
Internal Shortest Absent Word Queries
Golnaz Badkobeh #

Department of Computing, Goldsmiths University of London, UK

Panagiotis Charalampopoulos #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract
Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ, we are to preprocess
T so that given a range [i, j], we can return a representation of a shortest string over Σ that is
absent in the fragment T [i] · · · T [j] of T . For any positive integer k ∈ [1, log logσ n], we present an
O((n/k) · log logσ n)-size data structure, which can be constructed in O(n logσ n) time, and answers
queries in time O(log logσ k).

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, internal queries, shortest absent word, bit parallelism

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.6

Related Version Extended Version (with Dmitry Kosolobov): https://arxiv.org/abs/2106.01763

Funding Panagiotis Charalampopoulos: Supported by the Israel Science Foundation grant 592/17.

1 Introduction

Range queries are a classic data structure topic [63, 13, 12]. In 1d, a range query q =
f(A, i, j) on an array of n elements over some set U , denoted by A[1 . . n], takes two indices
1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements of U , and outputs f(A[i . . j]) =
f(A[i], . . . , A[j]). Range query data structures in 1d can thus be viewed as data structures
answering queries on a string in the internal setting, where U is the considered alphabet.

Asking internal queries on a string has received much attention in recent years. In the
internal setting, we are asked to preprocess a string T of length n over an alphabet Σ of
size σ, so that queries about substrings of T can be answered efficiently. Note that an
arbitrary substring of T can be encoded in O(1) words of space by the indices i, j of an
occurrence of it as a fragment T [i] · · · T [j] = T [i . . j] of T . Data structures for answering
internal queries are interesting in their own sake, but also have numerous applications in
the design of algorithms and (more sophisticated) data structures in stringology. Because
of these numerous applications, we usually place particular emphasis on the construction
time – other than on space/query-time tradeoffs, which is the main focus in the classic data
structure literature.

The most widely-used internal query is that of asking for the longest common prefix
of two suffixes T [i . . n] and T [j . . n] of T . The classic data structure for this problem [48]
consists of the suffix tree of T [25] and a lowest common ancestor data structure [37] over the
suffix tree. It occupies O(n) space, it can be constructed in O(n) time, and it answers queries
in O(1) time. In the word RAM model of computation with word size Θ(log n) bits the
construction time is not necessarily optimal. A sequence of works [61, 52, 14] has culminated
in the recent optimal data structure of Kempa and Kociumaka [40]: it occupies O(n/ logσ n)
space, it can be constructed in O(n/ logσ n) time, and it answers queries in O(1) time.

© Golnaz Badkobeh, Panagiotis Charalampopoulos, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).
Editors: Paweł Gawrychowski and Tatiana Starikovskaya; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.badkobeh@gold.ac.uk
https://orcid.org/0000-0001-5550-7149
mailto:panagiotis.charalampopoulos@post.idc.ac.il
https://orcid.org/0000-0002-6024-1557
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.CPM.2021.6
https://arxiv.org/abs/2106.01763
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Internal Shortest Absent Word Queries

Another fundamental problem in this setting is the internal pattern matching (IPM)
problem. It consists in preprocessing T so that we can efficiently compute the occurrences of
a substring U of T in another substring V of T . For the decision version of the IPM problem,
Keller et al. [39] presented a data structure of nearly-linear size supporting sublogarithmic-
time queries. Kociumaka et al. [45] presented a data structure of linear size supporting
constant-time queries when the ratio between the lengths of V and U is bounded by a constant.
The O(n)-time construction algorithm of the latter data structure was derandomised in [42].
In fact, Kociumaka et al. [45], using their efficient IPM queries as a subroutine, managed to
show efficient solutions for other internal problems, such as for computing the periods of a
substring (period queries, introduced in [44]), and for checking whether two substrings are
rotations of one another (cyclic equivalence queries). Other problems that have been studied
in the internal setting include string alignment [62, 18], approximate pattern matching [21],
dictionary matching [20, 19], longest common substring [4], counting palindromes [59], range
longest common prefix [3, 1, 49, 34], the computation of the lexicographically minimal
or maximal suffix, and minimal rotation [7, 41], as well as of the lexicographically kth
suffix [8]. We refer the interested reader to the Ph.D dissertation of Kociumaka [42], for a
nice exposition.

In this work, we extend this line of research by investigating the following basic internal
query, which, to the best of our knowledge, has not been studied previously. Given a string T

of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)}, preprocess T so that given a range [i, j],
we can return a shortest string over Σ that does not occur in T [i . . j]. The latter shortest
string is also known as a shortest absent word in the literature. We work on the standard
unit-cost word RAM model with machine word-size w = Θ(log n) bits. We measure the
space used by our algorithms and data structures in machine words, unless stated otherwise.
We assume that we have random access to T and so our algorithms return a constant-space
representation of a shortest string (a witness) consisting of a substring of T and a letter. A
naïve solution for this problem precomputes a table of size O(n2) that stores the answer for
every possible query [i, j]. Our main result is the following.

▶ Theorem 1. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, for any positive integer k ∈ [1, log logσ n], we can construct a data structure of size
O((n/k) · log logσ n), in O(n logσ n) time, so that if query [a, b] is given, we can compute a
shortest string over Σ that does not occur in T [a . . b] in O(log logσ k) time.

By setting k = 1 we get an O(n log logσ n)-size data structure with O(1) query time.
In the related range shortest unique substring problem, defined by Abedin et al. [2], the task

is to construct a data structure over T to be able to answer the following type of online queries
efficiently. Given a range [i, j], return a shortest string with exactly one occurrence (starting
position) in [i, j]. Abedin et al. presented a data structure of size O(n log n) supporting
O(logw n)-time queries, where w = Θ(log n) is the word size. Additionally, Abedin et al. [2]
presented a data structure of size O(n) supporting O(

√
n logϵ n)-time queries, where ϵ is an

arbitrarily small positive constant.

Our Techniques

For clarity of exposition, in this overview, we skip the time-efficient construction algorithms
of our data structures and only describe how to compute the length of a shortest absent word
(without a witness) in T [a . . b]; note that this length is at most logσ n. Let us also note that
the length of a shortest absent word of T can be computed in O(n) time using the suffix
tree of T [25]. It suffices to traverse the suffix tree of T recording the shortest string-depth ℓ,
where an implicit or explicit node has less than σ outgoing edges.

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:3

First approach: We precompute, for each position i and for each length j ∈ [1, logσ n],
the ending position of the shortest prefix of T [i . . n] that contains an occurrence of each of
the σj distinct words of length j. Then, a query for the length of a shortest absent word of
T [a . . b] reduces to a predecessor query among the ending positions we have precomputed for
position a. By maintaining these O(logσ n) ending positions in a fusion tree [32], we obtain
a data structure of size O(n logσ n) supporting queries in O(logw log n) = O(1) time.

Second approach: We precompute, for each length j ∈ [1, logσ n], all minimal fragments of
T that contain an occurrence of each of the distinct σj words of length j. As these fragments
are inclusion-free, we can encode them using two n-bit arrays storing their starting and
ending positions in T , respectively. We thus require O(n) words of space in total over all js.
Observe that T [a . . b] does not have an absent word of length j if and only if it contains a
minimal fragment for length j; we can check this condition in O(1) time after augmenting
the computed bit arrays with succinct rank and select data structures [38]. Finally, due to
monotonicity (if T [a . . b] contains all strings of length j + 1 then T contains all strings of
length j), we can binary search for the answer in O(log logσ n) time.

Third approach: We rely on the following combinatorial observation: if the length of a
shortest absent word of a string X over Σ is λ, we need to prepend Ω(σd−1 · λ) letters to X

in order to obtain a string with a shortest absent word of length λ + d. (For intuition, think
of |X| as a constant; then, we essentially need to prepend the de Bruijn sequence of order d

over Σ to X in order to achieve the desired result.) This observation allows us to sparsify
the information we stored in our first approach: for each length j ∈ [1, logσ n], we use the
value (previously) stored for some position i for an interval of positions. We then maintain
a dynamic fusion tree over the stored values, which are now o(n logσ n) in total, and make
it persistent so that we can later query any version of it. As we will show, in the end we
get the correct answer up to a small additive error, which we then eliminate by utilising the
data structure developed in our second approach.

Let us remark that our partially persistent fusion trees allow us to obtain an alternative
time-optimal data structure for the weighted ancestors problem [26] when the input tree
of size n is of depth polylogarithmic in n. Such a data structure can be also easily derived
from [47, 36].

Other Related Work

Let us recall that a string S that does not occur in T is called absent from T , and if all its proper
substrings appear in T it is called a minimal absent word of T . It should be clear that every
shortest absent word is also a minimal absent word. Minimal absent words (MAWs) are used
in many applications [60, 56, 29, 35, 15, 54, 24] and their theory is well developed [51, 28, 30],
also from an algorithmic and data structure point of view [50, 22, 9, 17, 16, 6, 33, 10, 23].
For example, it is well known that, given two strings X and Y , one has X = Y if and only if
X and Y have the same set of MAWs [51].

Paper Organization

Section 2 provides some preliminaries. The first approach is detailed in Section 3 and the
second one in Section 4. Section 5 provides the combinatorial foundations for the third
approach, which is detailed in Section 6.

CPM 2021

6:4 Internal Shortest Absent Word Queries

2 Preliminaries

An alphabet Σ is a finite nonempty set whose elements are called letters. A string (or word)
S = S[1 . . n] is a sequence of length |S| = n over Σ. The empty string ε is the string of
length 0. The concatenation of two strings S and T is the string composed of the letters
of S followed by the letters of T . It is denoted by S · T or simply by ST . The set of all
strings (including ε) over Σ is denoted by Σ∗. The set of all strings of length k > 0 over Σ is
denoted by Σk. For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith letter of S, and the fragment S[i . . j]
denotes an occurrence of the underlying substring P = S[i] · · · S[j]. We say that P occurs at
(starting) position i in S. P is called absent from S if it does not occur in S. A substring
S[i . . j] is a suffix of S if j = n and it is a prefix of S if i = 1.

The following proposition is straightforward (as explained in Section 1).

▶ Proposition 2. Let T be a string of length n. A shortest absent word of T can be computed
in O(n) time.

Given an array A of n items taken from a totally ordered set, the range minimum query
RMQA(ℓ, r) = arg min A[k] (with 1 ≤ ℓ ≤ k ≤ r ≤ n) returns the position of the minimal
element in A[ℓ . . r]. The following result is known.

▶ Theorem 3 ([12]). Let A be an array of n integers. A data structure of size O(n) can be
constructed in O(n) time supporting RMQs on A in O(1) time.

We make use of rank and select data structures constructed over bit vectors. For a bit
vector H we define rankq(i, H) = |{k ∈ [1, i] : H[k] = q}| and selectq(i, H) = min{k ∈ [1, n] :
rankq(k, H) = i}, for q ∈ {0, 1}. The following result is known.

▶ Theorem 4 ([38, 53]). Let H be a bit vector of n bits. A data structure of o(n) additional
bits can be constructed in O(n) time supporting rank and select queries on H in O(1) time.

The static predecessor problem consists in preprocessing a set Y of integers, over an
ordered universe U , so that, for any integer x ∈ U one can efficiently return the predecessor
pred(x) := max{y ∈ Y : y ≤ x} of x in Y . The successor problem is defined analogously:
upon a queried integer x ∈ U , the successor min{y ∈ Y : y ≥ x} of x in Y is to be returned.
Willard and Fredman designed the fusion tree data structure for this problem [32]. In the
dynamic variant of the problem, updates to Y are interleaved with predecessor and successor
queries. Pătraşcu and Thorup [57] presented a dynamic version of fusion trees, which, in
particular yields an efficient construction of this data structure.

▶ Theorem 5 ([32, 57]). Let Y be a set of at most n w-bit integers. A data structure of size
O(n) can be constructed in O(n logw n) time supporting insertions, deletions, and predecessor
queries on Y in O(logw n) time.

If |U | = O(n), then, after an O(n)-time preprocessing, we can answer predecessor queries
in O(1) time. For each y ∈ Y , we set the yth bit of an initially all-zeros |U |-size bit vector.
We then preprocess this bit vector as in Theorem 4. Then, a predecessor query for any
integer x can be answered in O(1) time due to the following readily verifiable formula:
pred(x) = select1(rank1(x)).

The main problem considered in this paper is formally defined as follows.

Internal Shortest Absent Word (ISAW)
Input: A string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ > 1.
Output: Given integers a and b, with 1 ≤ a ≤ b ≤ n, output a shortest string in Σ∗

with no occurrence in T [a . . b].

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:5

If a = b then the answer is trivial. So, in what follows we assume that a < b. Let us
also remark that the output (shortest absent word) can be represented in O(1) space using:
either a range [i, j] ⊆ [1, n] and a letter α of Σ, such that the shortest string in Σ∗ with
no occurrence in T [a . . b] is T [i . . j]α; or simply a range [i, j] ⊆ [1, n] such that the shortest
string in Σ∗ with no occurrence in T [a . . b] is T [i . . j].

▶ Example 6. Given the string T = abaabaaabbabbbaaab and the range [a, b] = [8, 14]
(shown in red), the only shortest absent word of T [8 . . 14] is T [i . . j] = T [7 . . 8] = aa.

3 O(n logσ n) Space and O(1) Query Time

Let T be a string of length n. We define ST (j) as the function counting the cardinality of the
set of length-j substrings of T . This is known as the substring complexity function [27, 58].
Note that ST (j) ≤ n, for all j. We have the following simple fact.

▶ Fact 7. The length ℓ of a shortest absent word of a string T of length n over an alphabet
of size σ is equal to the smallest j for which ST (j) < σj and hence ℓ ∈ [1, ⌊logσ n⌋].

We denote the set of shortest absent words of T by SAWT . Recall that, by Proposition 2,
a shortest absent word of T can be computed in O(n) time. We denote the length of the
shortest absent words of T by ℓ. By Fact 7, ℓ ≤ ⌊logσ n⌋. Since ℓ is an upper bound on the
length of the answer for any ISAW query on T , in what follows, we consider only lengths in
[1, ℓ − 1]. Let one such length be denoted by j. By constructing and traversing the suffix tree
of T , we can assign to each T [i . . i + j − 1] its lexicographic rank in Σj . The time required
for each length j is O(n), since the suffix tree of T can be constructed within this time [25].
Thus, the total time for all lengths j ∈ [1, ℓ − 1] is O(n logσ n) by Fact 7.

We design the following warm-up solution to the ISAW problem. For all j ∈ [1, ℓ − 1]
we store an array RNKj of n integers such that RNKj [i] is equal to the lexicographic rank
of T [i . . i + j − 1] in Σj . Then, given a range [a, b], in order to check if there is an absent
word of length j in T [a . . b] we only need to compute the number of distinct elements in
RNKj [a . . b − j + 1]. It is folklore that using a persistent segment tree, we can preprocess an
array A of n integers in O(n log n) time so that upon a range query [a, b] we can return the
number of distinct elements in A[a . . b] in O(log n) time. Thus, we could use this tool as a
black box for every array RNKj resulting, however, in Ω(log n)-time queries. We improve
upon this solution as follows.

We employ a range minimum query (RMQ) data structure [12] over a slight modification
of RNKj . For each j, we have an auxiliary procedure checking whether all strings from Σj

occur in T [a . . b] or not (i.e., it suffices to check whether any lexicographic rank is absent
from the corresponding range). Similar to the previous solution, we rank the elements of
Σj by their lexicographic order. We append RNKj with all integers in [1, σj]. Let this array
be APPj . By Fact 7, we have that |APPj | ≤ 2n. Then, we construct an array PREj of size
|APPj |: PREj [i] stores the position of the rightmost occurrence of APPj [i] in APPj [1 . . i − 1]
(or 0 if such an occurrence does not exist). This can be done in O(n) time per j by sorting
the list of pairs (T [i . . i + j − 1], i), for all i, using the suffix tree of T to assign ranks for
T [i . . i + j − 1] and then radix sort to sort the list of pairs.

We now rely on the following fact.

▶ Fact 8. ST [a. .b](j) = σj if and only if min{PREj [i] : i ∈ [b − j + 2, |PREj |]} ≥ a.

CPM 2021

6:6 Internal Shortest Absent Word Queries

a b
ranks appended

to RNK

the minimum

PREj

b− j + 2

Figure 1 Illustration of the setting in Fact 8.

Proof. If the smallest element in PREj [b−j+2 . . |PREj |], say PREj [k], is such that PREj [k] ≥
a, then all ranks of elements in Σj occur in APPj [a . . b − j + 1]. This is because all elements
(ranks) in Σj occur at least once after b − j + 2 (due to appending all integers in [1, σj] to
RNKj), thus all must have a representative occurrence after b − j + 2. Inspect Figure 1 for
an illustration. (The opposite direction is analogous.) ◀

The following two examples illustrate the construction of arrays RNKj , APPj , and PREj

as well as Fact 8.

▶ Example 9 (Construction). Let T = abaabaaabbabbbaaab and Σ = {a, b}. The set SAWT

of shortest absent words of T over Σ, each of length ℓ = 4, is {aaaa, abab, baba, bbbb}.
Arrays RNKj , APPj , and PREj , for all j ∈ [1, ℓ − 1], are as follows: For instance, RNK2[15] =

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
T a b a a b a a a b b a b b b a a a b
RNK1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2
APP1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2 1 2
PRE1 0 0 1 3 2 4 6 7 5 9 8 10 12 13 11 15 16 14 17 18
RNK2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2
APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
RNK3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2
APP3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2 1 2 3 4 5 6 7 8
PRE3 0 0 0 1 2 0 3 0 0 0 8 0 9 5 6 7 15 16 4 11 14 10 13 12

APP2[15] = 1 denotes that the lexicographic rank of aa in Σ2 is 1; and PRE2[15] = 7 denotes
that the previous rightmost occurrence of aa is at position 7.

▶ Example 10 (Fact 8). Let [a, b] = [7, 11] and j = 2 (see Example 9). The smallest element in
{PRE2[11], . . . , PRE2[21]} is PRE2[15] = 7 ≥ a = 7, which corresponds to rank APP2[15] = 1.
Indeed all other ranks 2, 3, 4 have at least one occurrence within APP2[7 . . 11] = 1, 2, 4, 3, 2.

To apply Fact 8, we construct an RMQ data structure over PREj . By Theorem 3 it takes
O(n) time and space and answers RMQs in O(1) time. This results in O(nℓ) = O(n logσ n)
preprocessing time and space for all j.

For querying, let us observe that σj − ST [a. .b](j), for any T, a, b and increasing j, is
non-decreasing. We can thus apply binary search on j to find the smallest length j such
that ST [a. .b](j) < σj . This results in O(log ℓ) = O(log logσ n) query time. We obtain the
following proposition (retrieving a witness shortest absent word is detailed later).

▶ Proposition 11. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, we can construct a data structure of size O(n logσ n) in O(n logσ n) time, so that if
query [a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b]
in O(log logσ n) time.

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:7

We further improve the query time via employing fusion trees as follows. We create a 2d
array FTR[1 . . ℓ − 1][1 . . n] of integers, where

FTR[j][i] = min{PREj [i − j + 2], . . . , PREj [|PREj |]},

for all j ∈ [1, ℓ − 1] and i ∈ [1, n]. Intuitively, FTR[j][i] is the rightmost index of T such that
T [FTR[j][i] . . i] contains all strings of length j over Σ.

Array FTR can be constructed in O(nℓ) = O(n logσ n) time by scanning each array
PREj from right to left maintaining the minimum. Within the same complexities we also
maintain satellite information specifying the index k ∈ [i − j + 2, |PREj |] where the range
minimum FTR[j][i] came from in the sub-array PREj [i − j + 2 . . |PREj |]. We then construct
n fusion trees, one for every collection of ℓ − 1 integers in FTR[1 . . ℓ − 1][i]. This takes total
preprocessing time and space O(nℓ) = O(n logσ n) by Theorem 5. Given the range query
[a, b], we need to find the smallest j ∈ [1, ℓ − 1] such that FTR[j][b] < a. By Theorem 5, we
find where the predecessor of a lies in FTR[1 . . ℓ − 1][b] in O(logw ℓ) time, where w is the
word size; this time cost is O(1) since w = Θ(log n).

We finally retrieve a witness shortest absent word as follows. If there is no j < ℓ such
that FTR[j][b] < a, then we output any shortest absent word of length ℓ of T arbitrarily. If
such a j < ℓ exists, by the definition of FTR[j], we output T [FTR[j][b] . . FTR[j][b] + j − 1] if
FTR[j][b] > 0 or T [k . . k + j − 1] if FTR[j][b] = 0, where k is the index of PREj , where the
minimum came from. Inspect the following illustrative example.

▶ Example 12 (Querying). We construct array FTR for T from Example 9. For a given [a, b]
we look up column b, and find the topmost entry whose value is less than a. If all entries
have values greater than or equal to a, we output any element from SAWT arbitrarily.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a b a a b a a a b b a b b b a a a b
FTR[1] 0 1 2 2 4 5 5 5 8 8 10 11 11 11 14 14 14 17
FTR[2] 0 0 0 0 0 0 0 0 0 5 7 7 7 7 7 11 11 13
FTR[3] 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4

If [a, b] = [3, 14] then no entry in column b = 14 is less than a = 3, which means the length
of the shortest absent word is 4; we output one from {aaaa, abab, baba, bbbb} arbitrarily. If
[a, b] = [5, 14] then FTR[3][14] = 4 < 5 so the length of a shortest absent word of T [5 . . 14] is
3; a shortest absent word is T [FTR[3][14] . . FTR[3][14] + 3 − 1] = T [4 . . 6] = aba.

If [a, b] = [7, 9], FTR[2][9] = 0 < 7 so the length of a shortest absent word is
2; a shortest absent word is T [k . . k + j − 1] = T [9 . . 10] = bb because FTR[2][9] =
min{PRE2[9], . . . , PRE2[|PRE2|]} = PRE2[9] = 0 tells us that the minimum in this range came
from index k = 9.

We obtain the following result.

▶ Theorem 13. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ,
we can construct a data structure of size O(n logσ n) in O(n logσ n) time, so that if query
[a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b] in
O(1) time.

CPM 2021

6:8 Internal Shortest Absent Word Queries

4 O(n) Space and O(log logσ n) Query Time

▶ Definition 14 (Order-j Fragment). Given a string T over an alphabet of size σ and an
integer j, V is called an order-j fragment of T if and only if V is a fragment of T and
SV (j) = σj. V is further called a minimal order-j fragment of T if SU (j) < σj and
SZ(j) < σj for U = V [1 . . |V | − 1] and Z = V [2 . . |V |].

In particular, minimal order-j fragments are pairwise not included in each other. The
following fact follows directly.

▶ Fact 15. Given a string T of length n over an alphabet of size σ and an integer j we have
O(n) minimal order-j fragments. Moreover, an arbitrary fragment F of T has SF [j] = σj if
and only if it contains at least one of these minimal fragments.

For each j ∈ [1, logσ n], we consider all minimal order-j fragments T , separately. We
encode the minimal order-j fragments of T using two bit vectors SPj and EPj , standing for
starting positions and ending positions. Inspect the following example.

▶ Example 16. We consider T from Example 9 and j = 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b
APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
SP2 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
EP2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

For instance, SP2[13] = 1 and EP2[18] = 1 denote the minimal order-2 fragment V =
T [13 . . 18] = bbaaab.

We construct a rank and select data structure on SPj and EPj , for all j ∈ [1, ℓ − 1]
supporting O(1)-time queries. The overall space is O(n) by Theorem 4 and Fact 7.

Let us now explain how this data structure enables fast computation of absent words of
length j. Given a range [a, b], by Fact 15, we only need to find whether T [a . . b] contains
a minimal order-j fragment. We can do this in O(1) time using one rank and two select
queries: t = rank1(a − 1, SPj) + 1; and select1(t, SPj) and select1(t, EPj).

▶ Example 17. We consider T , SP2 and EP2 from Example 16. Let [a, b] = [5, 14]. We have
t = rank1(a−1, SP2)+1 = rank1(4, SP2)+1 = 1, select1(t, SP2) = select1(1, SP2) = 5 < b = 14
and select1(t, EP2) = select1(1, EP2) = 10 < b = 14, which means T [5, 14] contains a minimal
order-2 fragment.

Let us now describe a time-efficient construction of SPj and EPj . We use arrays PREj

and APPj of T , which are constructible in O(n) time (see Section 3). Recall that PREj [i]
stores the starting position of the rightmost occurrence of rank APPj [i] in APPj [1 . . i − 1] (or
0 if such an occurrence does not exist). We apply Fact 8 as follows. We start with all bits of
SPj and EPj unset. Then, for each b ∈ [1, n] for which PREj [b − j + 1] < min{PREj [i] : i ∈
[b − j + 2, |PREj |]} = a, we set the bth bit of EPj and the ath bit of SPj . This can be done
online in a right-to-left scan of PREj in O(n) time.

▶ Example 18. We consider T , SP2 and EP2 from Example 16. We start by setting b = n = 18
and scan PRE2 from right to left: we have a = 13 because min{PRE2[21] = 13 : i ∈ [18, 21]} ≥
a = 13. This gives fragment T [13 . . 18]. Then we set b = n − 1 = 17 and have a = 11 because

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:9

min{PRE2[21] = 13 : i ∈ [17, 20]} ≥ a = 11. This gives fragment T [11 . . 17]. Then we set
b = n − 2 = 16 and have a = 11 because min{PRE2[21] = 13 : i ∈ [16, 19]} ≥ a = 11. This
gives fragment T [11 . . 16]. At this point note that T [11 . . 17] contains T [11 . . 16], and so
T [11 . . 17] is removed as it is non-minimal.

▶ Lemma 19. SPj and EPj can be constructed in O(n) time.

For all j, the construction time is O(nℓ) = O(n logσ n) by Theorem 4, Lemma 19, and
Fact 7. We obtain the following lemma.

▶ Lemma 20. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of size σ,
we can construct a data structure of size O(n) in O(n logσ n) time, so that if query (j, [a, b])
is given, we can check in O(1) time whether there is any string in Σj that does not occur in
T [a . . b], and if so return such a string.

We can now apply Lemma 20 using binary search on j to find the smallest length j such
that ST [a. .b](j) < σj . This results in O(log ℓ) = O(log logσ n) query time by Fact 7. It should
now be clear that when we find the j corresponding to the length of a shortest absent word,
we can output the length-j suffix of the leftmost minimal order-j fragment starting after a.
Note that outputting this suffix is correct by the definition of minimal order-j fragments.

▶ Example 21. We consider T , SP2 and EP2 from Example 16. Let [a, b] = [2, 7]. The length
of a shortest absent word of T [2 . . 7] is 2. We output bb, which is the length-2 suffix of the
leftmost minimal order-2 fragment T [5 . . 10] = baaabb starting after a = 2.

We obtain the following result.

▶ Theorem 22. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, we can construct a data structure of size O(n) in O(n logσ n) time, so that if query
[a, b] is given, we can compute a shortest string over Σ that does not occur in T [a . . b] in
O(log logσ n) time.

5 Combinatorial Insights

A positive integer p is a period of a string S if S[i] = S[i + p] for all i ∈ [1, |S| − p]. We refer
to the smallest period as the period of the string. Let us state the periodicity lemma, one of
the most elegant combinatorial results on strings.

▶ Lemma 23 (Periodicity Lemma (weak version) [31]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

▶ Lemma 24. If all strings in {WU : U ∈ Σk} for W ̸= ε occur in some string S, then
|S| ≥ |W | · σk/4.

Proof. Let p be the period of W , and let a ∈ Σ be such so that the period of Wa is also p.
All strings WbZ for a letter b ̸= a and Z ∈ Σk−1 must occur in S. Let A = {WU : U ∈
Σk} \ {WaZ : Z ∈ Σk−1}, and note that it is of size σk − σk−1 ≥ σk/2. The following claim
immediately implies the statement of the lemma.

▷ Claim. Let i and j be starting positions of occurrences of different strings WU, WV ∈ A

in S, respectively. Then, we have |j − i| ≥ |W |/2.

CPM 2021

6:10 Internal Shortest Absent Word Queries

Proof. Let us assume, without loss of generality, that j > i. Further, let us assume towards
a contradiction that j − i < |W |/2. Then, j − i is a period of W and p + j − i ≤ |W | since
p ≤ j − i. Therefore, due to the periodicity lemma (Lemma 23), j − i must be divisible by
the period p of W . Hence, U starts with the letter a and WU /∈ A, a contradiction. ◁

This concludes the proof of this lemma. ◀

▶ Lemma 25. If a shortest absent word of a string Y is of length λ, then the length of a
shortest absent word of XY is in [λ, λ + max{10, 4 + logσ(|X|/λ)}].

Proof. Let W and W ′ be shortest absent words of Y and XY , respectively. Further, let
d = |W ′| − |W |. In order to have d > 0, all strings WU for U ∈ Σd−1 must occur in XY ,
and hence in X · Y [1 . . |WU | − 1], since none of them occurs in Y . Lemma 24 implies
that |X| + λ + d > λ · σd−1/4. Then, since λ + d ≤ 2λd for any positive integers λ, d, we
have |X| > λ · (σd−1/4 − 2d). Assuming that d ≥ 10, and since σ ≥ 2, we conclude that
|X| > λ · σd−1/8. Consequently, logσ(8|X|/λ) + 1 > d. Since logσ 8 ≤ 3 we get the claimed
bound. ◀

▶ Lemma 26. If a shortest absent word of XY is of length m, a shortest absent word of Y

is of length λ, and |X| ≤ m · τ , for a positive integer τ ≥ 16, then m − λ ≤ 10 + 2 logσ τ .

Proof. From Lemma 25 we have λ ∈ [m − max{10, 4 + logσ(|X|/λ)}, m]. If max{10, 4 +
logσ(|X|/λ)} = 10, then m − λ ≤ 10 and we are done.

In the complementary case, since |X| ≤ m · τ , we get the following:

λ ≥ m − logσ(m · τ/λ) − 4 ⇐⇒ λ ≥ m + logσ λ − logσ m − logσ τ − 4.

In particular, λ ≥ m − logσ m − logσ τ − 4.
From the above, if m ≤ τ , then m − λ ≤ 4 + 2 logσ τ .
In what follows we assume that m > τ ≥ 16. Rearranging the original equation, and

since logσ(·) is an increasing function and λ ≥ m − logσ m − logσ τ − 4, we have

m − λ ≤ 4 + logσ(m · τ/λ) ≤ 4 + logσ

(
m

m − logσ m − logσ τ − 4

)
+ logσ τ

≤ 4 + logσ

(
m

m − 2 logσ m − 4

)
+ logσ τ.

Then, we have m−2 logσ m−4 ≥ m/5 since, for any σ ≥ 2, 4x/5−2 logσ x−4 is an increasing
function on [16, ∞) and positive for x = 16. Hence, m − λ ≤ 4 + logσ 5 + logσ τ ≤ 7 + logσ τ .

By combining the bounds on m − λ we get the claimed bound. ◀

6 O(n log logσ n) Space and O(1) Query Time

Recall that we denote by ℓ the length of a shortest absent word of T . We start by constructing
the 2d array FTR[1 . . ℓ − 1][1 . . n] from Section 3 in time O(nℓ) = O(n logσ n). Further recall
that FTR[j][i] is the rightmost index of T such that T [FTR[j][i] . . i] contains all strings of
length j over Σ. Then, to answer a query [a, b], it suffices to find the smallest j such that
FTR[j][b] < a. We do this by finding where the predecessor of a lies in FTR[1 . . ℓ − 1][b]. To
this end, we construct n fusion trees: one per FTR[1 . . ℓ − 1][i], resulting in a data structure
of size Θ(nℓ) = O(n logσ n) with O(1) query time.

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:11

The main idea in this section is to rather maintain a collection of lazy dynamic fusion
trees going from position n to 1, and apply the combinatorial lemmas from Section 5 to
answer the query. Using the lazy dynamic fusion trees, for a parameter τ , we will compute
an interval of size Θ(logσ τ) that contains the length of a shortest absent word of T [a . . b].
Then we will perform binary search employing Lemma 20 to compute the desired length and
output a shortest absent word.

6.1 Lazy FTR Arrays
With lazy we mean that instead of array FTR, we consider array

LFTR[j][i] = FTR[j][i + ((n − i) (mod τ · j))],

for an integer parameter τ ≥ 16. We will later set τ to be some function of n – the reader
may think of it as a constant. Intuitively, for an integer k, we use the value FTR[j][n−τ · j ·k]
for τ · j positions, namely for LFTR[j][i], i ∈ (n − τ · j · (k − 1), n − τ · j · k]. Overall, the
number of values that we consider is∑

j∈[1,ℓ−1]

n

τ · j
= O

(
n log logσ n

τ

)
.

Inspect Figure 2 in this regard.

1 2 n
1

2

`− 1

n− 11

5

.

...

...

n− 4 . . .

Figure 2 For simplicity, we have set τ = 1. The black dots represent the entries stored in
LFTR[1 . . 5][n − 11 . . n] and the red line represents LFTR[1 . . 5][n − 4].

We implement LFTR array using a collection of 1d arrays that occupy O((n/τ) · log logσ n)
space in total and allow O(1)-time access to LFTR[j][i] for any j, i. Specifically, we store in
array Rj , for all j ∈ [1, ℓ − 1] and in decreasing order of i, the entries FTR[j][i] with n − i ≡ 0
(mod τ · j). Then, we have LFTR[j][i] = Rj [1 + ⌊(n − i)/(τ · j)⌋].

▶ Fact 27. LFTR[j][i] ≥ FTR[j][i], for all i, j.

Proof. It follows by the definition of LFTR and the fact that FTR[j][i] is monotonically
non-decreasing for increasing i and fixed j. ◀

Note that the fact that FTR[1 . . ℓ−1][i] is decreasing for all i allowed us to use predecessor
queries in our previous solution. We prove an analogous, slightly weaker, statement for LFTR.

▶ Lemma 28. Let j1, j2 ∈ [1, ℓ−1] such that j2 − j1 > 10+2 logσ τ , and suppose that τ ≥ 16.
Then, for all i, LFTR[j1][i] > LFTR[j2][i].

CPM 2021

6:12 Internal Shortest Absent Word Queries

Proof. Let X1 = T [LFTR[j1][i] + 1 . . i]. Then, X1Y1 has a shortest absent word of length j1,
for some Y1 with |Y1| ≤ τ · j1.

Let X2 = T [LFTR[j2][i] + 1 . . i]. Then, X2Y2 has a shortest absent word of length j2, for
some Y2 with |Y2| ≤ τ · j2.

Note that ||Y2| − |Y1|| ≤ τ · j2.
Suppose, towards a contradiction, that LFTR[j1][i] ≤ LFTR[j2][i], and hence |X1| ≥ |X2|.

Then, we must have |Y2| > |Y1| as otherwise X2Y2 would be a substring of X1Y1 and its
shortest absent word cannot be longer than the one of X1Y1. Let Y2 = Y1V , with |V | ≤ τ · j2.

Then, we have that a shortest absent word of X1Y2 is of length at least j2, since
X2Y2 is a suffix of X1Y2. By Lemma 26 applied to X1Y2 = X1Y1V and X1Y1, we have
j2 − j1 ≤ 10 + 2 logσ τ , a contradiction. ◀

In particular, Lemma 28 tells us that in column i of LFTR, we cannot have too many
values that are equal. More formally, for each j, we have O(logσ τ) indices j′ ̸= j such that
LFTR[j′][i] = LFTR[j][i]. Our goal is to have, for every position i, a snapshot of one of
our dynamic fusion trees to contain as keys the entries of LFTR[1 . . ℓ − 1][i]. The satellite
information (value) of key LFTR[j][i] is a bit vector of size ℓ − 1 bits. For each key, we
maintain the corresponding lengths j in the bit vector. Whenever a key is returned, we can
also return the largest of the lengths j stored in the bit vector: it corresponds to the highest
set bit. In the next subsection we show the following result.

▶ Lemma 29. We can preprocess LFTR in O((n/τ) · log logσ n) time and space to answer
predecessor and successor queries over LFTR[1 . . ℓ − 1][i], for any i ∈ [1, n], in O(1) time.

We denote by top(a, b) the largest j such that LFTR[j][b] is equal to the successor of a in
LFTR[1 . . ℓ − 1][b].

▶ Lemma 30. Given LFTR, after O((n/τ) · log logσ n) time and space preprocessing, we can
answer top(a, b) queries in O(1) time.

Proof. At preprocessing, construct the data structure underlying Lemma 29. Upon a query
top(a, b), answer a successor query for a in LFTR[1 . . ℓ − 1][b] using this data structure.
For the corresponding bit vector, we find the highest set bit in O(1) time, thus retrieving
top(a, b). ◀

Our data structure mainly relies on what we show next using Lemma 26: the sought
answer is “close” to top(a, b). Let us denote the length of a shortest absent word of T [c . . b]
by ℓ[c,b] and the length of a shortest absent word of T [a . . b] by ℓ[a,b].

By the definition of top(a, b), we have that for some c = LFTR[top(a, b)][b] ≥ a and a
prefix X of T [b + 1 . . n] with |X| ≤ top(a, b) · τ , the length of a shortest absent word of
T [c . . b]X is top(a, b)+1. By Lemma 26, top(a, b)−ℓ[c,b] ≤ 10+2 logσ τ . Thus ℓ[a,b] ≥ ℓ[c,b] ≥
top(a, b) − 10 − 2 logσ τ .

In addition, we have LFTR[top(a, b)][b] ≥ a > LFTR[j][b], for all j > top(a, b)+10+2 logσ τ ,
by Lemma 28 and the definition of top(a, b). Hence, ℓ[a,b] ≤ top(a, b)+11+2 logσ τ by Fact 27.

Thus, the sought answer ℓ[a,b] is in [top(a, b) − 10 − 2 logσ τ, top(a, b) + 11 + 2 logσ τ]. We
employ Lemma 20 to perform binary search over this interval in O(log logσ τ) time – after an
O(n)-time preprocessing. Recall that Lemma 20 also gives us a witness shortest absent word.

We thus arrive at the main result of this paper, by setting τ = 15 + k, for any positive
integer k ∈ [1, log logσ n].

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:13

▶ Theorem 1. Given a string T of length n over an alphabet Σ ⊂ {1, 2, . . . , nO(1)} of
size σ, for any positive integer k ∈ [1, log logσ n], we can construct a data structure of size
O((n/k) · log logσ n), in O(n logσ n) time, so that if query [a, b] is given, we can compute a
shortest string over Σ that does not occur in T [a . . b] in O(log logσ k) time.

In particular, we get the following tradeoffs:
an O(n log logσ n)-size data structure with O(1) query time (for k = 1);
an O(n)-size data structure with O(log logσ log logσ n) query time (for k = ⌊log logσ n⌋).

6.2 Partially Persistent Fusion Trees (using Fusion Trees)
We now describe the construction of the fusion trees over the LFTR array, which under-
lies Lemma 29. We provide the description for answering predecessor queries but it can
be trivially adapted for successor queries. We will make our fusion trees “static partially
persistent”: for each position i ∈ [1, n], we will be able to answer predecessor queries in the
version of the fusion tree corresponding to LFTR[1 . . ℓ − 1][i].

Recall that we work in the word RAM model. For implementing partially persistent
fusion trees, we view each memory cell as a collection of pairs of values and timestamps; a
timestamp indicates when the respective value was written in the cell. (This is a standard
persistence trick, see e.g. [55].) For each cell, we want to construct a predecessor data
structure over the timestamps to simulate these operations. The key idea is that, in each
such cell, we would like to keep the number of updates small so as to employ fusion trees for
implementing it as a predecessor data structure. Let us stress that the latter fusion trees
should not be confused with the partially persistent fusion trees we construct over the LFTR
array for our problem.

We now process T from right to left to construct the collection of partially persistent fusion
trees. For each position of T , we perform the updates as per the LFTR array. Specifically,
for position n, we initialise the partially persistent fusion tree with keys LFTR[1 . . ℓ − 1][n].
Then, for position i from n − 1 to 1, for all j ∈ [1, ℓ − 1], such that (n − i) (mod τ · j) = 0,
we remove key LFTR[j][i + τ · j] and insert key LFTR[j][i]. However, after processing every
τ · log n/ log log n positions of T , and hence

∑
j∈[1,ℓ−1](τ log n/ log log n)/(τ · j) = Θ(log n)

updates have been performed, we create a completely new instance of a partially persistent
fusion tree. We initialise this new instance with the LFTR values of the currently unprocessed
position of T . Let us note that the O(logσ n) time cost for reinitialisation amortises, because
we can charge it to the Θ(log n) O(1)-time updates we have previously performed. For each
position i of T , we store the timestamp t(i) at which its processing ended and a pointer to
the partially persistent fusion tree of the collection corresponding to it.

Upon a query [a, b], we wish to find the smallest j such that LFTR[j][b] < a. We thus
need to find where the predecessor of a lies in LFTR[1 . . ℓ − 1][b]. We retrieve the partially
persistent fusion tree and ask the query, using timestamp t(b). Note that each memory
access performed by the query requires O(1) time, as it translates to a predecessor query in
a fusion tree with O(log n) keys; and there are O(1) such accesses because this is a (partially
persistent) fusion tree with O(logσ n) keys. The query thus takes O(1) time.

6.3 Weighted Ancestor Data Structure for Shallow Trees
A tree is a weighted tree if it is a rooted tree with an integer weight on each node v, denoted
by w(v), such that the weight of the root is zero and w(u) < w(v) if u is the parent of v. We
say that a node v is a weighted ancestor at depth δ of a node u if v is the highest ancestor of
u with weight of at least δ. The problem of constructing a data structure to answer weighted
ancestor queries was introduced by Farach and Muthukrishnan in [26].

CPM 2021

6:14 Internal Shortest Absent Word Queries

After O(n)-time preprocessing, weighted ancestor queries for nodes of a weighted tree T of
size n with integer weights from a universe [1 . . U] can be answered in O(log log U) time [26, 5].
Later, it was shown that a dynamic variant of the weighted ancestors problem admits a
solution with the same time bounds as those for dynamic predecessor structures [47, 36].
Further, Kopelowitz et al. [46] introduced another O(n)-size data structure that achieves
faster query time in many special cases. For the offline version, Kociumaka et al. [43] showed
how to answer a batch of q weighted ancestor queries in the optimal O(n + q) time.

The weighted ancestors problem has numerous applications if the input tree is a suffix
tree of some string; see [36] for a nice exposition of these applications. In this context, the
weighted ancestors problem translates to preprocessing the suffix tree of a string T [1 . . n], so
that, given i and j, we can retrieve the implicit or explicit node corresponding to substring
T [i . . j]. Observe that, since the weighted ancestor is a generalisation of the predecessor
problem, it cannot admit better bounds. Nevertheless, the problem on suffix trees is a
special case of the general problem. This led to the challenge of solving the problem on suffix
trees in O(n) preprocessing time and O(1) query time [26]. Gawrychowski et al. [36] partly
settled this question by presenting an O(n)-size data structure with O(1) query time; the
construction time, however, is superlinear in n. Very recently, Belazzougui et al. [11] have
settled this question by presenting an O(n)-size data structure for weighted ancestors in
suffix trees with O(1) query time and an O(n)-time construction algorithm.

Given a tree T of size n and depth d, we can do the following trick to reduce the weighted
ancestors problem to O(n/d) instances on trees of both size and depth O(d): Cut along
every dth root-to-leaf path in T , and duplicate its nodes and edges. Then, we can apply
the result of Kopelowitz and Lewenstein [47, 36] to each of the O(n/d) smaller trees. In the
specific case of d = logO(1) n, this gives an O(n)-size data structure that answers weighted
ancestor queries in O(1) time. By applying the machinery we have developed in the previous
subsection, we achieve the same result for this special case in an alternative way. For each
of the O(n/d) trees of size and depth O(d), we perform a depth-first traversal, maintaining
a partially persistent fusion tree that when visiting node v stores the weights of all (weak)
ancestors of v. We obtain the following corollary for shallow trees.

▶ Corollary 31. Let T be a weighted tree of size n and depth d = logO(1) n, with weights
polynomial in n. We can preprocess T in O(n) time so that weighted ancestor queries on T
can be answered in O(1) time.

References
1 Paniz Abedin, Arnab Ganguly, Wing-Kai Hon, Yakov Nekrich, Kunihiko Sadakane, Rahul

Shah, and Sharma V. Thankachan. A linear-space data structure for Range-LCP queries in
poly-logarithmic time. In Computing and Combinatorics - 24th International Conference,
COCOON 2018, pages 615–625, 2018. doi:10.1007/978-3-319-94776-1_51.

2 Paniz Abedin, Arnab Ganguly, Solon P. Pissis, and Sharma V. Thankachan. Efficient data
structures for range shortest unique substring queries. Algorithms, 13(11):276, 2020. doi:
10.3390/a13110276.

3 Amihood Amir, Alberto Apostolico, Gad M. Landau, Avivit Levy, Moshe Lewenstein, and
Ely Porat. Range LCP. J. Comput. Syst. Sci., 80(7):1245–1253, 2014. doi:10.1016/j.jcss.
2014.02.010.

4 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.
doi:10.1007/s00453-020-00744-0.

5 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

https://doi.org/10.1007/978-3-319-94776-1_51
https://doi.org/10.3390/a13110276
https://doi.org/10.3390/a13110276
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1145/1240233.1240242

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:15

6 Lorraine A. K. Ayad, Golnaz Badkobeh, Gabriele Fici, Alice Héliou, and Solon P. Pissis.
Constructing antidictionaries in output-sensitive space. In Data Compression Conference,
DCC 2019, pages 538–547. IEEE, 2019. doi:10.1109/DCC.2019.00062.

7 Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, Ignat I. Kolesnichenko, and
Tatiana Starikovskaya. Computing minimal and maximal suffixes of a substring. Theor.
Comput. Sci., 638:112–121, 2016. doi:10.1016/j.tcs.2015.08.023.

8 Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya.
Wavelet trees meet suffix trees. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, pages 572–591. SIAM, 2015. doi:10.1137/
1.9781611973730.39.

9 Carl Barton, Alice Héliou, Laurent Mouchard, and Solon P. Pissis. Linear-time computation
of minimal absent words using suffix array. BMC Bioinform., 15:388, 2014. doi:10.1186/
s12859-014-0388-9.

10 Carl Barton, Alice Héliou, Laurent Mouchard, and Solon P. Pissis. Parallelising the computation
of minimal absent words. In Parallel Processing and Applied Mathematics - 11th International
Conference, PPAM 2015. Revised Selected Papers, Part II, volume 9574 of Lecture Notes in
Computer Science, pages 243–253. Springer, 2015. doi:10.1007/978-3-319-32152-3_23.

11 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
ancestors in suffix trees revisited. In 32nd Annual Symposium on Combinatorial Pattern
Matching, CPM 2021, volume 191 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CPM.2021.8.

12 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN 2000:
Theoretical Informatics, 4th Latin American Symposium, Proceedings, volume 1776 of Lecture
Notes in Computer Science, pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

13 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993. doi:10.1137/0222017.

14 Or Birenzwige, Shay Golan, and Ely Porat. Locally consistent parsing for text indexing in
small space. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, pages 607–626. SIAM, 2020. doi:10.1137/1.9781611975994.37.

15 Supaporn Chairungsee and Maxime Crochemore. Using minimal absent words to build
phylogeny. Theor. Comput. Sci., 450:109–116, 2012. doi:10.1016/j.tcs.2012.04.031.

16 Panagiotis Charalampopoulos, Maxime Crochemore, Gabriele Fici, Robert Mercaş, and Solon P.
Pissis. Alignment-free sequence comparison using absent words. Inf. Comput., 262:57–68,
2018. doi:10.1016/j.ic.2018.06.002.

17 Panagiotis Charalampopoulos, Maxime Crochemore, and Solon P. Pissis. On extended
special factors of a word. In String Processing and Information Retrieval - 25th International
Symposium, SPIRE 2018, volume 11147 of Lecture Notes in Computer Science, pages 131–138.
Springer, 2018. doi:10.1007/978-3-030-00479-8_11.

18 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. An
almost optimal edit distance oracle. CoRR, abs/2103.03294, 2021. arXiv:2103.03294.

19 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszynski, Tomasz Walen, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.8.

20 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Internal dictionary matching. In 30th International
Symposium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.22.

21 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, pages 978–989. IEEE, 2020. doi:10.1109/FOCS46700.2020.
00095.

CPM 2021

https://doi.org/10.1109/DCC.2019.00062
https://doi.org/10.1016/j.tcs.2015.08.023
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1007/978-3-319-32152-3_23
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1007/10719839_9
https://doi.org/10.1137/0222017
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1016/j.tcs.2012.04.031
https://doi.org/10.1016/j.ic.2018.06.002
https://doi.org/10.1007/978-3-030-00479-8_11
http://arxiv.org/abs/2103.03294
https://doi.org/10.4230/LIPIcs.CPM.2020.8
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095

6:16 Internal Shortest Absent Word Queries

22 Maxime Crochemore, Alice Héliou, Gregory Kucherov, Laurent Mouchard, Solon P. Pissis,
and Yann Ramusat. Absent words in a sliding window with applications. Inf. Comput., 270,
2020. doi:10.1016/j.ic.2019.104461.

23 Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden words.
Inf. Process. Lett., 67(3):111–117, 1998. doi:10.1016/S0020-0190(98)00104-5.

24 Maxime Crochemore, Filippo Mignosi, Antonio Restivo, and Sergio Salemi. Data compression
using antidictionaries. Proceedings of the IEEE, 88(11):1756–1768, 2000. doi:10.1109/5.
892711.

25 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, pages 137–143. IEEE Computer
Society, 1997. doi:10.1109/SFCS.1997.646102.

26 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In Combinatorial Pattern Matching, 7th Annual Symposium, CPM 1996, volume 1075 of Lecture
Notes in Computer Science, pages 130–140. Springer, 1996. doi:10.1007/3-540-61258-0_11.

27 Sébastien Ferenczi. Complexity of sequences and dynamical systems. Discret. Math., 206(1-
3):145–154, 1999. doi:10.1016/S0012-365X(98)00400-2.

28 Gabriele Fici and Pawel Gawrychowski. Minimal absent words in rooted and unrooted trees.
In String Processing and Information Retrieval - 26th International Symposium, SPIRE
2019, volume 11811 of Lecture Notes in Computer Science, pages 152–161. Springer, 2019.
doi:10.1007/978-3-030-32686-9_11.

29 Gabriele Fici, Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Word assembly
through minimal forbidden words. Theor. Comput. Sci., 359(1-3):214–230, 2006. doi:10.
1016/j.tcs.2006.03.006.

30 Gabriele Fici, Antonio Restivo, and Laura Rizzo. Minimal forbidden factors of circular words.
Theor. Comput. Sci., 792:144–153, 2019. doi:10.1016/j.tcs.2018.05.037.

31 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. URL: http://www.jstor.org/
stable/2034009.

32 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.

33 Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing DAWGs and minimal absent words in linear time for integer alphabets. In 41st
International Symposium on Mathematical Foundations of Computer Science, MFCS 2016,
volume 58 of LIPIcs, pages 38:1–38:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.MFCS.2016.38.

34 Arnab Ganguly, Manish Patil, Rahul Shah, and Sharma V. Thankachan. A linear space
data structure for range LCP queries. Fundam. Inform., 163(3):245–251, 2018. doi:10.3233/
FI-2018-1741.

35 Sara P. Garcia, Armando J. Pinho, João M. O. S. Rodrigues, Carlos A. C. Bastos, and
Paulo J. S. G. Ferreira. Minimal absent words in prokaryotic and eukaryotic genomes. PLoS
ONE, 6, 2011. doi:10.1371/journal.pone.0016065.

36 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors
in suffix trees. In Algorithms - ESA 2014 - 22th Annual European Symposium, volume
8737 of Lecture Notes in Computer Science, pages 455–466. Springer, 2014. doi:10.1007/
978-3-662-44777-2_38.

37 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

38 Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on
Foundations of Computer Science, FOCS 1989, pages 549–554. IEEE Computer Society, 1989.
doi:10.1109/SFCS.1989.63533.

https://doi.org/10.1016/j.ic.2019.104461
https://doi.org/10.1016/S0020-0190(98)00104-5
https://doi.org/10.1109/5.892711
https://doi.org/10.1109/5.892711
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1016/S0012-365X(98)00400-2
https://doi.org/10.1007/978-3-030-32686-9_11
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2018.05.037
http://www.jstor.org/stable/2034009
http://www.jstor.org/stable/2034009
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.4230/LIPIcs.MFCS.2016.38
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.1371/journal.pone.0016065
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1137/0213024
https://doi.org/10.1109/SFCS.1989.63533

G. Badkobeh, P. Charalampopoulos, and S. P. Pissis 6:17

39 Orgad Keller, Tsvi Kopelowitz, Shir Landau Feibish, and Moshe Lewenstein. Generalized
substring compression. Theor. Comput. Sci., 525:42–54, 2014. doi:10.1016/j.tcs.2013.10.
010.

40 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, pages 756–767. ACM, 2019.
doi:10.1145/3313276.3316368.

41 Tomasz Kociumaka. Minimal suffix and rotation of a substring in optimal time. In 27th
Annual Symposium on Combinatorial Pattern Matching, CPM 2016, pages 28:1–28:12, 2016.
doi:10.4230/LIPIcs.CPM.2016.28.

42 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, 2018. URL: https://mimuw.edu.pl/~kociumaka/files/phd.pdf.

43 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen.
A linear-time algorithm for seeds computation. ACM Trans. Algorithms, 16(2):27:1–27:23,
2020. doi:10.1145/3386369.

44 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Efficient data
structures for the factor periodicity problem. In String Processing and Information Retrieval
- 19th International Symposium, SPIRE 2012, volume 7608 of Lecture Notes in Computer
Science, pages 284–294, 2012. doi:10.1007/978-3-642-34109-0_30.

45 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal
pattern matching queries in a text and applications. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

46 Tsvi Kopelowitz, Gregory Kucherov, Yakov Nekrich, and Tatiana Starikovskaya. Cross-
document pattern matching. J. Discrete Algorithms, 24:40–47, 2014. doi:10.1016/j.jda.
2013.05.002.

47 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pages
565–574. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283444.

48 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. J. Comput. Syst.
Sci., 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

49 Kotaro Matsuda, Kunihiko Sadakane, Tatiana Starikovskaya, and Masakazu Tateshita. Com-
pressed orthogonal search on suffix arrays with applications to range LCP. In 31st Annual
Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen,
Denmark, pages 23:1–23:13, 2020. doi:10.4230/LIPIcs.CPM.2020.23.

50 Takuya Mieno, Yuki Kuhara, Tooru Akagi, Yuta Fujishige, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda. Minimal unique substrings and minimal absent words
in a sliding window. In 46th SOFSEM, volume 12011 of Lecture Notes in Computer Science,
pages 148–160. Springer, 2020. doi:10.1007/978-3-030-38919-2_13.

51 Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Words and forbidden factors.
Theor. Comput. Sci., 273(1-2):99–117, 2002. doi:10.1016/S0304-3975(00)00436-9.

52 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Text indexing and searching in sublinear
time. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, volume
161 of LIPIcs, pages 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CPM.2020.24.

53 Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge
University Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

54 Takahiro Ota and Hiroyoshi Morita. On the adaptive antidictionary code using minimal
forbidden words with constant lengths. In Proceedings of the International Symposium
on Information Theory and its Applications, ISITA 2010, pages 72–77. IEEE, 2010. doi:
10.1109/ISITA.2010.5649621.

CPM 2021

https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.4230/LIPIcs.CPM.2016.28
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.1145/3386369
https://doi.org/10.1007/978-3-642-34109-0_30
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1016/j.jda.2013.05.002
https://doi.org/10.1016/j.jda.2013.05.002
http://dl.acm.org/citation.cfm?id=1283383.1283444
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.4230/LIPIcs.CPM.2020.23
https://doi.org/10.1007/978-3-030-38919-2_13
https://doi.org/10.1016/S0304-3975(00)00436-9
https://doi.org/10.4230/LIPIcs.CPM.2020.24
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1109/ISITA.2010.5649621
https://doi.org/10.1109/ISITA.2010.5649621

6:18 Internal Shortest Absent Word Queries

55 Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.

56 Diogo Pratas and Jorge M Silva. Persistent minimal sequences of SARS-CoV-2. Bioinformatics,
July 2020. btaa686. doi:10.1093/bioinformatics/btaa686.

57 Mihai Pătraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, pages 166–175. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.26.

58 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
s00453-012-9618-6.

59 Mikhail Rubinchik and Arseny M. Shur. Counting palindromes in substrings. In String
Processing and Information Retrieval - 24th International Symposium, SPIRE 2017, volume
10508 of Lecture Notes in Computer Science, pages 290–303. Springer, 2017. doi:10.1007/
978-3-319-67428-5_25.

60 Raquel M. Silva, Diogo Pratas, Luísa Castro, Armando J. Pinho, and Paulo J. S. G. Fer-
reira. Three minimal sequences found in Ebola virus genomes and absent from human DNA.
Bioinform., 31(15):2421–2425, 2015. doi:10.1093/bioinformatics/btv189.

61 Yuka Tanimura, Takaaki Nishimoto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Small-space LCE data structure with constant-time queries. In 42nd International Symposium
on Mathematical Foundations of Computer Science, MFCS 2017, volume 83 of LIPIcs, pages
10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
MFCS.2017.10.

62 Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and applications.
Math. Comput. Sci., 1(4):571–603, 2008. doi:10.1007/s11786-007-0033-3.

63 Andrew C. Yao. Space-time tradeoff for answering range queries (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982,
pages 128–136. ACM, 1982. doi:10.1145/800070.802185.

https://doi.org/10.1137/09075336X
https://doi.org/10.1093/bioinformatics/btaa686
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/978-3-319-67428-5_25
https://doi.org/10.1007/978-3-319-67428-5_25
https://doi.org/10.1093/bioinformatics/btv189
https://doi.org/10.4230/LIPIcs.MFCS.2017.10
https://doi.org/10.4230/LIPIcs.MFCS.2017.10
https://doi.org/10.1007/s11786-007-0033-3
https://doi.org/10.1145/800070.802185

	1 Introduction
	2 Preliminaries
	3 O(nlog_sigma n) Space and O(1) Query Time
	4 O(n) Space and O(log log_sigma n) Query Time
	5 Combinatorial Insights
	6 O(n log log_{sigma} n) Space and O(1) Query Time
	6.1 Lazy FTR Arrays
	6.2 Partially Persistent Fusion Trees (using Fusion Trees)
	6.3 Weighted Ancestor Data Structure for Shallow Trees

