
Berio, Daniel. 2021. AutoGraff: towards a computational understanding of graffiti writing and
related art forms.. Doctoral thesis, Goldsmiths, University of London [Thesis]

https://research.gold.ac.uk/id/eprint/29999/

The version presented here may differ from the published, performed or presented work. Please
go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Goldsmiths, University of London via the following email address:
gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For
more information, please contact the GRO team: gro@gold.ac.uk

AutoGraff:
towards a computational understanding of graffiti writing and related art forms.

Daniel Berio

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

Goldsmiths, University of London.

Department of Computing

Goldsmiths, University of London

January 12, 2021

2

I, Daniel Berio, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the work.

Abstract

The aim of this thesis is to develop a system that generates letters and pictures with a

style that is immediately recognizable as graffiti art or calligraphy. The proposed sys-

tem can be used similarly to, and in tight integration with, conventional computer-aided

geometric design tools and can be used to generate synthetic graffiti content for urban

environments in games and in movies, and to guide robotic or fabrication systems that

can materialise the output of the system with physical drawing media.

The thesis is divided into two main parts. The first part describes a set of stroke

primitives, building blocks that can be combined to generate different designs that re-

semble graffiti or calligraphy. These primitives mimic the process typically used to de-

sign graffiti letters and exploit well known principles of motor control to model the way

in which an artist moves when incrementally tracing stylised letterforms. The second

part demonstrates how these stroke primitives can be automatically recovered from in-

put geometry defined in vector form, such as the digitised traces of writing made by a

user, or the glyph outlines in a font. This procedure converts the input geometry into a

seed that can be transformed into a variety of calligraphic and graffiti stylisations, which

depend on parametric variations of the strokes.

Acknowledgements

My fascination with graffiti art started with me being a kid that was trying to learn the C-

programming language. I saw graffiti tags in the streets of my hometown, Florence, and

I wandered what was this obscure code written on the walls of the city. Ironically, one

of my first attempt at sketching graffiti letters, was writing the word “UNIX” on a school-

book. Little did I know, that I would end up writing graffiti for years to come but also end

up writing this massive document on the combined topic of graffiti and computing.

This course of events would have not been possible without the support and advice

of my supervisor Frederic Fol Leymarie. I would like to thank him immensely for believ-

ing in this project, for his friendship, for his mentoring and for being engaged with the

work until the very last minute. I would also like to thank Frederic for sharing with me

his expertise, insight and opinions about shape, which have greatly contributed to this

work and I hope are expressed to his satisfaction in this thesis.

The connections of the thesis to “skeletons” (in the sense of Harry Blum) goes back

to my friend Alexander Bucksch, who I would like to thank for the good times back in Den

Haag, for convincing me in the first place to pursue a PhD and for warning me, only when

my proposal was accepted, about the potential downsides of this choice. I would also

like to thank Prashant (Alpha) Aparajeya for the good times and conversations during

the start of my studies and for always being more reliable than Wolfram in answering my

mathematical questions.

A special thank-you also goes to Sylvain Calinon, who is not listed as an official su-

pervisor, but most certainly helped me as such. A lot of the work in this thesis is also

due to his contributions and advice, and I would also thank him for letting me visit the

Idiap research institute in Switzerland, where I spent 6 months struggling with the chal-

lenges of controlling a humanoid robot and diving in a lot of the theoretical background

underlying this thesis. In this regard, I would like to thank in particular Réjean Plamon-

don, who’s theories have also contributed to three chapters of this thesis. I would like to

Acknowledgements 5

thank him firstly for believing in this project, and also for his support, advice and for in-

troducing me to the Graphonomics community. I would like to also thank Tamar Flash,

for her kindness, the always stimulating conversations and for pointing me in interesting

new directions, which I hope to explore more in depth in the future. My gratitude also

goes to Rebecca Chamberlain and Luca Citi, who’s additional supervision and ideas have

brought the work presented here in interesting new directions. In particular I would like

to thank Rebecca, together with Guido Orgs and Caitlin Mullin and collaborators for also

greatly contributing to this project with their excellent empirical research.

My gratitude also goes to Paul Asente and Jose Echevarria at Adobe Research, for

supporting this project in the last two years, and for the precious advice during the most

challenging part of my studies. In particular I would like to thank Paul for also believing

in this project, always challenging me with his questions and letting me visit Adobe in

the first place, where another big part of the work in this thesis was also conceived. I

would also like to thank Daichi Ito at Adobe Research for providing beautiful designs to

test with our system and for presenting results in Japan and in Korea.

I am probably forgetting many names that I would acknowledge, if this was not one

of the toughest sprints of this journey. But I won’t forget to thank the IGGI (Intelligent

Games and Game Intelligence) programme for supporting this PhD. I would also like to

acknowledge my fellow students and friends, and in particular Christian Guckelsberger,

Memo Akten and Tom Cole, with a longing for our restaurant explorations (and feasts)

during the first year of the PhD studies, as well as Henrik Siljebrat and Rob Homewood

for the fun after-lab sessions at the pub. I would like to especially thank Memo, who

contributed in a big part to one chapter of this thesis and with whom I shared sleepless

nights trying to finish the work in time for a deadline. I want to also thank my friend

Yaprak for making me smile during tough times, and also send a thank-you to a number

of graffiti artists, some for contributing with photos or suggestions and some simply for

being good friends during this time, as we say for graffiti I will “put them up” with their

tags as BEES, SMART, KEIN, MORE, HULK, VIME, RELAX, EGS, CESAR, KRESO, GREY,

TRIXTER, NEMA, ELK, DRAX, SIEGE, PETRO, YEP, RAKIE, YOM and probably more that

I forgot to add here.

Finally, this thesis is dedicated to my mother (Ima) my brother (Yoni) and in loving

memory of my father (Aba).

Contents

1 Introduction 21

1.1 A short overview of graffiti styles . 22

1.1.1 Tags . 22

1.1.2 (Master-)Pieces . 23

1.1.3 Other graffiti styles and elements . 26

1.2 Graffiti in the Digital and Virtual Realms . 28

1.2.1 Graffiti in Graphic Design . 29

1.2.2 Graffiti in Games and Movies . 30

1.2.3 Computer Aided Graffiti Design . 32

1.3 Part I: Graffiti primitives . 33

1.3.1 Calligraphic stylisation: Movement and tags 35

1.3.2 Outline stylisation: Parts and pieces . 38

1.3.3 Overall contributions of Part I . 38

1.4 Part II: Recovering graffiti primitives from geometry 39

1.4.1 Geometric input analysis . 39

1.4.2 Trace based methods . 40

1.4.3 Outline based methods . 41

1.4.4 Overall contributions of Part II . 41

1.5 Publications . 42

2 Notation and preliminary definitions 44

2.1 Geometry . 44

2.2 Motor plans and strokes: . 46

3 Background 47

3.1 A Brief History . 47

Contents 7

3.2 Beyond painting and drawing: Graffiti production 48

3.3 Curves in computer graphics . 49

3.3.1 Fairness, beautification and neatness of curves 49

3.3.2 Curve stylisation . 51

3.4 Movement perception and representation . 52

3.4.1 Movement in the arts . 52

3.4.2 Perception of movement in static forms 53

3.5 Motor control . 55

3.5.1 Principles and invariants . 55

3.5.2 Trajectory formation . 62

3.5.3 Graphonomics: Models of drawing and handwriting movement . . . 64

3.6 Letterform representation, generation and stylization 67

3.6.1 Structural representations of letterforms 68

3.6.2 Stroke representations . 69

3.7 Letterform stylisation and generation . 72

3.7.1 Handwriting synthesis . 73

3.7.2 Font and calligraphy generation and stylisation 75

3.7.3 Stroke segmentation . 77

3.8 From shape to strokes . 78

3.8.1 Curvature based shape representations 79

3.8.2 Axial symmetry based shape representations 83

3.8.3 Perceptual grouping . 90

3.8.4 From parts to strokes . 92

3.9 Summary . 96

I Part I - Kinematic and geometric primitives for interactive graffiti art

generation 99

4 Calligraphic stylisation: the Sigma-Lognormal model 100

4.1 Sigma Lognormal Model . 101

4.2 ΣΛmodel for calligraphic stylisation . 104

4.2.1 The weighted Sigma Lognormal (ωΣΛ) model 105

4.2.2 The Weighted Euler Spiral Sigma Lognormal (ωEΣΛ) Model 106

Contents 8

4.2.3 Lognormal timing reparameterisations 107

4.3 User interaction . 109

4.4 Kinematic variability and stylisation . 110

4.4.1 Artificial variability . 112

4.4.2 Stylistic variations . 113

4.5 Stroke generation and animation . 116

4.6 Conclusion . 119

5 Calligraphic stylisation: Minimal intervention control 121

5.1 Trajectory Generation . 122

5.1.1 Dynamical system . 123

5.1.2 Optimization objective . 126

5.1.3 Tracking formulation . 127

5.1.4 Control weights . 129

5.1.5 Stochastic solution . 130

5.1.6 Periodic motions . 132

5.1.7 Multiple references . 133

5.2 User interfaces . 135

5.2.1 Mimicking Bézier curves . 137

5.2.2 Semi-tied structure . 138

5.3 Calligraphic stylisation . 141

5.3.1 Reconstructing instances of calligraphy 142

5.3.2 Predefined motor plans . 143

5.3.3 Generating Asemic Tags . 144

5.3.4 Stroke thickness . 145

5.4 Discussion . 145

5.4.1 Performance . 145

5.4.2 Limitations: passage times . 146

5.5 Conclusion . 148

6 Outline stylisation: Sketching and layering 150

6.1 Stroke Generation . 152

6.1.1 Smooth strokes . 156

Contents 9

6.2 Apparent layering and overlaps . 158

6.2.1 Partitions . 158

6.2.2 Fold culling . 159

6.2.3 Layering and Planar Map . 160

6.3 Results and Applications . 162

6.4 Conclusion . 167

II Part II - Graffitization: Recovering graffiti primitives from shape 171

7 Curvilinear Shape Features 172

7.1 Introduction . 172

7.1.1 Masking Problem . 175

7.1.2 Solution: Recursive CSF Computation 176

7.2 Symmetry axis transform . 177

7.2.1 Discrete implementation . 179

7.2.2 Voronoi approximation . 179

7.3 Computing Curvilinear Shape Features (CSFs) 180

7.3.1 CSF Computation . 182

7.3.2 CSF Overlap . 183

7.3.3 CSF saliency . 183

7.3.4 Computing the CASA . 184

7.4 Absolute Curvature Minima CSFs with the ESAT 185

7.4.1 Computing the ESAT: Farthest Voronoi Diagram 185

7.4.2 Identifying m+ and M− CSFs . 187

7.5 Transition Segments and Inflections . 188

7.5.1 Fitting Euler Spirals . 189

7.5.2 Inflections . 191

7.6 Discussion . 192

7.7 Conclusion . 194

8 From Geometry to Kinematics with CSFs 198

8.1 Segmentation method . 199

8.1.1 Circular arc decomposition . 200

Contents 10

8.2 Iterative Reconstruction of ΣΛ parameters . 201

8.2.1 Initialisation: Features, Sub-movements, Initial Targets 202

8.2.2 Iterative scheme: Keys, Max speeds, Moving Targets 204

8.2.3 Underlying observations . 204

8.2.4 Stopping Criteria, SNR . 207

8.3 Editing, Rendering and Stylistic Variations . 208

8.3.1 Smoothing and Fairing. 209

8.4 Comparison: constrained minimum jerk model and MIC 212

8.5 Conclusions . 216

9 Example-driven stylisation with the Sigma Lognormal Model 218

9.1 Method . 220

9.1.1 Example-based input . 220

9.1.2 Kinematic parameters . 221

9.1.3 Data augmentation . 221

9.1.4 Kinematic Parameter Prediction (KPP) 222

9.2 Results . 225

9.2.1 User defined virtual targets. 225

9.2.2 Kinematic Style Transfer . 230

9.3 Discussion . 231

9.3.1 Model complexity . 231

9.4 Conclusion . 234

10 From 2D Shape to Strokes with CSFs 236

10.1 Overview . 239

10.2 2D Shape Analysis . 240

10.2.1 Extended 2D Shape Analysis . 240

10.2.2 Good continuation (α) and flow direction (ϕ) 244

10.3 Splits . 245

10.3.1 Local conditions . 247

10.3.2 Fork and branch assignments to splits. 248

10.3.3 Split salience . 250

10.4 Junction Identification . 251

Contents 11

10.4.1 Junction properties . 251

10.4.2 Iterative Junction Identification . 255

10.4.3 Step 1: IdentifyΨ-junctions . 256

10.4.4 Step 2: Identify Other Junctions . 258

10.5 From Junctions to Stroke Representations . 263

10.5.1 Stroke Paths . 263

10.5.2 Stroke Areas . 266

10.6 Discussion and Results . 267

10.7 Conclusion . 270

11 Font stylisation 272

11.1 Path-based stylisation . 272

11.1.1 From stroke paths to strokes . 273

11.1.2 Simplification: constructing motor plans 274

11.1.3 Structural modifiers . 275

11.1.4 Calligraphic Stylisation . 277

11.1.5 Outline Stylisation . 279

11.1.6 Stroke animation . 282

11.2 Area-Based Stylisation: Stroke Similarity . 283

11.3 Conclusions . 284

12 Conclusion 286

12.1 Part I: Stroke primitives . 287

12.2 Part II: Graffiti content generation . 289

12.3 Summary of Contributions . 291

12.4 Limitations and future work . 292

12.4.1 ΣΛmodel . 292

12.4.2 MIC . 293

12.4.3 Graffiti design . 294

12.4.4 Empirical aesthetics research . 295

12.4.5 Parameter choices and evaluation . 298

12.4.6 Data driven methods . 298

12.5 Final notes . 300

Contents 12

Appendices 301

A List of peer-reviewed publications 301

B Ferri’s form and composition functions 303

C Additional details on MIC trajectory generation 306

C.1 Displacement-based smoothing weight . 306

C.1.1 Derivation with Simple Harmonic Motion 308

C.2 Iterative solution . 308

D Additional details for font segmentation 310

D.1 Association fields . 310

D.2 Hanzi segmentation examples . 311

D.3 Font segmentation examples . 312

E Symbols and values 317

E.1 Symbols (general): . 317

E.2 Other symbols and objects: . 318

E.3 Functions: . 319

E.4 Parameters: . 320

E.5 Thresholds and Tolerances: . 321

F Errata 322

Bibliography 323

List of Figures

1.1 Examples of tags . 24

1.2 Graffiti, from sketch to piece . 24

1.3 Sticks and softies . 25

1.4 Examples of self-overlapping loops. 25

1.5 Fundamental styles . 26

1.6 Graffiti . 27

1.7 Examples of throw-ups . 27

1.8 Examples of puppets . 28

1.9 Examples of abstract styles . 28

1.10 Editing graffiti with conventional vector graphics techniques. 29

1.11 Examples of graffiti in the videogame GTA. 30

1.12 Graffiti in movies . 31

1.13 A few different kinds of strokes. 34

1.14 Example stroke stylisations of a motor plan for the letter “R” 34

1.15 Common letter structures. Example tag letters from Evan Roth’s graffiti

taxonomy. 35

1.16 Letter “N” isolated from some pieces . 37

3.1 Bell shaped speed profiles . 59

3.2 Skeletal strokes . 71

3.3 Codon grammar . 83

3.4 Some symmetry axis variants . 86

4.1 The effect of different time overlaps for 2 lognormals 102

4.2 Sigma-lognormal trajectory and corresponding speed profile. 106

4.3 Euler spiral with Hermite constraints. 107

List of Figures 14

4.4 Lognormals for different values of Aci . 108

4.5 Example UI for editing ΣΛ trajectories . 111

4.6 Target structure of a letter "a" (top left) and kinematic variations of its trace

generated by perturbing ΣΛ parameters. 112

4.7 Trajectory variation and smoothing by scaling ∆t 113

4.8 Key-point adjustment . 114

4.9 Key-point adjustment . 115

4.10 Exaggeration of ΣΛ parameters . 116

4.11 Kinematics-based brush rendering of ΣΛ trajectories 116

4.12 “Hat” functions for brush generation. 117

4.13 Different brush textures, with the corresponding parameters and an ex-

ample trajectory . 118

4.14 Brush dabbing with speed dependent width 118

4.15 Lognormal drips. 119

4.16 Reproducing a tag created with the ΣΛmodel with a compliant robot. . . . 119

5.1 GMM-based trajectory generation in a nutshell 123

5.2 Covariance based variations of a trajectory 124

5.3 (a), smoothing effect of increasing the variance of a Gaussian. (b), manip-

ulating the trajectory evolution with full covariances. Below each trajec-

tory, its corresponding speed profile. 124

5.4 Effect of different activation sequences with the same set of Gaussians. . . 128

5.5 Order independent control weight . 129

5.6 Stochastic sampling from the trajectory distribution. 131

5.7 Stochastic sampling of periodic trajectories. 133

5.8 Periodic motions . 134

5.9 Adding a tracking reference with time varying velocity 134

5.10 Additional reference with time varying coordinate system on velocity . . . 135

5.11 User interaction and kinematics driven brush rendering effects. 136

5.12 Approximating cubic Bézier curves with optimal control 138

5.13 Mimicking Bézier curves with a stepwise reference 139

5.14 Control point perturbation with . 139

5.15 Automatic ligature generation . 139

List of Figures 15

5.16 Different stylisations of a letter “Z” using semi-tied covariances with dif-

ferent orientations. 140

5.17 Illustrative example of the oblique coordinate system 140

5.18 Interface for manipulating semi-tied covariances and corresponding tra-

jectories . 141

5.19 Calligraphic stylisations of a user-defined motor plan 141

5.20 User reconstruction of an instance of calligraphy. 142

5.21 User reconstruction and variation of a graffiti tag. 142

5.22 Stylisation of simple alphabet letters. 143

5.23 Concatenation of predefined motor plans composing the word “ABRA-

CADABRA” . 143

5.24 Asemic tags. 144

5.25 Illustration of the asemic glyph generation procedure. 144

5.26 Variable brush thickness smoothing. 145

5.27 Comparison of performances between the batch and iterative approaches. 146

5.28 Cubic interpolation with MIC. 147

5.29 Comparing MJ with MIC. 147

6.1 Examples of outputs from our system . 150

6.2 Graffiti with complicated intertwined strokes 153

6.3 Strokes with rectangular prototypes and varying width profiles 153

6.4 Corner rib adjustment. 155

6.5 Effect of angle fall-off parameter. 156

6.6 Variations of strokes for the same spine and width. 156

6.7 Rounded strokes. 158

6.8 A smooth stroke with squared ends (left) and a piece-wise smooth version

of it (right) . 158

6.9 Partition shapes . 159

6.10 Different fold cases. 160

6.11 Stylised folds, showing the effect of the fold-rendering parameter. 161

6.12 Additional layering effects. 162

6.13 Performance of the method for increasing number of curve samples and

spine segments . 164

List of Figures 16

6.14 Layering interactions . 164

6.15 Interactive construction of a graffiti letter "R" 164

6.16 Graffiti letters (“A” and “R”) generated and rendered with our method. . . . 165

6.17 Generated weaving pattern with Eulerian path. 166

6.18 Weaving pattern drawn by a pen plotter. 167

6.19 Layering of strokes with a more complex stroke prototype 168

6.20 Overlaps with self-folds . 168

6.21 Experiments with graffiti weaving patterns. 170

7.1 CSFs and CASA compared to 1D curvature function 173

7.2 Issues with the SAT for the identification of curvature extrema. 176

7.3 Global and local SAT . 178

7.4 Voronoi skeleton . 180

7.5 CSFs and support segments . 181

7.6 Overlapping disks along a spiral segment. 183

7.7 Concave CSF saliency computation for the outline of a glyph 184

7.8 Retrieving CSFs and the CASA for a glyph outline 185

7.9 ESAT . 186

7.10 Contact regions for absolute maxima and minima of two smooth contours. 187

7.11 Reconstruction and curvature function approximation of a B-spline contour.189

7.12 An Euler spiral, its inflection point (circle) and a Euler spiral segment

(thick black). 190

7.13 Subdivision of support segments for fitting Euler spirals. 191

7.14 CSF computation performance for closed contours and traces. 192

7.15 CSFs for circle and ellipses, with and without high frequency noise. 194

7.16 Qualitative comparison of salient points labelled by participants and CSFs 195

7.17 CSFs and transition segments of tag traces from the graffiti analysis

database. 196

7.18 (a) Interior and exterior SAT for a number of glyphs. (b) The correspond-

ing CSFs. 197

8.1 Decomposing Euler spirals (stippled cyan) into arcs 200

8.2 Feature extraction and arc decomposition . 202

List of Figures 17

8.3 ΣΛ parameter reconstruction using features from CSFs and Euler spiral

derived arcs. 203

8.4 Key points and max speed points . 205

8.5 Reconstruction of vector input initially built with piecewise Bézier curves . 208

8.6 Reconstruction of a graffiti signature "JANKE" from the Graffiti Analysis

database . 209

8.7 Additional examples of graffiti tag reconstructions 210

8.8 Parametric variations of a reconstructed graffiti 211

8.9 Example of content generation: Tags . 212

8.10 Comparison of smoothing and stylisation methods 213

8.11 Comparison of ΣΛ and path-constrained MJ reconstructions of a trajec-

tory generated with MIC . 215

9.1 Network architecture. 223

9.2 Dynamic parameters generated over user specified virtual targets. 225

9.3 Kinematic analogy implemented with KPP models trained on a single ex-

ample . 226

9.4 KPP model trained on a series of multiple strokes. 227

9.5 Reconstruction of the training example with a KPP model trained with

multi-stroke sequences and one trained on single stroke sequences 228

9.6 KPP model trained on a single stroke sequence and primed on a specific

stroke . 228

9.7 Dynamic parameters predicted with a model trained on four examples . . 229

9.8 Variations generated by varying the random number generator seed prior

to sampling a model trained on multiple examples. 229

9.9 Kinematic style transfer of user drawn traces. 230

9.10 Less satisfactory case for the stylisation of a complex tag. 231

9.11 Kinematic style transfer between different examples of tags. 232

9.12 Kinematic analogy implemented with VARMA. 233

9.13 Degradation of the parameter predictions with VARMA as the number of

example strokes increases . 234

10.1 From 2D letterforms to strokes with CFSs . 236

List of Figures 18

10.2 Example glyph segmentations. 239

10.3 High level overview of the segmentation and stylization of a glyph outline. 239

10.4 CSFs and related features for a capital letter “A”. 241

10.5 Branch salience computation. 243

10.6 Association fields for two corners in a letter T with corresponding colored

values α. 244

10.7 Valid and candidate split selection. 246

10.8 Computation of local convexity for different concavity configurations and

bisectors. 247

10.9 Branch and fork assignment of a split, depending on its branch intersections.249

10.10 Label propagation in similar areas, each with two forks, but giving differ-

ent branch groups. 252

10.11 Topological junctions. 252

10.12 Morphological junctions indicated by their respective forks. 254

10.13 Iterative junction identification and stroke label propagation for a letter “K”.255

10.14 Ψ-junction disambiguation. 257

10.15 Significance histograms for different junctions. 260

10.16 Stroke paths. 264

10.17 Junction adjustment. 264

10.18 Ligature adjustment. 265

10.19 Adjusted stroke paths for three different glyphs. 266

10.20 Faces and edges of Q̄ for different junction types. 267

10.21 Stroke areas for the letter “R” in different fonts. 267

10.22 Quantitative evaluation with the make-me-a-hanzi dataset. 268

10.23 Stroke decomposition of silhouettes. 269

10.24 A glyph with a circular hole segmented at different scales. 269

11.1 Font stylisation with our methods. 272

11.2 Hershey font stylisation. 273

11.3 Font stylisation with skeletal strokes. 273

11.4 Simplification and schematisation. 274

11.5 Mapping to flexures for simplified and schematised spines. 275

11.6 Structural adjustment steps for a schematised letter “A”. 276

List of Figures 19

11.7 Structural steps for a schematised letter “A”. 276

11.8 Calligraphic stylisations with schematisation. 277

11.9 Calligraphic stylisations of the string “AUTOGRAFF”. 278

11.10 Mapping to flexures for simplified and schematised spines. 279

11.11 Different tag-like stylisations of the word “RASER”. 279

11.12 Structural adjustment steps for a kinematic realisation of a schematised “A”. 280

11.13 Outline-based graffiti stylisation. 280

11.14 Progressing smoothing of a letter “P” with a corner. 280

11.15 Per-segment width profiles. 281

11.16 Structural adjustment steps for the outlined strokes of a schematised “A”. . 281

11.17 Combining schematisation with calligraphic stylisation. 282

11.18 Animating the drawing of a stylized “R”. 283

11.19 Abstract stroke-based animations. 283

11.20 Stylisation based on similarity between stroke areas. 284

11.21 Synthetic graffiti in the virtual and real world. 285

12.1 Calligraphic stylisation of the word “CAGD”. 287

12.2 Comparison of dynamic B-splines with MIC. 294

12.3 Sketching graffiti letters by hand. 295

12.4 Example of minimum jerk and inverted speed profiles together with the

corresponding static stimuli. 296

D.1 Example segmentations from the make-me-a-hanzi dataset. 311

D.2 Font: Moderne Fraktur. 312

D.3 Font: Bickham Script. 312

D.4 Font: Apollo. 313

D.5 Font: Arial bold. 313

D.6 Font: Adobe Arabic bold. 314

D.7 Font: Adobe Hebrew bold. 314

D.8 Font: PACL. 315

D.9 Font: Georgia. 315

D.10 Font: Kazuraki. 316

D.11 Font: Adobe Bengali Bold. 316

List of Tables

3.1 The six properties of the “most pleasing curve” according to Knuth (1979). . 50

3.2 Summary of principles that have been observed in human upper limb

movements. 56

3.3 Summary of movement representations. 62

3.4 Font/calligraphy/handwriting generation and synthesis. 73

3.5 Curvature saliency measures . 81

3.6 Main perceptual grouping principles. Refer to the chapter of Brooks (2015)

for a more detailed exposition of these and a series of other more novel

principles. 91

3.7 Summary of the main principles used for the decomposition of objects into

parts. 93

B.1 Compositional functions . 304

B.2 Form functions . 305

Chapter 1

Introduction

The purpose of this thesis is to develop a set of parametric primitives and methods for

the computer aided design of graffiti art. What do I mean by graffiti art? The term graffiti

generally refers to any form of writing done on a surface without authorisation (Kimvall,

2007). In this study I will use this term specifically to refer to the art movement — also

known as Writing, Aerosol Art, Spray Can Art – that revolves around various forms of

stylisation and abstraction applied to the letters of a tag, a pseudonym for an artist who

is often referred to as a (graffiti) writer. This art form emerged in the late 1960s when

tags started to appear on the surfaces of the New York City subway (Kimvall, 2014; Ferri,

2016), and developed into a rich and complex art form that can be seen today on walls

and surfaces around the globe. The methods presented in this thesis are not specifically

aimed at producing real instances of graffiti art, but rather at facilitating the conception

and generation of graffiti designs with computational techniques.

Graffiti art evolved from initially simple signatures to complex and colorful letter

designs. These designs distill a number of graphic influences, ranging from typography

and calligraphy to comics and science fiction just to name a few. The interplay of these

influences, together with the mutual inspiration between different artists can be seen as

a form of “Chinese whispers of style” 1 that has produced the highly distinctive aesthetic

that characterises graffiti art as it can be seen today. The cross-pollination between graf-

fiti and other areas in graphic design and illustration has always been a constant (Arte,

2015). In turn, current instances of graffiti art can be seen on record covers, in advertise-

ments and in fashion, as well as textured on the walls of computer generated environ-

ments in games and in movies.

1Chinese whispers is a game in which a message is transformed as it is passed from one player to another.
This analogy was mentioned during a talk on graffiti art at the 2019 Tag Conference in Amsterdam.

1.1. A short overview of graffiti styles 22

The motivation for this thesis is both artistic as well as technical and practical. From

an artistic standpoint, the work stems from my personal background as a graffiti artist

and from my desire to develop a set of tools that facilitate the production of digital art-

works with a specific and personalised stylistic signature. From the technical and prac-

tical standpoints, I propose that the computational re-creation of graffiti’s main stylistic

features is a valuable addition to the toolset of digital creatives, which makes the meth-

ods developed in this thesis generally useful tools across the 2D computational design

space. Graffiti art is an intrinsic element of many contemporary urban-landscapes. As

a result, an automatic graffiti generation system is a useful addition to procedural con-

tent generation (PCG) pipelines and is likely to contribute to a richer and more realistic

rendition of computer generated urban environments in video games as well as movies.

Finally, as suggested by Hertzmann (2010), I argue that the computational study of an art

form implies making hypotheses about the processes involved in its creation, which es-

tablishes the ground for the development of a theory of art that is generative as opposed

to only being descriptive (Hertzmann, 2010).

1.1 A short overview of graffiti styles

To build a more precise and more visual context for the methods that will be discussed in

this thesis, it is useful to briefly cover some of the main aspects that characterize this art

form and its different instantiations. Since its beginnings, graffiti has evolved into a mul-

titude of styles, which differ depending on the individual artist, but also depending on a

geographic location, visual culture, or to a required speed of execution.2 In the following

list, I will limit myself to a description of some fundamental styles in the category of the

most traditional and influential form of graffiti art, such as could be seen in the 1980s on

the streets and transit system of New York City.

1.1.1 Tags

In its most elementary, but fundamental, instantiation, graffiti art takes the form of a

rapidly executed and highly stylised signature that conveys the artist’s identity, style and

skill. This form of graffiti is called a tag, which is the same term also used to denote a

graffiti artist’s pseudonym. The act of executing a tag is commonly referred to as tagging

2For example, depending on the local tolerance of the authorities to the art form.

1.1. A short overview of graffiti styles 23

or bombing, where the latter implies executing many tags illegally.3 Tags are meant to be

executed quickly and in great quantity, usually using a marker or spray paint; their visual

quality strongly depends on the speed and spontaneity with which they are executed.

The manner in which a tag is written is commonly referred to as “handstyle” (Ferri, 2016)

and identifies the artist’s personal style and skill. A well executed handstyle is the result

of years of practice, and its visual quality is directly related to the spontaneity in which

the movements are executed. This is reflected in graffiti jargon with the term flow, which

denotes the quality of execution of a tag.

With experience, tags are written more rapidly, and the stylised gestures involved

in their creation are interiorised, becoming “muscle memory”, which ultimately results

in more fluid movements and spontaneous forms. The assimilation of these gestures is

such, that it also influences a graffiti artist’s handwriting, which is often recognisable with

distinctive traces that resemble the ones of a tag .4 The resulting handstyle becomes a

personal stylistic signature of the artist, which is often transmitted to the curved portions

of more complex forms of graffiti lettering (Ferri, 2016).

A note on tags and calligraphy. Calligraphy is the “art of beautiful writing” 5 and graffiti

art is sometimes referred to as “urban calligraphy” (Arte, 2015), a term that is particularly

appropriate for the case of tags. Graffiti artists Mode 2 (Craveiro, 2017) and Dado (Ferri,

2016) both compare the practice of writing tags to “shodo”, the ancient art of Japanese

calligraphy. Indeed, it is a persistent practice, and the resulting quality of a movement,

that ultimately determines the visual quality of both calligraphy (Briem et al., 1983) and

graffiti tags (Ferri, 2016). Because of this close relationship between tags and calligraphy,

I will generally refer to both their respective traces as “calligraphic”.

1.1.2 (Master-)Pieces

The first instances of tags were written with a marker and often consisted of a name

followed by a number, indicating for example the borough to which the writer belonged.6

With the competition to gain visibility, graffiti writers started to use spray paint instead

of markers and outlines were traced around the thickened strokes of the tag.7 The tag

3It should be noted that this study involves the stylistic elements of graffiti and not the social, legal and
political implications.

4I can speak from experience as this is also the case for my own handwriting.
5The term calligraphy originates from the Greek words kallos (beauty) and graphein (to write)
6The first tags are attributed to “TAKI 183”, a foot messenger in New York who lived on 183rd street.
7The first example of this approach is attributed to the early graffiti artist “Super Kool 223” (Arte, 2015).

1.1. A short overview of graffiti styles 24

Figure 1.1: Examples of tags. From top-left: TWISTER, AMAZE, EKSER, many tags in Lon-
don, CRUIZER, CANSER, ENS. Most of the images are courtesy of https://www.
instagram.com/handstyler/.

Figure 1.2: Examples of different steps of preparation of a graffiti piece. Left: a preliminary sketch
is usually made with a pen or marker on paper. Middle: the sketch is transferred to a
surface. Right: it is finally filled, colored and outlined.

slowly evolved into what is known as a “piece”, a term that is used as an abbreviation

for “masterpiece”. A nice conceptual analogy of the transition from tag to piece is given

by Italian graffiti writer Alessandro “Dado” Ferri (Ferri, 2016), who notes that in a piece,

the writing sign of a tag becomes a “de-sign”, resulting in a combination of forms that

nevertheless recalls the structure and fluent gestures that compose a tag.

Many graffiti styles can be described through a composition of basic building blocks

that are combined or fused to reveal the stylised outline of one or more letters. These

building blocks vary from elongated geometric forms often referred to as “sticks”, to more

rounded forms known as “softies” that are traced with gestures similar to the ones that

would be used for a tag (Figure 1.3). These components are often combined with other

decorative elements, such as stylised arrows, stars, hearts and bars or “doodads”, which

1.1. A short overview of graffiti styles 25

(a) (b) (c)

Figure 1.3: (a) Examples of a stick (top, ending with an arrow) and a softie (bottom), and two
pieces by EGS (Helsinki, Finland) featuring mostly sticks (b) and softies (c). The graf-
fiti images are a courtesy of the artist.

Figure 1.4: Self-overlapping loops that can be seen in graffiti pieces. This is a reproduction of
examples given by Ferri (2016) , who calls this an “adjacency” form function. The
loops are created with the stroking method presented in Chapter 6.

are used to customise letter forms, to improve compositional balance, or to increase the

senses of dynamism and movement in the piece. According to New York writer Ram-

melzee, the letter is “armed”, preparing it for combat. All these visual elements are usu-

ally combined in ways that are evocative of an abstracted three dimensional composi-

tion, with overlapping, looping and intertwined/interlocking parts (Figure 1.4) and with

extrusion effects that do not necessarily follow the strict rules of projective geometry.

The procedure used to design a graffiti piece usually starts from sketches made with

a pen or a marker on paper (Figure 1.2, left). This is where a writer typically practices and

studies different combinations and stylisations of letterforms, which are then transferred

as a larger sketch made with spray paint on a surface (Figure 1.2, middle). The sketch

and (at times) also the background are then filled with one or more colors and more

or less complex decorative effects. Finally, a final outline is traced to reveal the stylised

letterforms. Often additional effects as extrusions and highlights are added to the outline

for additional visual impact (Figure 1.2, right) .

Each graffiti writer develops their personal and often immediately recognisable

style (Figure 1.6). However, many works of graffiti can be traced back to a number of

stylistic “models” (Ferri, 2016), many of which were introduced in New York between the

1.1. A short overview of graffiti styles 26

Unstylised Stick Bubble Block Marshmallow

Platform Combo Arrow Puzzle Machine

Figure 1.5: Examples of the letter “A” in an interpretation of the fundamental styles as described
by (Ferri, 2016). The “unstylised” is a prototype letterform. Also these examples have
been created with a rapid point and click procedure using the method presented in
Chapter 6.

1960s and the 1980s. Ferri (2016) categorises nine such styles (Figure 1.5) that vary from

the simple “stick” style, to the rounded “marshmallow” style, to the mechanical looking

“machine” style. He has analysed these styles through a combination of “compositional”

and “form” functions that are listed in Appendix B. Some of these functions are indirectly

implemented with the methods described in this thesis. Ferri also makes the example of

an “unstylised” style, consisting of prototypical letter forms such as the ones that would

be seen in a font such as Arial or Helvetica. Arte (2015) goes further by identifying the

influence of specific typefaces on the origin of certain graffiti styles.

The most extreme form of graffiti stylisation is known as “wild style”, in which most

of the stylistic elements discussed above can be used together, resulting in highly ab-

stracted letterforms. Letters are distorted, fragmented and interlocked in complex ways,

often to the point of becoming unreadable to the untrained eye. It can be argued that

graffiti pieces are particularly well suited to be studied through computational tech-

niques. As a matter of fact, some forms of graffiti stylization are themselves inspired

by technology and computer generated imagery. For example some pioneering forms of

Wild Style were characterized by mechanical looking forms and where given names as

“Mechanical Style” or even “Computer Rock” (Cooper and Chalfant, 1984).

1.1.3 Other graffiti styles and elements

The description above is a simplified overview of a much more complex taxonomy of

styles, which have evolved throughout the development of graffiti art. For an exhaustive

1.1. A short overview of graffiti styles 27

Figure 1.6: Graffiti. First row: BATES (Copenhagen, Denmark), MILK (Munich, Germany); photos
are courtesy of https://www.instagram.com/johnnation/. Second row:
SEL (Haarlem, Netherlands), SMART (Florence, Italy). Third row: ENS+STAM (Flo-
rence, Italy), PETRO (London, UK). Photos are courtesy of the artists or taken by me.

and in depth categorisation of different graffiti styles, together with an analysis of their

structure and development, I suggest the excellent treatise of Ferri (2016) and Arte (2015).

In the context of this thesis, and for a general understanding of the graffiti that can be

typically seen in a city, it is useful to briefly summarise a few more stylistic categories:

throw ups, puppets and abstract.

Throw ups. A rapidly executed and often rounded outline representation of the tag, of-

ten also quickly filled in with a single colour. While also intended to be executed rapidly

and in great quantity, throw-ups are perhaps the most perceptually complex form of graf-

fiti art. Letters are abstracted to their essence and executed with a minimum number of

highly stylised strokes, while maintaining their legibility (Figure 1.7).

Figure 1.7: Examples of throw-ups: DUEL (NYC, USA), SM(ART) (Florence, Italy), GREY (SF, USA).
Photos courtesy of the artists.

1.2. Graffiti in the Digital and Virtual Realms 28

Puppets. Pieces are often accompanied by caricatures of animals or persons that are

commonly known as puppets. Often these caricatures are executed in a stylised manner,

with the same gestures, forms and visual conventions that characterise stylised graffiti

letters (Ferri, 2016). Sometimes that stylisation is such that the puppet also follows a

structure similar to a letterform (Figure 1.8, left).

Figure 1.8: Examples of puppets: POPZ 100 (Nottigham, UK) and CMP (Copenhagen, Den-
mark), courtesy of https://www.instagram.com/johnnation/; ENS (Flo-
rence, Italy).

Abstract Style. In some cases the same stylistic elements that are used in Wild Style or

tags can be combined freely, without following the structure of a letter. This results in

an abstract composition that has recognisable aesthetic properties, similar to graffiti,

but does not have any specific representation of lettering (Stowers and Goldman, 1997)

(Figure 1.9).

Figure 1.9: Examples of abstract styles. Left: LOKISS (Paris, France); courtesy ofhttps://www.
instagram.com/johnnation/. Right: KEIN (Florence, Italy), courtesy of the
artists.

1.2 Graffiti in the Digital and Virtual Realms

With its proliferation, graffiti art has become increasingly present in cities around the

globe. This presence has become also digital, with traces of graffiti appearing in a variety

1.2. Graffiti in the Digital and Virtual Realms 29

(a) (b)

Figure 1.10: Editing graffiti with conventional vector graphics techniques. (a) Attempt at produc-
ing a tag-like letter “E” with Bézier curves. The procedure requires placing control
points at locations that are not easily related to the movement that would be ex-
ecuted to produce the trace (left). Editing the location of a control point is likely to
result in a curve that does not appear natural (right). (b) Attempt at recreating a loop,
similar to the ones shown in Figure 1.4. Reproducing the overlap requires manually
removing the dashed segments on the right.

of computer generated content ranging from graphic design to urban scenes in games

and in movies.

1.2.1 Graffiti in Graphic Design

Arte (2015) draws a parallel between the development of certain graffiti styles and the

popularity of typefaces at the same time and geographic location. With time, this in-

fluence has become mutual and the visual elements of graffiti art can be found in in-

stances of typographic and graphic design (Craveiro, 2017), as well as advertisement,

record designs and fashion. Indeed, a number of contemporary graphic designers and

typographers come from a previous practice-based experience in graffiti art (Craveiro,

2017; Kimvall, 2007).

Vector graphics software is often the tool of choice when it comes to designing ty-

pography or graphics for print. However, designing graffiti or calligraphy, can be chal-

lenging with the conventional tools of Computer-Aided Geometric Design (CAGD). Tags

for instance, are the result of highly skilled and well-practiced movements. Reproduc-

ing their traces usually requires either (i) an equally skilled movement executed with a

digitiser device or (ii) the careful selection of a large number of curve control points, the

location of which can be highly unintuitive (Figure 1.10.a). A similar issue is observed by

font designer Charles Bigelow 8 for the case of fonts that mimic calligraphy or handwrit-

ing; he notes (Wang, 2013):

8Charles Bigelow has designed a number of widely used digital fonts, among which Lucida, which is used
also in this document to typeset equations

1.2. Graffiti in the Digital and Virtual Realms 30

Figure 1.11: Examples of graffiti in the videogame GTA. On the left, GTA V, with a throw-up by
NYC graffiti artist COPE2 (stylistically high quality) textured in different parts of the
virtual environment. On the right, interactive tagging session in GTA Sant Andreas.

“I am sometimes sorry to see that the spirit and grace of the moving hand

and tool, whether pen, brush, or reed, are lost in modern typographic tech-

nology, but now that the basic problems of outline font technology are

solved, perhaps someone in the future will work on restoring the human ac-

tion.”

Similar challenges hold also for the design of graffiti pieces. In particular, conven-

tional drawing applications usually assume a strict back-to-front ordering of geometry

(Figure 1.10.b). As a result, reproducing the self-overlaps and interweaving that charac-

terises graffiti stylised letters, often requires subdividing a design into a number of unin-

tuitive parts. This results in a “vector soup” that is often difficult to edit and to manage.

Ultimately, these issues hinder the creative design process, thus not always justifying the

expression “computer aided design”.

1.2.2 Graffiti in Games and Movies

In contrast with more traditional art forms, graffiti unfolds on the surfaces of an urban

environment. As a matter of fact, today graffiti art can be considered as one distinctive

feature that characterises urban landscapes around the globe. Likewise, the same feature

is also often present on the textured surfaces of buildings and objects that can be seen in

computer generated urban scenes, in games as well as in movies.

Graffiti content for games is usually prepared by texturing photographs or by specif-

ically commissioned graffiti art (real, or painted on the computer with tools such as

Adobe Photoshop). This method has various limitations, as the amount of work needed

1.2. Graffiti in the Digital and Virtual Realms 31

Figure 1.12: Left, computer generated graffiti in the movie Baby Driver (2017). Middle, human
made alien graffiti in the movie Alien Nation (1988). Right, hypothetical Klingon
graffiti for the word “writing” generated with the system described in this thesis.

is directly proportional to the size of the game world, and the graffiti images have a fixed

resolution that is constrained by memory limitations. An illustrative example of this ap-

proach can be found in the Grand Theft Auto game series, which features one of the

largest in-game urban environments to date and extensively uses graffiti as an aesthetic

in-game element and landmark feature. Although graffiti art is an intrinsic in-game ele-

ment of the game series and its quality is greatly improving across releases, we can still

notice a limited variety of low resolution tags and pieces which are repetitively textured

across the walls of the game (Figure 1.11, left). This repetition is unrealistic, since human

movements are characterised by an intrinsic variability (Harris and Wolpert, 1998) and

so are the traces of multiple tags or drawings. The game player is also enabled to produce

their own graffiti (Figure 1.11, right), but this process is also highly unrealistic, with the

image of a piece slowly fading in while the virtual character performs random-looking

arm movements.

Similar points hold also for procedural content generation (PCG) in movies. One

illustrative example is the movie Baby Driver, in which the introductory titles, as well as

many movie scenes, feature computer generated graffiti with sentences that pertain to

the plot of the movie (Figure 1.12, left). In the context of science fiction, the 80s movie

Alien Nation featured instances of “Tenctonese” graffiti, made by a race of alien visitors

stranded on earth (Figure 1.12, middle). In a hypothetical movie production setting, one

could then wonder: what would graffiti look like if it were made by Klingon9 visitors in-

stead? A suitably built procedural content generation system can provide an automatic

answer to this kind of question (Figure 1.12, right). Furthermore, such a system has the

potential to work with procedurally generated and even extremely large environments

for which the production of realistic and convincing graffiti textures would require a pro-

9An alien race in the Star Trek movie series

1.2. Graffiti in the Digital and Virtual Realms 32

hibitive amount of memory storage and human resource.

More generally, the development of PCG systems capable of creating, or evaluating,

content with a specific style, let it be architectural, artistic or other, is still an open area

of research for the PCG community (Togelius et al., 2013). Similar challenges hold for

the area of Non Photorealistic Rendering and Animation (NPAR) (Gooch et al., 2010),

a subfield of computer graphics that is aimed at the simulation of artistic techniques

and styles and at clarity of representation (Kyprianidis et al., 2013). As a result, graffiti

art offers an interesting testbed for techniques that are relevant to both the domains of

computer graphics and PCG: it is an artistic process and style that can be simulated using

techniques that are relevant to the NPAR community, but it develops and unfolds in an

urban environment; therefore it is highly suitable for being generated and studied in the

context of virtual 3D environments.

1.2.3 Computer Aided Graffiti Design

Recently, some work has been done at the intersection of graffiti art with technology. Cas-

sidy Curtis (2002) developed the Graffiti Archeology project, an online platform that visu-

alises a timelapse of graffiti being painted on a selected number of walls. Jurg Lehni has

developed HEKTOR, a Cartesian drawing machine that is able to mechanically trace vec-

tor images with a spray can on a wall (Lehni, 2004). The Graffiti Analysis project by Evan

Roth has resulted in a series of low cost motion capture devices that allow to easily record

or digitally reproduce the gestures done during tagging (Roth et al., 2009). This has re-

sulted in collectives of hackers and artists known as Graffiti Research Labs (Keough, 2010)

that develop technologies that enable the materialisation of graffiti with do-it-yourself

(DIY) devices. One spinoff of this project has resulted in the EyeWriter system (Tempt1

et al., 2009), which has allowed a paralised graffiti artist TEMPT1 to create graffiti with

the movements of their eyes. New York graffiti artist KATSU (Holland Michael, 2015),

and others (Vempati et al., 2018), have developed drones that can reproduce large scale

graffiti with spray paint on any surface. While these methods provide innovative ways

to materialise digitised traces with the medium typical of graffiti art, they do not actually

provide computational means to generate traces that resemble this art form or to assist

their generation within a CAGD pipeline.

With the methods developed in this thesis, I seek to address this gap, as well as some

of the previously posed challenges, by:

1.3. Part I: Graffiti primitives 33

1. Developing a set of primitives that can be combined to rapidly define curves and

designs that are similar to calligraphy or to graffiti art.

2. Developing an interface for editing these primitives, which is similar to the one

conventionally used curves in CAGD applications, and with a representation that

is intuitive to edit and to manage.

3. Developing a system where a user is able to insert a string of text in a language of

choice, to reproduce the string with a graffiti stylised output, to render the output

at arbitrary resolutions and to edit the output with the same user interface intro-

duce above.

The system should then:

• Produce content that can be varied in ways that reproduce the variability that can

be observed in multiple instances of drawing or writing made by a human.

• Produce content that intrinsically captures a plausible sequence of movements,

similar to the one that would be followed by a human when producing an artwork.

This enables the generation of realistic animations of the graffiti production pro-

cess and its reproduction with robots or other fabrication devices.

To this end, I propose a two-level hierarchical approach to synthetic graffiti gener-

ation. The first level defines a set of stroke primitives, building blocks that can be easily

varied and combined to reproduce different kinds of graffiti stylised letters and compo-

sitions. The second level, recovers these primitives from existing geometric inputs, such

as traces made with a digitiser device or the outlines of a font. These geometric inputs

then become a seed for the genesis of different kinds of graffiti stylisations. The thesis is

similarly organised in two parts that are outlined in the next two sections.

1.3 Part I: Graffiti primitives

Some of the previously discussed stylistic elements of graffiti already suggest their com-

putational counterparts. For example, there is a wealth of computational models of hu-

man arm and hand movements to choose from, when it comes to mimicking the skilled

gestures that are used to produce a tag. Also, a reader that is familiar with 2d computer

graphics techniques is likely to notice a similarity between fundamental graffiti build-

1.3. Part I: Graffiti primitives 34

(a) (b) (c) (d)

Figure 1.13: A few different kinds of strokes.

(a) (c)(b)

Figure 1.14: Example stroke stylisations of a motor plan for the letter “R” (a). (b) two calligraphic
stylisations of the motor plan. (c) two outline stylisations of the motor plan.

ing blocks such as the “stick” or the “softie”, and well established vector based stroking

methods such the skeletal strokes method of Hsu and Lee (1994).

In order to treat different graffiti stylisations with a common representation, I pro-

pose one simple guiding concept, that is shared by all the methods developed in this

thesis: Different stylisations of a letterform can be described with a bi-level representa-

tion, consisting of a structural and a stylistic component.

The structural component is a schematic representation of a letterform in terms

of a motor plan consisting of a sparse sequence of vertices connected by polylines. It

describes the layout and order of a series of drawing movements that can be used to trace

the letterform. In practice, the polylines used are similar to the control polygons typical

of CAGD applications, and thus both can be specified and edited in a similar manner.

The stylistic component consists of parametric stroke primitives that are con-

structed along a motor plan and produce different letterform stylisations. A stroke can

embody the trace of ink or paint left with a calligraphic gesture, or a depiction of such

a trace in the form of an image or a stylised outline (Figure 1.13). A stroke stylisation

of a motor plan consists of a series of strokes constructed along the vertices of a motor

plan (Figure 1.14). Part I of this thesis describes a set of stroke primitives that result in

stroke stylisations that resemble calligraphy and graffiti art. For our use case, I categorise

stroke stylisation into two types: calligraphic stylsation (Figure 1.14a) and outline stylisa-

tion (Figure 1.14b). The first can be used to depict tags and the second to depict pieces.

1.3. Part I: Graffiti primitives 35

(a) (b) (c)

Figure 1.15: Common letter structures. Some examples of the letters “N” (a) and “R” (b) isolated
from tags by Evan Roth in his graffiti taxonomy project. (c) Two motor plans that can
be used to characterise the emphasised letters in (a) and (b). Image courtesy of Evan
Roth.

1.3.1 Calligraphic stylisation: Movement and tags

A tag can be considered as an elementary “atom” of graffiti art and the way in which

it is written often impacts also the appearance of other forms of graffiti stylisation. It

follows that tags are also a suitable starting point for the development of the proposed

set of graffiti primitives. That being the case, let’s briefly examine some examples of tags,

for which artist Evan Roth has conveniently isolated a number of letters of the alphabet,

within his project “Graffiti Taxonomy” (Roth, 2011). Each letter instance is made with

a distinct handstyle, and within each letter it is possible to identify subsets that share a

similar underlying structure, but are yet executed with clearly different handstyles. For

example, in Figure 1.15a it is possible to observe a number of capital “N”s, a number of

lower case “n”, where one such case is equivalent to a mirrored N.

Considering each of these subsets in isolation, leads to a concept that I call “style

as kinematics”, in which a number of different stylisations of a letterform can be seen as

variations of a movement that follows a common motor plan. This is consistent with the

previously introduced bi-level representation, with the stylistic component becoming a

kinematic component that describes the hypothetical trajectory of a writing tool.

To implement this concept, I propose a movement centric approach to curve gen-

eration, in which a curve is defined through a physiologically plausible simulation of a

1.3. Part I: Graffiti primitives 36

(human) movement underlying its production rather than by an explicit definition of its

geometry. The implementation relies on the systematic application of methods and prin-

ciples from the domains of handwriting analysis and synthesis (Plamondon et al., 2009),

computational motor control (Rosenbaum, 2009) as well as robotics (Calinon, 2016b).

I argue that, with an appropriate parameterisation, some of these methods become a

useful tool to generate tags with a procedure that is similar to established CAGD meth-

ods, but with the additional advantage of capturing both the geometry and kinematics of

a human made trace with a single integrated representation. Chapters 4 and 5 demon-

strate two different but complementary methods that can be used to implement this pro-

cedure and to automatically generate strokes that closely resemble the ones that would

be seen in tags or calligraphy produced by human experts.

Chapter 4 presents an extension and an application of the Sigma Lognormal model,

a model of handwriting movements that is widely used for handwriting analysis (Diaz-

Cabrera et al., 2018) and synthesis (Plamondon et al., 2014) applications. This model de-

scribes handwriting movements with a set of parameters that have a well defined physi-

ological interpretation. As a result, perturbations of these parameters result in variations

of a trajectory that resemble the ones that can be observed in real instances of handwrit-

ing or drawing. The resulting trajectories are kinematically similar to the ones produced

by a human; this chapter also demonstrates how this property can be exploited to gen-

erate convincing stroke renderings and animations.

Chapter 5 presents a similar interface with an approach based on optimisation,

in which a user explicitly defines the desired variability/precision of a movement. The

method produces a distribution of trajectories rather than a single one and the trajecto-

ries are generated with an optimisation, which rewards a tradeoff between the required

precision and smoothness of a movement.

These two methods can be used to generate and stylise strokes that appear hand

drawn, while giving a high level of parametric control to the user. I argue that this ap-

proach has, by definition, a series of useful properties such as:

• Providing a representation of variability that intrinsically built in the abstract rep-

resentation of a pattern. This allows to reproduce the variations that are similar to

the ones that can be seen in multiple traces made by one or more artists through

simple parameter perturbations (Chapter 4) or stochastic sampling of a “trajectory

1.3. Part I: Graffiti primitives 37

Figure 1.16: Examples of a letter “N” isolated from various pieces.

distribution” (Chapter 5). This property can be exploited for artistic/design pur-

poses, to but also for data augmentation in machine learning applications.

• Generating kinematics that are similar to the ones that would be observed in a

human movement. This can be exploited to generate realistic stroke animations

and natural looking animations for virtual characters or robots/fabrication de-

vices (Berio et al., 2016) that embody the drawing process, but also to produce

more realistic renderings of artistic traces (Chapter 4).

• Providing a flexible and high-level feature representation. This representation can

be exploited (i) to simplify procedural generation methods (Chapter 5) and (ii) for

the implementation of data-driven stylisation methods using generative models

(Berio et al., 2017a) that can be trained with fewer samples (due to the possibility

of easily generating augmented data) and the output of which can be manipulated

in a meaningful manner (e.g. through parametric manipulation and user interac-

tion).

The proposed movement centric approach to curve generation adopts an “embod-

ied aesthetics” hypothesis (Freedberg and Gallese, 2007). This maintains that the ob-

servation of static marks or traces left by a drawing movement activates motor areas of

the brain (Freedberg and Gallese, 2007; Longcamp et al., 2003), inducing an approximate

mental simulation of a likely generative movement (Freyd, 1983; Pignocchi, 2010; Leder

et al., 2012). It is also hypothesised that such a brain stimulation can influence the aes-

thetic appreciation of the static trace (Leder et al., 2012). This leads to the conjecture

that a similar phenomenon should occur with synthetic traces produced with an appro-

priately simulated movement.

1.3. Part I: Graffiti primitives 38

1.3.2 Outline stylisation: Parts and pieces

A similar observation to the one made for tags, can also be made for the stylised letter

outlines of graffiti pieces (Figure 1.16). In this case, different stroke stylisations of a mo-

tor plan can be viewed as an assembly of parts that are fused to produce an outline. As

previously mentioned, these parts are often overlapped and intertwined in a way that is

difficult to reproduce as a simple back-to-front composition.

Chapter 6 presents a variant of the skeletal strokes algorithm (Hsu and Lee, 1994)

that is especially built to reproduce these characteristic features of graffiti art. Similarly

to the previously defined methods, a user can define a stroke with a sparse sequence of

points, but this method results in a stylised outline rather than a single trace. Variably

smooth outlines are produced by also synthesising a movement, specifically with the

same optimisation-based method that is used Chapter 5 to reproduce tags. This results

in a parameter space that covers a variety of different graffiti strokes and styles.

The outlines of one or more strokes can be combined interactively with local union,

layering and self-overlap effects, while always maintaining the underlying stroke struc-

ture. The method then produces vector output with no artificial artwork splits, patches

or masks to render the non-global layering, where each path of the vector output is part

of the desired outline. This results in an output that can be reproduced on a screen, but

also with robots or other kinds of fabrication devices. Finally, the output can be rendered

with different fill-ins, highlights and decorative effects that resemble the ones that can be

often seen in graffiti pieces.

1.3.3 Overall contributions of Part I

The first part of the thesis results in a set of parametric stroke primitives that facilitate

rapid authoring of graffiti-stylised letters and designs. These primitives are specified by

means of a motor plan, a simple structural representation consisting of sparse sequences

of points and thus easy to edit with a point and click procedure. Different stylisations of

the motor plan are then produced through parametric variations of the stroke primitives.

This representation is also helpful when used in combination with procedural genera-

tion methods, since the procedures are left with the simplified task of generating sparse

sequences of points, which can be subsequently transformed into a variety of stylised

outputs.

These methods are conceived with the goal of reproducing instances of graffiti art or

1.4. Part II: Recovering graffiti primitives from geometry 39

calligraphy. However, the resulting contributions extend to the more general spectrum

of artistic applications of CAGD, namely:

(a) A movement centric approach to curve design, aimed at generating, animating and

rendering traces that appear written or drawn by hand.

(b) A set of geometric primitives with a built-in representation of variability, which can

be used to produce variations similar to the ones seen in multiple instances of draw-

ing/writing made by a human.

(c) A novel vector-based stroking method designed to enable strokes with self-overlaps

and non-global layering effects.

1.4 Part II: Recovering graffiti primitives from geometry

With a set of stroke primitives in hand, the second part of the dissertation is focused

on a “reverse” procedure with respect to the first: recovering plausible combinations of

stroke primitives that reconstruct a given input geometry. This procedure transforms

unstructured geometric inputs into a parametric representation that thus enables all the

functionalities that are discussed in part I of the thesis. The process of procedural graffiti

generation is thus transformed into one of parametric stylisation, with a range of geomet-

ric inputs serving as source of possible structures that can be stylised and transformed

into different kinds of graffiti.

1.4.1 Geometric input analysis

I distinguish two broad categories of geometric data and two corresponding datasets,

which I consider particularly useful for the task at hand of graffiti content generation:

The first type of geometric data consists of tags, handwriting, drawing, or arbitrary

vector paths that are digitised as ordered sequences of points.10 One particularly use-

ful dataset of this kind is known as the “Graffiti Analysis Database” (Roth et al., 2009);

the database contains thousands of tags, recorded with a variety of devices ranging from

tablets to DIY marker-based motion tracking systems. The database provides data that is

already a potentially useful source of graffiti content. However, the data has varying sam-

pling quality and the point-sequence format is difficult to modify or edit in any mean-

ingful way.

10Commonly known as online data in the handwriting analysis literature.

1.4. Part II: Recovering graffiti primitives from geometry 40

The second type of geometric input consists of the outlines of one or more glyphs..

A glyph is usually a letter of the alphabet or a readable symbol of a given writing system,

but it can also represent other kinds of “non-letter” objects such as a silhouette or an ab-

stract pattern. A collection of glyphs with a consistent style is usually referred to as a font.

Using glyph outlines as a geometric input results in an approach that is consistent with

the idea proposed by Arte (2015) that the origin of certain graffiti styles can be related to

specific fonts. Publicly available fonts provide an almost inexhaustible source of letter-

forms, in a variety of languages and writing systems, and with a variety of different styles

and structures. Recovering a structural representation from such outlines is not trivial

(Wang, 2013). However, recovering one that is compatible with the parametric methods

described in Part I enables the generation of graffiti stylisations with an equally varied

structural and stylistic range.

In order to treat this diversity of inputs, I propose an approach that is grounded on

well-studied principles of visual perception and that relies on a geometric analysis only,

thus not requiring training data or predefined templates. The analysis procedure builds

on a set of “Curvilinear Shape Features” (or CSFs): descriptors of concave and convex

shape features that are built from local symmetry axes and have an associated region of

support . This feature representation is introduced in Chapter 7 and it is subsequently

used as a basis for all the remaining methods in Part II of the thesis.

1.4.2 Trace based methods

Chapters 8 and 9 are focused on geometric inputs of the first type, that is traces of various

kinds, which can be used to generate variations and stylisations of tags.

Chapter 8 uses CSFs to reconstruct traces in terms of strokes parameterised with

the Sigma Lognormal model. The method purposely ignores the kinematics embedded

in the input, allowing it to handle geometry where this information may be absent or

degraded due to poor digitisation quality. The resulting reconstruction thus infers phys-

iologically plausible kinematics from geometry and results in a concise and meaning-

ful representation of a movement that extends the rendering, animation and parametric

variation methods described in Chapter 4 to arbitrary traces.

Chapter 9 uses this reconstruction to drive an example-based stylisation method

based on a recurrent neural network. The method allows to stylise an input structure

in way that resembles an example trace, or to transfer qualities of movement between

1.4. Part II: Recovering graffiti primitives from geometry 41

different traces. This results in a novel form of “style-transfer” that is similar to existing

curve-based methods in computer graphics (Hertzmann et al., 2002; Li et al., 2013) but

is based on the proposed concept of “style as kinematics”. With the pretest of stylisation,

this chapter also investigates the utility of a high-level representation of movement when

combined with recently popular deep learning approaches. The results demonstrate that

the additional structure provided by the Sigma-Lognormal model can be exploited to

train a data-hungry method with as few as single training example.

1.4.3 Outline based methods

The trace-based methods in Chapters 8 and 9 allow the generation and rendering of tags

while enabling realistic variations and animations, which effectively addresses some of

the issues previously raised for graffiti content generation in games. However, for a pro-

cedural graffiti generation system to be useful, it is certainly desirable for a user to specify

a string of text and then render it with different graffiti styles.

In order to achieve this, Chapter 10 presents a method that partitions the outlines

of a glyph into a set of potentially overlapping and intersecting strokes , augmented with

semantic annotations that determine connectivity relations or features such as corners.

The output of this procedure initially reconstructs the outline as precisely as possible.

Then, these strokes can easily be transformed into a motor plan that is compatible with

all the other methods developed in the thesis, thus enabling all the previously discussed

stylisation and rendering methods.

Chapter 11 demonstrates a number of examples of this stylisation procedure, and

how the outlines of a font can be used to generate instances of calligraphy and graffiti

art in a variety of different styles, structures and languages. The stylised outputs are ex-

pressed as parametric stroke primitives, which can be edited, varied and rendered at

arbitrary resolutions, with exactly the same techniques that are presented in Part I of the

thesis.

1.4.4 Overall contributions of Part II

The methods described in part II of the thesis, extend the functionalities described in

part I to arbitrary geometric data. This results in a graffiti content generation system that

can be used to (i) generate and render realistic tags with variations that resemble the ones

that would be seen in real instances of graffiti and (ii) to generate graffiti stylised strings

in arbitrary languages and writing systems, with a form and structure that is derived from

1.5. Publications 42

the outlines of a font.

These methods, are conceived to work principally with geometric data that repre-

sents letterforms, such as handwriting traces or glyph outlines. However, a wider range

of inputs is possible and this potentially transfers the notion of graffiti stylisation beyond

letters, in a process that I refer to as Graffitization. With the aid of robotic and digital

fabrication technologies, this concept is not only applicable to the virtual, but extends

back to the material world.

Similarly to Part I of this thesis, the context of graffiti results in a number of contri-

butions that extend to a larger application domain, namely

1. A representation of concave and convex curvilinear shape features, with wider ap-

plications in shape analysis problems.

2. A novel method that reconstructs Sigma Lognormal parameters from the geome-

try of a trace, which extends existing methods that all require high-quality input

kinematics (Plamondon et al., 2014; Ferrer et al., 2018) and with consequent appli-

cations to pattern recognition for handwriting analysis.

3. An example-driven curve stylisation approach that is similar to existing methods

(Hertzmann et al., 2002; Li et al., 2013) but takes movement kinematics into ac-

count.

4. A segmentation method, that decomposes font outlines into constituent strokes

without requiring training data, which is generally useful for type-design (Wang,

2013) and animation (Gingold et al., 2008) applications.

1.5 Publications

The chapters of this thesis discuss work and solutions that I have personally conceived

and implemented during my PhD studies. However, most of the work reported and pub-

lished involves various collaborations. Most chapters begin with a preamble that lists

the associated publications and explicitly states my contributions and those of my col-

laborators where needed. All these publications have been peer-reviewed and accepted,

with the exception of the material in Chapter 10 and a portion of Chapter 7 which are

part of a journal submission that is in preparation at the time of writing. The thesis ex-

tends and develops previously published work further, with additional details and with

subsequently developed refinements or extensions. For the complete list of publications

1.5. Publications 43

please refer to Appendix A. A lot of the material in this thesis, has resulted in the de-

velopment of software, which is best documented through videos or interactive demon-

strations. At the time of writing, a number of videos are available at the following web

address: https://www.enist.org/post/research/autograff/. The videos are or-

ganised according to the chapter structure of this thesis, and the page is intended to be updated

with upcoming source code releases and new supplemental material. The reader is invited to

view the videos for a chapter if these are present.

Chapter 2

Notation and preliminary definitions

Vectors and matrices are denoted by bold symbols, with vectors always denoted by lower case

symbols (e.g. x ,φ) and matrices by upper case symbols (e.g. A,Φ). We adopt the Matlab-like

indexing notation x a:b or X a:b to indicate the consecutive rows of a vector or matrix from a to

b including b. Vectors are always assumed to be columns, however, like Murphy (2012), we use

a notation of the type x = [x1, · · · , xn] to denote vectors stacked along a column. In practice,

this should be x = [
xT

1 , · · · , x>
n

]>
, but we choose the former notation because it avoids clutter

and the lower case symbol on the left clarifies that the operation results in a vector. Conversely,

X = [x1, · · · , xn] denotes a matrix, the columns of which are given by the vectors x1, · · · , xn .

We will use the Gaussian (or normal) probability distribution at different stages of the doc-

ument and denote it with N . Using bold symbols N
(
µ,Σ

)
implies that the distribution is multi-

variate with vector mean µ and matrix covariance Σ. Conversely, N
(
µ,σ

)
implies an univariate

distrbution with scalar mean and standard deviation µ,σ. Other symbols and notations will be

described when required.

2.1 Geometry

This thesis is mainly concerned with the generation of 2D images is vector form. For consistency

with most 2D computer graphics packages, we will assume a left handed coordinate system with

vertical coordinates increasing downwards and angles increasing clockwise.

Curves: A curve is a “trip taken by a moving point” (O’Neill, 2006); mathematically, a mapping

γ : I → RD from an interval I = [a,b] to its trace as a set of D-dimensional points in RD . A planar

curve maps the interval to points in R2. A curve is simple if it does not intersect itself, and it is

closed if γ(a) = γ(b), such that its trace forms a loop.

Polyline: A polyline is a piecewise linear curve, consisting of a connected sequence of straight

line segments. It is specified as a sequence of vertices with coordinates p i .

Trajectory: A trajectory is a continuously differentiable curve parameterized by “time”, with

coordinates denoted by x(t). The time derivatives of a trajectory are denoted as ẋ , ẍ , for first and

2.1. Geometry 45

second order, and
(n)
x for order n > 2. A discrete trajectory is a trajectory sampled at a discrete time

step ∆t and resulting in a polyline. The coordinates of the kth sample are denoted by xk , where

xk = x(k∆t).

Curvature: Mathematically, the curvature 1 of a continuous curve is a differential measure of

its deviation from straightness, i.e. it expresses the local change in tangent direction. For a planar

trajectory, γ(t) = [x(t), y(t)]>, curvature can be computed with the classic formula:

κ(t) = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
. (2.1)

Absolute curvature is the reciprocal of the radius of curvature r (t) = 1/|κ(t)|, corresponding to an

osculating circle (or circle of curvature) sharing a tangent with the trajectory at γ(t) and centered

along the normal to γ(t). For a curve sampled at a uniform distance step ∆s, curvature can be

approximated by:

κs = φs

∆s
, (2.2)

with s the distance along the curve and φs the turning angle between two successive trace seg-

ments. In the limit, as ∆s → 0, this approximation becomes the arc length or unit speed parame-

terisation of the corresponding curve, where the curvature function κ(s) is known as the curve’s

intrinsic or natural equation. The function κ(s) can be used to recover the trace of a plane curve

up to Euclidean motions, that is up to translations and rotations (Abbena et al., 2017) with:

x(s) =
∫

cosφ(s)d s and y(s) =
∫

sinφ(s)d s, with φ(s) =
∫
κ(s)d s (2.3)

and where, for example, different kinds of spirals can be computed with κ(s) being a monotonic

function of arc-length.2

Solid objects, figure, ground, and outline: A solid object Ω, or object for short, is a subset

of R2 bounded by a rigid outline ∂Ω, a set of closed and simple curves called contours. Contours

delimit points ∈ Ω (the object’s interior, or figure) from points in the complement R2 −Ω (the

object’s exterior, or ground). Contours are oriented so that travelling along a contour the figure

is always on the right. For example a doughnut shape has an outline consisting of two circular

contours, an outer contour oriented clockwise, and an inner contour oriented counterclockwise.

Discrete trace and contour: Discrete trace, or trace for short, is a sequence of 2D points ob-

tained from a sampling procedure. In this work, unless otherwise specified, we will use for sim-

plicity a uniform sampling on the natural paramterisation of a curve , thus resulting in polylines

1Coolidge (1952) exposes an interesting history behind the mathematical definition of curvature. A mod-
ern definition in terms of calculus is attributed to Newton in the 1700s. However a related concept of “curvi-
tas” can be traced back to the work of Nicolas Oresme in the 1300s.

2Refer to the text book by Abbena et al. (2017) for examples on how intrinsic equations can be exploited
as a flexible curve generation tool.

2.2. Motor plans and strokes: 46

with segments of approximately constant length ∆s. When the trace points are sampled from a

continuous curve, this sampling approximates the curve’s arc-length parameterisation as∆s → 0.

In practice, the trace can be open or closed, and its points are not necessarily sampled from a con-

tinuous input. The input may consist of the samples produced from a digitization device such as

a mouse or tablet, or edges obtained through an image filtering procedure. The input can also

consist of a contour of an object outline, in which case we also refer to the resulting trace as a

(discrete) contour, implying that it is guaranteed to be simple and closed. The coordinates of

discrete contours and traces are both denoted as z i .

2.2 Motor plans and strokes:

The fundamental primitive used in this thesis is a stroke:

Stroke: A stroke is an elongated 2D region, for example obtained as the result of a drawing or

painting gesture between two positions on a drawing surface. Computationally, a stroke can be

represented in a tri-partite way as: (i) an axial curve or spine, (ii) a possibly non-symmetrical

width profile that determines the local thickness of a stroke, and (iii) a generator that fills an area

or creates an outline or fills an area as it traverses the axial curve. The generator can take different

forms, such as a possibly non-symmetrical brush footprint that embodies the trace of ink or paint

left with a calligraphic gesture, or an outline that is constructed along the spine.

Motor plan: Strokes are constructed with the analogy of a writing/drawing tool moving and

leaving marks on a surface. The layout and order of traveral of strokes is defined according to a

motor plan, a schematic reprsentation of one or more (drawing) movements. A motor plan, de-

noted as either P or Q, consists of a sequence of vertices p1, p2, . . . , p M , with consecutive vertices

connected by one or more polylines.

Kinematic realisation: It is a sequence of trajectories that follow the polylines of a motor plan.

It is denoted with the script version of the motor plan symbols, P or Q, and it is computed from

the combination a motor plan with a set of kinematic parameters Θ. Such parameters determine

the fine evolution of the resulting trajectories. The transformation from a motor plan to trajecto-

ries is denoted with the operator ¯, for example:

P = P ¯Θ .

Different kinematic parameters produce different trajectories and consequently different stylisa-

tions of the motor plan. This instantiates the previously introduced concept of “style as kinemat-

ics”. Chapter 4 and Chapter 5 will demonstrate two different trajectory generation methods that

result in two different parameterisations of Θ, which take into account a number of principles

and methods from the field of computational motor control. These principles will be introduced

next in Chapter 3.

Chapter 3

Background

3.1 A Brief History

The inspiration to reproduce hand-drawn or painted artistic styles computationally can be traced

back to the infancy of the computer age. The Algorists were a group of pioneering artists and

computer scientists formed in the 1960 ’s that employed computers and pen-plotters to generate

the first digital algorithmically-based works of art (Leavitt, 1976; Dietrich, 1986). Notably, Frieder

Nake (1965) studied the elements of Paul Klee’s painting Hauptweg und Nebenwege to create his

algorithmic work Hommage à Paul Klee (Nake, 2005). Michael Noll created computer programs

that statistically simulated paintings by Piet Mondrian 1 and Bridget Riley (Noll, 1966; Dietrich,

1986). Since the late 1960’s to the end of his days (2016), Harold Cohen developed AARON, an

Artificial Intelligence (AI) system capable of automatically generating compositional works of art

(Boden, 2003). The program was designed based on Cohen’s extensive previous experience as

a reputed painter, and has generated thousands of unique artworks, many of which have been

exhibited in important galleries across the globe. Inspired by his hand drawing style and study of

evolutionary processes, artist William Latham has developed since the late 1980’s, together with

computer scientist Stephen Todd, a system that evolves organic forms with genetic algorithms

(Todd and Latham, 1992).

In the early 1990’s, the computer graphics subfield known as Non Photorealistic Animation

and Rendering (NPAR) emerged with the main goal to produce algorithmic solutions approxi-

mating or reproducing artistic techniques or rendering results, with an early focus on animating

and rendering painting and drawing styles. For an extensive review of the works in the field refer

to (Kyprianidis et al., 2013; Gooch et al., 2010).

With the new millenium, some work started to focus more precisely on understanding

and reproducing drawing and painting techniques including via the embodiment of algorithmic

1Noll (1966) also performed a user study with 100 participants that had to distinguish between computer
and human generated versions of the painting. The results showed that 28% of the viewers were able to
correctly identify the computer generated version, and 59% preferred the computer generated version.

3.2. Beyond painting and drawing: Graffiti production 48

models using robots. Deussen et al. (2012) extend painterly techniques from NPAR to the phys-

ical world with e-David, a repurposed industrial welding robot that is capable of mixing its own

colours and paints with a brush and acrylic paint on a canvas. Tresset and Fol Leymarie (2013)

have developed the AIKON II system, which uses computer vision methods to model the human

process involved in portrait sketching production and its embodiment in low cost robotic sys-

tems, designed around an articulated arm and wrist as well as an orientable camera-eye. Both

projects are on-going and have gone through successive improvements to this day. In our work,

we explored the embodiment of some of the methods presented in this thesis using a humanoid

robot with compliant control (Berio et al., 2016).

3.2 Beyond painting and drawing: Graffiti production

The scope of this thesis is to develop a deeper understanding of calligraphic production, with a

focus on the modern context of graffiti art. This leads us to propose a set of tools that allow the

procedural or interactive generation of synthetic graffiti art. We seek to reproduce, as much as

possible, the process typically used in conceiving and creating graffiti, and also to generate an

output that is compatible with robotic and fabrication devices such the ones used by Tresset and

Fol Leymarie (2013) and Deussen et al. (2012).

Similarly to painting or drawing, writing graffiti involves knowing how to move to produce

an artefact, as well as how perception impacts the actions involved in the needed gestures. As a

result, the remainder of this background chapter covers material ranging from computer graphics

methods for curve generation, stylisation and rendering, to principles and mathematical models

of human movement, to theories and methods of shape perception and representation. While it

is not adequate to thoroughly cover all these subjects in a single chapter of reasonable length, my

goal was to include at least the main sources that have informed the development of the methods

in this thesis, and to justify some of the choices made.

We start in Section 3.3 with an overview of curve generation and stylisation methods in com-

puter graphics, and then move in Section 3.4 to examine evidence in the arts, psychology and

neuroscience, suggesting the importance of bodily movement when producing or appreciating

an artwork. We then review in Section 3.5 some principles underlying human movement forma-

tion and a number of mathematical models that have been proposed, which prove useful when

mimicking traces such as the ones that can be observed in graffiti or calligraphy and form the ba-

sis for the methods developed in part I of the thesis. This is followed by Section 3.6, which reviews

different methods by which a stylised letterform can be represented and rendered, and Section

3.7, which reviews a number of methods to generate, stylise and segment letterforms. Finally

Section 3.8 reviews a topics concerning the computational representation and visual perception

of shape, which form the basis for the methods developed in Part II of the thesis.

3.3. Curves in computer graphics 49

3.3 Curves in computer graphics

Many modern vector-drawing applications and interfaces provide tools that mimic the appear-

ance of hand drawn strokes and curves. In CAGD applications the two leading approaches to

specify curves are: (i) the interactive definition of a control polygon defining the shape of a piece-

wise parametric curve or (ii) a sketch-based interface (Olsen et al., 2009), in which curves are

digitised with a device such as a track-pad, mouse or tablet, and then transformed to a piecewise

parametric curve. The most widely used curve representations are piecewise splines, which are

usually defined with either cubic Bézier (Farin, 2002) or B-spline (de Boor, 1978) segments. The

choice of a cubic is generally considered to provide a desirable trade-off between ease of control

and smoothness (Foley et al., 1995).

The degree of parametric continuity of a curve is denoted with C n , indicating that a curve

parameterisation is continuous up to its nth derivative. For piecewise curves this means that the

derivatives up to the nth order are the same where two curve segments join. For example, a C 2

curve has associated continuous tangent vectors and curvature functions, as well as continuous

parametric acceleration (change of speed of traversal), and will thus produce a motion that is

perceived as smooth. Many CAGD applications are concerned with generating static images, and

the requirement of parametric continuity can be relaxed to one of geometric continuity (Barsky

and DeRose, 1989), denoted as Gn . For example, G2 continuity implies that connected curve seg-

ments share the same curvature at joining endpoints, but may have different parameterisation.

3.3.1 Fairness, beautification and neatness of curves

One specific property of parametric curves that is generally considered desirable in CAGD ap-

plications is fairness, which relates to continuity in curvature (Levien, 2009a) and implies that

a curve is at least G2 continuous. Farin et al. (1987) propose that a fair curve should possess a

curvature profile that is composed of relatively few piecewise linear segments, a property that is

analogous to the “french curve” tool used in hand-made drafting. A number of so-called “fairing”

methods (McCrae and Singh, 2009, 2011; Levien, 2009a; Baran et al., 2010; Havemann et al., 2013)

implement this analogy almost literally, by concatenating curve segments made of Euler spirals —

curves in which curvature varies linearly with arc-length (Levien, 2009b). The method of Levien

(2009a) is specifically aimed at designing outline-based fonts, and results in spiral-based splines

with desirable properties, such as the ability to generate a perfect circle with four control points.

This property, and five others pertaining to the generation of “the most pleasing” interpolating

curve for typography generation, are enumerated by Knuth (1979) (see Table 3.1), who also shows

that all six properties cannot be satisfied at the same time and suggests a spline method devel-

oped by Hobby (1986) as an ideal choice. In the same period, font designer Charles Bigelow, a

close collaborator of Knuth, emphasises the importance of hand movements when considering

letter design. Bigelow also notes, in an interview (Wang, 2013), that Bézier curves, and splines

3.3. Curves in computer graphics 50

in general “are usually pleasant, but they are more limited than the shapes that result from the

living hand moving a traditional tool through a complex path”.

Property Short Description

Invariance to scale, rotation and translation.

Symmetry invariance to cyclic permutation or reversal of order.

Extensionality such that adding a control point on the curve should not modify it.

Locality such that the geometry of a curve segment defined between two control
points only depends on those two points and directly adjacent ones.

Smoothness such that the curve should be sufficiently differentiable.

Roundedness such that given four equidistant control points on a circle, the curve will de-
fine the same circle.

Table 3.1: The six properties of the “most pleasing curve” according to Knuth (1979).

Similar, and sometimes equivalent, to the concept of curve fairing, curve beautification or

neatening is the process of inferring geometric or structural constraints, primitives or graphic

intentions from user free-hand input (Igarashi et al., 2007). Zitnick (2013) beautifies handwriting

and sketches by averaging parts (tokens) of the input with previous specimens by the same user.

The averaging process smooths out imperfections while maintaining consistency with the user’s

style. Thiel et al. (2011) interactively neaten traces made with a pointing device by analysing

the velocity of the movement. The system smooths out the input at a degree proportional to its

velocity, on the basis of the observation that users commonly slow down their movements when

they intend to create a more precise drawing.

One limitation of faring and beautification or neatness methods, is that the output usu-

ally consists of many curve segments the location of which depends on the input geometry and

can thus be difficult to edit. The same drawback generally holds also for Bézier curves with

manually defined control points, which must be placed at locations that depend on the desired

curve geometry and smoothness but do not necessarily reflect any perceptually salient feature

along its trace (Yan et al., 2017; Levien and Séquin, 2009). This can be especially challenging

when attempting to mimic curves such as the ones that can be seen in handwriting and callig-

raphy”‘ (Wang, 2013). Yan et al. (2017) address this problem in the context of interactive Bézier

curve editing, with an interface in which control points are constrained to coincide with absolute

curvature maxima along the generated curve. The method stores an underlying representation

made of quadratic curve segments, which is then converted to cubic curves in real time.

In this thesis we propose a different and hybrid approach that is especially aimed at re-

producing calligraphic traces. We automatically generate trajectories that are geometrically and

kinematically similar to the ones that could be made with a skilled movement and a sketch-based

interface. However these trajectories can be defined and edited with an interface using control

points similar to those found in traditional curve generation methods.

3.3. Curves in computer graphics 51

3.3.2 Curve stylisation

A number of methods are aimed at generating stylised curves, often relying on a data-driven ap-

proach. For example Lu et al. (2012) stylise digitised traces by adaptively concatenating segments

from examples made by expert artists on tablets with a high number of degrees of freedom, such

as based on pen tilt and pressure. The input trace acts as a “guiding curve” for the inference of the

missing pen-tilt and pressure information which is matched from the available examples with dy-

namic programming, thus allowing the creation of more realistic brush renderings. Li et al. (2013)

assume that the “style” of a 2D outline is represented by high frequency decorative features rather

than structural or topological ones, and build a system that can either de-emphasise or exag-

gerate stylistic features, or transfer and blend these features between outlines. Hertzmann et al.

(2002) propose a data-driven approach to stylise an input curve based on a database of examples.

The problem is expressed as follows:

Definition 3.3.1 (Hertzmann et al. (2002)). Given an input curve A, its stylised version A′ and a

second curve B , learn a mapping between A and A′ in order to generate a stylised version B ′ of

B , such that the analogy A : A′ :: B : B ′ holds.

The proposed implementation is functional but requires the tuning of a large number of param-

eters, and does not run in real time. Lang and Alexa (2015) approach the same problem from a

probabilistic standpoint and use a Double Hidden Markov Model to achieve a comparable result

in real time and with very few parameters to tune. Freeman et al. (2003) implement a similar style

transfer system by employing K-nearest neighbors (KNN) with locally weighted linear regression

(Stulp and Sigaud, 2015). The system stylises an input drawing given a large number of samples

of stylized lines. In Chapter 9 we adopt an approach similar to the one of Hertzmann et al. (2002)

and Li et al. (2013), but consider the kinematics of a movement as a descriptor of style.

A few examples exist that have exploited movement kinematics or dynamics to generate

stylised curves. The approach of Lu et al. (2012) can be categorised as one such example, since

the resulting stylisation depends on the skilled movements of expert artists. Haeberli (1989) im-

plemented DynaDraw, a computer program that allows the user to interactive generate strokes

evocative of calligraphy by simulating a mass-spring system attached to the mouse position.

Levin et al. (2013) generate abstract alphabets with a genetic algorithm combined with a physics

simulation of a hand and pen. House and Singh (2007) generate sketch based renderings, by

using a Proportional Integral Derivative (PID) controller to define the trajectory of a pen that fol-

lows the connected contours of a 3D mesh. Thompson (2010) generates calligraphic effects on

letterforms by optimising the evolution of a point mass along a series of user defined spatial con-

straints. AlMeraj et al. (2009), use a well known model of reaching movements that minimises

jerk (i.e. changes in acceleration) (Flash and Hogan, 1985) to mimic the visual qualities of hand

drawn lines passing trough point triplets. Fujioka et al. (2006) adapt a similar optimal control

3.4. Movement perception and representation 52

model to optimize the location of B-spline control points (Egerstedt and Martin, 2009), in order

to generate Japanese calligraphy and to smoothly vary brush width.

3.4 Movement perception and representation

The hand-drawn curves that can be observed in art forms such as graffiti (Cooper and Chalfant,

1984) and calligraphy (Mediavilla et al., 1996) are usually, if not always, the result of skillful and

expressive movements that require years to master. To put it in the (skillfully written) words of

calligrapher Karen Knorr (Briem et al., 1983): 2

The construction of the knot isn’t what counts. What you must learn is the move-

ment. Three hundred knots later...

This suggests the hypothesis that the perceived visual quality of a static calligraphic trace, de-

pends (at least in a significant way) on the properties of a motion that have generated it. If this

is the case, having parametric control of these properties when generating a synthetic motion

should produce a perceived visual quality similar to traces produced by skilled humans. In the

following sections we will examine some evidence in favour of this hypothesis, first in the art-

history literature and then in the domains of psychology and neuroscience.

3.4.1 Movement in the arts

It proves difficult to find an account of the motor act of drawing or painting in the Western art-

historical literature, which is often focused on the methods, techniques and compositional or

formal aspects of art works and styles (Fong, 2003; Seeley, 2013). The same can be said for a large

part of works in Computer Graphics within the NPAR sub-field (Kyprianidis et al., 2013), with the

exception of a few methods that we have previously mentioned in Section 3.3.2. However, in his

well-regarded treaty “Art and Illusion”, Gombrich (1977) notes that:

The word style of course, is derived from “stilus”, the writing instrument of the Ro-

mans, who would speak of an “accomplished style” much as later generations spoke

of a “fluent pen”.

Rosand (2002) points out the importance of the artist’s movements in works such as the ones by

Leonardo, and considers drawing as an act of “self projection” of body actions onto the resulting

traces. To emphasise this Rosand also writes (Rosand, 2013)

The gesture of drawing is, in essence, a projection of the body, and, especially when

viewing the drawing of the human figure, we are inevitably reminded of that.

And

2Quote from a special issue of the Visible Language journal, entirely written by hand by a number (51) of
calligraphers, who answered with drawings and writing the question: “What parts of your work give you the
most trouble?”. It can be accessed online at http://visiblelanguagejournal.com/issue/65 .

3.4. Movement perception and representation 53

Responding to drawings, we make our way, through line, to the originary impulse of

the draughtsman. Interpretation involves a connecting act of re-creation, the self-

projection of the viewer re-imagining the process of drawing.

Movement is fundamental at the conceptual level for modern artists such as Paul Klee and

Cy Twombly. In his notebooks, Klee (1961) famously defines a line in a drawing as “A point that

has gone for a walk”. Twombly’s work can resemble graffiti (Kaushik, 2013) and is made with

spontaneous gestures “made for their own experience” and evoking the same experience in the

beholder (Rosand, 2013).

While references to generative movements are rather scarse in the Western art-historical

literature, the situation is different with East-Asian art history, where calligraphy is recognised for

centuries as one of the most important art forms. Art historian Wen C. Fong (2003) observes that:

Rather than color or light, the key to Chinese paintings lies in its calligraphic line,

which bears the presence or physical “trace” (ji) of its maker.

The author notes how terms commonly used to describe Chinese calligraphy and painting, such

as biji (“trace of the brush”), moji (“trace of ink”), yi (“made with spontaneity and naturalness”),

qiyun shengdong (“breath resonance” or “life motion”), are examples of how the static art works

are a record of the artist’s skilled movements and convey their physical presence. Similar prin-

ciples hold for the Japanese art of calligraphy (Ferri, 2016), which is called shodo, a term that

literally means “the way of writing” (Albertazzi et al., 2015)

3.4.2 Perception of movement in static forms

Common artistic knowledge and intuitions, as well as art theories such as the ones discussed

above by Rosand (2002) and Fong (2003), suggest that viewing a static work of art can evoke the

gestures used by an artist to create it. This hypothesis is further grounded in psychological and

neuro-scientific evidence suggesting that indeed the visual perception of marks made by a draw-

ing hand triggers activity in the motor areas of the brain (Freedberg and Gallese, 2007; Longcamp

et al., 2003). This further induces an approximate mental recovery of the (likely) movements and

gestures underlying the artistic production (Freyd, 1983; Pignocchi, 2010), and such recovery in-

fluences its aesthetic appreciation (Leder et al., 2012).

Freyd (1987) proposes that handwriting recognition is done by infering the motion used in

its production. The author posits that time is an intrinsic part of representation and static rep-

resentations are just special cases of dynamic representations. Pignocchi (2010) proposes that

drawings are planned and perceived at the level of Atomic Graphic Schemes (AGS), visuomotor

primitives that associate the visual aspects of a trace with a motor primitives and are automati-

cally triggered when producing or perceiving a drawing. AGS are combined in the form of Molec-

ular Graphic Schemes, that with experience and practice are assimilated as a single AGS, thus

3.4. Movement perception and representation 54

influencing the perception, production and planning of a drawing. The validity of this model

would explain the way in which experience in drawing influences the perception of drawing.

It has been discovered that macaque monkeys possess a set of “mirror neurons” in the pre-

motor cortex, which are activated both when producing as well as when observing a movement

(Gallese et al., 1996). Brain imaging data suggests a very high likelihood that a similar mechanism

is present also in humans (for a review on the subject refer to Oztop et al. 2013). Freedberg and

Gallese (2007) propose that a similar mechanism may be activated in the brain during the percep-

tion of art works. Figurative art works that depict actions or movement produce a sense of bodily

“empathy” in the viewer. The traces left by an artist on a canvas induce in the viewer a form of

mental simulation that recovers the artist’s gestures and intentions (Freedberg and Gallese, 2007).

In an EEG study Umilta et al. (2012) detected clear activity in the cortical motor system of subjects

when viewing the cuts on a canvas performed by artist Lucio Fontana, even when the observers

were not familiar with the artist’s work. Leder et al. (2012) observe a positive correlation between

the aesthetic appreciation of a painting with the execution of movements that are similar to the

ones used to produce the painting.

James and Gauthier (2006) and later Longcamp et al. (2009) have performed fMRI exper-

iments to find the interaction between visual and motor perception during letter writing and

visualisation. The authors show that writing letters activates areas of the brain associated with

visual perception, and visualising letters activates areas of the brain associated with motor con-

trol. The authors propose that these areas of the brain form a “letter network” (Longcamp et al.,

2009) that is activated both during perception and production of letterforms. In a series of MEG,

fMRI and EEG studies (Longcamp et al., 2006, 2011; Wamain et al., 2012), it is shown that hand-

written letters produce a higher motor cortex activation than printed letters. The execution of a

motor task during the observation suppresses these activations (Wamain et al., 2009). Handwrit-

ten letters also trigger the activation of an area of the brain (SMA) which is commonly attributed

to the planning of complex sequential movements and is also employed to inhibit movements

produced by the motor cortex (Longcamp et al., 2011). While the activation of areas of the brain

involved in motor control is higher for handwritten letters, activity is present also for printed let-

ters (Longcamp et al., 2011). This suggests that letters in general trigger some form of mental

simulation of motor action.

In summary, these results and observations suggest the important role of movement, even

when observing the static traces of a drawing or painting, and in particular those that can be seen

in written art forms such as calligraphy. To find additional evidence for this hypothesis and to take

it into account when generating synthetic traces, it is thus useful to study more in depth some

principles underlying human movement formation and some relevant computational models.

3.5. Motor control 55

3.5 Motor control

The scientific study of human and biological movement is a highly interdisciplinary field of re-

search, which has evolved at the intersection of psychology, neuroscience, mathematics, phys-

iology, robotics and human computer interaction. In our study we focus on upper limbs in hu-

mans and their simulation in robotics, i.e. the movements of the arm-wrist-hand system, which

we refer to as the “human arm” for simplicity. These movements can be described in 3 types of

coordinate systems (Mussa-Ivaldi et al., 2004):

• Endpoint coordinates: positions (and orientation) of the hand or end effector.

• Actuator coordinates: human muscle activations or robot arm motor torques.

• Generalised coordinates: joint angles between each limb segment.

Inverse kinematics is the process of finding the transformation between endpoint coordi-

nates and generalised coordinates. Inverse Dynamics is the process of transforming generalised

coordinates into actuator coordinates, i.e. computing the muscle activations, or actuator torques

for moving the limb given a set of joint angles. During the execution of a simple line with a brush,

or a reaching motion of the hand, the central nervous system (CNS) is faced with inverse kine-

matics and dynamics problems that are ill-posed (Schomaker, 1991; Mussa-Ivaldi et al., 2004), i.e.

there may be either no single solution or an infinite number of these.

In the context of generalised coordinates, the human arm is typically modelled with seven

Degrees of Freedom (DOFs) which already implies an infinite number of possible arm configura-

tions for a given end position of the hand. Furthermore, each joint of the arm is controlled by a

number of muscles, which in turn are composed by hundreds of smaller components known as

motor-units. This raises the effective number of DOFs of the human arm to the order of thou-

sands (Turvey et al., 1982). The problem of motor coordination given the “abundance of degrees

of freedom” — or redundancy problem – was noted by Nicolai Bernstein in his pioneering studies

on human motion (Bernstein, 1967). Bernstein, proposed the concept of synergies as a mean for

organisms to overcome the redundancy problem. Synergies are interactions between muscles

and joints that (in principle) constrain the possibilities of motion and simplify the motor con-

trol problem. It has been shown that the physical properties of the body can greatly simplify the

motor control problem, an example can be seen with swinging of legs during gait (Rosenbaum,

2009), simulated in robotics with “passive dynamic walkers” which are able to walk down slopes

thanks to their mechanical constraints (Collins et al., 2005).

3.5.1 Principles and invariants

Through several years of experimental research on human movement, a series of “invariants”

have emerged that seem to relate the dynamic (time, speed) and figural (curvature, shape) as-

pects of human hand motions (refer to table 3.2 for a summary). While such principles are not

3.5. Motor control 56

set in stone, they constitute a general basis for the advancement of new theories, and a bench-

mark for the validation of mathematical models that have been created. For an extensive review

on the subject refer to the book by Rosenbaum (2009). Below we give some details on the invari-

ants and other principles most relevant to our thesis.

Principle Short Description References

Speed accuracy tradeoff Movement time is inversely
proportional to required ac-
curacy.

(Woodworth, 1899; Fitts,
1954; MacKenzie and Bux-
ton, 1992; Plamondon and
Alimi, 1997)

Isochrony Movement time is approx-
imately independent of
movement extent.

(Freeman, 1914; Viviani and
McCollum, 1983; Thomassen
and Teulings, 1985; Jordan
and Wolpert, 1999)

Isogony Tangential velocity is propor-
tional to radius of curvature

(Viviani and Terzuolo, 1982;
Thomassen and Teulings,
1985)

Power laws (2/3, 1/3) Velocity and curvature radius
are related by a power law

(Lacquaniti et al., 1983; Vi-
viani and Schneider, 1991;
Plamondon and Guerfali,
1998a; Flash and Handzel,
2007)

Open loop movements Movements can be ex-
ecuted in an open loop
manner, and do not nec-
essarily require continuous
visual/proprioceptive feed-
back.

(Taub and Berman, 1968;
Polit and Bizzi, 1978; van
Doorn and Keuss, 1993;
Schomaker, 1991; Jordan and
Wolpert, 1999)

Equi-affine geometry Movement segments have
constant velocity in equi-
affine space.

(Flash and Handzel, 2007;
Polyakov et al., 2009)

Motor primitves Complex movements are
planned and executed at the
level of a discrete number of
simpler units of action

(Lacquaniti et al., 1983; Teul-
ings and Schomaker, 1993;
Morasso, 1986; Polyakov
et al., 2009; Morasso and
Mussa Ivaldi, 1982; Rosen-
baum et al., 1995; Mussa-
Ivaldi and Bizzi, 2000; Flash
and Hochner, 2005)

Bell-shape The speed profile of rapid
and straight reaching mo-
tions can be described by a
“bell shaped” function.

(Morasso, 1981; Nagasaki,
1989; Abend et al., 1982;
Plamondon, 1995)

Table 3.2: Summary of principles that have been observed in human upper limb movements.

3.5.1.1 Motor equivalence

Humans are able to perform the same type of movement regardless of the sets of muscles and

limb used. For example, upon request, a person will usually be able to trace a figure eight with a

3.5. Motor control 57

finger, the hand, an elbow, a foot or even with the tip of the nose. This is known as the principle

of motor equivalence. On the basis of this principle, Bernstein (1967) hypothesises that the CNS

represents movement in endpoint coordinates. Morasso (1981) supports this hypothesis exper-

imentally, and shows that in reaching arm motions at random targets the joint angular velocity

profiles vary greatly within trials, while the tangential velocity profiles are always characterised

by a bell-shape with a single peak.

3.5.1.2 Isochrony.

Since early in the 20th century (Freeman, 1914), various experiments have demonstrated the

tendency of humans to keep the time of movements relatively independent across different size

ranges. In other words, velocity increases proportionally to movement extent (Denier and Thur-

ing, 1965; Ghez et al., 1997). This principle is commonly referred to as isochrony (Viviani and

McCollum, 1983), where global isochrony refers to movements and trajectories as a whole, and

local isochrony refers to parts of a movement (Jordan and Wolpert, 1999). In a study of handwrit-

ing in adults and children, Freeman (1914) observed that, especially in adults, parts of a letter

with a different extent were executed in approximately equal times. Thomassen and Teulings

(1985) hypothesise that isochrony is caused by the narrow frequency band of the output of the

motor system and observe in a study of handwriting that past a letter size threshold of 16 cm, the

isochrony principle breaks down, and movement time increases as a power (1/2) function of size.

3.5.1.3 Isogony and Power laws

Already by the end of the 19th century, Jack (1894) noticed that “the curved parts of letters and

figures are more slowly formed than the rectilinear parts, and that the velocity of a curve varies,

roughly speaking, with the radius of curvature”. This phenomenon was also observed by Freeman

(1914) in his study of handwriting movements, where he observed that sharper turns on a curve

corresponded with a decrease in speed. Viviani and Terzuolo (1982) formalise this invariant with

the principle of isogony, stating that a trajectory goes through “equal angles in equal times” with

a tangential velocity that is proportional to the radius of curvature, weighted by a constant K that

varies in a piecewise manner across the movement. This piecewise variation of K gives an indica-

tion that motion can be segmented in sub-movements, or units of action that define the velocity

profile of the motion. Lacquaniti et al. (1983) observe that for certain families of movements, an-

gular velocity and curvature are related by a two-thirds power law,3 which in terms of tangential

velocity gives:

‖ẋ‖ = K r 1/3 , (3.1)

where r = r (t) = 1/κ is the radius of curvature.

The power law has been shown to be valid only for certain classes of movement. For ex-

3For the angular velocity ω and curvature κ the power law is: ω = Kκ2/3, which in terms of tangential
velocity becomes: ‖ẋ‖ = Kκ−1/3.

3.5. Motor control 58

ample, Plamondon and Guerfali (1998a) show through an analysis by synthesis experiment that

for complex handwriting movements the power law holds only for segments of the trajectory

that are hyperbolic or elliptical. Nevertheless, the general principle seem to hold that (i) steeper

turns are executed at a lower speed and that (ii) curvature and velocity are related by a power

law. This gives a useful hint for the intrinsic relationships between dynamics and geometry in

hand drawn movements. More recently, a series of studies (Flash and Handzel, 2007; Polyakov

et al., 2009; Maoz et al., 2009) has proposed that the perception and the production of movement

has an underlying structure that is non-Euclidean. Flash and Handzel (2007) observe that move-

ment invariants such as the power law or isochrony can be interpreted geometrically by analysing

movement through the lens of affine and equi-affine geometries. Indeed, given the Euclidean ra-

dius of curvature r (t) and arc length s, the equi-affine arc length σ1 is defined by:

dσ1

d s
= r (t)

1
3 , (3.2)

which corresponds to the above power law.

3.5.1.4 Feedback

In a seminal study of human movement, Woodworth (1899) studied the variability of rapid aiming

tasks by analysing pen movements constrained to a slit of varying width. The study resulted in

the following observations:

• Aiming motions can be subdivided in two phases: an initial ballistic phase, and a subse-

quent corrective phase.

• Higher movement speed resulted in a higher variability of the motions and error in reach-

ing the targets.

• With no visual feedback, the movements showed a higher variability, which was approxi-

mately constant regardless of speed; however, past a certain movement speed, the vision

and no-vision conditions converged to a similar error and variability.

This last observation led Woodworth to hypothesise that visual feedback has a limited rate (250

Hz), which limits its applicability to very rapid movements and suggests that movements can be

made in a completely open-loop manner. This has been confirmed more recently, with the rate

of visual feedback being between 100 and 200 Hz (Rosenbaum, 2009, p.228). In a study about

well learned movements, van Doorn and Keuss (1993) showed that the variability of handwriting

parameters with or without vision becomes less significant.

3.5.1.5 Variability

Following Woodworth’s line of work, Fitts (1954) employs an information-theoretical approach to

study rapid aiming and reaching movements. The results demonstrate a “speed-accuracy trade-

3.5. Motor control 59

off”, i.e. the tendency of movement time to increase with distance and to decrease with a re-

duction of required accuracy. Fitts explained these results with a fixed information-transmission

capacity of the motor system and quantified the relation between time, precision and distance

with an equation commonly referred to as “Fitts’ Law” (Fitts and Posner, 1967). Numerous other

extensions of Fitts’ law have been developed through the years in order to improve its predictive

accuracy; for a review the reader is referred to Plamondon and Alimi (1997).

Harris and Wolpert (1998) suggest that neural signals are noisy, and that noise is propor-

tional to the amplitude of the neural signal. This observation results in a minimum-variance

model of point-to-point movements, where movement velocity and time result from the min-

imisation of a trade-off between end-point accuracy and movement speed. Todorov and Jor-

dan (2002b) suggest that the redundancy of the musculoskeletal system acts as a “noise buffer”

or “uncontrolled manifold” (Scholz and Schöner, 1999), which is taken advantage of in order to

“project” the errors caused by sensory delay and neuro-motor noise onto dimensions that min-

imise the effect on the motor task. This results in a minimal intervention principle of trajectory

formation (Todorov and Jordan, 2002a), where deviations from an average and maximally smooth

trajectory are corrected only if the required precision is high.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

sp
ee

d

(a)
Minimum jerk
Beta
Lognormal

0.0 0.5 1.0 1.5 2.0
t

0

500

1000

sp
ee

d

(b)

Figure 3.1: Bell shaped speed profiles. (a) Examples of functions used to describe the character-
istic bell shape: minimum jerk, a Beta function and a lognormal. (b) Superposition of
lognormals and the resulting speed profile.

3.5.1.6 Kinematics

The tangential velocity profile of point-to-point aiming movements typically assumes a “bell

shape” (Morasso, 1981; Flash and Hochner, 2005; Plamondon et al., 2014), variably asymmet-

ric depending on the rapidity of the movement (Nagasaki, 1989; Plamondon et al., 2013). The

bell shape has been modeled with a variety of techniques (Figure 3.1(a)), which include sinu-

soidal functions (Morasso and Mussa Ivaldi, 1982; Maarse, 1987; Rosenbaum et al., 1995), Beta

functions (Lee and Cho, 1998; Bezine et al., 2004), optimisation methods (Flash and Hogan, 1985;

Hoff, 1994), and lognormals (Plamondon, 1995). Plamondon et al. (1993) and later Rohrer and

Hogan (2003) have shown that between different fitting curves the best velocity profile of point

movements is given by a support-bound lognormal, which is variably asymmetric (Figure 3.1(b)).

3.5. Motor control 60

Hand movements are typically smooth and result in trajectories that can be explained with

the minimisation of the square magnitude of high derivatives of position with distinctive names

such as “jerk” for 3rd order (Flash and Hogan, 1985), “snap” for 4th order (Flash, 1983) and

“crackle” for 5th order (Dingwell et al., 2004). The velocity of smooth hand movements can

be reconstructed with the superposition of a discrete number of target-directed “ballistic” sub-

movements that are also characterised by the stereotypical bell-shaped velocity profile (Rohrer

and Hogan, 2006; Flash and Henis, 1991; Leiva et al., 2017).4 Different sub-movement durations

or activation-times produce different but yet smooth kinematics (Flash and Henis, 1991).

The velocity peak of each sub-movement produces a peak in the superimposed speed pro-

file and a consequent minimum between consecutive peaks (Figure 3.1(b)). Consistent with the

isogony principle, this also results in an (absolute) maximum of curvature. Consequently, curva-

ture maxima are generally considered good indicators for the segmentation of a movement into

basic units (Brault and Plamondon, 1993a; Meirovitch and Flash, 2013; De Stefano et al., 2005).

With experience, a movement tends to become smoother (Sosnik et al., 2004; Rohrer and Hogan,

2003; Plamondon et al., 2013) and the number of velocity peaks decreases. This phenomenon is

known as co-articulation and can be interpreted as the chunking (or fusion) of movement prim-

itives at the planning level (Sosnik et al., 2004).

3.5.1.7 Motor primitives and representation

The form in which the human brain represents movement is still an open question. For example

there is a long standing debate between a cognitive or “computational view” of motor planning

and representation and “dynamical-system view” (Rosenbaum et al., 2007). The computational

view defends the existence of some form of abstract representation of movement often referred

to as a motor program, engram or schema (Keele and Summers, 1976; Schmidt, 1975; Rosenbaum

et al., 2007). An early proponent of this view is Lashley (1951), who describes complex and skilled

motions as the combination of “units of action” that are centrally combined to form an hierar-

chically organised and context dependent plan. The decomposition of a movement into ballistic

sub-movements is a modern example of such an approach. The dynamical-system view suggests

that perception and action emerge from the continuous interaction of mental processes, mus-

cle/limb dynamics and the surrounding environment (Kelso and Saltzman, 1982; Turvey et al.,

1982; Newell and Vaillancourt, 2001). Organised movements are achieved through “coordinative

structures”: groups of muscles that are employed cooperatively in the resolution of a task (Newell

and Vaillancourt, 2001), or as previously proposed by Bernstein 1967: synergies. In line with this

view, Schaal et al. (2007) propose Dynamic Movement Primitives (DMPs), which are popular in

4These sub-movements are often referred to as “strokes” (Teulings and Schomaker, 1993; Morasso, 1986;
Sosnik et al., 2004). However, in the wider context relevant to this thesis, the term “stroke” is also commonly
used to refer to the mark resulting from a complex movement made with a writing tool in contact with a
surface. We will adopt the latter interpretation of the term, and refer to movement-units as “movement
primitives” or “sub-movements”.

3.5. Motor control 61

robotics and reproduce both discrete and oscillatory motions by variably modulating a mass-

spring-damper system with a forcing term.

While the computational and dynamical-system views are often put in contrast, they are

not necessary mutually exclusive, but rather can be seen as complementary descriptions of the

complex process of movement planning and formation (Woch and Plamondon, 2003; Krampe

et al., 2002). The general consensus is that there exists some form of mental and neural represen-

tations of movement that guides the motions of the human body (Flash and Hochner, 2005). The

ability of humans and animals to perform movements without sensory feedback (Schomaker,

1991; Bizzi and Polit, 1979), the observation of invariants in hand motions (Lacquaniti et al.,

1983; Viviani and McCollum, 1983; Viviani and Terzuolo, 1982), the ability of humans to men-

tally visualise a motion (Jeannerod, 1995), increasing reaction times with increasing movement

complexity (Henry and Rogers, 1960), are indicative of the existence of a central representation

of movement in some form.

Flash and Hochner (2005) propose that complex motions (in humans, but also in animals

including invertebrates) can be broken down into elementary building blocks, i.e. motor prim-

itives, that are combined and superimposed to produce complex motion. The way in which a

movement can be represented depends on the underlying model. For example motor primitives

consisting of ballistic sub-movements, intrinsically define a motor plan consisting of a sequence

of consecutive aiming targets. These are also known as “virtual targets” (Djioua and Plamon-

don, 2009), because they can be seen as imaginary locations at which a sub-movement is aimed.

Other models that operate in endpoint coordinates describe a movement with a series of “via-

points” (e.g. Edelman and Flash 1987 or Wada and Kawato 1995) that, unlike virtual targets, are

located along a trajectory. Models that operate in generalised coordinates can represent a move-

ment as sequences of poses, while ones that operate in actuator coordinates describe movement

with equilibrium trajectories (Bizzi et al., 1992; Feldman, 1966) or force fields (Mussa-Ivaldi and

Bizzi, 2000) that determine muscle coactivations. Table 3.3 gives a summary view of the main

representations found in the literature.

In the context of this thesis, we are interested in reproducing trajectories with properties

that are consistent with those observed in human hand and arm movements. At the same time,

we seek a representation that allows for a simple user interface, similar to the control polygon typ-

ically used for parametric curve design in CAGD. While the way in which movements are planned

remains an open question, motor equivalence (Bernstein, 1967; Morasso, 1981) and recent ex-

periments (Torres et al., 2013; Wong et al., 2016) indicate that human hand movements are likely

planned at the level of endpoint coordinates. Intuitively, specifying movements at the joint level

or muscle level would be quite impractical for our application. However taking posture, or even

some model of muscles into account is definitely an interesting area of future research. As a re-

sult, we will principally focus on computational models and representations that operate at the

3.5. Motor control 62

Representation Short Description Coordinates References

Via-points Landmark points along the
movement trajectory.

endpoint,generalised (Flash and Hogan, 1985; Vi-
viani and Flash, 1995; Flash,
1983; Todorov and Jordan,
1998; Hoff, 1994; Uno et al.,
1989; Harris and Wolpert,
1998; Edelman and Flash,
1987; Bullock et al., 1993;
Grossberg and Paine, 2000;
Meulenbroek et al., 1996)

Virtual targets Imaginary loci at which
ballistic sub-movements are
aimed.

endpoint (Morasso and Mussa Ivaldi,
1982; Maarse, 1987; Plamon-
don and Guerfali, 1998b; Pla-
mondon et al., 2009; Bezine
et al., 2004)

Poses Configurations of the arm at
discrete times during a
movement.

generalised (Rosenbaum et al., 1995; Meu-
lenbroek et al., 1996)

Attractors Attractors for a dynamical
system.

endpoint, generalised (Del Vecchio et al., 2003;
Schaal, 2006)

Force fields Superposition of force fields
that describe muscle
activation.

actuator (Bizzi et al., 1991; Mussa-
Ivaldi, 1997; Mussa-Ivaldi and
Bizzi, 2000)

Oscillatory Oscillation amplitude and
phase modulation.

endpoint (van der Gon et al., 1962;
Vredenbregt and Koster, 1971;
Dooijes, 1983; Hollerbach,
1981)

Table 3.3: Summary of movement representations.

level of endpoint coordinates and on movement representations consisting of either virtual tar-

gets or via-points.

3.5.2 Trajectory formation

We consider in this section two main strategies based on: (i) optimal control, and (ii) ballistic

sub-movements.

3.5.2.1 Optimal control

A series of models propose that trajectory formation can be explained through an optimisation

that minimises some form of objective function or “cost” (Engelbrecht, 2001). Based on the

observation that hand motions are intrinsically smooth, Flash and Hogan (1985) propose the

minimum-jerk model (Hogan, 1982), in which hand movements are planned in order to min-

imise the squared magnitude of jerk (the 3rd order derivative of position). Flash and Hogan (1985)

derive the optimal solution in terms of a quintic polynomial, describing the evolution of straight

“point-to-point” movements, or a curved movement that interpolates a so-called “via-point”.5

The minimum jerk model also predicts the time occurrence of one or more via-points. For tra-

jectories with one single via-point the time occurrence is the solution to a 9th degree polynomial

of the total movement duration. Todorov and Jordan (1998) develop a constrained minimum-jerk

5A via-point is an intermediary passage point that is interpolated by a minimum jerk trajectory. It plays a
role equivalent to the position of a spline knot.

3.5. Motor control 63

model computing the kinematics of a minimum jerk motion given a predefined path. The model

predicts the time occurrence of multiple via-points that minimise jerk with a non-linear opti-

misation procedure. Viviani and Flash (1995) show how complex trajectories can be achieved

by specifying velocity and acceleration constraints in correspondence with multiple via-points

with experimentally determined passage times, producing trajectories that are consistent with

the two-thirds power law (Eqn. 3.1).

Flash (1983) also derives the minimum-snap model, which minimises the square magni-

tude of snap (4th derivative of position), resulting in a solution to a polynomial of degree 7. Flash

shows experimentally that the minimum snap model gives an overall better approximation for

the tangential velocity profiles of point-to-point movements, while the minimum jerk model

gives better results for curved movements. Other minimisation based methods include the mini-

mum time model (Hoff, 1994), which adds a time penalty to the minimum jerk cost function, the

minimum torque model (Uno et al., 1989), which also takes the dynamics of the musculoskele-

tal system into account, and the minimum variance model (Harris and Wolpert, 1998), which

minimises end point variance. The latter model also predicts asymmetric velocity profiles, as op-

posed to the other methods that predict perfectly symmetric velocity profiles (Tanaka et al., 2004).

Egerstedt and Martin (2009) show the equivalence between several forms of splines and control

theoretic formulations of linear dynamical systems. The authors show that polynomial splines of

degree 2n −1 correspond to the output of a controller that minimises the squared magnitude of

the nth order derivative of position.

Consistent with the minimal intervention principle, Todorov (2004) and Wolpert et al. (2011)

propose optimal feedback control as a model of trajectory formation, in which the biological con-

troller uses predictive control and internal dynamic models to infer the outcomes of a movement

and to overcome the inherent noisiness and delays of the sensimotor system. The objective is

not to minimise a cost function such as based on jerk, snap, torque or variance, but rather it

is the optimisation of a controller performance depending on the task constraints. A practical

implementation of these methods based on machine learning and model predictive control has

been proposed by Calinon (2016a) in the context of programming by demonstration in robotics.

We will demonstrate an extension of this method for the interactive generation of calligraphic

trajectories in Chapter 5 of this thesis.

3.5.2.2 Ballistic sub-movements

The previous group of control optimisation methods result in trajectories that possess regular-

ities that are experimentally consistent with the ones observed in human movements. Another

important set of methods used to describe a movement is through the combination of one or

more ballistic sub-movements, characterized by a bell-shaped velocity profile.

An early example of such a model, is developed by Morasso and Mussa Ivaldi (1982), who

3.5. Motor control 64

describe complex handwriting movements with the superposition of ballistic sub-movements

characterised by a sinusoidal velocity profile and a trajectory trace given by a B-spline. Another

early example is by Flash and Henis (1991) who generate complex motions by superimposing

multiple target directed sub-movements described with the minimum jerk model.

One particularly important class of ballistic models of trajectory formation is developed by

Plamondon et al. in what is known as the “kinematic theory of rapid human movements” (or kine-

matic theory for short) (Plamondon, 1995). This theory assumes that movement results from the

parallel and hierarchical interaction of a large number of neuromuscular units that are modeled

as linear sub-systems. With this premise, Plamondon et al. (2003) use the Central Limit Theorem

to prove that the impulse response of the system as a whole to a centrally generated command

asymptotically converges to a lognormal, resulting in a varying asymmetric velocity profile. The

kinematic theory includes a number of models that describe movements of varying complexity.

The Delta Lognormal model (Plamondon, 1995), describes the velocity of rapid point-to-point

movements with the synergy of an agonist component and an antagonist component acting in

opposite directions. The Vectorial Delta lognormal model (Plamondon and Guerfali, 1998b) and

the Sigma Lognormal model (Plamondon et al., 2009) describe complex hand trajectories via the

vectorial superposition in time of movement primitives each with a lognormal speed profile.

Plamondon et al. (2013) show that with increasing experience, the rapid movements made

by an adult when writing converge towards “lognormality”. In other words, with practice towards

expertise, the velocity of the trajectories can be more and more precisely described by a sum of

lognormal curves. In Chapter 4 we will extend the Sigma Lognormal model, showing how it can

also be used as a powerful and interactive curve and trajectory generation tool.

3.5.3 Graphonomics: Models of drawing and handwriting movement

The first “computational” (and embodied) model of handwriting can perhaps be attributed to

Jacquet Droz (1721-1790), the inventor of the wristwatch (Rosheim, 1994). Droz created a series

of humanoid automata, the most complex being the “writer” (made of 6,000 mechanical pieces)

that can write script powered by a clock-work like engine. The machine is programmable, in the

sense that the combinations of letters can be set by switching modular letter elements — serving

as physical records of the needed movements — in the mechanism.6

Most of the more recent research on handwriting synthesis and analysis has been conducted

under the field known as graphonomics,7 the scientific field “concerned with the systematic re-

lationships involved in the generation and analysis of the handwriting and drawing movements,

and the resulting traces of writing and drawing instruments” (Kao et al., 1986).

6Three of the original automata — the musician, the draughtsman and the writer — are still functioning
and maintained at the Museum of Art and History of Neuchatel, Switzerland.

7Not to be confused with the less scientifically rigorous field of graphology, which studies the correlation
between properties of handwriting and personality traits.

3.5. Motor control 65

3.5.3.1 Principles

Handwriting movements are characterised by the previously summarised principles and invari-

ants (§ 3.5.1) together with a number of additional properties that have emerged with studies

in the field of graphonomics. For example, both Dooijes (1983) and Maarse (1987) observe that

handwriting is well described in the plane with an oblique coordinate system, where the ori-

gin can shift from left to right due to the forearm motion, and the oblique axes span the space

covered by the combined movement of the two forefingers and the thumb and slight rotational

movements of the wrist. The angle between the two axes is shown to vary between 30◦ for draw-

ing motions and 90◦ for handwriting. We will use a similar principle to vary trajectory stylisations

in Chapter 5.

Consistent with the hypothesis of chunking at the motor level, Teulings et al. (1986) note that

with well-practiced handwriting gestures, planning occurs at the level of more complex combi-

nations of movement primitives. Edelman and Flash (1987) identify four basic types of curved

primitives that can be combined to generate cursive handwriting. The authors show that the

minimum-jerk model with a single via-point is not sufficient to capture all types of strokes, unless

a velocity constraint is specified at the via-point. On the other hand, a minimum-snap trajectory

(Flash, 1983) with one via-point is capable of describing these shapes, and the constraints can

also be defined geometrically by specifying the desired slope of the trajectory at a via-point. As

a result, the dynamics of motion are defined exclusively with geometric constraints, in a process

the authors refer to as “Kinematics from Shape”.

Maarse (1987) performs a comparative study in which 14 different models of handwriting

are considered. Handwriting is described as the combination of different movement primitives,

which segment the handwriting trajectory in the spatial, velocity or acceleration domain. Such

segments are delimited by “transition points” which are respectively located at minima and max-

ima of curvature, velocity minima, and zero crossings of acceleration. Bell-shaped velocity pro-

files are created with sinusoidal functions. The geometry of curved segments is described either

by a circular arc, or by offsetting the motion in a direction perpendicular to the segment’s princi-

pal direction. It is shown that the models describe writing units in the velocity domain, and that

an asymmetric velocity profile gives the best reconstruction results.

3.5.3.2 Oscillatory models

Early models of handwriting employed analogue computing techniques to simulate handwritten

traces. Van der Gon et al. (1962) developed an electronic device which simulated handwriting

traces on an oscilloscope by regulating the timing of two second order components driven by

rectangular acceleration pulses. Vredenbregt and Koster (1971) used a similar technique to build

a writing machine driven by two DC motors. MacDonald (1966) fitted trapezoidal acceleration

profiles to a recorded handwriting signal in order to replicate the handwritten traces on an oscil-

3.5. Motor control 66

loscope screen. Dooijes (1983) generated handwriting with a model similar to the one developed

by van der Gon et al. (1962), using two second order dynamical systems, excited by rectangular

pulses. Hollerbach (1981) hypothesised that during handwriting movements muscles act as oscil-

lating springs in the horizontal and vertical direction. This results in a model consisting of a pair

of coupled horizontal and vertical oscillators that determine the velocity of a handwriting move-

ment. While the model is capable of generating several simple instances of cursive script, with

increasing complexity the number of parameters that have to be adjusted becomes prohibitively

large. Schomaker (1992) simulated simple handwriting movements with a biologically inspired

neural network model of pulse oscillators. The neural network is trained on the recorded velocity

of single letters of the alphabet, but while some of the results are satisfactory, at times the net-

work does not converge. More recently, Nair and Hinton (2005) used a series of neural networks to

learn the motion of two orthogonal mass spring systems from images of handwritten digits. The

system is able to classify digits by extracting the corresponding “motor program” from a bitmap.

3.5.3.3 Ballistic models

On the basis of Plamondon’s Kinematic Theory (Plamondon, 1995), the Sigma Lognormal (Pla-

mondon et al., 2009) describes complex handwriting trajectories via the vectorial superposition

of lognormal stroke primitives. With the assumption that curved handwriting movements are

done by rotating the wrist, the direction and shape of strokes is described with a circular arc.

The evolution of a stroke’s curvature is given by using the time integral of the lognormal func-

tion (Eqn. 4.1) to interpolate between an initial and a final orientation. Complex trajectories

can be described with the linear combination in time of a number of circular arc strokes. The

Sigma Lognormal model has been extensively used in handwriting synthesis applications, in-

cluding: handwritten signature synthesis (Plamondon et al., 2014; Ferrer et al., 2015), generating

synthetic variations of a given handwriting specimens (Djioua and Plamondon, 2008a; Fischer

et al., 2014) and CAPTCHA generation (Ramaiah et al., 2014). Plamondon and Privitera (1996)

use a Self Organising Map (SOM) to learn a sparse sequence of ballistic targets, which is then

used in conjunction with a Kinematic Theory model to generate trajectories.

Similarly to the Sigma Lognormal model, Bezine et al. (2004) develop a “Beta Elliptic” model,

where handwriting trajectories are generated with the vectorial superposition of ballistic move-

ment primitives using a beta function and an elliptic arc (rather than a Sigma Lognormal and

circular arc). Ltaief et al. (2012) use a neural network to learn the mapping between the Beta El-

liptic parameters and the resulting trajectory. The network is then used instead of the model as a

trajectory generator. While the results are comparable to the use of the Sigma Lognormal model,

there is less justification available (as a good model of human limb movements) and much less

published material to compare with. In Chapter 9 we will use a mapping with the parameters of

the Sigma Lognormal model to generate example-based trajectory stylisations.

3.6. Letterform representation, generation and stylization 67

3.5.3.4 Other methods

Del Vecchio et al. (2003) describe drawing motions via the combination of basic primitives that

are referred to with the term movemes. A moveme is defined mathematically as a linear dynami-

cal system that can uniquely describe a part of a motion. Stettiner and Chazan (1994) reproduce

the planar velocity of handwritten characters with the impulse response of a slowly time varying

second order linear system. Dynamical system parameters are fitted to uniformly sampled in-

put examples using a Gaussian Mixture Model (GMM). The output is a distribution that can be

stochastically sampled to generate variations of a handwritten character based on the input ex-

amples. In Chapter 5 we also present a method based on the combination of a linear system with

a mixture of Gaussians. The method also outputs a trajectory distribution that can be stochasti-

cally sampled to generate variations according to the input data.

Bullock et al. (1993) develop the VITEWRITE (Vector Integration to Endoint WRITE) model,

which simulates neural signals to generate smooth handwriting trajectories that interpolate a

motor plan made by a sequence of positions. Grossberg and Paine (2000) propose an extension

to Bullock’s model, AVITEWRITE (Adaptive VITEWRITE), which simulates visual attention and fo-

cus to adaptively learn handwriting trajectories by imitation. Both models attempt to accurately

model the neural processes involved in handwriting production. The models successfully repro-

duce many effects seen in instances of real handwriting: such as power laws, isochrony, and also

an increase in speed as learning progresses. Nevertheless, a lower performance in reproducing

handwritten traces (Paine et al., 2004) and the architectural complexity of the models, limits their

applicability for the task of style synthesis and computer graphics applications.

3.6 Letterform representation, generation and stylization

While modern fonts are commonly represented as a set of vector outlines (Karow, 1994), many of

the visual conventions used in conceiving and creating a font or glyph can be traced back to their

origins as stroke-based handwriting and calligraphy (Noordzij, 2005; Wang, 2013). The stroke is

the fundamental primitve of calligraphy: the mark left by a gesture made with a pen, brush or

another writing tool, from a starting position and moving towards a target. Tag-writing, at the

origin of modern graffiti art, like calligraphy, is “handwriting pursued for its own sake, dedicated

to the quality of shapes” (Noordzij, 2005), and it too is based on strokes. The outline of a glyph

often conceals a latent structure as a set of generalized strokes that, when combined, closely

reproduce the glyph’s shape.

The wide adoption of outline-based representations can be traced back to the transition

from hand produced letterforms to “punch-cutting” letterforms carved in steel, and the subse-

quent need to rapidly and efficiently convert existing type-faces to digital form. With this being

the modern standard, the sustained contemporary interest in a stroke based representation can

be traced back to the METAFONTsystem (Knuth, 1999). Donald Knuth defined a font description

3.6. Letterform representation, generation and stylization 68

language that, in its first version, used the stroke metaphor to describe letterforms parametrically

with a raster shape swept along a set of splines. Knuth (1999) demonstrated how this represen-

tation is useful to generate parametric variations of a letterform, ranging from different stroke

weights, to more extreme effects that mimic handwriting or produce abstract letterforms. How-

ever, describing letterforms in MetaFont is not intuitive, and requires programming and mathe-

matical knowledge that has limited its wider adoption in the visual design fields.

3.6.1 Structural representations of letterforms

Ghosh and Bigelow (1983) suggest that a MetaFont system should “provide a descriptive scheme

in terms of which structural features of individual letter shapes can be efficiently described and

talked about”, where “efficiently” refers to the requirement that this description should be under-

standable both by a human (designer) and a computer. The authors suggest a representation of

letterforms consisting of basic stroke-like primitives that can be assembled along a graph struc-

ture.

The variety of possible instantiations of a letterform includes variations of this structure,

as well as variations of the way in which strokes are constructed along the structure. Hofstadter

(1982) emphasises the possibly infinite variety of different structures and shapes that can result

in a recognisable letterform. To study the process of letter creation in a tractable manner, he pro-

poses a simplified letter representation: a “grid-font” consisting of segments on a 3×7 grid. The

project called “Letter Spirit” (Hofstadter et al., 1993; McGraw Jr, 1995; Rehling, 2001) is specifically

aimed at modelling ways in which the human mind represents the concept of a letter and its style

(or “spirit”). Letter analysis and genesis are implemented with a multi-agent system, where each

agent (“codelet”) competes in the solution of a small cognitive sub-task. Each glyph is defined by

its constituting parts called “roles” that are effectively similar to strokes. As an illustrative exam-

ple, the letter “P” is described by two roles: one is a vertical bar, the other is a concave bowl-like

profile with its extremities connected to the upper part of the vertical bar.

Cox et al. (1982) also propose an abstract graph-based description of letters simply called

“skeleton”, that distinguishes functional and structural components from the “embellishments”

that produce different stylisation (in terms of strokes or parts, resulting in a given font). The

skeleton graph edges can be either “explicit” (i.e. visible) or “implicit” (invisible), with the latter

defining spatial constraints. Strokes are defined over a number of consecutive edges, and differ-

ent stylisations are achieved by varying the stroke type. As an example, the letter “D” is made of

two strokes, one vertical and one curved. The letter structure is defined with a series of relations:

• Meet: where two edges meet at a vertex. Can be executed with variable smoothness (e.g. a

vertex located at the middle of the bowl of a “D”, with a skeleton similar to a B)

• Join: where two edges meet at a vertex with a sharp corner (e.g. a “V”)

• Link: where edges meet at a “T” junction.

3.6. Letterform representation, generation and stylization 69

• Cross: where two edges cross each other (e.g. such as for an “X”)

In the fields of semiotics, Watt (1988) studies the evolution of the Latin alphabet with two

complementary descriptions of the letterform: one iconic where the letter is described in its basic

structure as a sign, and one kinemic — the study of gestures as body language — where the letter

is considered as a dynamic representation of the movements that produce its trace on canvas.

As an example, Watt demonstrates how the same iconic representation transforms an upper case

“A” into a lower case “α” through a process he calls facilitation, which is the tendency to reduce

effort during the kinemic production of a letter. While not well known in the computing domain,

the combined dynamic and semantic representation of letters proposed by Watt offers interest-

ing ideas for the computational synthesis of calligraphic art forms. The author also posits that

the evolution of alphabets follows the evolutionary principles proposed by Lamarck (Burkhardt,

2013) rather then the more generally accepted Darwinian approach. A similar concept is sep-

arately proposed by Blanchard (1999) in the context of paleography with an “abstract ductus”,

equivalent to a schematic motor plan for a trace that can explain again the evolution of a capital

“A” into “α”.

In summary, a simple graph-based representation can be useful to distinguish different

stylisations of a letter from its structure, where stylistic variations are given by different move-

ments (Watt, 1988; Blanchard, 1999) or strokes and parts (Cox et al., 1982; Ghosh and Bigelow,

1983; Hu and Hersch, 2001) that are combined along this structure. In the next section we review

different methods to generate strokes.

3.6.2 Stroke representations

The MetaFont system described different strokes with raster brush footprints swept along a set

of parametric curves. Since then, many stroke generation methods have been developed, which

can be used in conjunction with a structural representation of a letterform in order to render it

and stylise it different ways. The computer graphics sub-field of Stroke Based Rendering (SBR)

is aimed at mimicking the appearance of images made with painterly media. Many approaches

have been proposed to simulate painterly brush strokes, for example raster based (Strassmann,

1986), texture synthesis (Yu and Peng, 2005), with a physical model of brush bristles (DiVerdi,

2013), fluid simulation (Curtis et al., 1997; Way et al., 2006), or with vector based methods (Hsu

and Lee, 1994; Su et al., 2002). Scalera et al. (2017) mimic the appearance of spray paint with a

Gaussian model of aerosol paint and ink deposition. With the aim of mimicking strokes in comics

drawings, Saito et al. (2008) vary brush thickness as a function of curvature. These authors do not

emphasise that their approach is consistent with the isogony principle, which in the kinematic

domain relates to computing brush thickness as an inverse function of trajectory speed. Ferrer

et al. (2015) exploit the smooth kinematics produced by the Delta Lognormal model to generate

realistic ball-point pen strokes. Pen pressure and ink depositions are determined with an inverse

3.6. Letterform representation, generation and stylization 70

function of trajectory speed. In Chapter 4 we also exploit the kinematics of the Sigma Lognormal

model to develop a brush model that we use to render synthetic graffiti tags.

Yu and Peng (2005) employ a texture synthesis approach to render an abstract and expres-

sive style of Chinese calligraphy (Cau Shu) which is characterised by rapid and expressive brush

strokes. Different types of brush strokes are rendered by sweeping a deformable and rotating el-

lipse. A realistic rendition of brush patterns is achieved by re-synthesising collected calligraphic

samples with Markov random fields (Cross and Jain, 1983). Lu et al. (2014) also use a texture syn-

thesis approach to generate a decorative stylisation of a user defined path from pattern images.

The PostScript page description language is a widely adopted standard in various vector

graphics applications, including electronic publishing and desktop publishing. It defines a stroke

command that transforms a path into an outline. A PostScript stroke is defined by an envelope

of constant width, different caps determining how a stroke ends and a join type determining how

segments meet at a corner (rounded, bevel or miter). A miter joint connects sides of the envelope

at their intersection. A miter limit defines a minimum angle threshold that avoids “spikes” when

the angle at the joint is acute, and replaces the miter joint with a bevel.

Within a large body of work on control theoretic formulations of quintic B-splines, Fujioka,

Kano et al. (Fujioka et al., 2006; Fujioka and Miyata, 2011) develop the so called “Dynamic Font

Model”, aimed at reproducing the strokes of Japanese calligraphy. B-spline control point loca-

tions are optimised so the resulting curve minimises a tradeoff between jerk magnitude and re-

construction error of an input trajectory. This allows variations in smoothness that can be used,

for example, to mimic the appearance of cursive calligraphy or to generate smooth ligatures. Vari-

ably thick brush strokes are generated by using 3D trajectories and varying brush thickness based

on the distance to a drawing surface. Seah et al. (2005) also develop an extension to B-splines that

produces variably wide strokes with the addition of a coordinate that specifies a smoothly varying

radius function. The method provides some desirable properties for CAGD applications, such as

extensionality or the possibility to precisely compute intersections (Ao et al., 2018). In Chapter 5

we develop an optimal control method similar to the one of Fujioka and Miyata (2011), which is

not based on B-splines but provides additional structure and flexibilities that are useful for our

use case of graffiti synthesis. The method also supports smooth variably wide strokes similarly to

Seah et al. (2005).

With the specific aim of font design, Jakubiak et al. (2006) describe a stroke model, consist-

ing of path paired with a variably wide thickness profile and arbitrarily shaped caps. Schneider

(2000) develops a similar method, but also defines a way to produce smooth blends where two

strokes intersect. Hu and Hersch (2001) develop a component-based representation of fonts,

consisting of parametric shape primitives like “bars”, “serifs”, “terminals” or “sweeps”, where the

latter are similar to strokes. The authors observe that when generating sweeps, it is desirable to

offset the control points of a Bézier curve, rather than the curve itself, which produces visually

3.6. Letterform representation, generation and stylization 71

(a) (b)

Figure 3.2: Example of a skeletal stroke. (a) An arrow-shaped prototype. (b) Deformation of the
prototype along a spine (dashed red). The corner in the spine would produce a “fold”
(gray), which is usually removed.

more pleasing results.

Skeletal strokes (Hsu and Lee, 1994) is another widely adopted and flexible technique, which

can reproduce strokes identical to the ones generated by PostScript but also a variety of other

painterly and graphical effects. An input shape, called a prototype, is deformed along a destina-

tion path, called a spine (Figure 3.2.a). The deformation is performed by mapping portions of the

prototype to portions of the spine, and then applying a deformation that depends on a variable

width profile that maps distances along the spine to a pair of widths perpendicular to the spine

(Figure 3.2.b).

3.6.2.1 Graffiti strokes: Self overlaps and layering.

One known issue with skeletal strokes is the appearance of folds in high curvature portions of

the spine (Figure 3.2.b, in gray). This is generally considered undesirable, and several approaches

have been proposed to adjust (Lang and Alexa, 2015) or to remove (Hsu and Lee, 1994; Asente,

2010) such features. Contrary to those, in Chapter 6, we exploit the folding behavior to mimic

artistic self-overlapping effects that are often seen in graffiti art.

Differently from traditional type design and lettering, the strokes in graffiti pieces are often

interlocked in complex ways and may have self-overlapping parts and loops (Ferri, 2016). Rather

than combined with a simple union, they are superimposed and then traced, revealing an outline

that is evocative of a 3D composition. Conventional stroking algorithms do not support these

kinds of effects, which usually require a user to intervene by either masking parts of the outline

(Wiley and Williams, 2006) or manually hiding the edges of a planar map representation of a

drawing (Asente et al., 2007).

Wiley and Williams (2006) develop “Druid”, a system for designing interwoven drawings.

The system resolves overlaps between spline curves with a local labelling of crossings. However,

our experiments found their method unreliable in the presence of the folds and loops, such as

the ones that are generated by the skeletal stroke algorithm (Figure 3.2.b). This can lead to edge

visibility errors that propagate around the outline. A similar stability issue is known for certain

hidden line removal approaches in 3D (Appel, 1967; Graphics and Applications, 1988). McCann

and Pollard (2009) develop an interactive system for non-globally layering transparent bitmaps

3.7. Letterform stylisation and generation 72

based on detecting regions of overlap, but it does not handle objects overlapping themselves.

Igarashi and Mitani (2010) develop a similar method for 3D objects on a plane, which does permit

self-overlaps. In Chapter 6 we develop a similar local layering method which operates on the

outlines of 2D objects.

Asente et al. develop “LivePaint” (Asente et al., 2007), an interactive method for editing

and painting planar maps (Baudelaire and Gangnet, 1989) that maintains the original underlying

geometry. However, creating and modifying overlaps requires manually assigning appropriate

stroke and fill attributes to edges and faces of the map. With a similar application in mind, Dal-

stein et al. developed Vector Graphics Complexes (VCG), a data structure specifically aimed at

processing and editing potentially overlapping and intersecting vector art in a manner similar to

planar maps, while maintaining topological and incidence relations (Dalstein et al., 2014). Our

local layering implementation, in Chapter 6, also relies on planar maps, but in addition it main-

tains the structural information of a drawing across edits through a stroke-based representation.

3.7 Letterform stylisation and generation

In the previous sections we have implicitly argued that the combination of (i) a structural rep-

resentation of a letter with (ii) a physiologically plausible model of trajectory formation paired

with (iii) different stroke generation and rendering methods, can be used to generate a variety of

stylisations of the letterform. In the first part of this thesis, we develop a set tools and primitives

with the specific aim of implementing this framework for the case of graffiti and calligraphy. In

the second part of the thesis, we seek to recover a structural representation and stroke primi-

tives from existing geometry, in which information about a generative movement or an underly-

ing stroke structure may be latent or unavailable. Recovering this underlying structure makes it

easier to stylize and modify the input geometry in a way that would be difficult to achieve with

image-based or geometric transformations alone. In addition, this procedure converts existing

examples of tags, fonts, or other types of outlines, into a rich source of structures that can be used

to procedurally generate graffiti and calligraphy in a variety of styles.

In the next sections we first review exiting works (summarised in Table 3.4) that have ap-

proached problems similar to ours, that of handwriting synthesis (Section 3.7.1) as well as cal-

ligraphy and font stylisation (Section 3.7.2). Some of the stylisation methods also rely on the re-

covery of strokes from character or glyph outlines, but most of these methods either require user

assistance or assume a specific and restricted class of inputs. In order to automate this procedure,

we consider concepts that have emerged in shape analysis and visual perception, and we review

these in Section 3.8; these concepts help us build the foundation for the methods developed in

part II of this thesis.

3.7. Letterform stylisation and generation 73

References Type Structure Strokes Method Vector

Graves (2013),
Ha and Eck (2018),
Tang et al. (2019)

handwriting/drawing 3 3 online 3

Choi et al. (2003),
Choi et al. (2004)

handwriting 3 3 online 3

Haines et al. (2016) handwriting 7 7 N.A. 7

Chen et al. (2015) handwriting 7 7 N.A. 3

Wang et al. (2002),
Wang et al. (2005)

handwriting 7 7 N.A. 3

Lake et al. (2015) handwriting 3 3 automatic 3

Lee and Cho (1998) handwriting 3 3 template-based 3

Zhang and Liu (2009) calligraphy 7 7 N.A 3

Xu et al. (2009) calligraphy 3 3 semi-automatic 3

Lyu et al. (2017) calligraphy 7 7 N.A. 7

Miyazaki et al. (2019) fonts/calligraphy 3 3 template-based 3

Rehling (2001),
Grebert et al. (1992)

fonts 3 7 N.A. 3

Tenenbaum and Freeman
(2000)

fonts 7 7 N.A. 7

Lian and Xiao (2012) fonts 3 3 template-based 3

Suveeranont and Igarashi
(2010)

fonts 3 3 template-based 3

Campbell and Kautz (2014) fonts 7 7 N.A. 3

Lopes et al. (2019) fonts 7 7 N.A. 3

Phan et al. (2015) fonts 3 3 user-guided 3

Wang et al. (2020) fonts 7 7 N.A. 7

Zhang et al. (2017a) fonts 3 3 user-guided 3

Xu and Kaplan (2007) fonts 3 7 user-guided 3

Zou et al. (2016) fonts 3 7 automatic 3

Table 3.4: Font/calligraphy/handwriting generation and synthesis.

3.7.1 Handwriting synthesis

In handwriting analysis and synthesis, a distinction is usually made between online and

offline data (Plamondon and Srihari, 2000). Online data consists of temporally ordered

strokes, where each stroke is usually encoded as a sequence of 2D points. Offline data

consists of images or curves, where the stroke temporal order and structure is unavail-

able.

In one popular handwriting synthesis approach, a system generates handwritten

strings from a few sentences written by a user, which are digitised in an online (Wang

et al., 2005; Lian et al., 2018) or offline (Chen et al., 2015; Haines et al., 2016) form. The

sentences are required to cover a sufficient variety of characters of the alphabet. These

approaches assume a mapping between the input examples and the corresponding text,

which for sufficiently readable handwriting, can be done with line and character seg-

mentation (Haines et al., 2016) or with a handwriting recogniser (Wang et al., 2005). This

can be challenging for our use cases of graffiti tags or calligraphy, which are usually highly

3.7. Letterform stylisation and generation 74

stylised signatures that are often unreadable (as meaningful text) by an untrained hu-

man.

A different approach consists in generating handwriting by concatenating a series of

predefined motor plans, one per letter of the alphabet. Different stylised trajectories are

then generated with the simulation of a movement that follows the concatenated mo-

tor plans. Lee and Cho (1998) use this approach to synthesise Korean handwriting with a

Beta Elliptic model, while Ferrer et al. (2015) use a similar approach to generate synthetic

signatures with a combination of filtering and the Delta Lognormal model. The methods

we will demonstrate in the following chapters can all be applied to concatenated tem-

plates in a similar manner.

The Sigma Lognormal model of handwriting has been widely used to generate re-

alistic variations of handwriting, with applications that vary from the generation of syn-

thetic signatures (Galbally et al., 2012) to the generation of handwritten CAPTCHAs (Ra-

maiah et al., 2014). These methods rely on a reconstruction procedure that recovers the

needed parameters from the velocity and geometry of a digitised trace. This can be done

with a number of state of the art methods (O’Reilly and Plamondon, 2008; Plamondon

et al., 2014; Fischer et al., 2014; Ferrer et al., 2018), but all these assume that the input al-

ready encodes a velocity profile, thus limiting their applicability to digitised movements

only. In Chapter 8 we develop a novel method that infers Sigma Lognormal parameters

from the geometry of an arbitrary trace, which effectively recovers a latent generative

movement. We then use this reconstruction in combination with a Recurrent Neural Net-

work (RNN) to generate example-driven stylisations of handwriting, tags or other kinds

of inputs in vector form.

Recently, a growing number of methods have used RNNs to synthesise handwriting

(Graves, 2013; Zhang et al., 2017b; Tang et al., 2019) as well as drawings (Ha and Eck,

2018). These models are usually trained on rather large training sets consisting of online

handwriting data in the form of digitised point sequences. As a result, the predictions

of the networks also consist of temporally ordered points, which mimic the movements

followed by a writing pen. It is interesting to note that the more recent methods (Ha

and Eck, 2018; Zhang et al., 2017b; Tang et al., 2019) all use polyline simplification to

simplify the dense training trajectories into sparse sequences of points, suggesting that

this improves training speed and robustness. However, the authors do not note that this

3.7. Letterform stylisation and generation 75

simplification is similar in practice to a motor plan the describes the fine evolution of

a trajectory. We investigate this concept more in depth in Chapter 9, where we explore

the combination of an RNN model similar to the one developed by Graves (2013), with a

representation of movement in terms of the Sigma Lognormal model.

3.7.2 Font and calligraphy generation and stylisation

One well studied problem in the domain of font generation and stylisation, was initially

proposed by Hofstadter et al. (1993) in the “Letter Spirit” project: given a few exemplars

of the letters of a font, generate all the alphabet with a style (or “spirit”) that is consistent

with the exemplars. The letter spirit project culminated with the thesis of Rehling (2001),

who described a complex cognitively inspired architecture that generated complete grid

fonts with a style that is similar to a few examples given by a user. In the meantime, Gre-

bert et al. (1992) approached the same problem with a simpler architecture consisting of

a three layer neural network. The network perfectly reproduced the letters it was trained

on and generated the missing letters with similar regularities to the input exemplars, but

not a necessarily readable structure (Rehling, 2001).

The same kind of problem has been approached also with bitmap representations

of fonts. Tenenbaum and Freeman (2000) developed a similar system using a bilinear

model and a vector field representation of glyph rasters. More recently, a number of

Deep Learning methods have been proposed which can predict the missing glyphs for

instances of fonts (Azadi et al., 2018; Hayashi et al., 2019; Gao et al., 2019) as well as cal-

ligraphy (Lyu et al., 2017; Wen et al., 2019). One common limitation of these methods

is that they produce bitmap outputs with a relatively low resolution. In practice, these

bitmaps can be vectorised, but this would still limit the possibilities of editing and vary-

ing the results in a meaningful manner.

Hofstadter et al. (1993) use fonts as an example of the vast range of structures and

shapes that a recognisable letterform can assume, and to demonstrate the challenge of

modeling the creative process underlying letter stylisation and design. At the same time,

if we temporarily ignore the complexity of this creative process, fonts can also be seen as

an equally varied source of letter structures and shapes in a variety of styles, languages

and writing systems. Indeed a number of methods use font outlines as a starting point

to generate stylised letterforms.

Some methods approach font and calligraphy stylisation as an outline correspon-

3.7. Letterform stylisation and generation 76

dence problem. Zhang and Liu (2009) synthesise new calligraphy samples by employing

an energy minimising deformation between the outlines of different character samples.

Campbell and Kautz (2014) generate a latent manifold from font outlines with the same

topological structure and generate new fonts by interpolating and extrapolating points

on the manifold. Balashova et al. (2019) use a template driven approach to decompose

an outline into parts that they also call strokes. This provides additional structure that

allows to apply a method similar to the one of Campbell and Kautz (2014) also to out-

lines with different topological structures. Such outline-based methods do not provide

sufficient control to mimic the variety of stylisations that can be observed in graffiti art.

Other methods, adopt a similar correspondence-based approach but operate at the

level of strokes. Depending on the method, strokes are either extracted automatically (Xu

et al., 2009; Lian et al., 2018) from a font outline or with a user guided (Phan et al., 2015)

or template-based procedure (Suveeranont and Igarashi, 2010). Xu et al. (2009) use a

semi-automatic procedure to decompose example outlines into strokes, and then gener-

ate calligraphic stylisations of a character with a weighted interpolation or extrapolation

between strokes. The strokes are then rendered with a realistic brush model. Xu et al.

(2012) use feedback from 5 expert calligraphers to train a neural network that automati-

cally evaluates the results of the system (Xu et al., 2009) and that is used to automatically

tune the stylisation parameters. Lian et al. (2018) also use an automatic segmentation

into strokes to generate Chinese handwriting and calligraphy stylisations from exam-

ples. Suveeranont and Igarashi (2010) develop a method similar to the one proposed by

Xu et al. (2009) but extended to arbitrary font outlines. However the stroke segmentation

relies on a set of predefined templates. Phan et al. (2015) rely on a user guided stroke de-

composition to solve a problem similar to the one proposed by (Hofstadter et al., 1993)

and use a manifold similar to the one proposed by Campbell and Kautz (2014) but com-

puted for segmented strokes.

All these methods approach font generation and stylisation exclusively as a style

transfer from one ore more example glyphs to an entire font. Different approaches ex-

ist, for example Zhang et al. (2017a) use simple user defined sketches to segment words

written in a given font into strokes and then reconstruct the word with shapes that are

semantically similar to the written word. Xu and Kaplan (2007) and Zou et al. (2016) au-

tomatically generate “calligrams” consisting of letters that are deformed to fit inside a

3.7. Letterform stylisation and generation 77

given shape outline. Zou et al. (2016) guide the packing procedure by decomposing the

outline into parts (Luo et al., 2015) by manually identifying protrusions in the letter that

are effectively similar to strokes.

3.7.3 Stroke segmentation

The problem of decomposing an outline into strokes is challenging since it involves dis-

ambiguating regions where multiple strokes may cross or overlap. This kind of problem

has been addressed by many methods for the traces of handwriting (Plamondon and

Privitera, 1999; Lake et al., 2015) or drawing (Favreau et al., 2016). However, these meth-

ods assume an input produced with uniformly thin strokes, which is often not the case

for fonts.

Of the methods discussed in the previous section, the only ones that rely on auto-

matic segmentation are focused on Chinese characters. The problem of stroke segmen-

tation for Chinese, or more generally east Asian characters, is well developed. Decom-

posing East Asian characters, which are often based on a hierarchical structure of radicals

and strokes, has been well studied (Wang et al., 2002; Sun et al., 2014; Chen et al., 2017)

and extensive datasets are available for data-driven methods. For example, Kim et al.

(2018) train a neural network on the “makemeahanzi” (Kishore, 2018) dataset, resulting

in a data-driven method that decomposes similar characters into potentially overlap-

ping strokes. The segmentation method of Lian et al. (2018) is automatic and robust,

but it also exploits the precise hierarchical structure of Chinese characters and relies on

a dataset of a significant number (27,533) of manually labelled and categorised charac-

ters.

These same methods usually fail with Western fonts and glyphs, which have a wider

range of stylistic variations and decorations, and which often blend components into

each other in ways that make segmentation difficult. This ill-posed problem (Lamiroy

et al., 2015) has been partially addressed with user-defined templates (Herz et al., 1997;

Suveeranont and Igarashi, 2010; Phan et al., 2015; Zhang et al., 2017a; Balashova et al.,

2019) or a detailed analysis of glyph outlines (Shamir and Rappoport, 1996). In partic-

ular, the method of Shamir and Rappoport (1996) automatically identifies typographic

features such as serifs, bars and stems. However, it does not disambiguate more complex

cases where multiple strokes intersect. The method relies on the identification of salient

features along an outline, such as extrema (of curvature), inflections, cusps, corners and

3.8. From shape to strokes 78

relatively straight regions. In Chapter 11 we introduce a related geometric approach,

while in the next section we review the foundations that inform its implementation.

3.8 From shape to strokes

The term “shape” is used in everyday language, with expressions such as “the shape of

a tree”, “a spherical shape”, “an abstract polygonal shape”, which seldom require any ad-

ditional definitions to be intuitively understood. At the same time, a precise definition

of shape is ill posed (Koenderink, 1990), and it is rarely found in the computational lit-

erature, where the assumption is usually made that the term refers to some geometric

description of an object or its outline, let it be contour samples or pixels in 2D, or trian-

gles or voxels in 3D. Computational geometry, computer graphics and mathematics are

full of useful, and different “shape representations”, and a precise definition of the term

is useful for their categorization and to understand how they are related. Arnheim (1954)

defines shape as an “active occupation” of the mind (p. 43):

“..in looking at an object, we reach out for it. With an invisible finger we

move through the space around us, go out to the distant places where things

are found, touch them, catch them, scan their surfaces, trace their borders,

explore their texture.”

A related, but more precise definition is proposed by Koenderink (1990), who defines

shape “operationally” as the structure resulting from a series of measurements made

in a “field” surrounding an object’s outline. Shape depends as much on the object as

it depends on the method that is used to “probe” this field. Leymarie (2006) takes this

definition further, by viewing shape representations as sequences of transforms, which

emphasise or reveal certain properties of an object, while de-emphasising or discard-

ing others. Transform sequences can be organized into two main categories: horizontal

transform sequences that act along an outline, and vertical transform sequences that act

perpendicular to an outline. This dichotomy bears similarities to the one, commonly

used for two dimensional shape, of contour based geometry and region based geome-

try (Singh, 2015). A sufficiently informative shape representation can be used to char-

acterise an object’s morphology, that is to study its form intended as perceived visual

qualities such as “roundedness”, “sharpness” (Leymarie, 2006; Albertazzi, 2019).

A countless number of shape representation methods have been developed in the

3.8. From shape to strokes 79

domains of computer vision and graphics. A great majority of these methods is aimed at

providing quantitative measures in terms of dimensionless quantities that are useful for

recognition or shape retrieval tasks (Zhang and Lu, 2004; Rosin, 2005), but are less useful

for our goal of shape analysis for generative tasks such as stylisation and abstraction.

It is a commonly held view that the process of drawing or painting is like “learning

to see” (Koenderink and van Doorn, 2008), and it can be argued that a system aimed at

mimicking a visual art form should rely on representations and principles that are consis-

tent with the ones that are at the basis of the human visual system (Mi, 2006). As a result,

the following sections will narrow the focus on shape representations that have some

form of perceptual grounding, building up from curvature based shape representations

(Section 3.8.1) to symmetry based shape representations (Section 3.8.2), to principles of

perceptual grouping and contour integration (Section 3.8.3). These representations are

the basis for a higher level descriptions of shape, in terms of perceptually meaningful

parts (Section 3.8.4) and ultimately in term of strokes, which we will recover in Chapter

10.

3.8.1 Curvature based shape representations

The study of the curvature along a contour has been the focus of decades of research

in various fields, including visual perception and cognitive science, as well as com-

puter vision and pattern recognition. Curvature extrema are perceptually important

points (De Winter and Wagemans, 2008b) at which the curvature function reaches a

local minimum or maximum. For regular 2D curves, there are four types of curvature

extrema, which are often denoted as M+,m−, M−,m+ (Richards and Hoffman, 1985;

Leyton, 1987; De Winter and Wagemans, 2008b), where M+ and m− respectively denote

positive maxima and negative minima of curvature, while M− and m+ respectively de-

note negative maxima and positive minima of curvature (Figure 3.3). The first pair of

extrema types (M+,m−) are absolute maxima of the curvature function that correspond

to “sharper” features (turns, bends) and are the ones typically taken into consideration

in methods aimed at identifying curvature extrema. The second pair of extrema types

(M−,m+) map to absolute minima of the curvature function and thus correspond to

flatter or squashed or compressed shape regions (Leyton, 1988). For piecewise continu-

ous curves, corners and cusps can be viewed as the limits to positive and negative infinity

of curvature for absolute maxima (M+,m−) (Leyton, 2006). Inflections are the locations

3.8. From shape to strokes 80

where the curvature function changes sign (e.g. the midpoint of an “S”-like curve) and

are also considered to be perceptually significant (De Winter and Wagemans, 2008b) or

generally useful for the description of shape (Richards and Hoffman, 1985).

3.8.1.1 Perception of curvature

As early as 1954, before the advent of computers as a mainstream tool, Attneave (1954)

experimentally argued that shape information is concentrated at object contours and

especially at corners and absolute maxima of curvature along these contours. This led

him to draw a now famous picture, known as “Attneave’s cat”, which depicts a clearly

recognizable cat by connecting absolute curvature maxima along its silhouette with

straight line segments. More recently, Feldman and Singh (2005) derived a more pre-

cise information-theoretical formulation of Attneave’s claims for discrete traces by defin-

ing information content as the negative log-likelihood, or surprisal, of deviations from

straightness, measured with a von Mises distribution (a circular analogue of a Gaussian)

over the turning angles φ. For simple and closed contours, Feldman and Singh (2005)

suggest that turns towards the interior should be considered more probable, which gives

a higher information content to negative minima (m−), a result that is consistent with

the hypothesis of a perceptual bias towards concavity (Hoffman and Singh, 1997; Hulle-

man et al., 2000). The perceptual importance of curvature extrema is confirmed experi-

mentally by De Winter and Wagemans (2008b) by involving a large (for this type of study)

number (N = 161) of participants, that are asked to label perceptually salient points

along a sufficiently large set (N = 260) of object boundaries. The experimental results,

however, do not show the preference for concavities suggested by Feldman and Singh

(2005) and others, a result that is attributed to the influence of non-local factors on the

preferences shown by participants. Interestingly, the magnitude of curvature alone is not

found to be a good predictor of these preferences. In their study, (De Winter and Wage-

mans, 2008b) also evaluate a number of measures of saliency for curvature extrema, in-

cluding a variant of the turning angle measure proposed by Feldman and Singh (2005).

Table 3.5 gives an overview of different measures.

Visual search studies8 suggest that curvature representations occur pre-attentively

(Treisman and Gormican, 1988; Hulleman et al., 2000), that is early in the human vi-

8A visual search experimental paradigm is often used to evaluate if a given feature is computed pre-
attentively. A rapid reaction time of a search for the feature among a large number of distractors and a
slow reaction time for the reverse suggest that the feature is processed pre-attentively.

3.8. From shape to strokes 81

Measure Short Description References Cor.

Inverse compactness Part contour length squared
divided by part area

De Winter and Wagemans (2008b),

Zusne (1970)
≈ 0.6

Relative size Part area divided by total
area

De Winter and Wagemans (2008b),

Hoffman and Singh (1997)
≈ 0.45

Stick-out Length of part divided by
length of part base

De Winter and Wagemans (2008b),

Hoffman and Singh (1997)
≈ 0.4

Absolute curvature Absolute magnitude of cur-
vature

De Winter and Wagemans (2008b) ≈ 0.3

Turning angle Angle between perpendicu-
lars to flanking segments

De Winter and Wagemans (2008b) ≈ 0.85

Surprisal Negative log-likelihood of
turning angle probability

Feldman and Singh (2005) NA

Circular arc length
(
φl1l2

)
/(l1 + l2) Latecki and Lakämper (1998) NA

Table 3.5: Curvature saliency measures. Here a “part” is a contour segment containing the ex-
tremum and delimited by the two adjacent extrema, the “flanking segments” are the
segments with length l1, l2 going from the extremum to the adjacent extrema, and φ

is the absolute angle between the normals to the flanking segments. The correlation
values are the (approximate) maximum values from the evaluation in the results of
De Winter and Wagemans (2008b) (refer to Figure 7 of the paper).

sual system, before attention is focused on a certain region of the visual field (Wage-

mans et al., 2012). At a higher level, curvature plays an important role in the perceptual

decomposition of objects into parts (Richards and Hoffman, 1985; Brault and Plamon-

don, 1993a; De Winter and Wagemans, 2006) and the characterization of these parts (e.g.

bends, necks), a subject that will be described more precisely in Section 3.8.4. As we have

previously seen, curvature also plays an important role in the characterisation of human

movement and handwriting by relating the kinematics of a movement to its geometry

with inverse relations such as the power law (Viviani and Schneider, 1991). These re-

lations suggest that curvature is a potential perceptual cue for the mental recovery of a

generating movement from the geometry of its trace (Pignocchi, 2010).

3.8.1.2 Digital curvature

A robust identification of curvature extrema and corners, or dominant points, for dig-

itally sampled contours can be difficult as it requires the evaluation of a second order

differential quantity, which tends to amplify the effects of digitization noise in the input.

One popular method to overcome this problem is to first smooth the digitised signal us-

ing a filter (e.g convolving with a Gaussian) or with some analytic function (e.g. smooth-

ing splines) followed by a peak finding method (Leymarie and Levine, 1989). However,

3.8. From shape to strokes 82

this risks removing perceptually important features and choosing parameters that func-

tion well across a large range of inputs remains a difficult task. One approach to address

this issue is to construct a scale-space (Witkin, 1983; Koenderink, 1984), in which features

that are tracked across multiple scales are considered more significant. Such a scale-

space is very often produced by iterative Gaussian filtering in the spatial domain, or via

the frequency domain using wavelets (De Stefano et al., 2005). While this approach is

robust to noise, because of smoothing, it typically fails to provide an accurate estimate

of curvature or to detect localised features such as segments of approximately constant

curvature (e.g circular arc segments), which are hypothesised to play an important role in

contour perception (Garrigan and Kellman, 2011). To address feature localisation, Ley-

marie and Levine (1989) propose a structural notion of scale using morphological oper-

ations (opening, closing) over the curvature function, resulting in its approximation in

terms of line segments.

In practice, the concept of scale defined as an implicit characteristic of a curvature

function along a trace was really an attempt to attach a notion of a region of support (Teh

and Chin, 1989) to a feature, such that significant features can be characterised in part

by how much of a segment of the trace being traversed they can represent. A number

of methods identify such support regions with an iterative traversal of trace segments

surrounding a given point (eg. Brault and Plamondon, 1993a), effectively resulting in a

hybrid between a horizontal and a vertical process. Sarfraz (2008, Chapters 11 and 12)

reviews and provides implementation details for a number of these methods, including

a method developed by the author himself (Sarfraz et al., 2006). A particularly useful

example of such methods is the so-called Discrete Curve Evolution (DCE) (Latecki and

Lakämper, 1998), where a polygonal reconstruction of a trace is incrementally refined

by adding dominant points determined based on a salience measure computed as the

length of two flanking support segments and the turning angle between these.

3.8.1.3 Curvature based shape descriptors

A number of methods organize contour-segments based on an analysis of curvature.

With the aim of object recognition, Asada and Brady (1986) describe a “curvature primal

sketch” that organizes curvature extrema into a grammar describing shape morphology,

where single extrema categorised as “corners” and “smooth bends” and groups of ex-

trema are further categorised as “cranks”, “ends” and “bumps”. Richards and Hoffman

3.8. From shape to strokes 83

Figure 3.3: Codon types according to Richards and Hoffman (1985), together with the corre-
sponding triplets of curvature extrema: •m−, ■m+, ■M− and •M+. The gray and
black arrows are not part of a codon’s definition, but use the curvature extrema to
demonstrate “process arrows”, as proposed by Leyton (1988) in his process grammar.
The black arrows point at absolute maxima of curvature (m−, M+) and indicate a
process that produces an indentation (from the exterior) or a protrusion (from the
interior) along the outline. The gray arrows point at absolute minima of curvature
(m−, M+) and indicate a process that “squashes” (from the exterior) or exherts resis-
tance (from the interior) along the outline.

(1985) propose a partitioning of closed contours into five features types called “codons”

(Figure 3.3), contour segments defined by curvature extrema triplets characterised by

a central curvature maximum (M+ or M−) bounded by two curvature minima (m− or

m+). Rosin (1993) notes that codons do not allow for curvature discontinuities, and thus

he extends the representation to include cusps and corners. The same issue with codons

is noted by Galton and Meathrel (1999), who propose a partitioning of contours based

on a grammar of “curvature types” (e.g. line segments, concave/convex curve segments,

cusps). Kellman and Garrigan (2007) propose that contour segments with constant cur-

vature (i.e. circular arc segments, or “arclets”) are a feature detected early in the vision

process which improves recognition performance (Garrigan and Kellman, 2011).

Leyton (1988) proposes a conceptually different interpretation of curvature extrema

with his “process grammar”, where curvature extrema are viewed as the result of a de-

formation process producing a protrusion/indentation (M+,m−) or exerting a squash-

ing/resistive force (m+, M−) on a shape outline (Figure 3.3). The process grammar de-

scribes two types of transformation rules, “continuation” and “bifurcation”, which de-

scribe how extrema are created or vary during a deformation. For a concise overview of

these rules refer to Leymarie (2006).

3.8.2 Axial symmetry based shape representations

An important alternative to focusing solely on curvature as an intermediate representa-

tion, also proposed early on by the computing community, is instead to rely on a gen-

eralization of the symmetry axis for shape. Symmetry is the invariance of an object un-

3.8. From shape to strokes 84

der a class of transformations, and, in two dimensions, a symmetry axis conventionally

denotes a straight line that delimits two sides of a shape that are congruent under a re-

flection along the line. This concept can be generalized to capture point-wise symmetry

relations, resulting in a graph of potentially curved axes that is commonly known as the

Symmetry Axis Transform (SAT).9 Originally pioneered by Harry Blum for the description

of biological shape (Blum, 1962), the SAT is a shape representation that provides a bridge

between a shape’s geometry and topology (Blum, 1973). It consists of a symmetry axis,

the centers of “maximally inscribed disks”, paired with a radius function that maps the

centers to the corresponding disk radii. The symmetry axis consists of one or more po-

tentially curved axial segments, often referred to as branches (Macrini et al., 2011; Shaked

and Bruckstein, 1998), which can be organised as a directed graph. For closed contours,

the SAT is a complete shape representation since a solid object can be fully reconstructed

with a union of the maximal disks contained within its interior (Blum, 1973). Wolter

(1992) and collaborators (Sherbrooke et al., 1996; Wolter and Friese, 2000) show that the

SAT of the interior is an homotopy equivalent of the object as a solid,10 meaning that it

describes an equivalent topology, with the advantage of doing so with a more compact

representation (Tagliasacchi, 2013). Experimental evidence suggests that SAT like repre-

sentations are likely to be part of the “machinery” used by the human brain to perceive

(Kovács et al., 1998; Kimia, 2003; Firestone and Scholl, 2014) and to recognize (Ayzenberg

and Lourenco, 2019) shapes.

3.8.2.1 SAT: definitions

Many equivalent definitions of the SAT exist emphasising different properties and lead-

ing to different means of implementing the transform (Tagliasacchi, 2013):

• Maximally inscribed disks: A commonly used definition is restricted to the interior

of closed contours, i.e. for solids, and considers the SAT as the union of centers

of maximally inscribed disks(or balls in 3D) together with their associated radii.

This definition is often the basis for a raster based computation of the SAT, which

can be done for example with morphological thinning or through a distance trans-

form (Leymarie and Levine, 1992). The popularity of this definition in the litera-

ture has led to the common misconception that the SAT is only defined for solids,

9Other popular names found in the literature include: Medial Axis, Skeleton, Shock graph (in 2D) and
Shock scaffold (in 3D).

10This homotopy relationship was later demonstrated again by Lieutier (2003).

3.8. From shape to strokes 85

while already in its early formulation (Blum, 1967, 1973) the transform is defined

for open segments as well as isolated points or samples (making it directly related

to Voronoi diagrams, since commonly used in CGAD).

• Grassfire analogy: A definition of the SAT that generalizes well to the case of open

traces is based on the “prairie grassfire” or meeting or collapsing wavefront anal-

ogy, in which the maximal disk centers are given by the “quench” points (Leymarie

and Levine, 1992), or shocks (Kimia et al., 1995), at which fire fronts or waves prop-

agating from the object boundary meet and stop expanding. This definition can

be implemented by following the ridges of the height surface produced by a reac-

tion process evolving over a discrete lattice and initiated at points sampled along a

trace or object boundary (Leymarie and Levine, 1992; Kimia et al., 1995; Gao et al.,

2018).

• Maximal bitangent disks: With yet another (closely related) definition, the SAT

is the locus of maximal bitangent disks, which assumes an input consisting of

smooth outline segments built from (at least) twice differentiable curves. This pro-

vides the basis for an analysis of the SAT under the lens of differential geometry .

This definition can be extended to accommodate for the end-points of open traces

or breaks in curvature (cusps, corners), for example, by defining a set of radials that

interpolate along gaps where normals do not exist (Blum, 1973) and results in an

extended set of “pan-normals” that includes both the sets of normals and radials.

This allows to relax the bi-tangency constraint to one of radial contact and leads

to a SAT definition in which each disk center is equidistant to at least two distinct

trace points that are closer to the disk center than to any other trace point. This

definition permits a SAT implementation in terms of a Voronoi diagram, which, af-

ter Blum introduced his ideas in the 1960’s and 1970’s, became widely used in the

computational geometry (and CGAD) literature.

• Vornoi based methods: The (2D) Voronoi diagram of a set of points (or sites) con-

sists of a planar graph that partitions the plane into convex regions (a.k.a. Voronoi

regions) that are nearest to each site. Each (Voronoi) edge of the graph bisects two

sites that have generated it, and all the points along the edge are equidistant from

the two sites. It is thus possible to construct a disk that is centred along the edge,

3.8. From shape to strokes 86

(a) (b) (c)

Figure 3.4: Some symmetry axis variants (red), showing one of the maximal disks (blue circle)
, with two symmetric points along the outline (blue dots) and the axis point gener-
ated by the disk (black dot). (a) Blum’s SAT is the locus of disk centers. (b) Brady
and Asada’s SLS is the locus of chord midpoints. (c) Leyton’s PISA is the locus of the
shortest arc midpoint.

is tangent to the two generating sites and does not contain any other site. The

vertices of the Voronoi diagram are equidistant from 3 sites (in general positions)

and correspond with the circumcenter of a triangle connecting the sites that does

not contain any other sites. The set of all such triangles defines the dual of the

Voronoi diagram, which is known as the Delaunay triangulation of the sites. If we

consider the disks centred at Voronoi edges and vertices, this becomes equivalent

to the maximal SAT disks introduced by Blum in the 1960’s.11 Similarly to the SAT,

one common analogy for computing the Voronoi diagram is the one of fire fronts

uniformly propagating from each site: the points at which the fire fronts first meet

(and extinguish) are the edges of the Voronoi diagram (O’Rourke, 1998). The (2D)

Voronoi diagram is very well studied in the computational geometry domain, with

many robust implementations that usually compute the diagram O(n logn) time

(O’Rourke, 1998). As a result it has become one of the most popular and practical

methods to approximate the SAT for discrete (sampled) traces inputs (Ogniewicz,

1992; Amenta and Bern, 1999; Durix et al., 2019).

3.8.2.2 SAT variants and extensions

Many extensions and variants of the SAT have been developed since its inception (Figure

3.4), a number of which were already suggested by Harry Blum in his seminal long articles

(Blum, 1967, 1973). Kimia et al. (1995) use a reaction-diffusion process initiated along a

11Blum’s ideas and definitions in fact correspond to what is now called the Generalised Voronoi diagram
for sites that can be points, open curve segments, solids, or combination thereof. Blum and his collaborators
pioneered these concepts through the 1960’s and 1970’s both for 2D and 3D sets of sites.

3.8. From shape to strokes 87

contour to construct symmetry axes in terms of singularities or shocks, which occur at

the disk centers of Blum’s SAT. Shocks carry additional information which depends on

the variation of the radius function, and this is used to construct a grammar of four shock

types that are useful for object understanding and recognition (e.g. indicating neck loci

where one may split an object in parts).12

In a wavefront propagation setting, the SAT is given by the points at which two con-

centric wavefronts initiated along a trace first meet. Blum (1967) calls this a “blocked”

symmetry set and observes that additional symmetry axes can be identified by letting

the propagation continue. This results in an “unblocked” symmetry set, which is also

known as full symmetry set (FSS) and has been extensively studied mathematically, in

particlar by mathematician Peter Giblin and collaborators (Giblin, 2000). The FSS cap-

tures additional symmetries of a shape that cannot be computed with the SAT. As a sim-

ple example, consider the case of a vertically oriented ellipse: the SAT produces a single

vertical symmetry axis, while the FSS produces an horizontal and a vertical one. While

these additional symmetries may be practically useful, in practice the FSS is challenging

to compute and, with increasing shape complexity, it produces a large amount of axes

that can become impractical to manage and interpret or use in applications.

A similar complexity issue arises with the smooth local symmetries (SLS) (Brady and

Asada, 1984), a variant of the SAT already noted earlier by Blum (1973), in which sym-

metry axis points are located at disk chord midpoints rather than centers. The SLS also

generates two axes for the case of the ellipse, with the axes completely contained within

its interior, and for certain classes of shapes it can produce symmetry axes that are closer

to the perceived symmetric structure of an object when compared with the SAT (Brady

and Asada, 1984, Fig. 8). However, the SLS does not maintain shape topology, and sim-

ilarly to the FSS, it can become impractically complex for more complicated shapes. Mi

and DeCarlo (2007) overcome these complexity issues by only computing subsets of the

SLS starting from a digital estimate of curvature extrema, and then using the resulting

axes to decompose objects into potential parts.

With the aim of defining a process-based grammar of curvature extrema, Leyton

(1988) derives the process inferring symmetry axis (PISA), a variant of the SLS in which

12Montanari (1969) defines a similar concept as shocks and their hierarchy, called breakpoints (initial,
intermediate, final) in relation to the speed of propagation of SAT formation along its edges. Blum (1973)
refers to this concept.

3.8. From shape to strokes 88

symmetry axis points are located at maximal disk arc midpoints. While the PISA is con-

ceptually useful in the framework of Leyton’s theories of shape (Leyton, 2001b, 2006), its

definition remains theoretical. The methods summarized here are the ones most rel-

evant to the work presented in this thesis, but this list is not exhaustive. Many other

symmetry axis variants exist, for example extensions to three dimensions (Leymarie and

Kimia, 2001, 2007; Bucksch and Lindenbergh, 2008). For a more extensive review the

interested reader is referred to the recent surveys by Tagliasacchi (2013) and Saha et al.

(2016), as well as the book on medial representations edited by Siddiqi and Pizer (2008),

and for evidence of SAT-like representations being studied across the arts, physiology,

perception and computing, refer to the recent article by Leymarie and Aparajeya (2017).

3.8.2.3 Relationship to curvature

It has been known since early developments (Blum and Nagel, 1978), that the symmetry

axis endpoints can coincide with maxima of absolute curvature or corners of a trace, a

property that also holds for SAT variants such as the FSS, SLS and PISA (Leyton, 1987).

Indeed, the identification of curvature extrema along a contour has been widely used as

a starting point for computing the SAT in its original formulation (Leymarie and Levine,

1992), as well as the SLS (Mi and DeCarlo, 2007). Leyton (1987) formalizes the relation

between curvature extrema and symmetry axes with the “symmetry curvature duality”

theorem, which states that any (smooth) trace segment bounded by two curvature ex-

trema of the same type has a unique symmetry axis that terminates at an extrema of the

opposite type. Here “type” stands for the extremum being a signed minimum (m−, M−)

or maximum (m+, M+) of curvature (Figure 3.3). Leyton relies on the SLS to prove his

result, but shows that it holds also for the SAT and PISA, with the exception of abso-

lute minima (m+, M−), for which the SAT produces no symmetry axes. For the case of

absolute minima, Leyton proposes a theoretical variant of the SAT that he denotes as

Exscribed Symmetry Axis Transform (ESAT). The ESAT can be considered a “dual” of the

maximally inscribed disk SAT definition, for which we replace “maximally” with “mini-

mally” and “inscribed” with “exscribed/circumscribed”, that is the loci of all minimally

cirumscribed disks to the contour.

Hayes and Leyton (1989) and later Leyton (2006), extend the validity of these results

to the case of breaks in curvature (corners and cusps). With a related result, Kimmel

et al. (1995) show that any contour segment bounded by two generating SAT points al-

3.8. From shape to strokes 89

ways contains at least one absolute curvature maximum. Symmetry-curvature duality

provides the basis for Leyton’s process grammar, and leads to the definition of the “inter-

action principle” (Leyton, 1989), stating that symmetry axes terminating at the extrema

can be interpreted as the directions along which these processes have acted, and thus

provide a mean to recover a (plausible) “history” of the processes that give rise to a shape,

starting from a circle that is seen as perfectly symmetric “primordial egg” (Koenderink,

1990). This has led to the development of a group theoretic “generative theory of shape”

(Leyton, 2001b), which Leyton has applied to the analysis of paintings (Leyton, 2006) as

well as architecture (Leyton, 2001a). While these results are conceptually very interest-

ing with respect to the analysis and generation of graffiti art, Hendrickx and Wagemans

(1999) have questioned the mathematical and perceptual soundness of Leyton’s group

theoretical work. However, the authors confirm the correctness of early results such as

symmetry-curvature duality.

Results such as the ones by Leyton (1987) and Kimmel et al. (1995) indicate a sys-

tematic relation between symmetry axes and curvature extrema. However, the SAT has

rarely been used in practice for their identification. One recent exception is the work

on part decomposition by Papanelopoulos et al. (2019), in which endpoints of the SAT

are used to identify a subset of the curvature extrema and corners along object outlines,

together with circular-arc outline regions where curvature is approximately constant.

However, such an analysis based solely on the SAT does not capture all curvature ex-

trema, because of its global nature, in which a part of a contour may mask an existing

wavefront by interacting with another first (Belyaev and Yoshizawa, 2001).

3.8.2.4 Stability issues

One known issue of the SAT, especially in the discrete setting, is that of stability : the

high sensitivity to noise and boundary perturbations, which often results in spurious ax-

ial branches that do not greatly contribute to the reconstruction of the input shape. A

number of significance measures have been proposed to mitigate this issue with a pro-

cedure known as “pruning” (Shaked and Bruckstein, 1998), for example based on the

propagation speed of symmetric wavefronts (Montanari, 1969; Blum, 1973; Pizer et al.,

2003), based on the computation of a global minimum feature size (λ-medial axis of

Chazal and Lieutier, 2005), depending on contour-based (Ogniewicz, 1992; Bai et al.,

2007), branch-based (Telea, 2012), or area-based saliency measures (Shaked and Bruck-

3.8. From shape to strokes 90

stein, 1998; Leonard et al., 2016), as well as using a scale space approach in the skeletal

domain (Dill et al., 1987; Ogniewicz, 1992). The choice of the method usually depends

on the application, and the choice of thresholds can be challenging, similarly to the case

observed for smoothing and scale spaces in the curvature domain. Shaked and Bruck-

stein (1998) analyse a number of significance measures developed up to 1998 under a

unified framework, and observe that certain measures such as that proposed by Blum

(1973) do not guarantee that symmetry axis topology is maintained. A number of SAT

variants have been proposed to produce more stable symmetry axes with the aim of pro-

ducing a more concise skeletal representation, closer to what could be considered the

“stick-figure” of a 2D shape.

Feldman and Singh (2006) propose a Bayesian formulation of symmetry axes,

viewed as generators of outline points. Kovács et al. (1998) propose an annulus — or

thick maximal disk — model that maps well to psychological responses of human sub-

jects and is by nature more robust to noise, the level of noise filtering being a function of

the annulus band’s width which "captures" contour points or edge data. Aparajeya and

Leymarie (2016) propose an efficient implementation of this model and demonstrate its

use in emphasising dominant points of articulated shapes as well as in the study of draw-

ings and painting by famous visual artists (Leymarie and Aparajeya, 2017).

3.8.3 Perceptual grouping

Perceptual grouping is the way in which the visual system groups elements (points, seg-

ments, edges, shapes) into perceptual units , a process that is generally accepted to occur

pre-attentively (Brooks, 2015). For example, perceptual grouping is responsible for the

way in which a sequence of closely spaced dots can be perceived as a single entity con-

sisting of a curve. The identification of five fundamental perceptual grouping principles:

proximity, similarity, common fate, good continuation and closure (Table 3.6), can be

attributed to the pioneering works of the Gestalt school of psychology, and in particular

to Wertheimer (1923). To this day, these principles are still considered to be valid and

have resulted in a large body of research in the domains of perception and neuroscience

as well as in a variety of computational models. The reader is referred to the excellent

reviews by Wagemans et al. (2012), Brooks (2015), and Elder (2015) for comprehensive

reportings on early and novel research and results on this important subject.

3.8. From shape to strokes 91

Principle Short Description

Proximity Relatively close stimuli are grouped into perceptual units

Similarity Similar stimuli (in color/shape/orientation) are grouped into percep-
tual units

Common fate Similarly moving stimuli are grouped into perceptual units

Good continuation Tendency to group oriented elements that are perceived to be part of
the same smooth curve

Closure Tendency to complete simple shapes when these are occluded or with
some gaps

Table 3.6: Main perceptual grouping principles. Refer to the chapter of Brooks (2015) for a more
detailed exposition of these and a series of other more novel principles.

3.8.3.1 Contour integration

The principle of good continuation, and more specifically, the related process known as

contour integration, are of particular interest with respect to this thesis. Contour integra-

tion is the process underlying the ability of the visual system to distinguish a curve from

disjoint elements, to perceive illusory contours induced by figures such as the Kanizsa

triangle or to complete contours under occlusion (Kanizsa, 1979). When considering a

letterform consisting of a combination of intersecting or overlapping strokes, contour in-

tegration is likely responsible for the ability to discern the individual generating strokes

rather than fuse these or mis-interpret their relationships.

Ullman (1976) poses a series of four properties that a completion curve must pos-

sess to connect two disjoint contour segments across an occlusion: (i) the curve should

be invariant to rotation, translation and scale (isotropy), (ii) it should be continuous and

differentiable (smoothness), (iii) it should minimise curvature (minimum curvature) and

(iv) it should be invariant to a reduction of the occlusion’s extent (locality). Kellman and

Shipley (1991) propose that whether two occluded contour segments can be integrated

and perceived as a unit depends on their relatability, which occurs if their linear exten-

sions intersect at an obtuse angle. Field et al. (1993) model the response of orientation-

tuned cells in the primary visual cortex (V1) to adjacent cells with an association field that

decays with distance and deviations from collinearity. A concept similar to association

fields was proposed earlier by Parent and Zucker (1989) with the aim of inferring traces

and curves from grayscale images. To this end, the authors propose a model that relates

oriented elements based on cocircularity, i.e. whether two oriented elements are approx-

imately tangent to the same circle, and based on a discrete partitioning into ranges of

3.8. From shape to strokes 92

curvature magnitude. Yen and Finkel (1998) also rely on cocircularity as the basis for a

biologically inspired model of V1 neurons, which results in association fields that decay

with a Gaussian function of distance and deviations from cocircularity. A similar asso-

ciation field model is the basis of the tensor voting framework, developed by Medioni

and colleagues (refer to Maggiori et al. (2015) for a technique overview), which has been

widely used in pattern recognition and computer vision applications, and in particu-

lar, has been used to disambiguate overlapping parts in simple letterforms and numbers

(Massad and Medioni, 2001).

A different but related approach to contour integration is pioneered by Mumford

(1994), who models completion curves with a stochastic process in which tangent direc-

tions vary according to a Brownian motion. The maximum likelihood completion curve

of the underlying distribution is an elastica, a curve than minimises the total square

magnitude of curvature and is closely related to the Euler spiral (Levien, 2008). With a

similar reasoning, Williams and Jacobs (1997) and later Williams and Thornber (2001)

propose “stochastic completion fields”, a model which explains contour integration, as

well a number of illusory contour formation instances, by using particle trajectories that

follow a random walk in a lattice of planar positions and orientations. Ernst et al. (2012)

formulate stochastic completion fields with a generative model of the conditional link

probability of one oriented element relative to another one. The probability distribution

consists of the product of a radial and an angular component. The radial component is

based on an exponential function that decays with distance, while the angular compo-

nent parameterises deviations from perfect cocircularity and deviations from zero cur-

vature with the product of two von Mises distributions — analogs of Gaussian distribu-

tions with circular supports. The authors empirically determine model parameters that

are optimal with respect to experimental data.

3.8.4 From parts to strokes

The representations discussed in the previous sections all come into play for a repre-

sentation of shape in terms of higher level perceptual units, or parts. Psychophysical

experiments (Xu and Singh, 2002; De Winter and Wagemans, 2006), as well as results in

computer vision and pattern-recognition (Siddiqi and Kimia, 1995; Macrini et al., 2008),

suggest that part-like representations are intrinsic to our visual system and are essential

to shape understanding and object recognition, description and categorisation (Singh

3.8. From shape to strokes 93

Principle Short Description References

Codons Part of a contour bounded by two
negative minima of curvature. Can
be of 6 types.

(Richards and Hoffman, 1985)

Transversality The union of two interpenetrating
objects is likely to have a concave
crease where the objects join

(Hoffman and Richards, 1984)

Minima Rule Pairs of concavities (m−) are likely
candidates for the segmentation of
an object into parts

(Hoffman and Richards, 1984)

Limbs Parts delimited by a line that con-
nects two m− points, and where the
line forms a good continuation with
the object outline at least on one side

(Siddiqi and Kimia, 1995)

Necks Part cuts corresponding with a nar-
rowing of the shape (local thickness
minimum)

(Siddiqi and Kimia, 1995)

Short-cut Rule The human visual system prefers
to connect segmentation points that
are close together. The cut (a straight
line) must cross a local axis of sym-
metry and connect at least one neg-
ative minimum of curvature

(Hoffman and Singh, 1997)

Ligature Centers of the SAT disks touch-
ing two distinct contour points with
negative curvature

(Blum and Nagel, 1978)

Semi-ligature Centers of the SAT disks touching
one contour point with negative cur-
vature

(Blum and Nagel, 1978)

Table 3.7: Summary of the main principles used for the decomposition of objects into parts.

and Hoffman, 2001). Consider for example the object category of “chairs with four legs”

or, more specifically to the context of this thesis, the category of “X” letters consisting

of two crossing strokes. Decomposing an object into perceptually meaningful parts is

an ill-posed problem: multiple ambiguous hypotheses are acceptable, and their selec-

tion depends on subtle perceptual cues (De Winter and Wagemans, 2006) and on do-

main knowledge and functional or causal attributes (Spröte et al., 2016). However, psy-

chophysical results suggest that similarly to perceptual grouping (Brooks, 2015), formu-

lating early part-segmentation hypotheses (Xu and Singh, 2002) is also a low-level pro-

cess that occurs pre-attentively, or at least very early in the vision process.

3.8. From shape to strokes 94

3.8.4.1 Part decomposition principles

A number of early theories of part decomposition assume a volumetric representation of

objects, and hypothesise that parts are perceived by matching a predefined set of primi-

tives such as generalized cylinders and cones (Marr, 1982) or “geons” (Biederman, 1987).

Singh and Hoffman (2001) argue against this hypothesis, suggesting that parts emerge

early in the vision process from geometric principles, “regularities of nature”, which may

then lead to higher level primitive based representations. Refer to Table 3.7 for a sum-

mary of a number of such principles that are dominant in the literature. Indeeed, exper-

imental evidence suggests that part like representations are perceived rapidly (Xu and

Singh, 2002), are are readily constructed from 2D silhouettes (De Winter and Wagemans,

2006), even for abstract shapes and shapes that do not have any intuitive interpretation

in terms of volumetric primitives. Hoffman and Richards (1984) justify a geometric inter-

pretation of part structure based on the “transversality principle”, stating that the union

of two 3D objects produces a concave crease where the two objects intersect. The projec-

tion of the silhouette for this union results in curvature minima, which, according to the

so called “minima rule” (Hoffman and Richards, 1984) are the loci of a likely subdivision

of an object into parts.

The minima rule provides likely candidate points for initiating a part segmentation,

but it does not provide a systematic “partitioning scheme” (Siddiqi and Kimia, 1995), that

determines how a shape should be decomposed. Many well-known approaches use cur-

vature minima to define “part-lines” or “cuts” (Papanelopoulos et al., 2019), that delimit

perceptually-distinct object parts. The “short-cut rule” (Singh et al., 1999) suggests that

a part-line should connect one or two m− points, that it should cross a local symmetry

axis (in terms of Brady’s SLS) and that shorter cuts and cuts connecting salient concavi-

ties (Singh and Hoffman, 2001) are preferred. Siddiqi and Kimia (1995) identify part cuts

with necks and limbs. Necks coincide with a local minimum of the SAT radius, where a

disk has contact with a concavity. Limbs connect concavity pairs at which the boundary

has good continuation. Many part-cut based implementations exist, ranging from ones

that adopt ideas from the short-cut rule (Luo et al., 2015; Wang and Lai, 2016; Papan-

elopoulos et al., 2019) together with additional principles such as convexity (Rosin, 2000;

Liu et al., 2014; Papanelopoulos et al., 2019).

De Winter and Wagemans (2006) perform another large scale study on human pref-

3.8. From shape to strokes 95

erences for segmentation points among different types of curvature extrema and inflec-

tions. The results confirm the minima rule by emphasising the perceptual importance

of negative minima (m−), which are the most frequently chosen features by participants

(approx. 64%), followed in decreasing order of importance by inflections, positive max-

ima (M+), negative maxima (m+), and positive minima (M−) and with the likelihood

of a choice being correlated with the magnitude of curvature. Consistent with the min-

ima and short-cut rules, participants show a preference for part cuts connecting two m−
points, followed by ones connecting at least one m− point. However, the short cut rule

is sometimes overruled by a diagonal cut that connects a nearby M+ (e.g. at an “elbow”-

like form).

3.8.4.2 Skeleton based methods

Already in his early works, Blum suggested that symmetry axis branches could be useful

to categorise object parts, but also recognising that this part based representation may be

redundant. Blum and Nagel (1978) exemplify this redundancy with the symmetry axes of

a rectangle, which consists of one central axis and four smaller axes extending into cor-

ners. However, the authors also show how these somewhat redundant axes can be used

to describe the rectangle having four corners, and how other SAT features characterise

morphological features such as “worms”, “wedges” and “flexures”.

Semi-ligatures and ligatures are symmetry axis segments where the maximal disks

touch the contour at points that are part of respectively one or two distinct curvature

minima or corners (Blum and Nagel, 1978; August et al., 1999). These tend to be sym-

metry axis segments that contribute to relatively small portions of the outline, but can

act as “glue” that connects segments of perceptually distinct outline parts (De Winter

and Wagemans, 2006; Macrini et al., 2008). Macrini et al. (2008) exploit ligatures and

semi-ligatures to abstract and decompose the SAT into a graph that describes parent-

child relations among object parts called “bones”. The method uses ligature analysis to

categorise branching points into junctions, which are classified as one of: Y-junctions, P-

junctions (where “P” stands for protrusion), and nested-junctions (combinations of the

previous two).

Rom and Medioni (1993) use axes of the SLS together with their cross sections (rib-

bons), to decompose an outline into parts. The SLS is computed from a B-spline ap-

proximation of the outline and the method also uses SLS axes to identify morphologi-

3.9. Summary 96

cal features such as “terminations” and “bends” as well as topological features such as

“mushrooms” (“T”-like features). Mi and DeCarlo (2007) also use the SLS to compute

parts, and identify hyperbolic regions along the outline that determine the decomposi-

tion of an object into parts and transition regions where parts smoothly blend. Feldman

and Singh (2006) propose a Bayesian interpretation of the skeleton, aimed at producing

a more intuitive decomposition into parts than the one produced by the SAT. Shape is

seen as a stochastic process that grows the outline from the skeleton, and the skeleton

is given by the maximum a posteriori (MAP) estimate of the process parameters. Froyen

et al. (2015) implement this concept by estimating the parameters of a mixture of splines

paired with Gaussian thickness profiles with a variant of Bayesian Hierarchical Cluster-

ing (Heller and Ghahramani, 2005).

3.8.4.3 Overlapping parts and vectorisation

Very few methods consider the problem of potentially overlapping parts, which also per-

tains to the tasks of decomposing glyphs or drawings into constituent strokes. With the

aim of vectorisation, Luo et al. (2015) and more recently Kim et al. (2018) propose a data-

driven method that can vectorise overlapping parts of Chinese characters. The method

of Froyen et al. (2015) can disambiguate overlapping parts, but it is demonstrated only

on relatively simple tubular objects. Favreau et al. (2016) propose another approach that

uses a Monte-Carlo exploration method to create vectorisations of thin line drawings

that maximise a tradeoff between simplicity and reconstruction accuracy. The problem

of disentangling potentially overlapping parts also relates to multi-manifold learning

(Arias-Castro et al., 2017; Goldberg et al., 2009; Deutsch and Medioni, 2017), which is

the segmentation of data samples generated by multiple, potentially-intersecting man-

ifolds. Massad and Medioni (2001) model contour integration with tensor voting and

use the resulting tensor fields to identify junctions where parts of an objects cross and

overlap and to compute occluded contours. The authors demonstrate results on simple

letterforms.

3.9 Summary

To summarise, we have exposed a number of topics starting from curve generation and

stylisation methods, going into a number of notions from the study of human movement,

followed by a review of existing approaches for the representation, stylisation and gener-

ation of stylised strokes, typography, calligraphy and handwriting, and finishing up with

3.9. Summary 97

a review of shape representations, with a focus on ones that have a perceptual grounding.

The emphasis on human movement in Section 3.5 serves as a background in order

to explore the hypothesis that a movement centric and process based representation of

shape is fundamental for the study and procedural generation of graffiti, but more in

general for the study of any other art form. Quoting De Preester (2013, pg. 21):

"How a musical passage is played, how a monologue is delivered, how a piece

of fruit, a tree, or a person is delineated and shaded on canvas, how a dance

ensemble spreads apart and gathers together – all such artistic realities de-

pend on the living movement dynamics of the artists creating or performing

the work...".

Surprisingly, both in Western art-theoretical literature (Fong, 2003) as well as in the com-

puter graphics domain (Kyprianidis et al., 2013), the notion of movement in the study

of artistic styles is seldom taken into account. While dynamic models of movement are

central in the handwriting-synthesis and graphonomics domains (Section 3.5.3), such

representations are rarely used in more art/style centric generative applications, with the

exceptions of a number of methods aimed at generating synthetic calligraphy (Shinoda

et al., 2003; Wang et al., 2005; Fujioka et al., 2006; Fujioka and Miyata, 2011) or mimick-

ing hand-drawm images (AlMeraj et al., 2009; House and Singh, 2007). In Chapter 4 and

Chapter 5 we will develop two calligraphic stylisation methods that systematically take

into account a number of the principles discussed in Section 3.5 to produce trajectories

that resemble the ones that would be made by an expert graffiti artist. These methods are

also aimed at addressing a number of limitations that we have encountered in Section

3.3, when it comes to specifying and editing calligraphic curves with geometry-based

curve manipulation methods.

In Section 3.6 we have seen some useful letterform descriptors with a focus on

stroke-based representations. These descriptors are the basis for the representation that

will be used in Chapter 10 to recover strokes and their connectivity relations from gylph

outlines. The emphasis on strokes is based on commonly held notions in typography

and calligraphy (Noordzij, 2005; Wang, 2013), but also on results (Section 3.6.2, Section

3.7.2) that demonstrate the power and flexibility of this representation and finally mo-

tivated by its compatibility nwith the proposed movement centric approach to curve

generation. We have concluded that there is no stroke representation in the literature

3.9. Summary 98

that robustly supports effects that are typically seen in graffiti pieces, such as self over-

laps and local layering. We will address this gap in Chapter 6 with a variant of skeletal

strokes specifically design to reproduce graffiti and compatible with a movement centric

approach to curve generation. A survey of font,calligraphy and handwriting generation

methods (Section 3.7) reveals that many methods rely on recovering stroke-based repre-

sentations from font outlines (Table 3.4), but none of these methods is general enough

to operate on fonts with arbitary languages, styles or writing systems.

The emphasis on shape in Section 3.8 serves as a background for the development

of a solution to this gap in Chapter 10, and more in general as a foundation for all the

methods developed in Part II of the thesis. A number of these topics, in particular the

ideas of Michael Leyton (Leyton, 1987, 1988) and an understanding of symmetry based

shape descriptors, will inform the development of curvilinear shape features in Chap-

ter 7, a shape representation that we will use to recover movement primitives (Chapter

8) and strokes (Chapter 10) from existing geometry. The first procedure will serve as a

basis to develop, in Chapter 9, a kinematics-based analogue of an example-based ap-

proach to curve stylisation that is popular in the literature (Hertzmann et al., 2002; Li

et al., 2013; Lang and Alexa, 2015). The second procedure will allow us to recover let-

ter structures from fonts, which ultimately guides the proposed graffiti generation and

stylisation framework (Chapter 11).

Part I

Part I - Kinematic and geometric

primitives for interactive graffiti art

generation

99

Chapter 4

Calligraphic stylisation:

the Sigma-Lognormal model

This chapter is based on work initially developed independently and resulting in two

publications (Berio et al., 2016; Berio and Leymarie, 2015), and then in collaboration and

with the additional advice of Professor Réjean Plamondon at Polytechnique Montréal

(Berio et al., 2017d,a, 2018b,a). .

In the next two chapters, we will explore two methods that instantiate the previously

discussed ideas of kinematic curve design and calligraphic stylisation. In this chapter, we

focus on the field of graphonomics (Kao et al., 1986) and in particular on the Sigma Log-

normal (ΣΛ) model. On the basis of the Kinematic Theory (Plamondon, 1995), the ΣΛ

model (Leiva et al., 2017) is a physiologically plausible model of handwriting which de-

scribes the kinematics of arbitrarily complex pen movements through the superposition

of a sequence of target directed (ballistic) sub-movements, which are characterised by a

lognormal speed profile.

Plamondon suggests that the theory is aimed at describing the motions of “humans

that are in perfect control of their movements” (Plamondon et al., 2013), which he refers

to as the lognormality principle, where with experience/practice, the velocity profile of a

hand movement tends to converges towards a sum of lognormal functions. This concept

fits well with the notion that tagging/drawing movements and forms of graffiti tags and

calligraphy result from extensive years of practice, and with the hypothesis that the expe-

rienced artist, after years of practice, will be capable of synthesising effortlessly (without

thinking) aesthetically pleasing and distinct traces. As a result, graffiti can be seen in the

4.1. Sigma Lognormal Model 101

context of the Kinematic Theory as one possible artistic instantiation of the lognormality

principle.

From a motor control perspective, lognormals have been experimentally shown to

be accurate descriptors of human movement speed profiles (Rohrer and Hogan, 2006),

and the ΣΛ model produces kinematics that are similar to the ones that would be pro-

duced by a human while drawing or writing. The model is originally conceived for the

analysis and synthesis of handwriting for pattern-recognition and biometric purposes.

However, we will show how, through an appropriate re-parameterisation, such a frame-

work can be used in similitude to established popular spline-based methods, with the

additional benefit of capturing both the geometry and dynamics of a human made trace

with a single integrated representation. This results in a system where trajectories that re-

semble the ones made with a freehand movement are specified and edited with a sparse

motor plan, rather than a sketch-based input and interface.

The following sections describe three variations of the Sigma Lognormal (ΣΛ) model

(Plamondon et al., 2014) developed in the context of this thesis: the ΣΛ model in its

original formulation (Section 4.1) followed by two extensions: the Weighted ΣΛ (Section

4.2.1) and the Spiral ΣΛ (Section 4.2.2) models. These two extensions are particularly

aimed at interactive CAGD applications, and their uses and advantages for the interactive

generation (Section 4.3), variation (Section 4.4) and rendering (Section 4.5) of strokes are

discussed last.

4.1 Sigma Lognormal Model

The Kinematic Theory of Rapid Human Movements (Plamondon, 1995), together with

its derived models, abstracts the complexity of the neural and muscular processes un-

derlying human movement formation with a “black box” model, consisting of a large

number of hierarchically coupled linear sub-systems. Plamondon et al. (2003) show that

as the number of sub-systems grows, the impulse response of such a system to a centrally

generated command converges to a lognormal (eq. 4.1), which accurately describes the

variably asymmetric bell shape that commonly characterises the velocity of human tar-

get directed movements (Plamondon et al., 1993; Rohrer and Hogan, 2003). The velocity

4.1. Sigma Lognormal Model 102

p1

p2

p3

(a)

t

sp
e
e
d

(b)

t

sp
e
e
d

Figure 4.1: The effect of different time overlaps for two lognormals. The activation of the sec-
ond lognormal in (b) is anticipated with respect to (a). The resulting trajectories are
displayed in black, with a red shade indicating the region in which the cumulative in-
fluence of both sub-movements is highest. The red circles are the initial position (p0)
and two virtual targets (p1, p2). Note that these positions define a motor plan (dashed
red).

of the resulting movement is modelled with a time shifted lognormal function: 1

Λ(t) = 1

σ
�

2π(t − t0)
exp

(
− (ln(t − t0)−µ)2

2σ2

)
, (4.1)

where t0 is the activation time of a centrally generated command (e.g. by the central ner-

vous system or CNS), and the parameters µ and σ model the delay and response time of

the system to the command in a natural-logarithmic time scale, while also determining

the asymmetry and support of the lognormal.

With the specific objective of modeling handwriting movements, the ΣΛ model de-

scribes arbitrarily complex movement trajectories with the space-time superposition of

a discrete number of lognormal sub-movements. Each such sub-movement is aimed at

an imaginary location referred to as virtual target. The velocity of each sub-movement

is determined by a lognormal Λ(t)i , which is computed according to Eqn. 4.1 and with

t0,µi ,σi its activation time, delay and response time. Intuitively, initiating a lognormal

Λ(t)i for one sub-movement while the lognormal Λ(t)i−1 for another sub-movement is

still being executed, results in a superposition that produces a smooth trajectory that

combines the two. Anticipating the activation time for Λ(t)i−1 increases the time overlap

between lognormals and results in a smoother trajectory (Figure 4.1).

1In statistics, this is more commonly referred to as the 3 parameter lognormal. Note that in the Kinematic
Theory, the function describes an impulse response, not a probability density function.

4.1. Sigma Lognormal Model 103

With the assumption that handwriting movements are executed with rotations of

the elbow or wrist, the ΣΛ model describes the geometry of a sub-movement with an

oriented circular arc, the curvilinear evolution of which is computed from the integral of

equation (4.1):

wi (t) =
∫t

0
Λi (u)du = 1

2

[
1+erf

(
log(t − t0i)−µi

σi
�

2

)]
, (4.2)

giving the curvilinear evolution function

φi (t) = θi −
δi

2
+δi w(t) , (4.3)

\8 X8

such that θi is an orientation parameters that determines the an-

gle that a sub-movement makes with the horizontal axis and δi is a

curvature parameter that determines the internal angle of the as-

sumed circular arc (see inset on the left for an illustration). The

planar pen-tip velocity for a trajectory is then calculated with the

vectorial superposition of M sub-movements:

ẋ =
M∑

i=1
DiΛi (t)

cos(φi (t))

sin(φi (t))

 , (4.4)

where Di is an amplitude determining the distance covered by each sub-movement. A

planar trajectory can be generated by integrating equation (4.4) starting from an initial

position po with:

x(t) = p0 +
∫t

0
ẋ(u)du (4.5)

Displacement based solution. Exploiting the closed form integral in equation (4.2) al-

lows to efficiently compute the trajectory in terms of a sum of displacements si (t), with:

x(t) = p0 +
∫t

0
ẋdu = p0 +

M∑
i=1

∫t

0
Di

d

du
wi (u)

cos(φi (u))

sin(φi (u))

du = p0 +

M∑
i=1

si (t) ,

4.2. ΣΛmodel for calligraphic stylisation 104

where

si (t) = Di

δi

(
sin

(
φi (t)

)− sin(θi −δi /2)
)

(
cos

(
φi (t)

)−cos(θi −δi /2)
)
 if |δi | > 0 ,

and si (t) = Di

wi (t)cosθi

wi (t)sinθi

 otherwise.

This allows to efficiently compute the pen tip position at a given time t in parametric

form by exploiting the error function (erf), which is implemented in most programming

languages and numerical packages and avoids the need for numerical integration.2

Curvature. The acceleration components of the lognormal trajectory are then given

by (Plamondon and Guerfali, 1998a):

ẍ =
N∑

i=1
Di Λ̇i (t)cos(φi (t))−DiδiΛ

2
i (t)sin(φi (t)) , (4.6)

ÿ =
N∑

i=1
Di Λ̇i (t)sin(φi (t))+DiδiΛ

2
i (t)cos(φi (t)) , (4.7)

with

Λ̇i (t) =Λi (t)
µi −σ2

i − log(t − t0i)

σ2(t − t0i)
, (4.8)

which allows us to compute the curvature function at time t with Eqn. 2.1.

4.2 ΣΛmodel for calligraphic stylisation

The conventional ΣΛmodel definition above, implicitly defines a motor plan P consist-

ing of an initial position p0, followed by M targets p1 . . . p M at which consecutive sub-

movements are aimed. However such a definition suffers from poor locality and is not

well suited for our tasks of interactive editing and calligraphic stylisation. As an exam-

ple, changing a curvature parameter δi for one sub-movement, modifies the location of

all consecutive virtual targets and the corresponding trajectory segments. For our use

case, we seek instead a parameterisation that clearly separates the definition of a motor

plan from a set of parameters that determine its kinematic realisations. To this end, we

develop two variants of the ΣΛmodel: The weighted Sigma Lognormal (ωΣΛ) model and

2This parameterisation was derived independently in the context of this thesis, during the development
of the weightedΣΛmodel. However, it has also been previously proposed by O’Reilly and Plamondon (2009)
so it is now described as part of the original model formulation.

4.2. ΣΛmodel for calligraphic stylisation 105

the weighted Euler spiral Sigma Lognormal (ωEΣΛ) model. The first variant is a simple

reformulation of the model with an explicitly defined motor plan. The second variant,

is an extension of the first that allows for more complex sub-movement primitives than

circular arcs. Finally, we describe an intermediate parameterisation of t0i ,µi ,σi that is

specifically aimed at the stylisation and interaction use cases.

4.2.1 The weighted Sigma Lognormal (ωΣΛ) model

We define a weighted parameterisation of the model by computing the amplitude and

orientation parameters Di and θi from an explicitly defined motor plan with vertices

p0, p1, . . . , p M , which defines the initial position p0 followed by M virtual targets (Figure

4.2).

The parameters θi are given by the orientations of the vectors p i −p i−1 connecting

consecutive targets. The sub-movement amplitudes are given by

Di =

δi ∥p i−p i−1∥

2sin(δi /2) if |δi | > 0 ,

∥ p i −p i−1 ∥ otherwise ,
(4.9)

which adjusts the command amplitude depending on the distance to a virtual target and

on the ratio between the perimeter and the chord length of the corresponding circular

arc .

This reparameterisation results in a clear separation between the motor plan P and

a set of kinematic parameters (the remaining ΣΛ parameters), which determine the fine

evolution of a trajectory that follows the motor plan, that is its kinematic realisation P .

Note that for the case of the ΣΛ and ωΣΛmodels, we will visualise motor plans with ver-

tices connected by circular arcs, rather than straight line segments (Figure 4.2). This is

done with the purpose of visualising the geometry of each sub-movement, while avoid-

ing clutter in the figures. However, the motor plan remains a sequence of vertices con-

nected by polylines and the kinematic parameters δi that determine the arc geometry

should not be considered part of the motor plan’s definition. In the next section, we will

use a similar visualisation approach for sub-movements consisting of geometric primi-

tives other than circular arcs.

4.2. ΣΛ model for calligraphic stylisation 106

ppp0

ppp1

ppp2
ppp3

Arcs
Virtual targets
Trajectory

0.0 0.1 0.2 0.3 0.4

t

0

250

500

750

1000

1250

1500

sp
ee
d
(c
m
/s
ec
)

Speed
Lognormals

Figure 4.2: Left: ΣΛ trajectory (in black) with the corresponding motor plan visualised as targets
(red dots) connected by circular arcs (dashed red) rather than straight line segments..
Right: The corresponding speed profile with different time overlaps between lognor-
mals.

4.2.2 The Weighted Euler Spiral Sigma Lognormal (ωEΣΛ) Model

The ΣΛ formulation is flexible enough to accommodate for movement primitives with

geometries other than straight or circular arcs. With the use case of interactive curve

editing, we can extend the weighted ΣΛ model with primitives consisting of Euler spiral

segments.

Euler spirals (Levien, 2008) (a.k.a. Cornu spirals, or clothoids or spiros) are curves

in which curvature varies linearly with arc length, permitting the description of variably

curved segments that may contain an inflection. At the expense of adding a supple-

mentary parameter per sub-movement to the model, the use of Euler spirals reduces the

number of virtual targets needed to define a trajectory — such as when defining a dou-

bly looping eight (“8”) (Berio and Leymarie, 2015) — and provides an additional level of

editing flexibility. The resulting method can also be used to define trajectories that are

identical to the standard ΣΛ model, since in the limit an Euler spiral segment converges

to a circular arc (Walton and Meek, 2008).

The coordinates of an Euler spiral for a given arc length parameter s can be retrieved

with the cosine (C (s)) and sine (S(s)) Fresnel integrals (Levien, 2009a) :

C (s) =
∫s

0
cos

(
u2)du and S(s) =

∫s

0
sin

(
u2)du , (4.10)

which can be efficiently approximated with a numerical method described by Heald

(1985).

The curvilinear evolution of each sub-movement is determined by two arc length

4.2. ΣΛmodel for calligraphic stylisation 107

Figure 4.3: Examples of Euler spiral sub-movements using different Hermite constraints (in red).

values s0i and s1i which, although they are not intuitive to grasp, can be uniquely com-

puted given the orientation of two tangents (a.k.a. Hermite constraints) with respect to

the chord of the spiral (Figure 4.3). A number of methods exist for this task (Kimia et al.,

2003; Walton and Meek, 2008; Levien, 2009a; Bertolazzi and Frego, 2013); in this thesis

we use the secant method proposed by Levien (2009a), which has experimentally proven

to be fast and robust. We then define the arc length evolution of the spiral for each sub-

movement with:

φsi (t) = s0i + (s1i − s0i)wi (t) (4.11)

and the integrated displacement of each sub-movement with:

d i (t) = Di

li

(C (φsi (t))−C (s0i))cos(θi −θci)−S(hiφsi (t))−S(hi s0i))cos(θi −θci)

(C (φsi (t))−C (s0i))sin(θi −θci)+S(hiφsi (t))−S(hi s0i))cos(θi −θci)

 ,

(4.12)

where

li =
√

(C (s1i)−C (s0i))2 + (S(s1i)−S(s0i))2 and θci = tan−1
(

S(s1i)−S(s0i)

C (s1i)−C (s0i)

)
(4.13)

are used to respectively correct for the chord length and orientation of the spiral in its

canonical form, and where

hi = sgn

(
s3

1i

2|s1i |
− s3

0i

2|s0i |

)
(4.14)

takes care of flipping the spiral along the horizontal axis depending on its curvature and

thus allows to capture different combinations of user defined Hermite constraints.

4.2.3 Lognormal timing reparameterisations

While the lognormal function works remarkably well in describing the form of human

movement speed profiles (Rohrer and Hogan, 2006), its parameters do not have an in-

tuitive correlation with its mode and shape (Mandelbrot, 1997). For example, with the

4.2. ΣΛ model for calligraphic stylisation 108

standard lognormal parameterisation, the variation of µ shifts the onset time of the log-

normal (Figure 4.4).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t

0

2

4

6

8

Ac=0.005 μ=0.16 σ=0.07
Ac=0.033 μ= −0.84 σ=0.18
Ac=0.067 μ= −1.25 σ=0.26
Ac=0.100 μ= −1.51 σ=0.32
Ac=0.133 μ= −1.72 σ=0.38
Ac=0.167 μ= −1.89 σ=0.43
Ac=0.200 μ= −2.05 σ=0.47
Ac=0.233 μ= −2.19 σ=0.52
Ac=0.267 μ= −2.33 σ=0.56
Ac=0.300 μ= −2.46 σ=0.60
Gaussian

Figure 4.4: Lognormals for different values of Aci with Ti = 0. As Aci → 0 the lognormal converges
to a Gaussian. An example Gaussian centered at the mode of the lognormal with Ac =
0.005 is shown in dashed blue for comparison.

A precise specification of timing and profile shape of each sub-movement can be

facilitated with an intermediate parameterisation that takes advantage of a few known

properties of the lognormal (Djioua and Plamondon, 2008b). Each sub-movement can

be reparameterised with: (i) a sub-movement duration Ti , (ii) a relative time offset ∆ti

with respect to the previous sub-movement time occurrence and duration, and (iii) a

shape parameter Aci ∈ (0,1), which defines the skewedness of the lognormal (Plamondon

et al., 2003). The ΣΛ parameters
{
µi ,σi

}
can be then computed with:

σi =
√

− log(1− Aci), µi = 3σi − log(
−1+e6σi

Ti
) (4.15)

As Aci approaches 0, the shape of the lognormal converges to a Gaussian (Figure 4.4),

with mean t0i + eµi−σ2
i (the mode of the corresponding lognormal) and standard devia-

tion Ti
6 .

The activation times are computed from the relative time offsets and are given by:

t0i = t0i−1 +∆ti sinh(3σi) , (4.16)

4.3. User interaction 109

with i > 1 and t01 = 0. The parameter ∆ti then intuitively determines the smoothness of

the trajectory similarly to weights in NURBS curves; smaller values increase the lognor-

mal overlap and consequently produce a smoother trajectory in the vicinity of the virtual

target (Figure 4.1).

Notes on the biological interpretation of the ΣΛ parameters. The proposed parame-

terisation is convenient for the generative or interactive specification of trajectories, in

which it may be useful to precisely define the time occurrence and the duration of a sub-

movement. However, this comes at the cost of a biologically plausible interpretation

of the parameters. First, we explicitly determine the duration of a sub-movement (Ti)

which is biologically questionable (Harris and Wolpert, 1998). Second, an examination

of Figure 4.4 raises questions on the interpretation of the parameter t0i as the activation

time of a sub-movement at the CNS level. In fact, as Aci → 0 and the lognormal becomes

more symmetric, its mode3 and onset tend to infinity. At the same time, it is known to

be possible for the speed profiles of human movements to assume a nearly symmetric or

negatively skewed shape (Flash and Hogan, 1985; Nagasaki, 1989; Engelbrecht, 2001).

One method to address the symmetry issue is to use a different, support-bounded

formulation of the lognormal, which has been previously proposed by Plamondon (1993)

as an alternative to Eqn. 4.1. This formulation requires an additional parameter, but also

permits negatively skewed or symmetric speed profiles without incurring the previous

time delay issue. However, the parameterisation also assumes a predetermined move-

ment duration. Another approach is to use the more sophisticated Delta Lognormal

model, which describes each aiming (sub)movement with the sum of one agonist and

one antagonist lognormal, and also enables both negatively skewed or nearly symmetric

speed profiles. While these are interesting avenues of future research, the issues raised

above can be considered negligible when considering our use case, which requires gen-

erating biologically plausible kinematics but not necessarily an accurate modelisation of

all the main features of the human trajectory formation process.

4.3 User interaction

TheωΣΛ andωEΣΛmodels provide flexible trajectory generation tools that are particu-

larly well suited for interactive (point and click) editing procedures. For example, the user

can easily edit the spatial evolution of the trajectory by dragging virtual targets, and mod-

3Note that the peak of the lognormal is located at the mode, rather than at the mean.

4.4. Kinematic variability and stylisation 110

ify the sub-movement shapes and timing properties by manipulating handles placed in

correspondence with motor plan vertices.

The resulting user interface (UI) is very similar to the ones used in traditional meth-

ods such as based on Bézier curves. However, the proposed method also facilitates the

dynamic production of curves used in art forms such as calligraphy or graffiti. Targets

are located in proximity of curvature extrema along the generated trajectory, which are

known to be highly informative (Attneave, 1954) and perceptually salient (De Winter and

Wagemans, 2008b), and prove good candidates for the interactive definition of curves

(Levien and Séquin, 2009; Yan et al., 2017). At the same time the user is effectively edit-

ing a plan for an intended motion with a representation that reflects the concatenation of

a series of simple reaching/aiming movements. Such a target mapping is consistent with

the hypothesis of an abstract end effector independent representation of movements in

the brain (Ferrer et al., 2015).

Circular arc interaction. For the case of the ωΣΛ model, all targets with the exception

of the last are associated with a handle originating at the target locus. The angle between

the handle and the segment connecting the consecutive target is δi /2 and determines

the arc internal angle. The length of the handle is inversely proportional to ∆ti and de-

termines overlap between lognormals. A longer handle results in a smaller value of ∆ti

and in an accordingly smoother trajectory in the vicinity of the target (Figure 4.5a). A user

can click to create a new target point, resulting in a new initially straight sub-movement

with default values of δi = 0 and ∆ti = 0.5, resulting in an average overlap between adja-

cent sub-movements.

Euler spiral interaction. For the case of the ωEΣΛ, we add two handles for each motor

plan segment, originating at each segment endpoint (Figure 4.5b). The orientations of

the handles with respect to the segment determine the tangents that are used to compute

the Euler spiral parameters s0i , s1i with the method by Levien (2009b). The length of the

first handle determines the time overlap parameter ∆ti similarly to the circular arc case.

4.4 Kinematic variability and stylisation

The ΣΛ model directly reflects the characteristics of a smooth human movement at the

planning (targets and motor plan) and neuromotor level (the remaining parameters). We

therefore expect and observe that parameter perturbations result in variations of a trace

that are similar to the one that would be seen in multiple instances of handwriting or

4.4. Kinematic variability and stylisation 111

(a)

(b)

Figure 4.5: Example UI for editing ΣΛ trajectories, with speed profiles for each trajectory shown
in cyan below. (a) ωΣΛmodel with circular arc primitives. Left: default configuration
when user adds new targets. Right: trajectory after some manipulations. Each motor
plan vertex, with the exception of the last, has a handle (grey segment terminating
in a blue dot) that can be dragged to control the values of the sub-movement time
overlap and curvature parameters ∆ti and δi .The length of the handles (defined with
a blue dot) is inversely proportional to the value of ∆ti and the angle of the handle
with respect to the vector between two consecutive targets is = δi /2. (b)ωEΣΛmodel
with Euler spiral primitives. In this case, the geometry of each primitive is determined
by two handles originating at the endpoints of each motor plan segment. The spiral
parameters are determined by the angles made by the handles with the motor plan
segment. The examples show how rotating the handle (emphasised in red) trans-
forms the trajectory on the left into the one on the right, resulting in a sub-movement
that contains an inflection.

drawing made by one or more subjects (Figure 4.6). The variability produced by the ΣΛ

model is not a by-product of a set of instances, computed afterward, but is rather intrin-

sically built in the abstract representation of a pattern. In previous works, this property

of theΣΛmodel has been exploited to produce artificial data for handwriting recognisers

(Fischer et al., 2014), signature verifiers (Galbally et al., 2012; Diaz-Cabrera et al., 2018),

gesture graphical input (Leiva et al., 2016, 2017). As we shall see the same property can

also be exploited for the more artistically oriented procedural generation and stylisation

applications.

4.4. Kinematic variability and stylisation 112

Figure 4.6: Target structure of a letter "a" (top left) and kinematic variations of its trace generated
by perturbing ΣΛ parameters.

4.4.1 Artificial variability

The proposed intermediate ΣΛ parameterisation is useful in an interactive setting, but it

also facilitates the generation of artificial variations of an input trajectory. In fact, apply-

ing perturbations at the level of the parameters ∆ti and δi and to the explicitly defined

target positions p i , avoids issues with error propagation when considering the model in

its original formulation (Plamondon et al., 2014).

In our experiments, when perturbing targets, we have found that applying the per-

turbation with a variance inversely proportional to the temporal overlap parameters ∆ti

improves the legibility of the variations (Figure 4.6). This corresponds to imposing a

higher precision requirement at trajectory locations with higher curvature, locations that

are known to be the most informative of a trace/contour (Feldman and Singh, 2005).

From a motor control perspective, this in effect is consistent with the “minimal interven-

tion principle” (Todorov, 2004), suggesting that human movement variability is higher

where it does not interfere with the performance required for a task.

More specifically, we adjust the virtual targets with:

p i ← p i +∆t−1
i εp

where εp ∼N
(
0,σp s̄I

)
is normally distributed with σp a user configurable variance , s̄ is

the average distance between virtual targets and ∆t−1
i modulates the perturbation so it

is inversely proportional to the time offset parameter ∆ti . The kinematic parameters δi

and ∆ti are perturbed with

δi ← δi εδ and ∆ti ←∆ti ε∆

4.4. Kinematic variability and stylisation 113

where εδ ∼N (1,σδ), ε∆ ∼N (1,σ∆t) and where σδ and σ∆t determine the variance of δi

and ∆ti respectively.

4.4.2 Stylistic variations

By construction, the ΣΛ model with the proposed weighted parameterisation instanti-

ates a bi-level representation that is compatible with the previously introduced concept

of “style as kinematics”. The target positions describe a motor plan, providing a sparse

structural descriptor of a family of traces (Figure 4.7a). The remaining ΣΛ parameters

determine the parameter space describing this family of traces (Figure 4.7b). While a

user can always adjust the parameters of one or more ΣΛ primitives interactively, for the

task of stylisation we seek to produce stylistic variations over a given motor plan that are

applied consistently across one or more trajectories.

(a) (b)

(c) (d)

Figure 4.7: (a) Motor plan for a tag “PRE” and (b) a trajectory generated with user definedΣΛ pa-
rameters. (c) Globally scaling all∆ti parameters by a factor of 0.65 results in a smooth-
ing effect. (d) A lower scaling factor of 0.4 results in most of the recognizable structure
of the pattern being lost.

A trivial method to generate stylistic variations is to simply scale the∆ti parameters

(Figure 4.7c). However, this quickly produces a degradation of the trace (similarly to the

smoothing effect of a convolution) and for certain instances of letterforms will result in

a loss of structure and legibility (Figure 4.7d).

4.4. Kinematic variability and stylisation 114

(b)

(a)

(c) (d)

Figure 4.8: Key-point adjustment. (a) Key-points (orange circles) overlaid on the trace (left) and
speed profile (right) of a trajectory generated with two lognormal primitives. (b) The
adjustment vectors (red arrows) go from the key-points to the virtual target. These
are scaled by λp = 0.7 (blue arrows) and applied to the virtual targets. (c) Result of
one adjustment step. (d) Result of a second adjustment steps, after re-computing the
key-points from the previous configuration.

4.4.2.1 Key-point adjustment

One method to overcome this limitation is to adjust the motor plan so the trajectory fol-

lows the structure of the original motor plan more closely, even when lognormal prim-

itives have a large degree of overlap. To do so, we identify a series of M − 1 key-points

{τi }M−1
i=1 , locations that approximately correspond to curvature extrema along the gen-

erated trajectory and indicating the time occurrence at which the influence of one log-

normal exceeds the previous one (Figure 4.8a). The time occurrence of each key-point

is computed at the intersection of the scaled profiles of consecutive primitive pairs by

solving:

DiΛ(t)i −Di+1Λ(t)i+1 = 0 ,

with a few iterations of a Newton scheme.

The adjusted trajectory is computed with a new sequence of virtual target positions

p̂ i such that the locations of the corresponding key-points x(τi) in the resulting trajec-

tory approach the originally specified virtual targets p i (Figure 4.8b). We first let p̂ i = p i

4.4. Kinematic variability and stylisation 115

Figure 4.9: Key-point adjustment for ∆ti parameters scaled by a factor of 0.4. From left to right,
the unadjusted trajectories followed by three key-point adjustment steps with λp =
0.7.

and then, for a user specified number of iterations, we adjust the new virtual target posi-

tions with:

p̂ i ← p̂ i +λp (p i −x(τi)) . (4.17)

In practice, a small number of iterations prove sufficient and the procedure runs in real-

time (Figure 4.8c, d) since each step only requires computing the trajectory at M − 1

key-point locations. This allows a user to interactively determine the desired amount

of adjustment by setting the number of iterations and the parameter λp . As an example

of this procedure, Figure 4.9 demonstrates how a few adjustment steps can be used to

address the issue with parameter scaling that was observed in Figure 4.7d. This same

procedure is also useful when combined with a UI, since it forces the curvature extrema

of the trajectory to be closer to the virtual targets, resulting in a behavior that is closer to

an interpolation.

4.4.2.2 Parameter exaggeration

More sophisticated stylisation results can be achieved by exploiting the ΣΛ parameter

structure to perform an “exaggeration” of the kinematic features with a procedure in-

spired by the work of Brennan (1985), who extrapolates facial features from an average

to generate caricatures. We accentuate deviations of the time-overlap ∆ti and curvature

δ parameters from their respective mean values ∆̄t , δ̄ with

∆ti ←∆ti +k∆t
(
∆ti − ∆̄t

)
(4.18)

δi ← δi +kδ
(
δi − δ̄

)
(4.19)

where positive values of the parameters k∆t ,kδ exaggerate differences of ∆ti ,δi from

their respective means, while negative values decrease the differences, and null values

leave the parameters unaffected (Figure 4.10).

4.5. Stroke generation and animation 116

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Parameter exaggeration. (a) no exaggeration. (b) kδ = 0.0,k∆t = 2. (c) kδ = 0.0,k∆t =
2. (d) kδ = 0.5,k∆t = 0. (e) kδ = −0.5,k∆t = 0. (f) Combination of ∆ti scaled by a
factor of 0.5 and exaggeration with kδ = 0.5,k∆t = 0.3.

Figure 4.11: Kinematics-based brush rendering of ΣΛ trajectories: the corresponding motor plan
(in red on the left) and renderings with different kinematic dependent brushes.

4.5 Stroke generation and animation

One of the advantages of generating curves through the simulation of a movement is

that the smooth kinematics can be exploited to drive the implementation of expressive

rendering methods. For example, in prior work the same type of handwriting model has

been exploited to generate realistic renditions of signature pen traces (Ferrer et al., 2015)

using an ink deposition model (Franke and Rose, 2004). The brush model that follows, is

aimed at achieving various effects that are evocative of instances of ink-calligraphy and

graffiti made with markers or spray paint by exploiting the kinematics captured by the

ΣΛ model. The method builds upon the assumption that the amount of paint deposited

is inversely proportional to the speed of the drawing tool (Figure 4.11). This model is

simple while providing visually appealing patterns which are approximately similar to

the ones produced with physically more accurate but also more complex models of a

brush or pen.

In order to generate a variably smooth brush texture, we use once more the error

4.5. Stroke generation and animation 117

−1.0 −0.5 0.0 0.5 1.0
d

0.00

0.25

0.50

0.75

1.00

in
te
ns
ity

(a)
αb=2.0
αb=2.75
αb=3.5
αb=4.25
αb=5.0

−1.0 −0.5 0.0 0.5 1.0
d

(b)
hb=0.0
hb=0.25
hb=0.5
hb=0.75
hb=1.0

Figure 4.12: “Hat” functions for brush generation with different parameters. (a) single curve. (b)
combination of two curves resulting in a decrease of intensity near the brush center.

function to obtain a “hat” curve (Figure 4.12a) with the following equation:

φb(x) = 1

2
+ 1

2
erf[αb (1−x)] , (4.20)

where the parameter αb determines the top hat flatness of the curve.

To mimic the effects of certain spray nozzles or marker nibs that diffuse less paint

near center we compute the curve with φb(x)∗(1−obφb(2x)) with ob a user configurable

parameter that is inversely proportional to the brush intensity near its center (Figure

4.12b). A variably sized and rotated 2D brush texture is produced by using the hat curve

with normalised coordinates (u, v) ∈ [0,1] to obtain the distance to a superellipse with

√∣∣∣∣
u cosθb − v sinθb

wb

∣∣∣∣
βb

+
∣∣∣∣

u sinθb + v cosθb

hb

∣∣∣∣
βb

, (4.21)

where θb determines the brush rotation and wb ,hb ,βb respectively determine the rela-

tive width and height of the brush and the shape of the superellipse. Figure 4.13 shows

different examples of brush textures with the corresponding parameters.

We further use the traditional “dabbing” a.k.a. “stamping” procedure to sweep the

brush along the trajectory and scale its size as an inverse function of speed:

r (t) = rmin + (rmax − rmin)exp

(
− v̄ + ∣∣ṗ(t)

∣∣
v̄

)
(4.22)

i.e. scaled by the mean of the speed for the whole trajectory, v̄ (Figure 4.14). The brush

size is varied within a range [rmi n ,rmax], which allows to adjust the amount of speed

dependent scaling in the generated image. The speed
∣∣ṗ(t)

∣∣ can be exactly computed

by using the original form of the ΣΛ model (Plamondon et al., 2014) or approximated

4.5. Stroke generation and animation 118

wb = 1.00
hb = 1.00
θb = 0.0
βb = 2.0
αb = 10.0
ob = 0.00

wb = 1.00
hb = 0.50
θb = − 0.5
βb = 8.0
αb = 2.0
ob = 0.00

wb = 1.00
hb = 0.50
θb = 0.8
βb = 4.0
αb = 10.0
ob = 0.00

wb = 1.00
hb = 1.00
θb = 0.0
βb = 2.0
αb = 10.0
ob = 0.90

wb = 1.00
hb = 0.50
θb = − 0.5
βb = 8.0
αb = 2.0
ob = 0.90

wb = 1.00
hb = 0.50
θb = 0.8
βb = 4.0
αb = 10.0
ob = 0.90

Figure 4.13: Different brush textures, with the corresponding parameters and an example trajec-
tory

Figure 4.14: Dabbing a brush as a function of speed (top right) with a variable width (bottom
right).

by computing by forward differencing the trajectory x(t) which proves faster and suffi-

ciently accurate for this application.

Drips With the similar assumption that slower movements produce a higher deposition

of ink/paint, we can add a random drip effect where the speed is under a user defined

threshold (Figure 4.15). This mimics a feature that can often be seen in instances of tags

made with an ink marker or spray paint. We use a purely visual trick to mimic the ap-

pearance of a drip running down a surface, where we determine the thickness of the drip

using equation (4.22) with the speed profile provided by a single lognormal.

Animation and Fabrication The physiologically plausible kinematics produced by the

ΣΛmodel can also be exploited to easily produce natural looking stroke animations of a

trajectory. This is achieved by incrementally sweeping a brush texture along a uniform-

4.6. Conclusion 119

Figure 4.15: Lognormal drips. Left to right: Three variations of a drip generated with thick-
ness determined by a lognormal (blue profile) with respective shape parameters
Ac = (0.1,0.25,0.5), followed by a swept stroke rendering of a letter “R” with drips.

-100

-50

0

50

100

100

150

200

x 3

250

200

300

400

x2

500

600

700

x1

1000900800700600800 500400300200

Figure 4.16: Left: A compliant robot reproducing a tag created with the ΣΛ model. Right: Corre-
sponding trajectory with the 3D motion of the marker, computed with the ΣΛ model
and with the addition of a third coordinate permitting smooth transitions (pen-up).
This results in helical rather than circular-arc sub-movements. Refer to Berio et al.
(2016) for technical details.

time sampling of the trajectory, since the distance between samples reflects the smooth

kinematics generated by the model. The same technique can be exploited to produce

smooth motion paths for virtual (human) characters, or for fabrication, or robotic de-

vices (Figure 4.16) (Berio et al., 2016).

4.6 Conclusion

We have shown how the ΣΛ model, a physiologically plausible model of handwriting

movements, can be adapted to the tasks of interactive curve generation, stylisation and

rendering . The parameters of the ΣΛ model have a clear physiological interpretation

in terms of both planning and trajectory formation. At the planning level, the virtual

targets correspond to a motor plan that guides the superposition of a series of ballistic

sub-movements. Each sub-movement is characterised by a set of kinematic parameters

4.6. Conclusion 120

that determine the fine evolution of a kinematic realisation of the motor plan. For the

use case of calligraphic stylisation, the kinematic parameters are Θ = {∆ti ,δi } for the

ωΣΛ parameterisation and Θ = {∆ti , s0i , s1i } for the ωEΣΛ parameterisation, while the

parameters Aci and Ti are kept constant to user-defined values.

In the pattern recognition and handwriting analysis domains theΣΛ representation

has proved to be useful to accurately reconstruct and characterise handwriting move-

ments (Plamondon et al., 2014; Ferrer et al., 2018), with applications ranging from forgery

detection (Gomez-Barrero et al., 2015) to the study of motor-related problems such as

Parkinson’s disease(Plamondon et al., 2013). In our application, the ΣΛ parameterisa-

tion becomes especially useful to interactively edit trajectories with an interface that is

similar to conventional CGAD methods, and to generate variations of a trajectory that

are similar to the ones that would be produced by a human.

The parameterisation of the model also comes with a drawback, when it comes

to automatically generating calligraphic stylisations of a motor plan. With the previ-

ously described approach, a user is required to explicitly set the kinematic parameters

through an interactive user interface. However, choosing these parameters automati-

cally remains challenging and the ΣΛmodel per-se does not provide a systematic way to

do so. In the next chapter, we address this limitation with a different parameterisation

and a different trajectory formation method that is based on optimisation. In Chapters

8 and 9 we will go back to the ΣΛ model and exploit its structure to determine the kine-

matic parameters automatically with an example-driven procedure. Combining optimi-

sation methods with theΣΛ remains a promising area of future work, and we will expand

further on this topic in the conclusion of Chapter 8 and in Chapter 12.

Chapter 5

Calligraphic stylisation:

Minimal intervention control

This chapter is largely based on published work developed in a collaboration between

myself, Prof. Frederic Fol Leymarie and Dr. Sylvain Calinon (affiliation: Idiap, Switzer-

land). The collaboration resulted in two conference papers (Berio et al., 2017b,c) and

one book chapter (Berio et al., 2020a). This body of work was initially based on opti-

mal control techniques developed by Dr. Calinon for programming by demonstration

applications in robotics, which include the stochastic solution to the discrete optimal

control problem discussed in Section 5.1.5 and the solution for multiple tracking refer-

ences discussed in Section 5.1.7 Calinon (2016b). My contribution includes the develop-

ment and implementation of the remaining methods and formulations discussed in this

chapter, which I developed with the specific aim of interactive curve editing and calli-

graphic curve generation. This chapter includes additional details and extensions that I

have developed in the context of this thesis and are not included in the our previously

published works. This includes an updated formulation that enables arbitrary sampling

quality of trajectories Section 5.1.1, and an improved derivation of periodic trajectories

Section 5.1.6.

In the previous chapter, we have seen how the ΣΛmodel can be used as an interac-

tive curve generation tool, and how its physiologically plausible parameterisation can be

exploited to generate variations and stylisations of a trajectory that mimic the variability

that would be seen in multiple instances of human drawing or writing. In this chapter, we

adopt a complementary approach, in which a trajectory is explicitly defined in terms of

5.1. Trajectory Generation 122

its desired precision and variability. The result is a versatile trajectory generation method

that does not generate one, but a family of trajectories that can be stochastically sam-

pled from a probability distribution. As we shall see, the same stochastic formulation

also allows for an intuitive interface, which can be used to determine the fine curvilin-

ear evolution of a trajectory, and finally to generate traces that are qualitatively similar to

instances of graffiti tags and calligraphy.

The input to the method is again a motor plan, but this time it is augmented with

a mixture of Gaussians (MoG) describing a spatial distribution. The output is a distri-

bution of smooth trajectories, with kinematics that are similar to the ones that typically

characterize human hand motions and variations determined by the input distribution.

We generate a trajectory by forcing a dynamical system to track the centers of Gaussians

with a precision determined by their respective covariances. The trajectory evolution is

determined by optimization, with an objective formulated as a trade-off between track-

ing accuracy and control effort. Control effort is expressed as the square magnitude of

position derivatives, preferably of high order, e.g. jerk (3rd) or snap (4th), which results in

smooth trajectories that are consistent with the minimum-square-derivative hypothesis

(Flash and Hogan, 1985), but also obey a minimal intervention principle (Todorov and

Jordan, 2002b), where deviations from maximal smoothness are corrected only when the

required precision is high. As a result, we will refer to the trajectory generation method

as minimal intervention control (MIC).

5.1 Trajectory Generation

The input to our method is a sequence of multivariate Gaussians N
(
µi ,Σi

)
defined in

a Cartesian space of dimension D , which is equivalent to a mixture of Gaussians (MoG)

with uniform weights. The output of the method is a distribution N
(

y ,Σy
)

of smooth

motions that track the centers µi with a precision defined by the corresponding covari-

ancesΣi . The centers µi coincide with the vertices p i of a motor plan. At the same time,

the covariance structure of the MoG provides explicit control over the variability and

smoothness of the trajectory in the region of each vertex, together with local or global

control of the curvilinear evolution of the trajectory.

Trajectories are generated by optimizing the evolution of a dynamical system that

tracks each MoG component sequentially for a given amount of time. A decrease in the

variance of a component corresponds to an increased precision requirement, and thus

5.1. Trajectory Generation 123

forces the trajectory to pass nearer the component center (Figure 5.2a). A sufficiently

low variance then produces an interpolatory behavior. An increase in the variance cor-

responds with a lower precision requirement, and thus produces a smoothing effect that

is similar to the one achieved with smoothing splines (Figure 5.2b). However, the use of

full covariances allows more complex spatial constraints to be captured, such as forcing a

movement to follow a given direction or to pass through a narrow region of space (Figure

5.2c). The resulting trajectories are smooth and have kinematics that are similar to the

ones that would be seen in a movement made by a drawing hand, with desirable features

such as bell shaped speed profiles and an inverse relation between speed and curvature

(Figure 5.3).

5.1.1 Dynamical system

We model the spatial evolution of trajectory with a linear time invariant (LTI) system of

order n. The evolution of each coordinate x along a trajectory is governed by the state

equations

ẋ = Āx + B̄u,

y = C̄ x

where the state

x =
[

x, ẋ, ẍ . . . ,
(n−1)
x

]� ∈Rn

concatenates position and its derivatives up to order n − 1. The system matrices Ā, B̄

and C̄ describe the time invariant response of the system to an input command u, and

(a) (b) (c)

Figure 5.1: The trajectory generation method in a nutshell. (a) An input GMM is considered as
(b) a sequence. (c) These ordered components are then used to guide the evolution
of a dynamical system.

5.1. Trajectory Generation 124

(a) (b) (c)

Figure 5.2: Variations of a trajectory by manipulating one covariance matrix. (a) using an
isotropic covariance with low variance (high precision). (b), an increase in variance
produces a smoothing effect. (c) a full (anisotropic) covariance can be used to force
the trajectory to remain in a flat region of space.

(a) (b)

Figure 5.3: (a), smoothing effect of increasing the variance of a Gaussian. (b), manipulating the
trajectory evolution with full covariances. Below each trajectory, its corresponding
speed profile.

are given by the canonical form

Ā =

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0

∈Rn×n , B̄ =

0

0

...

0

1

∈Rn×1, C̄ =

1

0

...

0

0

�

∈R1×n (5.1)

where C̄ is a “sensor matrix” that determines what elements of the state are observed in a

feedback system. This system definition consists of a chain of n integrators commanded

by its n-th order derivatives. As an example, a linear system of this type with order 2 is

is equivalent to a spring-mass-damper system that is controlled with acceleration com-

mands.

5.1.1.1 Discretisation

To compute a trajectory that tracks the centers of M Gaussians, we use a discretisation

of the system with N time steps of constant duration ∆t . This corresponds to a control

signal consisting of N −1 piecewise constant commands u1, . . . ,uN ∈RD and results in a

sequence of N points x1, . . . , x N ∈ RD along the trajectory. We use an exact discretisation

5.1. Trajectory Generation 125

(Haugen, 2005) of the system, and this allows to retrieve trajectories of arbitrary precision

once an initial, and possibly sparse, estimate has been computed. In the general case this

is given by:

Ad = e Ā∆t and B d =
∫ ∆t

0
e Āt d t B̄ .

For the specific case of a chain of integrators the integral can easily be computed in

closed form with (DeCarlo, 1989, pg. 215):

e

Ā B̄

0 0

>

=

Ad B d

0 I

 .

which corresponds to a zero order hold (ZOH) discretisation of Ā and B̄ .

We determine the points at each time step t of a trajectory with the discrete state

equations:

x t+1 = Ax t +B u t (5.2)

y t =C x t (5.3)

where the state x t concatenates the D coordinates of a position with its derivatives up to

the order n −1 with:

x t =
[

x1, . . . , xD , ẋ1, . . . , ẋD . . . ,
(n−1)
x1 , . . . ,

(n−1)
xD

]> ∈RDn . (5.4)

The discrete time system matrices A ∈RDn×Dn , B ∈RDn×D and C ∈RD×Dn are block

matrices with one block for each entry of Ad ,B d ,C̄ . Each block is given by a D×D identity

matrix I multiplied by the scalar in the corresponding entry. This can be conveniently

computed with the Kronecker product operator ⊗ with:1

A = Ad ⊗ I , B = B d ⊗ I and C = C̄ ⊗ I .

It can be shown that the system formulation in equation (5.1), together with a

piecewise constant control sequence, results in a polynomial spline of degree at least

1The kron command is available in most linear algebra packages such as Matlab or NumPy.

5.1. Trajectory Generation 126

n. The spline is C n−1 continuous and has one knot for each step in the command se-

quence (Kano et al., 2005). As a result, given a possibly sparse sequence of N commands

u1, . . . ,uN and an initial state x1, we can efficiently retrieve a smooth trajectory x(t) with

arbitrary precision. Since the discretisation in equation (5.4) is exact, this can be done by

computing the discretised system matrices with a reduced time step ∆t ′ and iteratively

computing the trajectory with equation (5.2), starting from x1 and with each command

u t being kept constant for ∆t
∆t ′ time steps.

5.1.2 Optimization objective

We generate N samples along a trajectory by computing an optimal controller that min-

imizes a quadratic cost, which penalizes a trade-off between deviations from a reference

state sequence {x̄ t }N
t=1 (tracking cost) and the magnitude of a control command sequence

{u t }N−1
t=1 (control cost). The optimization objective is expressed with the summative cost:

J =
N∑

t=1
(x̄ t −x t)>Q t (x̄ t −x t)+

N−1∑
t=1

u>
t R t u t , (5.5)

subject to the constraint of the linear system defined in equation (5.2) and where Q t

and R t are positive semi-definite weight matrices that determine the tracking and con-

trol penalties for each time step. The linear constraint guarantees that the output of the

method is a trajectory that has continuous derivatives up to the order n −1. As the dis-

cretisation time step ∆t tends to zero, the resulting trajectory becomes an increasingly

accurate approximation of a spline of degree (2n − 1) with (2n − 2) continuous deriva-

tives (Zhang et al., 1997).

The combination of a linear system with this type of optimization objective is com-

monly used in process control and robotics applications, where it is known as discrete

Linear Quadratic Tracking (LQT) and corresponds to the linear case of Model Predictive

Control (MPC) (Zeestraten et al., 2016b). This results in a standard optimization prob-

lem that can be solved iteratively or in batch form and produces an optimal controller or

control command sequence. In typical control settings, the optimization is performed

iteratively over a time horizon of observations, and is thus commonly known as receding

horizon control. However, for the intended use case of curve design, we can apply the

optimization to the full duration of the desired trajectory. With the appropriate formula-

tion of the reference, this results in a flexible curve generation method that can be used

similarly to more conventional curve generation methods.

5.1. Trajectory Generation 127

5.1.3 Tracking formulation

We formulate the reference state and weights for the optimization objective, by consid-

ering a decomposition of a movement that tracks M Gaussians, into M −1 ballistic sub-

movements. With an assumption of local isochrony, we assign each sub-movement a

fixed number of time steps Ts resulting in a sub-movement duration of Ts∆t . This gives

a tracking reference with N = (M −1)Ts +1 time steps and assigns each Gaussian a pas-

sage time τt , with τi+1 − τi = Ts , and with τ1 = 1 and τM = N . Each Gaussian is also

assigned an activation function:

hi (t) = φi (t)∑M
j=1φ j (t)+e−6

with φi (t) = exp

(
− (t −τi)2

2σ̂2
h

)
and σ̂h = 3Ts

2
σh , (5.6)

computed in terms of a radial basis function (RBF) φi (t), where σh ∈ (0,1] is a global pa-

rameter which defines the time interval covered by each state, and the denominator term

e−6 avoids divisions by zero while guaranteeing that σh = 1 results in the time intervals

covering all time steps.

The reference states and weights are then generated by assigning to each time step

the state for which hi (t) > 0.5 (Figure 5.4, second row) with:

x̄ t =C>µi and Q t =C>Σ−1
i C . (5.7)

With this formulation the derivatives of the trajectory are fully determined by the

optimization procedure, which is expressed by setting the corresponding precision terms

Q t to zero. Intuitively, a zero entry in Q t means that the optimization has no precision re-

quirements for the corresponding state entry and thus is free to enforce the smoothness

requirement expressed in the second term of the cost function. In typical applications,

the tracking weights Q t are defined as diagonal matrices, such as the case of smoothing

splines. This corresponds to a penalty in terms of the Euclidean distance to a reference

state. In our stochastic formulation, the weights are expressed as full precision matrices,

which corresponds to a penalty in terms of the Mahalanobis distance2 to the reference

state. When it is desirable to force the movement to a full stop, this can be done by setting

Q N = I and all the derivative terms in x̄ N to zero.

2Corresponding to the Euclidean distance in a transformed coordinate system determined by the mean
and covariance of a Gaussian (Murphy, 2012).

5.1. Trajectory Generation 128

0 20 40

t

0

1
φ
i
(t

)

(a)

0 20 40

0

1

h
i
(t

)

σ t = 0.0

0 20 40

t

0

1

(b)

0 20 40

0

1

σ t = 0.5

0 20 40

t

0

1

(c)

0 20 40

0

1

σ t = 1.0

Figure 5.4: Effect of different activation sequences with the same set of Gaussians (color coded).
The first and second row show respectively the RBF term φti for each Gaussian and
the resulting activation hi (t). The third row shows in color the time steps covered by
each state. The fourth row shows the resulting trajectories and their Gaussians.

Increasing the value of σh increases the time interval covered by a state, with σh = 1

resulting in a step-wise reference that fully covers the time steps of the trajectory (Figure

5.4c). This increases the influence of the MoG covariances on the resulting trajectory, and

allows a user to specify curvilinear trends and variability for longer segments of the tra-

jectory. As the parameter σh tends to zero, φi (t) will converge to a Delta function (Figure

5.4a), which will result in Q t being non-zero only in correspondence with each passage

time τi . This gives smoother trajectories that interpolate the control-points. In general, a

smaller time interval will result in a sparser tracking cost in the objective. This increases

the influence of the control cost and potentially facilitates the addition of objectives and

constraints to the optimization.

5.1. Trajectory Generation 129

(a)

(10 − 11)

5(10 − 11)

(10 − 10)

(b)

k = 2

k = 3

k = 4

k = 5

= 4

(c)

Figure 5.5: Order independent control weight. (a) Trajectories for a 4th order system, for differ-
ent diagonal values of r with R i = r I . (b) Varying the system order while keeping r
constant. (c) Varying the system order with a displacement based weighting, using
∆max = 25.

5.1.4 Control weights

The weight matrices R t define a penalty on the amplitude of control commands. Typ-

ically this cost is formulated as a constant diagonal term that is inversely proportion-

ally to the maximum square norm of the control command, where a larger term pro-

duces smoother trajectories (Figure 5.5.a). However, manually setting this value can be

counter-intuitive, especially when varying also the order of the system (Figure 5.5.b). In

order to achieve approximately equal tracking performance across different system or-

ders (Figure 5.5.c), we express the control cost in terms of a maximum allowed displace-

ment ∆max. To compute the corresponding terms in R t we exploit the frequency gain of

the system, which for the case of the chain of integrators simply reduces to 1/ωn (refer to

Appendix C.1 for additional details and derivations), where ω is the angular frequency of

a sinusoidal input. The diagonal weights in R t are given by

R t = 1

(ωn∆max)2 I and ω= 2π

Ts∆t
, (5.8)

where the frequency ω is empirically set using the duration of one sub-movement as a

period. Lower values of ∆max tend to smooth the trajectory, while higher values generate

sharper paths. Because the cost function is defined as a trade-off between tracking and

control cost, it is in practice possible to achieve the same effect by either increasing the

variance of the Gaussians or decreasing the value of ∆max.

5.1. Trajectory Generation 130

5.1.5 Stochastic solution

The optimal trajectory can be retrieved iteratively using dynamic programming (Calinon,

2016a), or in batch form by solving a large ridge regression problem. While we leave

details on the former iterative solution to Appendix C.2, here we focus on the latter, which

results in a more compact solution and provides great additional flexibility, such as a

straightforward probabilistic interpretation of the result and the possibility to generate

periodic trajectories.

To compute the solution, we exploit the time invariance of the system, and express

all future states as a function of the initial state x̄1 with:

x̂ = Sx x̄1 +Su u , (5.9)

where

Sx =

I

A

A2

...

AN

and Su =

0 0 . . . 0

B 0 . . . 0

AB B . . . 0

...
...

. . .
...

AN−1B AN−2B . . . B

.

We then express the objective (5.5) in matrix form as:

J = (x̄ − x̂)> Q (x̄ − x̂)+u>Ru , (5.10)

where Q and R are large block matrices with Q t and R t along their block diagonals, while

x̄ , x̂ and u are column vectors respectively stacking the reference, state and control com-

mands for each time step. Substituting (5.9) into (5.10), differentiating with respect to u

and setting to zero results in a least squares solution gives:

u = (
Su

>QSu +R
)−1︸ ︷︷ ︸

Σu

Su
>Q (x̄ −Sx x̄1) , (5.11)

which is then substituted back into (5.9) to generate a trajectory.

5.1. Trajectory Generation 131

5.1.5.1 Stochastic sampling

We can see that equation (5.11) is equivalent to a ridge regression solution where R ef-

fectively acts as a Tikhonov regularization term, giving a global smoothing effect on the

generated trajectory. From a probabilistic perspective, R corresponds to a Gaussian prior

on the deviations of the control commands from 0. The minimization of equation (5.10)

can then be interpreted as the product of two Gaussians:

N (u,Σu) ∝N
(
Su

−1 (x̄ −Sx x̄1) ,Su
�QSu

)
N (0,R) , (5.12)

describing a distribution of control commands with center u and covariance Σu . By us-

ing the linear relation (5.9) the distribution in control space can also be interpreted as a

trajectory distribution:

N
(

y ,Σy
)

with Σy = SuΣu Su
� .

(a)

0 100 200 300 400 500 600 700
t

0

500

1000

|
̇ y|

(b)

(c)

Figure 5.6: Stochastic sampling from the trajectory distribution. (a) GMM with corresponding
trajectory overlaid with samples from the trajectory distribution. (b) Sampled speed
profiles. (c) Single samples from the trajectory distribution.

This formulation results in a generative model of trajectories, which can be used to

generate variations that are similar to the ones that would be seen in multiple instances

of human writing or drawing. Because of its lower dimensionality, it is preferable to gen-

erate variations at the control level, which can be done by exploiting the eigen decom-

position:

Σu =Vu DuVu
� , (5.13)

5.1. Trajectory Generation 132

with Vu a matrix with all eigenvectors along the columns and Du a matrix with the cor-

responding eigenvalues along the diagonal. We can then generate samples around the

average commands sequence u with:

u′ ∼ u +Vu Du
1
2 N (0,σu I) ,

with σu a user-defined parameter representing the variation in the samples. The result-

ing trajectories can then easily be retrieved by plugging the samples u′ into equation

(5.9).

5.1.6 Periodic motions

In order to generate periodic motions, we require a reference state sequence x̄ . This can

be obtained by considering a sequence of M +1 Gaussians, with the first one repeated at

the end of the sequence. We then reformulate the LQT objective so it optimises also for

the initial state x1 and by adding an equality constraint on the initial and final state of

the trajectory. This constraint can be formulated with the linear relation:

K x = K (Sx x̄1 +Su u) = 0 , (5.14)

with K a matrix in RDn×DnN with zero blocks everywhere except for the first and the last

time-steps, which are set to −I and I respectively. Adding the constraint to equation

(5.10) results in the Lagrangian:

L (u, x1,λ) = J +λ>K x̂ . (5.15)

Differentiating for u, x1 and the Lagrange multipliersλ and then equating to 0 results in

the constrained solution in matrix form:

u

x1

λ̂

=

Su

>QSu +R Su
>QSx Su

>K>

Sx
>QSu Sx

>QSx Sx
>K>

K Su K Sx 0

−1

︸ ︷︷ ︸
ΣO

u

Su

>Qx̄

Sx
>Qx̄

0

 . (5.16)

Dropping the third columns and rows corresponding to the equality constraint, results in

a non periodic solution that produces an optimal initial state x1. This is useful to mimic

5.1. Trajectory Generation 133

the appearance and kinematics of trajectories that do not begin at a rest position, such

as the case of a calligraphic movement that begins in the air rather than on the drawing

surface. The extended solution (with or without the constraint) admits a stochastic sam-

pling identical to the one defined above (Figure 5.7), which can be done by computing

the eigen decomposition in equation (5.13) with the matrix ΣO
u instead of Σu .

(a) (b) (c)

Figure 5.7: Stochastic sampling of periodic trajectories. (a) A sequence of Gaussians in a squared
configuration, producing a circular trajectory and corresponding stochastic samples.
(b) Increasing the precision of one Gaussian forces the trajectory and the sample to
pass through its center. (c) Using a sparse tracking reference (σh = 10−4) forces the
trajectories to interpolate the centers, but allows for higher variance in the remaining
trajectory segments.

5.1.7 Multiple references

The output of the LQT optimisation procedure can be interpreted as a time varying flow

field (Calinon and Lee, 2019) that depends on the minimisation of the tracking term of

the cost function. In addition to the definition of constraints, such a formulation can also

be extended with additional quadratic costs that allow to track multiple references with

different precision requirements. As an example, this is exploited in a robotic “learn-

ing by demonstration” application by Calinon (2016b), in which the cost function is ex-

pressed in a number p of different coordinate systems. The augmented cost function

(from equation (5.9)) is given by:

J =
p∑

i=1
(x̄ i − x̂)�Q i (x̄ i − x̂)+u�Ru , (5.17)

such that a trajectory of control commands can be retrieved with:

u =
(

p∑
i=1

Su
�Q i Su +R

)−1 p∑
i=1

Su
�Q i

(
x̄ i −Sx x1

)
. (5.18)

5.1. Trajectory Generation 134

Figure 5.8: Periodic motions using Gaussians with different variances. The speed profiles are re-
peated (in light gray) to visualise the periodicity of the speed profile.

Figure 5.9: Adding a tracking reference with time varying velocity. (a) Trajectory with a single
reference and isotropic covariance. (b) Adding a second reference to the objective,
with a time varying (constant) velocity field (red segments) and starting from an initial
orientation and a constant diagonal matrix Q = 5×10−4I . (c) Effect of varying the
initial orientation. (d) Effect of increasing the diagonal term in Q to 1×10−3.

Note that the multiple objectives are fully determined by the matrices Q i and vectors x̄ i ,

while the remaining terms remain constant across the sums. As a result the same pro-

cedure can be easily extended to the constrained case by replacing all the block entries

of equation (5.16) in which the terms Q and x̄ appear, with the corresponding sums over

the terms Q i and x̄ i for each reference.

Figure 5.9 shows an example application of this approach, where a trajectory is gen-

erated with one reference constructed with isotropic covariances (Figure 5.9.a). We then

consider also a second reference (p = 2) consisting of a time varying velocity field. The

reference is constructed with a vector x̄2 consisting of zeros everywhere except for the

velocity terms form each time step. Each term consists of a vector that linearly changes

orientation as a function of the time step. The corresponding weight matrix Q2 is zero

everywhere with the exception of the diagonal entries corresponding to the velocity of

each time step. These entries are set to a small value that determines a trade-off between

the requirement to track the Gaussians, and the requirement to track the velocity speci-

5.2. User interfaces 135

Figure 5.10: Additional reference with a time varying coordinate system on velocity. (a) Trajec-
tory with a single reference and isotropic covariance. (b,c,d) Adding a second refer-
ence to the objective, consisting of a time varying coordinate frames (red and blue
arrows) for the diagonal blocks of Q corresponding to velocity terms. This forces the
the velocity at each time step to be parallel with the axes of the corresponding frame.

fied in x̄2. Using small weights and varying the orientation of the field results in different

stylisations of the resulting trajectory (Figure 5.9b,c). A larger weight forces the trajectory

to track the velocity and produces a result that is very different from the original (Figure

5.9).

With a slightly different approach (Figure 5.10), we can enforce a looser constraint

that induces the trajectory velocities to be parallel with the axes of a rotated orthogonal

coordinate system. This can be done by setting all entries of x̄2 to zeros, and setting

the diagonal blocks of Q2 to v t v�
t , where v t is the direction of one coordinate axis for a

given time step. Both this method and the one explicitly using a time varying velocity

reference can be used with higher derivatives as well (e.g. acceleration). These methods

demonstrate a first example in which a user is able to simply specify a motor plan with

an arbitrary number of vertices, and then to generate a variety of kinematic realisations

of the motor plan by globally adjusting a few parameters. The parameters determine the

global trajectory smoothness, as well as the way in which the second reference evolves

in time (e.g. for this case, speed of rotation) and its weight (through a constant diagonal

scaling of Q).

5.2 User interfaces

The proposed trajectory generation method is efficient and is well suited for the inter-

active and procedural design applications. In an interactive setting, it is in fact trivial to

drag the centers of the input Gaussians with a typical point-and-click procedure, and it is

5.2. User interfaces 136

Figure 5.11: User interaction and kinematics driven brush rendering effects.

also easy to interactively manipulate the covariances. This can be done by manipulating

an ellipsoid, where the center of the ellipsoid defines the mean µi , and the axes are used

to manipulate the covariance Σi through its eigen decomposition:

Σi =Θi S i S iΘ
>
i , (5.19)

whereΘi corresponds to an orthogonal (rotation) matrix, and S i to a scaling matrix. For

example, consider the 2D case in which the rotation and scaling matrices are given by:

Θi =

cosθi −sinθi

sinθi cosθi

 , θi = tan−1 a2

a1
, S i =

 ‖a‖
2 0

0 ‖b‖
2

 , (5.20)

where a and b are the major and minor axes of an ellipse, which can be interactively

dragged to manipulate the shape of the distribution (Figure 5.11, left). While the exam-

ples given are two dimensional, an extension to three dimensional ellipsoids is straight-

forward to implement with a so called arc-ball interface (Shoemake, 1992).

Similarly to the case of the ΣΛ model, MIC generates smooth trajectories that re-

semble the kinematics of a human hand motion. A trajectory generated over a sequence

of M Gaussians will typically produce a speed profile characterised by M−1 peaks and lo-

cal minima corresponding with curvature extrema along the trajectory, which is consis-

tent with the stereotypical inverse speed/curvature relation seen in human movements

(Lacquaniti et al., 1983). As a result, the exact same methods demonstrated in Chapter

4 can be used to generate and animate strokes by incremental sampling of a trajectory.

One advantage of this method is that it easily generalises to dimensions higher than two,

and additional coordinates can be used to smoothly vary parameters such as brush width

5.2. User interfaces 137

(Figure 5.26).

5.2.1 Mimicking Bézier curves

The same optimisation framework can be used to mimic the shape and behavior of (cu-

bic) Bézier curves, resulting in a user interface (UI) that is almost identical to its para-

metric counterpart. At the same time, this provides the flexibility of MIC, such as the

ability to easily adjust the trajectory smoothness. Furthermore, MIC guarantees trajec-

tory smoothness regardless of the configuration of control points. This is particularly

useful for calligraphy generation, where the desired trajectories are usually smooth.

It has been shown that cubic Bézier curves (Egerstedt et al., 2004) and splines

(Egerstedt and Martin, 2009) can be interpreted as the trajectories of a second order dy-

namical system which minimise acceleration commands. Indeed, we can see that with

the previously described key-point formulation, it is possible to closely approximate a

Bézier curve. This can be done by (i) setting the first order derivative entry of the sensor

matrix C also to I , then (ii) specifying a reference with Qt zero for all time steps, except

for the first and last ones that are set to C>C , and, finally (iii) specifying the corresponding

desired states with the position and derivative of the first and last Bézier control points.

This method allows to closely approximate a Bézier curve.

At the same time, we observe that we can also mimic the behavior and shape of

a Bézier curve by using a step-wise tracking reference. This can be done by placing

isotropic covariance Gaussians centered at each control point of the curve, and then

adjusting the influence of intermediate control points on the trajectory by uniformly in-

creasing the variance of each corresponding Gaussian (Figure 5.13).

If we relax the constraint of reproducing accurately the Bézier traces, we obtain a

curve generation method that produces similar curves, but with the additional flexibil-

ity of the Gaussian representation and the benefit of always maintaining smooth and

physiologically plausible kinematics. The utility of this property in our application is

emphasized if we randomly perturb the control points of a letterform and compare the

result with the one produced with a Bézier curve (Figure 5.14). In the examples given,

the variances have been set empirically, but the results suggest that it should be possible

to identify a more systematic relation that leads to an optimal reproduction of the Bézier

curve, while guaranteeing trajectory smoothness. This is left as an avenue for future re-

search.

5.2. User interfaces 138

Bezier
MIC

0.0 0.5 1.0
t

160

180

200

220

240

260

Sp
ee

d

System order: 2

0.0 0.5 1.0
t

0

200

400

600

800

1000

1200

A
cc

el
er

at
io

n

Bezier
MIC

0.0 0.5 1.0
t

160

180

200

220

240

260

Sp
ee

d
System order: 3

0.0 0.5 1.0
t

0

200

400

600

800

1000

1200

A
cc

el
er

at
io

n

Figure 5.12: Approximating cubic Bézier curves (red) with optimal control (black). The curve
control points are visualized as blue circles. First row, a 2nd order system computed
with N = 30 timesteps and two input states consisting of the initial and final posi-
tions and velocities. As the number of timesteps increases, the resulting trajectory
converges to that of a Bézier curve as shown by Egerstedt et al. (2004). Second row,
the Bézier curve can also be reproduced by using a 3rd order system and computing
the optimisation for only two time steps, while also optimising for the initial state
x1.

While the Bézier curve becomes discontinuous due to the differently oriented tan-

gents at the loci where the curve segments meet, the MPC formulation tends to main-

tain a smooth trajectory regardless of the positions of the control points. This can be

exploited as an additional method to generate synthetic variations of a handwriting or

calligraphy trajectory, which can be interactively edited with a traditional control point

and tangent interface. The same smoothness property can be used to concatenate mul-

tiple letterforms with ligatures that evoke a smooth and natural motion, which can easily

be achieved by treating the control points of the letters as a single trajectory (Figure 5.15).

5.2.2 Semi-tied structure

In the previous sections, we have seen that it is possible for a user to easily generate varia-

tions of MIC trajectory in 2D applications by editing the position of bi-variate Gaussians.

5.2. User interfaces 139

Figure 5.13: Mimicking piecewise cubic Bézier curves (created with Adobe Illustrator, in red) with
MIC (black) using a stepwise reference σh = 1, isotropic Gaussians and a 4th order
system. Below, the corresponding speed profiles normalised and superposed for
comparison. Note that the Bézier speed (red) goes to zero because Illustrator pro-
duces curve segments with coincident control points. (a) Initial trajectory resulting
from Bézier control points. (b) solving also for the initial state x1 results in a slightly
different trajectory that does not begin and end at a rest position. (c) Decreasing the
maximum displacement parameter produces a global smoothing effect.

Figure 5.14: Effect of randomly displacing control point positions with Bézier curves (red) and
MPC (black).

For applications aimed at procedural content generation, it may be desirable to formu-

late a more parsimonious way of generating trajectories, in which different stylisations

are generated without having to specify the covariance of each MoG component.

We observe that one convenient way to achieve this result is to enforce a shared ori-

entation for all covariance ellipsoids. This is easily achieved with the formulation above

by keeping the orientations Θi to a fixed value and results in a “semi-tied” covariance

Figure 5.15: Automatic ligature generation by concatenating the control points of two letters. On
the right, a comparative example using Bézier curves.

5.2. User interfaces 140

Figure 5.16: Different stylisations of a letter “Z” using semi-tied covariances with different orien-
tations.

Figure 5.17: Illustrative example of the oblique coordinate system that could result from the fine
movements in handwriting made by rotating the wrist on a fixed point.

structure (Tanwani and Calinon, 2016) of the input MoG, in which all covariances share

the same eigenvectors but not necessarily the same eigenvalues. From a motor control

perspective, the semi-tied formalism can be interpreted as the alignment of different

movement parts/primitives with a shared coordination pattern (Tanwani and Calinon,

2016), which is in line with the hypothesis of postural-synergies at the motor planning

level (d’Avella et al., 2003). This implies a shared non-orthogonal (oblique) basis for all

the covariances, which produces a shear transformation that in the 2D case transforms

a circle into an oriented ellipse (Figure 5.17). Oblique coordinates have been suggested

to describe the coordination of handwriting movements made with the fingers and wrist

(Dooijes, 1983), which suggests another possible bio-physical interpretation of this re-

sult.

Semi-tied covariances provide a simplified parameterisation that allows to explore

different stylisations of a key-point sequence with a reduced set of open parameters.

The semi-tied covariances enforce a coupling between the coordinates of the trajectory,

which results in a sense of coordination in the movement. At the same time, minimiza-

tion of the control command amplitude produces smooth trajectories that evoke a nat-

ural drawing movement.

It is then easy to edit the semi-tied covariances with an interface in which the user

5.3. Calligraphic stylisation 141

Figure 5.18: Interface for manipulating semi-tied covariances and corresponding trajectories.
The user can drag at the border of the yellow ellipsoid the pair of small white rectan-
gles to redefine the basis vectors of H with magnitude h which directly impacts all
covariances at once.

can drag the basis vectors of H and scale the value of h (Figure 5.18). Because the cost

function used in the optimisation is given by a tradeoff between tracking and control

costs, it is possible to keep the maximum displacement∆max (which determines the con-

trol weight) to a fixed value proportional to the workspace area. The user can then define

the smoothness of the generated trajectory by manipulating h, where an increase in h

produces larger covariances and consequently smoother trajectories.

5.3 Calligraphic stylisation

With the previously described interfaces, a user can interactively explore different stylisa-

tions of a target sequence. While the semi-tied covariances enforce a sense of coordina-

tion in the movement, the minimisation of the control cost produces smooth trajectories

that evoke a natural drawing movement (Figure 5.19). A similar method can also be used

to generate different stylisations of an input trace, by placing motor plan vertices near its

curvature extrema, which we explore next.

Figure 5.19: Calligraphic stylisations of a user-defined motor plan (red). The stylisations are gen-
erated with the brush model described in Chapter 4 and by varying the global orien-
tation of semi-tied Gaussians and scaling their variance.

5.3. Calligraphic stylisation 142

Figure 5.20: Reconstruction of an instance of calligraphy by New York artist David Chang (cour-
tesy of the artist) with our interactive user interface.

5.3.1 Reconstructing instances of calligraphy

The previous approach can be used to rapidly reconstruct and generate variations of an

existing instance of human made calligraphy (Figure 5.20) or graffiti (Figure 5.21). In

such applications, the user first defines a motor plan with a coarse sequence of Gaus-

sians over salient positions along the input trace (approximately in correspondence with

perceived curvature extrema), and then adjusts the covariances to modify the trajectory

and mimic the curvature and smoothness of the original trace.3 Different kinematic re-

alisations and stylisations of the input can then be generated by either globally varying

the covariances or by using stochastic sampling. We will demonstrate the usefulness of

3We note that with our UI this proves easy to do.

(a) (b)

Figure 5.21: User reconstruction and variation of a graffiti tag. (a) Top left: a graffiti script (tag)
made with a marker by Los Angeles artist “Trixter” (courtesy of the artist). Bottom
left: user defined motor plan and Gaussians for the tag (above), generated by plac-
ing points near salient positions along the original trace and then manually adjust-
ing the covariances to follow the original trajectory. (b) Top row: the reconstructed
trajectory and one variation made by increasing the regularisation parameter r . Bot-
tom row: two random samples from the trajectory distribution of the reconstruction.

5.3. Calligraphic stylisation 143

(a) (b)

(d)(c)

Figure 5.22: Stylisation of simple alphabet letters. (a) Target sequences for the letters. (b) Trajec-
tories generated with MIC (using covariances oriented with θ = 116◦). (c) The same
trajectories with the addition of down strokes and left-to-right strokes. (d) Addition
of some ligatures between letters.

this approach with automatically determined motor plans in Chapter 11.

5.3.2 Predefined motor plans

We also test calligraphic stylisation with combinations of user-defined motor plans

meant for letterforms. To limit the effect on stylisation of the letter structure we use

prototypical glyphs that are adopted to teach print letter writing to children (Zaner-

Bloser method, 2020), and set the vertices approximately in correspondence with points

along the glyph traces at which the horizontal or vertical direction of the pen would

change (Figure 5.22.a). We then assign a Gaussian with the same covariance to each

target, producing a trajectory that we consider to be evocative of stylised handwriting

(Figure 5.22.b). We increase the degree of stylisation by adding vertices to each spine

so that the movement begins with either a down-stroke or a stroke that moves from left

to right (Figure 5.22.c). Furthermore, we observe that by concatenating the motor plans

of consecutive letters into a single one (Figure 5.22.d) results in smooth ligatures that

are evocative of natural writing motion. We test a similar procedure on more abstract

and complex letter templates (Figure 5.23), which results in an accentuated and diverse

Figure 5.23: Composition of predefined motor plans for the letters “ABRCD” (blue) composing
the word “ABRACADABRA” and stylised by repeating the same covariance for each
motor plan vertex. Next to each stylisation the repeated covariance ellipse in yellow.

5.3. Calligraphic stylisation 144

visual effect of the different stylisation parameters.

5.3.3 Generating Asemic Tags

We have seen how the probabilistic formulation of MIC together with a semi-tied covari-

ance formalism can be used to rapidly explore different stylisations of a letter structure,

defined as a coarse sequence of targets. This parsimonious representation can be ex-

ploited in combination with procedural generation methods. The user is then left with

the simplified task of generating coarse point sequences, while the stylised trajectory

evolution is generated by optimal control.

Here we demonstrate a simple application, in which glyph-like structures with no

intended semantics, that is “asemic letters” (Figure 5.24.a), are generated procedurally

and then rendered with different styles by optimal control (Figure 5.24.b and c). The

procedure to generate a random asemic glyph is simple and consists of 3 steps (Figure

5.25):

(a) Generate an ordered sequence of m points randomly distributed along a circle.

(a) (b) (c)

Figure 5.24: Asemic tags. (a) A sequence of four asemic glyphs. (b,c) Different calligraphic styli-
sations using semi-tied covariances and mimicking graffiti tags. Each row is gen-
erated with the same parameters (Gaussian orientation, covariance, ∆max), but the
instances in the column (c) are generated by concatenating all the glyphs as a single
motor plan (i.e. generating ligatures between asemic forms).

1

2

3

4 5

6

(1) (b) (c) (d)

Figure 5.25: Asemic glyph generation procedure.

5.4. Discussion 145

(a) (b) (c) (d)

Figure 5.26: Variable brush thickness smoothing. (a) The texture on the left is swept along the
segments of a motor plan with a thickness that varies linearly between vertices. (b)
Sweeping the same texture along a smooth trajectory that also tracks the brush thick-
ness defined at each vertex. (c) Effect of increasing the variance for the thickness co-
ordinate. (d) Using a semi-transparent brush results in denser brush samples near
curvature extrema.

(b) Offset each point by a random amount, along the radial vector from the circle center.

(c) Refine the ordering of the points so the sequence maximises the distance between

consecutive points, alike an “inverse” travelling salesman problem (TSP), and re-

wards certain stroke directions that might facilitate motor execution by a drawing

hand (e.g. down and left-to-right strokes).

.

5.3.4 Stroke thickness

The same optimisation procedure can be used to smoothly vary the thickness of a brush,

by considering its radius as an additional coordinate in the reference trajectory. To do

so, we add a user configurable diagonal entry to the input covariance matrices which

determines the allowed variability and smoothness of the radius. The result is similar

to the output of a disk B-spline (Seah et al., 2005), but with control on the smoothness

of the stroke thickness profile (Figure 5.26.b,c). Because trajectory samples are denser

where the speed is lower, using this method with a transparent brush results in an effect

that mimics a greater deposition of ink or paint near curvature extrema (Figure 5.26.d).

5.4 Discussion

5.4.1 Performance

We have tested our method on a 2.7 GHz Intel Core i7 machine and used OpenGL for

hardware accelerated rendering; We have implemented the optimisation code in Python,

using the NumPy (Van Der Walt et al., 2011) linear algebra package, as well as in C, us-

ing the Armadillo library (Sanderson, 2010). Both the batch and the iterative approach

(discussed in section C.2) run at interactive rates up to a limit of time steps that depends

on the order of the system and on the sparsity of the tracking reference used in the op-

5.4. Discussion 146

Figure 5.27: Comparison of performances between the batch and iterative approaches.

timisation (Figure 5.27). The batch solution requires the solution of a linear system of

equations which can be done with a time complexity of O(n3) and becomes rapidly non-

interactive as the number of samples increases. However we observe that a sparse sam-

pling, e.g. Ts = 5 produces the desired trajectory behavior determined by the Gaussians,

and results in a problem that is manageable also for complex trajectories.

5.4.2 Limitations: passage times

One limitation of the proposed method relates to our assumption of perfect isochrony

and uniformly spaced passage times. As can be seen in Figure 5.28, this assumption

results in trajectories with curvature extrema that do not always coincide with interpola-

tion points or locations that are perceptually related to the location of a Gaussian center.

This issue is identical to the one with uniform spline parameterisation, which is well

known for the case of cubic curves used in the CAGD domain, and has resulted in the

proposal of methods such as Catmull-Rom splines, or non-uniform parameterisations

such as centripetal (Lee, 1989), chordal (Floater and Surazhsky, 2006) and Foley-Nielson

(Foley and Nielson, 1989). For the case of densely sampled trajectories, non uniform

parameterisations can easily be adapted to our method, by appropriately choosing the

passage times (Figure 5.28). For sparse samplings, this requires formulating the opti-

misation with time-varying transfer matrices, which we leave as an avenue for future

developments.

It should be also noted, that while our method is consistent with the motor control

hypothesis of minimum squared derivatives, such methods do not predict a perfect lo-

cal isochrony, but rather passage times that are approximately uniform across a given

movement (Figure 5.29a). As an example, the passage times for the minimum jerk (MJ)

model are predicted as a byproduct of the optimisation, and this results in the desirable

5.4. Discussion 147

Uniform Centripetal Chordal Nielson-Foley

Figure 5.28: Cubic interpolation with MIC using a second order system and different parameter-
isations: Uniform (default), centripetal, chordal and Nielson-Foley. The interpola-
tory behavior is produced with a value σh close to zero and forcing zero velocity and
acceleration for the last state.

(a)
MIC
MJ

(b) (c)

Figure 5.29: Comparing an MJ trajectory (red) and an interpolating trajectory generated with
MIC using a third order system (black). (a) Comparison with uniform parameter-
isation. (b) Comparison with passage times computed using the method of Todorov
and Jordan (1998), resulting in identical trajectories. (c) Comparison with passage
times computed with the centripetal method of Lee (1989).

property that the resulting trajectories interpolate via-points almost exactly at curvature

extrema. However, the solution for time of trajectories with more than one via-point

requires a non-linear optimisation procedure that cannot be performed in real time, at

least with the methods described in the literature (Figure 5.29b).

It is interesting to note that applying the centripetal parameterisation to a trajectory

generated with a third order system results in a more precise approximation of the opti-

mal MJ trajectory (Figure 5.29c). As the name implies, the centripetal parameterisation is

based on a low order approximation of centripetal acceleration. This result suggests that

a similar approximation heuristic can be developed for higher order derivatives, which

could be a beneficial extension to our method.

5.5. Conclusion 148

5.5 Conclusion

We have presented MIC, a method for the generation of smooth curves and motion tra-

jectories using a stochastic solution to an optimal control problem. The output of our

method is a trajectory distribution, which describes a family of motion paths that can

mimic the appearance and the variability of human-made artistic traces. The input to

the method is a sparse sequence of multivariate Gaussians that determine the overall

shape of the output and explicitly define its variability. This results in a representation

that is similar to the one used in conventional CAGD applications, and that can be edited

interactively in a similar manner. While in this chapter we have focused on the genera-

tion of 2D trajectories, the proposed methodology can be generalised to higher dimen-

sions. This opens up the possibility to extend the method to 3D trajectories, as well as

taking into consideration the evolution of additional variables, such as the drawing tool

orientation, pressure or color.

For our use case, we let the user explicitly define the MoG components. However

a similar representation can be learned from data with standard maximum-likelihood

estimation methods (Calinon, 2016a). Our choice of Gaussians as an input and output

distribution is principally motivated by its effectiveness and simplicity of representation.

From a user-interaction perspective, this allows users to intuitively manipulate the in-

put distributions by modifying the axes of each MoG component ellipsoid (Figure 5.11).

Furthermore, the straightforward relation of Gaussians to quadratic error terms in lin-

ear systems allows us to solve the optimal control problem at interactive rates and in

closed form, all the while offering a stochastic interpretation of the output. Extending

the proposed method to non-linear dynamical systems and to distributions other than

Gaussians represents an interesting avenue of future research.

Similarly to the previously described ΣΛmodel in Chapter 4, each trajectory gener-

ated by the MIC method reflects a movement with physiologically plausible kinematics.

This can be exploited to produce appealing rendering effects, realistic (to the human eye)

animations, or even to generate smooth motions that can be tracked with a robotic arm

(Berio et al., 2016). One advantage of this method with respect to the ΣΛmodel, is that it

allows to produce consistent variations and stylisations of a trajectory with a very com-

pact parameter set, for example with the use of semi-tied covariances or the addition of

multiple tracking references. We exploit this property in the next chapter, where we use

5.5. Conclusion 149

MIC trajectories to generate the outlines of solid strokes similar to the ones that can be

seen in graffiti “pieces”.

While less flexible to control parametrically, we will take advantage of the explicit

sub-movement parameterisation given by the ΣΛ model in Chapter 8, where it will be

used as a basis for a data-driven approach to generate calligraphic stylisations from ex-

amples.

Chapter 6

Outline stylisation: Sketching and layering

thick graffiti primitives

“The arrow... everybody’s got their

own arrow. I like that though.”

Zephyr, Style Wars

(a) (b)

(c)

Figure 6.1: Examples of outputs from our system. (a) Stylistic variations of the same stroke de-
scribing a letter “S”. (b) A letter “S” with local layering and arrows at the stroke ends.
(c) Combination and layering of multiple strokes and rendering effects for the graffiti
composition “EXPRESS”.

This chapter is based on a collaboration established by myself and Prof. Frederic

Fol Leymarie together with Dr. Paul Asente and Dr. Jose Echevarria at Adobe Research

(San Jose, California). All the methods have been developed and implemented by myself,

with the exception of the 2D extrusion method described in Section 6.3, which has been

developed by Paul Asente as an unreleased plugin for Adobe Illustrator. An earlier version

of the work reported here is published (Berio et al., 2019).

151

The trajectory generation methods developed in the previous two chapters result in

a system that allows to interactively or procedurally generate strokes that resemble the

ones seen in calligraphy or graffiti tags. These types of strokes are inherently 1D, and

mimic the rapid traces left by the motion of a writing or drawing instrument. Similarly

to typography, in more sophisticated forms of graffiti art, strokes take on a 2D form and

are combined to produce an outline. Depending on the graffiti sub-genre, these strokes

are either sketched with skillful free hand motions or precisely traced in a geometric way.

Strokes are often interlocked in complex ways and may have self-occlusions and loops

(Ferri, 2016). They are then fused and traced to create the outline of a highly stylised

version of one or a combination of letterforms (Figure 6.1). The resulting outlines are not

limited to the boundary of the letter, but may extend to suggest where and how different

strokes overlap or where a stroke folds over itself. The result is often evocative of a 3D

composition.

In this chapter, we follow a similar strategy to the previous two, and develop an

interface that is inspired by the way in which graffiti pieces are typically composed.

While each artist’s method is idiosyncratic, common construction strategies exist (e.g.

(Schmidlapp, 1996, p.61)). First, a letterform is conceived as motor plan, along which

stylised strokes and parts are then combined in a rough sketch (Arte, 2015).1 Second, the

union of these elements is filled in, often with a combination of gradients and geometric

forms that follow the overall letter and outline structure. Third, and finally, this union

of letterforms is outlined to reveal an overall view consisting of possibly interlocking and

overlapping parts. Effects such as extrusions and highlights are often furthermore added.

Reproducing such results with conventional vector drawing digital tools can be very

challenging. Many, if not all, well known such software packages assume that objects

are separately layered in a back-to-front order (Adobe, 2019b). As a result, creating in-

terlocking patterns and overlaps requires either manually masking hidden parts of an

outline, or cutting overlapping parts and manually removing occluding parts of object

outlines. Other applications, like Adobe Animate (Adobe, 2019a), support planar map

decompositions , but do this in a way that does not maintain the continuity of the orig-

inal strokes. In both cases, the required manual interactions are time consuming and,

1With expertise, multiple parts may be sketched as a whole, which can lead to more sophisticated and
organic forms. However, the various parts are often conceived as independent stroke-like elements.

6.1. Stroke Generation 152

more importantly, one loses the underlying structure of the drawing. This makes it diffi-

cult to perform changes and explore variations of a drawing.

As a solution to this challenge, we propose an interactive computational model of

“graffiti strokes” (Section 6.1) and develop a method for rapidly combining such strokes

into letters and other interlocking patterns (Section 6.2.3). Our stroke model relies on a

variant of the popular skeletal strokes technique (Hsu and Lee, 1994) that we extend to be

able to mimic the appearance of artful complex graffiti (Figure 6.2). We exploit the stroke

structure to develop an efficient method and interface for handling complex layering

and self-overlaps. The final output of our method is a set of non intersecting outlines,

like the ones produced by hidden line removal methods in 3D, but relying on a fully 2D

representation and interface.

6.1 Stroke Generation

The basis for our stroke generation method is a variant of the popular skeletal strokes

technique (Hsu and Lee, 1994). We recall from Chapter 3 that a skeletal stroke is defined

as an input shape, called a prototype, that is deformed along a destination path, called

spine. The deformation is performed by mapping portions of the prototype to portions

of the spine, and then generating outlines using a variable-width profile.

Width profile. Typical skeletal stroke implementations assume that the width varies

continuously along the spine. However, we observe that components of graffiti letters

often have widths that change discontinuously at spine corners, resulting in an effect

that evokes a 3D projection of a surface or the trace of a chiseled calligraphic pen. To

facilitate this, we define a spine as a sequence of vertex pairs, where each vertex pair is

connected by a segment and each segment has an initial and final width (Figure 6.3).

The subsequently developed stroke model uses only straight segments, but the

method is general enough to work with curved segments as well.2

Prototype deformation. In the standard case of a continuous width profile, the proto-

type can be deformed by mapping points along its outline to points that are perpendic-

ular to the spine. These points are given by a sequence of line segments centered along

the spine called ribs, which are orthogonal to the spine and have lengths depending on

the width profile. This approach can lead to self-folds in the deformed prototype, cor-

2Both polygonal and curved segmented spines have been considered in my implementations and have
been tested with success.

6.1. Stroke Generation 153

Figure 6.2: Graffiti with complicated intertwined strokes, courtesy of the graffiti artists SMART
(top) and ENS (bottom).

Figure 6.3: Strokes with rectangular prototypes and varying width profiles (shown below). Each
color represents a different segment.

6.1. Stroke Generation 154

responding to corners and high-curvature portions of the spine that produce retrograde

motion in the resulting stroke outline (Asente et al., 2007). Such folds are often consid-

ered undesirable, and the usual approach is to avoid them by adjusting the orientations

and lengths of the ribs. This can be done globally (Hsu and Lee, 1994), by using the an-

gle bisectors rather than the normals at corners and interpolating the intermediate ribs

accordingly. Another approach is to perform the adjustment locally (Asente et al., 2007),

which avoids the potentially skewed appearance of the strokes.

For the desired use-case, we must accommodate width discontinuities at spine cor-

ners. Moreover, many graffiti styles use folds instead of avoiding these (Figure 6.1). Our

definition of ribs thus differs slightly from the one used by Hsu and Lee (1994) and others.

In our case, each spine segment is covered by a series of ribs that interpolate an

initial and a final rib defined at the segment end-vertices. The first and the last spine

vertices are assigned one rib each, and the rib is perpendicular to the incident spine

segment. The intermediate spine vertices are assigned two ribs each, one for each inci-

dent spine segment. The orientations and lengths of these two ribs are computed with

a procedure that is discussed next, and which depends on the width profile and on the

orientation of the incident spine segments.

The ribs at each intermediate vertex (where the spine flexes) are defined using an

oblique coordinate system [û1, û2], centered at the vertex (Figure 6.4a), and given by:

û1 = d̂ 1sgn(α) , û2 =−d̂ 2sgn(α) , (6.1)

where d̂ 1 and d̂ 2 denote the unit tangents preceding and following the vertex, α is the

angle between the two tangents, and sgn(α) ensures that the coordinate system is always

oriented towards the convex part of the stroke. The offsets with respect to this basis are

then given by:

o1 = w2

sinα
, o2 = w1

sinα
, (6.2)

with w1 and w2 denoting the profile widths preceding and following the vertex. This

construction results in a weighted bisector b = o1û1 +o2û2, whose direction is the same

as the angle bisector when the widths on each side of the vertex are equal.

On the convex side of a vertex, we test the outline angle at b and generate a miter

joint if it is too acute, as is done in conventional stroking algorithms. The ribs at the

6.1. Stroke Generation 155

mitering

(a) (b)

Figure 6.4: Corner rib adjustment according to the oblique coordinate system [û1, û2] and cor-
ner mitering. (a) Unfolded construction similar to the one proposed by Hsu and Lee
(1994). (b) Folded construction. Below, the ribs generated by each construction.

vertex terminate either at b or at the miter intersections. On the concave side, the ribs

could end at the tip of the vector −b, removing folds (Figure 6.4a) in a manner similar

to the bisector-based method proposed in the original skeletal strokes implementation

(Hsu and Lee, 1994). However, for our application we exploit the folds in order to render

overlapping effects. To do so, we end the ribs at the tips of the vectors w̌ û1−b and w̌ û2−b

(Figure 6.4b). Here w̌ is the minimum of o1 and o2 scaled by an angle fall-off function:

1−exp

(
−α

2

σ2
α

)
, (6.3)

that decreases the amount of folding proportionally to the angle between spine seg-

ments, according to a user configurable parameter σα that we set experimentally to π/4

(Figure 6.5). This avoids excessive folding for obtuse angles and, for our use case, im-

proves the visual quality of the smooth outlines that are discussed in the subsequent

section. Note that the segment-end ribs for a vertex do not actually pass through the

vertex, but since our prototypes are always rectangles, only the rib endpoints matter.

The folds generated by this method remain through the stroke-smoothing step de-

scribed in the rest of this section, and are resolved in the layering method described in

Section 6.2.

6.1. Stroke Generation 156

(a) (b)

Figure 6.5: Effect of the angle fall-off parameter. Whenσα = 0 the parameter has no effect and (a)
shows the resulting strokes with different angles α between spine segments. A larger
value of σα = π/4 in (b) reduces the amount of folding proportionally to the angle α.
This affects the resulting smoothed trajectory (black) only when the angle α is obtuse
and produces a thicker stroke near the corner in (b) when compared to (a).

(a) (b) (c)

Figure 6.6: Variations of strokes for the same spine and width. (a) Polygonal stroke. (b) Curved
stroke from the smoothed spine (in red). (c) Smoothed outline from the polygonal
stroke (outline in red).

6.1.1 Smooth strokes

In addition to applying strokes to polygonal spines, we would like to smooth these to

achieve certain graffiti styles. One approach would be to smooth the spine before apply-

ing the stroke, but we note that the result often looks rather mechanical and not hand-

drawn (Figure 6.6b). Instead, we first deform a polygonal prototype along the original

spine, and then treat the resulting polygonal outline as a motor plan that drives the gen-

eration of a smooth stroke using one or more MIC trajectories (Figure 6.6c). This is easily

done by assigning one Gaussian to each polygonal stroke vertex.

Different types of strokes and stylisations can be produced by either varying the

kinematics of the motion with the same techniques demonstrated in Chapter 5, or vary-

ing the shape of the prototype used to generate the stroke, which results in a variation of

the motor plan. This allows for a large range of stylistic variations of a stroke. They resem-

ble graffiti art visually and also mimic the process typically followed when constructing

6.1. Stroke Generation 157

graffiti letters. Furthermore, spines usually consist of a small number of vertices, making

them easy to author interactively or procedurally.

Smooth stroke types. We define three kinds of smooth strokes:

• Squared end strokes are defined with a prototype made by two parallel and simi-

larly oriented lines. The stroke is then produced by tracing each side of the stroke

with two separate motions, and then connecting the trajectory ends with two

straight line segments.

• Rounded strokes are defined by starting from a rectangular prototype. The stroke

is then produced with a single periodic motion that follows all the vertices of the

resulting skeletal stroke and returns to the beginning. The roundness at the stroke

ends can be parametrically controlled by adjusting the covariance matrices corre-

sponding to the vertices at the ends of the stroke (Figure 6.7).

• Closed strokes are defined with a prototype made by two parallel lines and a closed

polygonal spine. A closed stroke is then produced with two periodic motions that

follow each side of the deformed prototype.

Some graffiti styles alternate smooth parts of a stroke with polygonal ones. To do

so, we generate smooth trajectories for subsets of the envelope and connect these into a

single stroke (Figure 6.8).

6.2. Apparent layering and overlaps 158

(a) (b)

Figure 6.7: Rounded strokes. (a) The disks depict the covariance ellipses for the vertices of the
stroke, the orange ones being for the stroke ends. (b) Decreasing the variance of these
orange disks reduces the roundness at the stroke ends.

Figure 6.8: A smooth stroke with squared ends (left) and a piece-wise smooth version of it (right)

6.2 Apparent layering and overlaps

Graffiti often contains intricate overlaid and intertwined parts with non-global layering

(Figure 6.2). These compositions can be evocative of a 3D projection, but rarely follow

the rules of projective geometry, representing an abstraction or caricature of such rules.

A systematic analysis of the geometry of the “pictorial space” (Koenderink, 2012) used in

graffiti is left for future research. However, we can exploit the stroke-based structure to

develop a 2D interface that allows self-overlaps (Section 6.2.2) and local layering (Section

6.2.3) which prove useful in applications.

6.2.1 Partitions

Our layering and self-overlap rendering method relies upon subdividing strokes into a

series of partitions. Each such partition corresponds to a connected portion of the spine

representing a potential layer with an associated depth value. Not all depth assignments

are possible; for example, in Figure 6.9, partition 1 cannot come between partitions 3

and 4 in depth order. Section 6.2.3 discusses how we prevent impossible assignments.

6.2. Apparent layering and overlaps 159

(a) (b)

11
22

33
4

4

Figure 6.9: Partition shapes (color coded) for a (a) polygonal and (b) smoothly curving stroke.

Partitions are also assigned integer indices, in order, from the beginning of the spine to

the end.

The skeletal stroke algorithm allows a straightforward mapping from points on the

spine to corresponding points on the stroke outline. These portions of the outline form

the outside edges of partition shapes (Figure 6.9). For outside corners with bevels, we

assign the bevel edge to the outline of both adjacent partition shapes, and for inside

corners with retrograde segments, we assign the loop area to both, as shown in Figure

6.9.a. This ensures that the partition shapes fully cover the area of the stroke, sometimes

producing small regions where adjacent partition shapes overlap.

For polygonal strokes and spines the subdivision into partitions is trivial: each par-

tition corresponds to a straight spine segment and the partition shapes are given by the

outline segments mapped to each segment. For a polygonal spine with a smoothed

stroke the partition shapes are given by mapping polygonal spine vertices to correspond-

ing vertices in the smooth stroke outline. An initial estimate of these vertices is given by

trajectory points corresponding to the passage time of each Gaussian. We then refine

this assignment by identifying the closest curvature extrema to each pre-identified point.

This method can be extended to other curve generation methods as long as a mapping

is possible between the control points and the resulting curve. For an arbitrarily curved

spine the partitioning is based on an estimate of curvature extrema and corners along

the spine.

6.2.2 Fold culling

Deforming a prototype according to the proposed method often results in a shape that

contains self-folds. Most traditional implementation of skeletal strokes consider this a

problem and suggest methods to overcome these (Asente, 2010; Hsu and Lee, 1994; Lang

and Alexa, 2015). In our application, we exploit this property to generate soft strokes (as

6.2. Apparent layering and overlaps 160

(a) (c) (d)(b)

Figure 6.10: Different fold cases. (a) Corner in a polygonal stroke. (b) Curvature extrema in a
stroke with a curved spine. (c) Flattened fold in a smooth stroke. (d) Fold in a smooth
stroke. The retrograde portions are marked in red.

discussed above) as well as to achieve stylised folding and overlap effects that are often

seen in graffiti art, as well as in comics and other cartoons.

We identify folds with a procedure similar to the method proposed by Asente (2010)

and find portions of the stroke outline that include retrograde motion. For a polygonal

spine, these are trivially given by outline segments that are part of a concave portion of

the outline and connect two vertices belonging to two different partitions (Figure 6.10.a).

For a curved spine, these are given by the outline points that map to points of the spine

with a radius of curvature less than the corresponding stroke half-width (Figure 6.10.b).

For the case of a smoothed envelope, we first identify a series of potentially retrograde

portions by finding the smoothed points that map to retrograde portions of the polygo-

nal envelope. However, our smoothing technique is sufficiently flexible that it does not

always maintain the retrograde segments, so there may not be a fold anymore (Figure

6.10.c). To determine whether there is a fold, we check if the midpoint of a potentially

retrograde portion is contained in both adjacent partition shapes, in which case the por-

tion is considered retrograde (Figure 6.10.d).

Once all retrograde portions have been identified, we traverse the outline on each

side until we reach a common point of intersection. We then cull the retrograde portion

of the side with lower depth. The remaining side is marked as partially visible according

to a user configurable parameter ∈ [0,1] that interpolates the visibility of the side relative

to its length (Figure 6.11).

6.2.3 Layering and Planar Map

The partitioning scheme allows us to compute a layering of one or more strokes analo-

gously to the method of Igarashi and Mitani (2010) for 3D shapes on a plane. We com-

pute a planar map from the combination of all partition shapes, where each partition

corresponds to a layer. Each edge of the resulting planar map is assigned to an edge of a

6.2. Apparent layering and overlaps 161

(a)

1.0

0.5

0.0

(b) (c)

Figure 6.11: Stylised folds, showing the effect of the fold-rendering parameter.

partition shape and the corresponding partition index. For each interior face of the pla-

nar map we then compute a partition list LP that indicates which partitions overlap the

region defined by the face. This can easily be done by choosing a point inside the face

and testing which partition shapes contain the point. We then sort the partition list ac-

cording to an ascending depth order, and iterate over each face edge. An edge is marked

as visible if the partition it belongs to is the same as the higher one in the depth-sorted

partition list.

Resolving impossible layer orders. The procedure above is efficient and can handle

many types of complicated layering structures. At the same time, there can be combina-

tions of partitions and depth values that have no consistent layering solutions, especially

in the neighbourhood of spine vertices (Figure 6.9.a). To resolve these cases, we use a list

graph structure (Igarashi and Mitani, 2010; McCann and Pollard, 2009), which has a ver-

tex for each internal face of the planar map and an edge for each pair of faces that are

adjacent and share a common partition.

Impossible overlaps can be detected by examining the connected components of

the list graph and checking for inconsistencies in the layer ordering across the corre-

sponding faces. For each connected component we compute a list of partitions assigned

to it and sort it by increasing depth. By construction, two partitions with indices pi and

p j are adjacent in the stroke if |pi − p j | = 1. A connected component of the list graph

6.3. Results and Applications 162

(a) (b)

Figure 6.12: Additional layering effects. (a) A stroke is combined with the outline of a letter “A”.
The letter is assigned a single partition and depth value. (b) A union operation is
used to add an arrow head to a stroke.

contains an impossible overlap if any adjacent pair in the list is not contiguous in the

depth sorted list. If an impossible order is detected, we proceed in a manner similar to

Igarashi and Mitani (2010) and compute the maximum area covered by each partition

and consider all permutations that do not contain impossible orders. We then choose

the permutation with the lowest number layer of swaps, weighted by the area of each

layer.

Mixing strokes and arbitrary vector inputs. This layering method relies on a parti-

tioning of the input given by our stroke representation. However, we can also combine

strokes with arbitrary shapes (Figure 6.12.a) as long as each is treated as a single partition

with a unique depth value, in which case the method operates as a vector counterpart of

the one proposed by McCann and Pollard (2009) for bitmap inputs.

Unions. In addition to the depth ordering, we can also easily handle unions between one

or more layers. To do so we define a set of union pairs {pi , p j } between partitions, and cull

an edge if any pair of partitions assigned to it correspond to a union. For example, we can

add arrowheads to a stroke — an effect often seen in graffiti — by simply generating an

arrowhead shape and then specifying a union between the arrow head and the partition

corresponding to the end of a stroke (Figure 6.12.b). The same approach can be used

to append arbitrary caps to the strokes with an effect similar to the one proposed by

Jakubiak et al. (2006). A similar procedure should be possible also with other boolean

operation, such as local differences or intersections, but this is left as an avenue of future

development.

6.3 Results and Applications

The combination of the parametric stroke model and the proposed folding and layer-

ing methods lets us easily render intertwined strokes in a way that would be difficult to

6.3. Results and Applications 163

achieve with traditional vector graphics methods. The stroke representation can be con-

structed and edited with a simple interface and is well suited for the rapid generation of

compositions and renderings that mimic the appearance of graffiti art.

Performance and interaction. The stroke generation and layering procedures can be

used interactively and let a user quickly produce and explore variations of graffiti compo-

sitions. To test the performance of the method we generated patterns of increasing com-

plexity, similarly the one shown in Figure 6.17. On a commodity laptop, we achieve frame

rates suitable for interactive editing as long as the number of curve samples is fewer than

1000 (Figure 6.13). For example the letters in Figure 6.16 have about 400 points each and

take less than 30 milliseconds for layering and rendering. The main bottleneck of the

system is currently the curve generation method (Chapter 5), when the solution is com-

puted with the least squares approach. For the case of squared end strokes, the solution

can be computed iteratively, in which case the performance hit of smoothing is negli-

gible compared with the layering procedure (Figure 6.13, left). When generating closed

curves the least squares solution is necessary, and performance is mostly affected by the

smoothing procedure (Figure 6.13, right). The pattern in Figure 6.17 is generated with a

single closed stroke, has 7488 vertices and takes 10 seconds for curve generation and 0.2

seconds for layering. For interaction and preview purposes we can limit the number of

curve samples, allowing for interactive editing of complex patterns like the one shown in

Figure 6.1.c, which was produced interactively with our UI.

The interface to our method is simple: the user creates a stroke by clicking to define

a sparse sequence of spine vertices. The user can then vary the shape of a stroke by

adjusting stroke parameters such as the amount of smoothing. The width of a stroke

can be adjusted globally with a set of sliders, or locally by dragging perpendicularly to a

spine edge. The layering interface lets a user perform layer swaps in a manner similar to

the one described by Igarashi and Mitani (2010). Clicking on an overlap area brings the

bottom-most partition to the top. Unions can also similarly be created by clicking on an

overlap area with a different tool we provide. (Figure 6.14)

Fills and rendering effects. We generate colorful compositions by exploiting the faces

of the planar map generated during the layering process. Randomly offsetting the faces

and assigning each face a color from a user-specified palette gives results similar to those

often seen in graffiti art (Figure 6.15.d). We can use the same palette to smoothly fill areas

6.3. Results and Applications 164

500 1000 1500 2000 2500 3000 3500 4000
Points

0.00

0.25

0.50

0.75

1.00

1.25
Ti

m
e

(s
ec

on
ds

)

Non periodic

Global
Curve Generation
Layering

14 22 36 50 60 74 83
Spine Segments

1000 1500 2000 2500 3000 3500 4000
Points

0

2

4

6

8

Ti
m

e
(s

ec
on

ds
)

Periodic

Global
Curve Generation
Layering

14 22 36 50 60 74 83
Spine Segments

Figure 6.13: Performance of the method for increasing number of curve samples and spine seg-
ments. Left: non-periodic. Right: periodic.

Figure 6.14: Layering interactions: with a single mouse click, the user can swap depth ordering
(middle) or create unions (right).

(a) (b) (c)

(d) (e)

Figure 6.15: Interactive construction of a graffiti letter "R". (a) Stroke outlines and polygonal
spine. (b) Layered outlines. (c) Fill-in gradients. (d) Geometric effects using pla-
nar map faces and highlights. (e) Extrusion.

6.3. Results and Applications 165

Figure 6.16: Graffiti letters (“A” and “R”) generated and rendered with our method.

in ways that mimic the diffused use of spray paint. This can be simply done by using the

union of all outlines to mask a raster fill. In the examples given here we generate the fill

by randomly alpha-blending smooth gradient bitmaps over the interior of the outlines

(Figure 6.15.c). To increase the realism of the rendering we can add highlights to parts

of the outline that are approximately perpendicular to a given light direction. This, com-

bined with an extrusion effect captures a visual effect that is often seen in conventional

instances of graffiti art (Figure 6.15.e). Figure 6.16 shows results that combine all these

effects.

Extrusion. One effect that is often seen in graffiti art (Figure 6.2) is a simple oblique

isometric extrusion of the composition as a whole. Our proposed method to construct

these digitally proceeds in 7 steps as follows:

1. Rotate the entire composition so that the extrusion can be done directly down-

ward, in the negative y direction.

2. Create a planar map from the rotated composition and extract the edges.

3. Split each edge at corners and at extrema in the x direction. The result is a set

of straight and curved segments that intersect each other only at their endpoints.

Each segment has x coordinates that monotonically increase or decrease.

4. Perform a topological sort of the segments, with the ordering function being that

segment s1 is greater than segment s2 if some point on s1 and some point on s2

have the same x coordinate, different y coordinates, and the point on s1 has a

larger y coordinate. This formalizes the idea that s1 is greater than s2 if s1 is higher

than s2 in the y direction.

6.3. Results and Applications 166

(a)

(b)

(c)

Figure 6.17: Weaving pattern generated by constructing an Eulerian cycle (b) over a planar graph
(a) and then using the resulting path to generate one looping stroke (c).

5. Construct a total order from the partial order produced by the topological sort.

6. For each segment, construct an extrusion face by offsetting the segment vertically

by the extrusion depth and connecting the ends of the original and offset segments.

Stack these faces with the last – the one from the edge with the smallest y coordi-

nate – on the top of the stacking order.

7. Place the extrusion faces below the rotated composition, and rotate everything

back to the original orientation.

The extrusion faces can then be stroked and filled as desired. Figures 6.1, 6.14, 6.15 and

6.16 show examples produced by our system. The extrusion can be modified by choosing

areas to subdivide more finely, creating an effect similar to that in Figure 6.2, top.

Figure 6.14 also includes a thicker outline around the union of all the strokes, an-

other common effect seen in street art (e.g. Figure 6.2, bottom).

Generative applications: Weaving patterns. Specifying a stroke with a sparse sequence

of control points is a simple user interaction procedure. The same sparse representation

is also convenient in a procedural modelling applications, in which the system can op-

erate at a high level by specifying the sparse sequences of control vertices. Then, various

6.4. Conclusion 167

Figure 6.18: A pen plotter drawing a weaving pattern generated by our system running on a note-
book.

stylisations of the output can be explored parametrically. For example, a simple pro-

cedure can generate stylized knots or weaving patterns. We first generate a 2D lattice

(Figure 6.17a) and compute an Eulerian path or cycle along the lattice (Figure 6.17b). We

then construct a single stroke along the path, making sure that the depth values of cross-

ings are interleaved (Figure 6.17c). The results are evocative of more abstract forms of

graffiti art and sketchy renditions of weaving patterns.

Machine drawings. The output of our method is suitable for being realized with a draw-

ing robot or plotter. Once the primary printing tool in the early days of computing, plot-

ters have today regained popularity as a creative tool for computer graphics because of

their affordability and their ability to create vector drawings using a variety of physical

drawing media.

The output of our method is suitable for constructing tool paths for such machines.

Furthermore, since we maintain the path ordering defined at the stroke level, the mo-

tions of the machine are visually consistent and often evoke the sequence of movements

that would be followed by a human when producing a drawing (Figure 6.18). This same

property could be used to generate stroke animations from the output of our system.

6.4 Conclusion

We presented a system and interface that permit the generation of convincing synthetic

graffiti with simple, flexible stroke representation. Our method generates strokes with

self-overlap effects that are typical of this art form. However, our current approach builds

6.4. Conclusion 168

Figure 6.19: Layering of strokes with a more complex stroke prototype. On the left, our self-
overlap procedure fails because folds occur within the stroke, and not just along the
boundary. On the right, we shrink the ribs along the bisector, as in Hsu et al. (Hsu
and Lee, 1994) and as discussed in Section 6.1, resulting in a visually consistent out-
put.

Figure 6.20: Overlaps with self-folds. We currently support this effect only through user inter-
action. The effect is prohibited by the impossible layer order resolution procedure
(right).

on the assumption of a rectangular skeletal stroke prototype. Extending this approach

to arbitrary vector inputs is an interesting extension for future studies, but doing so is

not trivial. With complex prototypes (Figure 6.19, left) folded areas can occur within

the stroke, and not just along the boundary. One possible way to handle these cases

could be to estimate the spine through the computation of symmetry axes (Blum and

Nagel, 1978). Symmetry axes also have the potential to extend our layering procedure to

arbitrary shapes. While our current approach relies on the partitioning of the input given

by the skeletal stroke spine, the same partitioning could be computed automatically from

the skeleton of the input.

In our description of the layering procedure, we have focused on the generation of

outlines. In future developments it would be desirable to handle the layering of fill pat-

terns and gradients defined along a stroke as well. This can be achieved by exploiting the

planar map and partition list generated during our method. The output of our method is

6.4. Conclusion 169

a coherent sequence of outlines, that can be used for machining applications or to cre-

ate animations of the reconstruction of the outlines. However, because of the planar map

subdivision, the outlines do not reflect smooth movement kinematics. Producing an en-

tirely smooth reproduction of the outlines is an interesting avenue of future research and

would result in a method that reflects more closely the process used in live constructions

of graffiti letters and would potentially produce more organic stylisations of letterforms.

At the same time, our current approach allows to reproduce a number of stylistic features

that are often seen in graffiti art. For example the stylised letter forms seen in Figure 1.5,

in the introduction (Chapter 1), have been generated with this method and only required

a few clicks and adjustments to create; this is achieved with a procedure that is compati-

ble with the one found in standard stroking methods in popular software packages such

as Illustrator or InkScape.

The layering procedure combined with fold culling can automatically and rapidly

handle many different configurations of one or more strokes with self overlaps. However,

our current implementation of impossible layer resolution (Igarashi and Mitani, 2010)

does not permit certain configurations that visually make sense. As an example, it may

be desirable to render a partition of a stroke that passes below a fold produced by the

adjacent partition (Figure 6.20, left), but this effect is discarded by the resolution process

(Figure 6.20, right). In order to handle these cases, we currently allow the user to disable

the resolution step and create this effect by performing layer swaps with a few clicks in

the regions of interest. In future iterations of this work we plan to handle these cases

automatically.

The interface developed in this chapter completes a system in which a user is able

to define a variety of different graffiti styles with a few clicks, and fine-tune the results

with parametric variations of the stroke primitives. In the next part of the thesis, we will

recover these primitives from existing geometry. As we shall see, doing so results in a

flexible procedural generation and stylisation system, which produces outputs that can

be edited with exactly the same procedures that have been discussed in the preceding

part.

6.4. Conclusion 170

Figure 6.21: Weaving pattern deformed along a spine and then stylised.

Part II

Part II - Graffitization: Recovering

graffiti primitives from shape

171

Chapter 7

Curvilinear Shape Features

"Since Picasso has some of the most

advanced use of lines in the history of

art, this inevitably means that his

central tool is the use of curvature

extrema"

Michael Leyton,

The structure of paintings

(Leyton, 2006)

This chapter introduces the definition of Curvilinear Shape Features (or CSFs). It is

the fruit of brainstorming and many discussions held between myself and Prof. Frederic

Fol Leymarie since the onset of my PhD studies, as we sought better ways to characterise

the shape of curve traces and contours. This chapter refines and expands an earlier defi-

nition and implementation of CSFs, which appears in one conference publication (Berio

et al., 2018b) and one book chapter (Berio et al., 2020b).

7.1 Introduction

The methods described in the next few chapters depend on the recovery of a plausible set

of stroke primitives that reconstruct an input traces and outlines. Doing so extends the

previously described interactive editing, variation, and stylisation methods to arbitrary

vector inputs, laying the foundation for a flexible graffiti and calligraphy stylisation and

generation framework. The types of the input can vary from open digitised traces of tags,

handwriting, drawing, or curves defined in a vector drawing package, to the closed traces

of glyphs and other 2D object outlines.

7.1. Introduction 173

(a) (b) (c)

Figure 7.1: (a) Interior SA and two concave curvilinear shape features (CSFs) for a closed contour.
Each CSF consists of an extremum (red circle), a local symmetry axis terminating at
the extremum (red axis), a contact region where curvature is approximately constant
(thick black segment), and two support segments (thick red segments). The blue ar-
rows show tangents computed at the beginning of the support segments of the left
CSF. (b) All CSF extrema (circles along contour) and the corresponding curvilinear
augmented symmetry axis (CASA), which has two new branches that terminate at con-
vex features. The additional branches allow to easily identify morphological features,
such as the bend characterised by the red and the blue extrema that are “perceptu-
ally close” (Singh, 2015). This would be more challenging with a classic contour-only
based approximation of curvature (c), where the two extrema are far apart in a 1D
traversal of the contour.

We have seen in Chapter 3, how extrema of curvature (i.e. with associated contour

segments having a role of support) are the most salient loci along piecewise smooth con-

tours (Attneave, 1954; Feldman and Singh, 2005; De Winter and Wagemans, 2008b) and

play an important role in the perceptual decomposition of 2D objects (Richards and

Hoffman, 1985; De Winter and Wagemans, 2006) or signed traces (Brault and Plamon-

don, 1993a,b) into parts. It follows that an informative analysis of curvature is of key

importance for the stroke recovery task ahead of us. In Chapter 8, we seek to recover

kinematics from the geometry of a trace in terms of a motor plan and a set of associ-

ated ΣΛ parameters. Given the stereotypical inverse relation between movement speed

and curvature in human hand movements (Viviani and Schneider, 1991; Plamondon and

Guerfali, 1998a), curvature extrema and the corresponding radii of curvature are useful

features for determining the number of generating sub-movements and ΣΛ parameters

for a trace. In Chapter 10, we seek to recover a set of strokes that reconstruct the outline of

a glyph. Again, curvature extrema and their associated outline regions will prove useful

to infer perceptually meaningful parts, to merge these parts into potentially overlapping

strokes and to characterise stroke morphology.

To guide these reconstruction tasks, we seek a feature representation that robustly

7.1. Introduction 174

identifies salient extrema while providing a precise estimate of the associated center and

radius of curvature, as well as an associated region of influence. To this end, we propose

an alternative to traditional methods based on curvature retrieval, which relies on the

geometric analysis of local symmetries rather than a filtering approach based on calculus

(along a curve). We exploit the duality (Leyton, 1987) between the two representations of

(2D) contour curvature and Symmetry Axis Transform (SAT), which allows us to identify

significant curvature extrema and discontinuous breaks along an open or closed con-

tour in terms of a set of features we call curvilinear shape features (CSFs). Figure 7.1.a

displays two such features along with the interior medial axis of a simple object. Each

CSF identifies an absolute maximum of curvature along a trace (red dots, M+ or m−)

together with a circular arc segment surrounding the extremum where curvature is ap-

proximately constant (thick black segment). In addition, each CSF is also associated with

a local symmetry axis (red) terminating at the extremum and a pair of curvilinear support

segments (light red) — trace segments on each side of an identified extremum.

The support segments localise the influence of a CSF and facilitate the analysis of

additional contour features such as tangents near extrema (Figure 7.1.a, blue arrows) or

remaining curvature features such CSFs for absolute minima of curvature (m+, M−), as

well as permitting the robust localisation of inflection points. This feature set enables

a full reconstruction of the curvature function in terms of segments with monotonically

varying curvature, bearing similarities to the representations proposed by Leymarie and

Levine (1989) and Baran et al. (2010).

For closed contours, we also use CSFs to compute a curvilinear augmented sym-

metry axis (CASA), an augmented version of Blum’s SA (Blum and Nagel, 1978) that,

in contrast to the conventional formulation (Belyaev and Yoshizawa, 2001), is guaran-

teed to have branches terminating at all absolute maxima of curvature. This results in

a mixed contour+region representation that allows to relate features that are nearby on

the shape but distant when considering a 1D traversal of the contour. As noted by Singh

(2015), these relations are difficult to distinguish with an analysis of the curvature func-

tion alone. As an example, consider the two curvature extrema emphasised with red and

blue dots in Figure 7.1.b, alongside with the remaining curvature extrema (gray dots)

and the CASA of the object interior (red). The two emphasised extrema identify a region

where the object “bends” and are related by one CASA branch. The branch terminates

7.1. Introduction 175

at the convex extremum, while the other extremum is located on the opposite side of

the branch. In contrast, the same two features are seemingly unrelated when only taking

into consideration the curvature function in Figure 7.1.c. We sill see in Chapter 10 how

these semantic relations between CASA and CSFs are easy to identify computationally

and how this can be integrated into an automatic method to recover strokes from glyph

outlines.

7.1.1 Masking Problem

In order to identify CSFs, let us first recall the result proved by Leyton, which links the

symmetry axes of an object having a smooth bounding contour to its curvature ex-

trema (Leyton, 1987):

Any segment of a smooth planar curve, bounded by two consecutive curvature

extrema of the same type, has a unique symmetry axis, and the axis terminates

at the curvature extremum of the opposite type.

This result holds also for cusps and corners (Hayes and Leyton, 1989), suggesting

that given a symmetry axis (SA), it is possible to identify and locate a curvature extrema

near one axis end. However, doing so is difficult when computing the SAT to a trace

as a whole, and indeed the analysis given by Leyton is local and takes into considera-

tions codons (Richards and Hoffman, 1985), i.e. curve segments defined by consecutive

triplets of curvature extrema. This approach assumes that knowledge about the curva-

ture behavior of an outline is a priori available, which is rarely the case in practice.

Furthermore, the global SAT structure is linked to the overall geometric and topo-

logical configuration of the trace. As an example, a handwriting trace is likely to have self

intersections, which will produce symmetry axes that terminate at intersections instead

of curvature extrema (Figure 7.2.a). In addition, the global SAT is not guaranteed to iden-

tify all perceptually significant curvature extrema, as part of a contour can forbid or mask

the existence of a SA that would otherwise end at a curvature break or corner, or end at

the center of curvature of the circular arc associated to a curvature extremum.

Belyaev and Yoshizawa (2001) prove this masking effect for smooth closed curves

in terms of the evolute, i.e. the trace of the center of curvature of the osculating disks

(Figure 7.2.b in blue). The evolute always has cusps corresponding with curve vertices

(i.e. curvature extrema). Belyaev and Yoshizawa (2001) show that an evolute cusp corre-

sponds with a SA branch only when the segment going from the cusp to the associated

7.1. Introduction 176

(a) (b) (c)

SA Evolute Osculating circle Extremum (with SA) Extremum (without SA)

Figure 7.2: Issues with the SAT for the identification of curvature extrema. (a) the SA (red) of a
self intersecting trace. (b,c) Evolutes (blue) and the masking effect as demonstrated
by Belyaev and Yoshizawa (2001). In (b), the segment (dashed gray) connecting the
right curvature extremum (red circle) to its center of curvature does not intersect the
SA, and the corresponding osculating circle (light gray) does not intersect the outline.
Thus, the SA identifies the extremum with a branch terminating at its centre of cur-
vature. In (c), the segment intersects the SA and the osculating circle intersects the
trace. Consequently, the SA branch that would identify the left curvature extremum
(orange circle) is not present on the SAT.

curvature extrema does not intersect the SA (dashed grey segment in Figure 7.2.b). When

the radius of curvature of the extremum is sufficiently large, this segment intersects the

SAT and the SA branch that would otherwise identify the extremum “disappears” (Figure

7.2.c).1 This can be interpreted in terms of the “maximality” requirement imposed by

the SAT definition, so any curvature extrema the osculating circle of which intersects the

trace will not not be part of the of SAT and thus it will not result in a terminal SA branch.

One possible solution to avoid the masking problem is to identify features with the

full Symmetry Set (SS) (Giblin, 2000; Giblin and Kimia, 2003), which, for the case of

smooth and regular curves, has terminal disks centered at evolute cusps; however, the

SS creates much more complex diagrams where a large part of the structure is (alike the

SAT) linked to global symmetries and other geometric and topological features of the

trace input. Also, the retrieval of the SS is much more involved, and only a small amount

of attention has been devoted to its computation (Kuijper et al., 2006); and there is no

known use in practice.

7.1.2 Solution: Recursive CSF Computation

The proposed practical solution is simple. First estimate an initial CSF set from the SAT

computed globally, or, for the case of traces with self intersections for the SAT computed

1In such a configuration there is no space left for the formation of that SA branch; e.g. this is easily
understood when thinking of the equivalent grassfire propagation process to generate the SAT: there is no
grass left to burn.

7.2. Symmetry axis transform 177

locally for a set of non-intersecting trace segments. Then compute an additional CSF set

by recursively visiting the support segments of previously identified CSFs and comput-

ing a local SAT for each such segment. This procedure terminates when no new CSFs can

be found. The proposed solution effectively avoids limitations of both “extremes” repre-

sented by the SAT (masking, and branches terminating at self-intersections) and the SS

(complexity, difficulty of implementation) while providing an easy to manage and com-

plete descriptor of curvature extrema with a representation similar to the one proposed

by Leyton (1987).

In the following sections, we first introduce a more precise definition and imple-

mentation details for the SAT (Section 7.2), CSFs (Section 7.3) and CASA (Section 7.3.4).

While the basic definition of CSFs covers only absolute maxima of curvature, in Section

7.4 we show how this definition can be extended to include absolute minima in order

to cover all curvature extrema types (M+,m−, M−,m+). We finally show in Section 7.5

how to reconstruct the remaining contour segments with Euler Spirals, which identifies

inflections and results in a piecewise linear approximation of the curvature function.

7.2 Symmetry axis transform

The symmetry axis transform (SAT) of a set of input traces, is the set of all maximal disks

that are tangent 2 to the trace in at least two distinct points (including limit points at cor-

ners), without intersecting the trace set itself. The symmetry axis, SA, is the set {ρ} of all

symmetric points, the centers of the SAT disks. SA points also have an associated radius

function r (ρ) (from maximal disks). The SA is typically organised as a (directed) graph

in 2D and as a hypergraph in higher dimensions (Leymarie and Kimia, 2007), with flow

directions provided by r (ρ). The global SAT (resp. global SA), is the SAT computed si-

multaneously for a set of one or more traces (Figure 7.3.a). The local SAT (resp. local SA),

is the SAT computed for a connected segment along a given trace (Figure 7.3.b).

Symmetric points part of the SA can be categorized into three types depending

on their degree, which is the number of nearest distinct trace points (Giblin and Kimia,

2003).

2Because we are dealing with traces that can be either open or closed, the definition of tangency is relaxed
to include endpoints, cusps and corners. To do so, we can adopt Blum’s definition of “pannormals” (Blum,
1973) and use these to measure the shortest distance to the trace set. Pannormals do correspond to normals
for smooth trace segment, but generalise to "radials" that cover successive directions where gaps may occur
for adjacent normals where the later are not defined, for example at the end points of a curve, at isolated
sample points, or at sharp corners covering a conical range of normal directions.

7.2. Symmetry axis transform 178

(a) (b) (c)

Figure 7.3: Global and local SAT. (a) Traditional global SAT of a closed contour. (b) Local SAT for a
given CSF (dark thick contour segment centered at a convexity, bottom left). (c) Detail
of the right side of the figure and SAT in (a). (i) The green dot on the left identifies
a terminal branch starting at a fork and ending in a terminal disk (black dot). (ii)
The corresponding contact region (thick black arc) (iii) Some ribs (dashed lines) are
shown, here emanating from a regular SA point (blue dot) and a terminal point (black
dot).

1. A terminal point has degree one and coincides with a corner or the center of a

curvature extremum along the outline.

2. A normal (a.k.a. regular) point has degree two.

3. A fork point has degree three or more, and coincides with an SA locus which

branches in three or more paths.

Normal points can be visualized with ribs connecting them to the two nearest outline

points. A branch is a series of connected normal points that ends in either a fork or

a terminal point. Certain branches that are not bounded by a closed trace extend to

infinity. A terminal branch is a branch that ends at a terminal point. A terminal disk

is the SA disk centered at a terminal point. When a trace segment is a circular arc, the

disk touches the curve over a finite contact region that coincides with the arc. When a

terminal branch ends in a corner, its terminal disk shrinks to a point and so does the

disk’s contact region.

Object outlines. When computing the SAT for the contours of an object outline, we dis-

tinguish between the interior and the exterior symmetry axes, respectively denoted as

SAI and SAE . The SAI lies entirely within the object’s figure, and its terminal disks coin-

cide with positive curvature extrema or convex corners along the outline. A loop in SAI

is indicative of (surrounding) a hole in the object. The SAE lies entirely in the object’s

background, and its terminal disks coincide with negative curvature extrema or concave

corners along the outline. A convex outline produces no SAE . The SAE of non-convex

7.2. Symmetry axis transform 179

objects typically has some branches extending to infinity.3

7.2.1 Discrete implementation

In the remainder of the thesis, we will use the term trace to refer to either open or closed

sampled segments. However, for closed segments bounding a solid 2D object, we will

also use the term “contour”. Contours are assumed to be simple (no intersections or

loops such as found in signatures or calligraphy) and consistently oriented according to

the conventions described in Chapter 2.

The input data for our method consists of a set of one or more traces, each denoted

as z(s) and parameterised by arc length s, each being representative of open or closed

segments. To treat continuous, piecewise-continuous and discrete inputs with the same

framework, we uniformly sample each trace giving a sequence of discrete points at an

approximately equal distance ∆s from each other. In the presence of corners or highly

curved portions of an outline, other more sophisticated (adaptive) sampling strategies

are possible, such as the classic iterative application of the de Casteljau algorithm for

Bézier curves or other curvature-based techniques (de Figueiredo, 1995); but we have

found that in practice a uniform sampling with a sufficiently small ∆s works well for our

use case.

In order to treat differently scaled inputs with similar thresholds, we first scale the

traces so that the height of their bounding box hext is equal to a user defined amount.

We use hext = 150 and∆s = 1 in the accompanying examples. The choice of the height to

compute the scaling factor is motivated by the assumption that our input mostly consists

of characters or text strings that are written horizontally. In the presence of noise, we

observe that it is convenient to slightly pre-smooth each trace by a small amount that

does not degrade its overall (perceived) shape.

7.2.2 Voronoi approximation

Many algorithms for computing the SAT exist, and the CSF identification procedure that

follows can easily be adapted to any such method that operates on either curves or poly-

lines. We choose to rely on a Voronoi-based approximation as described by Ogniewicz

and Ilg (1992) because it is efficient, robust to quantisation noise, and well established.4

3In practice such branches to infinity are usually cut-off at a maximum distance or for some pre-defined
bounding box.

4I implemented the approach in Python using the QHull package (Barber et al., 1996) for robustness and
accuracy.

7.3. Computing Curvilinear Shape Features (CSFs) 180

The method supports a family of regularisation methods that discard superfluous edges

based on a “potential residual” measure smin, the shortest geodesic length along the trace

connecting any two symmetric points z(si) and z(s j). When z(si) and z(s j) are part of

different traces, smin is set to an arbitrarily large value. The examples given in this the-

sis use the “chord residual” regularization variant, where a Voronoi edge is discarded

if smin − ∥∥z(si)− z(s j)
∥∥ less than a user defined threshold. This pruning process effec-

tively corresponds with removing Delaunay triangles that do not greatly contribute to

the shape boundary. An example of the use of this approach is given in Figure 7.4 for a

2D letterform “a”.

(a) (b) (c)

Figure 7.4: Voronoi skeleton (in (b)) to the SAT (in (c)) using the method of Ogniewicz and Ilg
(1992).

The SA approximation is given by the edges remaining after regularization, where

terminal points and forks coincide with Voronoi vertices of degree 1 and degree 3 or

more, while normal vertices coincide with the midpoints of kept Voronoi edges. The disk

radii for normal vertices are given by the Voronoi edge distance to any of its symmetric

points, while the disk radii for forks and terminals are given by the circumcircle of the

corresponding Delaunay triangle. The contact region of the approximated terminal disk

is the shortest trace segment connecting its nearest points z i , z j , which corresponds to a

circular arc that approximates the trace to within a small tolerance.

7.3 Computing Curvilinear Shape Features (CSFs)

Curvilinear shape features are trace segments that identify curvature extrema, including

sharp angles at corners.

Definition 7.3.1 (Curvilinear Shape Feature (CSF)). A CSF has five elements:

• SAi , a local symmetry axis segment extended to reach the trace;

7.3. Computing Curvilinear Shape Features (CSFs) 181

(a) (b) (c)

Figure 7.5: (a) Four successive Curvilinear Shape Features (CSFs): Each CSF is defined by (i) a
local symmetry axis, extended to reach the outline, (ii) a terminal disk, (iii) its contact
region (an arc or point), (iv) a representative curvature extremum, (v) a pair of sup-
porting outline segments, each shared by the adjacent CSF. The third CSF (from the
left) is a corner and thus has a contact region reduced to a point. The local symmetry
axes can intersect and overlap, unlike medial axes. (b) A configuration, such as the
one that might occur in a serifed letter E, where one CSF with a small radius (blue) is
adjacent to one with a larger radius (yellow). This results in a very short support seg-
ment shared by the two features. (c) To compute CSF saliency, we extend the support
segments to the adjacent extrema, which here helps capture the concave area around
the blue CSF. We do not use the extended segments when identifying CSFs; doing so
here would result in local symmetry axes that miss the larger yellow CSF.

• CC i , a terminal disk centered at the tip of SAi before it is extended;

• �CC i , the associated contact region (an arc, or a point for corners);

• ẑ i , the associated extremum of curvature, which we take as the mid-point of the

contact region �CC i ;

• z l hs
i (s)and z r hs

i (s), a pair of supporting trace segments on each side of �CC i , repre-

senting the CSF’s region of influence.

The index i indicates one of NC SF computed CSF: 1 ≤ i ≤ NC SF .

Each support segment of a CSF is the curve segment extending from one end of the

CSF’s contact region to the beginning of the contact region of the adjacent CSF if present,

or to the adjacent endpoint otherwise (Figure 7.5a). Adjacent CSFs always share one sup-

port segment. The local symmetry axis SAi of a CSF is given by the SAT of the trace seg-

ment spanned by the CSF’s contact region and its two support segments. Because this

trace segment is open, one end of the axis extends to infinity and the other begins at the

center of the terminal disk CC i . We extend the axis with a straight segment connecting

the disk center to the extremum ẑ i . This extension of a terminal branch results in an

axis that is similar to the ones produced by the “Process Inferring Symmetry Axis” (PISA)

7.3. Computing Curvilinear Shape Features (CSFs) 182

as proposed by Leyton (1988), but avoids numerical precision issues when dealing with

discrete traces. A given arc, åCC i , may vanish in size when coinciding with a break of

curvature or sharp corner tip, becoming identically ẑ i . We also emphasise that this def-

inition of a CSF is more general than the older concept of a (contour-based) “codon”: a

triplet of curvature extrema (concave, convex, concave) (Richards and Hoffman, 1985).

7.3.1 CSF Computation

As previously mentioned, the CSF set consists of the union of an initial CSF set with an

additional CSF set computed with a recursive estimation of local symmetry axes. When

the input consists of multiple traces, the CSF set consists of the union of the CSFs iden-

tified for each trace separately.

Initial CSF set: With closed contours, the initial CSF set is trivially computed from the

terminal disks of a contour’s global SAT. When a trace contains self-intersections, a pre-

processing step is used that splits the trace into a set of non self-intersecting segments.

We currently implement this with a brute-force method that traverses the trace starting

from one end-point and adds points to one segment until it intersects itself or the other

end-point is reached. If a self-intersection point is found, a new segment is started from

that point on. Then, the initial CSF set is given by the union of the CSFs sets produced by

the local SATs computed for each so-identified segment.

Additional CSF set: The initial CSF set consists of a number of CSFs connected by sup-

port segments. As previously discussed this initial set is incomplete, since the SAT can

miss important features, depending on the local configuration of a trace (Belyaev and

Yoshizawa, 2001). To identify missing CSFs, we compute local SATs for each previously

identified support segment, and consider the local CSFs that would be produced by its

terminal branches. For each support segment, we first discard any local CSF with a disk

that fully encloses any of the previously identified CSF disks. Then, if any of the remain-

ing local features is salient, the most salient one is selected as an additional CSF. This

procedure is repeated until no new features are found, and always terminates in prac-

tice after a small number of steps (usually 1 or 2). It requires a measure of CSF overlap,

used to determine when one CSF encloses another, and a measure of CSF saliency. Both

measures are described next.

7.3. Computing Curvilinear Shape Features (CSFs) 183

(a) (b) (c)

Figure 7.6: Overlapping disks along a spiral segment. (a) the segment in red between the contact
regions of the two CSFs is a spiral. However its local medial axis has two branches pro-
ducing two terminal disks, shown in gray. (b) Without filtering, the left disk produces
an additional CSF, since it is slightly more salient than the other disk. (c) However, the
disk fully encloses the previously identified one so it is discarded. This results in the
spiral segment not producing any new CSF.

7.3.2 CSF Overlap

A spiral is a continuous curve with monotonically-varying curvature. Such a curve does

not have any curvature extrema between its ends (Leyton, 1987) and thus should not

produce an additional CSF. This can be further characterized by the Tait-Kneser theo-

rem (Ghys et al., 2013), which states that all osculating circles of a spiral segment with

strictly positive or negative curvature, are disjoint and nested. However, because CSF

analysis operates on a sampled curve, looking for additional CSFs for an outline segment

that closely resembles a spiral is likely to produce additional terminal branches in its lo-

cal SA (Figure 7.6a). These branches can result in the detection of a CSF that does not

correspond to an actual extremum (Figure 7.6b).

We discard such disks when evaluating additional CSFs by computing the degree of

overlap δC ∈ [0,1] between any two discs as the area of the intersection between the disks

divided by the area of the smaller disk. We discard any new terminal disk if there is a pre-

existing CSF with a smaller disk radius and for which the degree of overlap for the disks

is greater than a user-defined threshold, which we empirically set to 0.98 (Figure 7.6c).

7.3.3 CSF saliency

To measure the saliency of a CSF, we first extend its support segments to the extrema

of adjacent CSFs, if present. These extensions are not used when finding CSFs because

doing so could lead to less useful local axes (Figure 7.5c), but they capture a perceptu-

ally important region surrounding the CSF. We define the length, h, of the longest angle

bisector coming from the extremum for any triangle connecting the extremum and two

points, one on each extended support segment (Figure 7.7a). This usually occurs at the

7.3. Computing Curvilinear Shape Features (CSFs) 184

(a) (c)(b)

0.10

0.96

0.07 0.80

0.97

0.83 0.25

0.96

0.090.80

0.97
0.86

0.00

0.25

0.50

0.75

1.00

Figure 7.7: Concave CSF saliency computation for the outline of a glyph: (a) Concave CSFs and
their triangles. (b) Saliencies for all concavities. Note that while saliency is somewhat
correlated with the disk radius, two CSFs with similar radii, like the two leftmost ones,
can have different saliencies because of the surrounding trace segments. (c) Detail of
a saliency computation when the longest bisector h does not occur at the ends of the
extended support segments; r is the radius of the disk for the concavity.

segment endpoints, but curved segments can sometimes lead to a maximal length before

the ends (Figure 7.7c). The saliency of a CSF, c, is then given by:

w(c) = e−r /h , (7.1)

with r being the radius of the associated terminal disk.

Saliency is meant to evaluate the curvature of a CSF, proportionally to the portion

of 2D space “captured” by the CSF, as approximated by the selection of h and modu-

lated by an exponential decay. In our experiments this measure is more robust than

related outline-based saliency measures such as turning angle or “stick-out” (De Win-

ter and Wagemans, 2008b). We consider a feature salient if w is above a small threshold,

which we set to 1×10−3, informed by the results in Chapter 8 and Chapter 10.

7.3.4 Computing the CASA

We construct the interior and exterior Curvature Augmented Symmetry Axes (CASA), de-

noted SAI+ and SAE+ , by combining SAI and SAE with parts of the local axes associated

with CSFs. SAI and SAE are first augmented with segments that connect each terminal

vertex to the extremum of the corresponding initial CSF. Then, we consider each addi-

tional CSF and add a new axis segment linking the corresponding curvature extremum to

the first encountered intersection with the associated SA, thus creating a new fork (Fig-

ure 7.8). This process results, for closed contours, in local axis segments corresponding

to convexities being added to SAI+ while those for concavities are added to SAE+(Figure

7.8).

7.4. Absolute Curvature Minima CSFs with the ESAT 185

(a) (b) (c)

Figure 7.8: Retrieving CSFs and the CASA for a glyph outline. (a) SAI (blue) and SAE (red), and
the initial CSFs found at branch terminals. Note that a concave (m−) and a convex
(M+) CSF are missed because they do not occur at terminal branches of the tradi-
tional SA. (b) Local SAs are computed over the support segments highlighted in red
(concave) and blue (convex), giving two additional CSFs. (c) The final interior (blue)
and exterior (red) CASA, SAI+ and SAE+ resulting from identifying all salient CSFs. The
two additional forks are emphasized with rings.

7.4 Absolute Curvature Minima CSFs with the ESAT

Most existing pattern recognition applications (Leymarie and Levine, 1988; De Stefano

et al., 2005) as well as perceptual studies (Attneave, 1954; Feldman and Singh, 2005)

are concerned with the identification and importance of absolute maxima of curvature.

However, it has been shown that absolute minima of curvature are also often chosen as

salient points along object boundaries (De Winter and Wagemans, 2008b). As mentioned

in Section 3.8.2.3, the analysis of Leyton (1987) takes also these points into consideration

with a variant of the SAT that he denotes as Exscribed Symmetry Axis Transform (ESAT),

consisting of the loci of all minimally circumscribed disks to a contour segment (Figure

7.9.a). The ESAT disk with the maximal radius, is guaranteed to terminate at an absolute

minimum of curvature if no other extrema are present along the same curve segment. In

Blum’s terminology the ESAT is a subset of the “unblocked” symmetry axis, or SS. Indeed

we can see that with the computation of the ESAT of an ellipse, we recover its vertical SA

(Figure 7.9).

7.4.1 Computing the ESAT: Farthest Voronoi Diagram

While Leyton’s construction remains theoretical and limited to smooth contours, we

have found a possible discrete implementation by considering higher order Voronoi di-

agrams, that is generalisations of the Voronoi diagram which consider the distance be-

tween multiple sites (Chazelle and Edelsbrunner, 1987). The order of the Voronoi dia-

gram is given by the number of sites considered as closest, and thus the traditional (sin-

gle) “nearest neighbour” Voronoi diagram is of order 1: each Voronoi region contains

7.4. Absolute Curvature Minima CSFs with the ESAT 186

points nearest to a single input site. The nth order Voronoi diagrams consists of regions

in which points are nearest to n sites simultaneously. For an input made of n sites, the

n − 1th order Voronoi diagram is called the Farthest (or Furthest) Voronoi Diagram (or

FVD, (de Berg et al., 2008, Section 7.4)). A site will have an associated region in the FVD

iff it is part of the convex hull of the input (Biedl et al., 2016). A contrario, sites within the

convex hull have no regions in the FVD. The FVD edges define points which are equidis-

tant (and farthest) from two generating sites and closer to all the others, Figure 7.9.c.

Circles centred along an edge and tangent to both sites contain all other sites. The

same holds for FVD vertices, which are equidistant to three (or more) sites. The sites

define a triangle, the circumcircle of which contains all the remaining sites and is centred

at the FVD vertex. Similarly to the (1st order) VD case, this defines a triangulation that is

dual to the FVD and which is known as the Farthest Delaunay Triangulation of the sites

(de Berg et al., 2008) which is often used to compute the FVD (e.g. in the QHull package

(Barber et al., 1996)).

This definition suggests a similarity between the FVD and the ESAT. For contour

samples, the disks centered at the FVD edges and vertices touch the curve at 2 or more

samples, and contain all the other samples of the curve in accord with the definition of

the ESAT. This similarity can also be illustrated if we consider the formation of the FVD as

the outcome of waves propagating from the input samples. Then, the edges of the FVD

are the points at which two wavefronts collide, while interacting with all the remaining

wavefronts. Assuming a constant velocity of propagation, two wavefronts meeting at a

point implies equidistance between the two generating sites at the collision point, while

(a) (b) (c)

Figure 7.9: (a) ESAT of the portion of an ellipse and the corresponding circumscribed circles. The
blue arrow indicates the corresponding PISA axis (or process arrow) which traces the
midpoints of the arcs defined between the generating points (Leyton, 2012). The ar-
row defines a compression of the shape from a circular arc. (b) SAT and (c) ESAT of an
ellipse. In dashed red is shown the evolute of the ellipse, and in gray the nearest (b)
and farthest (c) Voronoi diagrams of point samples along the ellipse boundary.

7.4. Absolute Curvature Minima CSFs with the ESAT 187

(a) (b)

Figure 7.10: Contact regions (thick black segments) for absolute maxima and minima (red dots)
of two smooth contours together with an approximation of Leyton’s 1988 “process
arrows” (gray) indicating the directions along which a supposed generative process
has acted to produce the extrema. Note that , consistently with Leyton (1988), the
process arrows for the absolute minima (all M− in this case) are external to the shape
interior, indicating a “squashing” process on the outline.

the interaction with all other wavefronts implies that all the other sites are closer to the

point than the two generating sites. This corresponds to Blum’s model of “unblocked”

symmetry axis (Blum, 1973) and is a subset of the SS (Giblin, 2000).

7.4.2 Identifying m+ and M− CSFs

The observations above, lead us to conjecture that a subset of the FVD approximates the

ESAT and that results similar to the nearest VD and SAT hold (Ogniewicz, 1992). How-

ever, computing the ESAT via the FVD is subject to sensitivity issues that are similar and

apparently more severe than the SAT case. We leave research on a generalised solution

to such sensitivity issues for future research. However, the identification of CSFs for ab-

solute minima is feasible, since the computation is limited to support segments that can

be smoothed without corrupting otherwise important trace features.

We note that a support segment can contain an absolute minimum if its adjacent

CSFs have the same sign (or are curving towards the same side). As a first step we com-

pute the mean squared error (MSE) for a straight-line fit to the support segment. If the

MSE is less than a (user-specified) threshold, we can either ignore the minimum, or as-

sume that it is located at the center of the (nearly flat) support segment. Otherwise, we

compute the FVD for that segment. We reduce noise sensitivity issues by smoothing the

segment with conventional smoothing spline (Dierckx, 1975), again with a user defined

threshold. We take as discrete ESAT disk centers the mid-points of FVD edge that do not

7.5. Transition Segments and Inflections 188

extend to infinity; then the disk radii are given by the corresponding distance to the pair

of (farthest) generating sites. We then select the ESAT disk with maximum radius as the

representative disk (Figure 7.9.a, largest red circle). The disk produces a CSF if it is salient

according to the same procedure as described in Section 7.3.3, but using a lower saliency

threshold of 1×10−6 for the examples given.

A linear approximation of the local SA for the CSF can be computed with the seg-

ment going from the disk center to the extremum. A similar approximation can be used

to compute a set of “process arrows”, similar to the ones defined by Leyton (1988) to

indicate the directions along which a likely generative process has acted to produce an

extremum (Figure 7.10). While in Leyton’s theory these arrows correspond to the PISA,

its computation in practice is highly sensitive to noise. Here we approximate the process

arrows with vectors ending at the CSF extremum ẑ i For absolute maxima (M+,m−: pro-

trusion and indentation) each vector is oriented opposite to the bisector of two tangents

computed along the CSF support segments z lhs
i (s) and z r hs

i (s) and starting from the end-

points of the contact region åCC i . For absolute minima (M−,m+: resistance and squash-

ing) each vector has the same orientation as the the vector going from the CSF disk center

to the ẑ i . This result remains mostly of theoretical interest, and will require future inves-

tigations to develop or test robust and sufficiently accurate implementations. Note that

we will use a similar construction for negative minima of curvature (m−) in Chapter 10

to assist the segmentation of font outlines into strokes.

7.5 Transition Segments and Inflections

The CSF identification procedure determines a set of curvature extrema, where each CSF

approximates a circular arc along the contour, via its contact region. In the following step

we reconstruct the contour segments z i (s) not covered by contact regions with transition

segments consisting of either straight lines or Euler spirals.5 This is performed with the

simplifying assumption that the segments are either straight or characterised by a lin-

early varying curvature function.

The transition segments can identify inflections (Figure 7.11.a) and result in a

piecewise-linear approximation of the curvature function (Figure 7.11.b). We will use

this representation in the following chapter to efficiently recover ΣΛ parameters from a

5This use of Euler spirals is also inspired by the work of Leyton who studied contour regions between
curvature extrema of opposite sign by using “bi-spiral” segments (Leyton, 1987).

7.5. Transition Segments and Inflections 189

(a)

0 50 100 150 200 250 300 350
−0.1

0.0

0.1

0.2

0.3

0.4
(b)

curvature
abs maxima
transition spirals
abs minima
inflections

Figure 7.11: Reconstruction and curvature function approximation of a B-spline contour. (a) The
contour reconstructed as a combination of circular arcs (CSF contact region) and
Euler spiral segments. Black segments have an inflection (green circles). (b) The
features overlaid as segments on the curvature of the input path. We can observe
that the method gives a good approximation of the curvature function in correspon-
dence with each extrema, as well as an estimate of the region along which curvature
is approximately constant. The curvature estimation is less precise for points with
high absolute curvature, due to the (relatively low) sampling frequency of the input
and to a smoothing effect given by pruning of the skeleton with the chord residual.
An adaptive sampling strategy would improve the fit.

trace. At the same time, this kind of approximation is similar to Euler spiral decompo-

sitions used for curve fairing applications (Baran et al., 2010; McCrae and Singh, 2009)

and it is potentially useful for a similar task.

7.5.1 Fitting Euler Spirals

Recall from Chapter 4 that an Euler spiral, parameterized by arc length, is computed in

terms of the Fresnel integrals C (u),S(u) (equation (4.10)) and evaluated with:

q(u) = (x(u), y(u)) = (C (u),S(u)) , (7.2)

where u can vary from minus to plus infinity, and where the origin, (0,0), corresponds

to u = 0, which is the inflection point for the spiral; note that u is then identically the

(signed) arc length parameter for the spiral curve. In our application, an Euler spiral

segment to be fitted to the data is defined between an initial (u = u1) and a final (u =
u2) parameter values. If the values alternate in sign, then we have a segment with an

inflection (at u = 0). Similarly to Chapter 4, such a segment can be sampled in an efficient

manner using the method of Heald (1985), which results in Ñ samples along the segment

going from q(u1) to q(u2).

In order to fit an Euler spiral segment to one of the segments from our input trace,

7.5. Transition Segments and Inflections 190

we first compute approximate tangent directions along the trace, for a given support seg-

ment z i (s), i.e. in correspondence with the initial and final points of the segment under

examination. This allows to rapidly compute a first estimate of the spiral segment’s ini-

tial and final parameter values using the same method by Levien (2009a) that we used in

Chapter 4.

However, the tangent estimates are likely to be unreliable in the presence of noisy

input data, and thus we proceed to refine this initial fit with a least squares optimisation

based on the classic Gauss-Newton method. Our method consists then in three addi-

tional steps. First, we linearly transform the given support segment, z i (s), such that its

end points match those of the computed spiral segment in its canonical form. Second,

we modify the canonical form of the Euler spiral, by introducing a scaling factor a and a

rotation by an angle ω with:

q(u) =

a cos(ω)C1(u)−αsin(ω)S1(u)

a sin(ω)C1(u)+αcos(ω)S1(u)

 , where (7.3)

C1(u) =C (u)−C (u1) and S1(u) = S(u)−S(u1) . (7.4)

Note that the (initial) canonical form is for a = 1 andω= 0. Third, and finally, we proceed

with the minimisation:

min
u1,u2,a,ω

1

2

Ñ∑
j=1

∥ q[j]− z i [j] ∥2 , (7.5)

where q[j] and z i [j] both denote Ñ equally spaced samples with a sampling index [j],

in the former case for the spiral segment q(u) between u1 and u2, and in the later case

along the input support segment z i (s).

Figure 7.12: An Euler spiral, its inflection point (circle) and a Euler spiral segment (thick black).

7.5.1.1 Subdivision

The method above does not perform well when the support segment between two con-

tact regions approximates spiral segments with a relatively high total turning angle (Fig-

7.5. Transition Segments and Inflections 191

(a) (b)

Figure 7.13: Subdivision of support segments for fitting Euler spirals. (a) The contour segment
consists of two concatenated spiral segments with a high number of revolutions,
and it produces two CSFs (red and blue) near the extremities. The support segment
between the two CSFs is not an Euler spiral, which results in a poor fit. (b) Recur-
sively subdividing the support segment results in a precise fit consisting of multiple
transition segments.

ure 7.13a). This rarely happens when processing handwritten traces, but it can occur

with other kinds of vector input.

Ideally, this could be solved by using a more flexible primitive to describe transi-

tions, for example using the general aesthetic curve method of Miura (2006). Another

less efficient method to overcome this issue is to subdivide a segment when the fitting

error is greater than a given threshold. However, with the assumption that a support

segment is always a spiral, we can efficiently determine if subdivision is necessary by

computing the sum
∣∣φ∣∣=

∑
s

∣∣φ(s)
∣∣

of the absolute turning angles
∣∣φ(s)

∣∣ along the support segment z i (s) under consider-

ation and where the absolute value is necessary because the segment may contain an

inflection. We then recursively subdivide a segment in half if
∣∣φ∣∣ is greater than a user

define threshold (Figure 7.13b). We find that a threshold of π4
5 works well for the use

case of ΣΛ parameter reconstruction discussed in the next chapter, and we use the same

threshold in the other examples given. We optionally smooth the support segment first

using a convolution with a Gaussian, to avoid potential issues that can arise due to noise.

7.5.2 Inflections

The presence of inflections can be identified by checking if the two CSFs adjacent to a

transition segments have absolute maxima of curvature of opposite sign. If this is the

case we distinguish between three sub-cases. Similarly to the case of minima, we first

7.6. Discussion 192

(a)

1000 2000 3000
Points

0.5

1.0

1.5

Ti
m

e
(s

ec
on

ds
)

50 150 250 350 450
Height

(b)

1000 2000
Points

0

10

Ti
m

e
(s

ec
on

ds
)

50 150 250 350 450
Height

Figure 7.14: CSF computation performance for (a) closed contours and (b) open traces (with self-
intersections) using a constant sampling distance of ∆s = 1, increasing bounding
box height and thus an increasing number of trace samples.

check if the support segment z i (s) is sufficiently straight, by testing if it can be approxi-

mated with a straight line with linear least square fit. If the fit MSE is less than threshold,

we label the segment as straight and use its midpoint as representative of the inflection.

Otherwise, if the support segment consists of a single transition segment, the location

at which the spiral parameter u = 0 gives the inflection position. If a support segment

is subdivided into multiple spirals, we check if successive spiral parameter pairs u1 and

u2 of any given spiral have different signs, in which cases we can identify an inflection

again with u = 0. If none of the spirals have alternating signs, we repeat the procedure for

adjacent spirals using the parameter u1 of the first and the parameter u2 of the second.

If the parameters have alternating signs, the inflection is located at the point where the

two spirals meet.

7.6 Discussion

The CSF analysis procedure is written in the Python programming language, and relies

on the QHull library (Barber et al., 1996) to efficiently compute 2D Voronoi diagrams used

for the SAT recovery. For inputs consisting of closed contours (Figure 7.14a), the proce-

dure takes in average 0.5 seconds for the predefined bounding box height hext = 150

(Section 7.2.1). For inputs consisting of open traces (Figure 7.14b), the procedure is con-

siderably slower and it takes in average 2 seconds for the same predefined bounding box

height. This is due to the time complexity of the brute-force intersection method (Section

7.3.1), which could be improved with a sweepline-based approach (de Berg et al., 2008).

At the same time, the intersection code is also written in Python, which is especially slow

7.6. Discussion 193

when performing loops (Behnel et al., 2011). As a result, a C/C++ implementation of that

part of the code is likely to produce a significant performance gain.

We have tested our method on various inputs ranging from object silhouettes, font

outlines to handwriting and graffiti traces. In the current implementation, the discrete

Voronoi diagram is highly sensitive to circular or nearly-circular outlines, which can give

results that vary depending on the scale, sampling frequency (Figure 7.15b) or quality

(Figure 7.15c) of the input. In our experiments, this potential weakness does not have a

serious adverse effect. Still, a robust method for circle, ellipse, and oval detection, such as

the Hough transform (Manzanera et al., 2016), could identify these symmetric features,

and be combined with our approach. Our method can also function with relatively noisy

inputs, as long as an appropriate Voronoi SAT regularisation threshold is chosen (Figure

7.15.c). Currently, this threshold must be set by a user, but an automatic method is a

useful avenue of future research.

We perform an approximate evaluation (Figure 7.16) of our method on stimuli taken

from the dataset developed by De Winter and Wagemans (2004). The dataset contains

the contours for 260 “everyday” object silhouettes (Snodgrass and Vanderwart, 1980),

together with salient points along the object contours selected by approximately 40 par-

ticipants per stimulus. Following De Winter and Wagemans (2004; 2008b), we compute a

frequency for each consecutive contour sample along an object outline. Each frequency

is the number of times participants selected a contour sample as salient. We then com-

pute a frequency-based saliency value for each contour sample by convolving the fre-

quencies with a Gaussian. This will smooth out the noise potentially produced by partic-

ipants selecting different but nearby contour samples. Finally we visually compare the

frequency-based saliency values with the saliency (Section 7.3.3) computed for absolute

minima and maxima CSFs along the same contour.

Observing the plots in the second row of Figure 7.16 shows that the location of the

CSF extrema along the outline (blue and red circles) generally corresponds with peaks in

the smoothed frequency plot (gray). However, the normalized CSF saliency tends to be

lower than the normalized frequency-based saliency. This is especially true for absolute

minima of curvature (m+, M−, blue circles) and suggests room for improvement in the

proposed CSF saliency measure, at least for the case of absolute minima. In future stud-

ies, we plan to perform a more rigorous analysis of the correlations between our saliency

7.7. Conclusion 194

(a)

(b)

(c)

Figure 7.15: From left to right, CSFs for a circle, and two ellipses with increasing major axis size.
(a) With high quality (hext = 150) contour samples, the location of the CSFs for the
circle is not well defined, but the extrema for the ellipses are identified. (b) Slightly
decreasing the bounding box height (hext = 100) modifies the CSFs for the circle
(left), but the extrema of the ellipses remain stable. (c) With the addition of high-
frequency noise, a relatively stable computation of CSFs for an ellipse is still possible,
by increasing the Voronoi SAT regularisation threshold. However, the circle CSFs be-
come unstable and their location and number depends on high frequency contour
details.

measure and the choices of participants, comparing it to other measures such as turn-

ing angle (Feldman and Singh, 2005; De Winter and Wagemans, 2008b) and in order to

optimise our measure so it maximises consistency with experimental data.

7.7 Conclusion

In this chapter we have developed the notion of Curvilinear Shape Feature (CSF), a mixed

boundary and region representation that is based on the computation of local symmetry

axes. CSFs reconstruct contours or traces in terms of circular arcs and spiral segments

and identify salient curvature extrema, together with a precise estimate of their associ-

ated center and radius of curvature. Each CSF is also paired with two support segments,

7.7. Conclusion 195

Frequencies CSF saliency

0 100 200 300 400 500 600 700 800

Sample #

0

1

Frequencies CSF saliency

0 100 200 300 400 500 600 700 800

Sample #

0

1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.16: Qualitative comparison of salient points labelled by participants in the large-scale
experiment of De Winter and Wagemans (2008b), and curvature extrema identi-
fied with CSFs. The top row shows the (smoothed) frequencies with which partic-
ipants selected points along the outline (De Winter and Wagemans, 2008b) next to
the saliency values computed according to the measure in Section 7.3.3. Both mea-
sures are normalised and colored according to the heat-map displayed on the right.
Below each object, plot of the normalized frequency values for each points (grey),
and the normalized saliency for the CSFs along the object outline displayed as red
(absolute maxima) and blue (absolute minima).

that describe the region of influence of the feature and facilitate the estimation of local

contour features such as tangents near concavities. For the case of closed contours, CSFs

can be used to derive the CASA: an augmented version of the SAT which has branches

terminating at all curvature extrema and relating CSFs to the topology of an object.

We will use a number of these properties and representations to drive the methods

presented in the following chapters. For example, in the next chapter we will use the

extrema and the transition segments to derive a motor plan and circular arcs that recon-

struct a trace in terms of ΣΛ parameters (Figure 7.17). The support segments and the

CASA will be useful in Chapter 10 (Figure 7.18) to relate CSFs with a measure of good

continuation and to segment 2D font outlines into potentially overlapping and crossing

strokes.

The implementation of CSFs discussed in this chapter opens up a number of av-

enues of future research. As previously mentioned in Section 7.5, CSFs allow a piecewise-

linear approximation of the curvature function, which is potentially useful for curve-

fairing applications (Baran et al., 2010; McCrae and Singh, 2009). CSFs also capture

salient curvature extrema, so using saliency to determine the level of detail of a curve fair-

ing procedure is an interesting research avenue. In the discussion of Section 7.6, we have

7.7. Conclusion 196

Figure 7.17: CSFs and transition segments of tag traces from the Graffiti Analysis database (Roth
et al., 2009). Top row: CSFs and inflections. Absolute curvature maxima and minima
are denoted with red and blue circles respectively. Inflections with blue crosses. Sec-
ond row: Trace reconstruction with circular arcs (thick red and blue arcs) and Euler
spiral transition segments (alternating colors).

seen that CSFs capture salient points that are consistent with the ones that are chosen by

humans. However, our current choice of a saliency measure in Section 7.3.3 is principally

driven by an evaluation of its performance during the implementation stage. A system-

atic comparison of different saliency measures with the data collected by De Winter and

Wagemans (2008b) is of interest from a perceptual standpoint, but also useful to poten-

tially improve the performance of our measure. Finally, we have seen in Section 7.4 how

the FVD can be used to identify absolute minima of curvature and to produce a discrete

symmetry axis representation that is similar to Leyton’s ESAT (Leyton, 1987). While our

proposed solution works in practice, an in-depth analysis of the relations between the

ESAT and FVD would be not only useful to improve the robustness of our method, but

also interesting from a theoretical perspective.

7.7. Conclusion 197

(a)

(b)

Figure 7.18: (a) Interior and exterior SAT for a number of glyphs. (b) The corresponding CSFs.

Chapter 8

From Geometry to Kinematics with CSFs

This chapter is based on a collaboration between myself, Prof. Frederic Fol Leymarie,

and Prof. Réjean Plamondon at Polytechnique Montréal (Canada), and is mostly based

on a conference publication (Berio et al., 2018b) and a book chapter (Berio et al., 2020b).

In this chapter, we exploit the structure provided by CSFs to recover a plausible gen-

erative movement from the geometry of an input trace. By plausible, we mean a gener-

ative movement which can approximate closely that which is produced by the human

hand, or even be mistaken as such. The method operates on inputs that can be rep-

resented as ordered sequences of points, such as digitised traces of handwriting, graffiti,

drawings or the curves of vector art inputs. The procedure relies on a geometric analysis

of a trace to automatically produce a motor plan and a set of kinematic parameters, the

combination of which results in a kinematic realisation that reproduces the trace. This

effectively extends the previously discussed concept of “style as kinematics” to trace in-

puts and enables meaningful variations and stylisations that would be difficult to achieve

by relying on the trace geometry only. In particular, the kinematic parameters are ex-

pressed in terms of the ΣΛmodel, thus enabling the user-interaction, rendering, anima-

tion and parametric variations techniques already discussed in Chapter 4 to trace inputs.

The ΣΛ model is particularly well suited for this task, since it describes both a plausible

movement and the resulting trace with a sequence of well defined primitives: ballis-

tic sub-movements each characterised by a set of parameters that can be systematically

modified to generate meaningful variations and stylisations of the trace.

A number of methods already exist that recoverΣΛ parameters from digitised traces

of handwriting (O’Reilly and Plamondon, 2008; Plamondon et al., 2014; Fischer et al.,

8.1. Segmentation method 199

2014; Ferrer et al., 2018). However these methods rely on an analysis of the input velocity

and are aimed at biometric or pattern recognition purposes. For the scope of this thesis,

our aim is rather perceptually and artistically driven: to infer a physiologically plausible

motion from an input trace, where the kinematics of the input may be unavailable, such

as when using vector graphics inputs, or may be degraded or unreliable due to the poor

quality of a digitisation device, such as when using low cost tablets or trackpads. As a

result, we purposely ignore any pre-existing kinematics encoded by the input, in order

to seamlessly handle any vector input in which only the sequential ordering of points

may be available. We also choose this approach with the future aim of combining our

method with one that recovers temporal information from bitmap images such as the

one presented by Plamondon and Privitera (1999).

In the following sections, we first describe how the previously identified CSFs and

transition segments can be transformed into a series of circular arcs (Section 8.1) that are

used to drive the reconstruction procedure (Section 8.2). The arcs determine an initial

estimate of a motor plan and a corresponding set ofΣΛparameters (Section 8.2.1), which

are then refined to accurately reconstructs the input trace (Section 8.2.2). Section 8.3

demonstrates how this reconstruction can be used to create variations and stylisations

of a trace with the same methods previously described in Chapter 4 and with extensions

to these methods that further exploit the reconstruction procedure. These variations can

be used to generate and render graffiti in a Procedural Content Generation (PCG) setting.

Finally, in Section 8.4 we use the reconstruction procedure to compare the ΣΛmodel to

MIC and to the minimum jerk (MJ) model , in particular to its path-constrained for-

mulation (Todorov and Jordan, 1998), which is also capable of inferring physiologically

plausible kinematics given an input trace.

8.1 Segmentation method

The proposed trajectory reconstruction method exploits the prior feature analysis of the

input z(s) (Chapter 7), and thus takes as its input a set of CSFs and a set of Euler spiral

transition segments. The CSFs consisting of a set of NC SF terminal disks, CC i , circular

arc contact regions, åCC i , curvature extremum loci, ẑ i , and NC SF +1 support segments

z i (s). Adjacent CSFs share one support segment (z r hs
i (s) = z r hs

i+1(s)) and the first and the

last CSFs have one unique support segment each (z l hs
1 (s) and z r hs

NC SF
(s)). Each support

segment is approximated by one or more Euler spiral transition segments as described

8.1. Segmentation method 200

in Section 7.5.1.1.

8.1.1 Circular arc decomposition

On the basis of this information, the goal is then to segment the entire trace, z(s), with

a series of best fitting geometric primitives. For generality, in this chapter we shall fo-

cus on circular arc primitives, since these are the basis for the conventional formulation

of the ΣΛ model. However, the method can easily be extended to Euler spirals for the

case of the ωEΣΛ model (Section 4.2.2). The trajectory segmentation in terms of a series

of circular arcs is executed with a systematic method, that starts from the Euler spiral

transition segments and approximates each such segment with one or two best fitting

circular arc(s), as a function of the presence of an inflection along the spiral segment.

For the reconstruction task, we consider an inflection along a spiral valid only if the

corresponding support segment has not been labelled as straight (Section 7.5.2) and the

ratio of the spiral parameters min(u1,u2)/(u1 +u2) is greater than a user defined thresh-

old, which empirically set to 0.2 in the accompanying examples. If the ratio is less than

the threshold, we discard the inflection as a near degenerate case, the inflection being

very close to one spiral’s end point.

Depending on the presence of a valid inflection, each Euler spiral segment results

in one or two circular arcs. The internal angle of the circular arcs is easily estimated by

integrating the curvature of the spiral and distinguishing between 3 cases.

(a) For the case of two arcs, the internal angles are given by u1|u1| and u2|u2| (Figure

−50∘

70 ∘

(a)

70 ∘

(b)

70 ∘

(c)

Figure 8.1: Decomposing Euler spirals (stippled cyan) into arcs. (a) two arcs delimiting an inflec-
tion (grey cross). (b) One segment with a degenerate inflection resulting in a single
arc. (c) One without an inflection and resulting in a single arc.

8.2. Iterative Reconstruction of ΣΛ parameters 201

8.1a).

(b) In the case of a degenerate inflection, we use the same method to fit a single arc

and choose only the parameter with the greatest absolute value (|u1| or |u2|) and

consequently higher curvature (Figure 8.1b).

(c) When no inflection is present (Figure 8.1c) the internal angle is given by:

|(u2|u1|−u1|u1|)|sgn(u1).

In summary, we have that the trace is now represented by a sequence of NC SF con-

tact circular arcs, åCC i , with intermediate transition Euler spiral segments each with or

without an inflection. Each spiral segment is then mapped to either a pair of arcs (with a

separating inflection) or a single arc.

Figure 8.2 shows the results of (i) identifying (here, five) curvature maxima, ẑ i , fol-

lowed by (ii) fitting (five) Euler spirals, and (iii) finding (two) inflections and correspond-

ing circular arcs. This approximate reconstruction of the original trajectory in the form

of circular arc segments, is related to the method originally proposed by Li et al. (1998),

but with the following main three differences: (i) We have found experimentally that our

method to identify curvature maxima is more robust — in particular as it does not rely

on an explicit a priori estimation of the curvature signal. (ii) We use Euler spirals to fit

intermediate data which gives a simpler and more robust method to identify inflections.

(iii) We explicitly obtain contact circle arcs, åCC i , which results in a more accurate recon-

struction of the original trace (Figure 8.2.c and d).

This representation is now ready to be exploited in the next section to iteratively

reconstruct ΣΛ parameters from the input trace, z(s).

8.2 Iterative Reconstruction of ΣΛ parameters

Given the previous trace segmentation derived from identified CSFs and Euler spiral

transition segments, we now have the necessary information to describe how we recon-

struct the input trajectory with an approximate associated kinematics given only infor-

mation about its (static) sampled geometry. Hence, we will be able to seamlessly pro-

cess on-line handwriting data as well as vector art in which only the sequential ordering

and coordinates of trace samples is required. The method is a development and im-

8.2. Iterative Reconstruction of ΣΛ parameters 202

Circles

Circle arcs

Inflections

(a) (b)

(c) (d)

Salient points

Osc. circle

Input

Spirals

Contact region

Figure 8.2: (a) Feature extraction based on CSFs, followed by (b) Euler spiral fitting, and (c)
circular arc decomposition of a sample from the UJI handwritten character dataset
(Llorens Piñana et al., 2008). The arcs in red indicate the intersections (with the orig-
inal trace) of the circles of curvature corresponding with salient points. (d) Demon-
strative example of least-squares fitting of circular arcs to the segments defined be-
tween consecutive salient points. Not considering the contact region results in less
precise reconstruction of the input (compare (d) with (c)).

provement over our prior efforts (Berio and Leymarie, 2015; Berio et al., 2017a). We re-

emphasise that, although a number of methods exist for the accurate reconstruction of

ΣΛ parameters from digitised traces (O’Reilly and Plamondon, 2008; Plamondon et al.,

2014; Fischer et al., 2014), these require as input the explicit kinematics of the original

trajectory.

8.2.1 Initialisation: Features, Sub-movements, Initial Targets

The initial virtual targets (i.e. the motor plan) consists of two types of feature points, or

features for short: from CSF analysis (i) recovered curvature extrema, ẑ i , and from Euler

spiral analysis and circular arc decomposition (ii) inflections or points where multiple

circular arcs meet. We can either directly use these loci or find their nearest neighbors,

z(ŝi), on the original input trace, z(s), which leads to slightly more accurate reconstruc-

tions. We follow the later approach in results reported hereafter.

8.2. Iterative Reconstruction of ΣΛ parameters 203

(a) (b) (c)

Figure 8.3: ΣΛ parameter reconstruction using features from CSFs and Euler spiral derived arcs.
(a) First guess (in black) of the stroke parameters and motor plan from features. (b)
Reconstruction of the input after iterative refinement steps. (c) Iterative refinement
steps. The initial motor plan has targets corresponding with the features along the
input (large red circles). At every iteration, the targets are shifted (small blue circles)
in order to reduce the distance between keys along the generated trajectory (cyan
circles) and the features of the original trace.

An initial set of M submovements is defined from only those circular arcs derived

from the Euler spiral segment fitting; i.e. we do not generate submovements for each

contact circular arc, �CC i , associated to each ẑ i . Furthermore, given the ΣΛ modelisa-

tion, each �CC i is likely to coincide with a curved trace segment that is produced by the

time superposition of two ballistic submovements, independently of the sub-movement

curvilinear geometry. As a result, not considering these segments when estimating the

ΣΛ circular arcs avoids the potential over-estimation of the corresponding curvature pa-

rameters δi (Figure 8.2.d).

The circular arcs we use — all derived from Euler spiral segments — give us a set of

M internal angles θ̂i , centers c(θ̂i) and radii r (θ̂i). These arcs are delimited by M +1 fea-

ture points z(ŝi) with {ŝ0, ŝM } indicating the initial and final trace points. When modeling

a closed trace or contour, we randomly pick one feature point as both the start and end

positions. Each feature point corresponding to a CSF is also associated with an osculat-

ing circle with radius r (ŝi), curvature κ(ŝi) and center c(ŝi), as indicated by the corre-

sponding terminal disk CC i . The corresponding contact region �CC i covers a portion of

z(s) that is not covered by any of the previously identified circular arcs and at which the

curvature κ(ŝi) is approximately constant (Figure 8.2). Note that, in the vicinity of curva-

ture extrema for which the trajectory is smoother, we obtain a larger radius of curvature

(as expected), as well as a larger contact region.

8.2. Iterative Reconstruction of ΣΛ parameters 204

An initial estimate of the trajectory is given by a motor plan with vertices p i = z(ŝi)

and corresponding curvature parameters δi = θ(ŝi). The time overlap parameters are

initially set either (i) to ∆ti = 0.5 if a feature point ŝi−1 corresponds to an absolute max-

imum of curvature in z(s) , or (ii) to a user defined minimum ∆t− otherwise — i.e. for

inflection points, absolute curvature minima, or where any two subdivided transition

segments meet. Similarly to the interactive use-case (Chapter 4) and for the sake of sim-

plicity, the remaining parameters σi and µi are fixed to a user configurable value, with

the assumption that they describe typical properties of the neuromuscular system of a

writer. The initial trajectory estimate is likely to differ from the original, z(s), and to be

much smoother due to the initial lognormal stroke overlaps (Figure 8.3.a).

8.2.2 Iterative scheme: Keys, Max speeds, Moving Targets

To improve the reconstruction, we adopt an iterative refinement scheme (Figure 8.3.c) in

which we adjust the curvature and time overlap parameters together with the target po-

sitions in order to minimise the difference between the reconstructed trajectory x(t) and

the input trace z(s). At each iteration, we rely on the estimation of a series of M −1 key

points {τi }NS

i=1, which approximate the initial feature point loci and are computed identi-

cally to Section 4.4.2.1. Recall that such key points indicate the time occurrence at which

the influence of one lognormal exceeds the previous, which approximately corresponds

to curvature extrema along x(t) (Figure 8.4).

In addition to key points, we also compute M maximum speed points, or max speeds

for short, {γi }NS

i=1, which indicate the approximate time occurrence of the maximum

speed for each stroke (Figure 8.4); this is explicitly obtained by the mode of the corre-

sponding lognormal: t0i +exp(µi −σ2
i).

8.2.3 Underlying observations

The iterative refinement scheme is designed based on three observations:

Observation 1. The time parameter∆ti is proportional to the curvature κ(τi) at the time

of the corresponding key point. Thus, a higher value of ∆ti will decrease the amount of

overlap of successive lognormals. This will result in a lower speed and higher curvature

κ(τi) at the time occurrence of the key. Since we have a good approximation of the cur-

vature κ(ŝi) in the original trajectory, the relation between the two can be exploited in

order to adjust ∆ti proportionally at each iteration. We observe that changes in ∆ti are

not linearly related to changes in the curvature κ(τi) at the corresponding key. In order

8.2. Iterative Reconstruction of ΣΛ parameters 205

Figure 8.4: Key points (orange circles) and max speed points (red crosses) overlaid on (left) the
trace and (right) speed profile of a trajectory made of two primitives. Note that the
time occurrence of the “max speed points” coincides with the peaks of the lognor-
mals (blue), but does not necessarily coincide exactly with the maximum trajectory
speed. However, this approximation is simple and has proven to be sufficient for our
reconstruction use case.

to compensate for this, we assume a 1/3 power relation (Viviani and Schneider, 1991)

which has often been observed in human movement and particularly holds for elliptical

portions of the trajectory (Plamondon and Guerfali, 1998a), which is often the case near

keys. The reasoning is that given the relations:

∆t ∝ κ and ∆t ∝ 1/v ,

where v denotes speed, we have the proportions relating desired and generated curva-

ture and velocity:

ρκ = κ̂/κ and ρv = v̂/v .

As a result, given the power law (Viviani and Schneider, 1991) v = κ−1/3 and because

velocity and ∆t are inversely proportional, we finally get the relation:

ρκv = v/v̂ = (κ/κ̂)−1/3 = (κ̂/κ)1/3 .

Observation 2. Moving targets play a role similar to control points in spline analysis.

Shifting a target p i in a given direction will cause the generated key x(τi) to move in

a similar direction. As a result, shifting the target p i along the vector z(ŝi)− x(τi) will

decrease the distance between successive generated keys and original features (Figure

8.3.(c)).

8.2. Iterative Reconstruction of ΣΛ parameters 206

Observation 3. The distance Di between successive targets p i and p i−1 will influence

the curvature of the resulting stroke. Augmenting this distance will increase the radius of

curvature of the circular arc defined by the parameter δi and will result in a decrease of

curvature for the stroke. While the trajectory tends to depart from the circular arc near

the keys at t = τi due to the smoothing effect of the lognormal time overlap, it tends to

pass closer to the circular arc at t = γi where the amplitude of the lognormal is maximal.

As a result, we use this locus to evaluate the deviation from the desired arc θ̂i and correct

the parameter δi accordingly.

Out of these three observations, we define each iteration of our method to consist

of the following ordered steps:

∆ti ←∆ti +λ∆(ς(∆̂ti ,∆tmi n ,∆tmax)−∆ti) , (8.1)

δi ← δi +λδ(δ̂i −δi) and (8.2)

p i ← p i +λp (z(ŝi)−x(τi)) . (8.3)

In the above formulation, we experimentally set the value of three damping parameters:

λ∆ = 0.1, λδ = 0.1 and λp = 0.5; these permit to avoid excessive adjustments at each

iteration. The target time offset parameter for each iteration is computed by assuming a

1/3 power relation to curvature and is given by:

∆̂ti = ς
(
(κ(ŝi)/κ(τi))1/3 ,∆t−,∆t+

)
, (8.4)

which is restricted to a user specified range [∆t−,∆t+] by using a logistic function:

ς(x, a,b) = a + b −a

1+exp
(
−20

(
x − a+b

2

)) ,

with the multiplicative factor 20 empirically set to produce a steep logistic curve.

We observe that this restricted range improves convergence of our method and per-

mits to apply smoothing effects to the trajectory during the reconstruction step (exam-

ples are given in Section 8.3).

8.2. Iterative Reconstruction of ΣΛ parameters 207

The desired internal angle of an arc is given by:

δ̂i = 4tan−1
[

h

a
tan

(
δi

4

)]
with (8.5)

a =∥ p i −p i−1 ∥ and (8.6)

h = (
r (θ̂i)− ∥ x(γi)−c(θ̂i) ∥)sgn(θ̂i) , (8.7)

where the term h determines the amount to shift the curvature parameter δi by compar-

ing the radius of the circular arc θ̂i , initially fitted to the input, to the distance between

its center and the lognormal max speed point x(γi).

8.2.4 Stopping Criteria, SNR

A few different stopping criteria for the iterative scheme are possible, depending on the

user needs. The simplest — and most practical for experimenting with the approach —

is to let the user define an overall maximum iteration. Other more sophisticated criteria

we have experimented with include: (i) let keys reach each associated CC i or åCC i ; (ii)

minimise the overall distance between the generated, x(t), and the input, z(s), traces,

by either selecting a threshold value or letting the algorithm reach a local minimum; (iii)

optimise the quality of the reconstruction by maximising an error criterion such as the

SNR (defined next). We have found in practice the latter SNR-based criterion gives a good

compromise between reconstruction quality and computational complexity.

Because we do not take into consideration the kinematics of the input, we eval-

uate the quality of the reconstruction using the Signal to Noise Ratio (SNR) computed

between the reconstructed and input trajectory. While this could be done by uniformly

sampling the two trajectories at a constant distance step, this will result in a propaga-

tion of errors along the reconstructed trajectory, which leads to unreliable SNR measure-

ments. To overcome this problem, we exploit our initial estimation of features z(ŝi) in

the input and the segmentation given by the keypoints τi of the reconstructed trajectory,

x(t), and uniformly sample m segments for the original and generated trajectory, where

the j th point for the i th segment are respectively denoted as z i , j and x i , j and the mean

of an input segment is denoted by z̄ i . The trajectory SNR is then:

SN R = 10log10

∑
i
∑

j
(
z i , j − z̄ i

) · (z i , j − z̄ i
)∑

i
∑

j
(
z i , j −x i , j

) · (z i , j −x i , j
) , (8.8)

8.3. Editing, Rendering and Stylistic Variations 208

(a)

Arcs
Virtual targets
Original
Sigma Lognormal

(b)

Figure 8.5: Reconstruction of vector input initially built with piecewise Bézier curves. Our
method reconstructs the (originally only guaranteed to be C 0 continuous) input with
smooth kinematics given by the ΣΛ model. (a) First guess of the parameters from
features. (b) Reconstruction of the input after iterative refinement steps.

which easily generalises to the case of multiple disconnected trajectory segments, such

as when the writer lifts-up their pen or brush.

We tested the iterative refinement on different inputs ranging from vector traces

with no a priori kinematic information (Figure 8.5), to online data — including the Graf-

fiti Analysis database (Roth et al., 2009) (Figures 8.6, 8.7, 8.8 and 8.9) and the UJI hand-

written character dataset (Llorens Piñana et al., 2008) (Figure 8.3) — and it consistently

produces visually accurate reconstructions of the input. We observe that, while fluctua-

tions may appear during iterations, the refinement scheme consistently and rapidly con-

verges towards a reduction of the error between the input and the generated trajectories

and an increase in SNR (equation (8.8)).

The iterative scheme can be applied in a batch manner, in which all the ΣΛ pa-

rameters for all strokes are updated at each iteration, or similarly to the iDeLog frame-

work (Ferrer et al., 2018) by traversing the trajectory in an incremental manner and ad-

justing pairs of strokes ordered in time. In our experiments both approaches present

similar convergence properties and produce reconstructions with similar SNR.

8.3 Editing, Rendering and Stylistic Variations

The output of the reconstruction procedure, extends all the functionalities demonstrated

in Chapter 4 to arbitrary traces. This enables a user to fine-tune the rendering results or

to apply subsequent modifications to the trajectory by editing the target positions and

the primitive parameters through a CAD-like interface. The resulting kinematics repro-

8.3. Editing, Rendering and Stylistic Variations 209

(a) (b)

(c)

Figure 8.6: Reconstruction of a graffiti signature "JANKE" from the Graffiti Analysis
database (Roth et al., 2009). (a) The reconstructed trajectory, subdivided into
segments for comparison (color coded), overlaid on the original trace (light grey).
The short grey segments mark the errors and correspondences between uniformly
distanced samples for each trajectory segment. (b) Plot of SN Rt for each iteration of
the iterative optimization scheme. (c) The speed profiles of the original (light grey)
and reconstructed (dark grey) trajectories, scaled for comparison.

duce natural human-like movements that can be exploited to create primitive anima-

tions of the input as well as to generate smooth motion paths for virtual characters or

even humanoid robots (Berio et al., 2016).

8.3.1 Smoothing and Fairing.

As seen in Chapter 4, smoothing (or its opposite, “sharpening”) effects can easily be

achieved by globally scaling the ∆ti parameters. Combined with parameter reconstruc-

tion, this results in a procedure that bears similarities to computer graphic approaches

for curve fairing or neatening (Thiel et al., 2011; McCrae and Singh, 2009) as well as curve

stylisation approaches (Lang and Alexa, 2015; Lu et al., 2012). In particular, the Euler

spiral decomposition step of the reconstruction method is similar to some previously

proposed methods (Baran et al., 2010; McCrae and Singh, 2009), which exploit the de-

composition of an input curve into Euler spiral segments to remove discontinuities and

8.3. Editing, Rendering and Stylistic Variations 210

Figure 8.7: Additional examples of graffiti tag reconstructions (with data from the Graffiti Analy-
sis database (Roth et al., 2009)) together with the corresponding SNR plots.

8.3. Editing, Rendering and Stylistic Variations 211

Figure 8.8: Parametric variations of a reconstructed graffiti instance from the Graffiti Analysis
database (Roth et al., 2009). Top left, the original reconstruction (black trace) overlaid
with 30 variations. Note that variability is higher in proximity of smooth segments of
the trajectory. The remaining traces are randomly perturbed samples, with the corre-
sponding (perturbed) action-plan in red.

8.4. Comparison: constrained minimum jerk model and MIC 212

Figure 8.9: Example of content generation. Tags reconstructed from the GML (Graffiti Markup
Language (Roth et al., 2009)) format, and rendered with kinematics based brushes
over a wall texture. Original on the left, reconstructed version on the right.

guarantee C 2 continuity in the output. In our case, we instead rely on the properties of

the ΣΛ model, which ensures the resulting reconstruction is smooth and infinitely dif-

ferentiable (C∞).

8.3.1.1 Combining variations and iterative refinement

As noted in Chapter 4, simply scaling the∆ti parameters (Figure 8.10.a) can quickly result

in a loss of structure and legibility. Another method to mitigate this effect is to run a

second step of the iterative refinement procedure with a lower value of ∆t−,∆t+. As a

result, we can achieve a smoothing effect while still preserving the structural similarity

of the input, as provided by the original features. Variable degrees of smoothing can then

be achieved by interpolating theΣΛ parameters between the original reconstruction and

the smoothed one with a parameter α ∈ [0,1] (Figure 8.10.b).

More flexible stylisation effects can also be achieved with a similar approach, for ex-

ample by constraining all stroke curvature parametersδi to a user-specified value (Figure

8.10.c) and then running the iterative refinement with λδ = 0, hence not further affecting

the parameters. While we use linear interpolation for the parameters ∆ti ,δi , we observe

that these are not linearly related to the target positions. While this relation deserves fur-

ther analysis in future studies, we achieve satisfactory results by specifying a power of

α for interpolating targets (Figure 8.10.d) and observe experimentally that a power of 7

works particularly well for our use case (Figure 8.10.b & c).

8.4 Comparison: constrained minimum jerk model and MIC

TheΣΛ reconstruction method discussed in this chapter infers the kinematics of a trajec-

tory, which closely approximates the geometry of a given input trace. This procedure is

conceptually similar to the path constrained minimum jerk model (Todorov and Jordan,

8.4. Comparison: constrained minimum jerk model and MIC 213

(a)

(b)

(c)

(d)

Figure 8.10: Comparison of smoothing and stylisation methods. Row (a), smoothing by global
scaling of the time offset parameters ∆ti . Row (b), smoothing by using the parame-
terα to interpolate between theΣΛ parameters of two reconstructions with different
values for ∆t+. Row (c), stylisation effects achieved by interpolating between the ΣΛ
parameters of two reconstructions, where the second is performed with user spec-
ified values of δi . Row (d), effect of different powers of α = 0.75 used to interpolate
the virtual target positions between the two reconstructions used in row (b); The
examples in row (b) and (c) use a power of 7.

8.4. Comparison: constrained minimum jerk model and MIC 214

1998), which produces a minimum jerk trajectory that interpolates a given sequence of

passage points. If a sufficient number of points are selected along an input trace, the re-

sulting trajectory closely approximates that trace. When the passage points correspond

to the vertices of a motor plan, the same method produces a minimum jerk trajectory

according to the original formulation of Flash and Hogan (1985).

In Chapter 5 we have seen that a third order interpolating MIC trajectory obeys a

jerk-minimising cost function, but the resulting trajectory differs from the one predicted

by the minimum jerk model. This difference is due to the uniform parameterisation as-

sumption made in MIC, which, similarly to splines (Lee, 1989), results in a trajectory that

does not necessarily interpolate the motor plan at curvature extrema. This can be con-

sidered a limitation, because the converse is a property that is especially desirable for

user interaction with interpolating curves (Yan et al., 2017).

The possibility to reconstruct ΣΛ parameters from geometry allows us to compare

these three models, in order to gain more insights on their relationships and to inform

possible avenues of future work. The top row of Figure 8.11 shows a third order interpo-

lating MIC trajectory and its reconstruction with the method described in this chapter

(Fig. 8.11b) and with the path-constrained minimum jerk model (Fig. 8.11c). For the

MIC trajectory in Figure 8.11a, we specifically choose a motor plan that emphasises the

parameterisation problem and the difference between the trajectory produced by MIC

(black) and the one produced by the minimum jerk model (magenta). The ΣΛ recon-

struction is done with a default time overlap between lognormals of ∆ti = 0.2 and fixed

µi and σi , given by intermediate parameters Aci = 0.1 amd Ti = 0.3. The reconstruc-

tion results in a different motor plan from the one used to produce the MIC trajectory

in Figure 8.11a. The constrained minimum jerk reconstruction in Figure 8.11c is done

by choosing a series of passage points along the MIC trajectory, corresponding to the

CSF extrema computed during the ΣΛ reconstruction procedure, together with the in-

flections (two in this case).

Both the ΣΛ and constrained minimum jerk methods produce a close approxima-

tion of the MIC trace. However, it is especially interesting to visually compare the speed

profiles produced by the three methods (Fig. 8.11d). To perform the comparison, we nor-

malize the speed profiles and align them by first computing the location of speed minima

and then shifting and scaling the profiles horizontally, in order to minimise the distance

8.4. Comparison: constrained minimum jerk model and MIC 215

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

Normalised time

0.0

0.5

1.0

N
or

m
al

is
ed

 sp
ee

d

(d)
MIC
� �
MJ

Trajectory Motor plan segments/arcs Targets/via-points Minimum jerk trajectory Source trace (MIC)

Figure 8.11: Comparison of ΣΛ and path-constrained MJ reconstructions of a trajectory gener-
ated with MIC. (a) MIC trajectory (black) generated for the motor plan in red. The
motor plan was specifically chosen to emphasise the parameterisation problem. The
trajectory in magenta is the one that would be predicted by the minimum jerk model
for the same motor plan. (b) ΣΛ reconstruction (black) of the MIC trajectory (green)
and the resulting motor plan. Here the motor plan is visualised with vertices con-
nected by circular arc segments. (c) Minimum jerk reconstruction (black) of the
MIC trajectory (green). The red points are the locations of CSF extrema and inflec-
tions computed along the MIC trajectory during the ΣΛ reconstruction procedure.
(d) Comparison of the speed profiles for the ΣΛ (blue) and MJ (red) reconstructions
together with MIC (dashed-black). The speed profiles are normalised and aligned in
order to facilitate visual inspection.

between minima in a least squares sense. This reveals that the MIC speed profile and the

minimum jerk one are nearly identical. Indeed, the MIC formulation in the example pro-

duces a minimum jerk trajectory, but not the one predicted by the minimum jerk model

(Flash and Hogan, 1985) for the motor plan given in Figure 8.11a.

By construction, the ΣΛ model produces speed profiles consisting of asymmetric

bell shapes, which differ from the symmetric ones predicted by the minimum jerk model

(c.f. Figure 3.1a, Chapter 3). However, the relative spacing between speed minima in the

ΣΛ and minimum jerk remains very similar. This suggests that the procedure used by

the ΣΛ model to produce smoother trajectories, i.e. increasing the time overlap between

adjacent lognormals, results in an approximate isochrony that is similar to the one that

is predicted by the minimum jerk model through an optimisation procedure. This re-

8.5. Conclusions 216

lation is worthy of further investigation, especially in sight of finding efficient solutions

to the parameterisation problem that affects MIC similarly to splines. Furthermore, the

high derivatives of theΣΛmodel can be computed efficiently and at significant locations

such as key points (corresponding to curvature extrema). This suggests that it should be

possible to implement a similarly efficient constrained optimisation procedure that ad-

justs theΣΛ parameters in order to minimise the square magnitude of jerk or some other

higher derivatives of position.

8.5 Conclusions

In this chapter, we developed and explained a systematic method to reconstruct ΣΛ pa-

rameters from solely a static geometric trace (left by handwriting or drawing gestures).

The method is capable of producing an accurate geometric reconstruction of the input,

while inferring plausible kinematics underlying its generation on the basis of just an or-

dered sequence of points as an input. We achieved our goal of a plausible reconstruction

of the kinematics by designing a method exploiting a notion of Curvilinear Shape Fea-

tures (or CSF) to incrementally adjust the temporal and spatial parameters of the ΣΛ

model. The method consistently produces accurate (> 15 dB SNR) reconstructions of

the input, while providing flexibility for the use of additional constraints that can be

exploited in order to generate interactive stylisations and variations. In the following

chapter we will see how the same reconstruction can be used to implement an example-

driven stylisation procedure.

The reconstruction method relies on an ad-hoc procedure that iteratively reduces

the error between the input trace and the reconstructed one. In future work, it would

be interesting to exploit the availability of higher order derivatives of the ΣΛ model in

order to develop solutions using constrained optimisation methods with stronger con-

vergence guarantees. Another interesting future line of work is to develop more sophisti-

cated methods of setting the ΣΛ parameters µi andσi , which are currently tuned manu-

ally and kept constant. This shall require to explore in depth how the inferred kinematics

relate to human data and are perceived by human observers.

We started an experimental evaluation of the ΣΛ model in the context of an ongo-

ing series of experiments conducted by the Department of Psychology at Goldsmiths. We

used a procedure similar to the one described in Section 8.4 to compare theΣΛ and min-

imum jerk models to a uniform speed parameterisation of the same trajectory. We then

8.5. Conclusions 217

asked participants to rate animations of movements generated with the three models,

expecting that the movements generated with the ΣΛ and minimum jerk model would

be perceived as more natural and aesthetically pleasing then the movements generated

with the uniform model. The experimental results are still under investigation and a

manuscript is being prepared with details and analysis at the time of the writing of this

thesis. In summary, the participants found the biologically feasible movements (ΣΛ and

minimum jerk) more aesthetically pleasing and natural than the uniform ones. In addi-

tion, naturalness and aesthetic ratings were positively correlated, suggesting that move-

ment naturalness is a predictor of how beautiful the movement appears. While the re-

sults showed no significant difference between the aesthetic and naturalness rating of

the ΣΛ and minimum jerk model, the difference was also non-significant between the

ΣΛ and uniform model. This makes the results difficult to interpret, and emphasises the

need for further investigation on the choice of fixed parameters when performing theΣΛ

reconstruction.

Examining Figure 8.11d shows that the speed profiles produced by the ΣΛ and min-

imum jerk model are very similar. However, with the given selection ofµi ,σi parameters,

the ΣΛ reconstruction procedure gives a slower movement at the beginning and end of

the trajectory. This emphasises an intrinsic difference between the minimum jerk and

ΣΛ model, where the former model makes predictions on the global kinematic regular-

ities of a movement (i.e. the minimisation of jerk), while the latter makes predictions

at the planning level and on how kinematics emerge through the superposition of sub-

movements. The minimum jerk model predicts a unique optimal trajectory given a series

of passage points, while the ΣΛ model can produce many different kinematic realisa-

tions given the same motor plan. As we have seen in Chapter 4, and as we shall see in

the next chapter, this property becomes advantageous when generating variations and

stylisations of a trajectory. However, this also requires making parameter choices when

reconstructing a trajectory from a trace (such as the constant values of µi ,σi or the value

of∆t−), which ultimately impact the inferred kinematics and can influence the perceived

naturalness of the resulting movement.

Chapter 9

Example-driven stylisation with the Sigma

Lognormal Model

This chapter is based on a collaboration between myself, Prof. Frederic Fol Leymarie,

Memo Akten, Prof. Réjean Plamondon and Prof. Mick Grierson. The neural network ar-

chitecture and code has been principally designed and developed by Memo Akten. Ini-

tial results were presented at the MOCO conference in London in June 2017 (Berio et al.,

2017a). Section 9.3.1 presents initial results of ongoing work that stems from the useful

advice of Prof. Luca Citi at University of Essex.

In the previous chapter, we have seen how CSFs allow us to separate a structural

and kinematic component from a trace in terms of a motor plan and the correspond-

ing ΣΛ parameters. This separation enables the formulation of an example-based styli-

sation procedure that is conceptually similar to ones that have been proposed for the

tasks of stylising vector paths (Hertzmann et al., 2002; Lang and Alexa, 2015) and im-

ages (Hertzmann et al., 2001; Gatys et al., 2015). Such methods consider stylisation as a

bi-level transfer problem commonly referred to as “style transfer”: given two input pat-

terns (paths, images), generate a third one with the structure or “content” of the first but

with a style that is visually similar to the second. The implementation of such a method

clearly requires a method that can distinguish from a given input pattern, a descriptor of

style and one of structure.

In the proposed framework of “style as kinematics” the inputs to the system are the

traces of instances of writing, calligraphy or graffiti. We represent (i) “structure” with a

motor plan, and (ii) “style” with a set of kinematic parameters that determine the fine

219

evolution of movements that follow the same motor plan. The kinematic parameters are

expressed with the ΣΛ model, and the previously described reconstruction procedure

allows us to recover these parameters and a motor plan from one or more input traces. To

implement an example-driven stylisation method, we first learn a mapping between the

motor plan (structure) and the ΣΛ parameters (kinematics) for one or more given inputs

and use this mapping to predict the parameters for another motor plan, which may be

provided by a user or automatically extracted from another trace. The underlying

hypothesis is that (i) the parameterisation of the ΣΛmodel is sufficiently rich to capture

features of a hand-style that can be transferred between different motor plans, and (ii)

that since glyphs and written traces usually consists of repetitive patterns, it should be

possible to learn the mapping from a very small number of training examples.

As a proof of concept for the implementation of this procedure, we learn the map-

ping with a recurrent neural network (RNN), and more specifically a recurrent mixture

density network (RMDN) (Graves, 2013) with a long short-term memory (LSTM) architec-

ture (Hochreiter and Schmidhuber, 1997). Recent developments have shown that these

RNNs are capable of modelling complex sequential (or time-ordered) data such as text

(Sutskever, 2013), images (Gregor et al., 2015), dance (Crnkovic-Friis and Crnkovic-Friis,

2016) and handwriting (Graves, 2013). While many existing deep learning approaches

aim to minimise the use of “hand-crafted features”, we hypothesise that for our task it

is beneficial to formulate a mid-level mapping that exploits our knowledge of the spe-

cific problem domain. Our rationale is that human handwriting (and related artistic pro-

cesses) results from the orchestration of a large number of motor and neural subsystems,

and that movement is arguably planned using some form of higher level mapping, possi-

bly in the form of movement primitives which are then combined in a syntactic manner

similar to language (Richardson and Flash, 2002; Flash and Hochner, 2005). For this par-

ticular study, we represent this mapping as ΣΛ movement primitives, which abstracts

the complex task of trajectory formation from the neural network, which is then left with

focusing on the higher level task of movement planning.

We demonstrate this approach on digitised traces, which are recorded by a user

with a pen-tablet or downloaded from a large online graffiti motion database (Roth et al.,

2009). As a preprocessing step, we first reconstruct the traces, and then operate on the

inferred motor plans and ΣΛ parameters. Compared to point-sequences, this represen-

9.1. Method 220

tation is more concise (i.e. with low cardinality) and meaningful, such that every repre-

sentative locus is now a high level segment of the trajectory. Such a representation is

also resolution independent, and can easily be manipulated prior to and after training.

In addition, the ΣΛ parameterisation can be exploited to augment the training data for

the RNN with new samples that mimic the variability one might observe when an artist

draws the same form multiple times. We exploit this capability to augment our training

data and learn from very small amounts of original input datasets — as small as a single

training example.

9.1 Method

The ΣΛ reconstruction procedure recovers a motor plan P and a set of kinematic param-

eters ΘP which closely approximate a set of input traces Z with a kinematic realisation

P . This allows us to construct an example-based stylisation procedure with a relation

similar to the one defined by Hertzmann et al. (2002) for curves:

P : P :: Q : Q , (9.1)

i.e. an example motor plan P is to its kinematic realisation P as a second motor plan Q

is to another kinematic realisation Q. Given P , P and Q we seek to generate Q.

Assuming that P and Q are generated with (ΣΛ) kinematic parameters ΘP and ΘQ the

relation becomes

P : (P ¯ΘP) :: Q :
(
Q ¯ΘQ

)
where P and ΘP are reconstructed from Z , Q is given, and the ΣΛ parameters ΘQ are

unknown and must be inferred so that they visually satisfy relation 9.1. To infer ΘQ , we

train a model that learns a mapping f between P and ΘP , so that f (P) ≈ ΘP and the

unknown parameters are given by f (Q) =ΘQ .

9.1.1 Example-based input

The input to the system consists of one or more examples recorded with a digitiser de-

vice, such as a tablet or mouse, where each example consists of a set of discrete traces

Z . As a first step, we preprocess this input data and reconstruct the traces in the form of

ΣΛ primitives, so each example is approximated with a motor plan P and a set of kine-

matic parameters ΘP . We use this intermediate representation to train an RMDN model

9.1. Method 221

that learns to predict the ΣΛ parameters corresponding to a given motor plan. We call

this procedure kinematic parameter prediction or KPP (Section 9.1.4). In order to train

on small datasets, we augment the preprocessed data by introducing artificial variability

at the ΣΛ parameter level. In the following sections we describe the steps that constitute

our system and then demonstrate its use with a number of examples in Section 9.2.

9.1.2 Kinematic parameters

Each motor plan P is represented as an initial position p0 followed by a sequence of vir-

tual targets p1, · · · , p M . Each pair (p i−1, p i) corresponds to a ΣΛ sub-movement aimed

at p i and characterised by a pair of kinematic parameters (∆ti ,δi). When a motor plan

consists of multiple paths, we can either (i) consider each path as a different motor plan,

or (ii) concatenate all paths into one motor plan, so that the segments between the end of

one path and the beginning of the next correspond to “in the air” parts of the movement

where the writing tool does not touch the surface. When this is the case, we set the kine-

matic parameters∆i and δi to predefined values (0.5 and 0 in the examples given). Doing

so results in a model that also takes into account the order in which strokes are drawn,

and, as we will see next, this choice impacts the predictions made by the model. The

remaining ΣΛ parameters Aci and Ti (or accordingly µi ,σi) are fixed to the predefined

values chosen during the reconstruction step, with the same underlying assumption that

these parameters represent properties specific to a writer, and given that their effect on

the shape of a trajectory is negligible.

9.1.3 Data augmentation

So far, we have seen how the the ΣΛ parameterisation can be exploited to produce real-

istic variations of a trajectory for stylisation and procedural generation purposes. Now,

we exploit this property to generate an augmented training set, which allows the system

to be trained on very few original training samples. A similar approach has been used

for pattern recognition purposes in other studies and applications using the ΣΛ model

(Fischer et al., 2014; Diaz-Cabrera et al., 2018; Leiva et al., 2017).

Given a dataset of N training samples, we use the same procedure described in

Chapter 4 to randomly perturb the target positions and parameters of each sample Np

times. This results in a new augmented dataset of size N+N×Np where legibility and tra-

jectory smoothness is maintained across samples. Note that this would not be possible

on the original input dataset alone, as perturbations for each data point would eventually

9.1. Method 222

result in a noisy unrecognisable trajectory. We then also apply random similarity trans-

forms (rotation and uniform-scaling) to the samples, which we observe is beneficial in

improving the robustness to variations of scale and rotation in the inputs.

9.1.4 Kinematic Parameter Prediction (KPP)

Given a motor plan P , we would like to predict the corresponding kinematic parameters

ΘP . We train a model to learn the probability distribution of the kinematic parameters

{∆ti ,δi } for the virtual target p i , conditioned on the virtual targets and kinematic param-

eters leading up to that target, with:

Pr(∆ti ,δi |∆p1:i ,u1:i ,∆t(1:i−1),δ1:i−1),

where∆p i ∈R2 denotes the relative position displacement between the i th virtual target

and the next, ui ∈ {0,1} denotes the pen-up state (0, pen down, 1, pen up). When desired,

the pen up parameter allows us to treat a motor plan consisting of multiple paths as a

single sequence.

Note that the distribution is conditioned on the kinematic parameters of the pre-

vious sub-movements and virtual targets (∆t(1:i−1),δ1:i−1,∆p1:i−1) as well as the current

virtual target ∆p i . Conceptually this represents a writer that knows their next target, is

aware of the dynamic history of their movement so far, and wants to know what kine-

matic parameters to use for the next target. We also considered an alternative model

conditioned only on the virtual targets, independent of the previous kinematic param-

eters, i.e. Pr(∆ti ,δi |∆p1:i ,u1:i), which conceptually represents a writer unaware of the

dynamic history of their movement. In our preliminary studies we found this model to

not perform as well.

9.1.4.1 Model details

We implement our model using Recurrent Mixture Density Networks (RMDN) with the

LSTM architecture. An MDN (Bishop, 1994) models and predicts the parameters of a

Gaussian Mixture Model (GMM), that is a set of means, covariance and mixture weights.

An RMDN (Schuster, 2000) is a combination of an RNN with an MDN, and outputs a

unique set of GMM parameters at each time-step, allowing the probability distribution to

change with time as the input sequence develops.

The input to the model is given by a vector ξi = [∆p>
i ,ui ,∆t(i−1),δi−1] ∈R5 where all

9.1. Method 223

kinematic paramers (stylisation)

virtual targets (structure/geometry)

Figure 9.1: Network architecture with two recurrent hidden layers. At each time-step i the net-
work outputs the parameters of a GMM which is sampled (denoted by ∼) and fed as
input at the next time-step.

elements, except for ui , are normalised to zero mean and unit standard deviation. The

desired output is y i = [∆ti ,δi] ∈R2 which consists of the normalised kinematic parame-

ters for the i th sub-movement (Figure 9.1). The probability distribution of the output is

expressed as a bi-variate GMM with diagonal covariance, which improves training effi-

ciency, since computing the probability distribution function does not require a matrix

inversion. This results in a network architecture with an output dimension of 6K where

K represents the number of components of the GMM. The GMM components are repre-

sented as a vector [µ̂i ∈ R2K ,σ̂i ∈ R2K , ρ̂i ∈ RK ,π̂i ∈ RK] where the corresponding GMM

parameters are given by (Graves, 2013):

µk
i = µ̂k

i : means for k th Gaussian, µk
i ∈R2 ,

σk
i = exp(σ̂k

i) : standard deviations for k th Gaussian , σk
i ∈R2 ,

ρk
i = tanh(ρ̂k

i) : correlations for k th Gaussian, ρk
i ∈ (−1,1) ,

πk
i = softmax(π̂k

i) : mix weight for k th Gaussian ,
K∑
k
πk

i = 1 .

(9.2)

At each i th time step, the probability of the kinematic parameters y i , given the input

vector x i , is:

Pr(y i |ξi) =
K∑
k
πk

i N (y i |µk
i ,σk

i ,ρk
i) . (9.3)

9.1. Method 224

9.1.4.2 Training

We use a maximum likelihood objective that minimises the negative log-likelihood (a.k.a.

surprisal (Feldman and Singh, 2005)) of generating the input samples. Given a training

set of input-target pairs (ξi , ŷ i), we define the loss for a single training example with:

Js =−
L∑
i

ln
(
Pr

(
ŷ i |ξi

))
, (9.4)

where L is the length of the sequence. The total loss is given by summing Js over all

training examples.

We use a form of Truncated Backpropagation Through Time (BPTT) (Sutskever,

2013) whereby we segment long sequences into overlapping segments of maximum

length L. In this case, long-term dependencies greater than length L are lost, however

with enough overlap the network can effectively learn a sliding window of L time-steps.

We shuffle our training data and reset the internal state after each sequence. We empir-

ically found an overlap factor of 50% to perform well, though further studies are needed

to confirm the sensitivity of this choice.

We use dynamic unrolling of the RNN, whereby the number of time-steps to unroll

to is not set at compile time, in the architecture of the network, but unrolled dynamically

while training, allowing variable length sequences. We train using the Adam optimizer

(Kingma and Ba, 2014) with the recommended hyper-parameters. To prevent explod-

ing gradients we clip these using the L2 norm as described by Pascanu et al. (2013) and

experimentally set the threshold to 5.

We use LSTM networks (Hochreiter and Schmidhuber, 1997) with input, output and

forget gates (Gers et al., 2000), and dropout regularization (Pham et al., 2014). We have

employed both a grid and a random search (Bergstra and Bengio, 2012) on various hyper-

parameters in the ranges: sequence length (5. . .128), number of hidden recurrent layers

(1. . .3), dimensions per hidden layer (64. . .1024), number of Gaussians (5. . .20), dropout

keep probability (50%.. .95%) and peepholes {with, without}. We experimentally settled

on an architecture of 2 recurrent layers, 20 Gaussians, dropout keep probability of 90%

and no peepholes. The layer and sequence sizes depend on the use cases, which are

discussed next.

9.2. Results 225

Figure 9.2: Dynamic parameters generated over user specified virtual targets (in red), using two
separate models, each trained on a single example (with data augmentation x8000).
Each row shows: (a) the training example, (b) the user provided virtual targets and (c)
the trajectory predicted by the corresponding model. Training examples: top row is
from the GML database (Roth et al., 2009), bottom row was drawn using a tablet.

9.1.4.3 Prediction

To predict the kinematic parameters for an input motor plan, we first scale the input so

its size approximately matches the size of the motor plans used for training. Given a

qualitative evaluation of the results, we do so by uniformly scaling the input motor plan

so that the median distance between consecutive virtual targets is equal in the input and

the training set. The prediction is then made by translating and scaling the resulting off-

sets ∆p i by the same amounts used to transform the training data to zero mean and unit

standard deviation. Parameter prediction is executed iteratively, starting from the first

offset, stochastically sampling the GMM generated by the network (equation (9.3)) and

then feeding back to the network the next offset together with the sampled parameters.

9.2 Results

Given a motor plan, the KPP model (Section 9.1.4) is used to produce different stylisa-

tions that resemble the dataset it has been trained on. The input motor plan can be

either (i) directly defined by a user or (ii) reconstructed from a set of input traces.

9.2.1 User defined virtual targets.

In the following application, a user provides an input motor plan and the system pre-

dicts various smooth trajectories, the stylisation of which varies according to the kine-

matic parameters learned from a given training set. The input motor plan consists of a

sequence of sparse poly-lines, and it can be specified interactively, or loaded from a vec-

tor file. While the training procedure is performed offline, sampling the trained model

9.2. Results 226

P

:

P

::

Q

:

Q

: :: :

: :: :

Figure 9.3: Relation (9.1) implemented with KPP models trained on a single example, and with
one sequence per stroke. The columns marked with P , P , Q, Q, respectively denote
the example motor plan, reconstructed trajectories followed by the user provided mo-
tor plan and the stylisation given by the model. Column P overlays the prediction of
the model (black) over the original reconstruction (in cyan) used as training data (the
overlaps are nearly perfect). The stylised trajectories are generated with adjusted vir-
tual targets, as described in Section 9.2.1.3.

runs at interactive rates. As a result, the user is able to view the results and interact in

real time, for example by dragging the virtual targets around with a mouse, and seeing

the final smooth trajectory update instantaneously with desired styles. The training set

can contain one or more examples of target styles.

9.2.1.1 Single training examples

As mentioned previously, we can use data augmentation to train a KPP model on as few

as a single initial training example and the model is able to consistently predict kine-

matic parameters in that style (Figure 9.2). We observe that a maximum sequence length

of L = 15 works well for this use case. We explore two different methods to specify the

training data for the network: with each stroke stored in its own sequence, or with all

strokes concatenated in the same sequence (with pen up movements).

One stroke per sequence: We train the network on a set of sequences, where each se-

quence is corresponds to one (perturbed) stroke from the training example. When us-

ing this model to predict kinematic parameters for an input motor plan, the predictions

9.2. Results 227

P

:

P

: :

Q

:

Q

Figure 9.4: KPP model trained on a series of multiple strokes. The model predicts order depen-
dent features such as the “wiggle” in the first stroke (grey circles in Q and Q).

should be made separately for each stroke in the input (Figure 9.3). The resulting model

is independent of the order in which strokes are specified, which can be advantageous

for example when considering examples and input motor plans for different writing sys-

tems. We find that this approach works well with a relatively small network size (64 units

per layer) and a data augmentation of np = 3000, which also results in a relatively fast

training procedure when compared to the subsequent methods.

Multiple strokes per sequence: In this case, we train the network on a set of sequences,

where each sequence contains all the perturbed strokes from the training example, con-

catenated in the same order that is specified in the example. This approach also takes

into account the order in which the example strokes are specified. For input motor plans

that are structurally similar to the training example, this can result in prediction that cap-

tures global features, such as the “wiggle” that is being reproduced in Figure 9.4. How-

ever, the sensitivity to stroke ordering is high, resulting for example in a completely un-

recognizable reconstruction of a training example when the order of the strokes is varied.

This suggests a lower generalisation power of this model with respect to the previous one

(Figure 9.5). This approach also requires a larger network size (400 units per layer in the

given examples) with the same data augmentation of np = 3000, resulting in a consider-

ably slower training procedure.

9.2.1.2 Priming, multiple examples and variability

When a model is trained with a single stroke per sequence, it is possible to control the

stylisation by priming the model so it favours predictions for a specific stroke (Graves,

2013). Priming is achieved by first feeding the model the sequence corresponding to a

stroke, before feeding it the virtual targets which we wish to make a prediction on. This

mode of operation can be selected by a user to fine tune the predictions made by the

model. For example in Figure 9.6, top row, we force the first strokes of the training and

9.2. Results 228

(a) (b) (c)

Figure 9.5: Reconstruction of the training example with a KPP model trained with multi-stroke
sequences (a-b) and one trained on single stroke sequences (c). (a) The multi-stroke
sequence model correctly reconstructs the training example, when its motor plans are
fed in the original order (color coded). (b) However, shuffling the order of the input
results in a strong degradation of the reconstruction. (c) This issue does not affect a
model trained on sequences consisting of a single stroke.

P

:

P

: :

Q

:

Q

: : : :

: : : :

Figure 9.6: KPP model trained on a single stroke sequence and primed on a specific stroke (em-
phasised in red for the motor plan P and in black for the trajectory P).

input trajectories to be similar, and thus reproduce the “wiggle” in the training example

without the need to train a less efficient order-dependent model.

We also can train a KPP model on a dataset that contains multiple styles. In this case

we can use priming to select which example in the training set determines the stylisation

(Figure 9.7). We observe that while a shorter sequence length is sufficient for models

trained on a single style, a longer one (e.g. 64) is necessary for this use case, to help it

“remember” the primed style across more virtual targets.

Because the model predicts parameters by stochastically sampling a learned distri-

9.2. Results 229

Figure 9.7: Dynamic parameters generated over user specified virtual targets (in red) using a sin-
gle model trained on 4 examples (with data augmentation x2000). Each trajectory has
been generated by priming the network with the corresponding example. Training
examples: top row are from the GML database (Roth et al., 2009), bottom row were
drawn using a tablet.

Figure 9.8: Variations generated by varying the random number generator seed prior to sampling
a model trained on multiple examples.

bution, different predictions and consequent variations of the generated trajectory can

be achieved by choosing different seeds for the pseudo-random number generator (Fig-

ure 9.8).

9.2.1.3 Virtual target adjustment.

By definition, the virtual targets of a ΣΛ motor plan are imaginary points at which bal-

listic sub-movements are aimed. Consequently, these points are often not located along

the trajectory, especially in correspondence with smooth trajectory portions where two

adjacent lognormal primitives have a large degree of overlap (low ∆t). When the train-

ing examples contain many such smooth portions, the model predictions can result in

trajectories that have a degraded structure not sufficiently similar to the one of the input

motor plan. This issue can be easily avoided, by following the same iterative key point

adjustment procedure described in Section 4.4.2.1. A number of examples in this chapter

have been computed with 3 iterations and λp = 0.25.

9.2. Results 230

(a) (b) (c)

Figure 9.9: Kinematic style transfer of user drawn traces. (a) Letters of the alphabet drawn by a
user with a tablet (bottom) and corresponding motor plan (top, red). We train two
KPP models ((b) and (c), top), which predict new kinematic parameters for the motor
plan of the original traces and generate the trajectories below.

9.2.2 Kinematic Style Transfer

The same methods described above can be extended to arbitrary input traces, either

drawn by a user or taken from an existing online dataset. Given such an input trace,

we first use the ΣΛ parameter reconstruction method to extract a series of virtual targets

and corresponding kinematic parameters. We then discard the reconstructed kinematic

parameters and replace them with the ones predicted for the corresponding virtual tar-

gets by a given model, identically to the previously demonstrated examples. The result

is a kinematic analogue of style transfer procedures such as the ones described for im-

ages by Gatys et al. (2015), which we call “kinematic style mixing”. The resulting output

is structurally similar to the input trace, but possesses kinematic and geometric features

derived from the training examples.

We test the method with a simple sequence of letters drawn by a user with a tablet

(Figure 9.9.a, bottom) and observe that, depending on the example used to train, or

prime the network, the method produces clearly different and readable stylisations of

the input (Figure 9.9.b,c). On the other hand, the quality of the results strongly depends

on the structural complexity of the input and on the perceptual similarity of the recon-

structed virtual target sequence to the input path. In some more complex examples, the

initial readability of the input can be lost and the quality of the resulting stylisation is not

satisfactory, or in general difficult to evaluate qualitatively (Figure 9.10.a).

To improve the structure and recognisability of the stylised traces, we can again use

an iterative procedure that adjusts the virtual target positions. In this case, we re-run the

iterative refinement step used to reconstruct the input, but replacing the kinematic pa-

9.3. Discussion 231

+

(a) (b)

Figure 9.10: Less satisfactory case for the stylisation of a complex tag. (a) Left: drawn trace to be
stylised, Middle: training example, Right: Output of the model, applying the style of
the training example to the user drawn trace. (b) Result after iterative adjustment of
the virtual targets.

rameters of the original reconstruction with those predicted by the model. We then run

the iterative refinement procedure by adjusting only the virtual target positions (with

λδ = 0 and λ∆ = 0) and setting λp by a user configurable amount (λp = 0.5 and 3 itera-

tions in Figures 9.10.b and 9.11).

This procedure brings the curvature extrema of the stylised trajectory and the ones

of the input closer together, which, based on known results in visual perception (De Win-

ter and Wagemans, 2008a), should improve recognition. Figure 9.11 shows different

combinations of inputs (blue column) and examples (red row) that are used to predict

new kinematic parameters for the motor plans of the inputs. The examples along the

diagonal use the same example for the motor plan and kinematic parameters, which re-

sults in a reconstruction of the original trajectories (in blue). While the virtual target

adjustment step generally improves readability of the stylised trajectories, the examples

in the first row (in black) show that this is not always the case, which emphasises the sen-

sitivity of the method to the structure of the input and suggests that further research is

needed to improve the quality of the results.

9.3 Discussion

We developed and tested the system on a commodity laptop. With this configuration,

training the model on a single example (64 units, np = 3000) takes approximately 4 to

5 minutes. More complex models take significantly longer to train. The prediction and

adjustment steps run at interactive frame rates.

9.3.1 Model complexity

We have demonstrated that with an appropriate feature representation, it is possible to

train a complex and flexible model, such as an RNN, on a very small dataset, with results

that we evaluate as qualitatively satisfactory. We have chosen this specific model, given

9.3. Discussion 232

Structure

K
in

em
at

ic
s

Figure 9.11: Kinematic style transfer between different examples of tags reconstructed from the
GML database (Roth et al., 2009). The blue column shows the input trajectories that
are used to recover motor plans, and the red row shows the examples that are used
to stylise the recovered motor plans. In black are different stylisations resulting from
combinations of the inputs and the examples. The entries along the main diagonal
are the predictions of the model for the motor plan it was trained on.

the remarkable results that have been demonstrated by Graves (2013) with handwriting

data, and in order to evaluate the performance of this model with the ΣΛ model as an

intermediate representation. At the same time, the sparsity of this representation sug-

gests that similar results can be achieved with simpler methods, possibly resulting in a

significant gain in computational performance. A future goal would be to develop a fully

interactive system, where a user can quickly stylise a trajectory from examples executed

or loaded on the fly.

9.3. Discussion 233

P

:

P

: :

Q

:

Q

: : : :

: : : :

Figure 9.12: Relation (9.1) implemented with VARMA and examples consisting of a single stroke.
The column marked with P displays the reconstruction used as an example (gray)
with the trajectory predicted by the model in black. With a single stroke, the predic-
tion is qualitatively accurate.

9.3.1.1 Linear solution

As a step in this direction, we have also tested a simple linear model, perhaps at the oppo-

site end of the complexity spectrum with respect to the RNN: a vector auto-regression-

moving average (VARMA) model (Kendall and Ord, 1993), in which the kinematic pa-

rameters for one virtual target depend on a window of L previous virtual targets and

kinematic parameters. This can be expressed with the linear quadratic system:

y i =
L∑

k=1
Ak

i y i−k +
L∑

k=0
B k

i ξi−k +C iφi +εi , (9.5)

where A,B ,C are coefficient matrices, y i and ξi are the kinematic parameters and vir-

tual target displacements for the i th ΣΛ primitive, normalised to zero mean and unit

standard deviation, φi is a non-linear function of x i and y i−1, and εi is a (Gaussian)

white noise term. The system can be expressed compactly as:

Y = XΘ+ε , (9.6)

9.4. Conclusion 234

Figure 9.13: Degradation of the parameter predictions with VARMA as the number of example
strokes increases (left to right). The first row, is the prediction in black of the example
in gray. The second row is the prediction for a user provided motor plan.

which is linear in the coefficients Θ and can be solved with ordinary least squares by

setting each row of Y with Y i = y i , and each row of the matrix X with

X i =
[
1, y i−1, · · · , y i−L ,ξi , · · · ,ξi−L ,φi

]� . (9.7)

We compute the non linear terms φi with a quadratic function of the current virtual

target and the previous kinematic parameters given by:

φi =
[
ξ�

iξi , y�
i−1 y i−1,ξ�

i y i−1

]
. (9.8)

We test the ability of the model to reconstruct an increasing number of strokes. With

a training example consisting of a single stroke, the model is able to correctly reconstruct

the example and to successfully stylise new motor plans (Figure 9.12). However, as the

number of strokes in the example increases, the reconstruction quality quickly degrades

and the relation between the stylisation of the user provided motor plan and the training

example becomes unclear (Figure 9.13).

9.4 Conclusion

We have demonstrated how an RNN-based architecture combined with a physiologically

plausible model of human movement, the Sigma Lognormal (ΣΛ), can be used to im-

plement a data driven path stylisation system. Our method functions similarly to exist-

ing path stylisation methods used in computer graphics applications (e.g. (Hertzmann

9.4. Conclusion 235

et al., 2002; Lang and Alexa, 2015)). However, we propose an approach to stylisation

based on the concept of “style as kinematics”, in which different styles are given by kine-

matic variations over a common structure of a hand drawn or written trace. We argue

that using a physiologically plausible model of movement as a feature representation

then provides a number of advantages with respect to polygonal (point sequence), or

spline/interpolation based approaches. First of all, the results reflect a realistic and nat-

ural movement which, similarly to the methods developed in the previous chapters, can

be used to (i) produce expressive renderings and animations or even to (ii) drive the nat-

ural motions of an animated character or robotic drawing device. Furthermore, the ΣΛ

parameterisation provides a concise and informative representation that simplifies the

learning task, and its parameters can be used (as demonstrated) to augment training

data, but also to generate realistic variations in the generated outputs.

The reported work provides a solid basis for a number of different future research

avenues. As an example, we hypothesize that a similar feature representation and ar-

chitecture can be used to achieve handwriting synthesis results equivalent to the ones

demonstrated by Graves (2013), with the additional benefits of resolution independence

and the possibility of training on a much reduced dataset size, even achieving satisfying

results with one single training example. While the preliminary results achieved with a

much simpler model (VARMA) in Section 9.3.1 are not on par with the ones achieved

with an RNN, the results still suggest that a slightly more complex data representation,

here in terms of the ΣΛ model, can produce satisfactory results while greatly reducing

training time. In the future we also plan to study the performance of other potentially ef-

ficient models that can be used to solve a similar problem, ranging from Kalman or par-

ticle filtering approaches (Murphy, 2012), to more recent sequence-based deep learning

approaches (Zhang et al., 2017b; Tang et al., 2019).

Chapter 10

From 2D Shape to Strokes with CSFs

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 10.1: In this chapter we partition font outlines (red) into a set of overlapping and intersect-
ing strokes. We recover two stroke representations: (i) a path based representation
consisting of a set of paths augmented with variable width profiles and annotations
describing structural relations among strokes (a); (ii) an area based representation
that decomposes the input into overlapping shapes (h). In Chapter 11 we will use
the first representation to reconstruct a glyph in a variety of stroke-based styles (b-
g), from line-based schematizations, to graphic stylizations using skeletal strokes, to
artistic stylizations that mimic handwriting and graffiti art. We will use the second
representation to compute a similarity metric between stroke areas, allowing con-
sistent shape-based stylizations across the glyphs of a given font.

This chapter and the next one are based on work developed in collaboration with Prof.

Frederic Fol Leymarie and with Dr. Paul Asente and Dr. Jose Echevarria at Adobe Re-

search. The collaboration started when I spent a 3 months internship at Adobe Research

in San Jose, California, in early 2018. The contents are adapted from a journal article that

is in preparation at the time of writing.

Up to this point, we have developed a set of tools that enable the generation of syn-

thetic graffiti with the explicit definition of a motor plan (either user defined or procedu-

rally generated) or, for the case of tags, by recovering a motor plan from example traces.

However, we are still left with the challenge of generating graffiti stylisations of a given

237

string of text, possibly in arbitrary languages or writing systems and with different styles

and glyph structures.

One possible solution to this challenge is to first manually define a set of motor

plans, for example one for each letter of the alphabet, and to then concatenate and stylise

these with the previously defined stroke generation methods. We have seen an example

of this approach in Chapter 5. However, this procedure requires a user to manually

define the graph structure of these motor plans, which must also be concatenated with

consistent spacing, which is also a challenging problem on its own (Haines et al., 2016).

A second approach is to train a model that generates motor plans for one or more glyphs

with a sequence based model, such as the one developed by Graves (2013) and used

in Chapter 9 for trace stylisation. While this approach is interesting and a promising

avenue of future research, it requires training data that may be missing for the language

or writing system of choice.

This chapter describes a flexible solution that relies on the outlines of existing font

as a source for possible letter structures. Recall that a font consists of multiple glyphs (in

a certain “style”) and a glyph is an element of a font, usually representing a letter, num-

ber, or another symbol. The underlying observation of our method is that the outlines

of most glyphs can conceal a latent structure as a set of strokes, which when combined,

closely re-generate the glyph’s shape. Recovering these strokes transforms the wide vari-

ety of available digital fonts into a source of possible glyph structures, which can be used

to generate structurally-aware stylisations of the glyphs with the methods developed in

the previous chapters. Grounding text stylisation on fonts also has the advantage that it

can use embedded kerning information to create appropriate inter-glyph spacing, some-

thing that can be difficult to achieve with methods that create stylised text from scratch

(Haines et al., 2016).

Some simple glyphs can be segmented into strokes just by analyzing their medial

axis branching structure (Wang et al., 2013), but this approach is not sufficiently robust

for the variety of shapes and combinations of strokes that occur in fonts. Our proposed

solution relies on well-studied principles from visual perception (Wagemans et al., 2011)

and it must deal with the same issues raised by the related problem of decomposing 2D

object outlines into parts. We have seen in Section 3.8.4 that while this kind of problem

also depends on domain knowledge (Spröte et al., 2016), psychophysical results suggest

238

that perceptual grouping (Brooks, 2015) and formulating early part-segmentation hy-

potheses (Xu and Singh, 2002) are possibly pre-attentive processes that occur very early

in the vision process.

We approximate and model these perceptual processes with the aid of CSFs (Chap-

ter 7), which facilitate the definition of a set of measures and representations that fit with

a pre-attentive computational model of vision. CSFs, and the resulting CASA, serve as

a building block that is used to construct a series of incrementally higher level feature

representations. These representations support our assumption of an input generated

as a combination strokes. The overall method is also based on practical considerations

aimed at the final goal of enabling stroke stylisations using the methods discussed in

Part I of the thesis, this for input glyphs in an “as-wide-as-possible” variety of styles and

writing systems.

In a nutshell, we first use CSFs to identify potential pairwise relations between fea-

tures which we name splits; these are located where multiple strokes can potentially

cross or overlap. We then constrain the space of possible solutions to the stroke iden-

tification problem by defining six types of junctions, an intermediate representation that

characterizes where and how strokes can intersect or end. Junctions are found iteratively

and their identification fully characterizes the recovered stroke structure of the glyph. We

then use junctions to produce two related stroke representations. For some stylisations,

it is most useful to represent each stroke as a simple outline. For others, we recover a

set of stroke paths that can easily be transformed into a motor plan and a sequence of

stylised strokes.

The proposed method produces structurally and visually plausible stroke-based

representations of glyphs, using shape analysis alone (Figures 10.1 and 10.2). While this

can produce segmentations that are somewhat different from the traditional structure

of the glyph, or from ground truth if it exists, it has the considerable advantage of be-

ing agnostic to the symbols used and works with glyphs that do not match any standard

structure for a letter. The result is a system that can be applied to most glyphs and

languages, and even to other 2D shapes that can be closely approximated by a series of

strokes.

10.1. Overview 239

Figure 10.2: The targets for our method are glyphs that have a recoverable stroke structure, such
as the first three glyphs from the left (each a sample from the Rockwell, Giddyup and
Apollo fonts), but not the glyph on the right (from the Rosewood font). The inferred
stroke reconstruction can be exact (Rockwell, Giddyup) or deviate slightly from the
glyph’s outline (Apollo). Our method works with glyphs having nonstandard struc-
tures, like Giddyup and Apollo, which would present challenges for template-based
approaches. In the second row are stroke-based stylisations, produced by our sys-
tem, of the first three glyphs.

SplitsSAT Junctions

CSFs

ConcaveConvex

Stylization

Branch groupsOutline (input)
Paths

&
Areas

Figure 10.3: High level overview of the segmentation and stylisation of a glyph outline, where the
blue arrows show mappings between key elements of our approach. We note that
junctions abstract combinations of splits and concavities and determine their rela-
tionships to the SAT, ultimately leading to its segmentation and to the construction
of stroke representations that can be used to regenerate, animate and stylise the in-
put.

10.1 Overview

The input to our method is a set of contours, defining the outline of a 2D shape, possibly

with one or more holes. The method works on shapes that can be closely approximated

by the union of strokes that can cross and that can have one stroke overlapping another

at its end. This includes most, but not all, glyph shapes (Figure 10.2), as well as some

other shapes that can be drawn using distinct strokes (Figure 10.23).

Figure 10.3 summarises the main steps of the proposed approach. We infer the

10.2. 2D Shape Analysis 240

stroke structure of an input glyph using a simultaneous analysis of its outline and its

internal and external (extended) symmetry axes. This joint representation facilitates a

robust and accurate estimation of outline features, such as tangents at concavities, and

enable a perceptually inspired measure of good continuation along disjoint outline seg-

ments. Pairs of concave CSFs are associated with line segments that are called splits

(Section 10.3), delimiting regions where two strokes can potentially intersect or where

one part of the shape protrudes from another.

We furthermore analyze CSFs, splits, and their relationships to the shape’s interior

skeleton to create higher-level features that we call junctions (Section 10.4), describing

topological relations between strokes and morphological shape features. We propose

six types of junctions, each implying grouping operations on a subset of the SAT and

segmenting it into branch groups, potentially overlapping subgraphs that correspond to

strokes. This segmentation is transformed into two stroke representations (Section 10.5),

which we will use in the next chapter (11) to create gylph stylisations and animations .

10.2 2D Shape Analysis

Perceptual studies show that 2D shape understanding in humans is driven by a combina-

tion of cues obtained from an analysis of the boundary, the interior structure including

local symmetries, and global properties like the relationships among parts (De Winter

and Wagemans, 2006). In accordance with these results, we use a mixed contour-based

and region-based approach relying on CSFs and on the interior and exterior CASA, SAI+

and SAE+, presented in Chapter 7. This extended structure relates the topological struc-

ture of the interior to features along its outline and serves as a basis for the subsequent

identification of higher-level features that guide the decomposition of the input into

strokes.

10.2.1 Extended 2D Shape Analysis

We use CSFs and the CASA to derive a number of additional features and measures that

will be useful in the subsequent segmentation stage (Section 10.3).

10.2.1.1 Concave features: Tangents, bisectors, and influence

Each concave CSF is assigned a pair of unit tangent vectors t 1 and t 2 at the first and last

points z1 and z2 of the corresponding contact region and a unit bisector b with direction

t 1+t 2, positioned at the CSF extremum (Figure 10.4). The bisectors are similar to Leyton’s

10.2. 2D Shape Analysis 241

(a) (b)

Figure 10.4: (a) A capital letter “A”, with its interior and exterior medial axes and elements of its
CSFs. (b) Close up of the bottom-left part, showing ribs connecting contact regions
to SAI (dashed red segments), concave feature tangents (red arrows) and bisectors
(blue arrows). The ligature segment produced by the left concavity with respect to
the fork (black circle) is emphasized in red.

“process arrows” for absolute minima of curvature, and the flipped bisector direction

captures the hypothetical direction of a force that, when locally applied to a somewhat

plastic or malleable version of the outline, creates an indentation (Leyton, 1988).

We use these bisectors to quantify the influence of a concavity c on a given SAI+

vertex v . The influence depends on the angle φ between the bisector and the vector

connecting v to the extremum of c. It is given by a Von Mises-like function (Feldman and

Singh, 2005), a circular analog of a Gaussian:

d(c, v) = ekc (cos(φ)−1) . (10.1)

The influence value has its maximum value of 1 when φ = 0 and tends towards a low

positive value (d(c, v) = e−2kc) as φ increases. As an example, in Figure 10.4.b, the con-

cavity on the left has less influence on the fork (black dot) than the one on the right. The

constant kc determines the minimum influence of a concavity on a vertex and is experi-

mentally set to kc = 0.5.

10.2.1.2 Concave features: Ligatures

SAI+ vertices with ribs terminating in the contact region of a concave feature identify lig-

atures (August et al., 1999), thus relating SAI+ segments to concavities. Ligature segments

can act as “glue” that connects perceptually distinct outline parts (Macrini et al., 2008)

and often appear distorted with respect to the ideal spine of a stroke that traverses the

corresponding glyph region. To identify ligatures, we first assign each degree-2 vertex in

SAI+ to its nearest fork or terminal using a radius-weighted distance:

10.2. 2D Shape Analysis 242

Definition 10.2.1. The radius-weighted distance between a fork or terminal and a

degree-2 vertex is s − r , where r is the radius of the fork or terminal disk and s the length

of the shortest geodesic path through SAI+ connecting them.

A ligature is a contiguous subsegment of a branch b that starts from one of its end-

vertices v and extends along adjacent vertices that (i) are closer to v than to the other

end-vertex and (ii) have a rib terminating in the contact region of a given concavity c.

The segment exists only if any normal (degree-2) branch vertex that is assigned to v has

a rib terminating in the contact region of c. A ligature can also be defined with respect to

multiple concavities along b, in which case it is the union of all the concavities’ ligatures.

10.2.1.3 Assigning concavities to forks

We use ligatures to assign a set of concave CSFs to each SAI+ fork. Each concavity c

produces zero, one, or two ligatures for each branch in SAI+, with one possible ligature

for each end-vertex v . If only one ligature exists, and v is a fork, the concavity is assigned

to the fork. If two ligatures exist, we select the end vertex for which the influence d(c, v)

is highest, or both if the influences are equal, which can happen in symmetric shapes. If

any of these vertices is a fork, the concavity is assigned to it. Note that a concavity can

be assigned to more than one fork, and that more than one concavity can be assigned to

a single fork. In Figure 10.4.b, both concavities are assigned to the central fork with the

dot, and no concavities are assigned to the forks near the end of the serifs.

10.2.1.4 Ligatures: Branch protruding direction, π(b, f)

We also use ligatures to compute the direction of a branch relative to a fork.

Definition 10.2.2. The protruding direction π(b, f) of a branch b

connected to a fork f is given by the first unit tangent vector (blue

arrow) along the branch that is not part of a ligature (red branch

segment). If the whole branch is a ligature, π(b, f) is the tangent

at f . A branch connecting two forks in SAI+ has two protruding directions, one for each

fork.

We will later use π(b, f) to relate branches to concavities based on a further analysis

of the outline that also depends on the structure provided by CSFs (Section 10.3.2).

10.2. 2D Shape Analysis 243

1 2 3 4 5 6 7
stick-out

0.00

0.25

0.50

0.75

1.00

β

(a) (b)

Figure 10.5: Branch salience computation. The salience values β(b, f) of the colored branches
and originating forks in (a) are plotted along the black curve in (b). The blue and pink
branches have salience values above the 0.5 threshold. However, the fork for the blue
branch has been assigned a concavity c, while the forks for the other two branches
have not. This allows computing the salience of the blue branch with respect to that
concavity. θc is the angle between the tangents of c. Computing the salience with
respect to c results in λθ = 0.19 (eq. (10.3)) producing a flatter salience curve, shown
in red. The blue branch is thus considered non-salient because βc (b, f) < 0.5 at the
blue cross in (b).

10.2.1.5 Branch salience, β(b, f).

To distinguish between SAI+ branches that characterise the body of a stroke from those

that identify morphological features like the cap of a stroke or a corner, we define the

salience β of a branch b protruding from a fork f . We take the interior degree-2 ver-

tex of the branch adjacent to the fork and identify the two distinct outline points (z1, z2)

touched by its disk. β is a function of “stick-out” (Hoffman and Singh, 1997): i.e. the

length s of the connecting path along the outline having most ribs incident to b, di-

vided by the length of the connecting straight chord, ‖z1 − z2‖. β is defined using an

“exponential-rise-to-maximum” function (Dresp-Langley, 2015):

β(b, f) = 1−exp

(
λ

(
1− s

‖z1 − z2‖
))

, (10.2)

giving it a range of [0,1]. We consider a branch b to be salient with respect to a fork f

if β(b, f) ≥ 0.5. If the outline points are on different paths, then β(b, f) = 1. The param-

eter λ determines the subdomain for which β¿ 1 by controlling the steepness of the

salience curve. Here we use λ= λs , which we empirically set to 0.5. This corresponds to

a stick-out threshold of ≈ 2.4. In Figure 10.5, if we use 0.5 as the threshold for determin-

ing salience, the upper colored branch is not salient, while the center and lower colored

branches are.

10.2. 2D Shape Analysis 244

0.00

0.25

0.50

0.75

1.00

(a) (b)

Figure 10.6: Association fields for two corners in a letter T with corresponding colored values α.
(a) Case where the corners are well-aligned and the association field gives a suffi-
ciently high good-continuation value α ≈ 0.7. (b) Case where the corners are not
well-aligned: the association field from one corner reaches the other but only with a
low good-continuation value α ≈ 0.2.

Salience with respect to a concavity βc (b, f) We can also compute the salience with re-

spect to a concavity c that is assigned to the fork f , which is denoted as βc (b, f). The

computation is identical, except that λ also depends on the angle θc between the con-

cavity’s tangents. This allows us to adjust the salience value of long branches such as

the middle one in Figure 10.5, which helps to identify them as extending into a corner or

bend. When a branch is opposite a concave corner, its length and stick-out value increase

with a rate that is proportional to 1/sin(θc /2) (Shaked and Bruckstein, 1998). Hence, we

define:

λ=λsλθ, where λθ =
p

2sin

(
θc

2

)
, (10.3)

which results in λθ < 1 when θc is acute; we note that the stick-out value for which a

branch is considered salient increases as θc decreases.

10.2.2 Good continuation (α) and flow direction (ϕ)

Segmenting the input and resolving crossing strokes requires first pairing concavities

using a measure of good continuation along the outline. We use association fields (Wage-

mans, 2018), which have been proposed to model the neural processes responsible for

contour integration and perceptual grouping in early vision. Various computational im-

plementations have been defined, some based on cocircularity (Parent and Zucker, 1989;

Yen and Finkel, 1998), i.e. how one local orientation, typically specified by an edge, can

be connected to another nearby edge if it is reachable by circular paths within a region

specified by the field.

We adapt an experimentally-verified approach by Ernst et al. (2012) that is based on

a stochastic model of contour integration (Williams and Thornber, 2001). Given two ori-

ented edge elements, the model defines a field that decays as a Gaussian function of devi-

10.3. Splits 245

ation from perfect cocircularity, collinearity, and distance between the two edges (Figure

10.6). We compute the good-continuation value α of one concavity with respect to an-

other by selecting two opposing point-tangent pairs (z i , t i) and (z j , t j); refer to Appendix

D.1 for mathematical details of the method. Because the calculation is symmetric, for a

given potential pairing, either concavity can be used as the anchor.

For each concavity in a pair there are always two tangents to choose from when

computing good continuation. The selection depends on a direction that we call the

flow.

Definition 10.2.3 (Flow, ϕ). Given a concavity pair ci and c j , the

flow direction ϕ(ci ,c j) is the normalized sum of the two associated

bisectors bi ,b j .

When estimating the good-continuation value between two concavities, we always

choose the tangent most orthogonal to ϕ. We also use ϕ to identify splits that link con-

cavity pairs as discussed in the next section. When two concavities are linked in a split,

the flow direction of the split is the flow direction of the concavities.

10.3 Splits

The previous section describes structures that capture important geometrical and topo-

logical aspects of a 2D glyph. These are the basis of a series of “divide and merge” op-

erations that result in strokes. The divide operations, described in this section, indicate

likely partitioning lines where the shape could be cut. The merge operations (Section

10.4) are based on identifying various types of “junctions” that reconnect parts to obtain

plausible local stroke topology. These two complementary operations let us build strokes

and use them for stylisations (Sections 10.5 and 10.6).

As we have seen in Chapter 3, pairs of concavities are important cues for the seg-

mentation of object silhouettes into parts (De Winter and Wagemans, 2006) and many

well-known approaches (Singh and Hoffman, 2001; Luo et al., 2015) use such pairs to

define “partition lines” or “cuts” (Papanelopoulos et al., 2019) that delimit perceptually-

distinct object parts. Because our goal is identifying strokes instead of general parts, we

use related but different objects that we call splits.

A split delimits a protrusion in the outline with a line segment, which represents a

potential location where strokes can cross or overlap. The line segment is constrained to

10.3. Splits 246

(a) (b) (c)

Figure 10.7: Valid and candidate splits selection. (a) Concavity pairs producing segments that
are internal to the shape and intersect at least one SAI+ branch. (b) Valid splits, con-
sistent with local conditions. (c) Final candidate splits based on saliency measure
and organized in the graph GH . Note that GH also contains disconnected vertices
for concavities.

be in the interior of the outline and links two concavities c1,c2 by connecting the extrema

of their CSFs. A split further identifies one SAI+ branch bi that connects to a fork f j ∈
SAI . The fork f j is always a fork in SAI and never one introduced by the construction of

SAI+ because those are associated with morphological features that do not indicate new

strokes.

A split associates two concavities to determine a directional relationship between

a fork f j and one of its incident branches b j . The branch protruding direction π(b, f)

and the flow direction ϕ(ci ,c j) are indicative of the direction in which a stroke should

traverse the split. A single split indicates a potential separation or intersection of one

stroke with another. Using good continuation to associate pairs of splits helps identify

regions where strokes cross or overlap. Later, in the junction identification stage (Section

10.4), these pairs are used to link SAI+ branches across the region.

Valid splits Not all combinations of concavities produce a valid split and not all com-

binations of splits produce a valid segmentation (Figure 10.7.a, b). For two concavities

to produce a valid split, they must be geometrically consistent with the definition above

and they must obey a set of perceptually inspired local conditions (Section 10.3.1). As we

detail in Section 10.3.2, the branch assigned to a split is not necessarily one intersecting

it because of SAI+ distortions that often occur near ligatures. The validity of a split also

depends on this assignment being possible, which is determined based on the configu-

ration of SAI+ with respect to the outline.

Candidate splits and the split graph GH . Two valid splits might intersect, or might

identify the same branch protruding from the same fork, in which case they are con-

sidered incompatible (Figure 10.7.b). We resolve these cases using a measure of split

10.3. Splits 247

(a) (b) (c)

0.73 -0.34 0.03

Figure 10.8: Computation of local convexity for different concavity configurations (red circles)
and bisectors (blue arrows). The dotted black lines are the segments that maximize
the left term of equation (10.4) over all segments (magenta area) that connect the
contact arcs (thick black arcs) and the yellow arrows are perpendicular to them. The
angle range Θ̄ covered by the segments is visualized as a cone in yellow. The exam-
ples (b) and (c) have the same contact circle centers and bisectors. With a “Z”-like
configuration, the value of equation (10.4) in (b) is negative, thus invalidating the
split. Given the tolerance εθ , increasing the curvature radii of the concavities in (c)
results in a positive value and valid split.

salience (Section 10.3.3) and only select the most salient split among incompatible ones,

resulting in a subset of candidate splits. We then organize candidate splits into a graph

GH = (C , H) having one vertex for each concavity and one edge for each concavity pair

connected by a candidate split (Figure 10.7.c). The connected components of GH de-

fine local areas where hierarchical relations between protrusions can exist (Macrini et al.,

2011) or where split pairs can be associated. The graph is updated during the junction

identification procedure (Section 10.4) and helps keep track of remaining splits and con-

cavities to process.

10.3.1 Local conditions

We reduce the possible combinations of concavities inducing a valid split with two per-

ceptually inspired constraints, one of proximity and one of local convexity. In our ex-

periments these constraints improve the robustness of the method and avoid splits that

would be otherwise perceived as delimiting invalid parts or protrusions of the outline.

10.3.1.1 Proximity

This is a basic Gestalt principle involved in perceptual organization (De Winter and

Wagemans, 2006; Brooks, 2015). Since we assume the input is a combination of elon-

gated strokes, we enforce proximity by examining the forks assigned to the split’s con-

cavities. For a split to be valid, either the concavities must be assigned to the same fork,

or the distance between the fork centers must be less than a user-configurable multiple

λr of the maximum disk radius in SAI+. We empirically find that a multiple of λr = 3

works well for our use case.

10.3. Splits 248

10.3.1.2 Local Convexity

Known to be an important cue in perceptual grouping (Elder, 2015), convexity has been

used to drive a number of part decomposition approaches (De Winter and Wagemans,

2006). Similar to Papanelopoulos et al. (2019), we observe that for a split to produce a

natural looking segmentation, it should delimit a region that is “locally convex” on at

least one of its sides. Local convexity is achieved if both bisectors, one per concavity,

are within some tolerance of pointing towards the same side of at least one segment

connecting the two contact regions associated to this pair of concavities (Figure 10.8).

This holds if

max
θ∈Θ̄

[
sin(φ1 −θ)sin(φ2 −θ)

]+ sin2 εθ ≥ 0 , (10.4)

where Θ̄,φ1 and φ2 are the angles that the segment and the bisectors make with respect

to the horizontal, Θ̄ is the angle range spanned by the segments, and εθ is a user defined

tolerance that we empirically set to 15◦.

10.3.2 Fork and branch assignments to splits.

Splits induce parent-child relationships similar to the ones defined by Macrini et al.

(2011), who describe a method to compute hierarchical relations between skeletal parts

based on ligature analysis; in our experiments we found their method unable to handle

the wide variety of situations typical of glyphs. Instead we use a heuristic method that is

based on our outline analysis and produces more reliable results for our use case. The

method depends on the enumeration of a number of branch and split configurations that

we have found to occur in a variety of glyphs, and that are sufficient to produce plausible

stroke segmentations for all the cases we have considered. A split is valid only if one of

these configurations is identified.

We attempt to assign a branch b and fork f to each split, where f is one of the forks

incident to b, f is near the split, and b, when considered to be starting at f , has a direc-

tion that indicates how the outline protrudes at the split. We formalize the notion of f

being near the split by requiring it to be a member of FC , the set of forks that have been

assigned to either of the split’s concavities (Section 10.2.1.3). We formalize the notion of

the direction of protrusion by requiring that the dot product

dϕ(b, f) =ϕ(c1,c2) ·π(b, f) (10.5)

10.3. Splits 249

be positive, where ϕ(c1,c2) is the flow for the split’s concavities (Def. 10.2.3) and π(b, f)

is the branch protruding direction relative to f (Def. 10.2.2).

There are five main cases to consider:

1. The split intersects one branch b (Figure 10.9.a). If b is incident to a fork f that is

in FC , and dϕ(b, f) is positive, we assign (b, f) to the split.

2. The split intersects two branches b1 and b2 that are incident to the same fork f in

FC , and dϕ(b3, f) is positive for the third branch b3 incident to f (Figure 10.9.b). If

so, we assign (b3, f) to the split.

3. The split intersects three branches that are incident to a fork f in FC (Figure 10.9.c);

this is the limit case of the previous configurations. We check the branch b incident

to f that gives the largest value for dϕ(b, f); if this value is positive, we assign (b, f)

to the split.

4. The split intersects two branches b1 and b2 incident to the same fork f in FC but

dϕ(b3, f) is negative for the third branch b3 incident to f (Figure 10.9.d). In that

case, we consider f ′, the fork at the other end of b3, and check whether f ′ is in FC

and dϕ(b3, f ′) is positive. If so, we assign (b3, f ′) to the split. This represents a case

similar to the first, but where SAI+ divides before the branch can cross the split. The

division could indicate a stroke end, as shown in the figure, or it could continue

into significant shape features, as in the middle of some letter K configurations.

(a) (b) (c) (d) (e)Flow direction
Concavity
Assigned fork
Split

Figure 10.9: Branch and fork assignment of a split (dashed blue line), depending on its branch
intersections. A red arrow shows the flow direction (Def. 10.2.3) of a split, while black
dots and red segments are forks and branches that can be assigned to that split. (a)
The split intersects one branch. (b) The split intersects two branches incident to
the same fork, and the third branch leads into the outline protrusion. (c) Limit case
between (a) and (b), in which the split intersects all three branches incident to a fork.
(d) The split intersects two branches incident to the same fork (upper blue circle),
and the third branch (red) for that fork leads away (blue arrow) from the outline
protrusion and is short enough that the fork at its opposite end (black circle) is in FC ;
the split is assigned that (red) branch and (black) fork, since traversing the branch
from the fork leads into the protrusion (black arrow). (e) The split intersects two
non-salient branches incident to different forks, creating a compound split.

10.3. Splits 250

There is also a limit case for this configuration similar to (2).

5. The split intersects two or more branches that are incident to different forks in

FC (Figure 10.9.e). For each such fork fi , we check the incident branch bi with the

largest value for dϕ(bi , fi); if this value is positive, we compute the branch’s salience

βi =β(bi , fi) (Section 10.2.1.5). If none of these branches is salient, that is, βi < 0.5

for all of them, this results in a special configuration we call a compound split. The

split is assigned any one of these branches and its fork. This configuration is similar

to (4), except that the protrusion is not sufficient for the branches to merge at a

single fork.

In all other configurations, nothing is assigned to the split and it is rejected.

10.3.3 Split salience

The disambiguation of incompatible splits and the later junction analysis stage both rely

on a measure of split salience. It uses four concepts from perceptually-driven studies

of part decomposition to favor splits that are: (i) short (a.k.a. the “short-cut rule” (Singh

et al., 1999; Singh and Hoffman, 2001)), (ii) connecting pairs of salient concavities (a.k.a.

the “minima rule” (Hoffman and Richards, 1984)) (iii) located between outline regions

with good continuation (a.k.a. “limbs” (Siddiqi and Kimia, 1995)) and (iv) separating a

salient protrusion and branch (Hoffman and Singh, 1997). We have observed that each

of these four concepts contributes to more robust segmentation results, which parallels

human performances on part decomposition (De Winter and Wagemans, 2006). Split

salience is thus computed as the sum of four terms:

ω(η) = w̄ +α+β+ληe(−‖η‖/rmax) (10.6)

combining the average salience value w̄ of the split’s concavities with the good-

continuation value α between the concavities, the protruding branch salience β, and

an exponential generalization function (Shepard, 1987) of the split length
∥∥η∥∥ weighted

by rmax, the largest disk radius in SAI+. The latter term is weighted by a positive value λη

that favors short cuts, which we empirically set to 2.

10.4. Junction Identification 251

10.4 Junction Identification

Splits, together with CSFs, SAI+ and the associated information, provide a feature set that

can be viewed as a geometric counterpart to representations that are hypothesised to

occur pre-attentively in the human vision process. We use this feature set to construct a

plausible graph structure for each stroke, which is achieved by organising all SAI+ forks

and their connected branches into junctions. Formally, a junction J maps a set of forks

F J to a set of concavities C J and splits HJ . Either C J or HJ can be empty and for brevity

we will say that the junction J covers the forks in F J .

Junctions segment SAI+ by assigning stroke labels to its branches, with the labels

being propagated across adjacent junctions and being determined by the junction type

(Figure 10.10). There are six junction types organized in two main categories, topological

(Ψ, Y and T), shown in Figure 10.11, and morphological (flexure, blunt-tip, null), shown

in Figure 10.12.

Junctions are identified sequentially and each identification assigns labels to a

group of branches incident to forks in F J ; these can either be new labels or labels already

in the group. Figure 10.10.a shows a label from one junction propagating to a branch in a

second junction. Branches can also be multi-traced; they accumulate labels and indicate

a region where multiple strokes cross or overlap. In Figure 10.10.b the initial label of the

central branch does not propagate to the vertical branches; instead the branch ends up

with multiple labels.

Once all junctions have been identified and branches labelled, we use the labels to

create branch groups (or groups for short): Subgraphs of SAI+ containing all branches

that share a particular label. Two branch groups can share branches, for example, where

one stroke crosses another. They form the basis for segmenting the glyph into strokes

(Section 10.5). Note that SAI is a subset of SAI+ so the procedure effectively segments

both representations into strokes.

10.4.1 Junction properties

Junctions uniquely determine the inferred stroke structure of an outline and are cat-

gorised into two main types: topological and morphological. Topological junctions de-

termine the connectivity between strokes, such as crossing, branching and incidence.

Morphological junctions determine the local shape of a stroke, such as bends, corners

or stroke-caps. This section describes the properties of the different junction types and

10.4. Junction Identification 252

(a)

(1) (2) (3)

(b)

Figure 10.10: Label propagation in similar areas, each with two forks, but giving different branch
groups. Row (a) (1): In this classification each fork will identify a separate T-
junction, leading to three branch groups. (2): Classifying the first junction assigns
one label to the vertical branch and a second label to the two horizontal branches.
(3): Classifying the second junction also assigns a common label to the horizon-
tal branches, propagating the previously present label to the second horizontal
branch. Row (b) (1): In this classification there will be two Ψ-junctions sharing
the same two forks, producing two branch groups that share a multi-traced branch
(middle dashed line segment). (2): Classifying the first junction assigns the same la-
bel to all horizontal branches. (3): Classifying the second junction assigns another
label to the vertically-oriented branches. Since the middle branch is multi-traced,
its label is not propagated and it is assigned both labels.

how they label SAI+branches, and the next describes how our system identifies these.

10.4.1.1 Topological junctions

Topological junctions come in three types: Ψ- Y-, and T-junctions.

Ψ-junctions: These occur when one stroke goes across one or more other strokes. A

simple crossing like that in Figure 10.10.b consists of twoΨ-junctions that share the same

(1) (2)

(3)

(a) (b) (c)

Figure 10.11: Topological junctions. (a) Ψ-junctions: Two Ψ-junctions, generating blue and or-
ange branch groups, cover three forks. A T-junction, generating a magenta group,
covers one fork. The crossing path is shared by both Ψ-junctions. (b) A Y-junction
with (1) its salient concavity and root branch (in red), and (2) one possible branch
group. Three other interpretations of the junction are possible (3). (c) T-junctions
with (top) a single split and (bottom) a compound split.

10.4. Junction Identification 253

forks; defining the junction this way simplifies the analysis of more complicated regions

like the one in Figure 10.11.a. A Ψ-junction is characterized by a pair of splits that have

opposite flow directions, are assigned to different forks, do not share a concavity, and

have a high good-continuation value between the concavities at the split ends (Figure

10.11.a). Note that these splits cross the branch group and delimit where it enters and

leaves the junction area; they do not specify the cuts that will delimit the edges of the

stroke as it goes through the area. The splits for the vertical blue path in Figure 10.11.a are

the approximately horizontal splits indicated by the dashed blue lines. The crossing path

is the shortest subset of SAI+ connecting the forks assigned to the splits. The domain F J

of the mapping that defines the junction, includes all forks along the crossing path. Each

branch of the crossing path is designated as being multi-traced, and the crossing path

and the two branches extending from the splits are assigned the same stroke label. AΨ-

junction does not label all branches incident to the forks in F J ; the remaining branches

will be labelled later as being part of otherΨ-, Y- or T-junctions.

Y-junctions: Part of the shape branches out into two parts. A Y-junction is charac-

terized by a salient concavity between two of the branches incident to a fork. We call this

the representative concavity and call the branch opposite this concavity the root (Figure

10.11.b). There are four possible interpretations for a Y-junction: In the first two, one

branch and the root share a stroke label, while one of the other branches is assigned

another label. In the third one, the root is designated as multi-traced and assigned the

stroke labels of the two strokes branching from it. In the fourth one, the three branches

incident to the fork are assigned different labels. While this last configuration is valid, we

chose never to use it based on a qualitative examination of the overall segmentation and

stylisation results. The interpretation of a given Y-junction does not affect the identifi-

cation of other junctions, but other junctions can affect the Y-junction interpretation, so

we postpone the choice of interpretation until all other junctions have been identified.

T-junctions: Part of the shape protrudes in a near-perpendicular fashion. A T-

junction is characterized by a representative split that separates the protruding branch

from its originating fork (Figure 10.11.c). The junction assigns one label to the protrud-

ing branch and another label to all other branches incident to the forks covered by the

junction – there can be more than one fork if the split is compound (Section 10.3.2).

10.4. Junction Identification 254

(a) (b) (c)

Figure 10.12: Morphological junctions indicated by their respective forks. Each example results
in a single branch group. Dashed branches are disqualified. (a) Three flexures; two
are strong (black triangles) and one is weak (grey triangle). All flexures are charac-
terized by concavities (red circles) opposite the root branches. The weak flexure is
characterized by a SAI+ branch that is not in SAI . Note that the top flexure disqual-
ifies a branch that terminates in a blunt-tip. (b) A blunt-tip marked with an orange
square. (c) Two null junctions marked with black squares.

10.4.1.2 Morphological Junctions

Morphological Junctions relate shape features of the outline, as indicated by CSFs, to

forks of SAI+ while disqualifying non-salient branches. Disqualified branches are still la-

belled as being part of a group, but are ignored when we later turn groups into stroke

paths (Section 10.5). Morphological junctions assign the same label to all branches inci-

dent to their forks and can occur in nested configurations (Figure 10.12.a).

Flexures: The shape contains a fork at a convex corner or bend that produces a

branch in SAI+ (Figure 10.12.a). Flexures have a configuration similar to Y-junctions, hav-

ing a significant concavity opposite a root branch, but with the root being non-salient

with respect to the representative concavity. A strong flexure characterizes a corner or a

sharp bend and is characterized by a root branch belonging to both SAI+and SAI . A weak

flexure determines a smoother bend and is characterized by the root belonging to SAI+

but not to SA. The junction disqualifies the root branch.

Blunt-tips: The shape contains a fork at a stroke end. A pair of non-salient branches

protrudes from the fork and each such branch terminates at a convex CSF (Figure

10.12.b) or, in a tree-like branching hierarchy, near one. The junction disqualifies the

two non-salient branches and any sub-trees that are present.

Null junctions: The shape contains a fork at a convex corner or bend that produces

a non-salient branch in SAI+ with no opposite concavity (Figure 10.12.c). The junction

disqualifies the least salient branch incident to the fork.

10.4. Junction Identification 255

(a) (b) (c) (d) (e)

Figure 10.13: Iterative junction identification and stroke label propagation for a letter “K”. From
left to right: (a) The initial configuration of GH with vertices (concavities) in red,
and edges (splits) in blue. (b) The first fork (blue disk) in the ordering results in the
identification of a T-junction, induced by the black split. (c) One remaining con-
cavity results in the identification of a Y-junction. (d) Another concavity produces
a flexure. (e) The remaining forks produce blunt-tips.

ALGORITHM 1: Iterative junction identification

Data: SAI+, CSFs
Result: Junctions {J }
begin

Assign concave features to forks (§10.2.1.3)
GH = Split graph (§10.3)
GX = Crossing graph (§10.4.3)
for split pairs (ηi ,η j) ∈ GX , sorted by decreasing α(ηi ,η j) (§10.4.3) do

if no split in pair has been processed then
Label Ψ-junction
Update splits and concavities in GH (§10.4.3.3)

end
end
F = all forks not shared by two or more Ψ-junctions
while F is non empty do

Remove the fork with highest priority from F
Label junction for fork
Update splits and concavities in GH (§10.4.4.6)

end
end

10.4.2 Iterative Junction Identification

Junctions often occur in complex and nested configurations and their identification be-

comes non-trivial. Similarly to existing approaches for part decomposition (Siddiqi and

Kimia, 1995; Papanelopoulos et al., 2019), we resolve the identification problem with an

iterative approach (Figure 10.13). Algorithm 1 gives an overview. We first identify all Ψ-

junctions, since they define crossing paths through SAI+ that should not be disconnected

by subsequently identified junctions. We then identify the remaining junction types.

10.4.2.1 Updating GH

We use the graph GH constructed in Section 10.3 to manage the changing configura-

tions of candidate splits and concavities. Each iteration of the identification procedure

10.4. Junction Identification 256

removes vertices (concavities) and edges (splits) from GH depending on the identified

junction. Removing a vertex also removes all incident edges, affecting the subsequent

identification of remaining junctions.

10.4.2.2 Labelling branches

Any existing label on a multi-traced branch is ignored, treating the branch as being un-

labelled, since already-existing labels on multi-traced branches should not affect how

other branches are labelled. Each junction identification uses the following rules to as-

sign labels to groups of branches.

1. If no branch has a label, create a new one and assign it to each branch in the group.

2. If all labelled branches have the same label, assign that label to the other branches

in the group.

3. If there are branches with different labels, arbitrarily choose one, assign it to all

branches in the group, and also change all occurrences of unchosen labels in SAI+

to that label. This final change also applies to multi-traced branches.

10.4.3 Step 1: Identify Ψ-junctions

The identification of Ψ-junctions requires finding candidate split pairs in GH that can be

associated based on good continuation.

For two splits ηi and η j having concavities (c1,c2) and (c3,c4),

we define the connecting good-continuation value α(ηi ,η j) to be

the product, for the non-crossing split endpoint pairs (c1,c3) and

(c2,c4), of the two good-continuation values (Note that these are

different from the good-continuation values for the splits). When one of the splits is as-

signed a non-salient branch, we reorient the tangents corresponding to its concavities

to match the split flow direction. This addresses one stroke crossing another but ending

with a short, rounded protrusion (Figure 10.9.e), which sometimes occurs, for example

in Chinese hanzi characters (Kishore, 2018). In this case the tangents do not adequately

capture the perceived direction of stroke continuation.

Two splits can be paired if: (i) they are part of the same connected component

in GH , (ii) they do not share a concavity, (iii) the connecting good-continuation value

α(ηi ,η j) is greater than a threshold set experimentally to 0.15, and (iv) the segments con-

necting the split endpoints are well-aligned, which for our use case of fonts we interpret

10.4. Junction Identification 257

(a) (b) (c)

1
2 3

4

5 6

7

8

1
2 3

4

5

7

8

1 4
7

8

Figure 10.14: Ψ-junction disambiguation. (a) The red colored splits are all part of potential Ψ-
junction pairs, which are edges in GX (dashed black arcs). The dashed-red splits
are nested. For example split 2 is nested because its protruding branch (blue) is
part of the crossing path between split 1 and split 3, which can be paired. Split
6 is not paired with any other split i because α(ηi ,η6) never exceeds the pairing
threshold. (b) A path in GX connects splits 1,3,2,4. Splits 1 and 4 now form a new
potential crossing pair. (c) This configuration results in two Ψ-junctions; note that
there must be a short multi-traced branch where the branch groups cross. The
remaining dashed grey splits will later identify T or Y junctions.

as the angle between them being less than 45◦. Each such pair identifies a candidate Ψ-

junction. Figure 10.14.a shows many potential pairings, but the only ones that meet all

of these criteria are: (1,3), (2,3), (2,4), (5,3), (7,8).

10.4.3.1 Nested splits and crossing graph GX

Candidate Ψ-junctions can occur in ambiguous nested configurations. We consider a

split in a pair to be nested if it is assigned a branch that is part of any crossing path defined

by another pair (Figure 10.14.a).

To identify valid Ψ-junctions and resolve nested configurations, we create an aux-

iliary crossing graph, GX , having one vertex for each split that is part of a pair and one

edge connecting each pair. Nested splits will never be chosen to delimit a Ψ-junction

but we still include them — they can act as a “bridge” that connects two other splits. In

Figure 10.14.b splits 1 and 4 are not paired because their connecting good-continuation

values are not high enough, but (1,3), (3,2), and (2,4) are valid, so 3 and 2 create a bridge

connecting 1 and 4.

10.4.3.2 Identification

To identify crossing paths, we select split pairs among all pairwise combinations {ηi ,η j }

in GX where: (i) neither is a nested split, (ii) they do not share a concavity, and (iii) they

are connected by a path in GX (Figure 10.14.b). At each step we select the one with

the largest cumulative product of the connecting good-continuation values α(ηm ,ηn) for

each split pair {ηm ,ηn} along the shortest path connecting ηi and η j (Figure 10.14.c). In

Figure 10.14.c we first choose (7,8) because its crossing good-continuation value is very

high. The remaining pairs (1,4), (5,4), (1,5) are all connected by paths in GX but the pair

10.4. Junction Identification 258

(1,5) is not valid because its splits share a concavity. We finally choose (1,4), which has a

slightly higher cumulative product than (5,4).

10.4.3.3 Updating GH

Every time we identify a Ψ-junction, we remove its two splits from GH . We also re-

move any other split with an assigned branch that shares more than one vertex with the

crossing path, which guarantees that the path is not disconnected by a subsequently-

identified junction. For example, if the nested splits in Figure 10.14 were not removed,

they would lead to T-junctions that would separate the crossing path produced by

the split pair (1,4). If a concavity is shared by two splits associated with different Ψ-

junctions, we also remove it and any incident splits from GH .

10.4.3.4 Label assignment

After identifying a Ψ-junction we designate the branches on the crossing path as multi-

traced and assign a single label to all branches.

10.4.4 Step 2: Identify Other Junctions

The five other junction types are assigned to one fork at a time. The identification of a

junction for a given fork f depends on: the splits H f that have been assigned to f , the

concavities C f assigned to f , and the salience of branches incident to f . Note that forks

covered by aΨ-junction can still have unlabelled branches (Figure 10.11.a).

10.4.4.1 Procedure

We process forks with unlabelled branches one at the time, in order of decreasing prior-

ity, given by:
max
η∈H f

ω(η) , if H f is non-empty ,

max
c∈C f

w(c)+min
b∈B f

β(b, f) , otherwise ,
(10.7)

where ω(η), w(c),β(b, f) are respectively the split, concavity and branch salience values

of the splits H f , concavities C f , and incident branches B f associated with the fork f .

This ordering favours processing forks with assigned splits before forks without a

split, since the salience value of a split, ω(η), is the sum of four terms, including branch

salience (equation (10.6)). In practice, prioritises T-junctions with high values of ω(η).

We distinguish junction types using the salience of the branches incident to the fork

and the significance of the splits and concavities assigned to it. At each fork we con-

struct a branch salience ordering to distinguish and disambiguate morphological junc-

10.4. Junction Identification 259

tions, and a circular significance histogram with three sectors to disambiguate Y- and

T-junctions, which are both described next.

10.4.4.2 Branch salience ordering

Morphological junctions involve the presence of one or more non-salient branches. In-

spired by techniques in tensor shape analysis (Mordohai and Medioni, 2010; Westin et al.,

2002), we detect different types of morphological junctions by sorting the saliencies of

the branches incident to a fork (equation (10.2)) in decreasing order: β1 ≥ β2 ≥ β3, and

considering their relations normalized by the sum Σβ = β1 +β2 +β3. This gives three

junction classification measures:

• C M = 3β3/Σβ: this distinguishes morphological from topological junctions. A

value above a small tolerance τM , experimentally set to 0.2, means the least salient

branch is still salient enough to indicate a T- or Y-junction or a flexure.

• C B = (β1 −β2)/Σβ: a high value means that β1 >β2 'β3, suggesting a blunt-tip.

• C F = 2(β2 −β3)/Σβ a high value means that β1 ' β2 > β3, suggesting a flexure or

null junction.

Intuitively, this amounts to quantifying the shape of an axis aligned ellipsoid, with

major axes of length β1,β2,β3. Refer to Westin et al. (2002) for more details, including

the reasoning behind the constant factors.

10.4.4.3 Significance histogram

We examine the influence on the fork of the concavities in C f , as well as the ones asso-

ciated with any split in H f , by organizing them into three sectors. These are constructed

by subdividing the plane with three rays going from the fork vertex to the three points

where the fork’s branches intersect the disk outline (Figure 10.15). If a branch does not

intersect the disk, its ray goes through the tip of the branch. A concavity is assigned to a

sector if its extremum is in the sector.

We compute the significance γi for each sector Si , as:

γi =
∑

c∈Si

w(c)d(c, f) , (10.8)

that is, summing the significances of any concavity in the sector, which is defined as the

concavity salience value w(c) from equation (7.1) weighted by the concavity’s influence

10.4. Junction Identification 260

0.00

0.25

0.50

0.75

1.00

(a) (b) (c)

Figure 10.15: Significance histograms for different junctions. The bins, concavity saliencies, and
concavity influences on the fork (visualized as arrows parallel to the bisectors) are
colored based on γi , w(c) and d(c, f), with γi normalized to [0,1]. The bins are
scaled proportionally to the respective value of γi . Splits are represented as dashed
blue segments. (a) A T-junction with two concavities. (b) A Y-junction with three
concavities and three splits. (c) A T-junction with three concavities and three splits.

d(c, f) as defined in equation (10.1). If a sector contains no concavity, γi = 0. We sort the

three sectors by decreasing order of significance values, γ1 ≥ γ2 ≥ γ3, and consider their

relations normalized by the sum Σγ = γ1 +γ2 +γ3. This gives two junction classification

measures:

• C Y = (γ1−γ2)/Σγ: a high value means that γ1 > γ2 � γ3, suggesting a Y-junction or

flexure.

• C T = 2(γ2 −γ3)/Σγ: a high value means that γ1 � γ2 > γ3, suggesting a T-junction.

For a Y-junction or flexure to exist, C f must be non-empty, and the junction’s rep-

resentative concavity is the member of C f with the highest value of w(c)d(c, f). For a

T-junction to exist, H f must be nonempty, and the junction’s representative split is the

most salient member of H f .

10.4.4.4 Identification criteria

The other five junction types are mutually exclusive and are classified using a set of pred-

icates that depend on the branch saliency ordering, on the the significance histogram,

and on the branches and concavities assigned to the corresponding fork. A predicate,

denoted as P (•), identifies a property that distinguishes one or more junction types. The

predicates are:

• P (M): Indicates the presence of a morphological junction and is true if C M ≤ τM ,

which means there is at least one branch with low salience.

• P (T): Suggests the presence of a T-junction because two sector significances are

substantially higher than the third. P (T) is true if one or more splits are assigned

10.4. Junction Identification 261

to the fork and C T /(C Y +ε) ≥ γT , where ε is a small constant to prevent division by

zero and γT is a user-defined threshold set to 0.2 in the examples given. Lower val-

ues of γT encourage identifying T-junctions, while higher values encourage iden-

tifying Y-junctions and flexures.

• P (C): Is true if one or more concavities are assigned to the fork; that is, if C f is

non-empty.

• P (B): Suggests the presence of a blunt-tip and is true if C B/(C F +ε) is greater than

a user-defined threshold γB , experimentally set to 0.5 in the examples given.

• P (Rβ): Distinguishes Y-junctions from flexures and is true if there is a root branch

b that is salient with respect to the representative concavity c, that is βc (b, f) > 0.5

(Section 10.2.1.5)

• P (RI): Distinguishes flexures from blunt tips and is true if C F > 0 and the most

salient concavity c ∈C J has sufficient influence on the tip vr of the root branch; in

the given examples, we use d(c, vr) > 0.77, corresponding to an angle of approxi-

mately 60◦.

Connecting these predicates we can unambiguously decide the junction type with:

• T-junction: if ¬P (M)∧P (T).

• Y-junction: if ¬P (M)∧P (C)∧¬P (T)∧P (Rβ).

• Flexure: if (P (M)∨¬P (Rβ))∧P (C)∧¬P (T)∧P (RI).

• Blunt-tip: if P (B) and none of the above holds.

• Null junction: if none of the above holds.

10.4.4.5 Y-junction Interpretation

A Y-junction can be interpreted as either having: (i) a branching structure similar to a T-

junction, (ii) a multi-traced root, or (iii) three separate groups (Fig. 10.11.b). However, we

never choose the three-group interpretation based upon a qualitative examination of the

stylization results. Then, the choice depends on the following multi-criteria condition:

the configuration of the previously identified junctions, the local radius and protruding

direction of each branch incident to the junction’s fork, and on the length of the root

10.4. Junction Identification 262

branch. The local radius of a branch is given by the disk radius of the first vertex along

the fork that is not part of a ligature. The ligature for the root is computed with respect to

all concavities assigned to the fork, while the ligature for the other branches is computed

only with respect to the junction’s representative concavity.

The degree of width disparity between two branches is given by the ratio r1/r2, where

r1 and r2 are the local radii of the branches sorted by decreasing radius. We define the de-

gree of alignment αb between two branches to be the good-continuation value between

the protruding directions of the branches, with the vectors positioned at the vertices used

to compute the local radii. The relative root length is defined as (lb − r f − rt)/r f with lb

being the length of the root branch and r f and rt the disk radii of the root at the fork and

at its opposite end.

In general, we find that the most effective stylizations are obtained by favoring the

branching interpretation, reserving the multi-traced-root interpretation only for cases

similar to the center of a letterform “B”. However different threshold values can be used

for different effects. The multi-traced interpretation is selected only if: (i) the root is the

protruding branch of a T-junction, or ends in a blunt-tip or a terminal vertex, (ii) the

relative length of the root is less than a user-defined thresholdΥl , and, (iii) the degree of

width disparity between the two non-root branches is less than a threshold Υw . For our

examples we use Υl = 3 and Υw = 1.3. Otherwise, we are in the branching configuration

and we group the root with the branch for which αb +0.5(r2/r1) is highest.

10.4.4.6 Updating GH

As with Ψ-junctions, we remove vertices (concavities) and edges (splits) from GH after

each junction identification. After identifying a T-junction, we examine each concavity

connected by the junction’s representative split. We calculate the absolute angle between

the tangent on the concavity’s side and the perpendicular to the flow direction of the

split. If the angle is smaller than the local convexity tolerance εθ (Section 10.3.1.2), we

remove the concavity and any split incident to it from GH (Figure 10.13.b). This is based

on the observation that separating the protrusion identified by the representative split

can produce a locally convex region in the neighborhood of the discarded concavity. We

also discard a split from GH if it is incident to the representative concavity of a Y-junction

or flexure.

10.5. From Junctions to Stroke Representations 263

10.4.4.7 Label assignment

After identifying a junction, we assign one or two stroke labels to all the branches in-

cident to its fork. Morphological junctions assign a single label to all branches. T- and

branching Y-junctions receive two labels, one to the two grouped branches and the other

to the separate branch. Multi-traced Y-junctions also receive two labels, with the root re-

ceiving both.

10.5 From Junctions to Stroke Representations

Junction analysis merges SAI+ branches into a set of groups, one per stroke. For our use

case of stylisation, we use branch groups to derive two stroke representations. First, a set

of stroke paths, which are preferred paths extracted from each group, augmented with

topological and morphological junctions and a varying width profile. Second, stroke ar-

eas, which are a set of potentially overlapping shape pieces that when unified closely

reproduce the original glyph. Each representation enables different stroke stylisations ,

which are discussed in the following chapter.

10.5.1 Stroke Paths

A set of stroke paths enables many stylisation and animation effects because it captures

a plausible way in which a glyph could be drawn. Each branch group is mapped to a

unique path, which can easily be transformed into different kinds of strokes. Each path

vertex maps to a SAI+ disk, which is used to assign the vertex a position and a width,

and to annotate it with a junction if the corresponding disk is representative of one. The

vertex positions and widths can be adjusted and are not necessarily the same as the cor-

responding SAI+ disk centers and radii, as we will see below.

10.5.1.1 Path construction

We first transform the branching structure of each branch group into a preliminary path.

We remove branches disqualified by morphological junctions (Figure 10.16.a), consider

only one branch for compound splits, and traverse the rest of the graph using the con-

nectivity determined by topological junctions (Figure 10.16.b, c). This results in a pro-

cedure that is effectively similar to the one that is typically used to “prune” symmetry

axes (Shaked and Bruckstein, 1998), but it exploits junction analysis to determine which

branches are non-significant. After this procedure, each path vertex still maps to an SAI+

disk, with its radius indicating the local thickness of a stroke, while a subset of these disks

10.5. From Junctions to Stroke Representations 264

(a) (b) (c)

1

6

2

34

5

1 2

3
4

Figure 10.16: Stroke paths: Path construction from branch groups. (a) As long as no stroke graph
connects to itself, we create preliminary paths by removing disqualified branches.
(b) If a group connects to itself but is not closed, the path begins with a branch pro-
truding from a T- or Y-junction. The dashed blue lines (1 and 4) are splits associated
with a T-junction, while the dashed red lines (2 and 3) are splits associated with the
Ψ-junction. (c) A different junction classification with twoΨ-junctions, leading to
a closed branch group. In this case the path begins and ends at any group flexure,
or at a null-junction if there are no flexures, or at an arbitrary vertex if neither is
present. The arrows in (b) and (c) show how the path continues through vertices
with degree > 2. Note that each constitutive SAI+ branch is part of at most one path
unless it is multi-traced.

(a) (b)

Figure 10.17: Adjustment of a blunt-tip (a), and a T-junction with a compound split (b). The
blunt-tip disqualifies two of the branches incident to the fork (dashed blue) and the
other branch is extended to reach the outline. The compound T-junction replaces
the branches associated with the split with a straight path segment. The segment
is extended (dashed black) to intersect with the opposite path.

map to topological and morphological junctions. The path vertices and widths are ad-

justed based on this mapping.

Blunt tip and compound split adjustment. A blunt tip disqualifies two branches from

a branch group and produces an end-vertex in the resulting path. The path usually ends

too early with respect to the shape outline. We adjust the terminal vertex by moving it to

the average position of the end points for the disqualified branch pair (Figure 10.17.a).

For a compound split, we replace the multiple paths derived from the split’s branches

with a single straight one connecting the average of the split concavity extrema to the

average of the split branch end points (Figure 10.17.b).

Ligature adjustment. The SAI+ disks for each resulting path are by definition maximal

with respect to the outline, but their radii and the path itself can locally deviate from the

10.5. From Junctions to Stroke Representations 265

(a) (b) (c) (d)

Figure 10.18: Examples of ligatures (top row: red segments) and their adjustments (bottom row:
grey lines from discarded SAI+ segments, black dashed lines used as connectors),
for the case of a: (a) flexure, (b) Y-junction, (c)Ψ-junction, and (d) T-junction. For
the Y-junction (b) and T-junction (d) cases, the path is extended (dashed black) to
intersect with the opposite path.

perceived centerline and thickness of a stroke. This is especially apparent in ligatures

near junctions, for example causing the zig-zags in the green path around the two loops

in Figure 10.16.a. We follow a procedure similar to Macrini et al. (2011) and remove all

path vertices that are part of ligature regions produced by the concavities associated with

any junction falling along the path, unless the junction is a weak flexure. If this creates a

gap in the path we close it in a way that depends on the junction type. If the junction is a

flexure, we replace the removed vertices with a single vertex that maps to the flexure’s fork

and is located at the intersection of the tangent lines at the ends of the ligature segments.

We set its disk radius to the maximum of the disks for these end points (Figure 10.18.a).

Otherwise, we use the tangents to compute a cubic Hermite spline, sample it to create

the vertices, and linearly interpolate the associated end point radii (Figure 10.18.b,d).

Path and width-profile smoothing. The procedures above can still result in paths and

width profiles that contain undesirable variations. We remove such artefacts by smooth-

ing the paths and the corresponding radii in a piecewise manner, along path segments

defined between adjacent end-points and strong flexures. This guarantees that path ver-

tices corresponding to corners are not smoothed. In the examples given, we use a classic

smoothing spline method (Dierckx, 1975). When a path segment is bounded by two end-

points or two elbows, we also check if it can be approximated with a straight line. To do

so, we test the MSE of a linear least square fit to the segment vertices. If the MSE is less

than a user-configurable ratio of the average path-segment width, we remove all the in-

10.5. From Junctions to Stroke Representations 266

(a) (b) (c)

Figure 10.19: Adjusted stroke paths for three different glyphs. The spines, in black, are clean and
plausible, and the union of stroke paths, in color, closely approximates its glyph
outline.

termediate vertices resulting in a straight segment. This procedure is particularly useful

to adjust the paths for short glyph parts such as serifs.

Path adjustment. Removing ligatures often disconnects T- and Y-junctions: we recon-

nect these by moving the path endpoint to the intersection of the path’s end tangent and

the other junction path (Figure 10.18.b, d, Figure 10.17.b). A similar process is used in

Chapter 11 to reconnect paths for stylisation techniques that, while modifying paths, po-

tentially disconnect these. Additional details are given in the next chapter. Figure 10.19

shows the final derived paths and width profiles for a few different glyphs.

10.5.2 Stroke Areas

Stroke areas are 2D shape pieces, where each piece is derived from a single branch group.

Stroke areas enable stylisations that depend on the shape of the corresponding stroke.

They are created by using junctions to partition the input shape into disjoint faces and

then using the branch groups to guide the assembly of these faces into stroke areas.

10.5.2.1 Planar map Q̄

We construct a planar map, Q̄, from the glyph outline and from edges derived from the

junctions. Each T-junction adds one edge to Q̄, connecting the origins of tangents on

the ends of its split (Figure 10.20.a). A multi-traced Y-junction adds two edges to Q̄,

each taking the direction of one of the tangents of the junction’s representative concavity

and connecting the concavity extremum to the first intersection with the outline (Figure

10.20.b). A branching Y-junction adds one edge to Q̄. If a split is assigned to the protrud-

ing branch, the junction is treated identically to a T-junction. Otherwise we take the di-

rection of one of the tangents of the junction’s representative concavity and connect the

concavity extremum to the first intersection with the outline. The tangent is the one that

10.6. Discussion and Results 267

(a) (b) (c) (d)

Figure 10.20: Faces and edges of Q̄ for different junction types. The tangents determining the
edges are marked in black. (a) A T-junction adds one edge and produces two faces,
one including the two arc segments of the concavities’ contact regions. (b) A multi-
traced Y-junction adds two edges and produces three faces. (c) A branching Y-
junction adds one edge and produces two faces. (d) Three Ψ-junctions in the same
area, adding 12 edges (3 quadrilaterals).

Figure 10.21: Stroke areas for the letter “R” found in four different fonts. Note that the last re-
sult (to the right) is based on a stroke group that contains a loop and crosses itself,
producing a stroke area with a hole.

is least aligned with the protruding branch (Figure 10.20.c). A Ψ-junction adds a quadri-

lateral to the graph. Two of its edges connect the tangent origins of the non-crossing split

endpoint pairs, the same ones used to compute good continuation in Section 10.4.3. The

other two edges connect the same tangent origins along the splits (Figure 10.20.d).

Once Q̄ has been constructed, we create one stroke area for each group by perform-

ing a union of some of the faces in Q̄. First, considering each group in turn, we construct

an initial seed area by taking the union of all disks given by the vertices of that graph.

We then assign to an area any associated face enclosed by the quadrilaterals added by a

Ψ-junction to Q̄. We also assign to a pair of areas any face associated with pairs of edges

in Q̄ linked to a multi-traced Y-junction. Finally, each remaining face is assigned to the

area for which the intersection of the face and the seed area is largest. Fig. 10.21 shows

the resulting stroke areas for the letter “R” in various fonts.

10.6 Discussion and Results

Performance. The core segmentation procedure is written in the Python programming

language, and it depends on the CSF code developed in Chapter 7. Outline analysis and

segmentation together take an average of 2 seconds per glyph on an average laptop; nor-

10.6. Discussion and Results 268

(a) (b)

Figure 10.22: Quantitative evaluation with the make-me-a-hanzi dataset; ground truth is to the
right. (a) Our method derives the same stroke structure as that of the ground truth
but one T-junction (marked with a red circle) includes a stroke deformation. (b)
All strokes are correctly identified by our method except for the middle area em-
phasized in red. We derive one single stroke rather than two as in the ground truth
because there is no sufficiently salient concavity near the top left of that area.

mally we precompute these for an entire font, but they could also be computed on de-

mand and cached.

Segmentation quality. Quantitative evaluation of the stroke segmentation results is dif-

ficult because of a lack of ground truth for Western fonts. However, we can compare

the segmentation results with the make-me-a-hanzi dataset (Kishore, 2018), which in-

cludes outline and stroke ground truth for a variety of simplified and traditional Chinese

characters. We tuned our parameters to give the highest accuracy for this dataset and

then used these parameters for all our segmentations on other fonts and other objects.

Similarly to Kim et al. (2018) we perform an “Intersection over Union” (IoU) test on the

rasterised stroke areas. For each segmented stroke area, we identify the most similar

stroke from ground truth by maximizing the intersection area. By rasterising at a resolu-

tion of 512×512 we achieve an average per pixel accuracy of 0.982, which is slightly better

then the result of 0.958 reported by Kim et al. (2018), which is based on a neural network

approach. This accuracy result is influenced by a few different stroke decompositions

(Figure 10.22.b), as well as by a few inaccuracies in the estimation of planar map edges

(Figure 10.22.a). We consider a stroke to be incorrect if its IoU is < 0.8, which does not

include small errors like the one in Figure 10.22.a, and results in a per-stroke accuracy of

0.98.

It should be noted that we do not rely on training data and certain ground-truth

decompositions cannot be deduced from the outline alone because they depend on do-

main knowledge. For example, “boxes” in Chinese characters should almost always be

segmented into three strokes. Sometimes there are outline details that lead to a correct

10.6. Discussion and Results 269

Figure 10.23: Stroke decomposition of silhouettes. The left mammal silhouette (from the Phy-
loPic database, http://phylopic.org) results in strokes that capture its artic-
ulated structure. The right hand results gives a plausible reconstruction, but the
segmentation deviates somewhat from the perceived structure of a hand, e.g. with
the pinkie being part of the same “stroke” as the palm.

Y

Y

Figure 10.24: A glyph with a circular hole segmented at different scales. The circular region gen-
erates different CSFs depending on the scale, resulting in the detection of two
T-junctions in (a) and (c) and two Y-junctions in (b). However, because the Y-
junctions are classified as branching, all scales result in the same, plausible stroke
decomposition.

segmentation, but not always (Figure 10.22.b). Only 5% of the glyphs in the make-me-

a-hanzi dataset had segmentation errors that were not of this type; 10% had errors that

could not be avoided without domain knowledge, and 85% were segmented identically

to the ground truth. From a qualitative viewpoint, all of our segmentations (100%) pro-

duce strokes that create a readable reconstruction and robust stylisation of the glyph.

Refer to Appendix D.2 for some additional examples from the make-me-a-hanzi dataset

.

To explore further the generality of our approach, we have thus far tested our

method on one hundred fonts. Appendix D.3 shows a number of example segmentations

for fonts in different styles and languages. Plausible and useful segmentation results of

individual glyphs are obtained in the vast majority of cases. The most common failure

case is for very bold or thick glyphs in which the average stroke thickness is larger than

the average stroke length.

10.7. Conclusion 270

Other considerations. The segmentation also gives useful results on other types of non-

glyph shapes as long as there is a recoverable articulated or branching structure (Figure

10.23). We leave for the future work, the exploration, further development and compari-

son with other methods of our approach when applied to such objects.

As discussed in Chapter 7 the discrete Voronoi diagram is highly sensitive to circu-

lar or nearly-circular outlines, which can give results that vary with scale and sampling

frequency (Figure 10.24). However, this potential issue does not seem thus far to have

serious adverse effects on our segmentation results. Nevertheless, a possible alterna-

tive would be to simply combine the current Voronoi skeleton approximation of the SAT,

when in the presence of nearly circular parts, with a robust method for the detection and

representation of such shapes (Manzanera et al., 2016).

10.7 Conclusion

In this chapter we presented concepts and algorithms to automatically segment font

glyphs into strokes. The segmentation relies on a geometric analysis of a glyph based

on CSFs, and does not require training data. We used CSFs as the basis for implementing

an experimentally validated model of good continuation and to derive two innovative

representations, namely:

1. Splits that link concavities and describe potential shape divisions.

2. A set of six junction types that distinguish topological and morphological struc-

tures.

The extraction of a stroke structure from a glyph outline can be used to generate a variety

of stylisations of the input (Figure 10.1), which can be explored in real time by a user or

designer. The next chapter will demonstrate a few of these use cases, and in particular

stylisations that exploit the stroke representations developed in this thesis. This segmen-

tation could also be useful in related applications like automatic font hinting (Shamir,

2003), segmenting characters in historical documents (Lamiroy et al., 2015), painterly

applications of robotics (Deussen et al., 2012), stylisation methods that require taking

glyph structure into account (Zou et al., 2016), and animated reconstructions of arbitrary

glyphs (Gingold et al., 2008).

The current trend in the computational science field, is to solve these kinds of seg-

mentation and stylisation problems with a data-driven approach, often with a preference

10.7. Conclusion 271

for end-to-end solutions combining one or more statistical models. These methods typ-

ically rely on a large body of human-labelled training data. We instead demonstrated a

solution that relies on experimentally-validated principles of visual perception and com-

putational geometry concepts. The advantage of our approach is that it is adaptable to

fonts for which training data might be scarce or non-existent and to glyphs that do not

match the training data. Our solution requires tuning a few parameters, but these have

intuitive visual and perceptual interpretations and can be adjusted by the user for the

required use case.

In future research, we plan to explore how data-driven solutions could be combined

with our approach. For example, we could use data to incorporate language-specific

domain knowledge. More fundamentally, we could use a data-driven approach to set

parameters in the junction identification stage. We hypothesize that training on a very

small number of user-labelled examples could be enough to create a mapping between

forks, their associated CSFs, and the six different junction types we introduced. Devel-

oping a similar procedure with automatically labelled examples is also an interesting av-

enue of future research. While ground truth data for Western fonts is scarse, a stroke-

based font description language such as METAFONT (Knuth, 1999) can be used to au-

tomatically generate parametric variations of strokes, as well as variations of the glyph

outlines resulting from their combination. The resulting training pairs could be used to

drive a fully automatic data-driven solution to the stroke segmentation problem. Finally,

the method presented in this chapter already has potential uses in producing reliable

training data for sequence-based generative models like the one developed by Ha and

Eck (2018) for SVG drawings. While similar methods have been successfully used to re-

produce handwriting (Graves, 2013), or Chinese characters (Tang et al., 2019), to the best

of our knowledge this approach remains to be further developed and tested with a variety

of fonts and styles.

Chapter 11

Font stylisation

Figure 11.1: Stylisation of the word GRAFFITI generated from recovered stroke paths using our
methods for segmentation (Chapter 10) and strokes (Chapter 6).

Stroke paths and areas (Chapter 10) are the basis for a variety of stylisation methods.

Grounding text stylisation on fonts has the advantage that it is agnostic to the language or

writing system and the embedded kerning information can be used to determine inter-

glyph spacing, which is known to be difficult to achieve with methods that create stylized

text from scratch (Haines et al., 2016).

While the previously described segmentation procedure runs offline, the stylisation

procedures described in this chapter run in real-time and support the exploration of dif-

ferent stylisations through an interactive user interface. All the procedures are written in

C++ using OpenGL for hardware-accelerated rendering.

11.1 Path-based stylisation

Stroke paths capture a plausible way in which a glyph could be drawn and provide a

rich structural description that enables a range of stroke-based stylisations. These range

from design-oriented stylisations based on skeletal strokes, to stylisations that resemble

11.1. Path-based stylisation 273

Figure 11.2: Hershey font stylisation (black) overlayed on the original font (gray).

calligraphy and graffiti art, which exploit the stroking methods described in the previous

chapters.

11.1.1 From stroke paths to strokes

The first step to construct a stroke stylisation from a set of stroke pathsis to augment

these paths with a linear vertex-ordering. While for certain stylisations an arbitrary or-

dering can be sufficient, many other types of strokes are not necessarily invariant to the

direction of traversal. The following examples all use a simple topological sorting heuris-

tic that rewards top-to-bottom and left-to-right movements. However, the path repre-

sentation is also suitable for more sophisticated approaches (Fu et al., 2011; Tang et al.,

2017). The topological sorting procedure results in a sequence of densely sampled poly-

lines. Each polyline vertex maps to a path vertex, together with the corresponding width

and junction annotation if present.

Figure 11.3: Font stylisation with skeletal strokes. The left column shows the text in the original
font. The right column shows the corresponding stroke stylisations. The first exam-
ple on the right shows the result of using skeletal strokes as implemented in Adobe
Illustrator to change weight, cap, and join styles; the other three show various deco-
rative effects. The strokes in the last example use variable width.

11.1. Path-based stylisation 274

The initially dense polyline representation can be used to produce some simple

stylisations. For example, we can convert it into spines consisting of Bézier curves, which

can then be used to generate “Hershey fonts”, which have glyphs consisting of constant-

width strokes (Figure 11.2). Such fonts are well-suited for fabrication and manufactur-

ing applications. The same spines can be used to construct skeletal strokes (Section

3.6.2) (Asente, 2010), which enable a variety of glyph stylisations ranging from the more

painterly to the more decorative effects (Figure 11.3).

11.1.2 Simplification: constructing motor plans

The stroke stylisation methods described in the previous chapters are designed to work

with motor plans consisting of relatively sparse polylines. We convert an the initially

dense representation into a sparse one by using polyline simplification. The simplifica-

tion can be done with a variety of methods (Luebke, 2001), but we choose to use Dis-

crete Contour Evolution (Latecki and Lakämper, 1998) (Figure 11.4.a), which selectively

removes polyline vertices based on a circular arc-length relevance measure (Table 3.5,

Chapter 3). A vertex is removed if its relevance is less than a user selected threshold and

we never remove vertices corresponding to strong flexures by assigning these a maxi-

mum relevance. Because the simplification method removes vertices, the mapping from

the remaining spine vertices to junctions and widths is always maintained.

Adjustment. After simplification, we adjust the spine endpoints to the closest intersec-

tion of end-tangents with the opposite spine, with a procedure identical to the one used

when constructing stroke paths. The stylisation procedures that follow also require a

(a)

(b)

(c)

Figure 11.4: Simplification and schematisation: (a) Path simplification (kept vertices as red dots).
Spine schematisation (Dwyer et al., 2008): (b) quantising orientations to multiples
of 60◦, and (c) restricting orientations to 30◦ and 120◦.

11.1. Path-based stylisation 275

(a) (b) (c) (d)

Figure 11.5: Mapping to flexures (blue circles) for (b,c) simplified and (d) schematised spines.

similar adjustment, with the addition of a few steps that depend on the method and are

discussed when relevant.

11.1.3 Structural modifiers

The connectivity information encoded by topological junctions can be used to transform

a motor plan through structural modifiers that enable glyph stylisations that resemble

graffiti or calligraphy, while taking the glyph structure into account.

11.1.3.1 Schematisation

Schematisation quantises the orientations of spine segments and results in regular-

looking polygonisations and stylistic abstractions of a glyph structure (Figure 11.4.b,c).

These kinds of regular structures can be observed in some graffiti letter stylisations. Ferri

(2016) includes a similar construct in his “form functions”, which he hypothesises un-

derlie the genesis of graffiti styles (refer to Table B.2, F7). We implement schematisation

with a so-called C -oriented method (Nöllenburg, 2014), which approximates a polyline

with another one consisting of segments that are parallel to a discrete set of orientations

C . We use a least-squares solution to the C -oriented problem proposed by Dwyer et al.

(2008) for a metro-map generalisation task.

The schematisation procedure can alter the number of vertices in a spine and this

can corrupt the mapping from spine vertices to flexures, which is necessary to drive the

subsequent stylisation procedures. To recover this mapping we compute a set of corre-

spondences between the schematised and non-schematised spine vertices (Figure 11.5).

For this purpose, we use Dynamic Time Warping (Gold and Sharir, 2018) with the Eu-

clidean distance between vertices, and then assign a flexure to a schematised vertex if it

is assigned to any corresponding non-schematised vertex.

11.1. Path-based stylisation 276

(a) (b) (c) (d)

Figure 11.6: Structural adjustment steps for a schematised letter “A”. (a) Unstylised stroke spines
after reconstruction. Note that incidence relations for T-junctions have been already
corrected as described in Figure 10.19. (b) Schematisation can corrupt topological
relations among strokes. (c) We re-establish these by shifting strokes that are covered
by a single T-junction or branching Y-junction. Note that the triangular part of the
“A” is covered by two T-junctions, so it is not adjusted. (d) A second adjustment step
reconnects all stroke endpoints.

Structural adjustment. Schematisation is applied to each spine separately which can

corrupt the motor plan connectivity, making it difficult to apply intersection-based ad-

justments to the spine endpoints. While a correct topology could be imposed with con-

straint solving algorithms (Nöllenburg, 2014), we observe that this issue mostly affects

spines such as the lower-left serif in Figure 11.6.b, which is characterized by another

spine ending within it. This kind of configuration can be detected by counting the num-

ber of T-junctions and branching Y-junctions along a spine. If, for a given spine, only one

such junction exists, we translate the spine by p ′ −p , where p is the original endpoint of

the incident spine and p ′ is the endpoint after schematisation (Figure 11.6.c). Once this

procedure is executed, we can adjust the endpoints with the same tangent intersection

procedure as before (Figure 11.6.d).

(a) (a) (b) (c)

Figure 11.7: Structural decoration steps for a schematised letter “A”. (a) Schematised “A”. The two
serifs end-points do not terminate in any topological junction. (b) Extending the ser-
ifs for effect. (c) Decorating the serifs with a user defined motor plan (top left), that
replaces the serif red spine segment (in this case the whole spine). The replacement
is made by rotating the motor plan so that its first segment (also in red) matches the
replaced spine segment. (d) Example calligraphic stylisation of the resulting motor
plan.

11.1. Path-based stylisation 277

11.1.3.2 Structural decorations.

Topological junctions are also useful to identify spine segments that can be altered for

additional stylisation effects. In one such method, we extend spine end segments that

do not terminate in any topological junction (Figure 11.7.a), by a configurable amount

that is proportional to the length of the segment projection on the horizontal or vertical

axis. Figure 11.7.b shows how this method can be used to extend the serifs of a glyph. In

a second method, we replace these end segments with a user-defined motor plan (Fig-

ure 11.7.c), resulting in a procedure that is similar to a shape grammar (Stiny and Gips,

1972). The motor plan is transformed so that its first spine segment matches the end

segment that is replaced. This method can be used to mimic the “flourishes” that some-

times adorn calligraphic letterforms or similar decorative elements that can be observed

in graffiti stylised letters (Figure 11.7.d).

11.1.4 Calligraphic Stylisation

The simplified and structurally modified motor plans can be used to construct a vari-

ety of calligraphic stylisations that mimic the aesthetics of certain kinds of calligraphic

writing (Figures 10.1.e,f and 11.8) or graffiti tags (Figure 11.11).

We generate kinematic realisations of the motor plans using MIC with semi-tied

covariances and one Gaussian component for each motor plan vertex. Each component

Figure 11.8: Calligraphic stylisations generated by combining schematisation (Dwyer et al., 2008)
with kinematic realisations generated with MIC (Chapter 5) and kinematics-based
brush rendering (Chapter 4).

11.1. Path-based stylisation 278

Figure 11.9: Calligraphic stylisations of the string “AUTOGRAFF” with brush thickness propor-
tional to the path width profiles and using schematisation with multiples of 45◦ start-
ing from a user selected initial orientation (different for each row).

is scaled by a factor in [0,1] that depends on whether a vertex maps to a flexure or not,

which allows to produce a variation of curvature that is similar to the original glyph. If a

vertex maps to flexure the scaling factor is given by:

max(r,rmax)

rmax
,

where r is the radius of curvature associated with the flexure and rmax is a user-

configurable maximum radius value. If the vertex does not map to any flexure, the factor

is set to its maximum value of 1. Similarly to Chapter 5, different kinematic realisations of

a motor plan are produced by also globally varying the scale, isotropy and the orientation

of the covariance ellipses.

Different combinations of structural modifiers, kinematic realisations and stroke

rendering methods (discussed in Chapters 4 and 5) can be varied interactively, resulting

in stroke stylisations that resemble instances of calligraphy (Figures 11.9 and 11.10) or

graffiti tags (Figure 11.11).

11.1. Path-based stylisation 279

Figure 11.10: Painterly stylisation of the Chinese string “qiyun shengdong” (left), using multi-
ple overlapping skeletal strokes constructed along kinematic realisations of the
schematised spines.

Figure 11.11: Three different tag-like stylisations of the word “RASER”; below each is the cor-
responding font and glyph-spacing. Note that, the middle stylisation is done by
replacing near vertical spine segments with a user-defined motor plan.

11.1.4.1 Smoothed stroke adjustment.

Smoothing also can corrupt the adjacency relations between strokes (Figure 11.12.a). To

adjust these configurations, we perform a first smoothing pass on each spine resulting

in an initial set of trajectories. We then adjust the end-vertices of the spines so that their

endpoints are incident to these trajectories (Figure 11.12.b). Finally we perform a second

smoothing pass on the adjusted spines.

11.1.5 Outline Stylisation

A similar procedure to the one above can be used with the outline based stroking method

described in Chapter 6, resulting in glyph stylisations that mimic the appearance of graf-

fiti pieces (Figures 11.17 and 11.13). The local and global smoothness is determined

similarly to the calligraphic stylisation case, but we also generate a piecewise-smoothed

stroke if the smoothness of a vertex is below a user defined threshold (Figure 11.14). This

allows us to reproduce strokes that combine smooth and straight portions and to keep

corners with increased levels of smoothing.

The width profile for the strokes can be computed from the scaffold or parametri-

cally. When using the scaffold we assign each spine segment a constant width, given by

11.1. Path-based stylisation 280

(a) (b)

Figure 11.12: Structural adjustment steps for a kinematic realisation of a schematised “A”. (a) Us-
ing the adjusted schematised motor plan (red) from Figure 11.6 to produce a kine-
matic realisation (black) can also corrupt the incidence relations among strokes.
(b) A last adjustment step moves the non-smoothed spine endpoints (the middle
section of the "A") so they terminate at the intersection with the smoothed trajec-
tory.

Figure 11.13: Outline-based graffiti stylisation. Top: the source fonts. Middle: strokes and
schematised spines (red). Bottom: Layered and rendered graffiti stylisations.

the average width of the scaffold vertices spanned by the

The width profile for the strokes can be computed from the corresponding paths or

parametrically. When using the paths, we assign each spine segment a constant width,

given by the average width of the path vertices spanned by the segment (Figure 11.15.a).

Otherwise, the width profile can be computed parametrically with one of the methods

Figure 11.14: Progressive smoothing of a letter “P” (Arial) with a corner and consisting of a single
stroke. The corner is maintained across increasing levels of smoothing.

11.1. Path-based stylisation 281

(a) (b)

Figure 11.15: Per-segment width profiles. (a) The width of each simplified segment is propor-
tional to the average width of the intermediate scaffoldpath vertices. (b) Parametric
width profile depending on the direction of the spine segments.

(a) (b) (c) (d)

Figure 11.16: Structural adjustment steps for the outlined strokes of a schematised “A”. (a) With-
out adjustment, the sides of the strokes can terminate outside of the stylised glyph
area. (b) The stroke sides are adjusted so they terminate at the intersection with
a thinner version of the opposite stroke. (c) The same issue for smoothed stroke
outlines. (d) For the smoothed case, the polygonal outline (i.e. the motor plan, in
red) is adjusted, resulting in new trajectories that terminate at the intersection with
the thinned (and smooth) opposite stroke.

described in Chapter 6, e.g. based on the orientation of each spine segment (Figure

11.15.b).

The local depth ordering of strokes is either determined randomly or with a point-

and-click procedure identical to the one described in Chapter 6. We automatically add

local unions for partitions that coincide with topological junctions, but these can also be

disabled for different stylisation effects.

11.1.5.1 Outlined stroke adjustment.

The adjustment procedure is slightly different for outline based strokes (Section 6.1.1),

since the thickened stroke sides can overshoot the opposite strokes (Figure 11.16.a). To

adjust these configurations we first duplicate all the strokes and scale the correspond-

ing width profile by an arbitrarily small amount. We then adjust the end-segments of

the polygonal sides so their end-vertices are incident to the opposite scaled stroke (Fig-

ure 11.16.b). Similarly to the case of calligraphic stylisation, when a stroke outline is a

11.1. Path-based stylisation 282

Figure 11.17: Combining schematisation with the outline-based graffiti strokes (Chapter 6) to
generate graffiti stylisations of strings in different fonts and languages.

smooth trajectory (Figure 11.16.c), we adjust the corresponding polygonal outline, which

results in a different and adjusted trajectory (Figure 11.16.d).

11.1.6 Stroke animation

The topologically sorted strokes can be easily animated with a variety of methods. Calli-

graphic strokes can easily be rendered and animated with the same techniques discussed

in Chapters 4 and 5. This results in natural-looking animations that reflect kinematics

that are similar to a human hand motion (Figure 11.18). Stylized brush animations can

also be generated by incrementally visualizing a skeletal stroke, animating the skeletal

11.2. Area-Based Stylisation: Stroke Similarity 283

(a) (c) (d)(b)

Figure 11.18: Animating the drawing of a stylized “R”.

(a) (b)

Figure 11.19: Abstract stroke-based animations. (a) Applying an animated prototype (left) to
a styled letter “R”. (b) Particle animation following the stroke spines and leaving
traces.

stroke prototype itself (Figure 11.19.a), or by animating a particle system that follows the

stroke spines (Figure 11.19.b).

Stroke areas can also potentially be used to create an animated reconstruction of the

glyph with an automatic version of the template-based method developed by Gingold

et al. (2008). We did some preliminary tests in this direction, but the development of a

working prototype is left as future work.

11.2 Area-Based Stylisation: Stroke Similarity

The stroke area segmentation of the outline is the basis of a similarity measure among

strokes in a complete font. We compute the difference between two stroke areas by

aligning their centroids, rasterising them, and then measuring the Jaccard distance (Deza

and Deza, 2013, p. 299) between the resulting bitmaps: i.e. 1 minus the intersection di-

vided by the union. If one stroke terminates in a topological junction and the other does

not, the distance takes the maximum value of 1. We then group strokes using single-

linkage agglomerative clustering (Murphy, 2012) and determine clusters based on a user-

configurable threshold. While the distance is computed offline, the clustering procedure

is interactive, and users can adjust the threshold to their preference. We then replace

each stroke area in a cluster with an artistic rendering based on the shape, generating

stylisations that apply uniformly across an entire font (Figures 10.1.i and 11.20).

11.3. Conclusions 284

Figure 11.20: Stylisation based on similarity between stroke areas. In the first row, strokes are
color-coded based on common clusters. In the second row, each stroke in a cluster
is replaced with the same custom artwork. Note that including junction structure in
the stroke similarity metric allows distinct stylisations to apply to otherwise similar
strokes, like the horizontal strokes in R, P, L, and A. Artwork ©Daichi Ito.

11.3 Conclusions

In this chapter, I have demonstrated how the stroke segmentation procedure developed

in Chapter 10 can be used to generate a rich variety of stylisations and animations of

a font. The range of stylisations includes design-oriented stylisations based on skeletal

strokes, schematic abstractions of a glyph structure, calligraphic or graffiti stylisations

and similarity-based replacements of parts of a glyph.

The proposed methods achieve one of the objectives set in the introduction (Chap-

ter 1) of generating graffiti stylised strings in a variety of languages and styles. By exploit-

ing the latent stroke structure encoded by font outlines, the proposed solution trans-

forms a much more challenging problem of glyph synthesis (Hofstadter et al., 1993) into

a simpler one of inverse modeling and stylisation, where the wealth of publicly available

fonts becomes a rich source of possible glyph structures.

The resulting system allows a user to rapidly generate and customise high quality

graffiti textures, which can be easily applied to the surfaces of a computer generated

environment. Figure 11.21.a shows examples of the output of this system textured in an

environment that can be explored in real-time with the Unreal® game engine. Currently,

this requires the user to manually apply the textures where desired, but developing au-

tomatic methods to do so is an interesting avenue of future research. Likewise, the tag

textures shown in the environment are currently static, but animating their reproduc-

tion with a full-body inverse kinematics procedure is possible and another promising

research avenue (Figure 11.21.b). Another interesting application to explore is the use

1https://github.com/Squashwell/bepuik/tree/bepuik
2https://apps.apple.com/us/app/wallr

11.3. Conclusions 285

(a)

(b) (c)

Figure 11.21: Synthetic graffiti in the virtual and real world. (a) Textures generated by our system
applied in a virtual environment within the Unreal game engine (by Epic Games).
(b) Prototype for full-body inverse kinematics animation of the production of a
tag. Given a hand trajectory, the full body inverse kinematics are computed us-
ing the Bepuik1 tool for the Blender 3D package. (c) AR graffiti experiment using
the WALLR2 application.

of augmented reality (AR) technologies to apply the generated graffiti to real-world walls

(Figure 11.21.c).

While the system is capable of generating convincing graffiti stylisation, this still

requires an effort on the part of the user to appropriately choose a set of stylisation pa-

rameters that work well with a given font or combination of glyphs. An evaluation of the

quality of the stylisation techniques is beyond the scope of this work. Our main goal was

to enable a wide variety of stroke-based stylisations and the proposed implementation

provides a “sandbox” in which the user can explore many different options in real time.

These range from readable stylisations to highly abstract renditions that are still evoca-

tive of the original font structure, but that are difficult or impossible to read. This applies

especially to the calligraphic and graffiti stylisation methods, which operate in a domain

where aesthetics take priority over readability (Craveiro, 2017).

Chapter 12

Conclusion

In this thesis, I have presented a series of primitives, methods and tools meant to com-

putationally reproduce the appearance of graffiti art as well as certain related forms of

calligraphy. The work initially stems from my previous experience as a graffiti artist.

It builds on a personal introspection into a design process that I have assimilated over

the years, but also on feedback and knowledge gained from peer graffiti artists, some

of whom have shared their ideas in the form of published books (Ferri, 2016; Arte,

2015; Kimvall, 2014). While being informed from my personal experience and intu-

itions, the implementation of the methods developed across the thesis is grounded on

an in-depth study of methods, principles and results in a number of fields, including

computer graphics, computational motor control, graphonomics, visual perception and

shape analysis.

In the introduction, I did set two principal thesis objectives:

1. Implementing a system that enables a user to rapidly “sketch” graffiti in a variety of

styles and with a user interface that is similar to the one typically used in standard

vector-drawing applications.

2. Generating high quality graffiti content that can be customised by a user and can

be textured in virtual environments in games and in movies.

These objectives are intended to address the current lack of existing research or methods

that are aimed at the computational generation of graffiti art.

The resulting solutions are also conceived to address a number of related challenges

and limitations that I have identified in the attempt to design graffiti in conventional

vector-based design applications, or while observing graffiti art as it can be seen textured

in video games and movies; namely:

12.1. Part I: Stroke primitives 287

Figure 12.1: Calligraphic stylisation of the word “CAGD”.

1. The difficulty to specify, edit and manipulate calligraphic curves, such as the ones

that are typically seen in graffiti art, with conventional curve generation and edit-

ing methods.

2. The difficulty to reproduce the often self-overlapping and intertwined patterns

that can be observed in graffiti pieces, with the standard back-to-front object lay-

ering typically assumed in vector-design packages or methods.

3. The low realism, variation and customisability of graffiti that can be seen textured

in computer generated environments.

The methods discussed in the thesis are developed for the specific use case of graffiti art.

However, I have shown that reaching the objectives above, results in methods that are

generally useful in a broader design spectrum, with applications in calligraphy, typogra-

phy and pattern design. The resulting system is meant to be compatible with standard

CAGD pipelines, leading to the same acronym but a more specific goal of “Computer

Aided Graffiti Design” (Figure 12.1).1 According to the prefixed objectives, I have organ-

ised the thesis into two main parts, the results of which results are briefly summarised

and discussed next.

12.1 Part I: Stroke primitives

To describe a variety of graffiti styles with a similar framework, I have proposed a a two-

level representation of stylised letterforms, consisting of a motor plan and a set of stroke

primitives.

The motor plan is a schematic representation of a series of idealised movements

that trace a stylised version of the letterform. Strokes materialise these movements with

1While still keeping geometry in the loop.

12.1. Part I: Stroke primitives 288

stylised traces or outlines, finally resulting in different kinds of letter stylisations. The

motor plan is similar to certain end-point representations of movement (Plamondon,

1993; Maarse, 1987) that are hypothesised to occur in the brain (Flash and Hochner,

2005). It consists of a sparse sequence of points, that is easy to specify and edit, similarly

to the control polygon typically used to specify curves in standard CAGD applications. It

can be constructed manually, with a simple point-and-click procedure, or automatically

from a set of traces (Chapter 8) or from the outlines of a glyph (Chapter 10 and Chapter

11).

I have emphasised early on that the fundamental “atom” of graffiti art is the tag, a

highly stylised signature, the visual quality of which is directly related to the spontane-

ity and skill with which its drawing movements are executed. In order to reproduce the

“hand style” that is used to produce tags I proposed a “movement centric” approach to

curve generation and a related concept of “style by kinematics”, in which different styli-

sations of a curve are produced by varying the parameters of a movement that follows

a common motor plan. I have demonstrated two possible implementations of this ap-

proach: one, the ΣΛmodel (Chapter 4), based on a space-time superposition of ballistic

movement primitives, and a second, MIC (Chapter 5), based on a probabilistic formu-

lation of optimal control. Both methods produce movement trajectories with kinematic

properties that are characteristic of human hand or arm movements, such as a high de-

gree of trajectory smoothness (Engelbrecht, 2001; Sosnik et al., 2004), bell-shaped speed

profiles (Morasso, 1981; Plamondon et al., 1993) or an inverse relation between trajectory

speed and curvature, i.e. isogony (Viviani and Terzuolo, 1982; Lacquaniti et al., 1983).

These properties are useful to generate natural stroke animations, or to vary brush thick-

ness or density in order to mimic ink deposition during drawing movements. Further-

more, the parameterisation of both models implicitly defines variations of a trajectory

that reproduce the variability that is typically observed in multiple instances of human

writing or drawing. I have demonstrated examples of how these properties can be ad-

vantageous to reproduce instances of graffiti tags and how similar results are difficult to

achieve with conventional curve generation methods such as Bézier curves.

In Chapter 6, I demonstrated how the same movement centric approach is useful to

generate outline-based strokes, which can be combined to reproduce the appearance of

a diversity of graffiti styles other than tags. Again, the method mimics a sketching pro-

12.2. Part II: Graffiti content generation 289

cedure that might be followed by a graffiti artist while tracing a stylised stroke outline.

Different types of strokes and stylisations are achieved by varying the way in which these

tracing movements evolve. This outline based stroke representation also enables self-

overlaps as well as local layering and union effects that are difficult to achieve in conven-

tional vector-design packages (Asente et al., 2007; McCann and Pollard, 2009), and this

facilitates the reproduction of these same visual qualities that can be often observed in

graffiti art.

I have justified the choice of a movement centric approach to curve generation with

a hypothesis of “embodied aesthetics”(Freedberg and Gallese, 2007) suggesting that the

observation of a static trace, such as the mark left by a brush, produces a recovery of a

likely generative movement in the viewer. Based on commonly held knowledge in the

graffiti art community (Ferri, 2016; Craveiro, 2017), but also among calligraphers (Briem

et al., 1983; Wang, 2013), I have adopted the hypothesis that the qualities of a latent gen-

erative movement also influences the aesthetic appreciation of the resulting trace. Based

on this hypothesis, I have suggested that the same should hold for the traces of a com-

puter generated movement. While this remains a conjecture, the methods developed

in this thesis have enabled an ongoing series of experiments (Chamberlain et al., 2019,

2020) , which suggest the validity of this hypothesis, at least for the case of “expert” view-

ers with a prior experience in the arts. An overview of these early results is given in Sec-

tion 12.4.4.

12.2 Part II: Graffiti content generation

In the second part of the thesis I have exploited the primitives developed in the first, in

order to develop a system in which a user is able to (i) vary and stylise existing traces of

tags or handwriting and to (ii) generate and customise graffiti text strings in a variety of

styles and with arbitrary languages and writing systems.

To achieve the first goal, I developed a method that recovers a motor plan and a set

of kinematic (ΣΛ) parameters from from the geometry of a static trace (Chapter 8). This

reconstruction effectively separates a structural (motor plan) and kinematic (remaining

ΣΛ parameters) component from a given trace geometry, which enables a user to edit,

vary, render and animate the trace with procedures that are similar to the ones discussed

in Chapter 4. I also demonstrated how this separation can be exploited to implement

a novel example-driven stylisation procedure (Chapter 9) that is conceptually similar to

12.2. Part II: Graffiti content generation 290

a number of “style transfer” methods that rely on some form of separation between a

descriptor of “style” and a descriptor of “content” (Hertzmann et al., 2001, 2002; Li et al.,

2013; Gatys et al., 2015). The novelty of the proposed approach is the use of kinematics

as a descriptor of (hand) style.

The second goal of generating graffiti strings in different styles and languages was

perhaps the most challenging problem in this thesis. In his book Metamagical Themas

(1985), Douglas Hofstadter has pointed out the difficulty of this kind of problem, which

he compared to “knobbifying” the alphabet, that is finding a general and finite set of pa-

rameters that can be used to reproduce the enormous variety of possible structures and

styles that a letterform can take. Rather than solving this ill-posed problem, which per-

tains more to the fields of computational creativity (Boden, 2003) and cognitive science, I

have proposed a still challenging but more pragmatic solution: recovering useful strokes

from the outlines of a given font (Chapter 10). While the proposed solution might leave

some unsatisfied, it effectively tackles the letterform generation problem by exploiting

the wealth of publicly available fonts as a source for possible letter structures and styles.

Both stylisation methods described in the second part of the thesis rely on the re-

covery of stroke primitives that reconstruct a given input geometry, which functions as

a “seed” that generates diverse instances of synthetic graffiti. Seeking ways to solve this

reconstruction problem has led to the development of curvilinear shape features (CSFs),

a novel “contour + boundary” shape descriptor inspired to the work of Leyton (1988) and

based on the computation of local symmetry axes (Chapter 7). CSFs lead to the definition

of the CASA, an extended version of Blum’s SA (Blum, 1973) with branches terminating at

all curvature extrema. In Chapter 8, I’ve shown how CSFs can be used to accurately iden-

tify curvature extrema and to infer a plausible generative movement for a given trace,

by exploiting the ΣΛ parameterisation together with the isogony principle. In Chapter

10, I’ve shown how CSFs, together with the CASA, can be used to characterise glyph out-

lines with a perceptually inspired measure of good continuation and to segment these

outlines into potentially crossing or overlapping strokes. I expect to identify many more

use-cases for CSFs in my future research, and I hope that this representation will prove

useful to others, beyond the scope of this thesis.

12.3. Summary of Contributions 291

12.3 Summary of Contributions

The main contribution of this thesis is a set of tools and a methodology for the computa-

tional reproduction of graffiti art. In general, this adds a previously neglected art form to

the ones that have been studied in the computer graphics literature and in the growing

field of NPAR (Kyprianidis et al., 2013). From a practical standpoint, the resulting system

is designed to fit into a standard vector-design pipeline and to let a user focus on high-

level compositional aspects, while the system takes care of producing outputs that are

similar to graffiti art.

At the same time, the objective to model this art form has led to a number of con-

tributions, the utility of which extends to the wider domains of computer graphics and

even more generally to computational shape analysis:

• A movement centric approach to curve generation aimed at reproducing hand-

drawn or written traces, taking into account well known properties of human

hand/arm movements (Chapters 4 & 5) and consequently enabling realistic mod-

eling of variability, natural looking stroke animations and kinematics-based ren-

dering of strokes.

• A semi-tied covariance formulation for the generation of calligraphic stylisations

with optimal control and a reduced number of open parameters (Chapter 5).

• An extension to skeletal strokes that enables self-overlaps and smooth outlines that

mimic the ones produced with a drawing movement (Chapter 6).

• Curvilinear Shape Features (CSFs), a novel representation that describe convex

and concave outline or contour features (Chapter 7).

• Curvilinear Augmented Symmetry Axis (CASA), an augmented symmetry axis that

include features missed by the traditional definition according to Blum (Chapter

7).

• A novel example-driven curve stylisation method that uses movement kinematics

as a feature representation and as a descriptor of style (Chapter 9).

• A novel geometry-based segmentation method that can decomposes fonts into po-

tentially crossing and overlapping strokes (Chapter 10).

12.4. Limitations and future work 292

More generally, the proposed subject of study has proven to be useful beyond the

initially set artistic and design-oriented goals. Graffiti art is a peculiar art form because

it revolves around stylisations and customisations applied to letterforms, with a varied

but well defined set of visual conventions and procedures (Kimvall, 2014; Ferri, 2016), in-

volving the execution of skilled movements, and where letterforms are perceptual units

that involve both shape (Sanocki, 1992) and motor (James and Gauthier, 2006) repre-

sentations in the brain. As previously mentioned, the methods and ideas developed in

this thesis have contributed to the development of a series of ongoing experiments in

the field of empirical aesthetics, aimed at studying and understanding the links between

the kinematic qualities of drawing movements and the perceived aesthetic quality of the

resulting traces. The results of the experiments have contributed to support the hypothe-

ses underlying this thesis, and the methods developed in this thesis have contributed in

systematically generating stimuli for the experimental procedures. I argue that this kind

of cross-disciplinary feedback loop can contribute to the development of more accurate

and sophisticated computational models of a given art form while contributing, at the

same time, to a better understanding of the complex mental and physical processes in-

volved in art-making.

12.4 Limitations and future work

The presented work is not free from limitations, and the most important ones are sum-

marised and discussed next. Those limitations also open up a number of paths for future

research, which are also discussed in the following sections.

12.4.1 ΣΛmodel

Concerning the ΣΛ model, I made the choice of keeping the lognormal shape param-

eters µi and σi fixed to predefined values, given the observation that they produce a

negligible effect on the trajectory geometry. However, the inconclusive results discussed

in the conclusion of Chapter 8 suggest that a more rigorous analysis of these parameters’

effects on trajectory kinematics is useful , especially in sight of comparisons with other

physiologically plausible movement models such as minimum jerk (Section 8.4). One

way to determine the parameters is to first (i) reconstruct various digitised tags with one

of the existing kinematics-based ΣΛ parameter estimation methods (O’Reilly and Pla-

mondon, 2008; Plamondon et al., 2014; Fischer et al., 2014; Ferrer et al., 2018) and then

12.4. Limitations and future work 293

(ii) compute µi ,σi from the average of the parameter estimates. However, it should be

noted that these methods also make specific assumptions when reconstructing a trajec-

tory, and these assumptions are likely to produce differing values of µi and σi .

As discussed in Chapter 4, the ΣΛ trajectory generation method still lacks a prin-

cipled way to explore different stylisations of a motor plan with few parameters, such

as the approach we have seen with MIC together with semi-tied covariances (Section

5.2.2) or multiple references (Section 5.1.7). The possibility to efficiently compute key-

points along a trajectory (Section 4.4.2.1) together with high-order derivatives at their

time occurrence (Section 4.1), suggests that an optimisation-based approach is a poten-

tial solution to this limitation. The combination of optimal control with the ΣΛ model

is generally a promising research avenue. For example, in Section 8.4, we have seen that

the overlap between lognormals produces a delay between velocity minima that is simi-

lar to the the one predicted by the minimum jerk model (Flash and Hogan, 1985; Todorov

and Jordan, 1998). This suggests that optimising the time-overlaps between lognormals

can result in trajectories that are optimal in a minimum-square-derivatives sense (En-

gelbrecht, 2001), and this can potentially lead to an efficient solution to the uniform pa-

rameterisation problem that affects MIC similarly to splines (see Section 5.4.2 and Lee,

1989).

12.4.2 MIC

The main limitation of the MIC method (Chapter 5) is the inefficiency of the batch so-

lution, which requires solving a potentially large linear problem with O(n3) computa-

tional complexity. While the iterative solution described in Appendix C.2 is much more

efficient (Figure 5.27), it does not enable some useful functionalities, such as stochastic

sampling and periodic trajectories. The possibility to refine an initially sparse trajectory

estimate mitigates the issue with the batch solution, but the computational complexity

of the method still limits the use of MIC as an interactive curve generation tool in vector-

design applications.

One way to improve performance is to formulate the optimisation problem in terms

of B-splines, as proposed by Fujioka and colleagues (Shinoda et al., 2003; Fujioka et al.,

2006; Fujioka and Miyata, 2011). The B-spline formulation still requires the solution of

a O(n3) problem, but it does not require considering full states (with all derivatives) for

each time step and thus results in a smaller optimisation problem and a more efficient

12.4. Limitations and future work 294

(a) (b) (c)

Figure 12.2: Comparison of dynamic B-splines with MIC. (a) An outline based stroke (Chapter 6)
generated with the dynamic B-spline method of Shinoda et al. (2003). Comparison
of (b) a calligraphic trajectory generated with the method of Shinoda et al. (2003),
and (c) a similar trajectory generated with MIC and a 3rd order system. The two
trajectories use the same semi-tied covariance structure. Note that the B-spline ap-
pears to have a lower degree of smoothness near the loci circled in red.

solution. As a preliminary test, I implemented the method of Shinoda et al. (2003), ex-

tending it with a weighted formulation in terms of semi-tied Gaussians (Section 5.2.2).

While the method provides a valid replacement for MIC in the outline based case (Fig-

ure 12.2.a), the results appear less satisfactory for the use case of calligraphic stylisation

(Figure 12.2.b and Figure 12.2.c). However these results are purely qualitative and de-

serve a more in depth comparison of the advantages or disadvantages of both methods.

In general, certain contributions such as the semi-tied covariance formulation presented

in Chapter 5 are independent of the optimisation methods used, and exploring different

basis function representations of the problem (including lognormals) is an interesting

avenue of future research. The control-based approach used for MIC is not ideal in terms

of efficiency, but it is highly flexible. For example, the same optimal control problem can

be also formulated in the frequency domain (Calinon, 2019), which has interesting im-

plications when modeling oscillatory behaviors in drawing or scribbling movements.

12.4.3 Graffiti design

One aspect that is not taken into account in this thesis is the emergent character of the

graffiti drawing/writing process. With the proposed methods, graffiti letter design is re-

duced to a combination of building blocks, which is indeed a procedure that is often fol-

lowed by novice graffiti artists when learning how to sketch the stylised outlines a piece

(Figure 12.3.a and b). However, with experience, certain combinations of strokes are

assimilated, and the resulting letter outlines are often sketched as single entity (Figure

12.3.c). This results in a more rapid sketching procedure, in more organic letterforms,

12.4. Limitations and future work 295

(a) (b) (c)

Figure 12.3: Sketching graffiti letters by hand. (a) sketching single strokes and then (b) outlining
the union of the strokes. This procedure is usually followed when learning to draw
graffiti. (c) With experience, the strokes are conceptualised and the letter outline is
sketched as a whole.

and in a drawing procedure that is akin to improvisation. Each new stroke is influenced

by the previous one, or also by errors occurring while performing drawing gestures. This

results in a feedback mechanism that makes it difficult to predict what the final drawing

outcome will be. At the same time, designing graffiti with such a procedure requires first

having a solid grasp of a set of component elements, and the primitives developed in this

thesis are intended to provide such a basis to be used for more sophisticated models of

the graffiti sketching process to come.

I have demonstrated in Chapter 11 how a stroke-based representation of a glyph,

augmented with connectivity information, can be exploited to apply structural stylisa-

tions to a letterform. In Chapter 5, I also demonstrated simple examples where motor

plans are concatenated to produce smooth ligatures. These are just demonstrative ex-

amples of the flexibility of the combined motor plan and stroke representations. Possible

extensions to these simple procedures include: computing connections between strokes,

replacing spine corners with loops or physics-based rigid deformations of a motor plan.

The compositional and form functions proposed by Ferri (2016), which I have translated

from Italian in Appendix B, are a useful guide for these future developments. This the-

sis implements computational analogues of a subset of these functions, but many more

remain to be explored. The reader is invited to refer to Appendix B for an overview of

functions that can be implemented as an extension to the methods presented in this

thesis.

12.4.4 Empirical aesthetics research

The work developed in this thesis has contributed to a series of ongoing experiments that

investigate the aesthetics of graffiti and the relations between the kinematic qualities of

12.4. Limitations and future work 296

(a) (b) (c)

time

sp
ee

d

Figure 12.4: Example of minimum jerk and inverted speed profiles together with the corre-
sponding static stimuli. The speed profiles are different, but the trace is the same.
(a) Minimum jerk (MJ, black) and inverted minimum jerk (IMJ, blue) speed profiles.
(b) Brush rendering of the MJ trajectory resulting in a thinner stroke near curvature
extrema. (c) Brush rendering of the IMJ trajectory, resulting in a thinner stroke near
curvature extrema.

a movement and the aesthetic appreciation of the resulting drawing outcomes. The ex-

periments (Chamberlain et al., 2020, 2019) have been designed and conducted by a team

of psychologists at Goldsmiths, University of London and the Katholieke Universiteit in

Leuven, with my contribution being the selection and generation of stimuli.

12.4.4.1 Perception of graffiti compared to text-based and pictorial art

In a first experiment (Chamberlain et al., 2020), we examined low level image statistics

(self-similarity, anisotropy and complexity) and aesthetic ratings of graffiti art (pieces

and tags) compared to other text-based (calligraphy, initiums and ornate lettering) and

pictorial (abstract and representational painting) art forms. The experiment was con-

ducted on 169 participants with varying degree of expertise in the arts. Participants

showed a generally lower preference for graffiti art, when compared to other art forms.

However the results also showed a preference for graffiti and calligraphy in expert over

non-expert viewers, suggesting a role of expertise in the aesthetic appreciation of these

art forms. Participants also preferred graffiti images with higher self-similarity and com-

plexity, and lower anisotropy. This suggests that low level image statistics are an interest-

ing metric to consider if integrating the methods described in this thesis into a procedu-

ral generation pipeline.

12.4.4.2 Movement kinematics and the aesthetic appreciation of tags

In a second experiment (Chamberlain et al., 2019) we shifted our focus to synthetic tag

stimuli, investigating the role of movement qualities in the aesthetic appreciation of tags.

The experiment was conducted on 61 participants, of which 29 “experts” had at least 3

years of prior training in the arts. The experiment evaluated the perceived naturalness

12.4. Limitations and future work 297

of biologically feasible and infeasible motions, and compared the naturalness ratings to

aesthetic ratings of the resulting static traces. The biologically feasible motions followed

minimum jerk trajectories, characterised by the stereotypical inverse relation between

speed and absolute curvature. The trajectories were first generated with MIC using the

method described in Section 5.3.3. We then reconstructed the trajectories using the

path-constrained minimum jerk model (Todorov and Jordan, 1998), given its stronger

biological implications with respect to MIC. The biologically infeasible motions followed

an “inverted” reparameterisation of the same trace (Figure 12.4a), characterised by an

opposite and implausible relation between speed and absolute curvature (Dayan et al.,

2007). Both stimulus types were rendered with the brush model described in Section

4.5, resulting in thicker strokes near curvature extrema for the minimum jerk trajecto-

ries (Figure 12.4b) and the opposite relation for the reparameterised trajectories (Figure

12.4c).

In a first block of trials, the participants were asked to aesthetically rate static im-

ages, consisting of traces rendered with either the minimum jerk or inverse parame-

terisation. In a second block of trials, the participants were asked to rate the natural-

ness of the corresponding movements. All participants rated the minimum jerk trajecto-

ries as more natural and more aesthetically pleasing, with a strong correlation between

naturalness and aesthetic ratings. Both expert and non expert participants found the

movements generated with the minimum jerk model more natural than those generated

with the inverse parameterisation, further showing a strong correlation between the per-

ceived naturalness of a movement and the aesthetic appreciation of the corresponding

static stimulus. More surprisingly, only experts viewers showed a preference for the static

stimuli generated with minimum jerk model.

Again, these results demonstrate a role of expertise in the aesthetic evaluation of

graffiti. The results also support an embodied aesthetics hypothesis (Freyd, 1983; Freed-

berg and Gallese, 2007; Pignocchi, 2010) and further suggest that expert observers take

into account the kinematic feasibility of a movement when aesthetically evaluating the

resulting static trace, also for the case of synthetically generated drawings. In a follow-

up series of experiments, we plan to construct stimuli from the digitised movements of

a number of expert graffiti artists. We have already collected data from three artists by

12.4. Limitations and future work 298

recording their writing movements with a whiteboard-marker digitiser.2 We digitised dif-

ferent instances of tags, as well as random scribbles and isolated letters of the alphabet.

We plan to use these movements as stimuli in the context of a series of EEG studies, in

order to investigate possible neural correlates of the perceived naturalness and aesthetic

quality of the digitised movements, as well as their reconstruction with the ΣΛ and min-

imum jerk models.

12.4.5 Parameter choices and evaluation

Many of the parameter choices used across the thesis are driven by my personal aesthetic

preference and experience as a graffiti writer. In particular, when using MIC, I have often

settled for a relatively high system order of 4 (snap) or 5 (crackle) instead of the more

conventional order of 3, which would be consistent with the minimum jerk model. This

choice is based on my observation that these higher orders system result in subtle trajec-

tory qualities that resemble ones that can be seen in well executed tags. Similarly, a user

of the system is able to tune these parameters to his/her aesthetic preference. However, I

argue that an experimental evaluation of the aesthetic appeal of different system orders

is not only interesting in the context of graffiti modeling but also in the broader context

of computational motor control, where the subject of “optimality” is still a matter of de-

bate (Flash and Hogan, 1985; Edelman and Flash, 1987; Dingwell et al., 2004; Djioua and

Plamondon, 2010).

Similarly, the choice of the CSF saliency measure in Chapter 7 has been determined

based on its favourable performance in the applications discussed in Chapter 8 and

Chapter 10. At the same time, the results of the large-scale experiment performed by

De Winter and Wagemans (2008b) are publicly available, so in future studies I plan to

compute correlations between the proposed saliency measure with the saliency com-

puted from human preferences and then compare the results with the other measures

studied by the authors of the study (e.g. turning angle and stick-out).

12.4.6 Data driven methods

I have argued in Chapter 11 against the utility of controlled user studies to evaluate the

aesthetic quality of results. The system is intended to give sufficient exploratory freedom

to users, the aesthetic preferences of whom may vary depending on culture or simply

personal taste (Hertzmann, 2010). However flexible, the large number of parameters of

2The “eBeam smart marker” https://www.luidia.com/smartmarker/

12.4. Limitations and future work 299

the system can be daunting to control and, often, settings that work well for one font

are not guaranteed to work as well for another font. One interesting avenue of future re-

search is to use a supervised learning method similar to the one used by Xu et al. (2012)

for calligraphy to automatically evaluate stylisation results based on the feedback of one

or more expert graffiti artists. Another interesting approach would be to combine a form

of dimensionality reduction (Yumer et al., 2015) together with a genetic algorithm (Mc-

Cormack and Lomas, 2020) to reduce the number of parameters exposed to a user and

to automatically predict settings given user selected preferences.

A data driven approach is also potentially useful to efficiently solve the previously

discussed parameterisation problem with MIC. Optimal passage times can be computed

with an optimisation method similar to the one proposed by Todorov and Jordan (1998)

for the minimum jerk model. This optimisation results in curvature extrema that occur at

motor plan vertices for interpolatory trajectories or near these vertices for approximating

ones. However, this kind of optimisation problem cannot currently be solved at inter-

active rates. One potential interactive solution consists in computing optimal passage

times offline for a number of motor plan configurations, and then learning a mapping

between relative orientations of motor plan segments to the optimal passage times with

a sequence-based model similar to those discussed in Chapter 9. Conceptually similar

approaches have become recently popular in fluid or smoke simulations (Wiewel et al.,

2019; Kim et al., 2019).

Finally, data driven methods are also a promising extension to the junction classifi-

cation procedure in Chapter 10. We currently rely on a heuristic method, with parame-

ters determined empirically based on a quantitative and qualitative evaluation of the re-

sults. In future developments the same choices could be driven with examples labelled

by a user or automatically and the junction representation is sufficiently high-level to

hypothesise that only a few examples should be sufficient for this task. As mentioned in

Chapter 10, the current segmentation method already produces paths that can be used to

train sequence-based generative models, transforming font outlines into potential train-

ing data for methods such as the one developed by Ha and Eck (2018) or Lake et al. (2013).

Investigating the performance of these methods to generate novel letter structures is also

an interesting and promising avenue of future research.

12.5. Final notes 300

12.5 Final notes

Returning to Hofstadter (1985), it should be noted that the system developed in this the-

sis does not attempt to model the creative process involved in graffiti creation, but rather

to provide a “creativity support tool” (Shneiderman, 2009; Resnick et al., 2005), which can

enable a more expert user to rapidly prototype complex graffiti-like compositions and a

more novice user to rapidly create stylised strings that resemble this art form. This is not

to say that modeling higher level aspects of the graffiti production and conception pro-

cess is not a useful future research avenue. The primitives developed in this thesis are

meant to provide an abstraction layer that facilitates graffiti content creation for a hu-

man, but also for an AI system that would be left with a simplified and higher level task

of planning and composition.

This thesis is concerned with the stylistic and visual aspects of graffiti art. How-

ever, there is much more to this art form, which also includes a rich subculture, made

of people around the globe sharing an unusual artistic interest and often adventurous

experiences, which certainly cannot be replaced with a simulation, let alone with the

methods developed here. At the same time, as a graffiti artist, I hope that the tools I have

developed can contribute to the growing adoption of technology in graffiti art, and that

results produced using these tools will eventually find a place as physical graffiti (more

or less automatically) made in the (urban) wild.

Appendix A

List of peer-reviewed publications

The following is a chronological list of publications that have been peer-reviewed, ac-

cepted and published, and for which I am the first author; followed by a reference to the

Chapters where they are most relevant.

1. (Berio and Leymarie, 2015) D. Berio and F. F. Leymarie. “Computational models for

the analysis and synthesis of graffiti tag strokes.” In P. Rosin, editor, Computational

Aesthetics, pages 35–47. Eurographics Association. Proceedings of a workshop part

of the Expressive Symposium, held in Istanbul, Turkey, June 2015. (Chapters 4 & 8).

2. (Berio et al., 2016) D. Berio, S. Calinon, and F. F. Leymarie. “Learning dynamic graf-

fiti strokes with a compliant robot.” In the Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 3981–3986. Held in

Daejeon, South Korea, October 2016. (Chapter 4).

3. (Berio et al., 2017b) D. Berio, S. Calinon, and F. Fol Leymarie. “Generating cal-

ligraphic trajectories with model predictive control.” In Proceedings of Graphics

Interface, Canadian Human-Computer Communications Society. Held in Edmon-

ton, Canada, May 2017. (Chapter 5).

4. (Berio et al., 2017d) D. Berio, F. Fol Leymarie, and R. Plamondon. “Computer aided

design of handwriting trajectories with the kinematic theory of rapid human move-

ments.” In the Proceedings of the 18th Biennial Conference of the International

Graphonomics Society (IGS). Held in Gaeta, Italy, June 2017. Received the GIRPR

best paper award on Pattern Recognition, sponsored by Gruppo Italiano Ricerca-

tori in Pattern Recognition. (Chapter 4).

302

5. (Berio et al., 2017c) D. Berio, S. Calinon, and F. F. Leymarie. “Dynamic graffiti styli-

sation with stochastic optimal control.” In the ACM Proceedings of the 4th Inter-

national Conference on Movement Computing (MOCO). Held in London, UK, June

2017. (Chapter 5).

6. (Berio et al., 2017a) D. Berio, M. Akten, F. F. Leymarie, M. Grierson, and R. Plam-

ondon. “Calligraphic stylisation learning with a physiologically plausible model of

movement and recurrent neural networks.” In the ACM Proc. of MOCO. Held in

London, UK, June 2017. (Chapter 9).

7. (Berio et al., 2018a) D. Berio, F. F. Leymarie, and R. Plamondon. “Expressive curve

editing with the sigma lognormal model. ” In the Proceedings of the 39th Annual

European Association for Computer Graphics Conference: Short Papers, pp. 33–36.

Eurographics. Held in Delft, the Netherlands, April 2018. (Chapter 4).

8. (Berio et al., 2018b) D. Berio, F. F. Leymarie, and R. Plamondon. “Kinematic recon-

struction of calligraphic traces from shape features.” In the Proceedings of the In-

ternational Conference on Pattern Recognition and Artificial Intelligence (ICPRAI),

vol. 1, pp. 762–767. Held in Montreal, Canada, in May 2018. (Chapters 7 & 8).

9. (Berio et al., 2019) D. Berio, P. Asente, J. Echevarria, and F. F. Leymarie. “Sketching

and layering graffiti primitives.” In the Proceedings of the 8th ACM/Eurographics

Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces

and Modeling and Non-Photorealistic Animation and Rendering, pp. 51–59. Held

in Genoa, Italy, May 2019. (Chapter 6).

10. (Berio et al., 2020a) D. Berio, F. F. Leymarie, and S. Calinon. “Interactive generation

of calligraphic trajectories from Gaussian mixtures.” In Mixture Models and Ap-

plications, Unsupervised and Semi-Supervised Learning book series (UNSESUL),

Springer, Ch. 2, pp. 23–38. 2020 (Chapter 5).

11. (Berio et al., 2020b) D. Berio, F. F. Leymarie, and R. Plamondon. “Kinematics re-

construction of static calligraphic traces from curvilinear shape features.” In The

Lognormality Principle and its Applications in e-Security, e-Learning and e-Health,

Series in Machine Perception and Artificial Intelligence. Ch. 11, pp. 237–268. World

Scientific. December 2020. (Chapters 7 & 8).

Appendix B

Ferri’s form and composition functions

The following are translations from Italian, with annotations, of two tables from the book

of (Ferri, 2016) “Teoria del writing, La ricerca dello stile”. Ferri describes a number of

“compositional” (Table B.1) and “form” (Table B.2) operations, that according to him

characterise different graffiti styles (“style” columns, cf. Figure 1.5 in the intro). The op-

erations are not defined computationally or mathematically, but many of these afford

a computational interpretation. A subset of these operations are, at least partially, im-

plemented in this thesis. These are color coded (red or blue) according to the relevant

chapter in the same row. I also indicate that a subset of the remaining operations can

readily be implemented in the near future, and I color code them as future work.

304

FC# Style Description Operations Implementation

FC0 stick Outlining a shape or area in or-
der to create a form Adjacent; Spaced; Over-

lapped/(underlapped); cross-
ing/intersections; loops; knots;
serifs;

Chapter 6, Chapter 11

FC1 bubble Addition/union
Adjacent; Spaced; Overlapped;
crossing/intersections; Fused;
Outlined; Incorporation;

Chapter 6, Chapter 11

FC2 bubble Subtraction
Subtraction of a over-
lapped/intersecting shape from
another; “Partial” subtraction of
a shape; Complete subtraction
of a shape from another; Inverse
subtraction (XOR).

Future work.

FC3 bubble,block Intuitive/rational repetition
adjacent; spaced; overlapped;
Crossing/intersections; Fused;
Increasing/decreasing; ordered;
random; tilted; “intuitive” or
systematic

Chapter 6.

FC4 block Subdivision of space
adjacent; spaced; overlapped;
crossing/intersections; fused;
increasing/decreasing; ordered;
random; tilted; subdivision of
space;

Chapter 6

FC5 marshmallow Combined application of bub-
ble functions, to stick or block. Deform; Distort; sym-

bolic/figurative sculpting;
application to form of morpho-
logical/natural attributes.

Future work.

FC6 platform Application of block functions,
to stick or bubble, through
structural forms.

Platforms; Connections; Struc-
ture; intertwinement of struc-
tures and schemas.

Future work

FC7 combo
Combined application of bub-
ble, stick and block functions
through structural schemas.

Combine; progression;
skeme/trace; struc-
ture/skeleton; rhythmic/metric;
tangle;

Chapter 11, Chapter 10, Future
work.

FC8 arrow Multiplication between differ-
ent forms. Combined appli-
cation of stick, bubble, block,
marshmallow, platform and
combo functions.

Compositional method:
scheme/diagram, structure,
trace; Movement; Interior, exte-
rior and outline have the same
importance; Branching; Explo-
sion; Expansion; Multiplication
between different forms;

Chapter 11, Chapter 5, Future
work.

FC9 puzzle Division between different
forms. Combined application
of stick, bubble, block, marsh-
mallow, platform and combo
functions.

Deconstruction/decomposition;
Division between forms; Ex-
ternal influences; Patterns;
Abstraction; Informal; Interior,
exterior and outline have the
same importance;

Future work.

FC10 machine Equations between forms
Adding architectural or me-
chanical attributes to forms;
Citations, mixing, influences;
Interior, exterior and outline
have the same importance;

FC11 wild style Free/improvised combination
of functions, which determine
the individual’s style.

infinite

Table B.1: Compositional functions

305

F# Style Description Operations Implementation methods

F0 stick Force of the "sign" (move-
ment). Determines basic
shapes of Sticks and Bars.

Line; Angles/curves;
Parabola; broken, acute,
obtuse; Mixed; Start and
end of shape, extremities,
serifs; Open/closed shape

Chapters 5 and 6

F1 stick Force that is "internal" to
the shape Length/width; Increase area

in one or both directions
Chapter 6

F2 stick Force that is "external" to
the shape Width; Decrease/shrink

area non proportionally.
Chapter 6

F3 stick Folding
Folds the sign, creates over-
laps; loops

Chapter 6

F4 bubble Intuitive study (specula-
tion) of form. "Soft" force. Fattening; Magnification;

Inflation; Modelling; "mod-
erate" torsion

Future work.

F5 bubble Shift translation

F6 bubble Intuitive 3d effects
Shadows, thickness Chapter 6

F7 bubble, block Application of geometric
study of shape. Intu-
itive/rational.

Section/division; tilt; rota-
tion; curvature; schematisa-
tion; projection

Chapter 6, Chapter 11, Fu-
ture work.

F8 block "rigid" three-
dimensionality Volume; XYZ Projection;

XYZ fold; Perspective;
Relief;

Chapter 6, Future work.

F9 marshmallow Figurative/symbolic mod-
elling shaping/modelling; distor-

tion; deformation; figura-
tive/organic attributes.

Chapter 6, Future work.

F10 marshmallow Organic reactions, meta-
morphosis cracks; breakages; holes;

deflations; melting; drips;
loss of outline; bouncing.

Future work.

F11 platform Structural function of ele-
ments arrangement; base (plat-

form); roof; support; con-
nections; loops.

Future work.

F12 combo Synergetic combination of
form functions and compo-
sitional functions for stick,
bubble, block, platform and
marshmallow

The form is given by sim-
ple combinations of ele-
ments with semantic at-
tributes (the word in lan-
guage).

Future work.

F13 arrow Form multiplication func-
tions

Multiply; Motion, dynam-
ics; Interior, exterior and
outline have the same im-
portance; simple seman-
tic combination of elements
(language).

Chapter 6.

F14 puzzle Form division functions
Divide; Abstraction; Inte-
rior, exterior and outline
have the same importance.
Simple semantic combina-
tion of elements (word, lan-
guage).

Future work.

F15 machine Form results from complex
combinations of form func-
tions and compositional
functions for combo puzzle
arrow and all other styles.

Form emerges from the
combination of form func-
tions and compositional
functions; Attribution of
semantic and significant
values to combination of
forms. Equivalent to a
concept expressed with a
sentence.

Table B.2: Form functions

Appendix C

Additional details on MIC trajectory

generation

C.1 Displacement-based smoothing weight

Several advanced methods exist to automatically tune the tracking and control weights

for LQT problems, but often the weights are chosen with a trial and error procedure. A

well known method to choose weights is known as Bryson’s rule (Hespanha, 2005), in

which the values along the diagonals of Q t and R t are chosen as

1

emax
2 and

1

umax
2

where emax and umax are respectively the maximum desired state deviation and com-

mand magnitude. Bryson’s rule produces a dimensionless cost function, since the units

of the squared denominators and the quadratic terms in Eqn. 5.5 cancel out.

Another weight tuning method is based on the observation that plotting the mag-

nitude of the generated commands against the log of the residual in the least squares

estimate as a function of a set of constant values along the diagonal of R t results in an L-

shaped curve (Hansen, 2000; Zeestraten et al., 2016a). The point of maximum curvature

in the L-curve is then considered an optimal choice for the weights in R t .

With the problem at hand, we are interested in allowing a user to rapidly explore the

visual quality of a trajectory across different system orders, and the hand-application of

Bryson’s rule is not practical because it is is necessary to estimate the maximum forcing

command for high order derivatives of position. At the same time, the L-curve method

requires multiple iterations per order to find the optimal value, which is not practical in

C.1. Displacement-based smoothing weight 307

our use case for obvious performance reasons.

In order to automatically adjust the weights in R in a manner that is independent

from the order of the system, we can use the transfer function of the integrator chain,

which for the continuous system case is simply given by

H(s) = L [y(t)]

L [u(t)]
= Y (s)

U (s)
= 1

sn , (C.1)

where L is the Laplace transform operator.

We then compute the gain of the system at a low frequency, which we empirically

choose by using a time period Ts∆t , resulting in a natural frequency of

ω= 2π

Ts∆t
. (C.2)

In practice this corresponds to the assumption that a trajectory is decomposed into a

discrete sequence of ballistic submovements aimed at consecutive targets, and we are

measuring the gain of an oscillatory motion between two targets, with a period given by

the average duration of a sub-movement.

We then express the weights R is then expressed in terms of maximum displacement

∆max rather than an order dependent command amplitude, with

R =
(∣∣H(ω j)

∣∣
∆max

)2

I = 1

(ωn∆max)2 I , (C.3)

where ω j is the complex frequency and ∆max is the maximum displacement. If we ex-

amine the dimensionality of the terms in the cost function, we see that the dimension

of [R t] is [T 2n

L2] which results in a dimensionless term u>Rt u in 5.5. The Manhanolobis

distance in the state term is dimensionless as well, therefore the whole cost function is

dimensionally consistent.

The choice of the period 2π in the numerator of Eqn. C.2 produces consistent track-

ing results across different system orders, but it makes a precise assumption on the struc-

ture of a movement. Intuitively, another reasonable choice for the numerator would be

π instead of 2π. This would correspond to measuring the gain of one point-to-point bal-

listic movement, but this choice did not produce satisfactory results in our experiments.

C.2. Iterative solution 308

C.1.1 Derivation with Simple Harmonic Motion

An equivalent result can be derived by considering an idealised oscillatory motion (Sim-

ple Harmonic Motion) between consecutive targets with equation

x̃(t) =∆maxcos(ωt) ,

where ∆max is the amplitude (maximum displacement) of the motion and ω is the an-

gular frequency of the oscillation. The absolute value of the nth order derivative of x̃ is

given by ∣∣∣∣d n x̃

d t n

∣∣∣∣=

ωn∆maxsin(ωt) if n is odd,

ωn∆maxcos(ωt) if n is even.

and has a maximum amplitude given by ωn∆max, which we can use to construct the di-

agonal of R t as a function of the user specified displacement ∆max with

R t = 1

(ωn∆max)2 I and ω= 2π

Ts∆t
, (C.4)

where ω is empirically set to the period corresponding to the average sub-movement

duration Ts∆t , and the denominator is squared because the control term u>
t R t u t in Eqn.

5.5 is quadratic. Again, if we examine the dimensionality of the terms, we see that the

dimensions of [R t] and u>
t u t are respectively [T 2n

L2] and [L2

T 2n], which cancel out and result

in a dimensionless cost function.

C.2 Iterative solution

A more efficient solution to the discrete tracking problem can be derived using dynamic

programming, with a technique that is often the basis for control problems. However,

this has the disadvantage of not producing an output trajectory distribution or allowing

the trivial generation of periodic motions. We refer the interested reader to the work

of Bryson (Bryson, 1999) for the details of the derivations. It follows that the optimal

solution is given in the form of a feedback controller with time-varying weighting matrix

K t , and the commands for each time step t are given by

u t =−
(
B̃

>
P t B̃ +R t

)−1
B̃

>
P Ã︸ ︷︷ ︸

K t

x̃ t , (C.5)

C.2. Iterative solution 309

where

P t = Q̃ t−A>
(
P t+1B̃ (B̃

>
P t+1B̃ +R t)

−1
B̃

>
P t+1 −P t+1

)
Ã (C.6)

is a Riccati difference equation, which can be solved backwards in time by setting a ter-

minal condition P N = Q̃ N . In equations (C.5) and (C.6), we introduce the symbols x̃ t , Q̃ t ,

Ã and B̃ . These respectively denote an augmented state vector and tracking weight

x̃ t =
[

x̄>
t ,1

]> and Q̃ t =

Q−1
t +x̄ t x̄>

t x̄ t

x̄>
t 1

−1

, (C.7)

and augmented system matrices

Ã =

A 0

0 1

 and B̃ =

B

0

 . (C.8)

This allows the tracking problem to be treated more compactly and efficiently as a regu-

lation problem, resulting in a formulation that is equivalent to a Linear Quadratic Regu-

lator (LQR).

Appendix D

Additional details for font segmentation

D.1 Association fields

Our association fields are adapted from Ernst et al. (2012). The model predicts the con-

ditional link probability of one oriented element relative to another one. The link prob-

ability α is given by the product AφAd of an angular and a radial component. The angu-

lar component parameterises deviations from perfect cocircularity and deviations from

zero curvature with the product of two von Mises distributions, analogs of Gaussian dis-

tributions with a circular support. Given two orientations φi ,φ j and planar positions

(xi , yi), (x j , y j) the angular component simplifies to:

Aφ = C

4
cosh

(
1

σ2
β

cos
(
β/2

)+ 1

σ2
θ

cos
(
θ−β/2

))
, (D.1)

with β=φ j −φ j , θ = tan−1
((

y j − yi
)

/
(
x j −xi

))−φi , and σθ = 0.27 and σβ = 0.47 spread

parameters for cocircularity and curvature respectively.1 We use the values for the spread

parameters that were experimentally found to be optimal by Ernst et al. (2012). The con-

stant C is a normalization factor derived from the von Mises distribution with:

C =π2I0
(
1/σ2

a

)
I0

(
1/σ2

b

)
, (D.2)

where I0 is the modified-Bessel function of the first kind with order 0. We also di-

vide Aφ by 0.602, so it falls in the [0,1] range, which facilitates parameter setting in our

application-driven use case.

For the task of grouping closely-spaced oriented elements, Ernst et al. (2012) express

1This equation corrects a typographic error in the original paper

D.2. Hanzi segmentation examples 311

the radial component as an exponential function that decays with distance. Again, we

opt for a formulation that facilitates parameter tuning and express the component with

a Gaussian decay:

Ad = exp

(
d 2

2σ2
d

)
, (D.3)

with d the distance between the two positions and σd a distance-spread. We set σd to

twice the maximum SAI+ radius when computing good continuation for splits, and to the

distance between the branch tangent origins during Y-junction interpretation.

D.2 Hanzi segmentation examples

(a) Paths and width profiles (b) Areas

Figure D.1: Example segmentations from the make-me-a-hanzi dataset (Kishore, 2018)

D.3. Font segmentation examples 312

D.3 Font segmentation examples

(a) Paths and width profiles (b) Areas

Figure D.2: Font: Moderne Fraktur.

(a) Paths and width profiles (b) Areas

Figure D.3: Font: Bickham Script.

D.3. Font segmentation examples 313

(a) Paths and width profiles (b) Areas

Figure D.4: Font: Apollo.

(a) Paths and width profiles (b) Areas

Figure D.5: Font: Arial bold.

D.3. Font segmentation examples 314

(a) Paths and width profiles (b) Areas

Figure D.6: Font: Adobe Arabic bold.

(a) Paths and width profiles (b) Areas

Figure D.7: Font: Adobe Hebrew bold.

D.3. Font segmentation examples 315

(a) Paths and width profiles (b) Areas

Figure D.8: Font: PACL.

(a) Paths and width profiles (b) Areas

Figure D.9: Font: Georgia.

D.3. Font segmentation examples 316

(a) Paths and width profiles (b) Areas

Figure D.10: Font: Kazuraki.

(a) Paths and width profiles (b) Areas

Figure D.11: Font: Adobe Bengali Bold.

Appendix E

Symbols and values

The following is a list of the main symbols (Sections E.1 and E.2), functions (Section E.3),

parameters (Section E.4) and thresholds (Section E.5) used across the thesis. Sections E.4

and E.5 also specify default parameter and threshold value, unless the value is assumed

to depend on a choice made interactively by a user, in which case the corresponding field

is left empty.

E.1 Symbols (general):

Symbol Description

x(t) Point along a trajectory evaluated at time t .

x t Point along a trajectory evaluated at discrete time step t

p i Position of a motor plan vertex.

z(s) Trace or contour z , parameterised by arc length s.

b Bisector.

t Tangent.

κ Curvature.

r radius of curvature |1/κ|.

C (s),S(s) Cosine and sine Fresnel integrals.

E.2. Other symbols and objects: 318

Symbol Description

N
(
µ,Σ

)
Multivariate normal distribution, with mean µ and covariance Σ

N
(
µ,σ

)
Univariate normal distribution, with mean µ and standard devi-

ation σ.

P or Q Motor plan.

P or Q Kinematic realisation of a motor plan (resp. P or Q).

Θ Kinematic parameters.

E.2 Other symbols and objects:

Symbol Description Section

t0i Lognormal activation time. §4.1

µi Lognormal delay. §4.1

σi Lognormal response time. §4.1

Di Lognormal amplitude. §4.1

θi ΣΛ sub-movement orientation. §4.1

δi ΣΛmodel sub-movement curvature parameter. §4.1

∆ti Lognormal time overlap parameter. §4.2.3

Aci Lognormal shape parameter. §4.2.3

Ti Lognormal duration parameter. §4.2.3

s0i , s1i ωEΣΛ sub-movement spiral parameters. §4.2.2

τi Time occurrence (or passage time) of key-point along a trajec-

tory.

§4.4.2.1

x̄ t MIC reference trajectory at time step t . §5.1.3

Q t MIC reference weights at time step t . §5.1.3

u t MIC control command at time step t . §5.1.1.1

E.3. Functions: 319

Symbol Description Section

A,B ,C Discrete-time system matrices §5.1.1.1

ξi Kinematic parameter prediction vector. §9.1.4

z i Point along outline §10.2.1.1

t i Tangent at the edge of a concave contact region. §10.2.1.1

bi Bisector at a concavity. §10.2.1.1

SA Symmetry axis. §7.2

SAI Interior symmetry axis. §7.2

SAE Exterior symmetry axis §7.2

SAI+ Interior curvilinear augmented symmetry axis (CASA). §7.3.4

SAE+ Exterior CASA. §7.3.4

SAi Local symmetry axis. §7.3

CC i CSF contact circle. §7.3

åCC i CSF contact region (circular arc). §7.3

ẑ i CSF curvature extremum locus. §7.3

z lhs
i (s) Left CSF support segment. §7.3

z r hs
i (s) Right CSF support segment §7.3

NC SF Number of CSFs. §7.3

GH Split and concavity graph. §10.3

GX Crossing graph. §10.4.3.1

Q̄ Stroke area planar map. §10.5.2

E.3 Functions:
Symbol Description Section

Λ(t) Lognormal evaluated at time t §4.1

φi (t) ΣΛmodel curvilinear evolution. §4.1

φsi (t) ωEΣΛmodel curvilinear evolution. §4.2.2

E.4. Parameters: 320

Symbol Description Section

φb(x) Brush “hat” function. §4.5

hi (t) Gaussian activation function. §5.1.3

β(b, f) Saliency of a branch b extending from fork f §10.2.1.5

βc (b, f) Saliency of a branch with respect to concavity c §10.2.1.5

w(c) Saliency of a CSF c §7.3.3

ω(η) Saliency of a split η §10.3.3

d(c, v) Influence of a concavity c on vertex v §10.2.1.1

π(b, f) Protruding direction of branch b from fork f §10.2.1.4

ϕ(ci ,c j) Flow direction for two concavities §10.2.2

α(ci ,c j) Good-continuation value between two concavities §10.2.2

α(ηi ,η j) Good-continuation value between two splits §10.4.3

E.4 Parameters:
Symbol Description Value Section

kδ ΣΛ curvature exaggeration. §4.4.2.2

k∆t ΣΛ time overlap exaggeration. §4.4.2.2

σh MIC time interval parameter. §5.1.3

∆max MIC maximum displacement parameter. §5.1.4

σα Fold amount π/4 §6.1

λp Virtual target adjustment weight. 0.5 §4.4.2.1 and §8.2.3

λ∆ ΣΛ time-overlap adjustment weight. 0.1 §8.2.3

λδ ΣΛ curvature adjustment weight. 0.1 §8.2.3

∆s Trace/contour sampling distance. 1 §7.2.1

hext Reference bounding box height. 150 §7.2.1

kc Concavity influence spread 0.5 §10.2.1.1

E.5. Thresholds and Tolerances: 321

Symbol Description Value Section

λs Branch saliency stick-out steepness 0.5 §10.2.1.5

λη Split saliency length weight 2 §10.3.3

λr Proximity radius multiple 3 §10.3.1.1

E.5 Thresholds and Tolerances:
Symbol Description Value Section

smin Chord residual threshold. 0.5 §7.2.1

- Minimum CSF saliency w(c) (M+,m−). 1×10−3 §7.3.3

- Minimum CSF saliency w(c) (M−,m+). 1×10−6 §7.4

- Transition segment subdivision threshold. (4π)/5 §7.5.1.1

- Degenerate inflection threshold. 0.2 §8.1.1

- Branch saliency threshold β(b, f) 0.5 §10.2.1.5

- Split good-continuation threshold 0.15 §10.4.3

- Split pairing max angle 45◦ §10.4.3

τM Morphological junction threshold 0.2 §10.4.4.2

γT T-junction detection threshold 0.2 §10.4.4.4

γB Blunt-tip detection threshold 1 §10.4.4.4

- Flexure minimum influence 0.77 §10.4.4.4

Υl Relative root length threshold 3 §10.4.4.5

Υw Width disparity threshold 1.3 §10.4.4.5

− Degree of overlap δC threshold 0.98 §7.3.2

εθ Local convexity angle tolerance 15◦ §10.3.1.2

Appendix F

Errata

• Various typos in Acknowledgments.

• In Introduction, missing short captions for TOC.

• In Section 4.2.2, “Figure [TODO]” macro still present.

• In Chapter 6, second paragraph: “template” should be “scaffold”.

• Section 4.4.2.1, D̂i should be Di .

• In Eqn. 5.7, x̄ i should be x̄ t .

• In Section 6.2.3, the symbol P should be LP (conflicts with motor plan P).

Bibliography

E. Abbena, S. Salamon, and A. Gray. Modern differential geometry of curves and surfaces with

Mathematica. CRC press, 2017. 45

W. Abend, E. Bizzi, and P. Morasso. Human arm trajectory formation. Brain: A journal of neurol-

ogy, 105(Pt 2):331–348, 1982. 56

Adobe. Adobe animate: User guide, 2019a. URL https://helpx.adobe.com/animate/

user-guide.html. 151

Adobe. Illustrator: User guide, 2019b. URL https://helpx.adobe.com/illustrator/

user-guide.html. 151

L. Albertazzi. Styled morphogeometry. Axiomathes, pages 1–24, 2019. 78

L. Albertazzi, L. Canal, R. Micciolo, and M. Vescovi. Calligraphy and Klee’s abstract painting: A

study on categorical ambiguity. Art & Perception, 3(3):239—263, 2015. 53

Z. AlMeraj, B. Wyvill, T. Isenberg, A. A. Gooch, and R. Guy. Automatically mimicking unique hand-

drawn pencil lines. Computers & Graphics, 33(4):496–508, 2009. 51, 97

N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete & Computational

Geometry, 22(4):481–504, 1999. 86

X. Ao, Q. Fu, Z. Wu, X. Wang, M. Zhou, Q. Chen, and H. S. Seah. An intersection algorithm for disk

B-spline curves. Computers & Graphics, 70:99–107, 2018. 70

P. Aparajeya and F. F. Leymarie. Point-based medialness for 2D shape description and identifica-

tion. Multimedia Tools and Applications, 75:1667–1699, February 2016. 90

A. Appel. The notion of quantitative invisibility and the machine rendering of solids. In Proceed-

ings of the 1967 22nd National Conference, ACM ’67, pages 387–393. Association for Computing

Machinery, 1967. 71

E. Arias-Castro, G. Lerman, and T. Zhang. Spectral clustering based on local PCA. Journal of

Machine Learning Research, 18:1–57, 2017. 96

BIBLIOGRAPHY 324

R. Arnheim. Art and visual perception: A psychology of the creative eye. Univ of California Press,

1954. 78

A. Arte. Forms of Rockin’: Graffiti Letters and Popular Culture. Dokument Press, 2015. 21, 23, 26,

27, 29, 40, 151, 286

H. Asada and M. Brady. The curvature primal sketch. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-8(1):2–14, January 1986. 82

P. Asente, M. Schuster, and T. Pettit. Dynamic planar map illustration. In ACM Transactions on

Graphics (TOG), volume 26, page 30. ACM, 2007. 71, 72, 154, 289

P. J. Asente. Folding avoidance in skeletal strokes. In Proceedings of the Seventh Sketch-Based

Interfaces and Modeling Symposium, pages 33–40. Eurographics Association, 2010. 71, 159,

160, 274

F. Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183,

1954. 80, 110, 173, 185

J. August, K. Siddiqi, and S. W. Zucker. Contour fragment grouping and shared, simple occluders.

Computer Vision and Image Understanding, 76(2):146–162, 1999. ISSN 10773142. 95, 241

V. Ayzenberg and S. F. Lourenco. Skeletal descriptions of shape provide unique perceptual infor-

mation for object recognition. Scientific reports, 9(1):1–13, 2019. 84

S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. Multi-content GAN for few-

shot font style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7564–7573, 2018. 75

X. Bai, L. J. Latecki, and W.-Y. Liu. Skeleton pruning by contour partitioning with discrete curve

evolution. IEEE transactions on pattern analysis and machine intelligence, 29(3), 2007. 89

E. Balashova, A. H. Bermano, V. G. Kim, S. DiVerdi, A. Hertzmann, and T. Funkhouser. Learning a

stroke-based representation for fonts. Computer Graphics Forum, 38(1):429–442, 2019. 76, 77

I. Baran, J. Lehtinen, and J. Popović. Sketching clothoid splines using shortest paths. In Computer

Graphics Forum, volume 29, pages 655–664. Wiley Online Library, 2010. 49, 174, 189, 195, 209

C. Barber, D. Dobkin, and H. Huhdanpaa. The QuickHull algorithm for convex hulls. ACM Trans-

actions on Mathematical Software, 22(4):469–483, 1996. http://www.qhull.org. 179, 186, 192

B. Barsky and T. DeRose. Geometric continuity of parametric curves: Three equivalent character-

izations. IEEE Computer Graphics and Applications, 9(6):60–69, Nov 1989. 49

BIBLIOGRAPHY 325

P. Baudelaire and M. Gangnet. Planar maps: An interaction paradigm for graphic design. In ACM

SIGCHI Bulletin, volume 20, pages 313–318. ACM, 1989. 72

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best of both

worlds. Computing in Science & Engineering, 13(2):31–39, 2011. 193

A. Belyaev and S. Yoshizawa. On evolute cusps and skeleton bifurcations. In International Con-

ference on Shape Modeling and Applications, pages 134–140. IEEE, 2001. 89, 174, 175, 176, 182

J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization. Journal of Machine

Learning Research, 13:281–305, 2012. 224

D. Berio and F. F. Leymarie. Computational models for the analysis and synthesis of graffiti tag

strokes. In P. Rosin, editor, Computational Aesthetics, pages 35–47. Eurographics Association,

2015. 100, 106, 202, 301

D. Berio, S. Calinon, and F. F. Leymarie. Learning dynamic graffiti strokes with a compliant robot.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages

3981–3986. IEEE, 2016. 37, 48, 100, 119, 148, 209, 301

D. Berio, M. Akten, F. Fol Leymarie, M. Grierson, and R. Plamondon. Calligraphic stylisation learn-

ing with a physiologically plausible model of movement and recurrent neural networks. In

Proc. of 4th Int’l Conf. on Movement Computing (MOCO), London, UK, 2017a. 37, 100, 202,

218, 302

D. Berio, S. Calinon, and F. Fol Leymarie. Generating calligraphic trajectories with model predic-

tive control. In Proceedings of Graphics Interface, Edmonton, Canada, May 2017b. Canadian

Human-Computer Communications Society. 121, 301

D. Berio, S. Calinon, and F. F. Leymarie. Dynamic graffiti stylisation with stochastic optimal con-

trol. In Proceedings of the 4th International Conference on Movement Computing. Association

for Computing Machinery, 2017c. Article no. 18. 121, 302

D. Berio, F. Fol Leymarie, and R. Plamondon. Computer aided design of handwriting trajectories

with the kinematic theory of rapid human movements. In 18th Biennial Conference of the

International Graphonomics Society, 2017d. 100, 301

D. Berio, F. F. Leymarie, and R. Plamondon. Expressive curve editing with the sigma lognormal

model. In Proceedings of the 39th Annual European Association for Computer Graphics Confer-

ence: Short Papers, pages 33–36. Eurographics Association, 2018a. 100, 302

BIBLIOGRAPHY 326

D. Berio, F. F. Leymarie, and R. Plamondon. Kinematic reconstruction of calligraphic traces from

shape features. In Proceedings of the International Conference on Pattern Recognition and Ar-

tificial Intelligence, volume 1, pages 762–767, 2018b. 100, 172, 198, 302

D. Berio, P. Asente, J. Echevarria, and F. Fol Leymarie. Sketching and layering graffiti primitives.

In 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based

Interfaces and Modeling and Non-Photorealistic Animation and Rendering, pages 51–59, 2019.

150, 302

D. Berio, F. Fol Leymarie, and S. Calinon. Interactive generation of calligraphic trajectories from

Gaussian mixtures. In N. Bouguila and W. Fan, editors, Mixture Models and Applications, Un-

supervised and Semi-Supervised Learning Series, chapter 2, pages 23–38. Springer, 2020a. doi:

10.1007/978-3-030-23876-6_2. 121, 302

D. Berio, F. F. Leymarie, and R. Plamondon. Kinematics reconstruction of static calligraphic

traces from curvilinear shape features. In The Lognormality Principle and its Applications in

e-Security, e-Learning and e-Health, chapter 11, pages 237–268. World Scientific, Nov. 2020b.

172, 198, 302

N. A. Bernstein. The co-ordination and regulation of movements. Pergamon Press Ltd., 1967. 55,

57, 60, 61

E. Bertolazzi and M. Frego. Fast and accurate G1 fitting of clothoid curves. arXiv preprint

arXiv:1305.6644, 2013. 107

H. Bezine, A. M. Alimi, and N. Sherkat. Generation and analysis of handwriting script with the

beta-elliptic model. Proceedings - International Workshop on Frontiers in Handwriting Recog-

nition, IWFHR, 8(2):515–520, 2004. 59, 62, 66

I. Biederman. Recognition-by-components: A theory of human image understanding. Psycho-

logical Review, 94(2):115—147, Apr 1987. 94

T. C. Biedl, C. Grimm, L. Palios, J. R. Shewchuk, and S. Verdonschot. Realizing farthest-point

Voronoi diagrams. In Proceedings of the 28th Canadian Conference on Computational Geome-

try (CCCG), pages 48–56, 2016. 186

C. M. Bishop. Mixture density networks. Technical report, Aston University, 1994. 222

E. Bizzi and A. Polit. Processes controlling visually evoked movements. Neuropsychologia, 17(2):

203–213, 1979. 61

E. Bizzi, F. A. Mussa-Ivaldi, and S. Giszter. Computations underlying the execution of movement:

A biological perspective. Science, 253(5017):287–291, 1991. 62

BIBLIOGRAPHY 327

E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter. Does the nervous system use equilibrium-

point control to guide single and multiple joint movements? Behavioral and brain sciences, 15

(04):603–613, 1992. 61

A. Blanchard. L’hypothèse de l’unité de Ductus en paléographie papyrologique. Scrittura e civiltà,

(23):5–27, 1999. 69

H. Blum. An associative machine for dealing with the visual field and some of its biological im-

plications. In Biological prototypes and synthetic systems, pages 244–260. Springer, 1962. 84

H. Blum. A Transformation for Extracting New Descriptors of Shape. In W. Wathen-Dunn, editor,

Models for the Perception of Speech and Visual Form, pages 362–380. MIT Press, Cambridge,

1967. Proceedings of a symposium held in 1964. 85, 86, 87

H. Blum. Biological shape and visual science (part I). Journal of Theoretical Biology, 38(2):205–

287, 1973. 84, 85, 86, 87, 89, 90, 177, 187, 290

H. Blum and R. N. Nagel. Shape description using weighted symmetric axis features, 1978. ISSN

00313203. 88, 93, 95, 168, 174

M. Boden. The creative mind: Myths and mechanisms. Routledge, 2003. 47, 290

M. Brady and H. Asada. Smoothed local symmetries and their implementation. The International

Journal of Robotics Research, 3(3):36–61, 1984. 87

J.-J. Brault and R. Plamondon. Segmenting handwritten signatures at their perceptually impor-

tant points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):953–957,

September 1993a. 60, 81, 82, 173

J.-J. Brault and R. Plamondon. A complexity measure of handwritten curves: Modeling of dy-

namic signature forgery. IEEE Transactions on Systems, Man, and Cybernetics, 23(2):400–413,

March/April 1993b. 173

S. E. Brennan. Caricature generator: The dynamic exaggeration of faces by computer. Leonardo,

18(3):170–178, 1985. 115

G. S. Briem, K. Ackoff, A. Blackman, T. Botts, G. S. Briem, E. Clayton, R. Cusick, S. Day, M. Drogin,

J. Evans, et al. Special issue on calligraphy. Visible Language, 17(1), 1983. 23, 52, 289

J. L. Brooks. Traditional and new principles of perceptual grouping. In J. Wagemans, editor, The

Oxford Handbook of Perceptual Organization, pages 57–87. Oxford University Press, 2015. 20,

90, 91, 93, 238, 247

A. E. Bryson. Dynamic optimization. Addison Wesley Longman Menlo Park, 1999. 308

BIBLIOGRAPHY 328

A. Bucksch and R. Lindenbergh. CAMPINO — a skeletonization method for point cloud process-

ing. ISPRS journal of photogrammetry and remote sensing, 63(1):115–127, 2008. 88

D. Bullock, S. Grossberg, and C. Mannes. A neural network model for cursive script production.

Biological Cybernetics, 70(1):15–28, 1993. 62, 67

R. W. Burkhardt. Lamarck, evolution, and the inheritance of acquired characters. Genetics, 194

(4):793–805, 2013. 69

S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent Service

Robotics, 9(1):1–29, 2016a. 63, 130, 148

S. Calinon. Stochastic learning and control in multiple coordinate systems. In Intl Workshop on

Human-Friendly Robotics, number EPFL-CONF-223744, 2016b. 36, 121, 133

S. Calinon. Mixture models for the analysis, edition, and synthesis of continuous time series.

In N. Bouguila and W. Fan, editors, Mixture Models and Applications, pages 39–57. Springer,

Cham, 2019. 294

S. Calinon and D. Lee. Learning control. In P. Vadakkepat and A. Goswami, editors, Humanoid

Robotics: a Reference, pages 1261–1312. Springer, 2019. 133

N. D. Campbell and J. Kautz. Learning a manifold of fonts. ACM Transactions on Graphics (TOG),

33(4), 2014. doi: 10.1145/2601097.2601212. Article no. 91. 73, 76

R. Chamberlain, K. Chana, G. Orgs, D. Berio, and F. F. Leymarie. The naturalness of artistic mark-

making predicts aesthetic value. In Visual Science of Art Conference, Leuven, Belgium, 2019.

289, 296

R. Chamberlain, C. Mullin, D. Berio, F. F. Leymarie, and J. Wagemans. Aesthetics of graffiti: Com-

parison to text-based and pictorial artforms. Empirical Studies of the Arts, 2020. 289, 296

F. Chazal and A. Lieutier. The “λ-medial axis”. Graphical Models, 67(4):304–331, 2005. 89

B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kth-order Voronoi

diagrams. IEEE Transactions on Computers, C-36(11):1349–1354, 1987. 185

H.-I. Chen, T.-J. Lin, X.-F. Jian, I. Shen, B.-Y. Chen, et al. Data-driven handwriting synthesis in a

conjoined manner. Computer Graphics Forum, 34(7):235–244, 2015. 73

X. Chen, Z. Lian, Y. Tang, and J. Xiao. An automatic stroke extraction method using manifold

learning. In Proceedings of the European Association for Computer Graphics: Short Papers, EG

’17, pages 65–68. Eurographics Association, 2017. 77

BIBLIOGRAPHY 329

H. Choi, S.-J. Cho, and J. H. Kim. Generation of handwritten characters with Bayesian network

based on-line handwriting recognizers. In null, page 995. IEEE, 2003. 73

H. Choi, S. J. Cho, and J. H. Kim. Writer dependent online handwriting generation with Bayesian

network. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International

Workshop on, pages 130–135. IEEE, 2004. 73

S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passive-dynamic

walkers. Science, 307(5712):1082–1085, 2005. 55

J. L. Coolidge. The unsatisfactory story of curvature. The American Mathematical Monthly, 59(6):

375–379, 1952. 45

M. Cooper and H. Chalfant. Subway Art. Holt, Rinehart and Winston, 1984. 26, 52

C. H. Cox, P. Coueignoux, B. Blesser, and M. Eden. Skeletons: A link between theoretical and

physical letter descriptions. Pattern Recognition, 15(1):11–22, 1982. 68, 69

R. P. C. D. A. Craveiro. The influence of graffiti writing in contemporary typography. SAUC —

Street Art and Urban Creativity Scientific Journal, 3(2):65–83, 2017. 23, 29, 285, 289

L. Crnkovic-Friis and L. Crnkovic-Friis. Generative choreography using deep learning. In F. Pa-

chet, A. Cardoso, V. Corruble, and F. Ghedini, editors, Proceedings of the Seventh International

Conference on Computational Creativity (ICCC), pages 271–277, 2016. 219

G. R. Cross and A. K. Jain. Markov random field texture models. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, (1):25–39, 1983. 70

C. Curtis. Graffiti archeology. http://grafarc.org, 2002. 32

C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin. Computer-generated

watercolor. In Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, pages 421–430, 1997. 69

B. Dalstein, R. Ronfard, and M. Van de Panne. Vector graphics complexes. ACM Transactions on

Graphics (TOG), 33(4):133, 2014. 72

A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies in the construction of a

natural motor behavior. Nature neuroscience, 6(3):300–308, 2003. 140

E. Dayan, A. Casile, N. Levit-Binnun, M. A. Giese, T. Hendler, and T. Flash. Neural representa-

tions of kinematic laws of motion: Evidence for action-perception coupling. Proceedings of the

National Academy of Sciences, 104(51):20582–20587, 2007. 297

BIBLIOGRAPHY 330

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms

and Applications. Springer, 3rd edition, 2008. 186, 192

C. de Boor. A practical guide to splines. Applied Mathematical Sciences, 1978. doi: 10.1007/

978-1-4612-6333-3. 49

L. H. de Figueiredo. Adaptive sampling of parametric curves. In A. W. Paeth, editor, Graphics

Gems V, chapter IV.4, pages 173–178. Academic Press, 1995. 179

H. De Preester. Moving Imagination: Explorations of gesture and inner movement, volume 89.

John Benjamins Publishing, 2013. 97

C. De Stefano, C. D’Elia, M. Garruto, A. Marcelli, and A. S. Di Freca. A wavelet based curve de-

composition method for on-line handwriting. Advances in Graphonomics: Proceedings of IGS,

2005. 60, 82, 185

J. De Winter and J. Wagemans. Contour-based object identification and segmentation: Stimuli,

norms and data, and software tools. Behavior Research Methods, Instruments, & Computers,

36(4):604–624, 2004. 193

J. De Winter and J. Wagemans. Segmentation of object outlines into parts: A large-scale integra-

tive study. Cognition, 99(3):275–325, 2006. 81, 92, 93, 94, 95, 173, 240, 245, 247, 248, 250

J. De Winter and J. Wagemans. The awakening of Attneave’s sleeping cat: Identification of every-

day objects on the basis of straight-line versions of outlines. Perception, 37(2):245–270, 2008a.

231

J. De Winter and J. Wagemans. Perceptual saliency of points along the contour of everyday ob-

jects: A large-scale study. Perception and Psychophysics, 70(1):50–64, 2008b. 79, 80, 81, 110,

173, 184, 185, 193, 194, 195, 196, 298

R. A. DeCarlo. Linear systems: A state variable approach with numerical implementation.

Prentice-Hall, Inc., 1989. 125

D. Del Vecchio, R. M. Murray, and P. Perona. Decomposition of human motion into dynamics-

based primitives with application to drawing tasks. Automatica, 39(12):2085–2098, 2003. 62,

67

J. Denier and J. P. Thuring. The guiding of human writing movements. Biological Cybernetics, 2

(4):145–148, 1965. 57

O. Deussen, T. Lindemeier, S. Pirk, and M. Tautzenberger. Feedback-guided stroke placement

for a painting machine. In 8th Annual Symposium on Computational Aesthetics in Graphics,

Visualization, and Imaging, pages 25–33, 2012. 48, 270

BIBLIOGRAPHY 331

S. Deutsch and G. Medioni. Learning the geometric structure of manifolds with singularities

using the tensor voting graph. Journal of Mathematical Imaging and Vision, 57(3):402–422,

2017. 96

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2013. Updated and revised second

edition. 283

M. Diaz-Cabrera, A. Fischer, M. A. Ferrer, and R. Plamondon. Dynamic signature verification

system based on one real signature. IEEE Transactions on Cybernetics, 48(1):228–239, 2018. 36,

111, 221

P. Dierckx. An algorithm for smoothing, differentiation and integration of experimental data using

spline functions. Journal of Computational and Applied Mathematics, 1(3):165–184, 1975. 187,

265

F. Dietrich. Visual intelligence: The first decade of computer art (1965-1975). Leonardo, 19(2):

159–169, 1986. 47

A. R. Dill, M. D. Levine, and P. B. Noble. Multiple resolution skeletons. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-9(4):495–504, July 1987. 90

J. B. Dingwell, C. D. Mah, and F. A. Mussa-Ivaldi. Experimentally confirmed mathematical model

for human control of a non-rigid object. Journal of Neurophysiology, 91(3):1158–1170, 2004.

60, 298

S. DiVerdi. A brush stroke synthesis toolbox. In Image and video-based artistic stylisation, pages

23–44. Springer, 2013. 69

M. Djioua and R. Plamondon. An interactive system for the automatic generation of huge hand-

writing databases from a few specimens. In Pattern Recognition, 2008. ICPR 2008. 19th Inter-

national Conference on, pages 1–4. IEEE, 2008a. 66

M. Djioua and R. Plamondon. A new methodology to improve myoelectric signal processing us-

ing handwriting. In International Conference on Frontiers in Handwriting Recognition, Mon-

treal, pages 112–117, 2008b. 108

M. Djioua and R. Plamondon. Studying the variability of handwriting patterns using the kine-

matic theory. Human movement science, 28(5):588–601, 2009. 61

M. Djioua and R. Plamondon. The limit profile of a rapid movement velocity. Human Movement

Science, 29(1):48 – 61, 2010. 298

BIBLIOGRAPHY 332

E. H. Dooijes. Analysis of handwriting movements. Acta Psychologica, 54(1):99–114, 1983. 62, 65,

66, 140

B. Dresp-Langley. 2D geometry predicts perceived visual curvature in context-free viewing. Com-

putational Intelligence and Neuroscience, 2015. 243

B. Durix, G. Morin, S. Chambon, J.-L. Mari, and K. Leonard. One-step compact skeletonization.

In Eurographics (Short Papers), pages 21–24, 2019. 86

T. Dwyer, N. Hurst, and D. Merrick. A fast and simple heuristic for metro map path simplification.

In International Symposium on Visual Computing, pages 22–30. Springer, 2008. 274, 275, 277

S. Edelman and T. Flash. A model of handwriting. Biological cybernetics, 57(1-2):25–36, 1987. 61,

62, 65, 298

M. Egerstedt and C. Martin. Control Theoretic Splines: Optimal Control, Statistics, and Path Plan-

ning. Princeton University Press, 2009. 52, 63, 137

M. B. Egerstedt, C. F. Martin, et al. A note on the connection between Bezier curves and linear

optimal control. IEEE transactions on automatic control, 49(10):1728–1731, 2004. 137, 138

J. H. Elder. Bridging the dimensional gap: Perceptual organization of contour into two-

dimensional shape. In J. Wagemans, editor, The Oxford Handbook of Perceptual Organization,

pages 207–235. Oxford University Press, 2015. 90, 248

S. E. Engelbrecht. Minimum principles in motor control. Journal of Mathematical Psychology, 45

(3):497–542, 2001. 62, 109, 288, 293

U. A. Ernst, S. Mandon, N. Schinkel-Bielefeld, S. D. Neitzel, A. K. Kreiter, and K. R. Pawelzik. Op-

timality of human contour integration. PLOS Computational Biology, 8(5):1–17, 2012. 92, 244,

310

G. Farin. The Bernstein form of a Bézier curve. In G. Farin, editor, Curves and Surfaces for CAGD

(Fifth Edition), The Morgan Kaufmann Series in Computer Graphics, pages 57 – 79. Morgan

Kaufmann, fifth edition edition, 2002. 49

G. Farin, G. Rein, N. Sapidis, and A. Worsey. Fairing cubic B-spline curves. Computer Aided

Geometric Design, 4(1–2):91—103, Jul 1987. 49

J.-D. Favreau, F. Lafarge, and A. Bousseau. Fidelity vs. simplicity: A global approach to line draw-

ing vectorization. ACM Transactions on Graphics (TOG), 35(4), 2016. Article no. 120. 77, 96

BIBLIOGRAPHY 333

A. Feldman. Functional tuning of the nervous system with control of movement of maintenance

of a steady posture of movement or maintenance of a steady posture. II. Controllable parame-

ters of the muscles. Biofizika, 11:498–508, 1966. 61

J. Feldman and M. Singh. Information along contours and object boundaries. Psychological Re-

view, 112(1):243–252, 2005. doi: 10.1037/0033-295X.112.1.243. 80, 81, 112, 173, 185, 194, 224,

241

J. Feldman and M. Singh. Bayesian estimation of the shape skeleton. Proceedings of the National

Academy of Sciences, 103(47):18014–18019, 2006. 90, 96

M. Ferrer, M. Diaz-Cabrera, A. Morales, et al. Static signature synthesis: A neuromotor inspired

approach for biometrics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37

(3):667–680, 2015. 66

M. A. Ferrer, M. Diaz-Cabrera, and A. Morales. Static signature synthesis: A neuromotor inspired

approach for biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37

(3):667–680, 2015. 69, 74, 110, 116

M. A. Ferrer, M. Diaz, C. Carmona-Duarte, and R. Plamondon. iDeLog: Iterative dual spatial and

kinematic extraction of sigma-lognormal parameters. IEEE transactions on pattern analysis

and machine intelligence, 42(1):114–125, 2018. 42, 74, 120, 199, 208, 292

A. Ferri. Teoria del writing, La ricerca dello stile. Professional Dreamers, 2016. 21, 23, 24, 25, 26,

27, 28, 53, 71, 151, 275, 286, 289, 292, 295, 303

D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system: Evidence

for a local “association field”. Vision Research, 33(2):173–193, Jan 1993. ISSN 0042-6989. 91

C. Firestone and B. J. Scholl. “please tap the shape, anywhere you like” shape skeletons in human

vision revealed by an exceedingly simple measure. Psychological science, 25(2):377–386, 2014.

84

A. Fischer, R. Plamondon, C. O’Reilly, and Y. Savaria. Neuromuscular representation and syn-

thetic generation of handwritten whiteboard notes. In Frontiers in Handwriting Recognition

(ICFHR), 2014 14th International Conference on, pages 222–227. IEEE, 2014. 66, 74, 111, 198,

202, 221, 292

P. M. Fitts. The information capacity of the human motor system in controlling the amplitude of

movement. Journal of experimental psychology, 47(6):381, 1954. 56, 58

P. M. Fitts and M. I. Posner. Human performance. Brooks/Cole, 1967. 59

BIBLIOGRAPHY 334

T. Flash. Organizing principles underlying the formation of arm trajectories. PhD thesis, Mas-

sachusetts Institute of Technology, 1983. 60, 62, 63, 65

T. Flash and A. A. Handzel. Affine differential geometry analysis of human arm movements. Bio-

logical cybernetics, 96(6):577–601, 2007. 56, 58

T. Flash and E. Henis. Arm trajectory modifications during reaching towards visual targets. Jour-

nal of cognitive Neuroscience, 3(3):220–230, 1991. 60, 64

T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current opinion in

neurobiology, 15(6):660–6, 2005. 56, 59, 61, 219, 288

T. Flash and N. Hogan. The coordination of arm movements. Journal of Neuroscience, 5(7):1688–

1703, 1985. 51, 59, 60, 62, 109, 122, 214, 215, 293, 298

M. S. Floater and T. Surazhsky. Parameterization for curve interpolation. In Studies in Computa-

tional Mathematics, volume 12, pages 39–54. Elsevier, 2006. 146

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics (2nd Ed. in C): Principles

and Practice. Addison-Wesley Longman Publishing Co., Inc., USA, 1995. ISBN 0201848406. 49

T. A. Foley and G. M. Nielson. Knot selection for parametric spline interpolation. In Mathematical

methods in computer aided geometric design, pages 261–CP4. Elsevier, 1989. 146

W. C. Fong. Why Chinese painting is history. The Art Bulletin, 85(2):258–280, 2003. 52, 53, 97

K. Franke and S. Rose. Ink-deposition model: The relation of writing and ink deposition pro-

cesses. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International

Workshop on, pages 173–178. IEEE, 2004. 116

D. Freedberg and V. Gallese. Motion, emotion and empathy in esthetic experience. Trends in

cognitive sciences, 11(5):197–203, 2007. 37, 53, 54, 289, 297

F. N. Freeman. Experimental analysis of the writing movement. Psychological Monographs: Gen-

eral and Applied, 17(4):1–57, 1914. 56, 57

W. T. Freeman, J. B. Tenenbaum, and E. C. Pasztor. Learning style translation for the lines of a

drawing. ACM Transactions on Graphics (TOG), 22(1):33–46, 2003. 51

J. J. Freyd. Representing the dynamics of a static form. Memory & cognition, 11(4):342–346, 1983.

ISSN 0090-502X. 37, 53, 297

J. J. Freyd. Dynamic mental representations. Psychological review, 94(4):427–438, 1987. doi:

10.1037/0033-295X.94.4.427. 53

BIBLIOGRAPHY 335

V. Froyen, J. Feldman, and M. Singh. Bayesian hierarchical grouping: Perceptual grouping as

mixture estimation. Psychological Review, 122(4):575–597, 2015. doi: 10.1037/a0039540. 96

H. Fu, S. Zhou, L. Liu, and N. J. Mitra. Animated construction of line drawings. In ACM Transac-

tions on Graphics (TOG), volume 30, pages 1–10, 2011. doi: 10.1145/2070781.2024167. 273

H. Fujioka and S. Miyata. Reshaping and reconstructing handwritten character typeface using

dynamic font model. In 2011 Third International Conference on Intelligent Networking and

Collaborative Systems, pages 563–568, Nov 2011. 70, 97, 293

H. Fujioka, H. Kano, H. Nakata, and H. Shinoda. Constructing and reconstructing characters,

words, and sentences by synthesizing writing motions. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, 36(4):661–670, 2006. 51, 70, 97, 293

J. Galbally, R. Plamondon, J. Fierrez, and J. Ortega-Garcia. Synthetic on-line signature generation.

Part I: Methodology and algorithms. Pattern Recognition, 45(7):2610–2621, 2012. 74, 111

V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti. Action recognition in the premotor cortex.

Brain, 119(2):593–610, 1996. 54

A. Galton and R. C. Meathrel. Qualitative outline theory. In IJCAI, pages 1061–1066, 1999. 83

F. Gao, G. Wei, S. Xin, S. Gao, and Y. Zhou. 2D skeleton extraction based on heat equation. Com-

puters & Graphics, 74:99–108, 2018. 85

Y. Gao, Y. Guo, Z. Lian, Y. Tang, and J. Xiao. Artistic glyph image synthesis via one-stage few-shot

learning. ACM Transactions on Graphics, 38(6):1–12, Nov 2019. 75

P. Garrigan and P. J. Kellman. The role of constant curvature in 2-D contour shape representations.

Perception, 40(11):1290–1308, 2011. 82, 83

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015. 218, 230, 290

F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM.

Neural Computation, 12(10):2451–2471, 2000. 224

C. Ghez, M. Favilla, M. Ghilardi, J. Gordon, R. Bermejo, and S. Pullman. Discrete and continuous

planning of hand movements and isometric force trajectories. Experimental Brain Research,

115(2):217–233, 1997. 57

P. K. Ghosh and C. A. Bigelow. A formal approach to lettershape description for type design.

Technical report, Department of Computer Science, Stanford University, 1983. 68, 69

BIBLIOGRAPHY 336

É. Ghys, S. Tabachnikov, and V. Timorin. Osculating curves: Around the Tait-Kneser theorem. The

Mathematical Intelligencer, 35(1):61–66, 2013. 183

P. Giblin. Symmetry sets and medial axes in two and three dimensions. In The Mathematics of

Surfaces IX, pages 306–321. Springer, 2000. 87, 176, 187

P. J. Giblin and B. B. Kimia. On the local form and transitions of symmetry sets, medial axes, and

shocks. International Journal of Computer Vision, 54(1):143–157, 2003. 176, 177

Y. Gingold, D. Salesin, and D. Zorin. Stroke-by-stroke glyph animation. Technical report, Cre-

ativity and Graphics Lab (CraGL) at George Mason University, Fairfax, Virginia, USA, 2008.

https://cragl.cs.gmu.edu/fontanim/. 42, 270, 283

O. Gold and M. Sharir. Dynamic time warping and geometric edit distance: Breaking the

quadratic barrier. ACM Trans. Algorithms, 14(4), 2018. doi: 10.1145/3230734. 275

A. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak. Multi-manifold semi-supervised learning. In

12th International Conference on Artificial Intelligence and Statistics, pages 169–176, 2009. 96

E. H. Gombrich. Art and illusion: A study in the psychology of pictorial representation, volume 5.

Phaidon London, 1977. 52

M. Gomez-Barrero, J. Galbally, J. Fierrez, J. Ortega-Garcia, and R. Plamondon. Enhanced on-line

signature verification based on skilled forgery detection using sigma-lognormal features. In

2015 international conference on biometrics (ICB), pages 501–506. IEEE, 2015. 120

A. A. Gooch, J. Long, L. Ji, A. Estey, and B. S. Gooch. Viewing progress in non-photorealistic

rendering through Heinlein’s lens. In Proceedings of the 8th International Symposium on Non-

Photorealistic Animation and Rendering, pages 165–171. ACM, 2010. 32, 47

I. C. Graphics and Applications. Fractional invisibility. IEEE Comput. Graph. Appl., 8(6):77–84,

Nov. 1988. 71

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,

2013. 73, 74, 75, 219, 223, 227, 232, 235, 237, 271

I. Grebert, D. G. Stork, R. Keesing, and S. Mims. Connectionist generalization for production: An

example from gridfont. Neural Networks, 5(4):699–710, 1992. 73, 75

K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A Recurrent Neural Network For Image

Generation. arXiv preprint arXiv:1502.04623, 2015. 219

BIBLIOGRAPHY 337

S. Grossberg and R. W. Paine. A neural model of cortico-cerebellar interactions during attentive

imitation and predictive learning of sequential handwriting movements. Neural Networks, 13

(8):999–1046, 2000. 62, 67

D. Ha and D. Eck. A neural representation of sketch drawings. In Sixth International Conference

on Learning Representations (ICLR), 2018. https://arxiv.org/abs/1704.03477. 73, 74, 271, 299

P. Haeberli. Dynadraw: A dynamic drawing technique. http://www.graficaobscura.com/dyna/,

1989. 51

T. S. Haines, O. M. Aodha, and G. J. Brostow. My text in your handwriting. ACM Transactions on

Graphics (TOG), 35(3), 2016. Article no. 26. 73, 237, 272

P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. In Com-

putational Inverse Problems in Electrocardiology, pages 119–142. WIT Press, 2000. 306

C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor planning. Nature, 394

(6695):780–784, 1998. 31, 59, 62, 63, 109

F. Haugen. Discrete-time signals and systems. 2005. URL http://techteach.no/

publications/discretetime_signals_systems/discrete.pdf. 125

S. Havemann, J. Edelsbrunner, P. Wagner, and D. Fellner. Curvature-controlled curve editing us-

ing piecewise clothoid curves. Computers & Graphics, 37(6):764–773, 2013. 49

H. Hayashi, K. Abe, and S. Uchida. GlyphGAN: Style-consistent font generation based on genera-

tive adversarial networks. Knowledge-Based Systems, 186, 2019. 75

P. J. Hayes and M. Leyton. Processes at discontinuities. In IJCAI, pages 1267–1272, 1989. 88, 175

M. A. Heald. Rational approximations for the Fresnel integrals. Mathematics of Computation, 44

(170):459–459, 1985. ISSN 0025-5718. 106, 189

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In 22nd International Confer-

ence on Machine learning (ICML), pages 297–304. ACM, 2005. 96

M. Hendrickx and J. Wagemans. A critique of Leyton’s theory of perception and cognition. Review

of Symmetry, Causality, Mind, by Michael Leyton, 1999. 89

F. M. Henry and D. E. Rogers. Increased response latency for complicated movements and a

memory drum theory of neuromotor reaction. Research Quarterly. American Association for

Health, Physical Education and Recreation, 31(3):448–458, 1960. 61

BIBLIOGRAPHY 338

A. Hertzmann. Non-photorealistic rendering and the science of art. In Proceedings of the 8th In-

ternational Symposium on Non-Photorealistic Animation and Rendering, pages 147–157. ACM,

2010. 22, 298

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. In Proceed-

ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, page

327–340, 2001. 218, 290

A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz. Curve analogies. In Rendering Techniques,

pages 233–246, 2002. 41, 42, 51, 98, 218, 220, 234, 290

J. Herz, R. D. Hersch, and J. Gonczarowski. Coherent processing of character skeletal forms. Com-

puters and Graphics, 21(6):727–736, 1997. 77

J. Hespanha. Lecture notes on lqr/lqg controller design. staff.uz.zgora.pl/wpaszke/materialy/kss/lqrnotes.pdf,

2005. 306

J. D. Hobby. Smooth, easy to compute interpolating splines. Discrete and Computational Geom-

etry, 1(2):123—140, Jun 1986. 49

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997. 219, 224

B. Hoff. A model of duration in normal and perturbed reaching movement. Biological Cybernetics,

71(6):481–488, 1994. 59, 62, 63

D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18(1-3):65–96, 1984. doi:

10.1016/0010-0277(84)90022-2. 93, 94, 250

D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63(1):29–78, 1997. doi: 10.1016/

S0010-0277(96)00791-3. 80, 81, 93, 243, 250

D. Hofstadter. Metamagical themas: Variations on a theme as the essence of imagination. Scien-

tific American, 247(4):14–21, 1982. 68

D. Hofstadter. Metamagical themas: Questing for the essence of mind and pattern. Basic Books,

New York, 1985. ISBN 978-0465045662. 300

D. Hofstadter, G. McGraw, et al. Letter spirit: An emergent model of the perception and creation

of alphabetic style. In Technical Report 68, Center for Research on Concepts and Cognition,

1993. 68, 75, 76, 284

N. Hogan. Control and coordination of voluntary arm movements. In American Control Confer-

ence, 1982, pages 522–528. IEEE, 1982. 62

BIBLIOGRAPHY 339

A. Holland Michael. KATSU shows you how to make a graf-

fiti drone. https://www.vice.com/en_us/article/mvxedv/

katsu-shows-you-how-to-make-a-graffiti-drone-456, 2015. 32

J. M. Hollerbach. An oscillation theory of handwriting. Biological Cybernetics, 39(2):139–156,

1981. 62, 66

D. H. House and M. Singh. Line drawing as a dynamic process. In 15th Pacific Conference on

Computer Graphics and Applications (PG’07), pages 351–360, 2007. 51, 97

S. C. Hsu and I. H. H. Lee. Drawing and animation using skeletal strokes. In Proceedings of the

21st Annual Conference on Computer Graphics and Interactive Techniques, pages 109–118, New

York, New York, USA, 1994. 34, 38, 69, 71, 152, 154, 155, 159, 168

C. Hu and R. D. Hersch. Parameterizable fonts based on shape components. IEEE Computer

Graphics and Applications, 21(3):70–85, 2001. doi: 10.1109/38.920629. 69, 70

J. Hulleman, W. Te Winkel, and F. Boselie. Concavities as basic features in visual search: Evidence

from search asymmetries. Perception & Psychophysics, 62(1):162–174, 2000. 80

T. Igarashi and J. Mitani. Apparent layer operations for the manipulation of deformable objects.

In ACM Transactions on Graphics (TOG), volume 29, page 110, 2010. 72, 160, 161, 162, 163, 169

T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive beautification. ACM SIGGRAPH

2007 courses on - SIGGRAPH ’07, 2007. doi: 10.1145/1281500.1281529. 50

W. R. Jack. On the analysis of voluntary muscular movements by certain new instruments. Pro-

ceedings of the Royal Society of London, 57(340-346):477–481, 1894. 57

E. J. Jakubiak, R. N. Perry, and S. F. Frisken. An improved representation for stroke-based fonts.

In ACM SIGGRAPH 2006 Sketches, 2006. 70, 162

K. H. James and I. Gauthier. Letter processing automatically recruits a sensory-motor brain net-

work. Neuropsychologia, 44(14):2937–2949, 2006. 54, 292

M. Jeannerod. Mental imagery in the motor context. Neuropsychologia, 33(11):1419–1432, 1995.

61

M. I. Jordan and D. M. Wolpert. Computational motor control, 1999. 56, 57

G. Kanizsa. Organization in Vision: Essays on Gestalt Perception. Praeger, 1979. 91

H. Kano, H. Fujioka, and K. Inoue. Discrete-time control systems approach for optimal smooth-

ing splines. In Proceedings of the 44th IEEE Conference on Decision and Control, pages 356–361,

2005. doi: 10.1109/CDC.2005.1582181. 126

BIBLIOGRAPHY 340

H. S. Kao, R. Hoosain, and G. Van Galen. Graphonomics: Contemporary research in handwriting.

Elsevier, 1986. 64, 100

P. Karow. Digital Typefaces: Description and Formats. Springer, 1994. 67

R. Kaushik. Cy Twombly (gesture, space, and writing). In H. De Preester, editor, Moving imagina-

tion, explorations of gesture and inner movement in the arts, pages 235—246. John Benjamins

Publishing Company, 2013. 53

S. W. Keele and J. J. Summers. The structure of motor programs. Motor control: Issues and trends,

pages 109–142, 1976. 60

P. J. Kellman and P. Garrigan. Segmentation, grouping, and shape: Some hochbergian questions.

2007. 83

P. J. Kellman and T. F. Shipley. A theory of visual interpolation in object perception. Cognitive

Psychology, 23(2):141—221, Apr 1991. 91

J. Kelso and E. Saltzman. Motor control: Which themes do we orchestrate? Behavioral and Brain

Sciences, 5(04):554–557, 1982. 60

M. G. Kendall and J. K. Ord. Time Series. 06 1993. ISBN 9780340593271. 233

J. C. Keough. Graffiti Research Lab: Bridging the Canonical and the Criminal. PhD thesis, The

Graduate School, Stony Brook University: Stony Brook, NY., 2010. 32

B. Kim, O. Wang, A. C. Öztireli, and M. Gross. Semantic segmentation for line drawing vec-

torization using neural networks. Computer Graphics Forum, 37(2):329–338, 2018. doi:

10.1111/cgf.13365. 77, 96, 268

B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler. Deep fluids: A generative

network for parameterized fluid simulations. Computer Graphics Forum, 38(2):59–70, 2019.

doi: 10.1111/cgf.13619. 299

B. Kimia, I. Frankel, and A.-M. Popescu. Euler spiral for shape completion. International journal

of computer vision, 54:159–182, 2003. 107

B. B. Kimia. On the role of medial geometry in human vision. Journal of Physiology–Paris, 97(2-3):

155–190, 2003. 84

B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations I: The com-

ponents of two-dimensional shape and the reaction-diffusion space. International journal of

computer vision, 15(3):189–224, 1995. 85, 86

BIBLIOGRAPHY 341

R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein. Skeletonization via distance maps and

level sets. Computer Vision and Image Understanding, 62(3):382 – 391, 1995. 88, 89

J. Kimvall. Bad graffiti art gone good street art. 2007. URL http://www.academia.edu/

1121025/Bad_Graffiti_Art_Gone_Good_Street_Art. 21, 29

J. Kimvall. The G-word. Dokument, Stockholm, 2014. ISBN 9789185639687. 21, 286, 292

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, pages 1–13, 2014. 224

S. Kishore. Make me a hanzi dataset. https://github.com/skishore/makemeahanzi,

2018. URL www.skishore.me/makemeahanzi/. 77, 256, 268, 311

P. Klee. Paul Klee: The thinking eye. The notebooks of Paul Klee, volume 15. G. Wittenborn, 1961.

53

D. E. Knuth. Mathematical typography. Bulletin of the American Mathematical Society, 1(2):337–

373, 1979. doi: 10.1090/S0273-0979-1979-14598-1. 20, 49, 50

D. E. Knuth. Mathematical typography. In Digital Typography, pages 19–65. Csli Publications,

1999. 67, 68, 271

J. Koenderink and A. van Doorn. The Structure of Visual Spaces. Journal of Mathematical Imaging

and Vision, 31(2-3):171–187, 2008. 79

J. J. Koenderink. The structure of images. Biological cybernetics, 50(5):363–370, 1984. 82

J. J. Koenderink. Solid shape. MIT press, 1990. 78, 89

J. J. Koenderink. Geometry of imaginary spaces. Journal of Physiology-Paris, 106(5):173–182,

2012. 158

I. Kovács, Á. Fehér, and B. Julesz. Medial-point description of shape: A representation for action

coding and its psychophysical correlates. Vision research, 38(15):2323–2333, 1998. 84, 90

R. T. Krampe, R. Engbert, and R. Kliegl. Representational models and nonlinear dynamics: Irrec-

oncilable approaches to human movement timing and coordination or two sides of the same

coin? introduction to the special issue on movement timing and coordination. Brain and Cog-

nition, 48(1):1–6, 2002. 61

A. Kuijper, O. F. Olsen, P. Giblin, and M. Nielsen. Alternative 2D shape representations using the

symmetry set. Journal of Mathematical Imaging and Vision, 26:127–147, 2006. 176

BIBLIOGRAPHY 342

J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. State of the "art": A taxonomy of artistic

stylization techniques for images and video. IEEE Transactions on Visualization and Computer

Graphics, 19(5):866–885, 2013. 32, 47, 52, 97, 291

F. Lacquaniti, C. Terzuolo, and P. Viviani. The law relating the kinematic and figural aspects of

drawing movements. Acta psychologica, 54(1):115–130, 1983. 56, 57, 61, 136, 288

B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a composi-

tional causal process. In Advances in neural information processing systems, pages 2526–2534,

2013. 299

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through prob-

abilistic program induction. Science, 350(6266):1332–1338, 2015. 73, 77

B. Lamiroy, T. Bouville, J. Blégean, H. Cao, S. Ghamizi, R. Houpin, and M. Lloyd. Re-typograph

phase I: A proof-of-concept for typeface parameter extraction from historical documents. In

E. K. Ringger and B. Lamiroy, editors, Document Recognition and Retrieval XXII, volume 9402,

pages 80–91. International Society for Optics and Photonics, SPIE, 2015. 77, 270

K. Lang and M. Alexa. The Markov pen: Online synthesis of free-hand drawing styles. In Pro-

ceedings of the workshop on Non-Photorealistic Animation and Rendering, pages 203–215. Eu-

rographics Association, 2015. 51, 71, 98, 159, 209, 218, 235

K. S. Lashley. The problem of serial order in behavior. Bobbs-Merrill, 1951. 60

L. J. Latecki and R. Lakämper. Discrete approach to curve evolution. In Mustererkennung 1998,

pages 85–92. Springer, 1998. 81, 82, 274

R. Leavitt. Artist and Computer. Harmony Books, 1976. 47

H. Leder, S. Bär, and S. Topolinski. Covert painting simulations influence aesthetic appreciation

of artworks. Psychological Science, 23(12):1479–1481, 2012. 37, 53, 54

D.-H. Lee and H.-G. Cho. The beta-velocity model for simulating handwritten korean scripts. In

Electronic Publishing, Artistic Imaging, and Digital Typography, pages 252–264. Springer, 1998.

59, 73, 74

E. T. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided Design, 21(6):363–

370, 1989. 146, 147, 214, 293

J. Lehni. Hektor. http://hektor.ch/, 2004. 32

BIBLIOGRAPHY 343

L. A. Leiva, D. Martín-Albo, and R. Plamondon. Gestures à go go: Authoring synthetic human-

like stroke gestures using the kinematic theory of rapid movements. ACM Transactions on

Intelligent Systems and Technology (TIST), 7(2):15, 2016. 111

L. A. Leiva, D. Martín-Albo, and R. Plamondon. The kinematic theory produces human-like stroke

gestures. Interacting with Computers, 29(4):552–565, July 2017. 60, 100, 111, 221

K. Leonard, G. Morin, S. Hahmann, and A. Carlier. A 2D shape structure for decomposition and

part similarity. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages

3216–3221. IEEE, 2016. 90

R. Levien. The Euler spiral: A mathematical history. Opera, pages 1–14, 2008. 92, 106

R. Levien. From Spiral to Spline: Optimal Techniques in Interactive Curve Design. PhD thesis,

EECS Department, University of California, Berkeley, December 2009a. PhD thesis, EECS De-

partment, University of California, Berkeley. 49, 106, 107, 190

R. Levien and C. H. Séquin. Interpolating splines: Which is the fairest of them all? Computer-

Aided Design and Applications, 6(1):91–102, 2009. 50, 110

R. L. Levien. From spiral to spline: Optimal techniques in interactive curve design. 2009b. 49,

110

G. Levin, J. Feinberg, and C. Curtis. The alphabet synthesis machine. Technical report, 2013. URL

http://life.flong.com/storage/pdf/reports/alphabet_report.pdf. 51

F. Leymarie and M. D. Levine. Curvature morphology. Technical report, McGill University, Mon-

treal, Canada, 1988. 185

F. Leymarie and M. D. Levine. Shape features using curvature morphology. In D. P. Casasent, edi-

tor, Proc. of the SPIE Conf. on Intelligent Robots and Computer Vision VIII: Algorithms and Tech-

niques, volume SPIE–1192, part 2, pages 536–547, Philadelphia, PA, U.S.A., Nov. 1989. SPIE. 81,

82, 174

F. Leymarie and M. D. Levine. Simulating the grassfire transform using an active contour model.

IEEE Transactions on Pattern Analysis & Machine Intelligence, (1):56–75, 1992. 84, 85, 88

F. F. Leymarie. Thoughts on shape. In L. Albertazzi, editor, Visual Thought, volume 67 of Advances

in Consciousness Research, pages 303–350. John Benjamins Publishing Company, 2006. 78, 83

F. F. Leymarie and P. Aparajeya. Medialness and the perception of visual art. Art & Perception, 5

(2):169–232, 2017. 88, 90

BIBLIOGRAPHY 344

F. F. Leymarie and B. B. Kimia. The shock scaffold for representing 3D shape. In International

workshop on visual form, pages 216–227. Springer, 2001. 88

F. F. Leymarie and B. B. Kimia. The medial scaffold of 3D unorganized point clouds. IEEE Trans.

Pattern Anal. Mach. Intell., 29(2):313–330, 2007. 88, 177

M. Leyton. Symmetry-curvature duality. Computer Vision, Graphics, and Image Processing, 38(3):

327–341, 1987. 79, 88, 89, 98, 174, 175, 177, 183, 185, 188, 196

M. Leyton. A process-grammar for shape. Artificial Intelligence, 34(2):213–247, March 1988. 79,

83, 87, 98, 182, 187, 188, 241, 290

M. Leyton. Inferring causal history from shape. Cognitive Science, 13(3):357–387, Sep 1989. 89

M. Leyton. Group theory and architecture. Nexus Network Journal, 3(2):39—58, Sep 2001a. ISSN

1522-4600. 89

M. Leyton. A generative theory of shape, volume 2145. Springer, 2001b. 88, 89

M. Leyton. The structure of paintings. Springer, 2006. 79, 88, 89, 172

M. Leyton. Process grammar: The basis of morphology. Springer Science & Business Media, 2012.

186

H. Li, H. Zhang, Y. Wang, J. Cao, A. Shamir, and D. Cohen-Or. Curve style analysis in a set of

shapes. In Computer Graphics Forum, volume 32, pages 77–88. Wiley Online Library, 2013. 41,

42, 51, 98, 290

X. Li, M. Parizeau, and R. Plamondon. Segmentation and reconstruction of on-line handwritten

scripts. Pattern recognition, 31(6):675–684, 1998. 201

Z. Lian and J. Xiao. Automatic shape morphing for Chinese characters. In SIGGRAPH Asia 2012

Technical Briefs, 2012. 73

Z. Lian, B. Zhao, X. Chen, and J. Xiao. EasyFont: A style learning-based system to easily build your

large-scale handwriting fonts. ACM Transactions on Graphics (TOG), 38(1):1–18, 2018. 73, 76,

77

A. Lieutier. Any open bounded subset of Rn has the same homotopy type than its medial axis.

In Proceedings of the eighth ACM symposium on Solid modeling and applications, pages 65–75,

2003. 84

G. Liu, Z. Xi, and J.-M. Lien. Dual-space decomposition of 2D complex shapes. In 2014 IEEE

Conference on Computer Vision and Pattern Recognition, pages 4154–4161, Jun 2014. 94

BIBLIOGRAPHY 345

D. Llorens Piñana et al. The UJIpenchars database: A pen-based database of isolated handwrit-

ten characters. In N. Calzolari et al., editors, Proceedings of the Sixth International Confer-

ence on Language Resources and Evaluation (LREC). European Language Resources Associa-

tion (ELRA), may 2008. 202, 208

M. Longcamp, J. L. Anton, M. Roth, and J. L. Velay. Visual presentation of single letters activates a

premotor area involved in writing. NeuroImage, 19(4):1492–1500, 2003. 37, 53

M. Longcamp, T. Tanskanen, and R. Hari. The imprint of action: Motor cortex involvement in

visual perception of handwritten letters. NeuroImage, 33(2):681–688, 2006. 54

M. Longcamp, Y. Hlushchuk, and R. Hari. Neural correlates of the visual perception of hand-

written letters. In Advances in Graphonomics: Proceedings of IGS 2009, pages 194–197, 2009.

54

M. Longcamp, Y. Hlushchuk, and R. Hari. What differs in visual recognition of handwritten vs.

printed letters? An fMRI study. Human brain mapping, 32(8):1250–1259, 2011. 54

R. G. Lopes, D. Ha, D. Eck, and J. Shlens. A learned representation for scalable vector graphics. In

Proceedings of the IEEE International Conference on Computer Vision, pages 7930–7939, 2019.

73

M. Ltaief, H. Bezine, and A. M. Alimi. A neuro-beta-elliptic model for handwriting generation

movements. In Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference

on, pages 803–808. IEEE, 2012. 66

J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. HelpingHand: Example-based stroke stylization. ACM

Transactions on Graphics (TOG), 31(4):46, 2012. 51, 209

J. Lu, C. Barnes, C. Wan, P. Asente, R. Mech, and A. Finkelstein. Decobrush: Drawing structured

decorative patterns by example. ACM Transactions on Graphics (TOG), 33(4):90, 2014. 70

D. P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE Computer Graph-

ics and Applications, 21(3):24–35, 2001. doi: 10.1109/38.920624. 274

L. Luo, C. Shen, X. Liu, and C. Zhang. A computational model of the short-cut rule for 2D shape

decomposition. IEEE Transactions on Image Processing, 24(1):273–283, 2015. 77, 94, 96, 245

P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu. Auto-encoder guided GAN for Chinese callig-

raphy synthesis. In 2017 14th IAPR International Conference on Document Analysis and Recog-

nition (ICDAR), volume 1, pages 1095–1100, 2017. 73, 75

BIBLIOGRAPHY 346

F. J. Maarse. The study of handwriting movement: Peripheral models and signal processing tech-

niques. Lisse [etc.]: Swets & Zeitlinger, 1987. 59, 62, 65, 288

J. S. MacDonald. Experimental studies of handwriting signals. Citeseer, 1966. 65

I. S. MacKenzie and W. Buxton. Extending Fitts’ law to two-dimensional tasks. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 219–226. ACM, 1992. 56

D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons to bone graphs: Medial abstraction for

object recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2008. 92, 95, 241

D. Macrini, S. Dickinson, D. Fleet, and K. Siddiqi. Bone graphs: Medial shape parsing and ab-

straction. Computer Vision and Image Understanding, 115(7):1044–1061, 2011. 84, 247, 248,

265

E. Maggiori, H. L. Manterola, and M. del Fresno. Perceptual grouping by tensor voting: A com-

parative survey of recent approaches. IET Computer Vision, 9(2):259–277, 2015. 92

B. B. Mandelbrot. A case against the lognormal distribution. In Fractals and scaling in finance,

pages 252–269. Springer, 1997. 107

A. Manzanera, T. Nguyena, and X. Xu. Line and circle detection using dense one-to-one Hough

transforms on greyscale images. EURASIP Journal on Image and Video Processing, (46), De-

cember 2016. 193, 270

U. Maoz, A. Berthoz, and T. Flash. Complex unconstrained three-dimensional hand movement

and constant equi-affine speed. Journal of neurophysiology, 101(2):1002–15, 2009. 58

D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of

Visual Information. Henry Holt and Co., Inc., USA, 1982. 94

A. Massad and G. Medioni. 2-D shape decomposition into overlapping parts. In Visual Form

2001, pages 398–409. Springer, 2001. 92, 96

J. McCann and N. Pollard. Local layering. In ACM Transactions on Graphics (TOG), volume 28,

page 84. ACM, 2009. 71, 161, 162, 289

J. McCormack and A. Lomas. Understanding aesthetic evaluation using deep learning. Lecture

Notes in Computer Science, pages 118–133, 2020. 299

J. McCrae and K. Singh. Sketching piecewise clothoid curves. Computers and Graphics (Perga-

mon), 33(4):452–461, 2009. 49, 189, 195, 209

BIBLIOGRAPHY 347

J. McCrae and K. Singh. Neatening sketched strokes using piecewise french curves. In Proceedings

of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling - SBIM ’11,

pages 141––148, 2011. 49

G. McGraw Jr. Letter Spirit (part one): Emergent high-level perception of letters using fluid

concepts. PhD thesis, Indiana University, Dept. of Computer Science, Indianapolis, U.S.A.,

September 1995. 68

C. Mediavilla, A. Marshall, M. van Stone, G. Xuriguera, and D. Jackson. Calligraphy: From callig-

raphy to abstract painting. Scirpus, 1996. 52

Y. Meirovitch and T. Flash. Report on segmentation of trajectories into the underlying primi-

tives and syntactic rules for their compositionality based on differential geometry approaches.

Technical Report AMARSi ICT-248311, D1.4, 2013. URL http://www.amarsi-project.

eu/sites/www.amarsi-project.eu/files/D14.pdf. 60

R. G. Meulenbroek, A. Thomassen, D. Rosebaum, L. D. Loukopoulos, and J. Vaughan. Adaptation

of a reaching model to handwriting: How different effectors can produce the same written

output, and other results. Psychological Research, 59(1):64–74, 1996. 62

X. Mi. Structural representation of 2D shape. Technical report, Computer Science Dept., Rutgers

University, USA, 2006. 79

X. Mi and D. DeCarlo. Separating parts from 2D shapes using relatability. In IEEE 11th Interna-

tional Conference on Computer Vision (ICCV), 2007. 87, 88, 96

K. T. Miura. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design

and Applications, 3(1-4):457–464, 2006. 191

T. Miyazaki, T. Tsuchiya, Y. Sugaya, S. Omachi, M. Iwamura, S. Uchida, and K. Kise. Automatic

generation of typographic font from small font subset. IEEE Computer Graphics and Applica-

tions, 40(1):99–111, 2019. 73

U. Montanari. Continuous skeletons from digitized images. Journal of the ACM, 16(4):534–549,

Oct. 1969. 87, 89

P. Morasso. Spatial control of arm movements. Experimental Brain Research, 42(2):223–7, 1981.

56, 57, 59, 61, 288

P. Morasso. Understanding cursive script as a trajectory formation paradigm. Graphonomics, 37:

137–67, 1986. 56, 60

BIBLIOGRAPHY 348

P. Morasso and F. Mussa Ivaldi. Trajectory formation and handwriting: A computational model.

Biological cybernetics, 45(2):131–142, 1982. 56, 59, 62, 63

P. Mordohai and G. Medioni. Dimensionality estimation, manifold learning and function approx-

imation using tensor voting. The Journal of Machine Learning Research, 11:411–450, 2010. 259

D. Mumford. Elastica and computer vision. Algebraic Geometry and its Applications, pages 491—

506, 1994. 92

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN

0262018020, 9780262018029. 44, 127, 235, 283

F. Mussa-Ivaldi, S. Solla, et al. Neural primitives for motion control. Oceanic Engineering, IEEE

Journal of, 29(3):640–650, 2004. 55

F. A. Mussa-Ivaldi. Nonlinear force fields. In IEEE Proc. CIRA, pages 84–90, 1997. 62

F. A. Mussa-Ivaldi and E. Bizzi. Motor learning through the combination of primitives. Philosoph-

ical Transactions of the Royal Society B: Biological Sciences, 355(1404):1755–69, 2000. 56, 61,

62

H. Nagasaki. Asymmetric velocity and acceleration profiles of human arm movements. Experi-

mental Brain Research, 74(2):319–26, 1989. 56, 59, 109

V. Nair and G. E. Hinton. Inferring motor programs from images of handwritten digits. In Ad-

vances in neural information processing systems, pages 515–22, 2005. 66

F. Nake. Computer art: A personal recollection. In Proceedings of the 5th conference on Creativity

& cognition, pages 54–62. ACM, 2005. 47

K. M. Newell and D. E. Vaillancourt. Dimensional change in motor learning. Human movement

science, 20(4):695–715, 2001. 60

A. M. Noll. Human or machine: A subjective comparison of Piet Mondrian’s" composition with

lines"(1917) and a computer-generated picture. The psychological record, 1966. 47

M. Nöllenburg. A survey on automated metro map layout methods.

In 1st Schematic Mapping Workshop, University of Essex, UK, 2014.

https://sites.google.com/site/schematicmapping/home. 275, 276

G. Noordzij. The Stroke — theory of writing. Hyphen Press, 2005. Translated from the Dutch

original of 1985 by Peter Enneson. 67, 97

R. L. Ogniewicz. Discrete Voronoi skeletons. PhD thesis, 1992. 86, 89, 90, 187

BIBLIOGRAPHY 349

R. L. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 63–69, 1992. 179, 180

L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling: A survey. Computers

& Graphics, 33(1):85–103, 2009. 49

B. O’Neill. Elementary Differential Geometry. Academic press, 2006. Revised second edition of

the 1966 original. 44

C. O’Reilly and R. Plamondon. Automatic extraction of sigma-lognormal parameters on sig-

natures. In Proc. of 11th International Conference on Frontier in Handwriting Recognition

(ICFHR), 2008. 74, 198, 202, 292

C. O’Reilly and R. Plamondon. Development of a sigma-lognormal representation for on-line

signatures. Pattern recognition, 42(12):3324–3337, 2009. 104

J. O’Rourke. Computational Geometry in C. Cambridge University Press, 2 edition, 1998. 86

E. Oztop, M. Kawato, and M. A. Arbib. Mirror neurons: Functions, mechanisms and models.

Neuroscience letters, 540:43–55, 2013. 54

R. Paine, S. Grossberg, and A. Van Gemmert. A quantitative evaluation of the AVITEWRITE model

of handwriting learning. Human movement science, 23(6):837–860, 2004. 67

N. Papanelopoulos, Y. Avrithis, and S. Kollias. Revisiting the medial axis for planar shape decom-

position. Computer Vision and Image Understanding, 179:66–78, 2019. doi: 10.1016/j.cviu.

2018.10.007. 89, 94, 245, 248, 255

P. Parent and S. W. Zucker. Trace inference, curvature consistency, and curve detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(8):823–839, 1989. 91, 244

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training Recurrent Neural Networks. In

Proc. of ICML, volume 28, pages 1310–8, 2013. 224

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout Improves Recurrent Neural Net-

works for Handwriting Recognition. In Proc. of ICFHR, pages 285–90. IEEE, 2014. 224

H. Q. Phan, H. Fu, and A. B. Chan. Flexyfont: Learning transferring rules for flexible typeface

synthesis. Computer Graphics Forum, 34(7):245–256, 2015. 73, 76, 77

A. Pignocchi. How the intentions of the draftsman shape perception of a drawing. Consciousness

and Cognition, 19(4):887–898, 2010. 37, 53, 81, 297

BIBLIOGRAPHY 350

S. M. Pizer, K. Siddiqi, G. Székely, J. N. Damon, and S. W. Zucker. Multiscale medial loci and their

properties. International Journal of Computer Vision, 55(2-3):155–179, 2003. 89

R. Plamondon. Looking at handwriting generation from a velocity control perspective. Acta Psy-

chologica, 82(1-3):89—101, Mar 1993. 109, 288

R. Plamondon. A kinematic theory of rapid human movements. Part I. Movement representation

and generation. Biological cybernetics, 72(4):295–307, 1995. 56, 59, 64, 66, 100, 101

R. Plamondon and A. M. Alimi. Speed/accuracy trade-offs in target-directed movements. Behav-

ioral and Brain Sciences, 20(02):279–303, 1997. 56, 59

R. Plamondon and W. Guerfali. The 2/3 power law: When and why? Acta psychologica, 100(1):

85–96, 1998a. 56, 58, 104, 173, 205

R. Plamondon and W. Guerfali. The generation of handwriting with delta-lognormal synergies.

Biological Cybernetics, 78(2):119–132, 1998b. 62, 64

R. Plamondon and C. M. Privitera. A neural model for generating and learning a rapid movement

sequence. Biological cybernetics, 74(2):117–130, 1996. 66

R. Plamondon and C. M. Privitera. The segmentation of cursive handwriting: An approach based

on off-line recovery of the motor-temporal information. IEEE Transactions on Image Process-

ing, 8(1):80–91, 1999. 77, 199

R. Plamondon and S. N. Srihari. Online and off-line handwriting recognition: A comprehensive

survey. IEEE Transactions on pattern analysis and machine intelligence, 22(1):63–84, 2000. 73

R. Plamondon, M. Djioua, and C. O’Reilly. Recent developments in the study of rapid human

movements with the kinematic theory. Traitement Du Signal, 26:377–394, 2009. 36, 62, 64, 66

R. Plamondon, C. O’Reilly, C. Remi, and T. Duval. The lognormal handwriter: Learning, perform-

ing and declining. Frontiers in Psychology, 4(945), 2013. 59, 60, 64, 100, 120

R. Plamondon, C. O’Reilly, J. Galbally, A. Almaksour, and É. Anquetil. Recent developments in the

study of rapid human movements with the kinematic theory. Pattern Recognition Letters, 35:

225–35, 2014. 36, 42, 59, 66, 74, 101, 112, 117, 120, 198, 202, 292

R. Plamondon et al. Modelling velocity profiles of rapid movements: A comparative study. Bio-

logical cybernetics, 69(2):119–28, 1993. 59, 101, 288

R. Plamondon et al. A kinematic theory of rapid human movement. Part IV. Biological Cybernet-

ics, 89(2):126–38, 2003. 64, 101, 108

BIBLIOGRAPHY 351

A. Polit and E. Bizzi. Processes controlling arm movements in monkeys. Science, 201(4362):1235–

1237, 1978. 56

F. Polyakov, R. Drori, Y. Ben-Shaul, M. Abeles, and T. Flash. A compact representation of draw-

ing movements with sequences of parabolic primitives. PLoS Comput Biol, 5(7):e1000427–

e1000427, 2009. 56, 58

C. Ramaiah, R. Plamondonm, and V. Govindaraju. A sigma-lognormal model for handwritten text

CAPTCHA generation. In Pattern Recognition (ICPR), 2014 22nd International Conference on,

pages 250–255. IEEE, 2014. 66, 74

J. A. Rehling. Letter Spirit (part two): Modeling Creativity in a Visual Domain. PhD thesis, Indiana

University, Dept. of Computer Science, Indianapolis, U.S.A., July 2001. 68, 73, 75

M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch, T. Selker, and M. Eisenberg. Design

principles for tools to support creative thinking. Technical report, Carnegie Mellon University,

2005. 300

W. Richards and D. D. Hoffman. Codon constraints on closed 2D shapes. Computer Vision, Graph-

ics, and Image Processing, 31(3):265–281, 1985. 79, 80, 81, 82, 83, 93, 173, 175, 182

M. J. Richardson and T. Flash. Comparing smooth arm movements with the two-thirds power law

and the related segmented-control hypothesis. The Journal of Neuroscience, 22(18):8201–8211,

2002. 219

B. Rohrer and N. Hogan. Avoiding spurious submovement decompositions: A globally optimal

algorithm. Biological cybernetics, 89(3):190–199, 2003. 59, 60, 101

B. Rohrer and N. Hogan. Avoiding spurious submovement decompositions II. Biological cyber-

netics, 94(5):409–14, 2006. 60, 101, 107

H. Rom and G. Medioni. Hierarchical decomposition and axial shape description. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, pages 973–981, 1993. 95

D. Rosand. Drawing acts: Studies in graphic expression and representation. Cambridge University

Press Cambridge, 2002. 52, 53

D. Rosand. Time lines. In H. De Preester, editor, Moving imagination, explorations of gesture and

inner movement in the arts, pages 205–220. John Benjamins Publishing Company, 2013. 52, 53

D. A. Rosenbaum. Human motor control. Academic press, 2009. 36, 55, 56, 58

D. A. Rosenbaum, L. D. Loukopoulos, R. G. Meulenbroek, J. Vaughan, and S. E. Engelbrecht. Plan-

ning reaches by evaluating stored postures. Psychological review, 102(1):28, 1995. 56, 59, 62

BIBLIOGRAPHY 352

D. A. Rosenbaum, R. G. Cohen, S. A. Jax, D. J. Weiss, and R. Van Der Wel. The problem of serial

order in behavior: Lashley’s legacy. Human movement science, 26(4):525–554, 2007. 60

M. E. Rosheim. Robot evolution: The development of anthrobotics. John Wiley & Sons, 1994. 64

P. Rosin. Multiscale representation and matching of curves using codons. CVGIP: Graphical Mod-

els and Image Processing, 55(4):286–310, Jul 1993. ISSN 1049-9652. 83

P. L. Rosin. Shape partitioning by convexity. IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 30(2):202–210, 2000. 94

P. L. Rosin. Computing global shape measures. Handbook of Pattern Recognition and Computer

Vision, pages 177—196, Jan 2005. 79

E. Roth. Graffiti taxonomy diptych: New York and Paris. http://www.evan-

roth.com/work/graffiti-taxonomy-nyc-paris/, 2011. 35

E. Roth, T. Watson, C. Sugrue, T. Vanderlin, and J. Wilkinson. An open databse for graffiti markup

language (GML) files. https://000000book.com/data, 2009. 32, 39, 196, 208, 209, 210, 211, 212,

219, 225, 229, 232

P. K. Saha, G. Borgefors, and G. S. di Baja. A survey on skeletonization algorithms and their appli-

cations. Pattern recognition letters, 76:3–12, 2016. 88

S. Saito, A. Kani, Y. Chang, and M. Nakajima. Curvature-based stroke rendering. The Visual Com-

puter, 24(1):1–11, 2008. 69

C. Sanderson. Armadillo: An open source C++ linear algebra library for fast prototyping and

computationally intensive experiments. 2010. 145

T. Sanocki. Effects of font-and letter-specific experience on the perceptual processing of letters.

The American journal of psychology, pages 435–458, 1992. 292

M. Sarfraz. Interactive curve modeling. Springer, 2008. 82

M. Sarfraz, A. Masood, and M. R. Asim. A new approach to corner detection. In Computer vision

and graphics, pages 528–533. Dordrecht, 2006. 82

L. Scalera, E. Mazzon, P. Gallina, and A. Gasparetto. Airbrush robotic painting system: Experimen-

tal validation of a colour spray model. In International Conference on Robotics in Alpe-Adria

Danube Region, pages 549–556. Springer, 2017. 69

S. Schaal. Dynamic movement primitives — a framework for motor control in humans and hu-

manoid robotics. In Adaptive Motion of Animals and Machines, pages 261–280. Springer, 2006.

62

BIBLIOGRAPHY 353

S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control: A unifying view.

Progress in brain research, 165:425–445, 2007. 60

D. Schmidlapp. Style Writing from the Underground:(R) evolutions of Aerosol Linguistic. IGTimes,

1996. 151

R. A. Schmidt. A schema theory of discrete motor skill learning. Psychological review, 82(4):225,

1975. 60

U. Schneider. A hybrid approach for stroke-based letterform composition including outline-

based methods. Computer Graphics Forum, 19(4):243–256, 2000. 70

J. P. Scholz and G. Schöner. The uncontrolled manifold concept: Identifying control variables for

a functional task. Experimental Brain Research, 126(3):289—306, 1999. 59

L. Schomaker. Simulation and recognition of handwriting movements: A vertical approach to

modeling human motor behavior. PhD thesis, Katholieke Universiteit te Nijmegen, Nijmegen,

The Netherlands, 1991. 55, 56, 61

L. Schomaker. A neural oscillator-network model of temporal pattern generation. Human move-

ment science, 11(1):181–192, 1992. 66

M. Schuster. Better generative models for sequential data problems: Bidirectional recurrent mix-

ture density networks. In Advances in Neural Information Processing Systems (NIPS), pages

589–595. MIT Press, 2000. 222

H. S. Seah, Z. Wu, F. Tian, X. Xiao, and B. Xie. Artistic brushstroke representation and animation

with disk B-spline curve. In ACM SIGCHI International Conference on Advances in Computer

Entertainment Technology, pages 88—93, 2005. 70, 145

W. P. Seeley. Movement, gesture, and meaning. In H. De Preester, editor, Moving imagination, ex-

plorations of gesture and inner movement in the arts, pages 51—68. John Benjamins Publishing

Company, 2013. 52

D. Shaked and A. M. Bruckstein. Pruning medial axes. Computer vision and image understanding,

69(2):156–169, 1998. 84, 89, 90, 244, 263

A. Shamir. Constraint-based approach for automatic hinting of digital typefaces. ACM Transac-

tions on Graphics (TOG), 22(2):131–151, 2003. 270

A. Shamir and A. Rappoport. Extraction of typographic elements from outline representations of

fonts. Computer Graphics Forum, 15(3):259–268, 1996. 77

BIBLIOGRAPHY 354

R. N. Shepard. Toward a universal law of generalization for psychological science. Science, 237

(4820):1317–1323, 1987. 250

E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological properties of

medial axis transforms. Graphical Models and Image Processing, 58(6):574–592, 1996. 84

H. Shinoda, H. Fujioka, and H. Kano. Generation of cursive characters using minimum jerk

model. In IEEE Proc. SICE, volume 1, pages 730–3, 2003. 97, 293, 294

B. Shneiderman. Creativity support tools: A grand challenge for HCI researchers. In M. Redondo,

C. Bravo, and M. Ortega, editors, Engineering the User Interface, pages 1–9. Springer London,

2009. 300

K. Shoemake. ARCBALL: a user interface for specifying three-dimensional orientation using a

mouse. In Graphics Interface, volume 92, pages 151–156, 1992. 136

K. Siddiqi and B. B. Kimia. Parts of visual form: Computational aspects. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(3):239–251, 1995. 92, 93, 94, 250, 255

K. Siddiqi and S. Pizer, editors. Medial Representations: Mathematics, Algorithms and Applica-

tions, volume 37 of Computational Imaging and Vision series. Springer, 2008. 88

M. Singh. Visual representation of contour and shape. Oxford handbook of perceptual organiza-

tion, pages 236–258, 2015. 78, 173, 174

M. Singh and D. D. Hoffman. Part-based representations of visual shape and implications for

visual cognition. In Advances in Psychology, volume 130, pages 401–459. 2001. 92, 94, 245, 250

M. Singh, G. D. Seyranian, and D. D. Hoffman. Parsing silhouettes: The short-cut rule. Perception

and Psychophysics, 61(4):636–660, 1999. 94, 250

J. G. Snodgrass and M. Vanderwart. A standardized set of 260 pictures: norms for name agree-

ment, image agreement, familiarity, and visual complexity. Journal of experimental psychology:

Human learning and memory, 6(2):174, 1980. 193

R. Sosnik, B. Hauptmann, A. Karni, and T. Flash. When practice leads to co-articulation: The

evolution of geometrically defined movement primitives. Experimental Brain Research, 156

(4):422–438, 2004. 60, 288

P. Spröte, F. Schmidt, and R. W. Fleming. Visual perception of shape altered by inferred causal

history. Scientific Reports, 6(36245), 2016. 93, 237

BIBLIOGRAPHY 355

O. Stettiner and D. Chazan. A statistical parametric model for recognition and synthesis of hand-

writing. In Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol-

ume 2, pages 34–38. IEEE, 1994. 67

G. Stiny and J. Gips. Shape grammars and the generative specification of painting and sculpture.

Information processing, 71(1460-1465), 1972. 277

G. C. Stowers and P. Goldman. Graffiti art: An essay concerning the recognition of some forms of

graffiti as art. Unpublished essay, Fall, 1997. 28

S. Strassmann. Hairy brushes. ACM Siggraph Computer Graphics, 20(4):225–232, 1986. 69

F. Stulp and O. Sigaud. Many regression algorithms, one unified model: A review. Neural Net-

works, 69:60–79, 2015. 51

S. L. Su, Y.-Q. Xu, H.-Y. Shum, and F. Chen. Simulating artistic brushstrokes using interval splines.

In Proceedings of the 5th IASTED International Conference on Computer Graphics and Imaging,

pages 85–90, 2002. 69

Y. Sun, H. Qian, and Y. Xu. A geometric approach to stroke extraction for the Chinese calligraphy

robot. In IEEE International Conference on Robotics and Automation (ICRA), pages 3207–3212,

2014. 77

I. Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, 2013. 219,

224

R. Suveeranont and T. Igarashi. Example-based automatic font generation. In Smart Graphics,

number LNCS 6133 in Lecture Notes in Computer Science, pages 127–138. 2010. 76, 77

A. Tagliasacchi. Skeletal representations and applications. Technical report, School of Computing

Science, Simon Fraser University, SFU-CMPT TR 2012-55-1, 2013. 84, 88

H. Tanaka, M. Tai, and N. Qian. Different predictions by the minimum variance and minimum

torque-change models on the skewness of movement velocity profiles. Neural computation,

16(10):2021–2040, 2004. 63

F. Tang, W. Dong, Y. Meng, X. Mei, F. Huang, X. Zhang, and O. Deussen. Animated construction of

Chinese brush paintings. IEEE Transactions on Visualization and Computer Graphics, 24(12):

3019–3031, 2017. 273

S. Tang, Z. Xia, Z. Lian, Y. Tang, and J. Xiao. FontRNN: Generating Large-scale Chinese Fonts via

Recurrent Neural Network. Computer Graphics Forum, 38(7):567–577, 2019. 73, 74, 235, 271

BIBLIOGRAPHY 356

A. K. Tanwani and S. Calinon. Learning robot manipulation tasks with task-parameterized semi-

tied hidden semi-Markov model. IEEE Robotics and Automation Letters, 1(1):235–242, 2016.

140

E. Taub and A. Berman. Movement and learning in the absence of sensory feedback. The neu-

ropsychology of spatially oriented behavior, 2:173–192, 1968. 56

C.-H. Teh and R. T. Chin. On the detection of dominant points on digital curves. IEEE Transactions

on pattern analysis and machine intelligence, 11(8):859–872, 1989. 82

A. Telea. Feature preserving smoothing of shapes using saliency skeletons. In Visualization in

Medicine and Life Sciences II, pages 153–170. Springer, 2012. 89

Tempt1, E. Roth, C. Sugrue, Z. Lieberman, T. Watson, and J. Powderly. The eyewriter.

http://www.eyewriter.org/, 2009. 32

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural

computation, 12(6):1247–1283, 2000. 75

H.-L. Teulings and L. Schomaker. Invariant properties between stroke features in handwriting.

Acta psychologica, 82(1):69–88, 1993. 56, 60

H.-L. Teulings, P. A. Mullins, and G. E. Stelmach. The elementary units of programming in hand-

writing. Advances in Psychology, 37:21–32, 1986. 65

Y. Thiel, K. Singh, and R. Balakrishnan. Elasticurves: Exploiting stroke dynamics and inertia for

the real-time neatening of sketched 2D curves. In Proceedings of the 24th annual ACM sympo-

sium on User interface software and technology, pages 383–392. ACM, 2011. 50, 209

A. Thomassen and H.-L. Teulings. Time, size and shape in handwriting: Exploring spatio-

temporal relationships at different levels. In J. Michon and J. Jackson, editors, Time, Mind,

and Behavior, pages 253–263. Springer, 1985. 56, 57

C. Thompson. Automated calligraphy using dynamics. Technical report, University of Washing-

ton, Dept. of Computer Science and Engineering, 2010. 51

S. Todd and W. Latham. Evolutionary Art and Computers. Academic Press, 1992. 47

E. Todorov. Optimality principles in sensorimotor control. Nature neuroscience, 7(9):907–915,

2004. 63, 112

E. Todorov and M. I. Jordan. Smoothness maximization along a predefined path accurately pre-

dicts the speed profiles of complex arm movements. Journal of Neurophysiology, 80(2):696–

714, 1998. 62, 147, 199, 212, 293, 297, 299

BIBLIOGRAPHY 357

E. Todorov and M. I. Jordan. A minimal intervention principle for coordinated movement. In

Proceedings of the 15th International Conference on Neural Information Processing Systems,

NIPS’02, pages 27—34, Cambridge, MA, USA, 2002a. MIT Press. 59

E. Todorov and M. I. Jordan. Optimal feedback control as a theory of motor coordination. Nature

neuroscience, 5(11):1226–1235, 2002b. 59, 122

J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss, and K. O. Stanley. Pro-

cedural content generation: Goals, challenges and actionable steps. In Artificial and Computa-

tional Intelligence in Games, volume 6 of Dagstuhl Follow-Ups, pages 61–75. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2013. 32

E. B. Torres, R. Quian Quiroga, H. Cui, and C. Buneo. Neural correlates of learning and trajectory

planning in the posterior parietal cortex. Frontiers in integrative neuroscience, 7:39, 2013. 61

A. Treisman and S. Gormican. Feature analysis in early vision: Evidence from search asymmetries.

Psychological Review, 95(1):15–48, 1988. 80

P. Tresset and F. Fol Leymarie. Portrait drawing by Paul the robot. Computers & Graphics, 37(5):

348–63, 2013. 48

M. Turvey, H. L. Fitch, and B. Tuller. The Bernstein perspective: I. The problems of degrees of

freedom and context-conditioned variability. Human motor behavior: An introduction, pages

239–252, 1982. 55, 60

S. Ullman. Filling-in the gaps: The shape of subjective contours and a model for their generation.

Biological Cybernetics, 25(1):1–6, 1976. 91

M. A. Umilta, C. Berchio, M. Sestito, D. Freedberg, and V. Gallese. Abstract art and cortical motor

activation: An EEG study. Frontiers in human neuroscience, 6, 2012. 54

Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in human multi-

joint arm movement. Biological cybernetics, 61(2):89–101, 1989. 62, 63

J. D. van der Gon, J. P. Thuring, and J. Strackee. A handwriting simulator. Physics in medicine and

Biology, 6(3):407–14, 1962. 62, 65, 66

S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: A structure for efficient

numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011. 145

R. R. van Doorn and P. J. Keuss. Does the production of letter strokes in handwriting benefit from

vision? Acta Psychologica, 82(1–3):275–290, 1993. 56, 58

BIBLIOGRAPHY 358

A. S. Vempati, M. Kamel, N. Stilinovic, Q. Zhang, D. Reusser, I. Sa, J. Nieto, R. Siegwart, and

P. Beardsley. PaintCopter: An autonomous UAV for spray painting on three-dimensional sur-

faces. IEEE Robotics and Automation Letters, 3(4):2862–2869, 2018. 32

P. Viviani and T. Flash. Minimum-jerk, two-thirds power law, and isochrony: Converging ap-

proaches to movement planning. Journal of Experimental Psychology: Human Perception and

Performance, 21(1):32, 1995. 62, 63

P. Viviani and G. McCollum. The relation between linear extent and velocity in drawing move-

ments. Neuroscience, page 211218, 1983. 56, 57, 61

P. Viviani and R. Schneider. A developmental study of the relationship between geometry and

kinematics in drawing movements. Journal of Experimental Psychology: Human Perception

and Performance, 17(1):198, 1991. 56, 81, 173, 205

P. Viviani and C. Terzuolo. Trajectory determines movement dynamics. Neuroscience, 7(2):431–

437, 1982. 56, 57, 61, 288

J. Vredenbregt and W. Koster. Analysis and synthesis of handwriting. Philips Technical Review, 32

(3):73–78, 1971. 62, 65

Y. Wada and M. Kawato. A theory for cursive handwriting based on the minimization principle.

Biological Cybernetics, 73(1):3–13, 1995. 61

J. Wagemans. Perceptual organization. In Stevens’ Handbook of Experimental Psychology and

Cognitive Neuroscience, Sensation, Perception, and Attention, volume 2, chapter 18, pages 803–

872. John Wiley & Sons, 2018. 4th Edition. 244

J. Wagemans, A. J. van Doorn, and J. J. Koenderink. Measuring 3D point configurations in pictorial

space. i-Perception, 2(1):77–111, 2011. 237

J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R. von der Heydt.

A century of Gestalt psychology in visual perception: I. perceptual grouping and figure–ground

organization. Psychological Bulletin, 138(6):1172–1217, 2012. 81, 90

D. Walton and D. Meek. An improved Euler spiral algorithm for shape completion. In Computer

and Robot Vision, 2008. CRV ’08. Canadian Conference on, pages 237–244, May 2008. 106, 107

Y. Wamain, V. Kostrubiec, M. Longcamp, J. Tallet, and P. G. Zanone. Does graphic shapes percep-

tion mirror handwriting patterns production? Advances in Graphonomics: Proceedings of IGS

2009, pages 202–205, 2009. 54

BIBLIOGRAPHY 359

Y. Wamain, J. Tallet, P.-G. Zanone, and M. Longcamp. Brain responses to handwritten and printed

letters differentially depend on the activation state of the primary motor cortex. Neuroimage,

63(3):1766–1773, 2012. 54

C. Wang and Z. Lai. Shape decomposition and classification by searching optimal part pruning

sequence. Pattern Recognition, 54(October):206–217, 2016. 94

J. Wang, C. Wu, Y.-Q. Xu, H.-Y. Shum, and L. Ji. Learning-based cursive handwriting synthesis. In

Eighth IEEE International Workshop on Frontiers in Handwriting Recognition, pages 157–162,

2002. 73, 77

J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum. Combining shape and physical modelsfor online cur-

sive handwriting synthesis. International Journal of Document Analysis and Recognition (IJ-

DAR), 7(4):219–227, 2005. 73, 97

X. Wang, X. Liang, L. Sun, and M. Liu. Triangular mesh-based stroke segmentation for Chinese

calligraphy. In 12th International Conference on Document Analysis and Recognition (ICDAR),

pages 1155–1159, 2013. 237

Y. Wang. Interview with Charles Bigelow. TUGboat, 34(2):136–167, 2013. 29, 40, 42, 49, 50, 67, 97,

289

Y. Wang, Y. Gao, and Z. Lian. Attribute2Font: Creating fonts you want from attributes. arXiv

preprint arXiv:2005.07865, 2020. 73

W. C. Watt. Canons of alphabetic change. In The alphabet and the brain, pages 122–152. Springer,

1988. 69

D.-L. Way, W.-J. Lin, and Z.-C. Shih. Computer-generated Chinese color ink paintings. Journal of

the Chinese Institute of Engineers, 29(6):1041–1050, 2006. 69

C. Wen, J. Chang, Y. Zhang, S. Chen, Y. Wang, M. Han, and Q. Tian. Handwritten Chinese font

generation with collaborative stroke refinement. arXiv preprint arXiv:1904.13268, 2019. 75

M. Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische forschung, 4(1):

301–350, 1923. 90

C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis. Processing and visual-

ization for diffusion tensor MRI. Medical Image Analysis, 6(2):93–108, 2002. 259

S. Wiewel, M. Becher, and N. Thuerey. Latent space physics: Towards learning the temporal evo-

lution of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019. 299

BIBLIOGRAPHY 360

K. Wiley and L. R. Williams. Representation of interwoven surfaces in 2 1/2 D drawing. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 65–74. ACM,

2006. 71

L. Williams and K. K. Thornber. Orientation, scale, and discontinuity as emergent properties of

illusory contour shape. Neural Computation, 13(8):1683–1711, 2001. 92, 244

L. R. Williams and D. W. Jacobs. Stochastic completion fields: A neural model of illusory contour

shape and salience. Neural Computation, 9(4):837––858, 1997. 92

A. Witkin. Scale-space filtering. In Proceedings of the Eighth International Joint Conference on Ar-

tificial Intelligence (IJCAI), volume 2, pages 1019—22, Karlsruhe, West Germany, August 1983.

82

A. Woch and R. Plamondon. The problem of movement primitives in the context of the kinematic

theory. In Proceeding of the 11th Conference of the International Graphonomics Society, pages

67–71, 2003. 61

D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan. Principles of sensorimotor learning. Nature

Reviews Neuroscience, 12(12):739–751, 2011. 63

F.-E. Wolter. Cut locus and medial axis in global shape interrogation and representation. Ocean

engineering design laboratory memorandum 92-2, MIT, Cambridge, MA, USA, 1992. 84

F.-E. Wolter and K.-I. Friese. Local and global geometric methods for analysis interrogation, re-

construction, modification and design of shape. In IEEE Proceedings of the International Con-

ference on Computer Graphics (CGI), pages 137–152, June 2000. 84

A. L. Wong, J. Goldsmith, and J. W. Krakauer. A motor planning stage represents the shape of

upcoming movement trajectories. Journal of neurophysiology, 116(2):296–305, 2016. 61

R. S. Woodworth. Accuracy of voluntary movement. The Psychological Review: Monograph Sup-

plements, 3(3):i, 1899. 56, 58

J. Xu and C. S. Kaplan. Calligraphic packing. In Proceedings of Graphics Interface 2007, pages

43–50, 2007. 73, 76

S. Xu, F. C. Lau, and Y. Pan. A Computational Approach to Digital Chinese Painting and Calligra-

phy. Springer, 2009. 73, 76

S. Xu, H. Jiang, F. C. Lau, and Y. Pan. Computationally evaluating and reproducing the beauty of

Chinese calligraphy. IEEE Intelligent Systems, 27(3):63–72, 2012. 76, 299

BIBLIOGRAPHY 361

Y. Xu and M. Singh. Early computation of part structure: Evidence from visual search. Perception

and Psychophysics, 64(7):1039–1054, 2002. 92, 93, 94, 238

Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer. k-curves: Interpolation at local maximum

curvature. ACM Transactions on Graphics (TOG), 36(4):129, 2017. 50, 110, 214

S. C. Yen and L. H. Finkel. Extraction of perceptually salient contours by striate cortical networks.

Vision Research, 38(5):719–741, 1998. 92, 244

J. Yu and Q. Peng. Realistic synthesis of cao shu of Chinese calligraphy. Computers & Graphics, 29

(1):145–153, 2005. 69, 70

M. E. Yumer, P. Asente, R. Mech, and L. B. Kara. Procedural modeling using autoencoder networks.

In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology,

pages 109–118, 2015. 299

W. Zaner-Bloser method. Zaner-Bloser — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/Zaner-Bloser, 2020. [Online; accessed 13-December-2020].

143

M. Zeestraten, S. Calinon, and D. G. Caldwell. Variable duration movement encoding with min-

imal intervention control. In Proc. of the IEEE Intl Conf. on Robotics and Automation (ICRA),

pages 497–503, May 2016a. 306

M. J. A. Zeestraten, S. Calinon, and D. G. Caldwell. Variable duration movement encoding with

minimal intervention control. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),

pages 497–503, May 2016b. 126

D. Zhang and G. Lu. Review of shape representation and description techniques. Pattern recog-

nition, 37(1):1–19, 2004. 79

J. Zhang, Y. Wang, W. Xiao, and Z. Luo. Synthesizing ornamental typefaces. Computer Graphics

Forum, 36(1):64–75, 2017a. 73, 76, 77

X. Zhang and G. Liu. Chinese calligraphy character image synthesis based on retrieval. In Ad-

vances in Multimedia Information Processing-PCM 2009, pages 167–178. Springer, 2009. 73,

76

X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio. Drawing and recognizing Chinese char-

acters with recurrent neural network. IEEE transactions on pattern analysis and machine in-

telligence, 40(4):849–862, 2017b. 74, 235

BIBLIOGRAPHY 362

Z. Zhang, J. Tomlinson, and C. Martin. Splines and linear control theory. Acta Applicandae Math-

ematica, 49(1):1–34, 1997. 126

C. L. Zitnick. Handwriting beautification using token means. ACM Transactions on Graphics

(TOG), 32(4):53, 2013. 50

C. Zou, J. Cao, W. Ranaweera, I. Alhashim, P. Tan, A. Sheffer, and H. Zhang. Legible compact

calligrams. ACM Transactions on Graphics (TOG), 35(4), 2016. Article no. 122. 73, 76, 77, 270

L. Zusne. Visual perception of form. Academic Press New York, 1970. 81

	Introduction
	A short overview of graffiti styles
	Tags
	(Master-)Pieces

	Graffiti in the Digital and Virtual Realms
	Graffiti in Graphic Design
	Graffiti in Games and Movies
	Computer Aided Graffiti Design

	Part I: Graffiti primitives
	Calligraphic stylisation: Movement and tags
	Outline stylisation: Parts and pieces
	Overall contributions of Part I

	Part II: Recovering graffiti primitives from geometry
	Geometric input analysis
	Trace based methods
	Outline based methods
	Overall contributions of Part II

	Publications

	Notation and preliminary definitions
	Geometry
	Motor plans and strokes:

	Background
	A Brief History
	Beyond painting and drawing: Graffiti production
	Curves in computer graphics
	Fairness, beautification and neatness of curves
	Curve stylisation

	Movement perception and representation
	Movement in the arts
	Perception of movement in static forms

	Motor control
	Principles and invariants
	Trajectory formation
	Graphonomics: Models of drawing and handwriting movement

	Letterform representation, generation and stylization
	Structural representations of letterforms
	Stroke representations

	Letterform stylisation and generation
	Handwriting synthesis
	Font and calligraphy generation and stylisation
	Stroke segmentation

	From shape to strokes
	Curvature based shape representations
	Axial symmetry based shape representations
	Perceptual grouping
	From parts to strokes

	Summary

	I Part I - Kinematic and geometric primitives for interactive graffiti art generation
	Calligraphic stylisation: the Sigma-Lognormal model
	Sigma Lognormal Model
	 model for calligraphic stylisation
	The weighted Sigma Lognormal () model
	Lognormal timing reparameterisations

	User interaction
	Kinematic variability and stylisation
	Artificial variability
	Stylistic variations

	Calligraphic stylisation: Minimal intervention control
	Trajectory Generation
	Optimization objective
	Tracking formulation
	Stochastic solution
	Periodic motions

	User interfaces
	Mimicking Bézier curves

	Calligraphic stylisation
	Predefined motor plans

	Conclusion

	Outline stylisation: Sketching and layering
	Stroke Generation
	Smooth strokes

	Apparent layering and overlaps
	Layering and Planar Map

	Results and Applications

	II Part II - Graffitization: Recovering graffiti primitives from shape
	Curvilinear Shape Features
	Introduction
	Masking Problem

	Symmetry axis transform
	Discrete implementation
	Voronoi approximation

	Computing Curvilinear Shape Features (CSFs)
	CSF Computation

	Absolute Curvature Minima CSFs with the ESAT
	Identifying m+ and M- CSFs

	 Transition Segments and Inflections

	From Geometry to Kinematics with CSFs
	Segmentation method
	Iterative Reconstruction of parameters
	Iterative scheme: Keys, Max speeds, Moving Targets
	Underlying observations
	Stopping Criteria, SNR

	Comparison: constrained minimum jerk model and MIC
	Conclusions

	Example-driven stylisation with the Sigma Lognormal Model
	Method
	Example-based input
	Kinematic parameters
	Data augmentation
	Kinematic Parameter Prediction (KPP)

	Results
	Kinematic Style Transfer

	Discussion
	Model complexity

	From 2D Shape to Strokes with CSFs
	2D Shape Analysis
	Extended 2D Shape Analysis
	Good continuation () and flow direction ()

	Splits
	Fork and branch assignments to splits.
	Split salience

	Junction Identification
	Junction properties
	Step 2: Identify Other Junctions

	From Junctions to Stroke Representations
	Stroke Paths

	Conclusion

	Font stylisation
	Path-based stylisation
	Simplification: constructing motor plans
	Calligraphic Stylisation
	Outline Stylisation
	Stroke animation

	Conclusion
	Part II: Graffiti content generation
	Summary of Contributions
	Limitations and future work
	 model
	MIC
	Graffiti design
	Parameter choices and evaluation
	Data driven methods

	Final notes

	Appendices
	List of peer-reviewed publications
	Ferri's form and composition functions
	Additional details on MIC trajectory generation
	Displacement-based smoothing weight
	Derivation with Simple Harmonic Motion

	Iterative solution

	Additional details for font segmentation
	Association fields

	Symbols and values
	Symbols (general):
	Other symbols and objects:
	Functions:
	Parameters:
	Thresholds and Tolerances:

	Errata
	Bibliography

