguistics, since the sign in itself is ‘immotivated’,
and writing is exemplarily immotivated. In other words, writing, being entirely
conventional, perfectly exemplifies the conventionality of language — or ‘all speech
is already writing by its being immotivated’ (13). For Derrida writing (the graphie)
‘implies the framework of the instituted trace, as the possibility common to all
systems of signification’ (13). The concept of ‘instituted trace’ is very important
here, since it represents the possibility of making conceptual distinctions. Thus, it
represents the moment that precedes the opposition between nature and convention,
allowing for the very possibility of their separation. The concept of the instituted
trace takes into account and comprehends Saussure’s act of foundation of linguistics
as a discipline, with its refusal to include writing. As I have explained above, there is
a strong relationship between the ‘trace’ and disciplinarity. The ‘trace’ accounts for
the foundation of a disciplinary space with its constitutive exclusions, as well as for

the return of that which is excluded within the disciplinary space (13).

A further step on the investigation of what Derrida calls the ‘economy of violence’ —
a step that corresponds to another contradiction in Saussure - concerns the phone,
and is the most important reinscription of Saussure made by Derrida. Here Derrida
confronts the problem of materiality straightforwardly. He reads Saussure against
himself once again, this time in order to show that ‘both philosophy and linguistics
are derivatives of a movement which constitutes them, but which they disavow in
order to appear as such’ (14). His argument turns around the difference that Saussure
recognizes between phonemes and their ‘sonorous concretization’ - that is, between
the ‘sound-image’ and its materialization (14). Such difference allows, for instance,

for multiple pronunciations of the same phoneme which are at the same time

11 am still following here Beardsworth’s reading of Derrida in Derrida and the Political (1996).

106




recognized as pronounciations of the same phoneme. The pivotal passage is
Saussure’s use of writing as a metaphor for the reduction of the phonic substance.

Let me read this passage a little closer.

Saussure uses writing as an example for phonetics, and states that the sign is
arbitrary, negative and differential - that is, it functions only through (reciprocal)
opposition, and the means by which it is produced are unimportant (Saussure 1988:
1651.). There is a difference between the materialization of each phoneme and the
acoustic-sound ‘which they presuppose in order to be recognized as such, whatever
the form of their materialization’ (Beardsworth 1996: 15). This difference is
transformed, in Platonism, into the difference between the transcendental and the
empirical, ideal/material, infinite/finite, primary/secondary. This very difference
constitutes consciousness and founds the possibility of recognizing things. One must
be reminded at this point of Derrida’s understanding of consciousness. As I showed
in Chapter One, Derrida’s move is informed by Husserl.”® Husserlian
phenomenology separates ‘ideal objects — attained through what Husserl calls the
phenomenological reduction (or epokhe) of facticity (the word with all its variations
and contingencies) — and, on the other hand, the world in its difference and
empiricity’ (16). In The Origin of Geometry Husserl derives the possibility of the
phenomenological reduction from writing. For him writing constitutes ideal objects.
The condition of their ideality is ‘their repetition through time and space’, which in
turns ‘depends on their inscription on a support which transcends the empirical

context’ (16). Beardsworth explains:

The very support that allows for transcendence form the material world is
itself material, necessarily restricting the purity of the transcendence from
the material that is aimed at. Conversely, such repetition is not possible
unless the difference of each inscription re-marks the inscription, just as
the concrete letter ‘t” is re-marked in order to be recognized as such by its

‘acoustic image’. This analogy reveals that, if writing constitutes

*% Beardsworth points out how Derrida radicalised Husserl in his introduction to The Origin of Geometry
and in Speech and Phenomena (Derrida 1961, 1967c¢). For this reason, according to Beardsworth, Derrida
is so attentive to Saussure’s ‘reduction of the phonic substance of the sign’ (15). Beardsworth also
highlights how the importance of Derrida’s understanding of the reduction of phonic substance has been
generally underestimated.

107




transcendence, arche-writing comprehends the very process of

constitution.

(Beardsworth 1996: 16)*'

As I showed in Chapter One, according to Derrida’s radicalisation of Husserlian
phenomenology, the transcendental is always impure, always already constituted
through materiality (the empirical), because the condition of consciousness is
repetition. But what are the consequences for the conceptualisation of writing? The
main point here — and one of pivotal importance for my investigation of software —
is that writing and the material have never been opposed. Writing is material because
materiality is the condition for writing itself, and for signification. Let me now

investigate this point a little further.

The difference examined by Derrida is between an empirical ¢ and our ability to
recognize it as an instance of the letter ¢. Derrida notes that the sound-image ‘is not a
phonic sound object but the “difference” of each of its concretisations, that is to say
it is the possibility or schema of each of its materializations’ (16). In other words, to
make the phoneme recognizable we need to be able to relate it to other phonemes,
but this relation is only possible through its inscription in the empirical; therefore,
the transcendence of an empirical sound is possible only via the empirical repetition
of it, which needs to be transcended to make it recognizable. The phenomenological
reduction of materiality makes the materialization of the ‘sound-image’ possible.

Derrida writes:

The sound-image is the structure of the appearance of the sound which is
anything but the sound appearing ... not the sound being heard but the
being-heard of the sound. Being-heard is structurally phenomenal ... One
can only divide this... by phenomenological reduction... [which] is
indispensable to all analyses of being heard, whether they be inspired by
linguistic, psychoanalytic, or other preoccupations.

(Derrida 1976: 93)

21 As a consequence, ‘writing has always been the irreducible site of metaphoricity - whatever the
tradition (Arab, Christian, Greek, Jewish)” (Beardsworth 1996: 16).

108




According to Derrida, the trace, or différance is the ‘being imprinted of the print’ -
étre imprimé de [’empreinte (Derrida 1976: 92) - again, separable only through
phenomenological reduction of materiality. This distinction allows for the
articulation of difference (as such) and for consciousness. It both accounts for and
exceeds (the logic of) metaphysics (Beardsworth 1996: 17). For Derrida: ‘the trace is
not more ideal than real... it is anterior to the distinction’ (Derrida 1976: 95).
Imprint is irreducible (and this irreducibility is devised by Derrida through a
radicalisation of Saussure’s sound-image) to ‘either traditional philosophical
analysis or to any analysis such as that of linguistics which presumes to supersede
the originary transcendental thrust of philosophy’ (Beardsworth 1996: 17) The
graphic or phonic sign is marginal, what is important is the ‘middle ground’ we
reach. Beardsworth explains: ‘neither suspended in the transcendental nor rooted in
the empirical, neither in philosophy nor in any empirical negotiation of the world
that refuses to pass through the transcendental. The refuse to pass through the
transcendental condemns one to a description of the fact of difference which is
unable to take into proper account the necessity and economy of violence, its
“genealogy”. It thereby repeats ‘the naive violence particular to the oppositional

axiomatic of metaphysics’ (17).

For Derrida the generalization of writing is confirmed by the analogy with writing
that Saussure makes precisely when bracketing the material. This also allows him to
confirm that ‘arche-writing, as an originary structure of repetition, constitutes the
structure of the “instituted trace” which comprehends the foundation, exclusion and

contradiction of (the history of) linguistics’ (17). To quote Beardsworth again:

[flor a ¢ to have identity as a ¢, it must be repeated. There can be no
identity without repetition; and yet, this very repetition puts in question
the identity which it procures, since repetition is always made in
difference. Absolute repetition is impossible in its possibility, for there
can be no repetition without difference. The concepts of repetition and
difference form the precipitate of the metaphysical dissolution of an
originary aporetic structure of repetition which Derrida calls ‘arche-
writing” or ‘trace’.

(Beardsworth 1996: 17)

109




This passage clarifies how the structure of repetition is at the basis of the process of
signification. The mark is subject to the law of repetition in difference: the
opposition between speech and writing is, for Derrida, a determining one in
metaphysics. ‘He thus traces the law of this repetition, as well as the metaphysical
decision to transform it into an opposition, through the linguistic mark’ (18). This
characterizes not only the linguistic mark, but a// marks — that is, all marks are only

possible within this process of idealization’. In Beardsworth’s words:

‘Arche-writing’ brings together, therefore, the analysis of originary
violence specific to the elaboration of the trace with the simultaneous
reinscription by Derrida of the opposition between the transcendental and
the empirical. In other words, it brings together Derrida’s analysis of the
institution (here, of linguistics) with his renegotiation of the frontiers
between philosophy and the empirical sciences. Indeed, the one analysis
cannot be separated from the other. The method of deconstruction
constitutes from the beginning both a reinscription of the empirico-
transcendental difference and an analysis of the irreducibility of violence
in any mark.

(Beardsworth 1996: 18)

In sum, for Derrida we need to have a sense of writing in order to gain a sense of
orality. “Writing’ then takes precedence over orality not because writing historically
existed before language, but because we must have a sense of the permanence of a
linguistic mark in order to recognise it and to identify it. Ultimately, the sense of
writing is necessary for signification to take place. But we can have a sense of the
permanence of a mark only if we have a sense of its inscription, of its being
embodied in a material surface. In other words, although we recognize the written
form of a grapheme (let’s say ‘t’) only by abstracting it from all the possible
empirical forms a ‘t’ can take in writing, nonetheless we need such an empirical
inscription to make this recognition possible. This is what Derrida means when he
says that ‘the transcendental’ is always impure, always already contaminated by ‘the
empirical’. In other words, language itself is material for Derrida; it needs

materiality (better: it needs the possibility of ‘inscription’) to function as language.

110




This interpretation contrasts with the consolidated (Anglo-American) reception of
‘post-structuralism’ and of Derrida’s thought as unaware of the material aspects of
culture, society, economics and politics (according to Derrida’s famous statement
that ‘there is nothing outside the text’). On the contrary, what I want to emphasize
here is that textuality and materiality are not opposed. There is no actual need — as it
is often claimed — to ‘go back to materiality’ after the ‘linguistic turn’ in cultural
studies, because materiality has always been there. Writing is material because

materiality is the condition for writing itself, and for signification.

If materiality is the condition for signification, then every code is material. More
precisely: the condition for code to function is the possibility of inscription. This is
not the same as saying that software always has material and semiotic
characteristics, or that it involves physical apparatuses as well as information,
microcircuits and Boolean logics, the social and the conceptual. Of course this is all
true, but what a material understanding of software means in addition is that
software can function only through materiality - not because it has to run on a
processor, nor because there are economic forces behind it, but because, as every
other code, it functions only through materiality, since materiality is what
constitutes signs (an therefore codes). Moreover, writing is based on the very same
possibility of material inscription, and the fact that it has been posited in a
significant relation with software by Software Engineering should come as no
surprise at this point. Paraphrasing Bruno Latour, it might be said that ‘we have
never been immaterial’.*?

But if every code is material, and if the material structure of the mark is at work
everywhere, how are we supposed to study software as a historically specific
technology? Two questions resurface here — namely, Stielger’s question regarding
the relationship between originary technicity and historically specific technologies
(how is one supposed to distinguish software from other historically specific
technologies in a way that is meaningful for understanding the relationship between

technology and the human?) and Hayles’ question on the relationship between code,

22 The reference is here to Bruno Latour’s famous book entitled We Have Never Been Modern (Latour
1993).

111




writing and language (to what extent and in what way can software be distinguished

from other historically specific material inscriptions?).

At this point I would risk a proposition: there is no general approach to software that
can establish once and forever how software works and what place it occupies in
relation to ‘writing’ and ‘language’. As I pointed out in the Introduction, software
has never been univocally defined by any disciplinary field (including technical
ones), and it takes different forms in different contexts. The definition of software
that constitutes the conceptual foundation of Software Engineering — that is,
software as the totality of all computer programs as well as all the written texts
related to computer programs — is a particularly interesting starting point for the
investigation of software because it establishes a very strong relationship between
software and writing. Actually, in Software Engineering software is defined as a
form of writing.® The essential move that such a definition allows me to make is to
reformulate the question regarding the specificity of software as such: how does
‘software’ emerge as a historically specific technology in the discourses and
practices of Software Engineering and in what relationship with ‘writing” and
‘language’? Although this question will find an answer only in the following
chapters, I want to suggest here that the specificity of software as it is
conceptualized in the disciplinary field of Software Engineering resides precisely in
the relationship it entertains with writing — or better, with a historically specific
form of writing. It is in this relationship that software — as Gary Hall would have it -
finds its ‘singularity’. In Chapter Three I will show how ‘software’, ‘writing’ and
‘code’ emerge together - and actually constitute each other as constantly shifting
terms - in the context of Software Engineering at the beginning of the 1960s.
However, what I want to emphasize here is that there is no ‘writing’ prior to
‘software’ — that is, there is no such writing as the one that emerges in and with
Software Engineering. Such kind of writing emerges only there, and only in relation

with software and code. One cannot exist without the others. Although this co-

% Software Engineering describes software development as an advanced writing technique that translates
a text or a group of texts written in natural languages (namely, the requirements specifications of the
software ‘system’) into a binary text or group of texts (the executable computer programs), through a
step-by-step process of gradual refinement (Brooks, 1987; Humphrey, 1989; Sommerville, 1995). For
instance: ‘software engineers model parts of the real world in software. These models are large, abstract
and complex so they must be made visible in documents such as system designs, user manuals, and so on.
Producing these documents is as much part of the software engineering process as programming’
(Sommerville, 1995: 4).

112




emergence constitutes the historical specificity of Software Engineering, it cannot
be said that it also constitutes the specificity of ‘all software’, since the definition of
software varies in time and space. In Chapter Three I will also argue that there is
actually no general re- (or inter-) mediation between software, writing and code.
Rather, a co-constitution of software, writing and code can be identified in and as
Software Engineering. The singularity of ‘writing software’ — as a ‘singular’
practice distinct from other kinds of ‘singular’ practices, such as “writing literature’,
or ‘writing electronic literature’ - is precisely this: that it emerges in relation to

software and code in the (again, ‘singular’) context of Software Engineering.

In what way is one supposed to investigate this singular process of co-constitution
then? In the Introduction I have already argued for a deconstructive reading of
‘software’ — that is (once again, according to the definition of software proposed by
Software Engineering) of computer programs and of the whole of technical literature
related to computer proglrams.24 Here 1 want to emphasize once more that my
strategy of making such texts ‘legible’ is not equivalent to a ‘direct observation’ of
software or code. As I explained in the Introduction, I intend to take away all the
implications of ‘directness’ that the concept of ‘demystifying’ or ‘engaging with’
software - or better, with the co-emergence of software, writing and code in
Software Engineering - may bring with itself. This awareness of the difficulties of a
close, even intimate, engagement with software does not hinder the critical and
political potential of such engagement. On the contrary, I want to argue that an
understanding of software that gives an account of its own ‘ethico-theoretical
decisions’ (in Derrida’s terms) responds to the need, propounded for instance by
Fuller, to formulate a critical theory of software. In order to clarify this point and to
explain in what way a deconstructive reading of software must be performed - and
how it differs from the accounts of software proposed in the context of ‘software
studies’, including those advanced by Hayles and Galloway - let me now examine
Fuller’s reflection on the political relevance of the critique of software in his book of

2003 entitled Behind the Blip.

* Importantly, the concept of ‘software’ supported by Software Engineering includes the whole of the
technical literature that constitutes Software Engineering itself.

113




Fuller focuses on what he considers the few existent strands of ‘critical approaches
to software’ (Fuller 2003: 10). Firstly, he discusses the group of technologies that go
under the name of Human-Computer Interface (HCI) — that is, technologies intended
to facilitate the use of computers by human beings. For him the interest of HCI
resides in the fact that the interface is ‘the point at which the machinations of the
computer are compelled to make themselves available in one way or another to a
user’ (Fuller 2003: 12). Yet, Fuller criticizes the narrowness of the model of the user
embedded in HCI, which he defines as ‘functionalist’ (13). A telling example is for
him the human interface of a real-time system: a pilot can drop bombs or a
stockbroker can move funds efficiently through a combination of ergonomics and
information-design that makes reaction times measurable - where reaction time is
defined as ‘the number of interactive steps from task identification to task execution’
(Fuller 2003: 13). According to Fuller, such interface is ‘functionalist’ because it
relies on a model of the user conceived in terms of tasks and of quantifiable
efficiency. Ambivalently, he recognizes that the ‘idealization of the human’ implicit
in HCI ‘nevertheless can latch onto flesh’ (13) while at the same time making the
real user disappear into such an idealization. Fuller calls this ‘the fatal endpoint” of
standard HCI: ‘[i]t empowers users by modelling them, and in doing so effects their
disappearance, their incorporation into its models’ (13). Of course there are ‘human-
centred’ variants of HCI design, but the name ‘human-centred’ is itself flawed,
because it shows that ‘there is still a model of the human — what constitutes it, how it
must be interfaced — being imposed here’ (13). What Fuller suggests is a change in
the focus of HCI that could be pursued through a shift from the model of the
individualised user typical of standard HCI toward different approaches such as
Participatory Design — where users provide continuous feedback to programmers in
a process of cooperative design. However, according to Fuller the approach of HCI
is too characterized by ‘functionalism’ to be genuinely critical — that is, however
‘human-centred’, computer interfaces are designed on the basis of an ideal model of

the user, to whom they provide predefined functions.
However accurate, Fuller’s argument raises a number of problems. Not only, if

viewed in the perspective of originary technicity — that is, keeping in mind the co-

emergence of the human and the technical - the claim that one interface is ‘more

114




human’ than the other has no actual significance.”> Even more importantly, Fuller
deploys the concept of ‘functionalism’ in order to evaluate the critical potential of
HCI. To understand this conceptual move better, let me examine the second group of
critical approaches to software presented by Fuller — namely, programmers’ own
accounts of their practice (for instance, Ullmann 1997). Fuller views these accounts
as descriptions of ‘the interrelations of programming with other formations —
cultural, social, aesthetic. These are drives that are built into and compose software
rather than use it as a neutral tool’ (Fuller 2003: 15). The main point here is that for
Fuller the accounts of programming are at odds with ‘the idealist tendencies in
computing’ (15) — that is, again, with the ‘functionalist’ approach of software
design. In other words, according to Fuller the technical literature concerning
software has a normative approach (it describes how to design software), while
programmer’s own accounts have a more realistic approach (they describe how
software is actually designed). Even more importantly, in technical literature
software is viewed as instrumental (‘a neutral tool”). In order to find an alternative to
the instrumental conception of technology, for Fuller it is necessary to turn to
programmers’ accounts of their practice, which take into accounts ‘other formations’
(the cultural, the social, the aesthetic). I can only suppose here that Fuller would
view the technical literature of Software Engineering as an example of idealized
description. Actually, in their most stabilized form, Software Engineering manuals
basically describe how a software project should be managed — that is, what tasks
must be accomplished (and in what sequence) in order to obtain a ‘good’ software
product. In fact, what Fuller calls ‘functionalism’ is a general characteristic of
technical literature — from the theory of programming languages to the most recent
works by open source programmers, and including the technical literature of
Software Engineering (see, for instance, Raymond 2000). However, my aim in
Chapters Three and Four will be to demonstrate how technical literature can be read
in a non-functionalist way — or, as 1 explained in the Introduction, in a
deconstructive way — that is, in order to unmask how its conceptual system works.
Such a reading will also make apparent how the instrumental understanding of

software in technical literature is much more controversial and unstable than Fuller

B Chapter Three I will show that what Fuller calls ‘the user’ is actually the way in which the human
constitutes itself in relation with software.

115




assumes it to be. In fact, it will become clear that Software Engineering literature
opens up the possibility of an instrumental understanding of software — an
understanding that is however always at risk of coming undone because of its

capacity to produce unforeseen consequences.

Of course, Fuller’s strategy of opposing programmers’ own accounts (how things
‘really’ are) to prescriptive technical literature (how things should be) can also be
pursued. Nevertheless, I suggest that a much more interesting approach would
involve showing how technical literature has been constituted as such — and thus,
ultimately, how software has become what it is. Once again, Software Engineering
constitutes an extremely promising starting point, since the moment of its
constitution as a technical discipline is widely documented. In Chapter Three I will
examine the technical literature produced in the early days of Software Engineering
and I will discuss the choices that were made in 1968, when the first ever conference
on Software Engineering was held in Germany. Importantly, the professionals and
scholars who made such choices were very aware that the concept of ‘software’ was
extremely controversial. They struggled to establish and maintain the boundaries of
their discipline and often could barely reach an agreement on many of the
foundational issues of Software Engineering. They were also able to produce an
account of those initial moments, which can be read deconstructively in order to
uncover the points of opacity that were incorporated in Software Engineering in
order to establish it as a discipline. Rather than opposing the prescriptive approach
of those early texts of Software Engineering to an hypothetical account of ‘how
software was actually designed’, a deconstructive reading aims at ‘undoing,
decomposing, desedimenting” the conceptual system underlying Software
Engineering, not in order to destroy it but in order to understand how it has been
constituted (Derrida, 1985). As I explained in the Introduction, in every conceptual
system we can detect a concept that is actually unthinkable within the conceptual
structure of the system itself — therefore, it has to be excluded by the system, or,
rather, it must remain unthought to allow the system to exist. Thus, in Chapter Three
I will investigate what needs to remain unthought in order to establish Software
Engineering as a discipline and to prevent its conceptual system from undoing itself.
In a Derridean sense, such a deconstructive reading will show the ‘violent’

constitution of the discipline of Software Engineering.

116




In order to emphasize the political relevance of this non-functionalist reading, let me
now discuss the conclusion of Fuller's argument. Fuller views software as a
participial object: ‘whilst one might deal with a particular object, it must always be
understood not as something static, although it might never change, but to be
operating in participial terms’ (18). The term ‘participial’ comes from Elaine
Scarry’s study Resisting Representation (Scarry 1994). ‘Derived from grammar —
Fuller paraphrases - it simply means a word that is both a verb and a noun, a thing
and a motion’ (Fuller 2003: 34). What is important at this point is that, as a
participial - that is, non totally static - object, software can itself produce some form
of criticism. In other words, Fuller suggests that, rather than on the critique of
software, we focus on alternative software production. He wishes for ‘models of
software production that contain engines for its theorization’ (22). He identifies
three models of alternative software production: critical software, social software

and speculative software.

Critical software is ‘software designed explicitly to pull the rug from underneath
normalised understandings of software’ (22). According to Fuller, critical software
operates in two key modes: by using the evidence presented by normalised software
to allow the conditions of software to become manifest — for instance, the
installation ‘A Song for Occupation’ which maps the interface of Microsoft Words
to ‘reveal the blue-grey labyrinth in which writing is so happily lost” (23) - or
instances of software ‘that runs like a normal application, but has been
fundamentally twisted to reveal underlying constructions (of the user, the coding,
etc.)’ (30). Social software is built by and for those who are ‘normally locked out of
its production’ — that is, by and for people that do not take part in industrial software
production. For Fuller free software and open source are examples of social
software. Finally, speculative software has a tight relationship with fiction and art. It
reinvents and expands upon existing languages, it ‘explores the potentiality of all
possible programming’ (30). Fuller considers it a ‘reinvention of software by its own
means’ (30). In sum, Fuller suggests that the best critical approach to software is the
production of alternative software that ‘twists’ or ‘reveals’ what is normally ‘behind’
software itself. Fuller’s image of the ‘blip” is of the utmost importance here. For

him, ‘behind the blip” we can find the social, economical and political realm — and

117




speculative software wants to ‘intercept’, ‘map’ and ‘reconfigure’ the social,
economical and political ‘by means of the blips’ (Fuller 2003: 31). According to
Fuller, ‘blips’ are not signifiers ‘but integral and material parts of events which
manifest themselves digitally” (31). Speculative software is able to ‘operate
reflexively upon itself and the condition of being software’ (32), and makes visible

the dynamics of the social and economical events it connects to.

Once again, Fuller’s argument on the ‘blip’ appears quite problematic. While being
aware that software is a social object, I want to ask here whether Fuller’s idea of
‘making the social apparent’ in software conveys a dream of transparency. In other
words, exactly what kind of demystification (if any) is at work in critical and
speculative software? What I want to suggest is that critical and speculative software
always run the risk of substituting demystification with some other mystification -
that is, the mystification of immediacy, the mystification of demystification. Once
again, and in order to avoid such a dead end, a better approach would be to keep in
mind that — as I have argued earlier on in this chapter - contemporary technology
(including software) is already in deconstruction. But deconstruction does not aim at
making apparent ‘the social’ behind and through software (‘the blip’). It rather aims
at dealing with the unforeseen consequences of technology and with its capacity of

bringing forth the unexpected.

To conclude, 1 argue that, in order to understand the importance of software (and
broadly of technology) for the constitution of the human, it is necessary to consider
how the technology named ‘software’ emerges in specific technological and
disciplinary contexts over time. Each of these emergences must be investigated in its
singularity to uncover its significance for an understanding of the relationship
between technology and the human - and ultimately for a political understanding of
technology. In the following chapter I will show how, in the late 1960s, ‘software’
emerged as a specific construct in relation to ‘writing’ and ‘code’ in the discourses

and practices of Software Engineering.

118




3 Software as Material Inscription

The Beginnings of Software Engineering

In the beginning was the word, all right — [general laughter] but it wasn’t a fixed number of bits!

(Naur and Randell 1969: 50)

In an article published in 2004 in the Annals of the History of Computing, Michael

S. Mahoney writes:

Dating from the first international conference on the topic in October
1968, software engineering just turned thirty-five. It has all the hallmarks
of an established discipline: societies (or sub-societies), journals,
textbooks and curricula, even research institutes. It would seem ready to
have a history. Yet, a closer look at the field raises the question of just

what the subject of the history would be.
(Mahoney 2004: 8)

Mahoney points out that, although it is not hard to find definitions of Software
Engineering throughout technical literature — for instance, in his 1989 paper entitled
“The Software Engineering Process’, Watts Humphrey, a leading practitioner in the
field, defines it as ‘the disciplined application of engineering, scientific, and
mathematical principles and methods to the economical production of quality
software’ (Humphrey 1989b: 82) - it is also rather easy to come across doubts as to

whether Software Engineering’s current practice meets such criteria. For example,

119




in an article published at about the same time, Mary Shaw - herself a distinguished
scholar and practitioner in the field of Software Engineering - muses whether
Software Engineering was an engineering discipline at all, and states: ‘Software
engineering is not yet a true engineering discipline, but it has the potential to
become one’ (Shaw 1990: 15). ‘From the outset’, Mahoney comments, ‘software
engineering conferences have routinely begun with a keynote address that asks “Are
we there yet?” and proposes yet another specification of just where “where” might
be’ (Mahoney 2004: 8). His own article, he adds, stems from such an address,
delivered to ACM SIGSOFT’s 9™ Foundations of Software Engineering Conference
(FSEC 9) in 1998.

Being interested in writing a history of Software Engineering, Mahoney is
particularly troubled by the fact that ‘the field has been a moving target for its own
practitioners’ from its very beginning, and that practitioners openly disagree on
what it is. Historians — he suggests — can as readily write a history of Software
Engineering ‘as the continuing effort of various groups of people engaged in the
production of software to establish their practice as an engineering discipline’ - that
is, a history of this process of self-definition (8). Such an approach would
immediately pose a number of questions, such as which model of engineering
software practitioners refer to; moreover, it would place the history of software
engineering within what Mahoney terms ‘the comparative context of the history of
professionalization and the formation of new disciplines’ (8). For instance, an oft-
quoted passage from the introduction to the proceedings of the first NATO
Conference on Software Engineering, held in Garmisch in 1968, declares: ‘[t]he
phrase “software engineering” was deliberately chosen as being provocative, in
implying the need for software manufacture to be based on the types of theoretical
foundations and practical disciplines that are traditional in the established branches

of engineering’ (Naur and Randell 1969: 13).

As Mahoney notices, the definition of Software Engineering given in the
proceedings of the Garmisch Conference is provocative indeed, since it leaves all
the crucial terms undefined. For instance, it is unclear what ‘manufacturing’
software means, or what the ‘theoretical foundations and practical disciplines’ that

underpin the ‘established branches of engineering’ are. Furthermore, the term

120




‘traditional” hints at a search for historical precedents, or what is commonly referred
to as ‘roots’ (Mahoney 2004: 8) — and yet the above passage seems to leave open
the question of how the existing branches of engineering have taken their present
form. On the other hand, the definition of Software Engineering also concemns its
‘agenda’ - that is, what the practitioners of the field agree ought to be done, ‘a
consensus concerning the problems of the field, their order of importance or
priority, the means of solving them (the tools of the trade), and perhaps most
importantly, what constitutes a solution’ (8). As I will detail later on in this chapter,
much of the disagreement among the participants in the first NATO Conference on
Software Engineering rested both on their different professional backgrounds and
on the conflicting agendas they brought to the gathering. None of them — as
Mahoney emphasizes - was a software engineer, ‘for the field did not exist’ (9).

Rather, they came from quite varied professional and disciplinary traditions.

Albeit Mahoney points out that Software Engineering has always been characterized
by strong self-reflexivity, this does not lead him to question the concept of
disciplinarity. He rather presents self-reflexivity as an inconvenience — something
that needs to be fixed. And yet, as I explained in Chapter Two, the fact of being a
‘moving target’ makes Software Engineering particularly valuable as a starting
point for my investigation of software. In Chapter Two I suggested that software’s
singularity as a technology resides precisely in the relationship it entertains with
writing, or, to be more precise, with a historically specific form of writing. In this
chapter I want to illustrate the co-emergence of software and writing - or, even
better, of ‘software’, ‘writing’ and ‘code’ as constantly shifting terms which are
actually constitutive of one another - in the discourses and practices of Software
Engineering in the late 1960s, at the beginnings of the discipline." T am not
interested in producing an historical overview of the field in Mahoney’s sense.
Instead, I want to investigate the way in which Software Engineering has been

instituted as a discipline — a process that involved the establishment of its own

' In Chapter Two I argued for a ‘singular’ understanding of software inspired by Gary Hall’s
understanding of the term ‘singularity’. Following Hall (2007a), I argued that it is not enough to take into
account the ‘specificity” of software as a technology. Attention must also be paid to the ‘singular’ ways in
which software is understood and operates in various historical moments and contexts. For this reason, as
I also remarked in Chapter Two, although the co-emergence of ‘software’, ‘writing’ and ‘code’
constitutes the historical specificity of Software Engineering, it cannot be said that it also constitutes the
specificity of ‘all software’.

121




object (‘software’), itself involved in a mutually constitutive relationship with two
other entities (‘writing” and ‘code’). In order to do this, in this chapter I present a
close reading of the foundational texts of Software Engineering — namely, the
reports of the first and second Conferences on Software Engineering, convened by
the NATO Science Committee respectively in 1968 in Garmisch (Germany) and in

1969 in Rome (Italy) (Naur and Randell 1969; Buxton and Randell 1970).2

My analysis is based mainly on the report of the Garmisch conference - the first
ever conference on Software Engineering. (One year later, things had changed
significantly in Software Engineering and the climate of the conference that took
place in 1969 in Rome was very different and far less enthusiastic than that of the
first one. The main point of interest in the Rome report is a growing awareness of
the lack of communication between software practitioners and the academic world —
something that did not seem to affect the participants of the Garmisch conference.
However, all the essential issues of Software Engineering are set out in the
Garmisch conference report.) In this chapter I also examine a number of later texts
that comment upon the NATO conferences and provide additional information
about them (such as Galler 1989; Gries 1989; Randell 1979, 1998; Shaw 1989,
1990).

The first NATO Conference on Software Engineering was conceived by the Study
Group on Computer Science, established in the autumn of 1967 within the NATO
Science Committee (Naur and Randell 1969: 13). As Brian Randell — editor of the
reports of the 1968 and 1969 conferences — recalls later on in his article ‘Software

Engineering in 1968°, it was ‘the Garmisch conference that started the software

2 The report of the first NATO Conference on Software Engineering, held in Garmisch from 7% to 11%
October 1968, was edited by Peter Naur and Brian Randell soon after the conference. NATO was in
charge of the actual printing and distribution, and the report became available three months after the
conference, in January 1969 (Naur and Randell 1969). The report of the second conference, held in Rome
from 27" to 31% October 1969, was edited by John Buxton and Brian Randell and published in April 1970
(Buxton and Randell 1970). Both reports were later republished in book form (Buxton, Naur and Randell
1976). In 2001 Robert M. McClure made both reports available for download in pdf format at
http://homepages.cs.ncl.ac.uk/brian.randell/NATQ/. The pagination of the pdf version slightly differs
from the original printed version. All the references made in this chapter are based on the original
pagination.

122




engineering bandwagon rolling’ (Randell 1979: 1).* Although, as I have shown
above, the term ‘Software Engineering’ still retained much of its novelty and its
provocative potential in 1968, the need for such a discipline had already been
discussed by Wallace J. Eckert at the 1965 Fall Joint Computer Conference (Gordon
1968: 200; Randell 1979: 2). However, according to Randell, one of the most
significant aspects of the Garmisch conference was the willingness of the
participants to admit ‘the extent and sericusness of current software problems’ (1) at
a time when technical literature tended to sound rather celebratory. To give but one
example, in the preface to the collection of essays Advances in Computers, which he

edited in 1968 with Franz L. Alt, Morris Rubinoff wrote enthusiastically:

There is a seductive fascination in software. There is a pride of
accomplishment in getting a program to run on a digital computer, a
feeling of the mastery of man over machine. And there is a wealth of
human pleasure in such mental exercises as the manipulation of symbols,
the invention of new languages for new fields of problem solving, the
derivation of new algorithms and techniques, the allocation of memory
between core and disk - mental exercises that bear a strong resemblance
to such popular pastimes as fitting together the pieces of a jigsaw puzzle,
filling out a crossword puzzle, or solving a mathematical brainteaser of
widely familiar variety. And what is more, digital computer
programming is an individual skill, and one which is relatively easy to

leamn.
(Alt and Rubinoff 1968: 9).

Although Randell does not perform such an analysis, I want to highlight here the

rhetoric of instrumentality at work in Alt and Rubinoff’s passage: they dwell upon

3 The Garmisch conference report describes the participants as ‘about 50 experts from all areas concerned
with software problems - computer manufacturers, universities, software houses, computer users, etc.’
(Naur and Randell 1969: 13). The fact that the participants had quite heterogeneous backgrounds was in
line with the intentions of the organizing committee (Randell 1979). Nearly half of them came from North
America, the rest from various European countries, and among them there were outstanding scholars and
practitioners, many of whom were meeting each other for the first time. Many went on to write
fundamental works in Software Engineering in the following decades. A list of participants is given in
Naur and Randell (1969: 212-217).

123




the mastery of ‘man’ over technology, and they associate it, as Alfred Gell would
have it, with the ‘enchantment’ of technology (or the ‘seductive fascination’ of
software).* Even more importantly, ‘symbols’ make their appearance here as
something that can be manipulated - that is, as tools - in order to produce the magic

wonders of technology.

Randell contrasts Alt and Rubinoff’s passage with Edsger W. Dijkstra’s declaration
at the Garmisch conference that ‘[t]he general admission of the existence of the
software failure in this group of responsible people is the most refreshing
experience I have had in a number of years, because the admission of shortcomings
1s the primary condition for improvement’ (Naur and Randell 1969: 121). I will
return to Dijkstra’s complex passage later on in this chapter. For now, suffice it to
say that, as Randell also points out, terms such as ‘software crisis’ and ‘software
failure’ were largely used during the Garmisch conference, and that for this reason
many of the participants viewed the conference as a turning point in their way of
approaching software. In the following section of this chapter I will consider
Randell’s remark in more depth, and argue that, with the Garmisch conference,
software indeed began to be conceptualized as a problem. Moreover, the so-called
‘software crisis” was constituted as the point of origin for the discipline of Software

Engineering.

Indeed, since its very inception, the Garmisch conference report defines software as
a problem. The editors clearly state that the conference and the report both deal with
‘a problem crucial to the use of computers, viz. the so-called software, or programs,
developed to control their action” (Naur and Randell 1969: 3). Not only is software
here conceptualized as a problem — it is also presented as crucial to the deployment
of computers, since it is responsible for controlling them. Thus, from the very first
lines of the report, the relationship between software and control is established,

while at the same time this relationship is characterized as problematic.

* As I pointed out in the Introduction, Alfred Gell (1992) argues that the foundation of art is a technical
level of excellence that a society misrepresents to itself as a product of magic. Gell understands art as a
special form of technology and art objects as the means for obtaining social consensus. This is why he
claims that ‘the power of art objects stems from the technical processes they objectively embody: the
technology of enchantment is founded on the enchantment of technology’ (Gell 1992: 44). Similarly,
technology is capable of casting a spell over us so that we see the world in an enchanted form. In other
words, the magical prowess that is supposed to have entered the making of the art object or of the
technological artefact relies on the level of cultural understanding that surrounds it.

124




Before examining in detail the way in which software is problematized in the
Garmisch conference report, it is worth spending a little time on the structure of the
report itself, in order to facilitate its reading. In his article of 1996 Randall recalls
that it was the participant Fritz Bauer who emphasized the importance of providing
a report of the conference and who persuaded Randell himself and Peter Naur to be
its editors (Randell 1998: 51). In the preface to the report, the editors give a minute

explanation of the way in which the report itself was put together. They write:

The actual work on the réport was a joint undertaking by several people.
The large amounts of typing and other office chores, both during the
conference and for a period thereafter, were done by Miss Doris
Angemeyer, Miss Enid Austin, Miss Petra Dandler, Mrs Dagmar
Hanisch and Miss Erika Stief. During the conference notes were taken by
Larry Flanigan, Ian Hugo and Manfred Paul. Ian Hugo also operated the
tape recorder. The reviewing and sorting of the passages from written
contributions and the discussions was done by Larry Flanigan, Bernard
Galler, David Gries, Ian Hugo, Peter Naur, Brian Randell and Gerd
Sapper. The final write-up was done by Peter Naur and Brian Randell.
The preparation of the final typed copy of the report was done by Miss
Kirsten Anderson at Regnecentralen, Copenhagen, under the direction of
Peter Naur.

(Naur and Randell 1969: 11 £)

In fact, after the Garmisch conference, Randell and Naur spent an extra week

editing the draft report, which was provided jointly by the people listed in the first

> A distinguished academic, Fritz Bauer was among the developers of Algol (short for ALGOrithmic
Language), one of the first programing languages, in the mid 1950s. Randell had met him before the
Garmisch conference at the meetings of the IFIP Algol Committee in Vienna. Bauer was affectionately
nicknamed ‘Onkel Fritz’ by the other members of the Committee. In fact, Randell attributes the idea for
the first NATO Conference on Software Engineering (as well as for the use of the term ‘Software
Engineering’ as the conference title) to Bauer.

125




section of the above passage.® The first problem that had to be addressed concerned
the structure of the report. Randell and Naur had to choose between two basic forms
of classification: the one based on the sequence of ‘steps’ involved in the process of
software development (from the project’s initial phase, through design, production,
distribution and maintenance), the other based on different ‘aspects’ of software
development (such as documentation, management, communication, programming
techniques and hardware considerations) (Naur and Randell 1969: 10). As it will
become clearer throughout this chapter this choice was not trivial, since the
identification of both the ‘steps’ and the ‘aspects’ of software development were
pivotal and highly controversial topics of the conference itself. Furthermore, the two
competing models for the structure of the report were also discussed during the
conference, and the participants were very aware of the importance of their
decision. Their awareness, as Randell recalls, was due to the fact that ‘a
tremendously excited and enthusiastic atmosphere developed at the conference’,
motivated by the participants’ growing appreciation of the shared concern about the

‘software crisis’. Therefore

general agreement arose about the importance of trying to convince not
just other colleagues, but also policy makers at all levels, of the
seriousness of the problems that were being discussed. Thus throughout
the conference there was a continued emphasis on how the conference
could best be reported. Indeed, by the end of the conference Peter [Naur]
and I had been provided with a detailed proposed structure for the main
part of the report. This was based on a logical structuring of the topics
covered, rather than closely patterned on the actual way in which the
conference's various parallel and plenary sessions had happened to be
timetabled. Peter and I were very pleased to have such guidance on the
structuring and general contents of the report, since we both wished to
create something that was truly a conference report, rather than a mere
personal report on a conference that we happened to have attended.

(Randell 1998: 51)

8 1t is quite obvious from the above quotation that the working group was gendered in a particular way,
with the women doing all the secretarial tasks and the male participants in the conference being in charge
of proper editing. The different media involved in the production of the report were also controlled by
men, except for typing. The report of the second NATO Conference on Software Engineering shows that
things were not much different in Rome one year later (Buxton and Randell 1970).




This long passage shows how the structure of the report is justified by its editors by
means of the criteria of legibility, as well as by positioning it as a tribute to the
participants’ joint effort to produce an effective record of the conference. However,
the most important point here is Randell’s focus on ‘the structuring and general
contents of the report’. Looking back to the Garmisch conference in 1996, he seems
quite conscious that the structuring of that report has had a lasting effect on the

structure of Software Engineering as a field.

Actually, as the editors make clear in the preface to the report, the final structure is
based on the first kind of classification - that is, it follows the step-by-step model of
the process of software development. Nonetheless, in many passages of the report
the second type of classification ‘creeps in’ — and the editors attempted to mitigate
its effects by the provision of ‘a detailed index” (Naur and Randell 1969: 10).” Now
it must be emphasized that such a structure based on the successive ‘steps’ or
‘phases’ of software development has later become a universal model for the
production of manuals and reference texts of Software Engineering. Is that ‘and’ in
Randell’s expression ‘the structuring and general contents of the report’ - one might
wonder - really an ‘and’? Could it be said that ‘structure’ and ‘content’ are not so
clearly divided, especially at the moment of the constitution of a discipline? As I
will explain later on in this chapter, the way of writing ‘about’ Software
Engineering actually enacted and produced ‘Software Engineering’ not only as a
discipline but also as a set of techniques or instructions for writing software,
including computer programs. In this sense, writing seems to be constitutive of both
the discipline of Software Engineering and of what Katherine Hayles would name
‘code’. Indeed, writing is not the opposite of ‘code’, or a slightly impoverished
version of ‘code’, as Hayles (2005) seems to suggest. In order to develop this point,

let me look briefly at the way in which the report was materially produced.

7 Indeed, the conference had been planned in quite an unconventional way: rather than taking part in a
series of panels at which papers were presented and discussed, the participants were divided into three
groups corresponding to the topics of ‘Design’, ‘Production’ and ‘Service’, and engaged in parallel
discussion-based working sessions punctuated by the occasional plenary session (Naur and Randell 1969:
13; Randell 1979: 6). Since design, production and service were the three main parts in which the process
of software development could be roughly divided at the time, the original structure of the conference —
as it was intended by the organizing NATO committee — was based on the classification by ‘steps’.

127




As the editors explain, the report is not merely a collection of the working papers
contributed by the participants during or before the conference. Rather, it results

from the reworking of such papers and of the discussions that took place at the

conference.

The discussions were recorded by several reporters and most were also
recorded on magnetic tape. The reporters’ notes were then collated,
correlated with footage numbers on the magnetic tape, and typed. Owing
to the high quality of the reporters’ notes it was then, in general, possible
to avoid extensive amounts of tape transcription, except where the
accuracy of quotations required verification.

(Naur and Randell 1969: 10)

First of all, the above passage clarifies that, in order to document the discussions,
different media were involved. The discussion was taped and then selectively
transcribed - therefore parts of it were lost in the process, since the correlation
between the tape and the written notes functioned as a kind of filter. What I want to
emphasize here is that the report constitutes a narrative based on what, from an
ethnographic point of view, could be considered fieldwork notes, plus a certain
amount of magnetic tape not entirely transcribed. The editors justify the inclusion of
‘many direct quotations and exchanges of opinion’ in this narrative with their intent
of having the report ‘reflect the lively controversies of the original discussion’ (3).
To paraphrase Naur and Randell, it might be said that they view the inclusion of
different quotations as the incorporation of conflicting point of views. They even

give an interesting example of their work in the preface of the report.

... here is an example, albeit extreme, of the typed notes:

536 DIJKSTRA

F -

H -

P -=7--

(here ‘536’ is the tape footage number, and the letters F, H and P identify
the reporters). This section of the tape was transcribed to reveal that

what was actually said was:

128




“There is a tremendous difference if maintenance means
adaptation to a changing problem, or just correcting blunders. It
was the first kind of maintenance I was talking about. You may
be right in blaming users for asking for blue-sky equipment, but if
the manufacturing community offers this with a serious face, then
I can only say that the whole business is based on one big fraud.
[Laughter and applause]”.

(Naur and Randell 1969: 10 £.)

The example that the editors so proudly provide shows how a kind of shorthand
comment results in an elaborated sentence which also includes a joke — and a
cheerful reaction on the part of the audience — in the final report (with the mediation
of the magnetic tape). It is quite clear at this point that the production of the report’s
narrative in the week following the conference involved various processes of
selection, sorting out and summing up of numerous texts. Moreover, in the report
many quotations were sparsely interpolated by the editors’ comments. Randell
recounts that he and Naur argued that they should not provide any additional text as
editors, but rather build the core of the report ‘merely by populating the agreed
structure with suitable direct quotations from spoken and written conference
contributions’.® Nevertheless, it was Randell’s opinion that ‘brief editorial
introductions and linking passages’ would improve the overall legibility and
consistency of the text — and this eventually became the final form of the report. A
short selection of the working papers contributed by participants was also

incorporated in full as appendices (Randell 1998: 52).

What I want to emphasize here, on the basis of the quotations presented above, is
that the narrative of the report has fundamentally shaped the field of Software
Engineering through the selection, inclusion and exclusion of problems and topics.
In Mahoney’s words, it could be said that the Garmisch conference report
constitutes the ‘agenda’ of the field (Mahoney 2004: 8). In Gary Hall’s terms, it
could be said that the report is the first attempt at building an ‘archive’ for Software

8 Later on, in 1979 Randell restated that ‘in an attempt to avoid undue editorial bias, [he and Naur]
evolved an editorial style which relied heavily on the use of direct quotations to flesh out the structure
that had been agreed by the meeting’ (Randell 1979: 6).




Engineering and at ‘performing’ Software Engineering as a discipline (Hall, 2007a).

To understand this point better, let me follow Hall’s argument for a little while.

In a his 2007 paper presented at the ‘Remediating Literature’ Conference at Utrecht
University, Gary Hall points out that every archive regulates what can be collected,

stored and preserved. He writes:

It is important to realise that an archive is not a neutral institution but
part of specific intellectual, cultural, technical and financial networks.
An archive's medium, in particular - be it paper, celluloid or tape - is
often perceived as constituting merely a disinterested carrier for the
archived material. Yet the medium of an archive actually helps to
determine and shape its content; a content, moreover, which is performed
differently each time, in each particular context in which it is accessed
and material is retrieved from the archive.

(Gary Hall 2007a: non-pag.)

In this paper Hall focuses on CSeARCH, a digital archive of works in cultural
studies which, being based on open access technology, not only enables scholars to
publish and archive research literature in a much more flexible way than traditional
forms of publication, but also changes the definition of what research literature is.
For instance CSeARCH allows the archivization of drafts, leaflets, posters, personal
correspondence, multimedia resources and, as Hall puts it, ‘laundry notes and
scraps’ like the one stating ‘““I have forgotten my umbrella”, which was found
among Nietzsche’s papers after his death and about which Derrida has written at
length’.’ 1t is the specific structure of the open access digital archive that shapes
what it preserves and classifies as legitimate scholarship, in both time and scope. By
doing so, the digital (open) archive changes what is considered legitimate cultural
studies — that is, it changes the definition of the discipline. In this sense, whenever
accessed and consulted, the archive constitutes an instance of the discipline; the
very act of accessing the archive of selecting, downloading or uploading texts

‘performs’ a singular instance of the discipline of cultural studies. Hall explains:

® Hall refers here to Derrida (1979: 139).

130




Consequently, a digital cultural studies archive is not just a means of
reproducing and confirming existing conceptions of cultural studies; of
what cultural studies already is or is perceived as having been. It is partly
that. But it’s also a means of producing and performing cultural studies:
both what it’s going to look like in the past; and what there’s a chance
for cultural studies to have been in the future.

(Gary Hall 2007a: non-pag.)

As I have pointed out earlier on in this chapter, Hall is very attentive to the
singularity of new technologies and to the singular relationship that CSeARCH
entertains with the discipline of cultural studies. Here I want to argue that the same
attention must be paid to the material production of the Garmisch conference report
and to its singular relationship with Software Engineering. The Garmisch
conference report was based on media technology such as the magnetic tape
recorder and the typewriter, and although it included different points of view on the
topic of Software Engineering, yet it framed these points of view within a narrative
controlled by the editors, thus giving them a certain degree of fixity. Furthermore,
after it was printed and circulated, the report could not be changed any further and
therefore it contributed to the stabilization of Software Engineering as a disciplinary
field, at least to some extent. In Hall’s terms, the Garmisch conference report

‘performed’ the first version of the field of Software Engineering.

The significance of the Garmisch conference report for shaping Software
Engineering is vastly documented. For instance, the contents list of Software
Engineering textbooks from the late 1990s has not changed much from that of the
Garmisch conference report.lo Twenty years after the NATO conferences, in a short
article published in 1989, Mary Shaw, who was a graduate student at Carnegie

Mellon at the time of the first conference, comments:

The thing that fascinates me most about the Garmisch Proceedings is

how fresh they are even now, twenty years later. The introductory

' In Chapter Four I will examine a number of Software Engineering reference texts from the 1980s and
1990s in order to expand on this point.

131




highlights [Naur and Randell 1969: 3] list the major topics of discussion
... Of these topics, only the last [about the separate pricing of hardware
and software] has been settled. The remainder form a pretty good
example of the usual problem list for software engineering. ... Not only
are the topics still the same, but many of the problems still sound fresh.

(Shaw 1989: 100)"!

Even more important than the persistence of the central topics of Software
Engineering is the ‘freshness’ of the open problems that Shaw mentions. Indeed,
many of these problems were intentionally left open in the Garmisch conference

report, as the editors notice:

In order to retain the spirit and liveliness of the conference, every attempt
has been made to reproduce the points made during the discussion by
using the original wording. This means that points of major disagreement
have been left wide open, and that no attempt has been made to arrive at
a consensus or majority view. This is also the reason why the names of
participants have been given throughout the report.

(Naur and Randell 1969: 11)

We are brought back here to Mahoney’s remark that the field of Software
Engineering has been a ‘shifting target’ for its own practitioners for decades and
that it still is (Mahoney 2004: 8). It can be said that the problems that were left open
in Garmish have remained essential to the field as open problems and as the
subjects of an ongoing discussion. One might also wonder at this point as to what
the participants’ reactions were after they had been given the final report. Did
anyone ever claim that ‘he did not say that’, or at least not ‘in that way’? Randell
gingerly recounts: ‘[m]y memory tells me that [the] draft was then circulated to
participants for comments and corrections before being printed, but no mention is
made of this in the report so I may be wrong’ (Randell 1998: 52). Apparently, then,
the final feedback from the participants (if there was any) did not lead to any

" Mary Shaw’s note, ‘Remembrances of a Graduate Student’, was presented at the panel ‘A Twenty Year
Retrospective of the NATO Software Engineering Conferences’ of the 11" International Conference on
Software Engineering, and published in the Conference Proceedings (Shaw 1989).

132




significant modification of the report. As Randell himself relates, Doug Mcllroy,
one of the participants, famously described the report as ‘a triumph of misapplied
quotation’ (Randell 1998: 52). However, the participants must have been conscious
that the report represented a turning point in their professional and scholarly
practice, because significantly Mary Shaw recalls that Al Perlis, who at the time
taught at the Carnegie Mellon, gave her and the other graduate students copies of
the report with the words, ‘Here, read this. It will change your life’ (Shaw 1989:
99).

To summarize the above argument, in the Garmisch report Software Engineering
establishes its own narrative as a discipline by setting itself a starting point (the
‘software crisis’) and a past (the tradition of engineering), as well as by opening up
a future (its agenda). The report constitutes a re-staging of the discussion that took
place in Garmisch, which is re-mediated - Bolter and Grusin’s term (2002) sounds
apt here - between handwritten notes, magnetic tape and selective typewriting in
order to reach the final form of the report. Given the selective transcription of the
tape, it can also be said that a part of the discussion has been (irremediably) lost in

re-mediation.

Before going on to investigate in what way the Garmisch conference changed the
professional practices of software developers in the late 1960s, let me give an
example of the external appearance of the text of the report. A brief examination of
the two pages of the report included in Appendix A (Naur and Randell 1969: 15-18;
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/Mmato1968.PDF: 9f.) shows that

the Garmisch report is articulated as a sequence of quotations, either taken from
transcribed debates or from working papers (in which case the title of the paper is
given in parentheses next to the author’s name). These quotations are interpolated
throughout the report by the editors’ comments (italicized), which do not just
express opinions, but in fact structure a narrative by integrating the quotations
themselves into a discourse, by making explicit their logical and/or temporal
connections, and sometimes even by giving information about the general reactions
of the audience. For instance, p.9 of the report starts with an italicized introduction
from the editors that constitutes both an abstract of the following section and a

contextualization of the topic, followed by a sentence (again by the editors) that

133




introduces three quotations from the transcribed material (‘First, three quotations
which indicate the rate of growth of software’). After this the three quotations are
listed by author, almost as different voices in a script. An interjection from the
editors - starting with “Yet...” — follows and introduces a corrective statement from
another participant. A further comment from the editors corrects the above,
followed and supported by two other quotations. So far, the facts (the dramatic rate
of growth of software) and different opinions about them (the alarm raised by this
growth, as well as some praise for the successes in the field) have been presented.
Then the editors offer another comment, starting with ‘However...’, which returns
to the concern expressed by the majority of the participants regarding the
contemporary rate of the growth of software. This comment is supported by three
other quotations. At this point, the editors suggest the need for a discipline named
‘Software Engineering’ — without defining it, but implying a large consensus among
the conference participants on the necessity of developing such an approach. Five
quotations are provided which diffusely lament the immature status of the current
techniques of software production; they are followed by a more optimistic statement
reinforced by a quotation. After this, the editors offer another comment that leaves
the problem of the immaturity of (and of the need for) Software Engineering
substantially open, and they back it up with two more quotations. Finally, the
editors conclude: ‘This being the case, perhaps the best quotation to use to end this
short section of the report is the following’, thus making explicit their uncertainty in
the selection of a conclusion and remarking on the openness of the question. The

final comment is followed by just one quote that in fact leaves the question open.

In the structure that I have just described, the editors’ comments act as connectors
between quotations, giving the report an argumentative structure while framing the
conference debates. Although the report claims to leave many problems open, one
might argue that there is a certain degree of closure in the superimposition of an
argumentative structure on the different points of view that emerged during the
conference. At first glance, the text of the report actually seems to be articulated on
two different levels: the level of temporal duration (since it restages the conference
debate) and the level of logical structure (since it also extrapolates quotations from
their original context and uses them to ‘flesh out’ an argumentative skeleton).

Moreover, the voice of the editors sounds like a unitary, impersonal voice that, by

134




framing the quotations, enters into a dialogue with them, while also exercising a
kind of containment on the different voices emerging from the conference and
placing them in a particular structure — namely, the structure of the disciplinary field
of Software Engineering. In a way, it could be argued that the editors’ voice must
have a unitary tone precisely in order to provide a consistent frame for the divergent
points of view of the conference participants. However, I want to suggest that it
would be futile to ask whether such an enclosure deprives the quotations of their
original potential as arguments. In fact, as I argued in Chapter Two, following
Jacques Derrida, ‘citationality’ — or ‘iterability’ - is a general characteristic of all
language. Indeed, language would not be able to function as language if it could not
be quoted. “What would a mark be that could not be cited?’, asks Derrida in Limited
Inc. (Derrida 1988: 12), and adds: ‘a written sign carries with it a force that breaks
with its context, that is, with the collectivity of presences organizing the moment of
its inscription’ (9). Therefore, one of the characteristics of writing is that it can
continue to ‘act’ as writing - that is, to be readable - ‘even when what is called the
author of the writing no longer answers for what he has written, for what he seems
to have signed’ (8). Indeed, every single quotation in the report works in the context
of the italicized argument (which is not the context of the conference, nor the
context of the impression left by the participants’ voices on magnetic tape) precisely

in order to ‘perform’ the new field of Software Engineering. '

Also in order to establish Software Engineering as a discipline, the Garmisch
conference report mentions its readers, who are also the potential beneficiaries of
such an emerging new field of knowledge. Let me now examine how this process
works in the report by attempting to ascertain, first of all, who the report is intended
for. To answer this question it is worth taking a look at the context in which the
conference was organized — that is, at what Randell calls ‘the 1968 software scene’
(Randell 1979: 2). The problems that the Garmisch conference wanted to deal with

were mainly related to ‘large’ or ‘very large’ software-systems — that is, systems of

12 1t is worth noting that the Rome conference report follows the format of the Garmisch one. Randell
(1998) recalls that the second conference was ‘far less harmonious and successful than the first’, and that
it bore little resemblance to it. Nevertheless, in the absence of a clear brief from the participants in the
Rome conference regarding the structure and content of the report, the editors decided to reproduce the
structure of the Garmisch report, while declaring in the Preface that the similarities between the reports
were purely ‘superficial’. Thus, the Rome report embodies a much more stabilized version of Software
Engineering.

135




a certain complexity whose development required a conspicuous effort in terms of
time, money and the number of professionals involved. In the late 1960s the unit of
measure for determining whether a system was ‘large’ was the number of lines of
code it contained. A large software system could include several thousand lines of
code. Another popular unit (still used nowadays) was the ‘man-year’ - that is, the
number of years an average programmer would spend on a software system if they
were to develop the system by themselves. A few years after the Garmisch
conference, a sub-unit of the man-year — the man-month - became the title of a
classic of Software Engineering, Frederick Brooks’ The Mpythical Man-Month

(1995), which I will examine in Chapter Four."

However, in the late 1960s quite a lot of complex software systems were being
developed. As Randell states (thus explaining NATO’s interest in Software
Engineering), ‘it was the US military-industrial complex that first started to try and
develop very large software systems involving man-millennia of effort’ (Randell
1979: 5). Randell mentions a paper presented by Joseph C. R. Licklider in 1969 as a
contribution to the public debate around the Anti-Ballistic Missile (ABM) System (a
complex project which contemplated the development of enormously sophisticated
software) and eloquently titled ‘Understimates and Overexpectations’. In his paper
Licklider provides a vivid picture of the gap between the military’s goals and their
achievements. He states: ‘[a]t one time, at least two or three dozens complex
electronic systems for command, control and/or intelligence operations were being
planned or developed by the military. Most were never completed. None was
completed on time or within the budget’ (Licklider 1969: 118). This passage
illustrates well the ‘software crisis’ which, as I have pointed out earlier in this

chapter, is established as the founding event of the disciplinary narrative of

13 In Chapter Four I will also investigate the temporality of what I want to name ‘man-time’, of which the
‘man-month’, the ‘man-year’ and even the ‘man-millennium’ are specific instances. As it is quite clear by
now, these units of measure convey the largeness of a software system by quantifying the (estimated)
duration of its development. It is important to notice that the line of code (as a measure of software, or
‘software metric’) is also related to time. The line of code is defined as a line in the text of a program’s
‘source code’ — which in turn is any sequence of statements written in a computer programming language.
Before being executed, the source code is converted from this human-readable format into a computer-
executable one by means of some software device such as an interpreter or a compiler. In this process, the
line of code is transformed into a sequence of ‘tokens’, which in turn, when executed, will effect internal
changes in the computer in a certain temporal order. Therefore, code is related to time in a complex way,
a point to which I will return in detail in Chapter Five.

136




Software Engineering. Even more importantly, in his recollections about Software

Engineering in 1968, Randell adds the following comment:

I still remember the ABM debate vividly, and my horror and incredulity
that some computer people really believed that one could depend on
massively complex hardware and software systems to detonate one or
more H-bombs at exactly the right time and place over New York City to
destroy just the incoming missiles, rather than the city or its inhabitants.

(Randell 1979: 5).

Here Randell’s horror at the excessive self-confidence of some software
professionals stems from the connotative association between technology,
catastrophe and death in a cold-war scenario. As we shall see in a moment, ‘horror’
— a powerful emotion - is the result of the anticipation of the consequences of
technology combined with the awareness of its intrinsic fallibility. For now, it is
worth noting that Randell’s passage hints at what is in fact the most influential

component of the Garmisch report’s readership: the military.

However, by the late 1960s large-scale systems were not unique to the military
scene. For instance, computer manufacturers had started to develop operating
systems - that is, software systems that provided all the basic functionalities for the
management of computers’ internal resources, and that at the time came free with
the hardware from the manufacturer.'* The late 1960s operating systems were much
more complicated than their predecessors — for instance, release 16 of OS/360 was

announced in July 1968 and contained almost one million instructions (Belady and

4 A famous example of those earlier operating systems was 0S/360, which ran on IBM computers of the
360 series. A vastly innovative operating system, OS/360 was extremely complex for the time and, albeit
becoming rapidly popular, it contained a number of technical flaws. Its development during the first half
of the 1960s was characterized by many setbacks, mainly due to the poor management of time, and it was
largely discussed during the Garmisch conference. Frederick Brooks became the project manager of
08S/360 at IBM in 1964. In order to speed up the process of software development, he mistakenly added
more programmers to the project, falling behind schedule as a result. Later on, drawing on this
experience, he formulated the principle that ‘adding more manpower to a late sofiware project makes it
later’, which became known as ‘The Brooks’ Law’ (Brooks 1995). I will return to Brooks’ contribution to
Software Engineering in Chapter Four.

137




Lehman 1976)." Specialized real-time systems were also being developed, such as
the first large-scale airline reservation system, the American Airlines SABRE
system.'® Generally, these systems started out rather disastrously, but, after some
time and with a lot of effort, they were reasonably improved and reached a tolerable
level of performance. For instance, when it was first introduced, the SABRE system
caused chaos at the airports (and a lot of extra business for competing airlines), but
by 1968 it was performing quite reliably, serving around 2,000 terminals and
processing almost 3,000 messages per minute at peak load times (Hopkins 1968).
Operating systems and real-time systems were intensely discussed at the Garmisch
conference, since the costs incurred in developing them were immense and they
were very much in the public’s eye. Moreover, some of these systems (such as
TSS/360, an alternative to the operating system OS/360) kept performing poorly
notwithstanding the vast amount of resources lavished on them by their
manufacturers — and the professionals involved in these projects felt the pressure of

the public opinion.

It should be quite clear by now why the editors of the Garmisch conference report
emphasize that, while being specifically addressed to ‘the immediate users of
computers and to computers manufacturers’, the report may also ‘serve to enlighten
and warn policy makers at all levels’ (Naur and Randell 1969: 3). Indeed, they
expressly state that every effort was undertaken to make the report ‘useful to a wide
circle of readers’. Specific parts of it, the editors declare, ‘are written for those who
have no special interest in computers and their software as such, but who are
concerned with the impact of these tools on other parts of society’ (9). Potential
readers are ‘civil servants, politicians, policy makers of public and private
enterprises’ (9). According to the editors, a somewhat narrower readership

encompasses all those who do not work in the software field but nevertheless need

15 A release is a ‘stable’ state of a software system — namely, a version of the system that is deemed
complete and correct enough to be delivered to its users. Such delivery does not prevent system
developers from improving and extending the system until they reach a new (and supposedly better)
stable version of it. Releases are usually indicated by consecutive numbers. An instruction is usually a
single line of code containing a basic command or data. The sequencing of instructions constitutes a
program. The lines of code (or instructions) were also used as a measure of the size of software systems.
Release 16 was a considerably large system for the time. In fact, at the 1968 conference E.E. David
pointed out that 0S/360 had by then absorbed 5,000 man-years of work (Naur and Randell 1969: 15).

16 A ‘real-time’ system is a software system which is able to respond to changes in its environment ‘as
soon as they happen’, that is in a fast and effective way. As I explained in Chapter One, real-time systems
tend to be complex, high-risk, low fault-tolerance systems.

138




an understanding of the nature of the new field of Software Engineering; these
would be ‘managers of business enterprises using computers, researchers in fields
other than software engineering and computer science, university officials,
computer marketing personnel’ (9). Finally, the report is intended for those directly
engaged in software development. Painstakingly, in the preface the editors provide a
list that indicates which sections of the report would be interesting for which
separate group of readers. For instance, the widest audience is directed to Section 1
(Background of Conference) and Section 2 (Software Engineering and Society).
Importantly, while gradually narrowing down its focus from general to technical
audiences, the list never mentions the military. But, as Randell remarks in a later
study, although the military first started developing large software systems in the
United States, ‘the secrecy that shrouded their purposes served also to hide the
extent to which such projects were characterised by “underestimates and
overexpectations”™ (Randell 1979: 5). After all, the Garmisch conference was
organized by NATO, and indeed the report sounds like an argument to persuade the
NATO Science Committee that their money was well spent and that possibly more
conferences on Software Engineering should be funded. The important point here is
that the constitution of Software Engineering as a discipline is performed in the
Garmisch report also as a form of persuasion. The military is the silent, invisible
addressee of the rhetoric of the report — it is presupposed as the witness of the
constituting act of the discipline performed by the report. But in what way is the
relationship between Software Engineering and the ‘rest of society’ configured in

the report?

As Naur and Randell clearly state in the preface, the readers are supposed to read
the report instrumentally — that is, to use it as a tool to anticipate and evaluate the
consequences of technology in time. The points of interest for readers other than

software professionals are highlighted as:

. the problems of achieving sufficient reliability in the data systems
which are becoming increasingly integrated into the central
activities of modern society

. the difficulties of meeting schedules and specifications on large

software projects

139




. the education of software (or data systems) engineers
. the highly controversial question of whether software should be
priced separately from hardware.

(Naur and Randell 1969: 3)

Apart from the problem of education, which clearly hints at the academic ambitions
of Software Engineering from its very inception, the above points clearly show that
society at large is viewed as mainly concerned with the problem of the reliability of
software and with its costs. Moreover, the relation between software and society
(understood in terms of ‘impact’) is reflected in the very structure of the report.
Since ‘one of the major motivations for the organizing of the conference was an
awareness of the rapidly increasing importance of computer software systems in
many activities of society’ (9), the editors abstract the representative discussions of
questions regarding the ‘impact of software engineering on society’ from later
sections of the report and collect them in an introductory section, conveniently titled
‘Software Engineering and Society’. Let me now examine this section briefly in
order to illustrate how in the report society is constituted as an entity separate from

technology and how their relationship is defined.

As I have explained earlier on in this chapter, the report describes software growth
(intended both as the increasing complexity of software and the increasing reliance
of society on software systems) as the pre-eminent motivation for the Garmisch
conference. Hal Helms is reported to have presented these dramatic figures at the
Garmisch conference: 10,000 installed computers in Europe alone, a number
increasing ‘at a rate of anywhere from 25 per cent to 50 per cent per year’;
furthermore, software development would soon involve ‘more than a quarter of a
million analysts and programmers’ (Naur and Randell 1969: 15). The situation is
not only measured in terms of the number of software professionals involved, but
also of cost and effort. As I have mentioned above, during the conference E. E.
David pointed out that T.J. Watson - IBM’s founder - had estimated the cost of
0S/360 development at over $50 million dollars a year, and at least 5000 men-
years, while TSS/360 was probably in the 100 man-year category. The speed of
software growth, according to the editors, was perceived by the conference

participants with more ‘alarm than pride’ (15).

140




One must be reminded at this point of the importance of the relationship between
contemporary technology and time. In Chapter One I noticed how, according to
Bernard Stiegler, contemporary technology has a totally new relation with time,
which becomes apparent both through the speed of techmical change and the
ruptures in event-ization that this change provokes. In Stiegler’s words, ‘there is
today a conjunction between the question of technics and the question of time’ that
‘calls for a new consideration of technicity’ (17). However, Stiegler hints to the
‘dis-adjustment’ between society and technology due to the speed of the latter. In a
sense, the Garmisch report is concerned precisely with this problem. And yet, as we
shall see in a moment, the very opposition between society and technology, as well
as their dis-adjustment in terms of speed, do not hold everywhere in the
foundational narrative of Software Engineering. In order to understand this point
better, it is worth examining how the participant E. E. David describes the process

of software growth according to the Garmisch report:

In computing, the research, development, and production phases are
often telescoped into one process. In the competitive rush to make
available the latest techniques, such as on-line consoles served by time-
shared computers, we strive to take great forward leaps across gulfs of
unknown width and depth. In the cold light of day, we know that a step-
by-step approach separating research and development from production
is less risky and more likely to be successful. Experience indicates that
for software tasks ... estimates are accurate to within 10-30 per cent in
many cases. This situation is familiar in all fields lacking a firm
theoretical base. Thus, there are good reasons why software tasks that
include novel concepts involve not only uncalculated but uncalculable
risks.

(Naur and Randell 1969: 15 f.)

This complex quotation deserves careful analysis. David focuses here on the pace of
software growth. The competition between computer manufacturers forces software
professionals to confuse (‘telescope’) research and production, which should remain

separate. Therefore, the uncertainties typical of research (here intended as the

141




development of innovative software) spread to production. David’s metaphor
opposes ‘leaps’ to ‘steps’. The leap is for him a dangerous way to move forward,
motivated by the lack of knowledge. The step-by-step approach would be a safer
way — not, it seems, to slow down the growth of software, but to make the speed of
such growth more manageable. One must be reminded once again here that the
participants in the Garmisch conference had to face some major doubts concerning
large-scale software systems: were such systems actually feasible? In David’s
terms, the question could have been reformulated as follows: was the speed of
software growth actually manageable? Importantly, David attributes the necessity of
taking big leaps forward to the lack of a ‘firm theoretical basis’: in other words, the
inability to estimate the feasibility of a software project in a reliable way leads to
the impossibility of carrying it out step by step, and ultimately to its failure. The
failure of a software project then seems to be related to the failure of the

management of time.

According to David, software professionals are fundamentally concerned not just
with risk - that is, with the possibility of failure - but also with “uncalculated’ and
‘uncalculable’ risks. It seems quite understandable that certain risks cannot be
calculated due to the lack of accurate knowledge. What is really surprising is
David’s use of the expression ‘uncalculable’. It is not quite common for software
professionals and engineers to acknowledge that a technical project involves
uncalculable risks. It is worth noting at this point that, although the participants in
the Garmisch conference must not have been aware of this, the concept of
calculability of time has a distinct Heideggerian echo. As I showed in Chapter One,
Heidegger’s understanding of technology is deeply connected to his philosophy of
time. According to Heidegger (1977), modern technology is a form of calculation,
and calculation has its roots in our relation to the future, and in our attempt to
determine future possibilities, which we fear precisely because they appear
indeterminate. Heidegger describes this process as ‘anticipation’ or ‘concern’: our
attempt to control (or to anticipate) the uncertainty of the future creates the basis for
calculation, or for circumscribing the realm of possible futures. Understood in a

broader historical context, this is what Heidegger identifies as the turning of

142




Western thought into calculation in the modern age. This is also why for Heidegger

technology has a central role in defining modernity."”

To summarize David’s argument, the concept of risk and calculability are both
related to the future: estimates are the expression of a calculability of the future,
they actually presuppose the calculability of the future. As I have pointed out above,
it is precisely this faith in the calculability of time, and therefore in the feasibility of
software projects, that is put into question in the Garmisch report and in its narrative
of the ‘software crisis’ as the source of technological ‘horror’. At this point I want
to posit a question: to what extent can the uncalculability lamented by David be
linked to the ‘unforeseen consequences’ that for Derrida — as I emphasized in
Chapter Two - are always implicit in contemporary technology? In order to

understand this point better, let me briefly recall Derrida’s argument here.

According to Derrida, the acceleration of technological innovation in the
contemporary world, coupled with the development of information and
telecommunication technologies (‘tele-technologies’), constitute a ‘practical
deconstruction’ of the instrumental conception of technology (Derrida and Stiegler
2002: 45). It is true that in the contemporary world technological innovation is
massively appropriated by multinational corporations and nation states, by means of
their ‘research and development’ and ‘defence’ departments, and that in that context
technological products become obsolescent very quickly and technological
innovations are constantly programmed to support economy. But it is also true that,
although programmed and neutralized as controlled ‘development’, technological
innovation still gives rise to unforeseen effects. Derrida even propounds that the
greater the attempt to control innovation, the more unforeseeable the future
becomes. Such unforeseen effects ultimately deconstruct the understanding of
technology as a tool as well as the perception of the human as separate from his

tools and a master of them. But in what way do the participants in the Garmisch

17" Although in modemity technology becomes a project of calculation meant to master nature and
humanity (what Heidegger calls the ‘enframing’ of nature and humanity through calculation), modern
technology also opens up for us the possibility of radically reconceiving technology itself by making us
conscious of the instrumental approach which has characterized our understanding of technology since
Aristotle (Heidegger 1977).

143




conference acknowledge technology’s potential for producing unexpected
(‘uncalculable”) consequences? Certainly, they have to deal with the necessity of
managing time - namely, the time of software development, and they attempt to
produce a ‘theory’ that comes to terms with the incalculability of the technological

future.

To investigate the problem of uncalculability further, it is worth noting how the
Garmisch conference report is dominated by a widespread recognition that the
ninety-nine per cent of software systems work — as Jeffrey R. Buxton states -
‘tolerably satisfactorily’ (15). Only certain areas are viewed with concern. Kenneth

W. Kolence comments:

The basic problem is that certain classes of systems are placing demands
on us [software professionals] which are beyond our capabilities and our
theories and methods of design and production at this time. There are
many areas where there is no such thing as a crisis — sort routines,
payroll applications, for example. It is large systems that are
encountering great difficulties. We should not expect the production of
such systems to be easy.

(Naur and Randell 1969: 16)

We already know that the risky ‘classes’ of systems are large-scale and real-time
ones. Nevertheless, this passage seems to take the argument a step further and to
relate the uncalculability of software development to certain demands posed by
society that go beyond the technological capabilities of the time.'® In other words,
not only do the conference participants feel the pressure of social demands on them;
they also feel that software development reaches its point of crisis when society
pushes the boundaries of state-of-the-art technology. The question I want to ask at
this point is: do these demands come from society or from technology itself? Here I

want to make the suggestion that such a question is at work in the whole of the

'8 One might be reminded again here of Stiegler’s image of contemporary technology as a device that
‘goes faster than its own time’. Stiegler’s favoured analogy is that of ‘a supersonic device, quicker than its
own sound’, whose breaking of the sound barrier provokes ‘a violent sonic boom, a sound shock’
(Stiegler, 1998a: 15).

144




Garmisch report and that it silently destabilizes the separation between the technical
and the social. Actually, it is precisely when dealing with the issue of the
responsibility for the technological risk that the conference participants seem to be
confronted with the impossibility of separating technology from society. For this
reason, I argue that, rather than as a dis-adjustment between the technical and the
socio-cultural systems, the ‘software crisis’ and the beginning of Software
Engineering can be understood better within the framework of the mutual co-
constitution of the technical and the social. Let me now explain how this co-

constitution works in the Garmisch conference report.

Naur and Randell reinforce the argument that society pushes the boundaries of
existing technology by lamenting that, at the time of the Garmisch conference, ‘one
of the main problems was the pressure to produce even bigger and more
sophisticated systems’ (17). Buxton adds: ‘There are extremely strong economic
pressures on manufacturers, both from users and from other manufacturers’ (18). In
fact, Buxton attempts to find reasons for such pressure: for instance, the demand for
automated systems of air traffic control is motivated by the rate of the increase of
air traffic in Europe. Yet, even this justification remains wholly within the realm of
technology, at the expense of the social: more software systems seem to be needed
just because more air traffic is needed. We are brought back here to Randell’s
observation that at the Garmisch conference the triumphant tones of the technical
literature of the 1960s were for the first time confronted by software professionals
willing to admit that there existed problems in software development, and to
question the feasibility of large-scale projects. David Gries, who was assistant
professor at Stanford University in 1968 and one of the youngest participants in the
conference, in a brief article published in 1989 recalls how the term ‘software crisis’
was openly discussed in Garmisch for the first time (Gries 1989: 98). In another
article published in the same year, also regarding the Garmisch conference, Bernard
A. Galler recounts how at the time everyone knew that there was a crisis in the
software field, originated by the ‘craft mentality’ of software professionals. Thus,
there was a widespread inability to cope with the development of large and complex
software systems and a strong need to begin treating ‘the discipline of software as
just that, a scientific discipline’ (Galler 1989: 97). A few conference participants,

such as Andy Kinslow, came from stressful experiences in large-scale

145




programming.'® The best-known example of a large-scale project that incurred
extra-costs and resulted in serious delays in the 1960s was OS/360, which I have
repeatedly mentioned above and which a few years later inspired Frederick Brooks’

work, The Mythical Man-Month (Brooks 1995).

Unsurprisingly, poignant doubts regarding the feasibility of large software systems

are expressed in the Garmisch conference report. For instance, Ascher Opler states:

I am concerned about the current growth of systems, and what I expect is
probably an exponential growth of errors. Should we have systems of
this size and complexity? Is the manufacturer’s fault for producing them
or the users’ for demanding them? One shouldn’t ask for large systems
and then complain about their largeness.

(Naur and Randell 1969: 17)

Opler’s passage is intriguingly ambiguous. To understand it better, one must keep in
mind that a separation between society at large and technology has been established
and maintained throughout this section of the report, and that the relationship
between the two has been expressed in terms of the ‘impact’ of technology on
society as well as of the ‘demands’ of society. At this point, Opler goes a step
further and asks whether the responsibility for the rate of the growth of technology
must be attributed to the users or to the producers of technology. What I want to
argue here is that the undecidability of this dilemma leaves its mark on the field of
Software Engineering and especially on its relationship with time. To elaborate on
this point, let me now analyse the following passages, which conclude the section
‘Software Engineering and Society’ by putting forward two possible answers to this

dilemma.

On the one hand, the participants in the Garmisch conference seem to acknowledge
that risks are implicit in software, and that software fallibility is unavoidable. This is
what David and Fraser state: ‘[p]articularly alarming is the seemingly unavoidable

fallibility of large software, since a malfunction in an advanced hardware-software

19 Randell (1979) speaks of Kinslow as ‘a recent refugee from the TSS/360 project’, whom he remembers
‘still almost visibly suffering from the experience’ (Randell 1979: 7).

146




system can be a matter of life and death’ (Naur and Randell 1969: 16). On the other
hand, some participants claim that risks could be avoided if an appropriate and
effective ‘theory’ of the development of software was produced. From this second
point of view, the approach to software development must be ‘systematic’ (Shaw
1989), and therefore it must become a form of engineering. However, these two
points of view are entangled and one does not exist without the other. Thus, the

sentence chosen as a conclusion by Naur and Randell is a quotation from Stanley
Gill:

It is of the utmost importance that all those responsible for large projects
involving computers should take care to avoid making demands on
software that go far beyond the present state of technology unless the
very considerable risks involved can be tolerated.

(Naur and Randell 1969: 18)

This quotation might sound like an attempt to discharge the responsibility for
technological risk on society. In fact, it requires deeper analysis, since in what way
could policy makers evaluate risks that they do not know? Software professionals
are the ones who are expected to have such knowledge. A Habermasian answer
might suggest that policy makers should be better informed of technological risks
and able to discuss them freely. But what Gill is actually saying here is that society
shall not make demands that can be met only by exceeding the current state of
technology. I argue that this is the ‘point of opacity’ — as Derrida would have it — of
the foundational narrative of Software Engineering.”’ Indeed, it seems to me that the
irreconcilability of these two aspects — and therefore the necessity of calculating
incalculable risks, and of attributing responsibility for them — is a point where
Software Engineering ‘undoes itself” precisely at the moment of its constitution.

What Gill means here is that society needs to take responsibility for an incalculable

2 In Derrida’s words (1980) a point of ‘opacity’ is a concept that escapes the foundations of the
conceptual system in which it is nevertheless located and for which it remains unthinkable. For Derrida in
every conceptual system we can detect a concept that is unthinkable within the conceptual structure of the
system itself — therefore, it has to be excluded by the system, or, rather, it must remain unthought to allow
the system to exist. A deconstructive reading looks for points of opacity — that is, for points where the
system ‘undoes itself’. A deconstructive reading of the foundational narrative of Software Engineering
therefore needs to ask: what is it that has to remain unthought in order for Software Engineering to exist?

147




risk. The real problem here is the incalculability of the speed of technological
growth - that is, of the rate at which the state of technology is exceeded.

To summarize the first part of my argument, Software Engineering as a discipline
with a theoretical foundation is called for in order to avoid the (unavoidable)
fallibility of technology — a fallibility that constitutes the risk posed by technology,
or, better, technology as a risk. This point of opacity suggests that Software
Engineering establishes itself as a theory of technology by expelling fallibility from
technology — but such a fallibility (the unexpected consequences of technology) is
intrinsic to technology itself, and is exactly what allows Software Engineering to
exist (that is, the reason why Software Engineering is called for). In other words,
Software Engineering performs an impossible expulsion of constitutive failure from
technology, with this move establishing itself as a discipline. Since such an
expulsion is performed through the calculation of time, it can also be said that in
Software Engineering the calculability of time is undone in its very constitution.
Going beyond Stiegler’s concept of the dis-adjustment between technology and
society, I also want to suggest that society is instituted in the Garmisch report as
that which places risky demands on technology — while at the same time the report
declares technology as constitutively fallible, as something that intrinsically
incorporates unforeseen consequences. Therefore, the projection of the fallibility on
society - that is, on the demands that society poses to technology - is the way in
which the conference participants both assume and discharge responsibility for the
technological risk: they cannot actually maintain the boundary between technology
and society, because this boundary keeps becoming undone. This is why I said
earlier that (in Heideggerian terms) Randell’s ‘horror’ is the result of anticipation
plus the fallibility of technology. In a way, it can be said that, contrary to
Heidegger’s understanding of the relationship with death as constitutive of a
temporality which is more ‘authentic’ than the temporality of calculation, in
Software Engineering the question of death (for instance, the death of New York’s
inhabitants caused by a ballistic device gone wrong) is dealt with as a problem of

calculation.

In order to understand how the calculation of time is performed in Software

Engineering, let me now examine what is meant by the ‘systematic approach’ to

148




software that, as we have seen, the participants in the Garmisch conference
recommend. First of all let me go back for a moment to the quotation regarding the
choice of the term ‘software engineering’ by the NATO Science Committee as the

title of the Garmisch conference:

The phrase ‘software engineering” was deliberately chosen as being
provocative, in implying the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering.

(Naur and Randell 1969: 13)

This passage traces an interesting parallel between engineering and ‘theory’. The
expression ‘more established branches’ refers to construction engineering - that is,
bridges, buildings and any other ‘hard’ kind of construction (Naur and Randell
1969: 17). As I have emphasized earlier on in this chapter, Software Engineering is
both a ‘provocative name’ and the expression of the need for a theoretical
foundation of software development. The use of ‘engineering’ as a synonym for
‘theoretical foundation’ is quite striking, especially since engineering is here
regarded as dealing with buildings and with what can be generally considered
‘hardware’. Actually, throughout the report the editors and the conference
participants point out that software engineering ‘is in a very rudimentary stage of
development as compared with the established branches of engineering’ (Naur and

Randell 1969: 17). For instance, Doug Mcllroy observes:

We undoubtedly produce software by backward techniques. We
undoubtedly get the short end of the stick in confrontation with hardware
people because they are the industrialist and we are the crofters.
Software production today appears in the scale of industrialization
somewhere below the more backward construction industries.

(Naur and Randell 1969: 17)

This passage contextualizes the need for software engineering within the wider
picture of industrialization. To understand this point better, it is worth having

another look at the software scene of the 1960s. At the time, thinking of software as

149




a possible object of industrialization was not a complete novelty. In fact, by 1968
the fact that ‘software was an important commodity in its own right’ was widely
recognized (Randell 1979:2). Just in the United States there were around five
hundred organizations concerned with selling and/or producing software — albeit the
term ‘software’ had made its appearance in normal business parlance only a few
years earlier (2). Nevertheless, the process of developing software was not well
understood yet. In an article published in 1989, Galler explains that in the late 1960s
software professionals needed to begin to study software development in the hope
that it could be ‘formalized and controlled’ and that this would in turn raise the
attention of both the computer industry and the university (Galler 1989: 97). For
this reason Mcllroy presented a paper on software production, entitled ‘“Mass-
Produced” Software Components’, at the Garmisch conference. Published among
the appendices to the conference report, this paper investigates ‘the prospects for
mass-production techniques in software’ and recommends the creation of software
components according to the same criteria that regulate the production of hardware
components. For Mcllroy, one important reason for the weakness of the software
industry in the late 1960s was the absence of a software components sub-industry

(Naur and Randell 1969: 139). With formidable insight he wrote:

I would like to see components become a dignified branch of software
engineering. I would like to see standard catalogues of routines,
classified by precision, robustness, time-space performance, size limits,
and binding time of parameters. ... I want to have confidence in the
quality of the routines. ... What I have just asked for is simply
industrialism, with programming terms substituted for the more
mechanically oriented terms appropriate to mass production. I think that
there are considerable areas of software ready, if not overdue, for this
approach.

(Naur and Randell 1969: 150)

It is not important here to understand in detail what a routine is and what the
different associated parameters mean. For the scope of my argument, a routine can
be regarded as a small independent portion of code that can be used as a building

block by software professionals to construct their own systems, in a standardized

150




way and with acceptable confidence in its reliability. It must be kept in mind that
what are now commonly known as software libraries - that is, collections of routines
that perform an immense number of simple tasks - did not exist in the 1960s.”!
What is really significant in the above passage is that software is viewed as a
product and software production is approached as a formalizable — and to some
degree even automatizable - process. Mcllroy’s paper makes obvious how in the
late 1960s the concept of engineering was introduced into the software field in
connection with the view of software as a commodity and an industrial product.
However, such standardized production could not be accomplished unless the
process of software development was well understood, and the Garmisch

conference focused precisely on pursuing such an understanding.

Interestingly, in the Garmisch conference report the aircraft industry serves as a
term of comparison for the status of software industrialization. In particular, Ronald
Graham of Bell Labs maintains that ‘[tJoday we tend to go on for years, with
tremendous investments to find that the system, which was not well understood to
start with, does not work as anticipated. We build systems like the Wright brothers
built airplanes — build the whole thing, push it off the cliff, let it crash, and start
over again’ (Naur and Randell 1969: 17).2 Graham’s passage, which institutes a
parallel with the aircraft industry and its supposed initial inability to anticipate the
future, displays a certain confusion between the conceptualization of a software
system and the understanding of its development. As I will show in a moment, such
confusion returns over and over again throughout the Garmisch conference report.
In fact, while a software system is mainly envisaged as a set of interrelated
components that work together in order to achieve some objective, its development

is understood as the process through which such a system is constructed - or better,

I Examples of routine libraries commonly used today are Java and C++ libraries. In fact, their
availability has changed the whole technique of programming. In the past, programmers used to write
code that accomplished a certain task on a certain machine, starting from scratch and following a logical
structure known as ‘algorithm’. Today they are more likely to figure out what routines they need to
perform a given task on a given machine and to look for them on the Internet.

2 However, Mahoney remarks that ‘[hlistorians of technology know that the Wright Brothers' successful
flight was in fact the culmination of a carefully planned, theoretically and empirically informed, program
of research and development. In particular, they had a relatively clear idea of what problems they had to
solve and of how they might go about solving them. Whether or not their approach might have served as a
useful example for fledgling software engineers, it does not seem prima facie to constitute a negative
example’ (Mahoney 2004: 9).

151




as the conference participants commonly say, ‘written’. Although the report focuses
on understanding and defining the process of software development, the system and
its development are never clearly separated. For instance, in Graham’s passage the
failures of the process of development (in which investment and time spin out of
control) are caused by the poor understanding of the system in the first place. I want
to argue here that the distinction between the software system and its development —
that is, between process and product — is another ‘point of opacity’ of Software
Engineering since, albeit necessary, it cannot be kept up at all times. Even more
interestingly, albeit so far the report has depicted software growth as a problem per

se, 1n a subsequent passage Fraser states:

One of the problems that is central to the software production process is
to identify the nature of progress and to find some way of measuring it.
Only one thing seems to be clear just now. It is that program construction
is not always a simple progression in which each act of assembly
represents a distinct forward step and that the final product can be
described simply as the sum of many sub-assemblies.

(Naur and Randell 1969: 17)

Here Fraser seems to focus on the inordinate character of software growth, and
particularly on the fact that the process of development is not straightforward - in
his words, it is not a ‘simple progression’. For him, software professionals need to
understand the complexity of the process of software development, but at the same
time they need to make it more linear. Or even better, they must acknowledge that
such a process is not in fact linear, but at the same time they have to avoid backward
steps at all cost. An ambivalence can be detected here in the conceptualization of
software growth, which is considered a risk (since it implies failures) but at the
same time a proof of success (and therefore it must be maintained by avoiding
backward steps). Quite clearly, even more than the pressure of society, it is the
implicit fallibility of software that worries conference participants. Also, what
Fraser puts forward here is the need for a linearization of time — that is, the need to
measure ‘progress’ within the temporality of software development, which is not
always ‘a simple progression’. The very concept of progress implies the movement

toward an objective, thus calling for a linearization of time. In Chapter One I

152




pointed out how the linearization of time, according to Derrida and Leroi-Gourhan,
plays an essential part in the alphabetization of non-linear writing. The model of the
line is the basis which allows for the reduction of writing to a mere instrument for
the recording of speech — thus, it also becomes the foundation of instrumentality.
Here Fraser’s appeal to the linearization of time is part of the general attempt to

think software in instrumental terms.

Accordingly, in this first section of the report the focus shifts gradually from
‘engineering’ as a disciplinary model toward its specific approach to time:
engineering involves planning - that is, the calculation of time - and systematic
thinking. This view is supported by comments offered two decades later by
numerous scholars. For instance, in her 1989 article entitled ‘Remembrances of a
Graduate Student” Mary Shaw recalls 1968 as a “‘memorable year’ and explains: ‘it
was the year the software research community really started thinking systematically,
even formally, about software structures’ (Shaw 1989: 99). She also recounts how
the most relevant question at the time was: ‘why shouldn’t software be a product,
subject to analysis, prediction, and organized development?’ (99), and claims that
the Garmisch conference represented a turning point in the passage from ad hoc to
systematic practice (100). In fact, in 1968 the very concept of software acquired a
totally new meaning, since the Garmisch conference report ‘played a major role in
shifting our thinking from programs to software’ (99). Thus, the term ‘software’

itself became the carrier of the idea of systematicity and of the calculation of time.

To summarize the above argument, Software Engineering makes its appearance in
the context of the early industrialization of software production and in opposition to
the concept of craftsmanship, and it relies on a model of engineering as the
calculation of time. The main object of Software Engineering as a discipline is the
calculation of the time of software development in order to industrialize it. This
calculation is to be realized through the formalization of the process of software
development, and the Garmisch conference report contains a number of diagrams
that were proposed at the conference in order to attempt such formalization. To
understand this point better, let me refer here to the diagram offered by Calvin Selig
(Naur and Randell 1969: 21), which I reproduce in Appendix B. This image is

particularly interesting because it makes explicit reference to the concept of

153




‘documentation’ - whose significance I will highlight in a moment. Moreover, it can

be easily understood even without analysing all the technical terms it deploys.

Selig’s graphical representation of the process of software development makes it
clear right from the start that such a process does not necessarily imply linear
progress. Naur and Randell also remark that, as soon as this draft was presented at
the Garmisch conference, Perlis amended it by suggesting that a feedback loop be
added to it “for monitoring of the system” (Naur and Randell 1969: 19).% It is worth
noting here that, with little variation, Selig’s scheme has become the typical
representation of what is now called the ‘software life-cycle’. However, according
to Selig, the process of software production is the sequence of different stages,
where each stage can be described as a period of intellectual activity which
produces a usable product that constitutes the point of departure for the subsequent
stage. At the beginning, a ‘problem’ is identified to which the software system will
be the answer. At this point in the report, it must be noted, software has shifted from
being a ‘problem’ (Naur and Randell 1969: 3) to being a solution, while the
problem has been relocated to the external world. This again has become part of the
methodological core of Software Engineering: there are problems out there that
software helps to solve. The first stage of intellectual activity, named ‘analysis’,
produces a description of the problem — which is substantially a document written in
a natural language. The stage of analysis is variously enmeshed with the phase of
design (the two terms are used quite interchangeably in the report), which
constitutes a refinement of the problem description in order to propose a system that
solves it. The phase of design produces a complete system specification - that is, a
stable description of what the software system is supposed to do. The system
specification is also the point of departure for the stage of implementation, which
basically determines Zow the system will do what it is supposed to do. It is
immediately apparent from Selig’s picture that the boundaries between these stages

are quite blurred. What is not obvious — although it emerges rather clearly from the

2 As I showed in Chapter Two, a feedback loop is a process that circulates the output of a system back
into the system as input. Although the idea of a system that governs itself by means of such a process
dates back to the Greeks, the concept of the feedback loop found its broader theoretical development and
practical applicability in first-order cybernetics during the 1930s and 1940s. Here I want to point out that,
in the context of software development, the feedback loop also represents a temporal relationship
between two (supposedly separated) stages of the process. I will return to this point later on in this
chapter.

154




totality of the Garmisch conference report - is that the terminology referring to the
different stages of software development is also remarkably unstable.”* The only
clear separation is between the ‘what’ and the ‘how’: one must define ‘what’ a
system is supposed to do before developing it, and the development of the system is
the determination of ‘how’ the system does what it is supposed to do. Yet, even this
distinction is put into question later on in the report, and the boundary between the
‘what’ and the ‘how’ — as I will show in a moment — turns out to be quite difficult to
maintain. However, the stage of implementation ‘translates’ (Selig’s term) the
specification of the system into the ‘actual’ system (the ‘working system’) - that is,
a software system that can be installed on a computer. Before it is delivered to the
final user, the system needs to be tested — namely, it must be verified whether the
system actually does ‘what’ it is meant to do and whether it does it ‘how’ it is meant
to do it. This stage is variously called ‘testing’, ‘acceptance’ or — in Selig’s case — it
can be incorporated into a general stage of ‘maintenance’, which comprises all the
activities performed on a completely operational software system, such as
corrections and modifications that might be carried out even after the system has
been delivered to its users. As soon as it becomes operational, the system starts to

become obsolete — and it will finally be abandoned in favour of newer systems.

Two points must be emphasized here: firstly, as I have pointed out above, Selig’s
image explicitly refers to ‘documentation’ — that is, the body of written texts
produced in the course of the whole process of system development. Secondly,
software development is defined as a process involving much more than the mere
writing of computer programs; therefore, it extends over a longer time span. As for
the first point, it is worth noting that the definition of ‘documentation’ will remain
an open problem of Software Engineering for decades, and that the term will
continue to shift from ‘user documentation’ - that is, all the manuals and guidelines
provided to final users as an explanation of the software system - to ‘technical’ or
‘internal documentation” - which functions both as a description of the system and
as a means of communication between software developers. Regarding the second

point, Selig comments that, although programming has traditionally been viewed as

** From Selig’s picture it is also clear that, since every single term used so far has acquired a specific
meaning as a stage of the total process, the only term left that is generic enough to indicate the whole
process is ‘software-system building’.




the production of code, in practice programmers perform their activities over the
time span that goes from the moment when the ‘problem’ has been understood to
the moment when the system becomes obsolete. Both of these points concur in
elucidating how the formalization of the process of software development is
achieved in Software Engineering. In order to control it, the process of software
development is broken up into periods of activity, each of which produces, as a
result, a piece of writing. Each piece of writing is the point of departure for the
following phase, and it is supposed to be used as a tool for developing more pieces
of writing. Thus, the organization of time is carried out through a practice that I call
‘writing” because this is the term used throughout the Garmisch conference report
and because it produces written texts — although the nature of such ‘writing’ needs
to be explored further. Some of these written texts are called ‘documents’, some are
called ‘software’ or ‘programs’ or ‘code’, and these terms keep shifting. Moreover,
the written text resulting from the stage of analysis - namely, the description of the
problem - constitutes the point of departure for the whole process of software
development. At the same time, by describing the problem as something pre-
existing ‘out there’, this document also constitutes a narrative of the origin of the
software system itself. More precisely, it projects a “problem’ in the world to allow
the software system to become its ‘solution’ — or, it can even be said, it performs the
expulsion of the software system as a problem in order to justify its very existence
as a solution. By doing this, Software Engineering also constitutes software as
‘instrumental’ — that is, as the means by which the goal of solving a pre-existent
problem can be reached. At the same time, though, software escapes instrumentality
because the distinction between problem and solution does not hold. As I have just
pointed out, software is both problem and solution — indeed, it emerges at the point
where the distinction between the two becomes undone and it exists only as the
precarious stabilization of this distinction. Let me now expand on this point for a

little while.

Further on in the Garmisch conference report, Willem L. Van der Poel formulates

the following question:

The specifications of a problem, when they are formulated precisely

enough, are in fact equivalent to the solution of the problem. So when a

156




problem is specified in all detail the formulation can be mapped into the
solution, but most problems are incompletely specified. Where do you
get the additional information to arrive at the solution which includes
more than there was in the first specification of the problem?

(Naur and Randell 1969: 52)

This quotation shows the difficulty of describing the transition from problem to
solution purely in logical terms - that is, in terms of the logical ‘completeness’ (or
exhaustiveness) of the description of the problem. Interestingly, Dijkstra answered
Van der Poel’s question by comparing his own experience as a computer sciences
teacher to that of a teacher of composition at a music school. One cannot teach
creativity, he claimed, nor can one ensure that one gets thirty gifted composers out
of thirty pupils. What a teacher can do is to make pupils ‘sensitive to the pleasant
aspects of harmony’ - but ‘the rest they have to do themselves’ (52). Thus, Dijkstra
resorts to individual creativity as an explanation for the passage from problem to
solution in the process of software development. As I explained in Chapter Two
(and as Derrida suggested in his essay of 1989, ‘Psyche: Inventions of the Other’),
what is beyond (‘in excess of’) a procedural method is traditionally ascribed to
‘genius’ or ‘inspiration’, and therefore recuperated on the level of subjectivity.
Intriguingly, Dijkstra does so precisely in the context of a paper where he attempts
to establish some ‘objective’ measurement for the logical completeness of the
description of a software system. Dijkstra’s move is particularly relevant here
because it shows how the transition between problem and solution gives rise to a
conceptual impasse. I want to suggest that this impossible transition between
problem and solution actually masks the expulsion of the problem from the process
of software development in order to establish a narrative of the origins of the
software system. Even more importantly, by separating problem from solution,
while subsequently relating them through a series of written texts, the Garmisch
conference report invests ‘writing” with a central role in the organization of the time

of software development.

To recapitulate the above argument, Software Engineering (as a method for
industrializing the production of software) involves the organization (and

linearization) of time through ‘systematic thinking’, and such systematicity involves

157




the control of the process of software development through practices of writing, as
well as through the establishment of a pre-existing ‘problem’ that justifies the
existence of the process of software development itself. However, it remains to be
established in what way the different written texts produced in different stages of
software development take different - albeit shifting - forms and names, and how
they relate to each other and to what the Garmisch conference report names as

‘software’. Let me expand on this point.

In order to examine how different pieces of writing are produced in the course of
software development, I want to focus now on the first of these texts — namely, the
so-called external specifications (or ‘specifications’ tout-courf) of the software
system — and on its relationship with the text produced subsequently — that is, the

‘internal design’ (or simply ‘design’) of the system. Selig writes:

External specifications at any level describe the software product in
terms of the items controlled by and available to the user. The internal
design describes the software product in terms of the program structures
which realize the external specifications. It has to be understood that
feedback between the design of the external and internal specifications is
an essential part of a realistic and effective implementation process.
Furthermore, this interaction must begin at the earliest stage of
establishing the objectives, and continue until completion of the product.

(Naur and Randell 1969: 22)

There are many points of interest in this quotation. What has been characterized
earlier on in the report as the ‘how’ and the ‘what’ of the system — or, in Selig’s
terms, ‘analysis’ and ‘design’ - is renamed here as the ‘external specifications’ and
‘internal design’, at the same time establishing a feedback loop between the inside
and the outside of the software system. Selig’s passage implies a spatial
representation of the software system, whose inner and outer parts are meant to be
‘described’ by written texts. Furthermore, the external part of the software system is
defined in terms of ‘availability’ (to the user) and ‘control’ (by the user).
Importantly, both availability and control belong to the terminology of

instrumentality, thus describing the software system as a tool. The internal design is

158




defined as a text that provides a description of the programs - that is, of the single
pieces of software - that will compose the software system as a whole. Selig uses

here the term ‘to realize’: for him the specifications describe the system, while

design and code ‘realize’ it.

Numerous remarks are made during the Garmisch conference report on the way in
which such ‘realization’ must take place. In his paper entitled ‘On the interaction
between software design techniques and software management problems’ Kolence

writes:

A software design methodology is composed of the knowledge and
understanding of what a program is, and the set of methods, procedures,
and techniques by which it is developed. With this understanding it
becomes obvious that the techniques and problems of software
management are interrelated with the existing methodologies of software
design.

(Naur and Randell 1969: 24)

According to Kolence, the realization of the software system involves the
‘interaction’ (editors’ term, 24) between software ‘design techniques’ and software
‘management problems’. This complex quotation hints again at the difficulty of
distinguishing between the software system and the process of its development.
Moreover, in any software project, the technical aspects of software development —
which Kolence names ‘design’ - cannot be clearly separated from the organizational
aspects — or ‘management’. And yet, some kind of separation is necessary if
Software Engineering is to have a methodology — which is, one must recall,
precisely what constitutes the difference between craftsmanship and engineering.
Considering this transition of software development from craftsmanship to a
process governed by a methodology, Alexander d’Agapeyeff insists that
‘programming is still too much of an artistic endeavour’ (24). His conference paper,
significantly titled ‘Reducing the cost of software’ invokes ‘a more substantial
basis’ for the monitoring of the process of software production. A monitoring
methodology should substantially ‘make software visible’ in terms of programs, of

‘the flow of their execution’, of the ‘shaping of modules’, of their testing

159




environment, and finally of the ‘simulation of run time conditions’ (24). Once
again, it is not necessary to understand the technicalities of this passage. What must
be pointed out is that d’Agapeyeff clearly recognizes that the only part of the
software system and of the process of its development - or, even better, of the
software system in development - which is actually visible is the part that is put in
writing. Thus, during its development, the system is made visible through the

written texts that mark the successive stages of such development.

However, it is worth noting that d’ Agapeyeff’s passage uses the term ‘artistic’ as a
pejorative term. I would translate ‘artistic’ here as ‘unmonitorable’,
‘unmanageable’, or, even more precisely, ‘not reducible to a methodology’. The
term even hints at an excessive individuality of the activity of programming.

Regarding d’ Agapeyeff’s paper, Kinslow comments:

There are two classes of system designers. The first, if given five
problems will solve them one at a time. The second will come back and
announce that these aren’t the real problems, and will eventually propose
a solution to the single problem which underlies the original five. This is
the ‘system type’ who is great during the initial stages of a design
project. However, you had better get rid of him after the first six months
if you want to get a working system.

(Naur and Randell 1969: 24)

Kinslow claims here that different mentalities are required by different stages of
software development — and that an idiosyncratic approach to software, however
brilliant, can put the whole process at risk. This brings us back to the moment when
Dijkstra’s takes recourse to individual creativity in order to explain how software
development progresses. Dijkstra’s and Kinslow’s positions interlock in a rather
problematic way. On the one hand, individual creativity is evoked as the mysterious
agent that allows for the translation of problem into solution, and such translation is
depicted as a form of the unexpected — analogous to the unforeseeable and
inexplicable leap that turns a student of music into a talented composer. On the
other hand, the view of technology proposed by Kinslow in the above passage, and

quite likely shared by his colleagues at the Garmisch conference, attributes the

160




emergence of the unexpected to the human mind: too much genius (or too many
unexpected consequences) can be dangerous, therefore it must be kept under
control, and a good project manager assigns the appropriate practitioners to the
appropriate stage of the software project in order to keep it manageable. Thus, in the
process of software development the emergence of the unexpected seems to be both
the propeller of development itself and what puts development at risk. Moreover,
the transition from problem to solution is represented as a ‘good’ form of the
unexpected — that is, as an unforeseeable creative leap that, although it cannot be
anticipated, is nonetheless manageable. The ‘excessive’ creativity of the ‘system
type’ is in turn portrayed as ‘bad’ unexpected — something that exceeds the
management of the project and threatens it. But, as Derrida would have it, the
unforeseeable that can be anticipated (or managed) is not unforeseeable at all.
Therefore, once again we are faced with the ‘point of opacity’ of the unexpected
consequences of technology and with the impossible expulsion that Software
Engineering tries to perform: while the aim of Software Engineering claims to be
the expulsion of the unexpected from technology, the unexpected — represented as a
creative leap — is also acknowledged as constitutive of technology. Thus, the
question about the different kinds of texts produced during the process of software
development can be reformulated as such: what is the relationship between these
different texts and the unexpected? Could it be that such texts are different precisely
because they entertain different relations with the unforeseeable effects of

technology?

In order to explain this point, let me now turn to the analysis offered by J. A. Harr in
his paper, ‘The Design and Production of Real-Time Software for Electronic
Switching Systems’, a part of which is reproduced in the report (Naur and Randell
1969: 25). Harr’s paper describes the connections between the process of software
development and the organization of the correspondent project group, thus
attempting to clarify the way in which the technical characteristics of the software
systems and the organizational aspects of the working group mirror one another.
Harr breaks down the design and production process into thirteen steps, starting
from the extensive specification of all the system functions up to the final global
testing of the system after it has been completed. He then proposes a structure of the

programming group that reflects the structure of the system by allocating specific

161




groups of programmers to each of its parts. Here Harr makes a significantly
innovative point about the structuring of both software systems and the groups or
organizations that produce them. To understand its relevance, let me turn once again
to the context of the 1968 software scene. The literature of the time showed a
growing interest in developing techniques and practices of system structuring. The
so-called ‘modular programming’ was already in vogue (Randell 1979: 4) — that is,
an approach that allowed software developers to break down a complex system into
different sub-systems, each of which was supposed to perform a certain function
and whose combination achieved the general purpose of the system. Each sub-
system could in turn be broken down into smaller components, until reaching a
level where the whole system was decomposed into manageable parts - each a
relatively independent piece of software that could be developed by single
programmers separately. As Randell comments, in the late 1960s software
professionals were increasingly developing ‘a belief in the need to “divide and
conquer” system complexity’ (4). For instance, at the time H. T. Hicks wrote: ‘[i]n
general, large problems are most easily solved by factoring them repeatedly into
smaller, more logically independent parts until the solution of each part is either
available (i.e. the problem has been solved before and the result recorded) or is
clear. The set of solutions thus developed forms the solution of the large problem’
(Hicks 1968: 52). On the same point, in a paper published in the same year as the
Garmisch conference, Larry Constantine advanced the hypothesis of a ‘structural
theory’ of programming based on writing: ‘[a] program is an ordered set of
statements and aggregates of statements defining, describing, or directing the
performance of some task. ... The aggregates of statements are called modules, and
a module is a program’ (Constantine 1968: 15). This passage is extremely
important, because it presents a definition of what a ‘program’ is, and it relates it to
the concept of module. According to Constantine, a module is a program, which in
turn is an aggregate of statements written in a programming language. Consistently
with Hicks’ passage, modules are defined as manageable parts of a broader software
system, which perform a task. It is important to highlight how ideas such as
Constantine’s and Hick’s were rarely mentioned in the academic computing

literature of 1968. Quite shockingly if compared with today’s state of the art, even

162




the term ‘structured programming’ had yet to be invented and turned into a catch
phrase (Randell 1979: 5).* Most importantly, Conway had already published his
brilliant paper titled ‘How Do Committees Invent?’, where he formulated what later
became known as Conway's Law - that is, that ‘organizations which design systems
are constrained to produce designs which are copies of the communication

structures of the organizations’ (Randell 1979: 5). According to Conway,

[a] contract research organisation had eight people who were to produce
a COBOL and an ALGOL compiler. After some initial estimates of
difficulty and time, five people were assigned to the COBOL Job and
three to the ALGOL Job. The resulting COBOL compiler ran in five
phases, the ALGOL compiler ran in three.

Two military services were directed by their Commander-in-Chief to
develop a common weapon system to meet their respective needs. After
great effort they produced a copy of their organisation chart.

(Conway 1968: 30)

This being the context, it comes as no surprise that in the Garmisch conference
report the overall terminology continues to shift between ‘documentation’,
‘software’, ‘module’, ‘program’, ‘code’ and ‘writing’. Actually, although the
difficulty of breaking down the process of software development and of naming its
different stages are extensively discussed in the report, the conference participants
seem less aware of the continuous switches and transpositions in the names of the

texts produced in each of these stages.

In sum, the instability of the terminology used to indicate the different pieces of
writing produced during software development must be understood in the context of
the state of the art of programming in the late 1960s. However, the differences
between texts seem to be related to their belonging to different stages of software

development — that is, to the organization of time within a specific project, which in

% Dijkstra's well known paper 'Notes on Structured Programming' was written in August 1969. However,
at the time of the Garmisch conference, his letter 'Go To Considered Harmful' — which famously
inaugurated the age of structured programming — as well as the first responses to it - had already been
published (Dijkstra 1968).

163




turn is mirrored by the structure of the project group. To understand these
differences better, let me now turn to the transition between the texts produced in
the phase of design (which are generally written in some kind of formalism
combined with natural language) and ‘code’ — which is the outcome of the stage

properly called ‘production’ (or ‘implementation’).26

The editors of the Garmisch conference report emphasize the major challenge of
distinguishing between ‘design’ and ‘production’ (Naur and Randell 1969: 30) — a
distinction contested by several conference participants. Therefore Naur and
Randell feel the need to clarify how ‘production’ is ‘not just the making of more
copies of the same software package (replication), but the initial production of
coded and checked programs’ (31). Clearly, although the use of the term
‘production’ can be related to the increasing industrialization of software
production, as a synonym for ‘implementation’, it does not indicate the mere
mechanical process of making copies of a program, but the much more complicated
passage from system specification to code.?” For instance, in his conference paper

on the concept of software production Naur writes:

Software production takes us from the result of the design to the program
to be executed in the computer. The distinction between design and
production is essentially a practical one, imposed by the need for a
division of the labor. In fact, there is no essential difference between
design and production, since even the production will include decisions
which will influence the performance of the software system, and thus
properly belong in the design phase. For the distinction to be useful, the
design work is charged with the specific responsibility that it is pursued
to a level of detail where the decisions remaining to be made during
production are known to be insignificant as to the performance of the
system.

(Naur and Randell 1969: 31)

% Today implementation has become the commonly used term for the coding phase of a software project.
Anyway, this use of the term ‘production’, and the related ambiguities, are due to the original
organization of the Garmisch conference, which was divided into the major thematic areas of ‘Design’,
‘Production’ and “‘Service’.

" It is worth mentioning that in the late 1960s the method for producing copies of software was not as
consolidated and secure as it is today, neither was it completely automatized. In fact, it involved a lot of
manual activities and it could frequently introduce errors in the piece of software being copied.

164




In this extremely important passage, Naur denies any essential difference between
design and production. For him the decision to break down the process of software
development in different stages marked by different pieces of writing has been
made simply in order to favour the division of labour.?® I want to emphasize how
Naur in fact introduces a very subtle point here: the level of detail of the system
description produced at the stage of design has the predominant goal of maintaining
such a division of labour. More precisely, he seems to imply that an appropriate
level of detail in design would completely erode the space left for implementers to
make decisions of their own, and would thus destroy their ability to influence the
software system in any way. The detail given in the piece of writing produced
during the stage of design ultimately constitutes the means for the control of the
workforce. It is even clearer now why for d’Agapeyeff - as I have shown earlier on
in this chapter - a less and less systematic view of the software system — a kind of
blindness, almost, or at least the selective forgetting of parts of the system - seems
to be preferable at the later stages of the project in order to limit the risks of

excessive ‘creativity’.

But the most important point that can be evinced from Naur’s observation is that
there is actually no essential difference between design and production. Thus, it can
be argued that there is no difference between the written texts produced in these two
stages - that is, between design documents, which, as I have pointed out above, are
written in natural language and accompanied by formal notation, and computer
programs. In fact, Naur rejects the existence of any intrinsic difference between
what Hayles (2005) calls ‘writing’ and ‘code’. The only difference that Naur
acknowledges is the introduction of a foreclosure - namely, at the level of design the
‘practical’ division of labour forecloses the possibility of decision at later stages of
software development. What is already inscribed, or written down, at the stage of
design cannot be changed at the stage of production; it cannot be decided upon any
more; it cannot be undone, unmade; it is subtracted from the process of decision, of

change, of further inscription. Writing performs a foreclosure of time through what

2 The very distinction between hardware and software, which dates from John von Neumann, and his
understanding of the general structure of computers, is perhaps the most famous example of a technical
decision that led to a division of labour (Bolter 1984).

165




is already inscribed - that is, the ‘level of detail’ of the design documentation. By
foreclosing the possibility of a decision, writing also forecloses responsibility in the
stage of production. Finally, it prevents feedback from production into design, from
the ‘how’ into the ‘what’ — a feedback that is, nevertheless, necessary and even
unavoidable, as I have explained earlier on in this chapter. Thus, the differentiation
of the practice of writing in software development is an attempt at foreclosing an
unavoidable iteration. For this reason, such a foreclosure is destined to fail — and
yet, the process of software development relies on it and tries to preserve it at all
times. The ‘opacity’ of the distinction between ‘writing” and ‘code’ becomes
apparent here: if it did not progress from specifications to code, the system would

never be realized. And yet, there is no ‘essential’ difference between the two.

To understand this point better, let me now examine two important remarks made in
the Garmisch conference report about the ‘dangerous’ nature of the distinction
between design and implementation (Naur and Randell 1969: 31). The first is
Dijkstra’s critique of such a ‘rigid separation’, which for him puts at risk the
‘correctness’ of software. One must be reminded here that the correctness of a piece
of software is defined as its compliance with what the specifications say that it will
do. In other words, correctness concerns the ‘what’ of the system. Dijkstra argues
that ‘[w]hether the correctness of a piece of software can be guaranteed or not
depends greatly on the structure of the thing made’ (31). Thus, for him, up to a
certain point the ‘what’ relies on the ‘how’ — or, better, the ‘how’ needs to be
constantly monitored against the ‘what’. Not surprisingly, once again the distinction
between design and implementation, documentation and code, the ‘what’ and the
‘how’ does not hold. In a way, it can be said that the ‘what’ can exist only as a
‘how’, that design can be realized only as implementation and documentation only

as code.

The second — and related - remark is Kinslow’s. For him, besides being hard to
break into clearly separate stages, software development must involve a certain
degree of iteration — that is, software cannot be developed without a process of

iteration. It is worth quoting him at length:

166




The design process is an iterative one. ... In my terms design consists of:

1. Flowchart until you think you understand the problem.

2. Write code until you realize you don’t.

3. Go back and re-do the flowchart.

4. Write some more code and iterate to what you feel is the

correct solution.
If you are in a large production project, trying to build a big system, you
have a deadline to write the specifications and for someone else to write
the code. Unless you have been through this before you unconsciously
skip over some specifications, saying to yourself: I will fill that in later.
You know you are going to iterate, so you don’t do a complete job the
first time. Unfortunately, what happens is that 200 people start writing
code. Now you start through the second iteration, with a better
understanding of the problem, and it is too late. This is why there is
version 1, version 2, version N. If you are building a big system and you
are writing specifications you don’t have the chance to iterate, the
iteration is cut short by an arbitrary deadline. This is the fact that must be
changed.
(Naur and Randell 1969: 32)

In this long passage Kinslow suggests his own solution for the difficult problem of
breaking down software development into steps. It is not important here to fully
understand what a flowchart is; what matters is that Kinslow emphasizes once again
the ‘iterative’ nature of the understanding of the software system (here again
understood as ‘the problem”). What I want to point out is that for Kinslow software
professionals understand the system through repeated attempts to build the system
itself. Drawing a flowchart is a first attempt to understand the system. On the basis
of this flowchart, some code is developed which constitutes a second, further
attempt to understand the system. At a certain point in time, the person writing the
code (which may or may not be the one who drew the flowchart) meets some
unexpected obstacle — typically, they realize that the flowchart contains some
inconsistency. Therefore, the second understanding of the system feeds back into
the first, causing it to be repeated differently and to produce a third understanding of

the system (again in the form of a flowchart) — and so on.

167




Not only is the process of understanding presented as a matter of ‘making visible’
here (for instance, code makes visible some inconsistencies or errors in the
flowchart), but also, if the person going through the iteration cycles is one and the
same, then their understanding of the system - what in philosophical terms we might
call their ‘consciousness’ - develops through the inscription of marks (flowcharts,
code). In other words, the very process of the exteriorization of the system through
writing makes the system understandable. To understand this point better, it is
important to recall how, in the tradition of originary technicity, technology is
understood as ‘the support for the inscription of memory’ (Hansen 2004: 3). In such
a tradition, technology is always related to memory, because any technical
instrument registers and transmits the memory of its use. For instance, as Stiegler
argues, a carved stone used as a knife preserves the act of cutting, thus becoming a
support for memory. In this sense, technology is the condition of the constitution of
our relation to the past. It is only through memory that human beings gain access to
their own past, and therefore become aware of themselves - that is, gain
consciousness (Stiegler 2003b). According to Stiegler, it can also be said that
human being ‘exteriorize’ their memory into technological objects, which in turn
are nothing but memory exteriorized. Also, functioning as a support for memory, a
technical object ‘forms the condition for the givenness of time in any concrete
situation’ (Hansen 2003: 3). From the point of view of originary technicity human
beings can experience themselves only through technology. I would go so far as to
say that the different kinds of inscription illustrated in Kinslow’s passage are the
way in which human consciousness constitutes itself in relation to software. The
question I want to ask at this point is: what is the relevance of looking at the
different stages of software development, as well as at the texts produced in these
stages, as parts of a process of exteriorization — that is, as part of the constitution of
time and consciousness? And, first of all, in what way does this understanding of
software development relate to the unexpected consequences of technology that 1
have examined earlier on in this chapter? To answer this question, let me analyze

Kinslow’s argument a little further.

168




As I have suggested above, a corollary of Kinslow’s argument is that iteration puts
the unforeseen consequences of technology at work in order to control technology:
for instance, an inconsistency in the flowchart becomes unexpectedly apparent in
code, in turn allowing for the modification of the flowchart itself. In fact, this
example shows how unpredictability works at a very subtle level in software
production - that is, it plays a pivotal role in enabling the passage between its
different stages. However, although in this passage Kinslow argues in favour of
iterability, he also acknowledges that in large projects which involve a huge number
of participants it is quite difficult to iterate the process of design. Drawing on his
own experience, Kinslow emphasizes that one tends to ‘skip’ parts of the
specification because one ‘unconsciously’ postpones the understanding of such
parts to the future. However, the subsequent development of code make visible this
gap in understanding — that is, it makes visible the unanticipated consequences of
the software system which is being developed. Hence the ‘danger’, or risk, implicit
in breaking down the process of software development into separate stages — danger
which is nevertheless unavoidable if software development is to progress from

specifications to code.

In sum, the different pieces of writing (or better, the different forms of material
inscription) produced in the process of software development - from specifications
written in natural language to code - differ only in terms of their foreclosure of time,
but such a foreclosure is ultimately impossible. The unexpected consequences of
software cannot be avoided in the last instance. Indeed, they need to exist in order
for software to exist, but they also must be excluded - continually and strenuously -
in order for software to reach points of stability (for instance, its existence in the

. ) 2
form of specifications, or flowcharts, or code). ?

1t is worth noting that Kinslow’s passage shows that the expression ‘to write code’ was very common
in the late 1960s. For instance, Kinslow states that, if different people are involved in the process of
iteration, different processes of writing start in different moments, drawing on different (and differently
flawed) points of departure, which leads to the development of different versions of the software system.
It is quite obvious from the Garmisch conference report that in 1968 the use of the term ‘writing’ in
relation to software was largely accepted, although writing had still to be theorized as a way to make
software visible — that is, as I have explained above, to understand it - and thus to control its
development.

169




Let me now explore the relationship that the different texts produced in software
development — and in particular code - entertain with time and the unexpected at

some length. To do so, it is worth analysing the following quotation from Ross:

The most deadly thing in software is the concept, which almost
universally seems to be followed, that you are going to specify what you
are going to do, and then do it. And that is where most of our troubles
come from. The projects that are called successful, have met their
specifications. But those specifications were based upon the designers’
ignorance before they started their job.

(Naur and Randell 1969: 32)

This complex passage deals with the central problem of software development, and
therefore of Software Engineering - namely, the impossibility of following a sure
path in which a system is completely and exhaustively specified before it can be
realized. This quotation shows that, from the very beginning, software professionals
had a very clear view of this ‘paradoxical’ aspect of Software Engineering.
Apparently here Ross discusses the fact that, as Kinslow also argues, the
specification of a system is never complete and that inconsistencies become clear
only later on, when the process of implementation starts.— That is, inconsistencies
are made visible by implementation, thus requiring an iterative improvement, — or
rewriting, of specifications. In fact, what Ross is saying here is that the sequencing
of the process of software development over time, which is the basis of Software
Engineering, is impossible as such. One invariably starts doing what one wants to
do before knowing what it is — this is how I want to reformulate Ross’ statement
here. This is where a paradox lies: a project is successful because it meets its
specifications - that is, it does what its specifications say it must do - but the
specifications were written when one did not actually know what the system was
supposed to do. How can something based on the lack of knowledge be realized
successfully? In this paradox the mutual constitution of time and technology
becomes apparent. Not only does one find out what the system does only by
constructing it; the original ignorance of what the system does is constitutive of the
system. One invariably starts neither completely knowing nor being completely

ignorant about what the system will do — and both knowledge and ignorance are

170




made visible through the very process of starting anyway. The act of writing
specifications for the system gives shape to the system by making some of its
unforeseeable consequences visible. In a way, as Derrida would have it, infelicity is
constitutive of the possibility of felicity.® This is how software constitutes time:
because, where does one start from? One always starts albeit one does not know
what will be. The system one designs now will become the past of the system one
will have realized. Such a system is unforeseeable — but one starts anyway, and this

constitutes both the present and the future of the system.

I want to emphasize here that one must be wary of the idea — suggested by Kinsley
and other conference participants - that the closer one is to the stage of
‘implementation’, that is, of code, the more ‘exteriorized’, and the less unexpected,
the consequences of software become. I want to argue instead that the
exteriorization of the software system always brings forth new and different
possibilities of unforeseen consequences. To understand this point better, let us look

at the concept of ‘notation’ as it is debated in the Garmisch conference report.

Quite early in the report Perlis points out that ‘software systems are mathematical in
nature’ and that, while a mathematical background is not necessary for a software
designer, yet ‘[such background] can only add to the elegance of the design’ (Naur
and Randell 1969: 37). Bauer adds: ‘Systems should be built in levels and modules,
which form a mathematical structure’ (37). And Kolence, in his conference paper,

clarifies:

At the abstract level, a concise mathematical notation is required by
which to express the essential structures and relationships irrespective of
the particular software product being implemented. For example, in the

area of computer central processor design, the notation that satisfies this

3% As I explained in Chapter Two, in his famous re-reading of Austin’s theory of the speech acts, Derrida
argues that Austin has not ‘interrogated infelicity as a law’ (Derrida 1988: 15). According to Austin, a
‘performative’ — such as the wedding formula ‘I do’ - cannot be true or false, but only felicitous or
infelicitous. However, Derrida emphasizes how the possibility of infelicity continues to constitute the
structure of a felicitous performative, thus ultimately demonstrating the citational or iterable nature of all
language.

171




requirements is Boolean Algebra. The notation of Ken Iverson is an
attempt to provide an equivalent notation for software.

(Naur and Randell 1969: 38)

In this passage Kolence points out the importance of having what today would be
named ‘formal notation’, or ‘formalism’ - and what he calls ‘mathematical notation’
- for design. For him such notation should perform the same functions that Boolean
Algebra performs in hardware design, and he quotes Ken Iverson’s notation as an
example of such a formalism. Most importantly, the concept of notation is
associated by Kolence with the idea of ‘expression’. I want to argue that ‘to
express’ actually means ‘to externalize’ here — again in the Stieglerian sense of the
exteriorization of consciousness through technology. For this reason, ‘notation’ can
be viewed as one of the possible modes of inscription of software — of which
specifications written in natural language, graphical flowcharts and computer
programs are all instances. To give but one example, the following sequences of

letters and numbers

MOV AX,[202]
A10202
101000010000001000000010

are three equivalent notations for the same state of polarities on a magnetic disk.
They are expressed in Assembler language, hexadecimal machine language and
binary machine language re:spectively.3 ! They are all part of software, since they are

all notations used in software development.

However, in another part of his conference paper Kolence argues for a notation
‘which permits an initial description of the internal design of software to be broken
apart into successively more detailed levels of design, ultimately ending up with the
level of code to be used” (Naur and Randell 1969: 47). Here Kolence attributes to
notation a significant role in the sequencing of time. Kolence’s short quotation is of

immense relevance, since it describes the whole process of software development,

311 will develop this point in greater detail in Chapter Five.

172




and the software system itself, as a process of inscription. I want to argue that
‘notation’ is here a synonym for the inscription of software and of the process of its
development over time. Different kinds of notation allow for different ways of
sequencing time.>> To understand this point better, it is worth noting how in the
same paper Kolence argues: ‘[a] design methodology, above all, should be coherent.
... Software design notation, for example, should decompose naturally from the
highest level of design description down to design documents which suffice for
maintenance of the final software’ (Naur and Randell 1969: 50). This quotation
describes the process of software design as a sequencing of notations that coincide
with steps in time — that is, it is as a sequenced process of exteriorization. From this
point of view, code can well be the most advanced stage of software development,
but it does not constitute the complete foreclosure of the unexpected consequences

of software.

But in what way does the unexpected keep emerging in code? To understand this
point, it is important to examine the so-called principle of extensibility. In the
Garmisch conference report extensibility is defined as the possibility of extending
the functionalities of the system by reprogramming parts of it (for instance, by
adding pieces of software) after the system has been completed and delivered to its
users. In his conference paper Letellier argues that a software system should be
‘open-ended’ — that is, it should have ‘syntactic flexibility in the input and
modularity in the implementation’ (Naur and Randell 1969: 38). More precisely, the
capacity of the system to allow for its own extension in the future — or for the
broadening of its own life-cycle in the future - is based on the characteristics of the
notation in which the system is ‘expressed’ (as Kolence would have it) — that is,
externalized. According to Letellier the system must extend into the future as far as
it can and as fast as it can, thus capturing and calculating time, while at the same

time leaving a gate to the unforeseeable open.

Importantly, the Garmisch conference report relates extensibility to the concept of

modularity. As H. R. Gillette states in his conference paper entitled ‘Aids in the

32 In this sense, computer circuits are themselves inscriptions — or, rather, circuits are notations, in the
Stieglerian sense of matter logically organized. I will come back to this important topic in Chapter Five.

173




Production of Maintenable Software’, modularity is one of the main characteristics

of a good design — that is, a design that keeps an eye on the future in order to make

the system easily maintainable. Gillette writes:

Three fundamental design concepts are essential to a maintainable
system: modularity, specification, and generality. Modularity helps to
isolate functional elements of the system. One module may be debugged,
improved, or extended with minimal personnel interaction or system
discontinuity. As important as modularity is specification. The key to
production success of any modular construct is a rigid specification of
the interfaces: the specification, as a side benefit, aids in the maintenance
task by supplying the documentation necessary to train, understand, and
provide maintenance. From this viewpoint, specification should
encompass from the innermost primitive functions outward to the
generalized function such as a general file management system.
Generality is essential to satisfy the requirement for extensibility.

(Naur and Randell 1969: 39 £)

This passage clarifies that modularity is a way of understanding the system

‘functionally’ - that is, in terms of tasks performed by smaller parts of the system

itself. At the same time, modularity helps in breaking down the process of system

production. Since, as we have already seen in the course of this chapter, a module is

a self-contained functional unit that requires a minimum of communication with

other modules, it can also be easily isolated with minimum disruption of service.?

3

Thus, when the software system is finished and in use, modules can be literally

‘taken out’

of the system and modified (for example, a malfunction can be fixed or a

functionality can be added) without stopping the whole system. It can be said that

33 It must be kept in mind that modules are pieces of software that work together to realize the general
purpose of the software system. Such cooperative functioning implies some kind of interaction between
modules, and the name given to such interactions is ‘communication’. It depends on the nature of the
particular software system how such ‘communication’ is realized. Modules can, for example, exchange

signals or share

a common area of memory. It is not fundamental now to understand this kind of

interaction in detail. Similarly, people developing single modules need to communicate with each other in
order to produce modules that are able to work together. Besides, if a module is changed by its
programmer, such change may affect the functioning of the whole system. According to Mahoney (2004),
the concept of modularization comes from the Fordist model incorporated in the industrialization of
software at the end of the 1960s.

174




modularity introduces a discontinuity in the system - that is, it breaks it down into
simpler and more manageable parts - in order to reduce discontinuity in time:
namely, to minimize its out-of-service time. In this perspective ‘documentation’,
here understood as the user manuals as well as the technical specifications that help
programmers understand the system, is presented as just a part of the broader
practice of ‘writing’ that encompasses the whole of software development.
However, the most relevant point here is that, once again, the unexpected
consequences of software are inscribed in software itself in all its forms; in
particular, they are inscribed in code by means of extensibility and modularity. The
combination of extensibility and modularity constitutes a way to calculate the future
— but at the same time, since nobody can anticipate what an open-ended system will
do, or what can be done with it, it also keeps the possibility of the unforeseeable

open.

Before recapitulating the argument of this chapter, let me briefly examine Gillette’s
use of the term ‘documentation’. Indeed, this mention of ‘documentation’ which
refers to those written texts that help the final user understand the software system —
generally called ‘user manuals’ - is extremely relevant, because it is here that the
figure of the ‘user’ makes its appearance in the Garmisch conference report. I want
to argue that in the report the ‘user’ is actually a name given to a part of the process
of software design. In the figure of the user both the instability of the instrumental
understanding of software and the capacity of software to escape instrumentality

through the unexpected consequences it generates become apparent.

In the Garmisch conference report ‘the user’ makes its appearance as a problematic
figure toward which software developers have ambivalent feelings. On the one
hand, J. N. P. Hume suggests that designers must not ‘over-react’ to individual users
— that is, in order to develop an effective and usable software system, they must
identify the requirements ‘common to a majority of users’ and focus on them (Naur
and Randell 1969: 40). On the other hand, J. D. Babcock argues for the intelligence
of the users. He comments: ‘[t]he users are the people who do our design, once we
get started” (40). In doing so, Babcock gives to ‘the users’ an essential role in the
process of software development various decades before the emergence of

cooperative Human-Computer Interface (HCI). As I explained in Chapter Two, HCI

175




technologies aim at facilitating the use of computers by human beings. They
presuppose a certain model of the user that has been criticized, for instance, by
Matthew Fuller (2003). Fuller highlights the narrowness of the model of the user
embedded in HCI, which he understands as ‘functionalist’ (Fuller 2003: 13). For
example, through the human interface of a real-time system a pilot can drop bombs
or a stockbroker can move funds efficiently precisely because the interface
represents its user in terms of functions performed — that is, in terms of tasks and
efficiency. Fuller is critical of such ‘idealization’ of the user and suggests a shift
from the model of the individualised user typical of standard HCI toward different
approaches such as Participatory Design — where users provide continuous feedback
to programmers in a process of cooperative design. However, according to Fuller
the approach of HCI is too much characterized by ‘functionalism’ to be genuinely
critical — that is, however ‘human-centred’, computer interfaces are designed on the
basis of an ideal model of the user. And yet what I want to point out here is that the
analysis of the emergence of the ‘user’ in the Garmisch conference report shows
how the possibility of getting important feedback from the users has always been
present in the theories and practices of Software Engineering. Even more
importantly, the ‘user’ is inscribed in these theories and practices not just as an
‘idealization’ or a ‘function’ of the system, but as a field of forces constitutive of the

whole process of software development.

To understand this point better, it is worth looking at the passages of the report
where the conference participants express their discomfort in interacting with the
user. Manfred Paul depicts the user as someone who ‘does not know what he
needs’, but he couples this with another kind of ignorance: users are actually ‘cut
off from knowing what is or what might be available’ (40). And Perlis adds:
‘Almost all users require much less from an operating system than is provided’ (40).
In these two passages users are understood alternately as unable to understand their
own needs — and thus unable to pose clear requests to technology — and
overwhelmed by the technological offer — and thus incapable of making the most of
the functionalities provided by technology. These complaints about ‘users’ are a
familiar feature not just of Software Engineering, but of the general approach of
software developers to their non-technical counterparts (see, for instance, Bolter

1984). However, it would be reductive to interpret such complaints merely in terms

176




of the difficulties encountered by software practitioners in communicating with non-
technical users. Importantly, J. W. Smith notices that designers usually refer to
users as ‘they’, ‘them’ (Naur and Randell 1969: 40) - a strange breed living ‘there in
the outer world, knowing nothing, to whom nothing is owed’. He also adds
disapprovingly that most designers ‘are designing... for their own benefit — they are
literally playing games’ — they have no conception of validating their design - or at
least of evaluating it in the light of potential use (40). This representation of the user
as someone ‘out there’ — someone whose ‘needs’ should be taken into account in
order to validate software instrumentally — is particularly relevant if we want to
understand how the figure of the user operates in Software Engineering. 1 want to
suggest that the ‘user’ and their ‘needs’ are part of the fictional ‘origin’ of the
software system. As I have shown earlier on, in the Garmisch conference report
‘society’ is the locus of a projection of the ‘demands’ that are supposedly made to
technology — while at the same time a pre-existing ‘problem’ is projected in the
world ‘out there’ in order to justify the existence of software. Here I want to
emphasize how the figure of the user plays a role analogous to the ‘problem’ — that
is, the user’s needs are part of a narrative that software developers construct in order
to justify the system they are developing. This is not to say that users do not really
exist or that they do not express their demands in terms of what functionalities
should be provided by a software system. In fact, the Garmisch conference report
takes the communication with users very seriously at all levels. And yet, what I
want to point out is that the figure of the “user’ is positioned by the report outside
the process of software development in a constant and incomplete movement of
‘expulsion’ of certain characteristics of software as ‘user needs’. In Goos’s words,
software developers need to ‘filter the recommendations coming from the outside’
(41). A double strategy is at work here, which acknowledges the importance of
users while focusing on how to keep them at bay. Randell even laments the amount
of time wasted on ‘fending off the users’ (41). Thus, ‘the user’ is both constituted
and neutralized through various practices of writing: while it is acknowledged that
software development is set in motion by the very existence of (potential) users and
that it needs their feedback, the very inscription of the software system in terms of
specifications, design, code and user manuals acts as a form of containment of the

(supposed) user’s exigencies.

177




Even more importantly, as I have suggested above, the figure of the user is
associated with the extensibility of software. Not only, according to Letellier,
should a software system be ‘open-ended’ — therefore allowing its developers to
modify it in the future (Naur and Randell 1969: 38) — but also, in Gillette’s terms,
‘documentation’ must be provided to users — that is, written texts whose goal is ‘to
train, understand, and provide maintenance’ (39). In Gillette’s perspective the
inscription of the software system must be done so as to make it easily
understandable, and an important part of such an inscription must be written in
natural language and delivered to the final users together with code — (the ‘working’
software system) in order for them to be able to understand and use the system. This
part of ‘software’ — which, as I have explained above, goes under the name of ‘user
manuals’ — is what enables users to engage in an active relationship with software.
Ultimately, user manuals allow users to engage with a system whose open-
endedness is inscribed in code. Therefore, documentation also constitutes a point
where the capacity to take advantage of such open-endedness and to take the system
into an unexpected direction is ultimately handed over to the users. This does not
mean that any user can actively reprogram any system. In fact, according to the
Garmisch conference report, one of the aims of software developers is to make the
system ‘dumb-proof” — that is, robust and resilient enough to resist ‘improper’ uses
on the part of inexperienced and non-technical users (Naur and Randell 1969: 40).
And yet, it seems to me that the figure of the user is the locus where the
instrumentality of software is both reasserted by implicitly defining it as a tool to be
‘used’ and opened up to unexpected consequences. As I will show in Chapter Four,
the ambivalent figure of the user will be at the core of many unexpected

developments of Software Engineering in the 1980s and 1990s.

To summarize my argument in this chapter, Software Engineering emerges as a
strategy for the industrialization of the production of software at the end of the
1960s, where software is understood as a process of material inscription that
continuously opens up and reaffirms the boundaries between ‘software’ itself,
‘writing” and ‘code’. Software Engineering establishes itself as a discipline through
the attempt to control the constitutive fallibility of software-based technology. Such
fallibility — that is, the unexpected consequences inherent in software - is dealt with

through the organization and linearization of the time of software development.

178




Furthermore, Software Engineering understands software as the ‘solution’ to pre-
existent ‘problems’ or ‘needs’ present in society, therefore advancing an
instrumental understanding of software. However, both the linearization of time and
the understanding of software as a tool are continuously undone by the unexpected
consequences brought about by software — which must be excluded and controlled
in order for software to reach a point of stability but which at the same time remain
necessary to its development. Through the analysis of the different stages of
software development described in the Garmisch conference report I have attempted
to demonstrate how the unforeseeable consequences of software are inscribed in
software in all its forms; in particular, they are inscribed in code by means of its
characteristic of ‘extensibility’ and ‘modularity’. The combination of extensibility
and modularity constitutes a way to calculate the future of an open-ended software
system — but, since nobody can anticipate what an open-ended system will do, or
what can be done with it, it also keeps the possibility of the unforeseeable open. The
figure of the ‘user’ of software represents both the instability of the instrumental
understanding of software and the capacity of software to escape instrumentality
through the unexpected consequences it generates. In the next chapter I will
investigate the development of Software Engineering in the 1970s and 1980s. I will
also present the emergence of the open source movement in the 1990s as one of the

unforeseen consequences of the Software Engineering of the late 1960s.

179




4 From the Cathedral to the Bazaar

Software as the Unexpected

Any tool should be useful in the expected way, but a truly great
tool lends itself to uses you never expected.

(Raymond 2000: 16)

In Chapter Three I argued that in the foundational texts of Software Engineering of
the late 1960s ‘software’ was constituted as a process of material inscription, an act
of conceptualisation that took place through the continuous undoing and redoing of
the boundaries between ‘software’ itself, ‘writing’ and ‘code’. In this chapter, I want
to investigate how the mutual co-constitution of ‘software’, ‘writing’ and ‘code’ was
established in the Software Engineering of the late 1970s and early 1980s. I want to
argue that in this period Software Engineering reconfirmed its capacity for
continually opening up and reasserting the instrumental conception of software —
that is, the understanding of software as a tool. I also want to show how the
emergence of open source programming in the 1990s, with its own brand of
Software Engineering practices and theories, can be understood as one of the
unforeseen consequences generated by the conception of software of the 1970s and

1980s.

Let me briefly recall my argument of the previous chapters in order to show the
importance of investigating the relationship between software and instrumentality.
In Chapter One I argued that an instrumental understanding of technology is not

sufficient to allow us to make sense of new technologies, and especially of software-

180




based technologies. Drawing on Bernard Stiegler’s thought (1998a), I questioned the
dominant philosophical conception of technology based on the Aristotelian tradition,
which substantially devalues technology as a mere instrument (see Aristotle 1984, 3-
4). I then turned to the work of those thinkers who distance themselves from such an
mstrumental understanding and instead propose a view of technology as constitutive
of the human (such as Stiegler himself, as well as Martin Heidegger and Jacques
Derrida). Timothy Clark (2000) calls this approach the tradition of ‘originary
technicity’ — a term he borrows from Richard Beardsworth (1996). Thus, I argued
for a radical rethinking of the conceptual framework of instrumentality if an

understanding of technology is to be made possible.

In Chapter Two I then showed how the study of software as a historically specific
technology is important for a radical rethinking of the relationship between
technology and the human. Following Derrida’s insight on ‘new technologies’, and
his clarification of how difficult it is to conceive them merely in terms of
instrumentality (Derrida 1983), I set out to investigate how, on the one hand,
software can illuminate the role of technology in the constitution of the human - that
1s, shed light on ‘originary technicity’ - while, on the other hand, it also displays a
persistent ‘complicity’ (in Derrida’s terms) with the instrumental understanding of
technology. I also argued that it is impossible to investigate ‘software’ in general,
since what we call ‘software’ takes many forms in many different contexts. I
focused on the constitution of the term ‘software’ — in relation with ‘writing’ and
‘code’ - in the early theories and practices of Software Engineering at the end of the
1960s. In Chapter Three I showed how Software Engineering was constituted as a
discipline in the context of the industrialization of software production and how in
Software Engineering instrumentality takes the form of the regulation of the
relationship between ‘software’, ‘writing’ and ‘code’. In particular, I argued that
Software Engineering was established as a methodology for the management of the
risks implicit in software. In the late 1960s software professionals were faced with
the need to evaluate the feasibility of ‘large’ and innovative software systems, and
they understood such feasibility in terms of the management of time. They were
aware that software development was not easily manageable, due to the intrinsic
fallibility of software, and they instituted Software Engineering precisely as a
methodology for calculating the constitutive unpredictability of software. Such

181




calculation was performed as the sequencing of the process of software development
in different spans of activity — in other words, as a sequencing of time. For this
reason, I argued that Software Engineering established itself as a discipline through

the (impossible) expulsion of the constitutive fallibility of software.

In Chapter Three I also explained how each stage of the process of software
development produced, as a result, a piece of writing. Each piece of writing was the
point of departure for the following phase, and it was supposed to be used as a tool
for developing other written texts. Some of these texts were called ‘specifications’,
some were called ‘software’ or ‘programs’ or ‘code’, but these terms kept shifting.
All those texts were considered means to ‘make visible’ the software system, and
each text constituted a refinement in the understanding of the system. In fact,
software professionals understood the system through repeated attempts to build the
system itself. Software professionals developed their understanding of the system
through writing — that is, through different forms of material inscription that they
named ‘specifications’, ‘documentation’ and ‘code’. Ultimately, this very process of
inscription — what in philosophical terms, and following Stiegler, I called the
‘exteriorization’ of the system through writing - made the system understandable. I
went so far as to suggest that such an inscription was the way in which

consciousness constituted itself in relation to software.

By the early 1970s software production was steadily industrialized. Nevertheless, in
the 1970s and throughout the 1980s Software Engineering kept questioning itself as
a discipline and constantly re-evaluated the validity of its methodologies - especially
those deployed for time management. In this chapter, I want to investigate in what
way the ‘incalculability’ of software re-emerged in Software Engineering during the
1970s and 1980s. More precisely, I want to argue that in this second phase of
Software Engineering, even though the sequencing of the process of software
development appeared consolidated, software kept escaping its instrumentality by
giving rise to unforeseen consequences. Not only did the distinction between
‘software’, ‘writing” and ‘code’ remain unstable, but, most importantly, ‘software’
remained intrinsically fallible. Furthermore, in the mid-1970s the problem of
coordinating different ‘minds’ (Brooks 1995: 32) — that is, the individual software

professionals who took part in a single software project - made its appearance in

182




Software Engineering. If one views software in terms of the exteriorization of
consciousness, it can be said that consciousness was made discrete, and divided into
different, and sometimes conflicting, individual consciousnesses. The coordination

between individual consciousnesses was understood in terms of ‘communication’.

In order to investigate how the problem of software calculability was approached in
the 1970s and 1980s, in this chapter I examine two of the fundamental texts on time
management in software development, both written by Frederick Brooks in the mid-
1970s and mid-1980s respectively. The first one is Brooks’ book entitled The
Mpythical Man-Month. Originally published in 1975, it rapidly became the most
famous text on time estimates in the whole history of Software Engineering and
remained extremely influential for at least two decades. However, ten years later, in
1986, Brooks published an article entitled “No Silver Bullet’, which also became a
classic, where he revised his theses of 1975. Such a revision stimulated a heated
debate among Software Engineering scholars and practitioners. An accurate analysis
of Brooks’ work of 1975 and 1986 is key to understanding in what way the
calculability of time in software development was conceptualized during the late
1970s throughout the 1980s and early 1990s. In the final section of this chapter I
contrast Brooks’ understanding of time against the one proposed by the open source
movement by looking at the foundational article of Software Engineering for open
source programming — namely, Eric Steven Raymond’s ‘The Cathedral and the
Bazaar’. Written in 1997 and republished on-line many times, this article constitutes
Raymond’s answer to Brooks’ original argument on time. As I have already
anticipated above, this analysis will lead me to view the open source movement as
an unforeseen consequence of Software Engineering that proposes a totally
unexpected answer to the problem of coordination between various software
designers. It does so by replacing software development as a process of
communication with software development as a collective process of overlapping

re-inscriptions.
Fred Brooks became the project manager of the Operating System/360 (OS/360) at

IBM in 1964. As I explained in Chapter Three, OS/360 contained many technical

innovations and became largely popular, albeit it entailed — as it was quite common

183




at the time — a number of technical flaws.! The main problem encountered by the
0OS/360 project was related to time management. As Brooks would candidly recall
ten year later, OS/360 ‘was late ..., the costs were several times the estimate, and it
did not perform very well until several releases after the first’ (Brooks 1995: xi).
Brooks left IBM in 1965, when he joined the University of North Carolina at Chapel
Hill and began a careful investigation of what had actually gone wrong with the
0OS/360 development in 1964-65. The result was his 1975 book entitled The
Mpythical Man-Month, where he meticulously examined his experience and
identified his fundamental mistake as a project manager in terms of wrong time
estimates - also putting forward what later on would become known as “The Brooks’
Law’ on time management.” Let me now examine Brooks’ argument in this book in
order to investigate in what way he conceptualizes the question of time management

in software development.

The imaginative style deployed by Brooks in The Mythical Man-Month is replete
with metaphors, many of which have a distinct Biblical flavour — first and foremost
the famous metaphor of software development as a ‘cathedral’ which, as I will show
later on in this chapter, will be countered by Raymond with his metaphor of the
‘bazaar’ (Raymond 2000). Let me start here with the examination of the image that
opens Brooks’ book - namely, the ‘tar pit’ (Brooks 1995: 4). Brooks writes: ‘large-
system programming has over the past decade been such a tar pit, and many great
and powerful beasts have thrashed violently in it. Most have emerged with running
systems — few have met goals, schedules, and budgets’ (4). What I want to argue
here is that the ‘tar pit’ is nothing but a figure of time — or, more precisely, a figure
of the failure of time management in software development. As I showed in Chapter
Three, the problem of time management is one of the crucial points debated in the
Garmisch conference report — namely, in the main text documenting the emergence

of Software Engineering as a discipline during the NATO Conferences of 1968 and

! One must be reminded here that the very concept of ‘operating system’ was highly innovative at the
time, and that every new operating system substantially innovated on the previous ones {Glass 2003).

? The edition I refer to in this chapter was republished in 1995 as a tribute to the 20™ anniversary of The
Mythical Man-Month’s publication. It comprises a special preface written by Brooks in 1995, the original
(unmodified) 1975 book, Brooks’ 1986 article ‘No Silver Bullet’, and a response that Brooks wrote in
1987 to confute many of the critiques directed to his article (plus useful additional material, including a
table of the contents of The Mythical Man-Month that he still deemed useful in 1995, as well as his
remarks on the parts he later rejected).

134




1969. In order to recall how time management is presented in the report, let me

recapitulate my argument briefly here.

According to the Garmisch conference report, the participants in the first
conferences on Software Engineering view software technology as a constantly
innovating field that advances ever too fast. They perceive the speed of software
growth ‘with more alarm than pride’ (Naur and Randell 1969: 15). The report
represents constant technological innovation as a series of big and dangerous leaps
forward, and suggests that a step-by-step approach would be a safer way to develop
software. At the same time, being confronted with the question of the feasibility of
so-called ‘large’ software systems (of which operating systems such as OS/360 are
but one example), the report establishes that the inability to estimate the feasibility
of a software project in a reliable way leads to the impossibility of carrying it out
step by step, and ultimately to its failure. The failure of a software project is

therefore related to failure in time management.

And yet, quite strikingly, Brooks’ metaphor of the tar pit seems to suggest that, if
there is a problem with software development, it has to do with slowness rather than
with excessive speed. No single factor, he adds, seems to be uniquely responsible
for the delays of software development: ‘any particular paw can be pulled away’
from the tar pit, but the accumulation and interaction of simultaneous factors ‘brings
slower and slower motion’ (4). Brooks’ image of time as a tar pit is also an image of
sinking — or, more precisely, of slower motion: one moves slower and slower, until
one sinks. Indeed, sinking seems almost unavoidable, since ‘the fiercer the struggle,

the more entangling the tar’ (4).

Brooks’ aim in The Mpythical Man-Month is to understand the tar pit in which
0S/360 ‘sank’ when he was its project manager and, more generally, to comprehend
all the tar pits that seem to threaten the development of the majority of large
software systems in the early 1970s. It is important to notice that, at the time of his
writing, software development is already understood as an industrialized process.
The industrialization of software, that - as I showed in Chapter Three - was still
under way in the late 1960s, is taken by Brooks as a fait accompli. He actually

distinguishes ‘programming’ - the individual task of writing a program - from the

185




development of a ‘programming system product’ - the industrial production of large
software systems - and clearly establishes that he is interested in the latter. The very
expression ‘programming system product’ emphasises both the systematic and the
industrial aspects of the kind of software that Brooks wants to examine. However,
the activity of programming is part of the development of software products, and it
is from the examination of this activity that Brooks starts. For him, no matter how

fulfilling, creative and rewarding, programming also presents many ‘woes’. Brooks

writes:

First, one must perform perfectly. The computer resembles the magic of
legend in this respect... If one character, one pause, of the incantation is
not strictly in proper form, the magic doesn’t work. Human beings are
not accustomed to be perfect, and few areas of human activity demand it.
Adjusting to the requirement for perfection is, I think, the most difficult

part of learning to program.

(Brooks 1995: 8)

In this extremely interesting passage Brooks identifies the perfection of the
programmer’s performance with the perfection of the piece of software he is
writing. In fact, it is software that has to perform perfectly — namely, it has to
conform to its own specifications which, as we already know, basically describe the
required behaviour of the system. Software must be perfect - that is, it must perform
as expected: it must be perfectly foreseeable. Intriguingly, Brooks associates such
perfection with magic and identifies the good functioning of software with the good
functioning of the spell. He also points out that everything is relevant in the written
form of a program: a different character or a misplaced space can determine a totally
unexpected behaviour of the program when it is executed, thus failing to execute the

spell perfectly. In other words, a misplaced character makes time incalculable?

3 It is worth noting how for Brooks a pause in spell chanting equals a space in the text of the program.
Although, as I will show in the next chapter, there is no simple equivalence between the use of spacing in
a given computer program and the time of its execution, spaces (or blanks) actually determine how a
program will be executed. I will propose a detailed analysis of such a relationship in Chapter Five.

186




In sum, for Brooks perfection corresponds to the perfect control of time — albeit, he
adds regretfully, perfection is not of this world. Thus, Brooks seems to acknowledge
the intrinsic fallibility of software — fallibility that is also repeatedly mentioned in
the Garmisch conference report. However, Brooks maintains that ‘adjusting to the
requirement for perfection’ is a difficult but necessary part of programming, and that
the objective of a perfect (enchanted) control of time has to be pursued at all cost.
Importantly, here Brooks associates enchantment with the foreseeable, and therefore
with instrumentality - in other words, with the perfect performance of software as a
tool. His position echoes Franz L. Alt and Morris Rubinoff’s interpretation of the
‘seductive fascination’ of software magic that I briefly examined in Chapter Three
(Alt and Rubinoff 1968). Although it might also seem to resonate with Alfred Gell’s
understanding of the ‘enchantment’ of technology, Brooks’ conception of
enchantment is much closer to Alt and Rubinoff’s argument than to Gell’s.* For
Gell, ‘enchantment’ indicates the mystifying social effects of technology: when the
functioning of technology is not understood by society, the latter misrepresents the
former as the result of magic. Even though Alt and Rubinoff boast about the esoteric
aspects of technology, for them the ‘seductive fascination of software’ is first of all
related to intellectual pleasure and to the mastery of the human ‘wizard’ over
technology. Similarly, for Brooks ‘magic’ does not obscure the functioning of
technology — it does not mean ‘mystery’. In fact, magic sheds light on software, it
‘demystifies’ it: since the secret of a well-functioning spell is its perfect formulation,
all we need in order to make software work is to write it perfectly. For this reason,
magic is perfectly predictable, and so must be software: a good spell does what it is

supposed to do, as much as a good software system meets its specifications.’

Even more importantly, and consistently with his metaphor of the tar pit, Brooks
downplays the importance of the speed of software growth that just a few years
earlier in Garmisch was considered such a big problem (Naur and Randell 1969:

14). Brooks points out that, although software systems start becoming obsolete as

* One must be reminded here how Alfred Gell (1992) establishes a strong relationship between art,
technology and magic. He views art as a special form of technology and argues that the magical prowess,
which is supposed to have entered the making of the art object, depends on the level of cultural
understanding that surrounds it. In fact, society misrepresents to itself the technically achieved excellence
of a work of art as a product of magic.

3 In the second section of this chapter I will argue that Raymond (2000), in turn, associates magic with the
unforeseeable: for him, the emergence of working large software systems from the practices of open
source programming is a sort of ‘magic’ — or even a ‘miracle’.

187




soon as they are completed, newer products take time to be designed and
implemented. Therefore, the obsolescence of an existing software product is not as
fast as it might seem. ‘Of course’, Brooks writes, ‘the technological base on which
one builds is always advancing. As soon as one freezes a design, it becomes
obsolete in terms of its concepts. But implementation of real products demands
phasing and quantizing’ (Brooks 1995: 5 [original emphasis]). For Brooks, being
time-consuming, the very activity of developing a ‘real’ software system imposes
limits on the speed of technology. Although technology remains a process of
constant innovation, once again Brooks seems to be concerned with the slowness of
software growth, rather than with its speed. For him, software is anything but ‘a
device that goes faster than its own time’ — the image proposed by Stiegler to
indicate the new relationship that contemporary technology entertains with time
(Stiegler, 1998a: 15).° But since software was still undergoing a process of constant
innovation in the mid-1970s, in what way could software professionals perceive

software as ‘slow’?

Crucially, Brooks understands slowness first and foremost as the fact that projects
tend to fall behind schedule. He clarifies: ‘more software projects have gone awry
for lack of calendar time than for all other causes combined’ (14). Brooks’ ‘calendar
time’ stands for industrialized, discrete, ‘quantized’ time. From a Heideggerian
perspective, this is ‘enframed’ time — namely, time as a resource of which
programmers might fall short during the process of software development. Thus, for
Brooks software development is worryingly ‘slow’ in terms of industrial time - or
the sequenced time that is already common practice in the industrial production of
software in the mid-1970s. After all, one needs a deadline in order to be late. For
Brooks the slowness of software is not a general slowness in the technological
advancement of software; rather, it is software’s resistance to conform to the

deadlines of industrial production.

8 Stiegler’s favoured analogy is that of ‘a supersonic device, quicker than its own sound’, whose breaking
of the sound barrier provokes ‘a violent sonic boom, a sound shock’ (Stiegler, 1998: 15). In Chapter
Three I showed how in the late 1960s software was considered a technology that continually exceeded its
own boundaries through constant innovation. To name this process, software professionals coined the
term ‘software crisis’ (Gries 1989: 98).

188




In sum, Brooks attributes software’s ‘slowness’ — the ‘tar pit’ - to the ineffective
management of time, and particularly to bad time estimates. And yet, he upholds the
perfect management of time as the (impossible) ideal of software development.
Brooks debates here the fundamental problem of the industrial production of
software — namely, the establishment of realistic time estimates, which in turns leads
to the setting of reasonable schedules, so that the corresponding deadlines can be
met. In large-scale software systems, he notices, a project manager and his staff are
in charge of these decisions, and they make them on the basis of their experience as
programmers and possibly as project managers of earlier projects. And yet, Brooks
warns, ‘all programmers are optimists’ (14). Programmers — here describing all the
technical personnel involved in a software project, including project managers -
always assume that there will be ‘enough time’. In fact, this notion of ‘optimism’ is
crucial for the understanding of Brooks’ concept of software’s slowness. What I
want to argue here is that ‘optimism’ actually conveys the impossibility of
estimating the unexpected. Programmers are incapable of calculating all the possible
consequences of software development, including those that will require more
labour than expected and that will therefore delay the completion of a project. As I
pointed out in Chapter Three, the Garmisch conference report explicitly relates the
‘software crisis’ of the late 1960s to the ‘craft mentality’ of software professionals,
and presents the ‘scientific planning’ of time, as well as software industrialization,
as the solution (Galler 1989: 97; Naur and Randell 1969: 17). Seven years later,
Brooks’ book shows that the question of time management is still unresolved,
although it is represented in quite a different way — namely, through the depiction of
software as something that is advancing slower than expected. However, the
production of time estimates is no easy task, and it is directly linked to the
sequencing of the process of software development. Let me now investigate this

connection further.

As we have seen, the foundational texts of Software Engineering are quite clear
about the difficulty of following ‘a sure path’ in software development — in other
words, of conforming to a step-by-step sequence in which a system is completely
and exhaustively specified before it can be realized (Naur and Randell 1969: 32).
The Garmisch conference report presents a rather clear view of such a “paradoxical’

aspect of Software Engineering. For instance, it acknowledges that the

189




specifications of a software system are never complete, and that inconsistencies
become clear only later on, when the process of implementation starts — i.e.,
inconsistencies are made visible by implementation, and this requires an iterative
improvement (or a rewriting) of specifications. In fact, the sequencing in time of the
process of software development, which is assumed as the scientific basis of
Software Engineering, is an impossible task. One invariably starts to do what one
wants to do before knowing what it is. The paradox is that a software project is
successful when it meets its specifications - that is, when it does what its
specifications say it does - but the specifications were written when one did not
actually know what the system was supposed to do. Thus, in order to clarify Brooks’
idea of the ‘slowness’ of software, it is important to ask the following question: in
what way does Brooks deal with the problem of the sequencing of the process of
software development and with the emergence of inconsistencies during such a
process? To understand why for Brooks software is slow (or late), it is necessary to

find out in what way he sets deadlines to software development.

In order to answer the above question, it is worth noting that Brooks understands
software development as a ‘creative’ process.’ In The Mythical Man-Month Brooks
explicitly quotes Dorothy Sayers’ book, The Mind of the Maker, which explores at
length the analogy between human creation (especially literary creation) and the
Christian doctrine of the Trinity. Sayers divides any creative activity into the three
stages of the ‘idea’, the ‘implementation’ and the ‘interaction’ — a division that will
remain fundamental in Brooks’ thought and that ten years later he will still support,
by explicitly relating it to the Aristotelian separation between the essential and the
accidental, the ideal and the material. It is worth noting here that what Brooks refers
to as ‘Aristotelian’ is in fact the distinction between the ideal and the material
established by Plato in the Republic (and then reflected in Aristotle’s philosophy).
Such a distinction is expressed in the well-known myth of the cave (Republic, 514a-
519a), in which Plato depicts ordinary human beings, deprived of philosophical

education, as prisoners in a cave forced to look at shadows rather than at real things

7 The Garmisch conference report also gives a relevant role to ‘creativity’ in software development: it is
an unforeseeable creative leap on the part of programmers that allows the transition between the different
stages of software development — particularly, the transition from a supposedly pre-existent problem (to
which software constitutes the solution) toward software itself. As I will clarify in a moment, Brooks
proposes a different understanding of ‘creativity’: for him, creativity constitutes the foundation of the
whole process of sequencing in software development.

190




— by this implying that the ordinary world of sensible objects is far less real than the
world of concepts or Forms (Plato 2000).® However, in his 1975 book, Brooks

paraphrases Sayer as follows:

A book... or a computer, or a program comes into existence first as an
ideal construct ... It is realized in time and space, by pen, ink, and paper,
or by wire, silicon, and ferrite. The creation is complete when someone
reads the book, uses the computer, or runs the program, thereby
interacting with the mind of the maker.

(Brooks 1995: 15)

This passage clarifies that for Brooks the three stages of creation roughly coincide
with the conception of a work of art or technology, its concretization in a material
form, and its fruition on the part of viewers, readers and so on. But then Brooks
adds, somewhat unexpectedly: ‘for the human makers of things, the incompleteness
and inconsistencies of our ideas become clear only during implementation. Thus it is
that writing, experimentation, “working out” are essential disciplines for the
theoretician’ (15). Notwithstanding his belief in the separation between the
conception of a project and its realization, or between the conceptual and the
material dimensions — which will become even clearer in his article of twenty years
later, where he will introduce an even less tenable distinction between ‘concept’ and
‘representation’ — here Brooks seems to be aware that the process of software
development is essentially one of ‘exteriorization’. In turn, such exteriorization

involves the iteration between different stages.

To understand this point better, we should note how Brooks’ distinction between
conception and realization mirrors the one between software as a product and
software as a process that is also constantly opened up and reaffirmed in the
Garmisch conference report. As I showed in Chapter Three, a ‘point of opacity’ of
the early texts of Software Engineering is the distinction between process and
product, which, albeit necessary, cannot be maintained at all times. In fact, the

Garmisch conference report makes clear that a certain confusion exists between the

¥ Brooks does not reference Aristotle’s work directly. However, the distinction between essence and
accident is formulated by Aristotle in Metaphysics VII 4-6, 10-11 and 17 (Aristotle 1984).

191




concept of the software system and the concept of its development. While the
software system is envisaged as a set of interrelated components that work together
in order to achieve a goal, its development is described as the process through which
the system itself is constructed (or ‘written’). Nevertheless, the system and its
development are never clearly separable. For instance, the failures in the process of
software development — failures that lead to time and investment spinning out of
control — are attributed to the poor understanding of the software system in the first
place. On the other hand, understanding the system is presented as a matter of
‘making it visible’: for instance, ‘code’, or the implementation of the software
system, can make visible inconsistencies or errors in a flow chart - that is, in the
specifications of the system. For this reason, some iteration between the stages of
specification and implementation is necessary. In Chapter Three I also argued that if
the person going through the iteration cycles is one and the same, then their
under