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Abstract

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire
stories recently made available by Reuters, Ltd. for research purposes. Use of this data for research
on text categorization requires a detailed understanding of the real world constraints under which
the data was produced. Drawing on interviews with Reuters personnel and access to Reuters doc-
umentation, we describe the coding policy and quality control procedures used in producing the
RCV1 data, the intended semantics of the hierarchical category taxonomies, and the corrections
necessary to remove errorful data. We refer to the original data as RCV1-v1, and the corrected data
as RCV1-v2. We benchmark several widely used supervised learning methods on RCV1-v2, illus-
trating the collection’s properties, suggesting new directions for research, and providing baseline
results for future studies. We make available detailed, per-category experimental results, as well as
corrected versions of the category assignments and taxonomy structures, via online appendices.

Keywords: applications, automated indexing, controlled vocabulary indexing, effectiveness mea-
sures, evaluation, feature selection, k-NN, methodology, multiclass, multilabel, nearest neighbor,
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1. Introduction

Text categorization is the automated assignment of natural language texts to predefined categories
based on their content. It is a supporting technology in several information processing tasks, includ-
ing controlled vocabulary indexing, routing and packaging of news and other text streams, content
filtering (spam, pornography, etc.), information security, help desk automation, and others. Closely
related technology is applicable to other classification tasks on text, including classification with
respect to personalized or emerging classes (alerting systems, topic detection and tracking), non-
content based classes (author identification, language identification), and to mixtures of text with
other data (multimedia and cross-media indexing, text mining).

Research interest in text categorization has been growing in machine learning, information re-
trieval, computational linguistics, and other fields. This partly reflects the importance of text cat-
egorization as an application area for machine learning, but also results from the availability of
text categorization test collections (Lewis, Schapire, Callan, and Papka, 1996; Lewis, 1997; Yang,
1999; Sebastiani, 2002). These are collections of documents to which human indexers have as-
signed categories from a predefined set. Test collections enable researchers to test ideas without
hiring indexers, and (ideally) to objectively compare results with published studies.

Existing text categorization test collections suffer from one or more of the following weak-
nesses: few documents, lack of the full document text, inconsistent or incomplete category assign-
ments, peculiar textual properties, and/or limited availability. These difficulties are exacerbated by
a lack of documentation on how the collections were produced and on the nature of their category
systems. The problem has been particularly severe for researchers interested in hierarchical text
categorization who, due to the lack of good collections and good documentation, have often been
forced to impose their own hierarchies on categories (Koller and Sahami, 1997; Weigend, Wiener
and Pedersen, 1999).

Even if current collections were perfect, however, there would be an ongoing need for new
ones. Just as machine learning algorithms can overfit by tuning a classifier’s parameters to the
accidental properties of a training set, a research community can overfit by refining algorithms that
have already done well on the existing data sets. Only by periodically testing algorithms on new
test collections can progress be verified.

A data set recently made available, Reuters Corpus Volume 1 (RCV1) (Rose, Stevenson and
Whitehead, 2003), has the potential to address many of the above weaknesses. It consists of over
800,000 newswire stories that have been manually coded using three category sets. However, RCV1
as distributed is simply a collection of newswire stories, not a test collection. It includes known
errors in category assignment, provides lists of category descriptions that are not consistent with
the categories assigned to articles, and lacks essential documentation on the intended semantics of
category assignment.

This paper attempts to provide the necessary documentation, and to describe how to eliminate
miscodings where possible. We begin in Section 2 by describing the operational setting in which
RCV1 was produced, with particular attention to the categories and how they were assigned. Be-
sides being crucial to understanding the semantics of the category assignments, the insight into
operational text categorization may be of independent interest. Section 3 examines the implications
of the production process for the use of RCV1 in research, and Section 4 summarizes the changes
we recommend to produce a better test collection, which we call RCV1-v2. (We refer to the original
data as RCV1-v1.)
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Appendix Description
1 Valid Topic categories
2 Original Topics hierarchy
3 Expanded Topics hierarchy
4 Valid Industry categories
5 Best-guess Industries hierarchy
6 Valid Region categories
7 IDs of RCV1-v2 documents
8 RCV1-v2 Topic assignments
9 RCV1-v2 Industry assignments
10 RCV1-v2 Region assignments
11 SMART stopword list
12 Tokenized RCV1-v2 data
13 Vectorized RCV1-v2 data (LYRL2004 training/test split)
14 Term dictionary for vectorized data
15 Contingency tables for experimental results
16 RBB Topics list
17 RBB Industries list
18 RBB Regions list

Table 1: List of online appendices accompanying this paper. They provide data sets used in or
produced by the experiments, as well as additional information on the RCV1 collection,
and are explained later in the paper.

Sections 2 to 4 are based on Reuters documentation, interviews with Reuters personnel, and sta-
tistical analysis of the documents and categories. To complement this analysis, we provide bench-
mark results on RCV1-v2 for well-known supervised learning approaches to text categorization.
These results provide future users with a standard for comparison, as well as reassurance that the
tasks posed by the corrected collection are neither trivial nor impossible. Section 5 gives the design
of our experiments, Sections 6 & 7 discuss the algorithms and text representation, and Section 8
presents the benchmark results and observations. We end with some thoughts on research directions
the new collection may support.

Several online appendices accompany this paper, and are listed in Table 1.

2. Coding the RCV1 Data

Apart from the terrible memories this stirs up for me personally (coding stories through
the night etc.), I can’t find fault with your account.

– Reuters editor commenting on a draft of this section.

The RCV1 data was produced in an operational setting at Reuters, Ltd., under procedures that
have since been superceded. Only later was use of the data in research contemplated. Informa-
tion that in a research setting would have been retained was therefore not recorded. In particular,
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no formal specification remains of the coding practices at the time the RCV1 data was produced.
However, by combining related documentation and interviews with Reuters personnel we believe
we have largely reconstructed those aspects of coding relevant to text categorization research.

2.1 The Documents

Reuters is the largest international text and television news agency. Its editorial division produces
some 11,000 stories a day in 23 languages. Stories are both distributed in real time and made
available via online databases and other archival products.

RCV1 is drawn from one of those online databases. It was intended to consist of all and only
English language stories produced by Reuters journalists between August 20, 1996, and August 19,
1997. The data is available on two CD-ROMs and has been formatted in XML.1 Both the archiving
process and later preparation of the XML dataset involved substantial verification and validation of
the content, attempts to remove spurious or duplicated documents, normalization of dateline and
byline formats, addition of copyright statements, and so on.

The stories cover the range of content typical of a large English language international newswire.
They vary from a few hundred to several thousand words in length. Figure 1 shows an example story
(with some simplification of the markup for brevity).

2.2 The Categories

To aid retrieval from database products such as Reuters Business Briefing (RBB), category codes
from three sets (Topics, Industries, and Regions) were assigned to stories. The code sets were orig-
inally designed to meet customer requirements for access to corporate/business information, with
the main focus on company coding and associated topics. With the introduction of the RBB product
the focus broadened to the end user in large corporations, banks, financial services, consultancy,
marketing, advertising and PR firms.

2.2.1 TOPIC CODES

Topic codes were assigned to capture the major subjects of a story. They were organized in four hi-
erarchical groups: CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Government/Social),
and MCAT (Markets). This code set provides a good example of how controlled vocabulary schemes
represent a particular perspective on a data set. The RCV1 articles span a broad range of content,
but the code set only emphasizes distinctions relevant to Reuters’ customers. For instance, there are
three different Topic codes for corporate ownership changes, but all of science and technology is a
single category (GSCI).

2.2.2 INDUSTRY CODES

Industry codes were assigned based on types of businesses discussed in the story. They were
grouped in 10 subhierarchies, such as I2 (METALS AND MINERALS) and I5 (CONSTRUCTION).
The Industry codes make up the largest of the three code sets, supporting many fine distinctions.

1. Further formatting details are available at http://about.reuters.com/researchandstandards/corpus/.

364



RCV1: A NEW BENCHMARK COLLECTION

<?xml version="1.0" encoding="iso-8859-1" ?>
<newsitem itemid="2330" id="root" date="1996-08-20" xml:lang="en">
<title>USA: Tylan stock jumps; weighs sale of company.</title>
<headline>Tylan stock jumps; weighs sale of company.</headline>
<dateline>SAN DIEGO</dateline>
<text>
<p>The stock of Tylan General Inc. jumped Tuesday after the maker of
process-management equipment said it is exploring the sale of the
company and added that it has already received some inquiries from
potential buyers.</p>
<p>Tylan was up $2.50 to $12.75 in early trading on the Nasdaq market.</p>
<p>The company said it has set up a committee of directors to oversee
the sale and that Goldman, Sachs &amp; Co. has been retained as its
financial adviser.</p>
</text>
<copyright>(c) Reuters Limited 1996</copyright>
<metadata>
<codes class="bip:countries:1.0">
<code code="USA"> </code>

</codes>
<codes class="bip:industries:1.0">
<code code="I34420"> </code>

</codes>
<codes class="bip:topics:1.0">
<code code="C15"> </code>
<code code="C152"> </code>
<code code="C18"> </code>
<code code="C181"> </code>
<code code="CCAT"> </code>

</codes>
<dc element="dc.publisher" value="Reuters Holdings Plc"/>
<dc element="dc.date.published" value="1996-08-20"/>
<dc element="dc.source" value="Reuters"/>
<dc element="dc.creator.location" value="SAN DIEGO"/>
<dc element="dc.creator.location.country.name" value="USA"/>
<dc element="dc.source" value="Reuters"/>
</metadata>
</newsitem>

Figure 1: An example Reuters Corpus Volume 1 document.
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2.2.3 REGION CODES

Region codes included both geographic locations and economic/political groupings. No hierarchical
taxonomy was defined.

2.3 Coding Policy

Explicit policies on code assignment presumedly increase consistency and usefulness of coding,
though coming up with precise policies is difficult (Lancaster, 1998, pp. 30-32). Reuters’ guidance
for coding included two broad policies, among others. We have named these policies for conve-
nience, though they were not so named by Reuters:

1. Minimum Code Policy: Each story was required to have at least one Topic code and one
Region code.

2. Hierarchy Policy: Coding was to assign the most specific appropriate codes from the Topic
and Industry sets, as well as (usually automatically) all ancestors of those codes. In contrast
to some coding systems, there was no limit on the number of codes with the same parent that
could be applied.

These policies were (imperfectly) implemented by a combination of manual and automated
means during coding, as discussed below and in Section 3.3.

2.4 The Coding Process

During the years 1996 and 1997, the period from which the corpus is drawn, Reuters produced just
over 800,000 English language news stories per year. Coding was a substantial undertaking. At one
point Reuters employed 90 people to handle the coding of 5.5 million English language stories per
year. However, this figure includes both English language stories produced by Reuters journalists
and ones obtained from other sources, and included additional code sets not present in the RCV1
data. Therefore, the exact effort devoted to documents and codes of the sort represented in RCV1 is
unclear, though one estimate is around 12 person-years (Rose, Stevenson and Whitehead, 2003).

Coding of Reuters-produced stories was accomplished in three stages: autocoding, manual edit-
ing, and manual correction.

2.4.1 AUTOCODING

Stories first passed through a rule-based text categorization system known as TIS (Topic Identi-
fication System), a descendant of the system originally developed for Reuters by Carnegie Group
(Hayes and Weinstein, 1990). Most codes had at least one rule that could assign them, but automated
coding was not attempted for some codes believed to be beyond the capability of the technology.
Two of the codes perceived to be difficult were GODD (human interest) and GOBIT (obituaries).
It is interesting to note that these two categories proved in our experiments to be two of the most
difficult to assign automatically.

In addition to their text, some stories entering the system already had codes, from a different
code set (the “Editorial codes”), that had been manually assigned by journalists. Some simple
“source processing” rules were used that mapped these codes to equivalent codes in the final code
set. For example, a story with the Editorial code SPO (Sport) would automatically be assigned
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the final code GSPO. Other source processing rules triggered on other parts of the markup, for
instance assigning any story whose slug (a brief line of identifying information on a newswire
story) contained the string “BC-PRESS DIGEST” to the most general news code (GCAT).

Finally, as discussed in Section 3, some Topic, Industry, and Region codes were assigned on the
basis of other codes of the same or different type, to enforce the Hierarchy Policy or capture other
relationships.

2.4.2 MANUAL EDITING

The output of TIS was automatically checked for compliance with the Minimum Code policy. If so,
the story was sent to a holding queue. If not, the story was first sent to a human editor. This editor
would assign the codes they felt applied, while ensuring the story got at least one Topic and one
Region code. Editors could also delete or change automatically assigned codes. Editors occasionally
fixed errors in the formatting of the story during this phase, but their primary responsibility was
correction of coding. The edited story then went to the holding queue for final review.

2.4.3 MANUAL CORRECTION IN THE HOLDING QUEUE

Every six hours, the holding queue was reviewed by editors, who had the opportunity to correct
mistakes in coding. Once stories passed through the holding queue, they were batched up and
loaded into the database in blocks.

2.5 Coding Quality

Human coding is inevitably a subjective process. Studies have shown considerable variation in in-
terindexer consistency rates for different data sets (Cleverdon, 1991). The process described above
was an attempt to achieve high consistency and correctness for the Reuters codes. Stories were sam-
pled periodically and feedback given to coders on how to improve their accuracy. The consistency
of coders with each other and with standards was evaluated from samples and found to be high,
though we were not able to obtain quantitative data from these evaluations for publication.

Table 2 provides some additional evidence of consistency of the coding. It shows, for the year
1997, how many stories had autocoding that failed the Minimum Code test and thus underwent
manual editing, as well as how many had at least one code corrected in the holding queue. Note that
RCV1 contains stories spanning parts of 1996 and 1997, so the number of stories in the corpus is
not the same as the number of stories in Table 2.

A total of 312,140 stories had autocoding that failed the Minimum Code test and were thus
manually edited. All of these stories were also reviewed by a second editor in the holding queue,
but only 23,289 or 13.4% had codes changed by that second editor. In contrast, 334,975 (66.2%) of
the 505,720 stories whose autocoding passed the Minimum Code test were changed in the holding
queue. In other words, a manually edited coding was much less likely to be overridden in the
holding queue than a coding assigned by the automated system.

It should be noted that an annotation let editors reviewing the holding queue know which stories
had been manually edited, and this undoubtedly influenced their choice of stories to correct. Ta-
ble 2 therefore cannot be considered an objective measure of interindexer consistency. However, it
provides some additional evidence that the different human coders were mostly in agreement on the
meaning of the codes. Rose, Stevenson and Whitehead (2003) present additional data on corrections
by editors.
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Manually Corrected
No Yes

Manually Edited No 170,745 334,975
Yes 288,851 23,289

Table 2: Number of stories produced by Reuters in 1997 that received manual editing and/or manual
correction.

2.6 The Evolution of Coding at Reuters

It should be mentioned that the above approach, based on TIS and manual correction, has since been
superceded at Reuters. The rule-based approach of TIS had several drawbacks:

• Creating rules required specialized knowledge, thus slowing down the addition of new codes
and the adaptation of rules to changes in the input.

• The rules did not provide an indication of the confidence in their output. There was thus
no way to focus editorial correction on the most uncertain cases, nor any way of detecting
(except by violation of coding policy) that new types of stories were appearing that would
suggest changes or additions to the code set.

Reuters now uses a machine learning approach for text categorization. Classifiers are induced
from large amounts of training data, with a feedback loop to trigger the involvement of human
editors (based on autocoding confidence scores) and analysis tools to indicate when new training
data/categories may be required.

3. RCV1 and Text Categorization Research

A test collection is more than a corpus. In this section we consider how the production and character
of RCV1 impact its use for text categorization research. In Section 4 we go on to describe how to
correct errors in the raw RCV1 data (which we call RCV1-v1) to produce a text categorization test
collection (which we call RCV1-v2). Therefore here we present statistics for both versions of the
data, indicating when they are different.

3.1 Documents

RCV1 contains 35 times as many documents (806,791 for RCV1-v1, and 804,414 for RCV1-v2) as
the popular Reuters-21578 collection and its variants (Lewis, 1992, 1997), and 60 times as many
with reliable coding. Indeed, the only widely available text categorization test collection of com-
parable size is OHSUMED (Hersh, Buckley, Leone, and Hickman, 1994; Lewis, Schapire, Callan,
and Papka, 1996; Yang and Pedersen, 1997; Yang, 1999) at 348,566 documents. While useful,
OHSUMED has disadvantages: it does not contain the full text of documents, its medical language
is hard for non-experts to understand, and its category hierarchy (MeSH) is huge and structurally
complex.

RCV1 is also “cleaner” than previous collections. Stories appear one to a file, and have unique
document IDs. IDs range from 2286 to 810597 for RCV1-v1, and 2286 to 810596 for RCV1-v2.
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There are gaps in the range of IDs in the original RCV1-v1, and additional gaps (due to deleted
documents) in RCV1-v2. Regrettably, the ID order does not correspond to chronological order
of the stories, even at the level of days. Fortunately, the documents do have time stamps (in the
<newsitem> element), and chronological order at the level of days can be determined from those.
The time stamps do not give a time of day since the stories were taken from an archival database,
not from the original stream sent out over the newswire.

XML formatting of both text and metadata in RCV1 simplifies use of the data. The fact that
the stories are from an archival database means fewer brief alerts (the infamous “blah, blah, blah”
stories of Reuters-21578), corrections to previous stories, and other oddities. RCV1 contains all or
almost all stories of a particular type from an interval of one year. For temporal studies, this is a
major advantage over Reuters-21578, which had bursty coverage of a fraction of a year.

The processes that produced the archival database and, later, the research corpus, were inevitably
imperfect. Khmelev and Teahan (2003) discuss a number of anomalies in the corpus, including the
presence of approximately 400 foreign language documents. They also emphasize the presence of
duplicate and near-duplicate articles. Some of these simply reflect the fact that very similar stories
do occasionally appear, particularly ones containing financial data. In other cases multiple drafts of
the same story were retained. Some simple accidents undoubtedly occurred as well.

We found between 2,500 and 30,000 documents that could be considered duplicates of some
other document, depending on the definition of duplication. Our analysis is consistent with that of
Teahan and Kmelev, who found 27,754 duplicate or substantially overlapping documents in their
analysis.

Whether the number of duplicates, foreign language documents, and other anomalies present in
RCV1 is problematic depends on the questions a researcher is using RCV1 to study. We believe the
number of such problems is sufficiently small, or sufficiently similar to levels seen in operational
settings, that they can be ignored for most purposes.

3.2 Categories

RCV1 documents are categorized with respect to three controlled vocabularies: Topics, Industries,
and Regions. In this section, we discuss the three RCV1 category sets and their implications for text
categorization experiments. In particular, we describe our interpretation of the hierarchical structure
for each code set, something that is not made clear in the documentation on the RCV1 CD-ROMs.

3.2.1 TOPIC CODES

The file topic codes.txt on the RCV1 CD-ROMs lists 126 Topic codes. However, some of these
codes were not actually used by editors at the time the RCV1 data was categorized. Various evi-
dence, including Reuters documentation on an alternate version of the Topics hierarchy, suggests
that these codes were not used:

1POL, 2ECO, 3SPO, 4GEN, 6INS, 7RSK, 8YDB, 9BNX, ADS10, BRP11, ENT12,
PRB13, BNW14, G11, G111, G112, G113, G12, G13, G131, G14, GEDU, MEUR.

This leaves 103 Topic codes we believe were actually available for coding, and which we there-
fore recommend be used in text categorization experiments. We provide a list of valid Topic codes
as Online Appendix 1. As it happens, all of these 103 codes occur at least once in both the RCV1-v1
and RCV1-v2 datasets. Their corpus frequencies span five orders of magnitude, from 5 occurrences
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for GMIL (MILLENNIUM ISSUES), to 374,316 occurrences (381,327 in RCV1-v2) for CCAT
(CORPORATE/INDUSTRIAL). Note that some Topic category frequencies are higher in RCV1-v2
than in RCV1-v1, despite RCV1-v1 having fewer documents, because RCV1-v2 fills in missing
hierarchical expansions of Topic categories (Section 4).

The code symbols inserted in articles to indicate their membership in categories were chosen
so that related categories would have related codes. This “morphological structure” of the codes
reflects two distinct needs:

1. Defining a hierarchy to support automated assignment of more general codes on the basis of
(manual or automated) assignment of more specific codes (Section 3.3).

2. Imposing an alphanumeric sort order that grouped related codes, aiding manual lookup.

For instance, the code C311 (DOMESTIC MARKETS) is a child in the hierarchy of its truncation,
code C31 (MARKETS/MARKETING). Code C311 also appears near related codes, such as C32
(ADVERTISING/PROMOTION), in an alphanumeric listing.

The original hierarchy used for automated assignment can be reconstructed as follows:

1. Treat the codes CCAT, ECAT, GCAT, and MCAT as actually being the corresponding single
letters C, E, G, and M.

2. To find the parent of a code, remove the minimal suffix such that the result is another code.
The codes C, E, G, and M have as parent the root of the tree.

However, there are other versions of the hierarchy that might be of interest. In particular, one
could introduce an additional level of the hierarchy corresponding to the high level numeric group-
ings that aided lookup. This can be done by first adding to the hierarchy the artificial codes C1-C4,
E1-E7, G1, and M1, and then following the above procedure. Taking into account this new hierarchy
level might (or might not) improve the effectiveness of hierarchy-based algorithms when assigning
the original 103 categories. (We doubt it is interesting to actually assign the 13 artificial codes to
documents or to measure classifiers’ accuracy at assigning them.)

Online Appendix 2 specifies the original version of the hierarchy. It contains a total of 104
nodes: 103 for assignable Topic codes and 1 root node. Online Appendix 3 specifies a hierarchy
that includes the two-character truncations as a new intermediate layer. It contains a total of 117
nodes: 103 for assignable Topic codes, 13 nodes in the new non-assignable intermediate layer, and
1 root node.

Editors were able to assign any of the 103 Topic codes to a story, not just codes at leaf nodes of
the hierarchy. They were instructed to use the most specific code applicable to a particular aspect
of a story, a common indexing principle (Lancaster, 1998, pp. 28-30). Codes at internal nodes of
the hierarchy thus acted much like named “Other” categories, implicitly forming a contrast set with
their child codes.

However, in the RCV1 data a non-leaf code may be present not because it was directly found to
be applicable, but because it was the ancestor of a code found to be applicable. We call this “Other
+ expansion” semantics, to distinguish it from pure “Other” semantics. We discuss the implications
of this for research use of RCV1 in Section 3.3.
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3.2.2 INDUSTRY CODES

The file industry codes.txt on the RCV1 CD-ROMs lists a total of 870 codes. Most do not appear
in the documents and at first glance they appear confusing and redundant. As discussed below, only
354 of these codes appear to have been available for use by the coders. We therefore recommend
that only these 354 codes (which we list in Online Appendix 4) be used in experiments.

Of the 354 valid Industry codes, 350 have at least one occurrence in the corpus (in both RCV1-v1
and RCV1-v2). Nonzero category frequencies range from two for I5020030 (RESERVOIR CON-
STRUCTION) and I5020050 (SEA DEFENCE CONSTRUCTION) to 34,788 (34,775 in RCV1-v2)
for I81402 (COMMERCIAL BANKING). In contrast to Topic and Region codes, Industry codes
were not required to be assigned. Only a subset of documents (351,812 for RCV1-v1 and 351,761
for RCV1-v2) have them.

The Industry codes incorporate many fine-grained distinctions in subject matter. (For instance,
there are five variations on the real estate industry.) They may therefore provide a test of the ability
of text categorization systems to distinguish small differences in content.

As with Topics, the Industry code symbols encode both a hierarchy and a numeric sort order.
The hierarchy was used for automated assignment of ancestor categories, though these automated
assignments were imperfectly preserved in RCV1 (Section 3.5.2). In addition, some use of relation-
ships between codes for companies (not present in the RCV1 CD-ROMs) and codes for Industries
was used during automated assignment of Industries.

Several anomalies of the morphology of the Industry code symbols, and in the way the codes
were used, make the relationships among codes hard to discern. We first discuss these anomalies,
and then how to deal with them for experimental purposes.

Anomaly 1: The legacy editing interface used by coders required Industry code symbols to
be either six or eight characters, regardless of hierarchy position. For instance, here is a subset of
the codes in the form that editors apparently conceived of them (we indent the codes to indicate
hierarchical structure):

I8 FINANCIAL AND BUSINESS SERVICES
I82 INSURANCE

I82001 COMPOSITE INSURANCE
I82002 LIFE INSURANCE
I82003 NON-LIFE INSURANCE

I8200316 MOTOR INSURANCE
I8200318 REINSURANCE

However, the editing interface required that the codes be padded to six or eight characters with
trailing digits. The trailing digits are usually (but not always) 0’s. Thus the above codes are present
in industry codes.txt in this form:

I80000 FINANCIAL AND BUSINESS SERVICES
I82000 INSURANCE

I82001 COMPOSITE INSURANCE
I82002 LIFE INSURANCE
I82003 NON-LIFE INSURANCE

I8200316 MOTOR INSURANCE
I8200318 REINSURANCE
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The 6- or 8-character padded versions of the codes are the ones found in the RCV1 documents. We
refer to these as “padded” codes, and the raw versions (which more directly encode the hierarchy)
as “unpadded” codes.

Anomaly 2: The hierarchical expansion software apparently required a code list containing
codes in both unpadded and padded forms, and the intermediate forms as well. So the file indus-
try codes.txt actually contains:

I8 FINANCIAL AND BUSINESS SERVICES
I80 FINANCIAL AND BUSINESS SERVICES
I800 FINANCIAL AND BUSINESS SERVICES
I8000 FINANCIAL AND BUSINESS SERVICES
I80000 FINANCIAL AND BUSINESS SERVICES

I82 INSURANCE
I820 INSURANCE
I8200 INSURANCE
I82000 INSURANCE

I82001 COMPOSITE INSURANCE
I82002 LIFE INSURANCE
I82003 NON-LIFE INSURANCE

I8200316 MOTOR INSURANCE
I8200318 REINSURANCE

Anomaly 3: There are nine 7-character codes (such as I815011) in industry codes.txt. Codes
with seven characters were purely a navigational aid to editors in searching the code set. These 7-
character codes were not assigned to documents either by editors or during hierarchical expansion.

Anomaly 4: There are nine codes labeled TEMPORARY, eight with 6 characters and one with
five characters. There are also two codes labeled DUMMY CODE (I9999 and I99999). These ap-
pear to be placeholders where new, meaningful codes (or navigational aids) might have been added
but weren’t. These codes were not assigned to documents either by editors or during hierarchical
expansion.

Anomaly 5: The top level of codes, I0 through I9 in unpadded form (I00000 through I90000 in
padded form), were apparently not allowed to be assigned to documents.

Anomaly 6: The code I50000 was assigned to documents. It is a 6-character padding of un-
padded code I500 (GENERAL CONSTRUCTION AND DEMOLITION), not a padding of disal-
lowed unpadded code I5 (CONSTRUCTION).

Anomaly 7: There are six cases (excluding TEMPORARY and DUMMY codes) where two or
more distinct 6- or 8-character padded codes have the same name in industry codes.txt. Each of
these cases appears to have a different interpretation, as described next.

Anomaly 7a: The unpadded code I161 (ELECTRICITY PRODUCTION) has two padded
forms, I16100 and I16101, listed in industry codes.txt. The code I16100 is assigned to many doc-
uments, but I16101 to none. Other documentation suggests I16101 should not be considered an
assignable code, and that the children of I16101 should instead be considered children of I16100.

Anomaly 7b: The padded codes I22400 and I22470 both have the name NON FER-
ROUS METALS. Other documentation suggests the original name for I2247 (padded to I22470)
was OTHER NON FERROUS METALS and that it is a child of I224 (padded to I22400). Both
I22400 and I22470 are assigned to documents, so both should be viewed as assignable.
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Anomaly 7c: The padded codes I45500 (HOUSEHOLD TEXTILES) and I64700 (HOUSE-
HOLD TEXTILES) are distinct codes with the same name. The I455 version is in the subhierarchy
for I4 (PROCESSING INDUSTRIES), while I647 is in the subhierarchy for I6 (DISTRIBUTION,
HOTELS AND CATERING). Both should be viewed as assignable, and both are in fact assigned to
documents.

Anomaly 7d: The 6-character code I47521 (TRADE JOURNAL PUBLISHING) has a
single child code, I4752105 (TRADE JOURNAL PUBLISHING). There are no occurrences of
I47521 on the corpus, but several occurrences of I4752105. Other documentation also suggests that
I4752105 is the unpadded version of the code, while I47521 was not available for use.

Anomaly 7e: The codes I64000 and I65000 have the name RETAIL DISTRIBUTION. At
one point these apparently referred to “RETAIL - GENERAL” (I64000) and “RETAIL - SPECIAL-
IST” (I65000). Later the two were merged, and it appears that for the RCV1 data they should be
considered to be the same code. The code I64000 is assigned to documents, while I65000 is not, so
the children of I65000 should instead be considered children of I64000, and I65000 ignored.

Anomaly 7f: Similarly to Anomaly 7a, the unpadded code I974 (TELEVISION AND RA-
DIO) has two 6-character paddings: I97400 and I97411. The code I97400 is assigned to many
documents, while I97411 is assigned to none. Other documentation also suggests I97411 was not
available for use. I97411 should be considered unavailable, and its children should be considered
children of I97400.

Anomaly 8: The padded code I16300 has the name “ALTERNATIVE ENERGY” which is
slightly different than the name (“ALTERNATIVE ENERGY PRODUCTION”) for the apparent
unpadded version of it (I163). Other documentation suggests there is not meant to be a distinction
between these, so we rename I16300 to “ALTERNATIVE ENERGY PRODUCTION”.

Given these anomalies, we believe the set of Industry codes that were available to be assigned
to documents are those from industry codes.txt that satisfy these criteria:

• Have six or eight characters (i.e., five or seven digits)

• Are not named DUMMY or TEMPORARY

• Are not of the form Ix0000, except for I50000

• Are not any of I16101, I47521, I65000, or I97411.

There are 354 such Industry codes, of which 350 appear in the corpus (both RCV1-v1 and
RCV1-v2). The four available codes that do not appear in any document (I32753, I3302018, I841
padded to I84100, and I84802) are leaf nodes of the hierarchy. They have narrow enough meanings
that there plausibly was no RCV1 document to which they were applicable. We provide a list of
these 354 Industry codes as Online Appendix 4.

Reproducing the hierarchical structure in which the codes were embedded is more difficult.
In producing our best guess at the hierarchy, we made use both of documentation (of uncertain
vintage) from Reuters and of the UK Standard Industrial Classification of Economic Activities (UK
SIC(92)) (Great Britain Office for National Statistics, 1997, 2002), since it is known that some
version of the UK SIC was consulted by Reuters personnel during design of the Industries codes.
One of our informants also suggested that some codes from a set defined by the International Press
Telecommunications Council (http://www.iptc.org/) may have been used as well, but we have not
been able to determine which codes these were.
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We also had to choose what kinds of codes to include in the hierarchy. We decided to omit
TEMPORARY, DUMMY, and 7-character codes, as well as other codes that weren’t available to
editors. The only exception to requiring that codes have been assignable was that we included the
unassignable second level codes I0 through I9.

Online Appendix 5 contains our hierarchy. It has 365 nodes: one root, the 10 second level codes
I0 through I9, and the 354 assignable codes. As part of the hierarchy file, we include the name of
each node. We rename I22470 to OTHER NON FERROUS METALS, I45500 to HOUSEHOLD
TEXTILES PROCESSING, and I64700 to HOUSEHOLD TEXTILES DISTRIBUTION, so that all
valid codes have a unique name.

3.2.3 REGION CODES

The file region codes.txt on the RCV1 CD-ROMs contains 366 geographic codes, of which 296
occur at least once in the corpus. The Reuters documentation we could obtain suggests that all 366
of these codes were available to Reuters editors, and so are appropriate to use in experiments. We
provide a list of these 366 valid Region codes as Online Appendix 6. Nonzero class frequencies span
the range from one (for 10 codes in RCV1-v1 and eight codes in RCV1-v2) to 266,239 (265,625 in
RCV-v2) for USA.

In addition, three codes with a total of four occurrences are present in the RCV1 articles but not
in the file region codes.txt, bringing the total number of Region codes actually present in RCV1-v1
articles to 299. These codes are CZ - CANAL ZONE (one occurrence), CZECH - CZECHOSLO-
VAKIA (two occurrences), and GDR - EAST GERMANY (one occurrence). These codes appear
to be errors, so in producing RCV1-v2 relevance judgment files we replaced them by what appear
to be the corresponding correct codes from region codes.txt: PANA (PANAMA), CZREP (CZECH
REPUBLIC), and GFR (GERMANY).

While no formal category hierarchy is provided with the RCV1 data, some Reuters personnel
did view the Region codes as falling into three informal groups: Countries, Regional Groupings, and
Economic Groupings. Other personnel viewed the latter two groups as not being clearly distinct.
We did not find documentation defining the groupings, and so do not include a hierarchy or grouping
of Region categories in our online appendices.

Hierarchies or networks of Region categories could be defined based on geographic, economic,
political, or other criteria. Indeed, one Reuters informant has indicated that there was automatic
assignment of some country codes based on company codes (not present in RCV1), and automated
assignment of some regional or economic grouping codes (such as GSEVEN) based on country
codes of member countries. We have not investigated this issue.

Whether assigning RCV1 Region codes is a good test of text categorization capability as op-
posed to named entity recognition capability (Grishman and Sundheim, 1995), is debatable. It is
clear, however, that assigning Region codes is not solely a named entity task. There are many sto-
ries that mention the United States, for instance, that are not assigned to the USA code, and there
are Region codes which are not named entities, such as WORLD and DEVGCO (DEVELOPING
COUNTRIES).

3.2.4 RBB FILES

Just as the final version of this paper was being submitted, Reuters gave permission to publicly
release some of the documentation we used in the above analysis. We therefore include, as Online
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Appendices 16, 17, and 18, the RBB lists of Topics, Industries, and Region codes. RBB refers to
the Reuters Business Briefing archival database offering (Section 2.2).

The RBB files present code sets that are related to the codes appearing in the RCV1 docu-
ments, and to the codes specified in the CD-ROM files industry codes.txt, topic codes.txt, and re-
gion codes.txt. None of the corresponding sets of codes is exactly identical to any of the others,
however, and the time period during which any particular set of codes was in use is not clear. We
have slightly edited the Topics and Industries RBB files to fix some inconsistencies in code names,
and to add descriptions for two codes missing from the RBB data, to make the resulting files more
consistent with the RCV1 data. (Note that the Industries files also contains the RBB descriptions
for the intermediate non-code nodes I0 through I9.) We have not edited the Regions RBB file, since
it has significant differences from the RCV1 data.

Despite these differences, the RBB files should prove a useful supplement to the CD-ROM files,
particularly since the RBB files give more extensive descriptions of some categories.

3.3 Coding Policy

Coding policies specify certain requirements for how coding should be done, beyond an editors’
judgment of which codes capture the content of a particular text. As mentioned in Section 2.3,
at least two coding policies, which we call the Hierarchy Policy and the Minimum Code Policy,
were used by Reuters during the period the data in RCV1 was produced. We discuss here their
implications for the use of RCV1 as a test categorization test collection.

3.3.1 IMPLICATIONS FOR CORPUS PROPERTIES

The Hierarchy Policy required that when a Topic or Industry code was assigned to an article, all
the codes which were ancestors of it in the Topic code hierarchy should be assigned as well. (The
application of this policy in producing the data that became RCV1 was imperfect, as discussed in
Section 3.5.) Adding ancestor codes creates some very high frequency codes (CCAT is assigned to
46% of the corpus), as well as strong, partially deterministic, dependencies between hierarchically
related codes.

The Minimum Code Policy required that articles get at least one Region code and one Topic
code. This policy probably did not greatly affect the codes assigned, since the code sets themselves
were designed to cover the likely content of the newswire. However, unlike the Hierarchy Policy,
the Minimum Code Policy did require human coders to change their behavior: in cases where they
might otherwise decide that no code applies, they were forced to choose some assignment. From a
statistical standpoint, the Minimum Coding Policy introduces a weak dependence among all codes
in a set.

3.3.2 IMPLICATIONS FOR ALGORITHM DESIGN

If one knows that the correct categorization of a document obeys coding policies, it is natural to
attempt to modify a text categorization algorithm so its output obeys those policies. Whether doing
this will actually improve the effectiveness of a given system is, however, less clear.

The obvious approach to implementing the Hierarchy Policy is to run a categorizer as usual, and
then add the ancestors of all assigned categories if not already present. This runs the risk, however,
of adding a high level category which was rejected by a well-trained classifier, on the basis of a low
level category assigned by a less well-trained classifier.
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How easy (and desirable) it is to implement the Minimum Code Policy varies with the text
categorization method. For instance, a common strategy in text categorization is to create a sep-
arate binary classifier for each category. This approach is likely to assign no categories to some
documents, and so would sometimes violate the Minimum Code Policy.

3.3.3 IMPLICATIONS FOR EVALUATION

When testing algorithms on a corpus produced using a particular coding policy, should one disallow
outputs that violate that policy? This is often done when testing algorithms for multiclass (1-of-k)
categorization: only algorithms that assign exactly one category for each test document are allowed.
In an operational setting the data model, software interfaces, or other constraints might require strict
adherence to coding policy.

On the other hand, if we view the system’s output as something which will be reviewed and
corrected by a human editor, a more relaxed approach may be appropriate. Rather than forbidding
outputs that violate coding policy, one can instead measure the effort that would be required to
correct these policy violations, along with correcting any other errorful assignments.

One way to measure the effort that would be required to correct errors is simply to compute the
usual microaveraged or macroaveraged effectiveness measures from binary contingency tables for
the categories. This is the approach we adopt in reporting benchmark results in Section 8.

3.4 Was Each Document Manually Coded?

There are two somewhat conflicting worries that one might have about the RCV1 corpus. One is
that a portion of the corpus might have been missed during coding, as was the case with Reuters-
21578 (Lewis, 1997). Conversely, one might worry that the use of autocoding (Section 2.4.1) means
that achieving good effectiveness on RCV1 is an exercise in rediscovering the (possibly simple and
uninteresting) rules used by the automated categorizer.

We believe neither worry is justified. Reuters procedures assured that each story was coded
automatically, and then had those codes checked by at least one, and sometimes two human editors.
Further, a simple check of the raw RCV1-v1 corpus shows no documents that are totally lacking in
codes, though some are missing one or another type of obligatory code (Section 3.5.2).

On the second question, we note that for each document a human editor always made the final
decision on the codes to be assigned. Indeed, Table 2 shows that on average 79% of stories had
at least one autocoding decision overruled. This argues that, despite the use of automated coding,
RCV1 can be considered a manually categorized test collection.

We believe that the only code whose automated assignment was not checked in this process was
GMIL, for millennium-related stories. This was automatically assigned, possibly without manual
checking, sometime after the period the documents were originally archived. There may have been
a very small number of other such codes, but we have not found evidence for this.

3.5 Coding Errors

The Reuters-supplied interindexer consistency data presented in Section 2.5 suggests low levels of
disagreements between indexers, and low levels of simple errors. However, there are also ways to
study interindexer consistency directly on the collection. We investigate two such methods below,
as well as discussing a more fundamental difficulty with the concept of coding errors.
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3.5.1 DETECTING CODING ERRORS USING DUPLICATE DOCUMENTS

One way to detect coding errors is to take advantage of documents which are duplicates of each
other and so presumedly should have the same codes assigned. Using a substring-based measure,
Khmelev and Teahan (2003) found a total of 27,754 identical or highly similar documents in RCV1-
v1. They observed that 52.3% of such documents had the same set of Topics, 80.1% had the same
set of Industries, and 86.8% had the same set of Regions. They suggest that the percentage of
matching Topics is worrisomely low.

We have done a similar study which suggests less cause for concern. We identified the 14,347
documents in RCV1-v2 whose <headline> and <text> elements are identical to those of another
document (ignoring variations in whitespace). We then computed classification effectiveness for
each category based on treating all copies of a document as supplying fractional relevance judgments
for that document. For instance, if there were three copies of a document, each would be evaluated
against the other two, with each of the other two contributing a relevance judgment with weight 0.5.
We computed the F1.0 measure for each category that appeared at least once in the 14,347 duplicated
documents, and took the macroaverage of these values. (See Section 5.3 for this measure.)

The resulting macroaveraged F1.0 values were 0.69 for Topics (with 102 out of 103 possible
categories being observed in the duplicates), 0.57 for Industries (262 of 354 categories observed),
and 0.74 for Regions (206 of 366 categories observed). These values are all higher than the best
macroaveraged F1.0 values seen in our experiments (Section 8) on categories with at least one pos-
itive test example (0.61 for Topics, 0.27 for Industries, and 0.47 for Regions). So even if duplicate
documents gave an accurate measure of the limitations on interindexer agreement, we are not reach-
ing this limit.

Further, we suspect that the duplicated documents have a higher proportion of errorful assign-
ments than do nonduplicated documents. A surprisingly high proportion of duplicated documents
have category assignments that are a superset of the assignments of one of their duplicates. This
is most clear in cases where there were exactly two documents with the same <headline> and
<text>. There were 6,271 such pairs. Of these, 4,182 had some difference in their Topics assign-
ments, and in 1,840 of these cases one set of assignments is a superset of the other. For Regions,
967 pairs have some difference, and 801 of these have a superset relationship. And for Industries,
1,500 pairs have some difference, and 1,328 of these have a superset relationship.

The proportion of superset relationships seems higher than would be expected for independent
indexings of the documents, though a precise statistical model is hard to pose. One hypothesis
is that the duplicate documents are present precisely because one editor was correcting an assign-
ment produced by a previous editor (or by the automated coder). While there was an attempt to
remove duplicated stories before archiving, this was not done perfectly, so both the corrected and
uncorrected versions may have been archived. If this was the case, then the disagreement rate seen
among duplicated stories will be much higher than for independent indexings of stories in general.

3.5.2 DETECTING CODING ERRORS BY VIOLATIONS OF CODING POLICIES

Another approach to identifying coding errors comes from knowledge of Reuters coding policies.
There are 2,377 documents (0.29% of RCV1-v1) which violate the Minimum Code Policy by having
either no Topic codes (2,364 documents) or no Region codes (13 documents). There are 14,786
documents (1.8% of RCV1-v1) which violate the Hierarchy Policy on Topic codes, i.e., an ancestor
of some assigned Topic code is missing. Of the 103 Topic codes that were used for the RCV1 data,
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21 have at least one child in the Topic hierarchy. Each of these 21 codes is missing from at least
one document to which the Hierarchy Policy says it should have been assigned. A total of 25,402
occurrences of these 21 codes are missing in RCV1-v1.

With respect to Industry codes, application of the Hierarchy Policy was also imperfect:

• The immediate parent of an 8-character code was automatically added to the document in
most cases, but these cases were missed:

– Some 8-character codes with one or more appearances in the corpus had (assuming
we have inferred the hierarchy correctly) an immediate parent code that is not the 6-
character truncation of the 8-character code. These 8-character codes are (with par-
ent shown in parentheses): I1610107 (I16100), I1610109 (I16100), I4752105 (I47520),
I9741102 (I97400), I9741105 (I97400), I9741109 (I97400), I9741110 (I97400), and
I9741112 (I97400). Three parents account for these cases (I16100, I47520, I97400)
and they are assigned in only 7.1% to 46.6% of documents containing the child code,
depending on the particular child category. This contrasts with essentially 100% assign-
ment of parent codes which were 6-character truncations of 8-character codes.

– A single document containing two children of I01001 is missing I01001 itself. This
appears to be a simple error. By contrast, all 12,782 other occurrences of children of
I01001 are in documents that also contain I01001.

• No grandparents or higher level ancestors of 8-character codes appear to have been automati-
cally added, nor any ancestors of 6-character codes. The few cases where both a code and one
of these other ancestors are assigned to a document appear to result from a manual editorial
decision to assign both.

These violations result from some combination of human error, glitches in the hierarchical ex-
pansion software, and/or omissions of some codes from the archival data when producing RCV1.
Some errors appear to have resulted from manual additions of codes after hierarchical expansion
had already been run.

In Section 4 we propose an approach to correcting these errors, where possible, before using the
corpus for experimental purposes.

3.5.3 ERRORFUL CODES AND PLAUSIBLE CODES

While Reuters did compute measures of consistency between indexers working independently, as
well as traditional effectiveness measures for categorization software, these were not necessarily
the most important measures for them. When evaluating vendors for eventual selection of a new
automated categorization system (Section 2.6), Reuters used a measure based on the rate at which
a human expert actively disagreed with the coding choice made for the document. The idea is that
there are some codes that plausibly might be assigned or might not be assigned.

In our experience, this is not an unusual stance for users of text classification to take. It suggests,
unfortunately, that we should really consider the codes present in many corpora (including RCV1)
to be those found necessary by the indexer, plus some (but not all) of those found plausible but not
necessary. How this ambiguity should best be handled in text classification evaluations is an open
question.
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4. RCV1-v2: A New Text Categorization Test Collection

Since all evidence suggests that violations of the Hierarchy Policy and Minimum Coding Policy are
simple errors, removing these violations where possible will produce more accurate results in any
classification experiments made using RCV1. In this section we describe the procedures necessary
to remove these errors. We call the resulting corrected text categorization test collection RCV1-v2
(for version 2), while referring to the uncorrected original version as RCV1-v1.

The following corrections convert RCV1-v1 to RCV1-v2:

1. Remove from the corpus the 13 documents that violate the Minimum Code Policy due to
missing all Region codes, and the 2,364 documents that violate the policy due to missing all
Topics. This leaves a total of 804,414 documents. Online Appendix 7 provides a list of the
IDs of the 804,414 documents in RCV1-v2.

2. For each Topic code present in a document, add all missing ancestors of the code. This adds
25,402 Topic code assignments.

3. Replace the four errorful occurrences of Region codes, as described in Section 3.2.3.

We applied these corrections to the corpus before producing the results reported in Section 8.
We decided not to try to correct violations of the Hierarchy Policy for Industry codes. One

reason is that we are unsure of the exact Industry hierarchy at the time the RCV1 data was produced.
In addition, it is not clear that the coding resulting from an expansion would actually be superior for
research purposes. There are three classes of codes to consider:

• Leaf codes (i.e., all 8-character codes and some 6-character codes). Their assignments would
not be affected under any hierarchical expansion scheme.

• Non-leaf 6-character codes with 8-character children. All but 4 of these 6-character codes
are assigned in 100% of the cases one or more of their children are present. One (I01001)
is missing from only one of the 12,783 documents that contain one or more of its children.
The three remaining codes (I16100, I47520, and I97400) are assigned to a fraction of the
documents to which their children are assigned. These are exactly the three codes where the
unpadded code for the parent is not a truncation of the unpadded code for one or more of its
child codes. We do not know if the assignments of these codes which are present in the corpus
represent a partially successful automated assignment or, conversely, an intended omission of
automated assignment in combination with manual decisions to assign the codes in certain
cases. If we modified the corpus by assigning these codes when their children are present, it
is unclear whether we would be respecting the intended semantics, or washing it out.

• Non-leaf 6-character codes that only have 6-character children. There seems to have been
little or no assignment of these codes based on expansion of children. Occurrences of these
codes appear to correspond to a manual judgment that this code is appropriate. Automated
expansion would swamp these manual judgments with large numbers of expansion-based
assignments (up to 100-fold more), producing an arguably less interesting classification task.

We therefore decided not to attempt hierarchical expansion of Industry codes. This means that
some non-leaf Industry categories (6-character codes with 8-character children) have “Other + ex-
pansion” semantics, some (I16100, I47520, and I97400) have unclear semantics, and the rest appar-
ently have pure “Other” semantics (Section 3.2.1).
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4.1 Availability of RCV1-v2 Data

Online Appendix 7 gives the complete list of RCV1-v2 document IDs. The complete sets of cor-
rected RCV1-v2 category assignments are provided in Online Appendices 8, 9, and 10. In addition,
two versions of the complete set of RCV1-v2 documents in vector form are provided as Online
Appendices (see Section 7).

5. Benchmarking the Collection: Methods

An important part of the value of a machine learning data set is the availability of published bench-
mark results. Among other things, good benchmark results serve to ensure that apparently superior
new methods are not being compared to artificially low baselines. We therefore ran three of the most
popular supervised learning approaches on the RCV1-v2 data, both to provide such a benchmark,
and as a check that our corrections to the data did not introduce any new anomalies.

5.1 Training/Test Split

We split the RCV1-v2 documents chronologically into a training set (articles published from August
20, 1996 to August 31, 1996; document IDs 2286 to 26150) and test set (September 1, 1996 to
August 19, 1997; document IDs 26151 to 810596). The result is a split of the 804,414 RCV1-v2
documents into 23,149 training documents and 781,265 test documents. We call this the LYRL2004
split. (Notice that ID order does not always correspond to chronological order in either RCV1-v1
or RCV1-v2, so chronological splits in general should be based on the date tag in the <newsitem>
element, not on IDs.)

The chronological boundary we used is the same used in the TREC-10/2001 filtering track
(Robertson and Soboroff, 2002). However the TREC-10/2001 filtering track used the raw RCV1
data (806,791 uncorrected RCV1-v1 documents split into 23,307 training documents and 783,484
test documents) and raw category labels, so the TREC results are not comparable with ours.

A chronological split, rather than a random one, is realistic since the majority of operational text
categorization tasks require training on currently available material, and then applying the system
to material that is received later. A chronological split also reduces the tendency of duplicate and
near-duplicate documents to inflate measured effectiveness. The chronological breakpoint we chose
has the advantage of giving almost all Topic categories two or more training examples, while still
retaining most of a complete year as test data.

5.2 Categories

We provide benchmark data on all categories that evidence indicates were available to Reuters
indexers, even those with few or no positive examples. There are 103 Topic categories, 101 with
one or more positive training examples on our training set. All 103 (including all the 101, obviously)
have one or more positive test examples on our test set. There are 354 Industry categories, 313 with
positive training examples, and 350 (including all of the 313) with positive test examples. And there
are 366 Region categories, 228 with positive training examples, and 296 (including all of the 228)
with positive test examples. (All counts are the same for RCV1-v1, if the four invalid assignments
of three invalid Region categories in RCV1-v1 are ignored.)
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5.3 Effectiveness Measures

We measure the effectiveness of a text classifier on a single category with the Fβ measure (van
Rijsbergen, 1972, 1979; Lewis, 1995):

Fβ =
(β2 +1)A

(β2 +1)A+B+β2C
,

where A is the number of documents a system correctly assigns to the category (true positives), B
is the number of documents a system incorrectly assigns to the category (false positives), and C is
the number of documents that belong to the category but which the system does not assign to the
category (false negatives). We report values for β = 1.0, which corresponds to the harmonic mean
of recall and precision:

F1.0 =
2A

2A+B+C
=

2RP
R+P

,

where R is recall, i.e., A/(A+C), and P is precision, i.e., A/(A+B).
The F-measure as presented above is undefined when A = B = C = 0. The experiments reported

here treat F1.0 as equal to 0.0 in this case, though a strong argument could be made for a value of
1.0 instead, or possibly other values (Lewis, 1995).

To measure effectiveness across a set of categories we use both the macroaverage (unweighted
mean of effectiveness across all categories) and the microaverage (effectiveness computed from the
sum of per-category contingency tables) (Lewis, 1991; Tague, 1981).

6. Benchmarking the Collection: Training Algorithms

We benchmarked three supervised learning approaches that have been widely studied in text cat-
egorization experiments: support vector machines (SVMs) (Joachims, 1998), weighted k-Nearest
Neighbor (k-NN) (Yang and Liu, 1999), and Rocchio-style algorithms (Ittner, Lewis, and Ahn,
1995; Yang, Ault, Pierce, and Lattimer, 2000; Ault and Yang, 2002). We describe these core su-
pervised learning algorithms below, as well as the supervised threshold setting and feature selection
procedures used with some of them.

6.1 SVM

SVM algorithms find a linear decision surface (hyperplane) with maximum margin between it and
the positive and the negative training examples for a class (Joachims, 1998). SVMs using non-
linear kernel functions are also possible, but have not shown a significant advantage in past text
categorization studies, and are not investigated here.

SVMs have outperformed competing approaches in a number of recent text categorization stud-
ies, but there has been some suggestion that they choose a poor decision threshold when the num-
bers of positive and negative examples are very different, as they are for low frequency categories
in random or systematic samples of documents (Zhang and Oles, 2001). We therefore used in our
baselines two SVM variants that adjust for category frequency:

• SVM.1: A single SVM classifier was trained for each category. SVM training used the
SVM Light (Joachims, 1998, 1999, 2002) package, version 3.50. All parameters were left
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at default values. This meant, in particular, that we used a linear kernel (by leaving -t unspec-
ified), equal weighting of all examples whether positive or negative (by leaving -j unspeci-
fied), and set the tradeoff C between training error and margin to the reciprocal of the average
Euclidean norm of training examples (by leaving -c unspecified). Since we were using cosine-
normalized training examples, leaving -c unspecified meant C was set approximately to 1.0.
SVM Light was used to produce scoring models, but the SVM Light thresholds were replaced
with ones chosen by the SCutFBR.1 algorithm (Section 6.4).

• SVM.2: In this approach (Lewis, 2002), SVM Light, version 3.50, was run multiple times for
each category, once for each of these settings of its -j parameter: 0.1, 0.2, 0.4, 0.6, 0.8, 0.9,
1.0, 1.25, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, and 15.0. The -j parameter controls the relative
weighting of positive to negative examples in choosing an SVM classifier, and thus provides
a way to compensate for unbalanced classes. Leave-one-out cross-validation (LOO) (turned
on by SVM Light’s -x 1 parameter) was used to compute a training set contingency table
corresponding to each setting of -j. All other SVM Light parameters were left at their default
values.

For each category, the F1.0 value for each setting of -j was computed from its LOO contin-
gency table. The -j setting giving the highest LOO-estimated F1.0 for a category was selected
for that category. (In case of ties, the value of -j closest to 1.0 was used, with -j values less
than 1.0 replaced by their reciprocals when computing closeness. If a value had been tied
only with its reciprocal for best and closest, we planned to choose the value greater than 1.0,
but this situation did not arise.)

As expected, the algorithm tended to choose values of -j that gave additional weight to positive
examples. The value 0.8 was chosen once for -j, 1.0 was chosen five times, 1.25 was chosen
eight times, 1.5 was chosen 11 times, 2.0 was chosen 27 times, 3.0 was chosen 27 times, 4.0
was chosen 17 times, 6.0 was chosen four times, and 8.0 was chosen once.

A final classifier was trained on all training data for the category using the chosen setting of
-j. The threshold chosen by SVM Light based on the selected setting of -j was used as is for
that category (SCutFBR.1 was not used). Due to its expense, SVM.2 was tried only for Topic
categories.

SVM.2 was the top-ranked approach in the batch filtering and routing tasks in the TREC-10
evaluation (Robertson and Soboroff, 2002).

6.1.1 PARAMETER TUNING

The SVM.1 approach had one free parameter, the value of fbr in the SCutFBR.1 threshold setting
algorithm (Section 6.4). We compared the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 for fbr
using five-fold cross-validation on the training set and picked the best value for each category set
(Topics, Industries, Regions) and effectiveness measure (microaveraged F1.0 and macroaveraged
F1.0). (Note this five-fold cross-validation loop called the SCutFBR.1 procedure, which in turn used
its own five-fold cross-validation internally.) The final classifiers for each category in a category
set were then trained using all training data and the chosen fbr value for their category set and
effectiveness measure.
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The SVM.2 algorithm itself incorporated tuning of its only free parameter (-j) so no outside
tuning was needed. Given the robustness of SVMs to high dimensional feature sets, no feature
selection was used with either of the SVM algorithms.

6.2 k-NN

Weighted k-NN (k-nearest neighbor) classifiers have been consistently strong performers in text
categorization evaluations (Yang, 1999; Yang and Liu, 1999). The variant we used here chooses, as
neighbors of a test document, the k training documents that have the highest dot product with the
test document. Then, for each category, the dot products of the neighbors belonging to that category
are summed to produce the score of the category for the document. That is, the score of category c j

with respect to test document~x (a vector of term weights) is

s(c j,~x) = ∑
~d∈Rk(~x)

cos(~x, ~d) I(~d,c j),

where ~d is a training document; Rk(~x) is the set consisting of the k training documents nearest to
~x; and I(~d,c j) is indicator function whose value is 1.0 if ~d is a member of category c j, and 0.0
otherwise. Since~x and ~d were normalized to have Euclidean norm of 1.0, their dot product is equal
to the cosine of the angle between them, so we write the dot product as cos(~x, ~d). The resulting
score is then compared to the category threshold to determine whether or not to assign the category
to the test document. Thresholds were chosen by SCutFBR.1 (Section 6.4).

The k-NN method is more sensitive to nonrelevant features than SVMs are, so the vectors used
with it first had feature selection applied (Section 6.5).

6.2.1 PARAMETER TUNING

The k-NN algorithm had three free parameters, fbr, k (neighborhood size), and the feature set size.
Five-fold cross-validation on the training set was used to select values for these parameters for each
category set and effectiveness measure. The following values were tried:

• fbr : 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

• k : 1, 3, 5, 10, 20, 40, 60, 80, 100, 130, 160, 200, 400, 600, 800

• Feature set size : 50, 100, 200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, 9000, 10000, 12000, 14000, 16000, 20000, 25000, 30000, 47152

However, not all combinations of values were tried. Instead parameter values were first initial-
ized to defaults: 0.3 for fbr, 50 for k, and the number of terms with nonzero values in the training set
(47,152 terms) for feature set size. Then one parameter value at a time was optimized while holding
the others fixed: first k (holding default fbr and feature set size fixed), then feature set size (holding
the chosen k and default fbr fixed), and finally fbr (holding the chosen k and chosen feature set size
fixed). Table 3 shows the k-NN parameter values chosen by this cross-validation process.

6.3 Rocchio-Style Prototype Classifier

The Rocchio method was developed for query expansion using relevance feedback in text retrieval
(Rocchio, 1971; Salton and Buckley, 1990). Applied to text classification, it computes a prototype
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Parameters
Neighborhood

Effectiveness Features size
Category Set Measure selected (k) fbr
Topics Micro F1 8000 100 0.5

Macro F1 8000 100 0.1
Industries Micro F1 10000 10 0.4

Macro F1 10000 10 0.1
Regions Micro F1 10000 10 0.5

Macro F1 10000 100 0.1

Table 3: Parameters chosen by cross-validation for our weighted k-NN algorithm, for each of the
six combinations of category set and averaged effectiveness measure.

vector for each category as a weighted average of positive and negative training examples (Ittner,
Lewis, and Ahn, 1995).

Our Rocchio prototype for category c j was

~p j(γ) =
1

|D(c j)|
∑

~di∈D(c j)

~di − γ
1

|Dn( c̄j)|
∑

~di∈D(c̄ j)

~di,

where ~di is a training document; D(c j) and D( c̄j) are, respectively, the set of positive and negative
training examples for category c j; and γ is the weight of the negative centroid.

Many enhancements have been proposed to the original Rocchio algorithm (Schapire, Singer
and Singhal, 1998; Ault and Yang, 2002). We used only the following ones:

1. As with k-NN, we do an initial feature selection for each category set and averaged effective-
ness measure, using the χ2 max criterion (Section 6.5).

2. We then do a further feature selection on a per-category basis by zeroing out all but the pmax

largest nonzero coefficients in the Rocchio vector. This keeps all positive coefficients before
any negative ones. It is uncommon, but possible, for negative coefficients to remain in the
Rocchio vector after this procedure.

3. The Rocchio algorithm produces a scoring model only. We choose a threshold for this model
using the SCutFBR.1 algorithm (Section 6.4).

6.3.1 PARAMETER TUNING

Our modified Rocchio algorithm had four free parameters, fbr, γ, pmax, and the feature set size.
However, preliminary experiments on the training data for Topics showed that the choice of pmax

had little impact on effectiveness. A value of 3000 for pmax was found to be best in the Topics
run, and so was used in all runs for all category sets and effectiveness measures. Five-fold cross-
validation on the training data was used to select values for the other three parameters for each
category set and effectiveness measure. The following values were tried:
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Parameters
Features Nonrelevant

Initial retained centroid
Effectiveness features in model weight

Category Set Measure selected (pmax) (γ) fbr
Topics Micro F1 5000 3000 1 0.3

Macro F1 5000 3000 1 0.2
Industries Micro F1 10000 3000 2 0.4

Macro F1 10000 3000 6 0.1
Regions Micro F1 10000 3000 2 0.5

Macro F1 10000 3000 2 0.5

Table 4: Parameters chosen by cross-validation for our modified Rocchio algorithm, for each of the
six combinations of category set and averaged effectiveness measure. The value of pmax

was chosen in an initial run on Topics, and then used for all combinations.

• fbr : 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

• γ : 50, 20, 15, 10, 8, 6, 4, 3, 2, 1, 0, -1, -2

• Feature set size : 50, 100, 200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, 9000, 10000, 12000, 14000, 16000, 20000, 25000, 30000, 47152

As with k-NN, we first initialized the three parameters to default values (0.3 for fbr, 1 for γ, and
47,152 for feature set size), and then optimized one parameter at a time: first γ, then feature set size,
and finally fbr. The selected parameter values are shown in Table 4.

6.4 Supervised Threshold Setting

Each of our algorithms produces, for each category, a model that assigns scores to documents. To
use these models for classification, we use the SCut strategy (Yang, 2001), i.e., simply associating
a threshold value with each category, and assigning the category to a document when the score
for that category exceeds the threshold. Other category assignment strategies (Yang, 2001) besides
SCut were evaluated on the training data, but Scut was consistently superior so only it was used to
produce classifiers evaluated on the test data.

The SVM.2 algorithm incorporates its own method for choosing a threshold to be used in the
SCut approach. The other core training algorithms (SVM.1, k-NN, and Rocchio) were used to train
scoring models. Thresholds for those scoring models were found by wrapping the core training
algorithm within Yang’s SCutFBR.1 algorithm (Yang, 2001). The .1 refers to the rank of the val-
idation document whose score becomes the threshold if the cross-validated threshold gives poor
estimated effectiveness (see below). The core SCutFBR algorithm can be used with other fallback
ranks as well (Yang, 2001).

SCutFBR.1 uses five-fold cross-validation with random assignment of documents to folds (i.e.,
no balancing of positive and negative examples). In each fold, a scoring model was trained on four-
fifths of the data and its threshold was tuned on the remaining one-fifth. If the tuned threshold gave
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an F1.0 value less than a specified minimum value fbr, then that threshold was replaced by the score
of the top-ranked validation document. The final threshold for the category is the average of the
thresholds across the five folds.

6.5 Supervised Feature Selection

Our text representation approach produced a set of 47,236 features (stemmed words), of which
47,152 occurred in one or more training set documents and so potentially could be included in clas-
sifiers (Section 7). Two of the algorithms studied, k-NN and Rocchio, are known to be significantly
hampered by irrelevant features. Feature selection based on labeled data was used with these two
algorithms. A separate feature set was chosen for each combination of algorithm (k-NN or Roc-
chio), category set (Topics, Industries, or Regions), and effectiveness measure (microaveraged F1.0

or macroaveraged F1.0).
The feature set for a combination was chosen by first ranking the 47,152 features by their

χ2 max score (Yang and Pedersen, 1997; Rogati and Yang, 2002) with respect to the category set.
To compute this score, we first separately compute the χ2 statistic (Altman, 1991, Section 10.7) for
the feature with respect to each category in the category set:

χ2 =
n(ad −bc)

(a+b)(a+ c)(b+d)(c+d)
,

where n is the total number of examples used in calculating the statistic, a is the number of examples
with both the feature and the category, b is the number of examples with the feature and not the
category, c is the number of examples with the category and not the feature, and d is the number of
examples with neither the feature nor the category.

The feature’s χ2 max score is the maximum value of the χ2 statistic across all categories in
the category set. Note that the use of χ2 max feature selection means that training data from all
categories in a category set influences the set of features used with each individual category in the
set.

The χ2 max score produces a ranking of all features from best to worst. To choose a feature
set, we then had to choose a size for the feature set to know how far down that ranking to go. This
was done by evaluating each of 23 corresponding feature sets using five-fold cross-validation on the
training data, and picking the best (Sections 6.2.1 and 6.3.1).

7. Benchmarking the Collection: Text Representation

The same sets of training and test document feature vectors were provided to each algorithm. The
feature vector for a document was produced from the concatenation of text in the <headline> and
<text> XML elements. It is important to note that the <title> element of RCV1 documents
contains a “country code” string that was semi-automatically inserted, possibly based on the Re-
gion codes. The <title> element should therefore not be used in experiments predicting category
membership. (The <headline> element was added by Reuters during the production of the RCV1
corpus. It contains the same text as the <title> element, but strips out the country code.)

Text was reduced to lower case characters, after which we applied tokenization, punctuation
removal and stemming, stop word removal, term weighting, feature selection, and length normal-
ization, as described below.
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We defined tokens to be maximal sequences of nonblank characters. Tokens consisting purely of
digits were discarded, as were words found on the stop word list from the SMART system (Salton,
1971). The list is found at ftp://ftp.cs.cornell.edu/pub/smart/english.stop, and we also include it as
Online Appendix 11.

The remaining tokens were stemmed with our own implementation of the Porter stemmer
(Porter, 1980). Our implementation did considerable punctuation removal as well as stemming.
As the author of the Porter stemmer has discussed (Porter, 2003) it is very rare for two implemen-
tations of the Porter stemmer to behave identically. To enable reproducing our results, we therefore
provide our stemmed tokens in Online Appendix 12, as discussed at the end of this section.

Document vectors based on the stemmed output were then created, with each coordinate of the
vectors corresponding to a unique term (stemmed word). Only terms which occurred in one or
more of the 23,307 RCV1-v1 documents falling before our chronological breakpoint were used in
producing vectors. Terms which had their only occurrences in post-breakpoint documents (i.e., our
test documents) did not affect vector formation in any way. In particular, they were not taken into
account during cosine normalization (below).

We had intended to use only our training set (the 23,149 pre-breakpoint RCV1-v2 documents)
for feature definition, not all 23,307 pre-breakpoint RCV1-v1 documents. The effect of accidentally
including stems from these 158 additional documents in document vectors is that a few features
whose value is 0.0 on all of our training documents are nonetheless allowed to have nonzero values
in test documents. (Except for words in these 158 documents, words that show up in the testset, but
not the training set, do not participate in any vectors.) These additional features will occasionally
have nonzero values on test documents, thus slightly impacting (through cosine normalization) the
value of the other features. The impact on overall results should be negligible. No label information
from these 158 mistaken documents was used.

The number of unique terms present in the 23,307 pre-breakpoint RCV1-v1 documents was
47,236. Of these, only 47,219 occur in RCV1-v2 training and/or test documents, so 47,219 is
size of the complete feature set for RCV1-v2. Of these 47,219 terms, only 47,152 have one or more
occurrences in the RCV1-v2 training set, and so were available to be included in classifiers. Average
document length for RCV1-v2 documents with our text representation is 123.9 terms, and average
number of unique terms in a document is 75.7.

The weight of a term in a vector was computed using Cornell ltc term weighting (Buckley,
Salton, and Allan, 1994), a form of TF × idf weighting. This gives term t in document d an initial
weight of

wd(t) = (1+ loge n(t,d))× loge(|D|/n(t)),

where n(t) is the number of documents that contain t, n(t,d) is the number of occurrences of term
t in document d, and |D| is the number of documents used in computing the inverse document
frequency weights (idf weights).

The idf weights used were computed from all 23,307 RCV1-v1 documents which fall before
our chronological breakpoint, not just the 23,149 RCV1-v2 documents we used for training. Again,
while unintentional, this a legitimate use of additional unlabeled data. Only the document text from
the additional documents was used, not their codes. The resulting idf values are in most cases almost
identical to the intended ones.

For the k-NN and Rocchio algorithms (but not SVM.1 and SVM.2) we then applied feature
selection to the vectors, as described in Section 6.5. This implicitly replaced wd(t) with w′

d(t), where
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w′
d(t) was equal to wd(t) for features chosen by feature selection, but equal to 0.0 for nonselected

features.

Finally, ltc weighting handles differences in document length by cosine normalizing the feature
vectors (normalizing them to have a Euclidean norm of 1.0). These resulting final weights were

w′′
d(t) =

w′
d(t)

√

∑u w′
d(u)×w′

d(u)
.

Since cosine normalization was done after feature selection, both the set of nonzero feature values,
and the feature values themselves, differ among the runs.

Despite being fairly straightforward by IR standards, we recognize that the above preprocess-
ing would be nontrivial to replicate exactly. We therefore have made the exact data used in our
experiments available in two forms.

Online Appendix 12 contains documents that have been tokenized, stopworded, and stemmed.
Online Appendix 13 contains documents in final vector form, i.e., as ltc weighted vectors. No
feature selection has been done for these vectors, i.e., they are as used for SVM training and testing.
(And thus are different from those used with k-NN and Rocchio, since those had feature selection
applied.) Online Appendix 13 uses numeric term IDs rather than the string form of words. Online
Appendix 14 gives the mapping between the numeric term IDs and string forms.

The vectors in Online Appendix 13 are based on terms that occurred in our pre-breakpoint
documents, and so should only be used in experiments based on the same training/test split as
in this paper. In contrast, the tokenized representations in Online Appendix 12 contain all non-
stopwords, and so can be used with any training/test split. Online Appendix 12 will be preferable
for most purposes.

Reuters has agreed (Rose, 2002; Whitehead, 2002) to our distribution of these token and vector
files without a license agreement. We nevertheless strongly encourage all users of these files to
license the official RCV1 CD-ROMs (see the Acknowledgments section at the end of this paper for
details).

8. Benchmarking the Collection: Results

Tables 5 and 6 give microaveraged and macroaveraged values of F1.0 for the four classification
methods, three category sets, and three subsets of each category set. The results largely confirm
past studies: SVMs are dominant, weighted k-NN is competitive, and the Rocchio-style algorithm
is a plausible but lagging straw man. The choice of averaging, category set, and effectiveness
measure affects absolute scores but rarely the ordering of approaches.

We provide not only the averaged data of Tables 5 and 6, but also the full testset contingency
tables for each category as Online Appendix 15. This allows computing alternate effectiveness
measures for our classifiers, recognizing of course that the classifiers were trained to optimize F1.0.

For example, one might feel that only leaf nodes of the Topic hierarchy should be used for
evaluation, since assignments of internal nodes are partially based on automated expansion of leaf
assignments. Averaged effectiveness measures using only leaf categories could be computed from
our contingency tables.
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Category Set Subset SVM.1 SVM.2 k-NN Rocchio
1+ train (101) 0.816 0.810 0.765 0.693

Topics 1+ test (103) 0.816 0.810 0.765 0.693
all (103) 0.816 0.810 0.765 0.693
1+ train (313) 0.513 – 0.396 0.384

Industries 1+ test (350) 0.512 – 0.396 0.384
all (354) 0.512 – 0.395 0.384
1+ train (228) 0.874 – 0.792 0.794

Regions 1+ test (296) 0.873 – 0.791 0.793
all (366) 0.873 – 0.791 0.793

Table 5: Effectiveness (microaveraged F1.0) of classifiers trained with four supervised learning
algorithms, with parameter settings chosen to optimize microaveraged F1.0 on cross-
validation folds of the training set. Classifiers were trained on our RCV1-v2 training set
(23,149 documents) and tested on our RCV1-v2 test set (781,265 documents). The com-
putationally expensive SVM.2 algorithm was run only on Topics. Separate microaverages
are presented for categories with one or more training set positive examples (all of which
also have one or more test set positive examples), categories with one or more test set
positive examples but no training set positive examples, and all categories. The number of
categories in each subset is shown in parentheses.

Category Set Subset SVM.1 SVM.2 k-NN Rocchio
1+ train (101) 0.619 0.557 0.560 0.504

Topics 1+ test (103) 0.607 0.546 0.549 0.495
all (103) 0.607 0.546 0.549 0.495
1+ train (313) 0.297 – 0.235 0.170

Industries 1+ test (350) 0.266 – 0.210 0.152
all (354) 0.263 – 0.208 0.151
1+ train (228) 0.601 – 0.588 0.572

Regions 1+ test (296) 0.463 – 0.453 0.441
all (366) 0.375 – 0.366 0.356

Table 6: Effectiveness (macroaveraged F1.0) of classifiers trained with four supervised learning
algorithms, with parameter settings chosen to optimize macroaveraged F1.0 on cross-
validation folds of the training set. Other details are as in Table 5.
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8.1 Microaveraging vs. Macroaveraging

Microaveraged measures are dominated by high frequency categories. For RCV1, this effect varies
among the category sets. For Topics, hierarchical expansion inflates the frequency of all non-
leaf categories. Non-leaf categories account for only 20% (21/103) of Topic categories but 79%
(2,071,530 / 2,606,875) of all Topic code assignments. The four top level Topic categories (CCAT,
ECAT, GCAT, and MCAT) alone account for 36% (945,334 / 2,606,875) of all Topic assignments.
Thus, microaveraged scores for Topics largely measure effectiveness at broad, perhaps less inter-
esting, content distinctions. In contrast, hierarchical expansion for Industry categories affected only
a few categories, and Regions underwent no hierarchical expansion at all. The most frequent (and
thus dominant) categories for Industries and Regions are not necessarily the semantically broadest
categories.

Macroaveraging, on the other hand, gives equal weight to each category, and thus is dominated
by effectiveness on low frequency categories. For Topics and Industries this is largely the leaf
categories in each taxonomy, thus categories with narrow meanings. For Regions, narrowness of
meaning is less the issue than degree to which the particular geographic entity is covered in the news.
Macroaveraged effectiveness for Regions is dominated by categories corresponding to countries that
are discussed only infrequently in international news.

8.2 Averaging Over Categories with No Positive Examples

Past research has varied in how categories with no training or test examples are handled in mea-
suring text categorization effectiveness. We include averages over all categories, over categories
with at least one positive training example, and over categories with at least one positive training
examples and at least one positive test example. (For our training/test split of RCV1-v2 there were
no categories that had one or more positive training examples but zero positive test examples.) Each
average is useful for different purposes:

• Averaging over all categories: This best reflects the operational task. Such an average is also
the most appropriate for comparisons with knowledge-based and string-matching approaches,
since these can be used even on categories with no positive training examples.

• Averaging over categories with one or more positive test examples: This factors out the im-
pact of choosing an arbitrary value (0.0 in our case) for F1.0 when there are no positive test
examples (Section 5.3). This impact can occasionally be large. For instance, macroaveraged
effectiveness figures for Regions on RCV1-v2 are strongly affected by whether categories
with no positive test examples are included in the average (Table 6).

• Averaging over categories with one or more positive training examples: This is appropriate
when the primary goal is research on supervised learning methods.

8.3 Effectiveness on Individual Categories

Past text categorization research arguably has overemphasized average effectiveness. This was
partly a necessity. With the widely used ModApte split of Reuters-21578, the median frequency
Topic category (of 135 Topic categories defined on that collection) has only three test set occur-
rences, so averaging was necessary to produce effectiveness figures that were at all accurate.
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Figure 2: Test set F1.0 for four classifier approaches on 103 RCV1-v2 Topic categories. Categories
are sorted by training set frequency, which is shown on the x-axis. The F1.0 value for a
category with frequency x has been smoothed by replacing it with the output of a local
linear regression over the interval x−200 to x+200.
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Figure 3: Raw test set F1.0 values for the SVM.1 approach on all three category sets. The line shows
corresponding smoothed (as in Figure 2) values. Training set frequency is shown on the
x-axis.
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In contrast, the median frequency Topic category for our test set has 7,250 test set occurrences:
bigger than the entire ModApte test set. Only three categories have fewer than 100 test set occur-
rences, so category-level effectiveness figures are more meaningful.

Figure 2 shows smoothed F1.0 values for our four classifier training approaches on the 103 Topic
categories, sorted by training set frequency of the category. While smoothing aids comparison
across the classifiers, it hides a good deal of category-to-category variation. Figure 3 instead shows
raw F1.0 values for the SVM.1 approach on all three category sets.

Since our focus is methodological we make only a few observations on this data:

• Effectiveness generally increases with increasing class frequency, but the category-to-category
variation is very large (Figure 3). This variation has been noted for previous collections, but
the large size of RCV1 gives more confidence in this observation. Further, some of the de-
crease in variation at the right of the graph results from the fact that even a poor classification
on a high frequency category can yield a moderately high F-measure value (Lewis and Tong,
1992). For instance, the most frequent Topic category has a test set frequency of 0.465. A
classifier that simply assigned all test documents to this category would have an F1.0 of 0.635.

• Among the tested approaches, SVM classifiers and in particular SVM.1 classifiers, are domi-
nant at all category frequencies. This fact has been obscured in some previous SVM studies,
which restricted experiments to a small set of high frequency categories or presented only
microaveraged effectiveness measures.

• The SCutFBR.1 approach to threshold tuning for SVMs (SVM.1) is as good or better than the
more computationally expensive leave-one-out procedure (SVM.2). Interestingly, it appears
that the difference in the effectiveness of SVM.1 and SVM.2 largely results from their choice
of threshold rather than from the orientation of the resulting hyperplanes. We did a test
(results not reported here) in which we set both SVM.1 and SVM.2 classifiers to their test
set optimal thresholds, and found the resulting effectiveness to be almost identical. This
similarity of effectiveness is somewhat surprising, since SVM.2 often chooses hyperplanes
with substantially different orientations than those chosen by SVM.1. We found the angle
between the normals of the SVM.1 and SVM.2 hyperplanes (the inverse cosine of the dot
product of weight vectors normalized to have Euclidean norm of 1.0), averaged over the 103
Topic categories, to be 19.6 degrees.

• We find some support for previous suggestions (Schapire, Singer and Singhal, 1998) that
Rocchio-style algorithms are at their best when relatively few positive examples are available,
though in all cases they lag the other methods tested. An interesting avenue for future work,
now possible with RCV1, would be teasing apart the impact of category narrowness vs. the
number of positive training examples supplied (perhaps using stratified sampling).

9. Summary

Research in machine learning is heavily driven by available data sets, and supervised learning for
text categorization is no exception. We believe RCV1 has the potential to support substantial re-
search advances in hierarchical categorization, scaling of learning algorithms, effectiveness on low
frequency categories, sampling strategies, and other areas. As of January 5, 2004, the collection had
been distributed by Reuters to 520 groups, suggesting it is likely to be widely used.
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We hope that by documenting the data production process, the nature of the coding, and the im-
pact of these on the resulting test collection, we have contributed to the usefulness of the collection.
Some of the insights here may also be of use to those producing future test collections and manag-
ing real-world text classification systems. Finally, we hope that our benchmark data will encourage
replicability and transparency in future text categorization research.
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