
Colour for the Advancement of Deep Learning in Computer

Vision

By

ASEI AKANUMA

Supervisors:

Prof. J. Mark Bishop and Dr. John Howroyd

A thesis submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

Department of Computing

Goldsmiths College

University of London

New Cross, London SE14 6NW, UK.

c© 2021 ASEI AKANUMA

2

Supervisors:

Prof. J. Mark Bishop and Dr. John Howroyd

i

Declaration

Declaration of Authorship: I Asei Akanuma hereby declare that this thesis and the work presented

in it is entirely my own. Where I have consulted the work of others, this is always clearly stated.

Signed: Date:

ii

iii

Abstract

This thesis explores several research areas for Deep Learning related to computer vision concerning

colours. First, this thesis considers the one of the most long standing challenge that has remained

for Deep Learning which is, how can Deep Learning algorithms learn successfully without using

human annotated data? To that end, this thesis examines using colours in images to learn mean-

ingful representations of vision as a substitute for learning from hand-annotated data. Second, is

another related topic to the previous, which is the application of Deep Learning to automate the

complex graphics task of image colourisation, which is the process of adding colours to black and

white images. Third, this thesis explores colour spaces and how the representations of colours in

images affect the performance in Deep Learning models.

iv

Acknowledgements

This thesis would not have been possible without the support and valuable discussions I had with

a number of people. To these people I owe my greatest thanks.

Firstly, and most importantly, my greatest appreciation goes to my Primary Supervisor Prof.

Mark Bishop for his guidance, inspiration and mentorship throughout the years. Without your

support I would not have been able to reach this far in my academic journey.

Secondly, I would like to sincerely thank my Second Supervisor Dr. John Howroyd for his technical

expertise and advice, particularly in the early to mid stages of constructing this thesis, as well as

his encouragement throughout. Your time and patience are greatly appreciated.

I would like to thank the all the current and former members of TCIDA for the support, and for

the many discussions and comments at the supervision meetings which were often helpful. I would

also like to thank my peers at the Goldsmiths’ postgraduate programme, and especially Hooman

Oroojeni for the many valuable (and often lengthy) discussions we had about Deep Learning which

were most useful.

I especially need to thank my family, my parents and my two brothers for their unconditional love

and support during what was at times a difficult journey.

Lastly, but by far from least I would like to thank all my friends for their patience and under-

standing. You are all fantastic.

CONTENTS v

Contents

Abstract iii

List of Contents x

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Thesis Overview . 2

1.3 Contribution . 3

1.4 Sources of Data and Tools used in this Study . 4

2 Literature Survey: Artificial Neural Networks and Deep Learning 6

2.1 Chapter Overview . 6

2.2 Introduction to Machine Learning . 6

2.3 Machine Learning Tasks . 7

2.3.1 Supervised Learning . 7

2.3.2 Unsupervised Learning . 8

2.4 A Brief Historical Context: Artificial Neural Networks 8

2.5 The Multilayer Perceptron . 10

2.5.1 Basic Structure . 11

CONTENTS vi

2.5.2 Activation functions . 12

2.6 The Gradient Descent Algorithm . 14

2.6.1 The Stochastic Gradient Descent . 14

2.6.2 Back-propagation . 15

2.6.3 Loss Functions . 16

2.7 Training a Neural Network In Practice . 17

2.7.1 Network Initialisation . 17

2.7.2 Learning Rate . 18

2.7.3 Momentum . 18

2.7.4 Regularisation . 19

2.7.5 Generalisation and Model Selection . 19

2.8 Convolutional Neural Networks and Deep Learning 20

2.8.1 Overview of Convolutional Neural Networks 21

Convolution layer . 21

Pooling layer . 22

Fully connected layer . 23

Strides and Padding . 23

Parameters, Memory Requirements and Computational Cost 24

Depthwise Separable Convolutions . 25

2.8.2 Convolutional Neural Network Architectures and ImageNet 26

AlexNet (2012) . 27

VGGNets (2014) . 28

ResNet (2015) . 29

DenseNet (2016) . 30

MobileNet (2017) . 31

CONTENTS vii

2.8.3 Advanced Techniques for Convolutional Neural Networks 32

Advanced Gradient Descent Optimisers . 32

Dropout Regularisation . 32

Batch Normalisation . 34

2.9 Deep Learning for Fine-grained Image Prediction 35

2.9.1 Convolution Layers for Fine-grained Predictions 36

Transpose Convolution (Up-sampling) . 36

Dilated Convolution . 37

2.10 Unsupervised Deep Learning . 38

2.10.1 Auto Encoders . 39

2.10.2 Generative Models . 41

2.10.3 Generative Adversarial Networks and Image Synthesis 41

2.11 Attention Mechanisms for Deep Learning . 43

2.11.1 Attention with Deep Learning Models . 43

2.11.2 Self-attention models for Convolutional Neural Networks 45

Squeeze-and-Excitation Networks (2017) 45

Self-Attention Generative Adversarial Networks (2018) 47

2.12 Mathematics for Colours . 47

2.12.1 Basic concepts and terminology . 47

2.13 Colour Spaces and Transformation Formulae . 48

2.13.1 RGB . 49

2.13.2 CIE XYZ . 49

2.13.3 CIELAB and CIELUV . 49

2.13.4 YUV and YIQ . 50

2.13.5 HSV and HSI . 51

CONTENTS viii

3 Self Supervised Deep Learning with Colour: Image Colourisation vs Contrastive Learn-

ing 53

3.1 Introduction . 53

3.2 Overview . 54

3.3 Related Work and Context . 54

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 55

3.4.1 Cross-Channel Encoders . 55

3.4.2 Split-Brain Auto Encoders . 56

3.4.3 Experiment . 57

Self supervised Learning with ResNet Split-Brain Auto Encoders 58

Fine-tuning for Classification Task . 59

Fully Supervised Models (Baseline) . 60

Evaluation . 60

3.4.4 Results . 61

3.4.5 Discussion . 61

3.5 Visual Representation Learning with Colours and Contrastive Learning 62

3.5.1 Learning From Augmented Views: Simple Contrastive Learning (SimCLR) 62

3.5.2 Contrastive Learning with Images . 64

3.5.3 Combining Contrastive Objectives with Colourisation 64

The Proposed Network Architecture . 64

3.5.4 Experiment . 65

Compared Self supervised Methods . 66

Evaluation . 67

3.5.5 Results and Discussion . 67

3.6 Conclusion and Future Work . 68

CONTENTS ix

4 Efficient Generative Adversarial Image Colourisation 69

4.1 Introduction . 69

4.2 Overview . 70

4.3 Related Work . 70

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 71

4.4.1 Image Colourisation using an Encoder . 72

The Loss Function . 72

Predictions Made at Inference . 73

Image Colourisation with Encoders: Limitations 74

4.4.2 Image Colourisation using Conditional Generative Adversarial Networks . 76

The Conditional Generative Adversarial Network Objective 76

The Architecture and Optimisation . 77

4.4.3 Self-attention Mechanism for Image Synthesis using GANs [103] 78

4.5 The Proposed Method . 79

4.5.1 Architecture Details . 80

4.5.2 Training Details and Optimisation . 82

4.6 Experiments and Results . 82

4.7 Conclusion . 84

5 Supervised Deep Learning and Colours: Colour Spaces and Attention for Image Classi-

fication 85

5.1 Introduction and Motivation . 85

5.2 Related Work . 85

5.3 Experiment 1: Alternative Colour Spaces for Convolutional Neural Networks . . . 86

5.3.1 Results . 87

CONTENTS x

5.4 Hybrid Colour Spaces using Attention . 87

Attention Hybrid Colour Spaces . 88

5.5 Conclusion . 90

6 Conclusion 91

6.1 Thesis Summary . 91

6.2 Future Work and Limitations of this Study . 93

Bibliography 95

A Stochastic Gradient Descent Optimisers 103

A.0.1 Gradient Descent . 103

A.0.2 Adagrad . 104

A.0.3 Adadelta . 105

A.0.4 RMSprop . 107

A.0.5 ADAM . 107

B Additional Materials and Extended Results 109

B.0.1 Archetecture Details of Popular Models Featured in this Study 109

B.0.2 Implementation Details of Models Trained in Chapter 6 111

C Qualitative Results 112

C.0.1 Samples of Generated Images from the Efficient Generative Adversarial

Colourisation Network for images from an un-seen test set 112

D Patterns of Attention Distribution for Different Architectures and Datasets 116

LIST OF FIGURES xi

List of Figures

1.1 A few sample images from Cifar10 . 4

1.2 A few sample images from STL10 . 5

1.3 A few sample images from ImageNet . 5

2.1 An artificial neuron . 10

2.2 A basic feed-forward Multilayer perceptron . 12

2.3 An illustration of the Depthwise Separable Convolution (Image source: [43]) . . . 25

2.4 A Residual Block (Image source: [35]) . 29

2.5 Layers in a DenseNet (A Dense Block) (Image source: [45]) 30

2.6 Transpose Convolution with direct Convolutions and paddings 37

2.7 Dilated Convolution and the effect on the receptive field 38

2.8 Dilated Convolution with different Dilation values 39

2.9 Squeeze-and-Excitation (SE) block in comparison to a Res block (Image source [44]) 45

3.1 Distribution (in Log scale) of the a and b values for the unlabelled set in the STL10

dataset . 59

3.2 distribution of the L values for the unlabelled set in the STL10 dataset 59

3.3 Structure of the Proposed Predictive/Contrastive Learning Network 65

4.1 Example output (from a validation set) of colourisation using the encoder approach:

An image of an object - the image on the left is generated, and the right image is

the original . 75

LIST OF FIGURES xii

4.2 Example output (from a validation set) of colourisation using the encoder approach::

An image of an indoor structure - the image on the left is generated, and the right

image is the original . 75

4.3 Self-attention module for the SAGAN (Image source [103]) 78

4.4 The proposed Efficient Image Colourising GAN (this figure is not exact to the scale

of parameter sizes) . 81

D.1 Attention distribution for Densenet on Cifar10 with 12 channels 117

D.2 Attention distribution for MobileNet on Cifar10 with 12 channels 117

D.3 Attention distribution for Densenet on Cifar10 with 9 channels 117

D.4 Attention distribution for MobileNet on Cifar10 with 9 channels 117

D.5 Attention distribution for Densenet on Cifar10 with 6 channels 118

D.6 Attention distribution for MobileNet on Cifar10 with 6 channels 118

D.7 Attention distribution for Densenet on Cifar100 with 12 channels 118

D.8 Attention distribution for MobileNet on Cifar100 with 12 channels 118

D.9 Attention distribution for Densenet on Cifar100 with 9 channels 119

D.10 Attention distribution for MobileNet on Cifar100 with 9 channels 119

D.11 Attention distribution for Densenet on Cifar100 with 6 channels 119

D.12 Attention distribution for MobileNet on Cifar100 with 6 channels 119

LIST OF TABLES xiii

List of Tables

2.1 Popular Convolutional Neural Network architectures and their ImageNet accuracy

performance . 26

3.1 STL10 Classification accuracy performance of standard ResNet Split-Brain auto

encoders . 61

3.2 Linear separability of different methods for the STL10 test set 67

4.1 Comparison of Image Colourising GAN models using qualitative measures 83

5.1 Performance (accuracy) comparison for Densenet and Mobilenet on different colour

spaces against baseline RGB the best performance for each category is highlighted

in bold font . 87

5.2 A colour component ranking based attention activation values for each task and

architecture . 89

5.3 Comparison of classification accuracy for Densenet and Mobilenet using hybrid

colour spaces . 90

1

Chapter 1

Introduction

1.1 Background and Motivation

This thesis explores several research areas of Deep Learning related to computer vision concerning

colours.

First, this thesis tackles the problem of self supervised learning which involves solving some pre-

dictive pretext tasks in which the inputs and labels can be both derived from the raw image data,

thus requiring no manual labels. It has been previously hypothesised that image colourisation

(i.e., predicting the colours in images) can serve as a reasonable task for self supervised learning.

However, applying this in practice has found to be difficult due to the lack of generality from

learning such an ad-hoc task. This motivated the investigation of how the image colourisation

task can combined with another self supervised learning method which do not rely on a solving

predictive tasks for images, and whether there are benefits to this new method.

Second, is a topic closely related to the first, which is the application of Deep Learning for solving

the colourisation task itself, a complex graphics task which involves predicting plausible coloured

versions of an image given just the lightness of that image. Previous systems which achieve

visually impressive results for this task usually do so with a significant amount of computational

cost. Streamlining architectural designs for computation efficiency would make the model more

accessible, and available to devices which are computationally resource constrained.

Third, is the exploration of colour spaces in relation to Deep Learning Convolutional Neural

Network models. For most Deep Learning models, it is standard for input images to be represented

1.2 Thesis Overview 2

in RGB colour space, despite the numerous other colour spaces in existence. It is therefore a benefit

to know the effects of colour spaces on Deep Convolutional models and whether there are benefits

of using one colour space over anther, or some combinations of them.

1.2 Thesis Overview

An overview of the thesis by chapter is given as follows:

• Chapter 2 provides a literature review for Artificial Neural Networks. This chapter begins

with a definition of machine learning. Afterwards, a historical context and review of various

Artificial Neural Networks including Convolutional Neural Networks are provided. Following

that, a few unsupervised learning methods for for Deep Learning is discussed. Lastly, a brief

summary on colour concepts is given, and in particular, some mathematics for transforming

colour spaces is described.

• Chapter 3 explores how the colours in images can be used for self supervised representation

learning in the visual domain. This chapter first provides a brief review of works in the

literature which relate to self supervised learning while putting them into context. Two

self supervised learning methods which involve the predictive task of image colourisation is

then investigated leading to an implementation for one of the method, which leads to the

finding that in practice, using colour predictions alone as a predictive task for self supervised

learning is not sufficient, because the representations learnt by them do not generalise well

enough to other tasks. Subsequently, this motivates the investigation of other methods

for visual representation learning, in particular a method known as contrastive learning.

This lead to the development of a self supervised learning method which combines both the

colour prediction task with the contrastive learning method which delivered some promising

empirical results for an evaluation of visual representation quality.

• Chapter 4 applies Deep Learning for the graphics task of image colourisation. This chap-

ter first begins by providing a brief survey for the literature of related works which uses

1.3 Contribution 3

Convolutional Neural Networks for image colourisation where it is found that limitations

of the conventional convolution layers hinders the quality of colourisation results. This

chapter later builds on insights from state of the art Deep Learning models for image syn-

thesis with the aim of improving colourisation quality. This work demonstrates that a

task as complex as image colourisation can be achieved with remarkably low computation

cost while producing visually good results by developing an image colourisation model which

uses a streamlined architecture, with efficient factorised convolution layers and convolutional

attention-mechanism layers.

• Chapter 5 originally sought to find if performance gains are available from using (as inputs)

different colour spaces for Convolutional Neural Network models trained for image classifi-

cation. Through experiments which compares combinations of different colour spaces and

convolutional models, it is shown that the use of different colour spaces alone does not seem

to yield better performing Convolutional Neural Network models. However, through the use

of self-attention mechanisms, an emergent patterns of internal activations in Convolutional

Neural Networks is discovered.

• Chapter 6 concludes this thesis with a summary and provide some directions for future

works.

1.3 Contribution

The expected contributions of this thesis are: a novel self supervised learning method which

combines both contrastive and predictive learning by solving them both jointly, using a multi-

task Convolutional Neural Network architecture which is presented in chapter 3, and a discovered

patterns of network activations in Convolutional Neural Networks using attention-mechanisms

presented in chapter 5.

1.4 Sources of Data and Tools used in this Study 4

1.4 Sources of Data and Tools used in this Study

The sources of data used in this study is listed below:

• Cifar10 and Cifar100 [52] CIFAR10 is a popular benchmarking dataset for image recognition

algorithms. It consists of 60000 colour images of 10 class objects which are: airplane,

automobile, bird, cat, deer, dog, frog, horse, ship and truck. They are in 32x32 pixel

resolution. 50000 images are for training and 10000 are used as test images. Figure: 1.1

shows a few examples of the images. CIFAR100 is similar to CIFAR-10 except it has a more

extensive list of class objects for which there are 100 in total.

Figure 1.1. A few sample images from Cifar10

• STL10 [18] STL10 is a dataset for image recognition which was inspired by the CIFAR-10

dataset. STL10 is a benchmark dataset that focuses on unsupervised feature learning. The

images are in 96x96 pixel resolution and were taken from the ImageNet dataset. There are 10

classes which are: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. 5000 total

images are provided as training set while 8000 images are provided to be used as test set.

An additional 100,000 unlabelled images are provided as for unsupervised learning which

include images which are different from the 10 classes in the train set. Figure: 1.2 shows a

few examples of the images.

1.4 Sources of Data and Tools used in this Study 5

Figure 1.2. A few sample images from STL10

• ImageNet [23] is an extremely large visual database of photographs annotated by humans

and is often considered the benchmark for the state of the art in computer vision. Annual

competitions were held between 2010 and 2017 known as the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), which involved challenging tasks using subsets of the

database. ImageNet is further discussed in Section: 2.8.2

Figure 1.3. A few sample images from ImageNet

Unless stated otherwise, the experiments in this thesis was conducted using the Python program-

ming language and the Tensorflow [1] library.

6

Chapter 2

Literature Survey: Artificial Neural

Networks and Deep Learning

2.1 Chapter Overview

The aim of this chapter is to provide a literature survey for Artificial Neural Networks (Deep

Learning) and a brief introduction to colour concepts and colour spaces. This chapter begins by

first giving some context with an introduction to the sub-field of Artificial Intelligence (AI) known

as Machine Learning. This is followed by a brief historical account of research in Artificial Neural

Networks. Thereafter, a brief summary is given for the most basic type of the neural network

known as the Multi-layer perceptrons. A special kind of neural network is then discussed in the

context of computer vision known as Convolutional Neural Networks considered the Deep Learning

approach, which is followed by a review of the more advanced methods to perform fine-grained

predictions for images. Following that, some unsupervised learning approaches for Deep Learning

are described and a recent trend in Deep Learning which involves using attention is discussed.

Lastly, this chapter provides a brief background to colour concepts and colour spaces which are

relevant to later chapters.

2.2 Introduction to Machine Learning

Machine Learning is a sub-field of AI which concerns the study of designing machines (hardware

or software) which are able to learn from data. A widely-cited definition in the machine learning

2.3 Machine Learning Tasks 7

literature was given by Mitchell [64] which states:

”A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E”

Given this broad definition, consider using a machine learning algorithm for the computer vision

task of object recognition. Experience E can be the experience of observing a set of examples from

a dataset containing images in a dataset matrix X ∈ R
m×n, where each m row of X represents

an example described by n features. An example in X would therefore be an image, where each

feature is a pixel value in that image. Additionally the experience E would also include observing

the labels of the images given by a vector y ∈ {1, ..., k}m, where the element yi specifies which of

the k object classes the image i belongs to. The task T then, for object recognition is to output a

function f : Rn → {1, ...k}, where f(x) could be interpreted as the machine learning algorithm’s

estimate for which object category the image x belongs to. The performance measure P would be

the classification accuracy of the algorithm, in other words the frequency in which f(Xi) = yi.

2.3 Machine Learning Tasks

Machine Learning tasks can be broadly categorised into three types which are: Supervised Learn-

ing, Unsupervised Learning, and Reinforcement Learning1. Among these, this study is primarily

interested in the Supervised and Unsupervised Learning. The following gives a brief explanation

for each of these and describes their differences.

2.3.1 Supervised Learning

Supervised learning problems involves learning from examples that have labels supplied in advance.

A common task in supervised learning is the Classification problem, where there the task is to learn

1Although outside of the scope of this study, Reinforcement Learning is undeniably a popular topic which has
been extensively studied in Machine Learning, for an excellent resource readers are referred to [85]

2.4 A Brief Historical Context: Artificial Neural Networks 8

a function f(x) that maps examples to a category y. An important distinguishing characteristic

of the supervised learning is that it requires manually labelled examples for data.

2.3.2 Unsupervised Learning

Unsupervised Learning refer to machine learning tasks where labels y are not supplied, hence only

the examples X are provided. The purpose of unsupervised learning to discover some structure

from data, which can be some representation of important features. Common examples of unsuper-

vised learning include: clustering, dimensionality reduction and generative models. Unsupervised

learning is further discussed in Section 2.10.

2.4 A Brief Historical Context: Artificial Neural Networks

Artificial Neural Networks (or neural networks for short) is a popular approach in machine

learning which was inspired by the way the biological nervous systems such as the brain works.

Research in Artificial Neural Networks originated from the work of McCulloch and Pitts in 1943 as

they defined the first mathematical model for an artificial neural network [62]. This foundational

work was then followed by Donald Hebb who proposed an explanation for the adaptation of

neurons in the brain by suggesting the strengthening of the neural pathways each time they are

used. Hence, this gave a theory for the learning mechanism of the brain. In his widely-cited book

“The Organization of Behavior” Hebb states [37]:

”When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part

in firing it, some growth process or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased.”

Building on McCulloch and Pitts neural network model and Hebb’s insight, Frank Rosenblantt

began his work to develop a machine that modelled the eyes of a fly. This led to the development

of a neural network model for visual pattern recognition known as the Perceptron in 1958 [74]. The

Perceptrons were different from the work of McCulloch and Pitts as it was able to learn by using

2.4 A Brief Historical Context: Artificial Neural Networks 9

an adaptive rule. During that period, Artificial Neural Networks gained significant popularity in

research.

However, in 1969 Minsky and Papert pointed out certain limitations of Rosenblatt’s Perceptron

models. In their monograph “Perceptrons” [63], they showed the Perceptron’s inability to calculate

non-linearly separable functions as well as being unable to discriminate between some simple

properties of patterns such as the ’connectedness’ [63]. For the above reasons coupled with the

limitations of the available processing power at the time, neural network research fell out of favour

which resulted in reduced interest and funding, even bringing it to a complete halt in the US for

about 10 years [3].

Renewed interest in neural networks began in the mid 1980’s with the work of Hopfield who

described a network with associative memory using statistical mechanics and popularised a neural

network model known as the Hopfield networks to solve optimization problems [42]. This was

followed by the works of Rumelhart, Hinton and Williams who announced the discovery of a

method that allowed a multi-layer feed forward networks to learn to discriminate between non-

linearly separable classes using a method known as the “back-propagation of errors” [77, 76] which

was discovered by Werbos in his 1974 Ph.D. dissertation [94].

The next breakthrough in the neural network research came in 2006 when Hinton and Salakhut-

dinov [38] successfully trained a deep feedforward neural network by training each layer at a time

in a greedy layer-wise fashion and stacking layers on top of each other to generate a deep network,

which were then fine-tuned using the back-propagation. The result was an initial resurgence of

interest in academic research.

In 2012 a Convolutional Neural Network designed by Alexander Krizhevsky known as the AlexNet

[53] was introduced in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [23, 78].

The AlexNet went on to achieve a 15.3 percent top-5 prediction error outperforming all competing

methods at the time by an unprecedented margin. This breakthrough by Krizhevsky et al. [53] is

often credited for the rise in popularity of the method known as Deep Learning [57, 30] which has

attracted significant academic interest and demand for commercial applications as they provide

2.5 The Multilayer Perceptron 10

an approach for neural networks to achieve highly-scalable learning for large-scale data.

What comes next? Despite the substantial success garnered by Deep Learning, challenges still

remain, because at present most mainstream approaches of Deep Learning rely on Supervised

learning which require large dataset that have been hand-annotated, which clearly has its limita-

tions when considering the scalability of this approach. Thus, solving the long-standing problem

of making Deep Learning algorithms learn without supervision from human annotated data will

likely prove to be a next significant step in development for this field.

2.5 The Multilayer Perceptron

This section serves as an introduction to Artificial Neural Networks. In particular, the following

describes the most basic kind of Artificial neural network known as the feed-forward Multilayer

Perceptron.

Figure 2.1. An artificial neuron

2.5 The Multilayer Perceptron 11

2.5.1 Basic Structure

Fundamentally, an Artificial neural network consists of basic computational elements which are

somewhat analogous to biological neurons2, these are variously (and often interchangeably) re-

ferred to as the artificial neurons, units or nodes. The units have internal parameters, which

comprises its weights and a bias, which can be considered their synaptic weights, these are the

parameters that are adapted during learning. Figure 2.1 shows a basic structure of a unit where

x1, x2, x3, ...xm are input signals, wl1, wl2, ...wlm are the weights and bl is a bias. A unit receives

inputs and computes the output of an activation function σ(·) for the linear combination of the

inputs and the bias. The added bias has an effect of applying an affine transformation. The

activation of a neuron is non-linear and can be stated as:

al =
m∑
i=1

wlixi + bl (2.1)

zl = σ(al) (2.2)

Multilayer perceptrons are usually organized into a hierarchical, layered structures where the

overall structure can contain multiple layers and each layer can contain one more or units. In

neural network literatures, the network architecture is used to specify the number of neurons in

each layer, the depth (the number of layers) and the connectivity pattern of the weights in the

neural network.

Figure 2.2 shows an example of a basic architecture structure for the Multilayer Perceptron which

consists of an input layer, a hidden layer and an output layer. In this architecture, the network

is assumed to be fully connected i.e, units between the adjacent layers are all connected by the

2Although it should be noted that most modern artificial neural network systems have been highly abstracted
from their original biological inspirations, in fact it is unapt to say modern Artificial Neural Networks resemble
biological ones.

2.5 The Multilayer Perceptron 12

Figure 2.2. A basic feed-forward Multilayer perceptron

weights. In addition, Artificial Neural Networks are often viewed as computational graphs3. It is

worth noting that neural networks such as Multilayer perceptrons which have acyclic computa-

tional graphs belong to a broad class of models called the feed-forward neural networks4.

2.5.2 Activation functions

The activation functions are used to add non-linearities between layers. The following gives an

overview of the different kinds of the commonly used activation functions used in the hidden layers.

The Logistic Sigmoid was traditionally a very popular activation function for neural networks

which transforms an input into a value between 0 and 1.

sigma(a) =
1

1 + exp(−a)
, (2.3)

3A computational graph is a representation of composite functions as a network of connected nodes, where each
node is an operation or a function.

4Another class of the neural networks is the Recurrent neural networks which have cyclic weight connections,
though these are outside the scope of this study.

2.5 The Multilayer Perceptron 13

sigma′(a) = sigma(a)(1− sigma(a)), (2.4)

The Hyperbolic tangent (Tanh), has a similar shape to the Logistic Sigmoid and is a function that

outputs values between -1 and 1.

tanh(a) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
, (2.5)

tanh′(a) = 1− tanh2(a). (2.6)

The Rectifier is a non-linear function that returns the input value input directly, or the value 0 if

the input value is 0 or less.

relu(a) = max(0, a), (2.7)

relu′(a) = 1, if a > 0; 0, otherwise. (2.8)

The Softmax activation which is described below is another kind of activation function used in the

final layer for classification models. It is used to normalise the previous hidden layer (the logits),

which has K units (a vector with K-dimensional real values), into classification scores for each

class of K (a K-dimensional vector with real values in the range of 0 to 1 which sum to 1). Given

the previous layer a = [a1, a2, ..aK] the softmax is given as:

softmax(a) =
exp(a)∑
k exp(ak)

, (2.9)

Note that the classification prediction of a network is given by the class of the unit that has the

2.6 The Gradient Descent Algorithm 14

highest score.

2.6 The Gradient Descent Algorithm

Algorithm 1 Gradient Descent

Input: loss function ε, learning rate η, dataset X, y and model F(θ, x)
Output: Optimum parameters θ which minimizes ε

1: repeat
2: ŷ = F(θ, x);

3: θ = θ − η · 1
N

∑N
i=1

∂ε(y,ŷ)
∂θ

4: until Convergence

The most popular approach for optimising a neural network is the Gradient decent algorithm

[77]. Gradient descent is an optimisation method that finds a local minima for a given objective.

The objective are in a form of a function called the loss function ε, which gives a quantitative

measure (loss) of the neural network performance based on the network output ŷ and target

y. The gradient descent can be summarised as an algorithm that makes small changes to the

neural network parameters along the gradient of errors towards a minimum error value until some

convergence to a solution is reached by iteratively taking small steps of size η called the learning

rate. Algorithm 1 gives an overview of the gradient descent. It should be noted that there have

been various improvements introduced over the years for gradient descent (for details see Section

2.8.3).

2.6.1 The Stochastic Gradient Descent

Alternatively, the stochastic gradient decent (or some time refereed to as mini-batch gradient

descent) is described in Algorithm 2. Notice that unlike the standard gradient decent, the al-

gorithm additionally iterates over fewer batches over the whole dataset, where one cycle of the

whole dataset is called an epoch. Stochastic gradient descent is often used when it is impractical

to compute updates over the whole dataset at once. The choice for the size of the batches (batch

size) are often determined by factors such as hardware memory requirements during implementa-

2.6 The Gradient Descent Algorithm 15

Algorithm 2 Stochastic Gradient Descent

Input: loss function ε, learning rate η, dataset X, y and model F(θ, x)
Output: Optimum parameters θ which minimizes ε

1: repeat
2: Shuffle X, y
3: for each batch of xi, yi in X, y do
4: ŷ = F(θ, xi);

5: θ = θ − η · 1
N

∑N
i=1

∂ε(y,ŷ)
∂θ

6: end for
7: until Convergence

tion although in general, larger batch sizes provides a better quality of the approximation for the

update direction because the gradients are averaged over more examples from the dataset.

2.6.2 Back-propagation

Algorithm 3 Back-propagation

Input: A Neural Network with l layers, activation function σl, output of hidden layer
hl = σl(W

T
l hl−1 + bl) and network output ŷ = hl

Compute the gradients δ ← ∂ε(yi,ŷi)
∂y

1: for i← l to 0 do
2: Calculate the Gradients for the current layer:
3:

∂ε(y, ŷ)

∂Wl

=
∂ε(y, ŷ)

∂hl

∂hl
∂Wl

= δ
∂hl
∂Wl

4:
∂ε(y, ŷ)

∂bl
=
∂ε(y, ŷ)

∂hl

∂hl
∂bl

= δ
∂hl
∂bl

5: Apply gradient descent using ∂ε(y,ŷ)
∂Wl

and∂ε(y,ŷ)
∂bl

6: Back-propagate gradient to the lower layer

δ ← ∂ε(y, ŷ)

∂hl

∂hl
∂hl−1

= δ
∂hl
∂hl−1

7: end for

Back-propagation is the algorithm used with gradient descent to optimize the weight parameters.

Back-propagation involves repeating the chain rule in calculus to efficiently calculate the gradient

from the last layer to the first layer in the network as shown in Algorithm 3. To illustrate the

2.6 The Gradient Descent Algorithm 16

relevance of the chain rule, in back-propagation consider the following case where a network has

two layers, i.e., l = 2, the function can then be expressed as:

ŷ = f(x) = f(g(x)) (2.10)

in the above case the chain rule derives the above function as:

∂ŷ

∂x
=
∂f(x)

∂x
= f ′(g(x)) · g′(x) (2.11)

2.6.3 Loss Functions

In (multinomial) classification problems such as object recognition, the labels are often converted

to be in the form of a 1-of-K (one-hot) encoding5 A common loss function for the classification

model is the categorical cross-entropy loss which is as follows:

CE = −
K∑
i

yilog(ŷi) (2.12)

where K is the number of classes, yi and ŷi are the labels and the outputs of the softmax layer

(with the scores for each class i in K) respectively. For regression problems where the target

variables are continuous real values i.e, y = R
m, the commonly used loss function is the Mean

squared error loss stated as:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (2.13)

It is worth noting that for more complex problems can require more elaborate loss functions. In

addition loss functions can be further hand engineered in which can be some variant of the above

5a binary vector where of all elements are 0s except the index k which is set to 1 to indicate the class

2.7 Training a Neural Network In Practice 17

functions or a more complex function.

2.7 Training a Neural Network In Practice

This section provides some discussion for the more practical aspects of training a neural network.

These include the network initialisation, learning rate, regularisation, and the model selection

process all which all require careful considerations when training a neural network.

2.7.1 Network Initialisation

Before the neural network training can begin, the neural network parameters (weights and biases)

must first be initialised. Crucially, the initialized weight must not be symmetrical, instead weights

are initially assigned random weights as initializing the weights uniformly leads to the weights

being updated uniformly during training due to the back-propagation process, resulting in the

network not learning features useful for the task. Therefore, the randomness is used to break

the symmetry in the parameters of the network. The random initialization is usually applied

by sampling from a uniform or Gaussian distribution. Initialising a neural network parameters

requires careful consideration because if the initial parameters values are too small, it may lead

to slow learning, while values too large could lead to divergence from a solution. Studies have

since proposed best practices for the neural network initializations [83]. One of the most popular

and successful approach for the network initialisation includes the Xavier initialisation [29] which

suggest that for every layer in l the parameters should be initialized as follows:

W [l] ∼ N (µ = 0, σ2 =
1

n(l−1)
), bl = 0 (2.14)

Where n(l−1) is the number of units in the previous layer. Thus, all biases are initialised as 0

and all weights are sampled from a normal distribution where the mean is 0 and the variance is

σ2 = 1
n(l−1) .

2.7 Training a Neural Network In Practice 18

2.7.2 Learning Rate

The learning rate is the step size for each update made in the gradient decent algorithm (see Section

2.6.1). Setting an appropriate learning rate is perhaps one of the most important aspect of training

a neural network with gradient decent. This is because similar to the network initialization,

choosing a values for η that is too small will result in slow training and a long time to converge.

Conversely, a learning rate that is too large could potentially diverge from a solution. Since there

is no way of knowing what an optimal learning rate is beforehand for a given task, it is common

practice is to start with values such as η = 0.1 and adjust the learning rate over multiple trials

of training. It is also often the case that the a single constant learning rate is not optimal for

the whole training process, thus requiring the learning rate to be reduced at certain stages of the

training, which can be implemented by using a learning rate schedule. A learning rate training

schedule can be implemented by reducing learning rates after a certain number of iterations (or

epochs) have been completed, in other words decaying the learning rate of an initial learning rate,

set at the beginning of the training. The rate of the reduction in learning rate could be at some

constant scheduled rate, or by some other factor such as an exponential rate.

2.7.3 Momentum

Momentum [70] and the other proposed variants [86] are methods to help gradient descent accel-

erate in relevant directions. Momentum works by adding a fraction γ to the update vector of the

past step to the current update, which help navigating ravines areas of the error surface to allow

for faster convergence. A gradient decent with momentum could be stated as:

vt = γvt−1 + η∇F(θ) (2.15)

θ = θ − vt (2.16)

The momentum term γ is therefore, another hyper-parameter. A common practice is to set

γ = 0.9.

2.7 Training a Neural Network In Practice 19

2.7.4 Regularisation

It is important to consider that the ultimate objective of a trained neural network model is to

predict new examples, i.e., they must generalise to data not seen during the training process. A

trained model that performs well on the examples it is trained on, but are unable to perform

well on un-seen examples are undesirable and are often an indication of what is known as model

overfitting. There are several methods for dealing with the model overfitting problem, such as the

weight decay method, dropout regularisation (see Section 2.8.3). Below provides details for the

most simple approach known as the weight decay.

The weight decay method prevents the models from overfitting by penalising large weight param-

eters during the model training which controls the complexity of the models. L2 regularisation is

a weight decay method based on the L2 norm which is simply added to the loss objective. For a

model F(θ, x) the L2 regularisation can be stated as:

ε̂(F(θ, x), y) = ε(F(θ, x), y) + λΩl2(W) (2.17)

where Ωl2(W) = ‖W‖2, (the L2 norm of all the weight parameters in the model) and λ is a

hyper-parameter which controls the regularisation strength, which is usually set to a small values

such as 0.0001.

2.7.5 Generalisation and Model Selection

As emphasised above, a trained neural network model must generalise to data not seen during the

training process. For this reason, the examples in the datasets are usually partitioned into smaller

subsets of training, validation and test sets, where an important assumption known as the i.i.d.

assumptions6 must be made about the data. Models are then, directly optimised on the training

6These assumptions state that the data is independently and identically distributed and each example is drawn
from the same distribution pdata [21] in other words pdata = (X, y) =

∏
i pdata(Xi, yi)

2.8 Convolutional Neural Networks and Deep Learning 20

set where the majority of examples in dataset resides. This training process is usually guided

by evaluating the model’s performance on the relatively smaller portion of examples which were

set aside in the validation set, which could be used to optimise many of the hyper-parameters of

the neural network such as the learning rate, momentum, regularisation values. Performance of

the validation set can also reveal issues such as the model over-fitting by comparing training and

validation set performance. A final model is selected by evaluating the model’s performance on

the test set which was unseen to the model throughout the training process.

2.8 Convolutional Neural Networks and Deep Learning

The aim of this section is to introduce the Convolutional Neural Network, and to provide a

review of the recent developments and advanced techniques that have contributed to their success.

Convolutional Neural Networks are a type of feed-forward neural network that are highly optimised

for processing 2D inputs. They are most popularly used for computer vision applications, especially

for tasks such as image classification. The some of the earliest Convolutional Neural Network

architectures was proposed in the late 1980s [27, 58] though the limitations of the hardware

available at the time made the implementation challenging and thus, the approach less popular.

Notably it was the work of LeCun et al. [58] that proposed a gradient-based training method

for the Convolutional Neural Network. Most modern Convolutional Neural Networks uses the

gradient descent method to train network architectures which consists of many layers which are

organised in a hierarchical structure, giving them depth. The depth of layers allows different levels

of representations of the inputs to be learnt where typically the initial layers learn to detect some

basic patterns such as edges while layers further in depth learns more complex patterns that are

useful for solving tasks. This method of learning allows the automatic extraction of features in

a highly scalable end-to-end manner. The Neural Networks of the kind described here are called

Deep Learning.

Traditionally, machine learning approaches for visual recognition usually involved applying some

feature extraction algorithms, which often required laborious hand engineering to design. These

2.8 Convolutional Neural Networks and Deep Learning 21

traditional feature extraction algorithms such as Scale Invariant Feature Transform (SIFT) [61]

and Histogram Oriented Gradient (HOG) [95]. These extracted features were then often exploited

by other machine learning algorithms such as the Support Vector Machine [20] and Random Forest

[41] to draw decision boundaries for the classification. However, these methods made the machine

learning pipelines often overly complex and unwieldy for practical use.

The massive performance gains and time savings made by the end-to-end approach of Deep Learn-

ing as demonstrated by the works such as the AlexNet [53], when compared to the traditional

machine learning approaches (with feature engineering) resulted in a paradigm shift in 2012. The

Deep Learning approach have since proven to be widely successful which subsequently made them

the de facto standard for visual recognition tasks.

2.8.1 Overview of Convolutional Neural Networks

The following provides details on the implementation of a Convolutional Neural Network. A

Convolutional Neural Networks architecture mainly consists of three basic kinds of layers which

are: the convolution, pooling and classification layers, which are described in the following.

Convolution layer

The most important component of the Convolutional Neural Network is the Convolution layer.

The Convolution layer is based on the 2D convolution operations which can be described as taking

an input I and sliding a kernel K of a fixed window size across the spacial dimension of the input

and taking the dot product. The convolution operation7 denoted by ∗ can be stated as:

7Speaking strictly, mathematically the operations performed below are actually cross-correlation operations
i.e., 2D convolutions without flipping the kernels. In Deep Learning literatures the terms convolution and cross-
correlation are sometimes used interchangeably since the theoretical implications are not very significant to the
neural network implementations. For simplicity, and to remain consistent with the terminology of most Deep
Learning literatures, the rest of this thesis will simply refer to them as convolutions.

2.8 Convolutional Neural Networks and Deep Learning 22

(K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.18)

When convolutions are applied as layers in a Convolutional Neural Network, the input (for exam-

ple, a 2D image) x ∈ RH×W ′×C′ is convolved with a number of learnable filters w = [w1, w2, ...wC]

(which acts as the convolution layer’s weights) where wc refers to the parameters of the c-th filter.

The convolution layer’s output is then z = [z1, z2, ..zC], where:

zc = σ(
C′∑
s=1

wsc ∗ xc + bc) (2.19)

where wc = [w1
c , w

2
c , ..., w

C
c], x = [x1, x2, ..., xC

′
] and zc =∈ RH×W . wsc is a 2d spatial kernel

representing a single channel of wc corresponding to x, bc is the bias term added to the cth filter

and σ is a non-linear activation function. The input x to the first layer of a Convolutional Neural

Network are the raw images, (usually in a 3-channel RGB format) while subsequent layers use the

previous layer’s output feature maps as their inputs.

The filter sizes (the spatial window size of the filters) called the receptive field are usually kept

significantly smaller than the input image size. By having filters with spatial sizes that are smaller

than the inputs, the convolutional layers allows for sparse connectivity and parameter sharing (by

tied weights), which reduces the memory requirements of the models while improving efficiency.

Furthermore, the parameter sharing of the convolutional layers gives them the property known as

equivariance to translations [30].

Pooling layer

The pooling layers are another type of layer that are often added after convolution layers which

involve a pooling function to further modify the outputs of layers. A popular pooling layer is the

max-pooling layer which involves taking the maximum value within a rectangular neighbourhood

of the inputs for a specified window size. Other pooling layers which uses variants for the pooling

2.8 Convolutional Neural Networks and Deep Learning 23

functions also exist which includes the use of average or l2 norms pooling. Pooling helps to

make the representation between layers invariant to small translations of the input, in addition to

reducing the spatial dimensions of the layer’s output.

Fully connected layer

Lastly, is the fully connected layer. The fully connected layer essentially the same as the layers

described in the multilayer perception. The fully connected layer allows the 2D feature maps from

the convolution or pooling layers to flattened into feature vector which are then used by the final

task-specific layer e.g, a final classification softmax layer.

Strides and Padding

Note that the convolution and pooling layers described above results in a 2D spatial down-sampling

of the inputs. The convolution and pooling layers described above can also be implemented with

different stride sizes S. Varying the stride sizes with S < 1 causes the receptive field/window of

the convolution/pooling layers to move at a faster rate resulting in an increase of the rate at which

the spacial dimension are down sampled.

Conversely, paddings of 0 values can be inserted in the rows and columns of the outer boarders of

the 2D inputs or feature maps to preserve more spacial dimensions between the convolutional or

pooling layers. In the case where the 2d output dimensions needs to match the input dimensions,

the amount of paddings P needed in the boarders can be determined by the following equation:

P = (F − 1)/2 (2.20)

where F is the size receptive field/window size of the convolution or pooling layer and assuming

the stride size is 1.

2.8 Convolutional Neural Networks and Deep Learning 24

Parameters, Memory Requirements and Computational Cost

It is important to consider the complexity and memory footprint of the Convolutional Neural

Network implementation. The complexity of the models are considered in terms of parameter and

memory as this would dictate the hardware requirements of the model implementation. Firstly,

it is important to consider is the size spatial dimension of the output feature maps which can be

calculated as:

M =
(N − F + 2P)

S
+ 1 (2.21)

where N is the size of the inputs, F is the size of the filter, S is the stride size and M is the size

the spacial dimension output feature map, assuming the inputs and kernel are a 2D square. The

total number parameters for a layer l can then be calculated as:

Paraml = (F × (F + 1)× FMl−1)× FMl (2.22)

where Paraml is the total number of parameters in the lth layer , FMl−1 is the number of input

feature maps and FMl is the number of output feature maps. Storing each parameter as a single

precision floating-point allows 2.5×105 parameters to be stored per 1 Mb of memory space. Lastly,

the amount of memory mboxMemoryl needed for operations for the lth layer is calculated as:

Memoryl = (Nl ×Nl)× FMl (2.23)

Lastly, the computational cost of the convolution is:

F × F × FMl−1 × FMl ×N ×N (2.24)

2.8 Convolutional Neural Networks and Deep Learning 25

Depthwise Separable Convolutions

Figure 2.3. An illustration of the Depthwise Separable Convolution (Image source: [43])

More recently, a form of factorized convolutions known as the Depthwise separable convolution

was introduced by [80], which offer substantial reduction in computational cost over the standard

convolution layers described above. Depthwise separable convolutions work by spitting the stan-

dard convolution into two steps of factorized convolutions which results in two layers. These two

steps are the depthwise convolution and the pointwise convolution. This process can be described

as the following.

First, the Depthwise convolutions apply a single filter for each input channel which produces a

number of M feature maps. Then, the pointwise convolutions apply a 1×1 convolution to create a

linear combination of the output of the depthwise convolution outputs. Figure 2.3 illustrates this

process, where the standard convolutional filters in (a) are replaced by two layers: the depthwise

convolution in (b) and pointwise convolution in (c) to build a depthwise separable convolution

filter. The depthwise separable convolutions, offer a computational reduction over the standard

convolution of:

2.8 Convolutional Neural Networks and Deep Learning 26

1

FMl

+
1

F 2
(2.25)

The depthwise separable convolutions were used by popular network architectures such as the

Xception [16] and Mobilenets [43] which resulted in models with significantly reduced computa-

tional costs.

2.8.2 Convolutional Neural Network Architectures and ImageNet

Since the advent of Alexnet [53], the designs of Convolutional Neural Networks architectures have

become a popular area of research. The advancements made in the architectural designs over

recent years have resulted in Deep Learning methods making dramatic improvements in the state

of the art in the field of computer vision, and have since achieved performances that seemingly

surpass an estimated performance for humans [78].

Architecture Year Top 1 accuracy Top 5 accuracy Number of
∼parameters

AlexNet[53] 2012 63.3% 84.6% 60M
Inception-V1[87] 2013 69.8% 89.9% 5M

VGG-16[81] 2014 74.4% 91.9% 138M
Inception-V2[47] 2014 74.8% 92.2% 11.2M

ResNet-50[35] 2015 77.15% 93.29% 25.6M
DenseNet-121[45] 2016 78.54% 94.46% 20M

DPN-131[14] 2017 81.45% 95.84% 80M

MobileNet-224(L)[43] 2017 70.6% 89.5% 4.2M
ShuffleNet(L)[107] 2017 70.9% 89.8% 5.3M

Human Performance[78] - - 94.9% -

Table 2.1. Popular Convolutional Neural Network architectures and their ImageNet accuracy perfor-
mance

Such remarkable progress was perhaps not possible without the introduction of large-scale datasets.

The most popular large-scale dataset is imagenet [23] introduced in 2009, which is a large database

containing over 14 million images which were annotated by humans using crowd-sourcing services

2.8 Convolutional Neural Networks and Deep Learning 27

such as the Amazons Mechanical Turk [78]. The imagenet project’s purpose was to provide a large-

scale ontology of images, the database is therefore organised according to the wordNet hierarchy8.

The imageNet project included annual competitions which were held between 2010 and 2017

known as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) where various tasks

for image classification and object detection were set as challenges using subsets of the ImageNet

database. Among them is the highly competitive benchmarking challenge of ImageNet-1K, which

is a classification task of 1000 object categories where networks are evaluated for the accuracy of

their top 1 and top 5 predictions. Table 2.1 provides a non-exhaustive list of some of the most

notable architectures proposed over recent years and their imageNet-1K performance accuracy as

well as an estimated performance of human attempts for the same task. Table 2.1 additionally

also includes models which have resource efficient (lightweight) architectures, which by design

have significantly less computational complexity and parameter requirements, giving them balance

between performance and complexity. To separate these from the standard architecture, they are

indicated with an (L) added next to their architecture name.

Notably, the general trend that is prevalent among more recent architecture designs is more

interconnectedness between layers and improvements in the designs of the convolution layers for

better efficiency. The following provides a brief summary of the various architectures which are

essential to the discussions in the subsequent chapters in this thesis.

AlexNet (2012)

The AlexNet is a Convolutional Neural Network architecture that was proposed by Krizhevesky

et al. which won the ILSVRC in 2012. AlexNet was considered one of the most remarkable

breakthroughs in machine learning, when it outperformed all other traditional machine learning

approaches for image classification by a large margin. It is in fact often credited for the recent

rise in popularity in neural network research for computer vision and even beyond [4].

The AlexNet architecture has 60 million parameters with 7 layers of which, 5 are convolution

8The wordNet is a large lexical database of English: https://wordnet.princeton.edu/

2.8 Convolutional Neural Networks and Deep Learning 28

layers, 2 are fully connected layers. The AlexNet was also the first to introduce the idea of Local

Response Normalisation, which involves normalizing patches of the feature maps based on its

neighbouring values, and the concept known as the dropout regularisation (see Section 2.8.3)

The Alexnet architecture has inputs for images of sizes 224×224. The first layer uses a convolution

layer with 96 filters with receptive field of 11 × 11 followed by a maxpooling of 3 × 3 and Local

Response Normalisation. The second layer repeats the same operations but with 256 filters and

with 5× 5 convolution. The third, fourth and fifth layers uses 3× 3 convolutions and Relu non-

linear activations, which each have filter sizes of 384, 384 and 256 respectively. The sixth and

seventh layers are fully connected layer with 4096 units each, which is followed by a final softmax

output layer to compute the classification of 1000 class scores. The whole network was trained

using the dropout regularisation, which significantly reduced overfitting. It should also be noted

that for the original implementation of Alexnet, a 2-stream network was used by halving the sizes

of the parameter in each layers, which allowed training to be carried out on a machine with 2

GPUs.

VGGNets (2014)

The VGG models [81], named after the Visual Geometry Group are convolutional network ar-

chitectures which have several variants. Their best model which was submitted to the ILSVRC

competition in 2014 was the runner up (2nd place) that year. However the model’s architecture

has remained popular due to their innovative design and robust performance.

The main contribution of the VGG models was the demonstration of the importance of depth in

visual representations as the VGG networks were considered very deep architectures at the time

they were introduced. The variants of the architecture designs included models which were 16 and

19 layers in depth known as VGG-16 and VGG-19 respectively. The VGG network uses only 3×3

or 1× 1 convolution filters throughout the whole network, unlike the many previous architecture

designs which commonly used 11 × 11 or 7 × 7 convolution filters, as convolution with larger

receptive fields have been found to be computationally expensive and require and high parameter

2.8 Convolutional Neural Networks and Deep Learning 29

requirements. Subsequently, the VGG provided a more streamlined design for the convolution

layers which allowed the architecture depth to be extended efficiently.

Most VGG networks typically uses a series of 3 × 3 convolution layers with relu non-linear acti-

vations. The filter numbers in the initial layer is 64 and are increased by a factor of 2 in every 2

or 3 proceeding layers where they are down-sampled by a pooling layer. This allowed the control

over complexity and parameter requirements as the layers progress deeper. The series of convolu-

tion layers were then followed by 3 fully connected layers and a final sotfmax classification layer.

Despite the various reduction in complexity the VGG networks are considered computationally

expensive as models such as the VGG-16 has a 138 million parameter memory footprint.

ResNet (2015)

Figure 2.4. A Residual Block (Image source: [35])

Another breakthrough in the architecture design is the Residual Network or ResNet introduced

by He et al. [35] which was the winner of ILSVRC in 2015. The ResNet introduced the concept of

”identity shortcut connections” which are shortcut connections that skips over layers which pro-

motes better gradient flow between layers and helps dealing with the problem known as vanishing

gradient problem9 [9]. ResNet also introduced modular structure to the Deep Learning architec-

ture construction by introducing residual blocks as shown in Figure 2.4. The residual blocks which

are stacked can compose models of varying depth. These residual block can be described as:

9Briefly, this is a problem that since back-propagation involves repeated multiplications, the gradient could
become infinitely small for layers earlier in the network, which makes training deep architectures difficult.

2.8 Convolutional Neural Networks and Deep Learning 30

y = F(x,Wi) + x (2.26)

where x and y are inputs and output vectors of the layer l respectively, F(x,Wi) represent the

layer to be learned (the residual mapping), which are usually two layers of convolutions with a

relu activation in between i.e., F = W2σ(W1x+ b1) + b2. The operation F + x is implemented by

a shortcut connection and element-wise addition.

The ResNet design were able to successfully train models which are extremely deep without their

performances degrading unlike previous model designs. Moreover, a refined version of the ResNet

allowed the network depth to be extended even as much as 1000 layers deep [36]. The popular

ResNet architecture inspired many other variants and modifications, these notable variants include

wide (in channel depth) versions WideResNets [100] and versions which uses multiple branches

which group convolutions which introduces cardinality in the Residual Block known as ResNeXt

[96]. Furthermore, Densensets [45] and Fractalnets [54] are architecture designs which extend the

ideas from ResNet.

DenseNet (2016)

Figure 2.5. Layers in a DenseNet (A Dense Block) (Image source: [45])

The Densenet by Huang et al. [45] introduced a more densely connected architecture by concate-

2.8 Convolutional Neural Networks and Deep Learning 31

nating each layers feature maps to the inputs (channel-wise) of every successive layers for groups

of layers through a structure known as the Dense Block Shown in Figure 2.5. Specifically, a Dense

Block can be described as:

xl = Hl([x0, x1...xl−1]) (2.27)

xl is the output of the lth layer, [x0, x1...xl−1] are the contented feature maps of the layers up

to the (l − 1)th layer and Hl is the operations performed at each layer within the Dense Block

which includes batch-normilzation, a 3× 3 convolution layer followed by a Relu activation. This

increased inter-connectivity within the network encourages features to be reused which in turn,

increases variation in the input of subsequent layers and improves efficiency of parameter use. The

Densenets also include a structure known as the transition blocks which are inserted between the

dense blocks, which each performs a 1 × 1 convolution and a batch normalisation followed by a

2× 2 max pooling.

The Densenets achieves high performances despite using only a small number of filters per layer

which vastly reduces the total number of parameters. The number of filers added at each layer in

the Dense Block which the authors called the growth rate k thus, grows the number of filters at the

constant rate at each proceeding layer. The growth rate are kept relatively small, configuration

in the original work commonly used k = 12, k = 24 or even k = 40.

MobileNet (2017)

More recently, the Mobilenet [43] was introduced by Howard et al., in 2017. The Mobilenets

belong to a class of lightweight Convolutional Neural Network architectures (which include other

architectures such as ShuffleNets) which aim to streamline the computations within the models

which allow them to be embedded into devices with limited computational resources e.g. mobile

devices. The MobileNet uses a series of 3× 3 depthwise separable convolutions and batch normal-

isation. Subsequently this resulted in a reduction of between 8 to 9 times less computation than

2.8 Convolutional Neural Networks and Deep Learning 32

the standard convolutions while only experiencing a small reduction in accuracy [43].

2.8.3 Advanced Techniques for Convolutional Neural Networks

This section describes some of the more modern and advanced techniques which have been in-

troduced recently in the Deep Learning literature. Specifically, the following reviews some of

the most notable techniques which significantly improved the performances of the Deep Learning

models. These include: the various gradient descent optimisers, dropout regularisation, batch

Normalisation for Deep Learning models.

Advanced Gradient Descent Optimisers

Over recent years, various improvements have been proposed to the gradient descent algorithm

which has greatly improved the performances of Deep Learning by accelerating learning. These

gradient descent improvements include the Adagrad, Adadelta, RMSprop and ADAM. For a de-

tailed mathematical overview of the various gradient descent alternatives mentioned see Appendix

A. A brief summary of these alternatives to the basic gradient descent is given below.

Adagrad, [25] is an alternative gradient decent optimiser which has learning rates for each individ-

ual parameters and an adaptive learning rate which are calculated by dividing the learning rate

by the sum of squares of the gradients. Adadelta [101] improves upon the Adagrad’s adaptive

learning rate by using a decaying average of the all past squared gradients. RMSprop and ADAM

[49] are both advanced variants of the Adadelta. Notably, the RMSprop and ADAM optimisers

are especially popular choices for training Deep Learning models.

Dropout Regularisation

Dropout is a stochastic regularisation method [82] which involves dropping out (zeroing out) a

fraction of randomly selected units and their corresponding activations during the training time

2.8 Convolutional Neural Networks and Deep Learning 33

by a certain probability of p. This technique was developed to combat overfitting of models

caused by a phenomenon known as ”co-adaptation” that occurs during training with can degrade

generalisation performance. Dropout can be interpreted as a form of model averaging, which has

the effect of approximately combining 2n for n units i.e., exponentially many ”thinned” neural

network architectures formed from the different architectures that results from the dropout at

training time. During training the dropout can be described modifying the activations of the

network as follows:

r
(l)
i ∼ Bernoulli(p), (2.28)

z̃(l) = r(l) � z(l), (2.29)

a
(l+1)
i = w

(l+1)
i z̃(l) + b

(l+1)
i , (2.30)

zl+1
i = σ(a

(l+1)
i) (2.31)

Therefore, each unit is retained with a fixed probability p independent of other units. A common

setting for is p = 0.5 which empirically seems to work well for a wide range networks and tasks

[82]. At test time all the units are made always active. Additionally, to account for the fact that

units were deactivated by a rate of p during training, the weights of each unit are multiplied by

p at test time as the weights of the network are a scaled-down versions of the trained network

weights. This is to ensure that for any hidden unit the expected output is the same as the output

during test time. The network’s output at test time could therefore be described as:

a
(l+1)
i = w

(l+1)
i z̃(l)p+ b

(l+1)
i , (2.32)

2.8 Convolutional Neural Networks and Deep Learning 34

zl+1
i = σ(a

(l+1)
i) (2.33)

Batch Normalisation

Algorithm 4 Batch Normalisation [47]

Input: Values of x over a mini-batch B = {x1...m} : Parameters to be learned: γ, β
Output: yi = BNγβ(xi)

1:

µB ← 1

m

m∑
i=1

xi

//mini-batch mean
2:

σ2B ← 1

m

m∑
i=1

(xiB)2

// mini-batch variance
3:

x̂i ←
xi − µB√
σ2
B + ε

//normalize
4:

yi ← γx̂i + β ≡ BNγ,β(xi)

//scale and shift

Batch Normalisation [47] is a Deep Learning technique which accelerates the training process of

Deep Learning models while alleviating some of the difficulties of training a deep neural network

model by reducing the Internal Covariate Shifts in the Deep Learning models.

To describe what the Internal Covariate Shifts is, it is worth considering that when training models

that are especially deep inputs to each layer are affected by the parameters of all preceding layers.

This would mean that small changes to the network parameters are amplified as the network

becomes deeper. These changes in the distributions of each layer’s inputs presents a problem

because during training, the layers need to continuously adapt to the new distributions by re-

adjusting and compensating for the changes in the distributions of their inputs. The change in

2.9 Deep Learning for Fine-grained Image Prediction 35

the distributions of internal nodes of a deep network during training are the Internal Covariate

Shifts of the network and thus, eliminating it would in principle allow for a faster training [47].

The Batch normalisation aims to reduce the Internal Covariate Shifts by normalizing each layer’s

inputs based on its mini-batch statistics, to have a zero mean and unit variance and additionally,

scaling and shifting them with two learnable parameters γ and β. The batch Normalisation

algorithm is described in Algorithm 4.

When used in practice, batch normalized networks are able to realise gains of successful training

with higher learning rates and tolerance to less desirable configuration of initialization weights.

The original work which introduced the batch normalisation technique was able to successfully

match the performance of the same model which did not use batch normalisation by using only

7% of the training steps and with further training, was able to exceed its accuracy by a substantial

margin [47].

2.9 Deep Learning for Fine-grained Image Prediction

The popular Convolutional Neural Network described thus far, were used for image classification,

which involves assigning a single category label to each image. Tasks of those kind only require

the Deep Learning network to be sensitive to coarse category-level semantic information of the

images.

There have been more recent Convolutional Neural Networks models which has been applied

to more finer grained tasks such as image segmentation, object detection and parts labelling

etc. which requires predictions to be made at pixel level. These are referred to as fine-grained

tasks since they differ from image classification because in addition to the need to be sensitive

to coarse information, the output requires localization i.e. labels need to be assigned for every

pixel. Therefore these tasks are structurally different from image classification as they require fine

inference.

These requirements have subsequently led to some proposal of architectural changes to the stan-

2.9 Deep Learning for Fine-grained Image Prediction 36

dard deep leaning models to be made, [60, 73, 34, 6]. These various improvements to the Deep

Learning models for fine grained tasks include some of the following: replacing pooling layers with

up-sampling layers by Fully Convolutional Networks [60]; allowing for the output layer to directly

use features from previous layers via short-cut connections thereby allowing the coarse higher layer

information to be combined with fine lower layer information as implemented by Hypercolumn

Networks [34]; using an architecture which consists of contracting layers to capture context and

a symmetric expanding layers that enable localization by U-Nets [73]. These modifications allow

the networks to capture semantics with better localization.

2.9.1 Convolution Layers for Fine-grained Predictions

What many of the above fine-grained prediction models have in common are their convolution

layers which are modified to perform well for pixel level prediction tasks. These modified convo-

lution layers include the transposed convolution layers and dilated convolution Layers which are

described below.

Transpose Convolution (Up-sampling)

The standard convolution layers described in previous sections were used to spatially down sample

the input images. However, fine-grained task involves predictions of every pixel of the input image,

thus requiring some up-sampling operations in order for the spacial dimensions of the output to

match the sizes of the input images.

Traditionally, up-sampling operations were implemented by applying some interpolation rule10 to

rescale the output predictions, yet it would be desirable to directly learn the up-sampling transfor-

mations within the network. Modern architectures are able learn the up-sampling transformations

through the Transpose convolution layers [102]. Transpose convolution layers (also variously re-

ferred to as fractionally strided convolution, up-convolution or deconvolution11) works by swapping

10Various interpolation rules exists such as the Nearest-neighbour interpolation and Bilinear interpolation etc.
11Although the term deconvolution often discouraged as the operation described here is different from the math-

2.9 Deep Learning for Fine-grained Image Prediction 37

Figure 2.6. Transpose Convolution with direct Convolutions and paddings

the forward and backward passes of a convolution [26]. Additionally, it is also possible to imple-

ment an equivalent transposed convolution with a direct convolution, which involves adding rows

and columns of zeros to the input (similar to padding) as shown in Figure 2.6, although this results

in a much less efficient implementation.

Dilated Convolution

Another problem faced by fine-grained predictions is the problem of modelling long-range depen-

dencies. A model’s ability to learn long-range dependencies are affected by the effective receptive

fields of the convolution layers. The effective receptive fields the area of the original image that

can influence the activations outputs. Therefore for fine-grained predictions, large effective re-

ceptive fields which extends across large areas of the input image are desirable. With standard

convolutions, the rate with which the effective receptive field expand is linear with each pro-

ceeding layer. Dilated Convolution layers [99, 12] are able to expend the effective receptive field

exponentially while keeping the growth of parameter numbers linear. With Dilated Convolution,

spaces as inserted between the kernels of the filters as shown in Figure 2.7 so as to ”inflate” them.

ematical definition of deconvolution i.e., the inverse of convolution.

2.10 Unsupervised Deep Learning 38

Figure 2.7. Dilated Convolution and the effect on the receptive field

The difference between the standard convolution and a dilated convolution is described as the

following. Whereas a standard convolutions is:

(F ∗ k)(p) =
∑
s+t=p

F (s)K(t) (2.34)

a dilated convolution is described as:

(F ∗D k)(p) =
∑

s+Dt=p

F (s)K(t) (2.35)

The dilated convolution is controlled by a hyper-parameter D, where D - 1 spaces are inserted

between the filter elements. Therefore, if D = 1, it is equivalent to a standard convolution. Figure

2.8 shows how the receptive fields in a dilated convolution expands with different values for D.

2.10 Unsupervised Deep Learning

The models described in previous sections involved supervised learning, i.e., learning with labels for

the data supplied in advance. In unsupervised learning the purpose is to discover structures from

2.10 Unsupervised Deep Learning 39

D = 1 D = 2 D = 3

Figure 2.8. Dilated Convolution with different Dilation values

data and thus learning can take place even if the data with no labels are supplied. This section in

particular, focuses on two kinds of Deep Learning models for unsupervised learning. First kind are

the auto encoder models. The second is a generative model known as the generative adversarial

networks.

2.10.1 Auto Encoders

Auto encoders [39] are deep neural network models that are used for unsupervised learning. The

purpose of the auto encoder models are to learn meaningful representation of some given data

by coping its inputs to its outputs with a code representation by using a bottle neck to force

abstractions. Auto encoders have a two part structure which consists of encoder which maps

the input into the code (a compressed representation of the inputs) and a decoder which maps

the code back to the original input, thus reconstructing them from the code. The encoder φ and

decoder ψ can therefore, be described as transitions such that:

φ =X → F

ψ =F → X

φ, ψ =argminφ,ψ‖X − (φ, ψ)X‖2

(2.36)

A simple auto encoder with one hidden layer where the input is x ∈ R
d = X which maps to

∈ Rp = F can be expressed as:

2.10 Unsupervised Deep Learning 40

z = σ(Wx+ b) (2.37)

where W is the weight matrix, b is the bias and σ is an activation function. Using the decoder,

the code z is reconstructed back to x′ which has the same shape as x as follows:

x′ = σ′(W ′z + b′) (2.38)

the model is trained by minimising the reconstruction errors, which gives the loss function:

L(x, x′) = ‖x− x′‖2 = ‖x− σ′(W ′(σ(Wx+ b)) + b′)‖2 (2.39)

Auto encoders usually have dimensions that are lower than the dimension of the input features

X which forces a bottle neck structure which compresses the representations being learnt. Deep

auto encoders can be constructed by extending the depth of layers in the encoder and decoder

layers.

Several variants of the auto encoders exist which includes: sparse auto encoders [56], denoising

auto encoders [92], stacked denoising auto encoders [93] and variational auto encoders [50]. The

sparse auto encoder uses the same ideas as the auto encoder while adding sparsity constraint to

improve the representations being learnt. The denoisinng auto encoders learns representation by

training a network to recover (de-noise) corrupted versions of the inputs, and the stacked denoising

auto encoders extends this idea by stacking layers of denoising auto encoders. There also exists

generative version of the auto encoder known as the Variational Auto Encoders [51]. More recently

the Split-Brain auto encoder [105] was introduced which uses a special representation learning by

performing the task of colourisation by using a network architecture with two sub-network paths

to learn self supervised representations of images.

2.10 Unsupervised Deep Learning 41

2.10.2 Generative Models

Generative Deep Learning models are a branch of unsupervised learning which attempts to describe

how a dataset is generated taking a probabilistic approach. The generative models therefore

includes a stochastic element which influences the individual samples generated by the model, this

way they are able to generate novel examples that are outside of the learnt dataset. The generative

models include the Variational Auto Encoders [51] and Generative Adversarial Networks. The

following will focus on the the Generative Adversarial Networks [31].

2.10.3 Generative Adversarial Networks and Image Synthesis

The Generative adversarial network (GAN) is a generative Deep Learning approach which was

introduced by Goodfellow et al. in 2014 [31]. GANs offer a framework for estimating generative

models by training two neural networks which compete against each other in a zero sum game.

An adversarial network can be described as learning a distribution pg over some data x using a

Generator neural network G(z; θg) with parameters θg where z is noise generated from a Gaussian

distribution pz. Additionally, a second Discriminator neural network D(x; θd) is used to output

a scalar value, which represents the probability that x came from the actual data rather than pg

(in other words a sample generated by G). D is trained to maximize the probability of correctly

assigning labels to both examples from the data and samples generated by G, while G is also

simultaneously trained to minimize log(1 − D(G(z))). Hence, D and G are playing a mini-max

game with the value function V (G,D):

minGmaxDV (D,G) : Ex∼datap(x)(logD(x)) + Ez∼pz(z)(log(1−D(G(z)))) (2.40)

Thus, GANs are trained by alternating between the two networks as follows:

2.10 Unsupervised Deep Learning 42

• Gradient ascend for the Discriminator:

maxθd [Ex∼datap(x)logDθd(x) + Ez∼pz(z)log(1−Dθd(Gθg(z)))] (2.41)

• and gradient descent for the Generator:

minθg [Ez∼pz(z)log(1−Dθd(Gθg(z)))] (2.42)

It should be noted that often in practice the loss of the Generator is implemented with a gradient

ascent using log(Dθd(Gθg(z))) instead because of the difficulty of training the generator in the

early stages of the training due to the loss landscape when using Equation 2.42. The complete

algorithm for training a GAN could therefore be described in Algorithm 5 [31].

Algorithm 5 Generative Adversarial Network training [31]

1: for number of training iterations do
2: for k steps do
3: Sample mini-batch of m noise samples {z1, ...zm} from noise prior pg(z)
4: Sample mini-batch of m examples {x1, ...xm} from data distribution pdata(x)

5: Update the Discriminator by ascending its gradient: Oθd 1
m

∑m
i=1[logDθd(xi) + log(1 −

Dθd(Gθg(zi)))]
6: end for
7: Sample mini-batch of m noise samples {z1, ...zm} from noise prior pg(z)
8: Update the Generator by ascending its gradient: Oθg 1

m

∑m
i=1[log(Dθd(Gθg(zi)))]

9: end for

For the task of image synthesis, the Generator network is trained to generate images which look

convincingly similar to the examples of real images in the dataset in attempts to ’fool’ the Discrim-

inator network. Thus when a GAN is trained successfully, it is able to generate novel synthesised

images. It should be noted that GANs are difficult to successfully train because:

• There is a lack of heuristic loss function (a common choice for the image generator GANs

loss is pixel-wise mean squared error).

• Training is difficult and unstable often resulting in non-convergence when the models never

2.11 Attention Mechanisms for Deep Learning 43

converge which results in oscillating models or mode collapse when the outputs of the gen-

erator models produces limited varieties of samples.

Seeking improvements for GANs is therefore an ongoing and active area of research [79]. Among

them GANs which uses Convolutional Neural Network was first proposed in 2015, known as the

Deep convolution GAN (DCGAN) [71]. Also notably in 2016, Isola et al. proposed a conditional

version of the GANs [48] as a generalised solution to image-to-image translations. Their approach

[48] is able to perform a wide variety of image translation tasks including the colourisation of

black-and-white images. More recently, GANs which uses self-attentions [103] have also been

introduced.

2.11 Attention Mechanisms for Deep Learning

Attention is the cognitive process of selectively concentrating on discrete aspects of information,

and is extensively studied in fields such as cognitive psychology. A recent trend in Deep Learning

is to use various forms of attention to improve models. The attention in the context of its use

in Deep Learning, is the use of a vector of importance weights as a means of biasing the alloca-

tion of available computational resources towards the most informative components of an input

signal. Below gives a brief summary of the most impactful works concerning the use of attention

mechanism for Deep Learning.

2.11.1 Attention with Deep Learning Models

Some of the earliest and most popular use of the attention models were for modelling languages.

Specifically, an attention model by Bahdanau et al., in 2014 [7] was proposed as an improvement

for the Recurrent neural network12 approach for the task of neural machine translation13 [84, 15],

12These are neural networks architectures with cyclic connections, i.e. feedback loops which gives them implicit
memory.

13Briefly, this approach involved an encoder-decoder architecture which encodes a source sentence into a fixed-
length vector from which a decoder generates a translation of that sentence.

2.11 Attention Mechanisms for Deep Learning 44

which suffered from a critical disadvantage of using a fixed-length context vector design which

impeded the ability of the recurrent network to remember long sequences as evidenced by the

rapidly deteriorating performances of the models as the length of the input sentences increased

[15]. The attention mechanism by Bahdanau et al., [7] alleviated some of the above problem

by using an attention mechanism to jointly learn to align and translate sentences which allowed

models to cope better with long sentences and improve the quality of the translations.

Another noteworthy use of the attention mechanism is the Neural Turing Machine (2014) devel-

oped by Graves et al., [33]. Their model used an architecture which coupled an external memory

with a neural network which used an attention mechanism to control operation heads which read

or wrote to the external memory, mimicking the Turing machine’s tape.

Attention models have also been used for the task of image captioning, where notably the work

”Show, Attend and Tell” (2015) [97] by Xu et al., used a conolutional neural network encoder to

extract visual features which were fed to a recurrent neural network decoder to generate words

with descriptive sentences of a given input images. Importantly, this work used a Stochastic ’Hard’

and Deterministic ’Soft’ attention models which learned to attend to salient parts of the input

image while generating its caption, improving the captioning quality.

More recently, the work ”Attention Is All You Need” (2017) by Vaswani et al., [91] proposed an

attention model based on a feed-forward neural network with attention mechanisms for machine

translation, dispensing the need for recurrent architectures which were previously thought to be

the best approach for language modelling, but are costly to train due to their un-parallelizable,

sequential nature. Their model, called the transformer set a new state-of-the-art for a machine

translation task while using only a fraction of the training costs of the best models in the litera-

ture at the time they were introduced. Additionally, an even larger-scale implementation of the

transformer called the GPT-2 was introduced by Radford et al., [72] which went on to achieve

state-of-the-art results on 7 out of 8 language modelling benchmarking datasets.

2.11 Attention Mechanisms for Deep Learning 45

2.11.2 Self-attention models for Convolutional Neural Networks

The following provides a more detailed description for two attention models in particular, which are

featured in the subsequent chapters in this thesis. The two models are the Squeeze-and-Excitation

Networks and the Self-Attention Generative Adversarial Networks.

Squeeze-and-Excitation Networks (2017)

The Squeeze-and-Excitation (SE) Network introduced by Hu et al., [44] are Convolutional Neural

Networks which uses a self-attention mechanism. This work achieved first place in ILSVRC in 2017

for the classification challenge using a Rsenet variant with self-attention modules. Their results

also improved the best performance from the previous year by ∼25% (in relative improvement).

The proposed self-attention module called the ”Squeeze-and-Excitation” (SE) block enhances the

performance of the networks by explicitly modelling channel interdependencies so that the network

is able to increase its sensitivity to informative features [44].

Figure 2.9. Squeeze-and-Excitation (SE) block in comparison to a Res block (Image source [44])

Figure 2.9 shows the structure for the SE modules in comparison to the standard Residual modules.

The SE modules performs the convolution transformations with an additional two step process of:

2.11 Attention Mechanisms for Deep Learning 46

• Squeeze which aggregates global spatial information into channel descriptors, using a Global

average pooling layer.

• Excite which captures the channel-wise dependencies by using the information from the

channel descriptors to re-calibrate the filter responses before they are fed into the next

layer.

The SE block structure is shown in 2.9, (with a comparison to a standard Resdual block). A more

detailed description of it can be given as follows. The SE block receives input X ∈ R
H′×W ′×C′

which is transformed to the feature maps U ∈ RH×W×C via the standard convolution layers where

U = [u1, u2..., uC]. Then, the operation Fsq is used to generate a channel-wise statistics of U ,

which results in a vector z ∈ RC by shrinking U through its spatial dimension H ×W such that

the cth element of z is calculated by:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
i=1

uc(i, j) (2.43)

In other words the above performs a Global average pooling which summarises the feature maps

into a vector z. The information aggregated in z is then fed to a gating mechanism Fex which

consists of a 2 fully-connected layers with non-linearities in between as follows:

s = Fex(z,W) = sigmoid(W2relu(W1z)) (2.44)

where W1 ∈ R
C
r
×C and W2 ∈ RC×

C
r are the weights for the fully-connected layers which uses the

hyper-parameter r to reduce the number of units in the hidden layers, hence it is a dimensionality-

reduction ratio. The s can be though of an attention that provides a vector of feature importance.

Finally, the output of the SE block is obtained by rescaling the feature maps U with the activations

s:

x̃c = Fscale(uc, sc) = scuc (2.45)

2.12 Mathematics for Colours 47

where X̃ = [x̃1, x̃2, ..., x̃c] and Fscale refers to the channel-wise multiplication between the scalar

sc and the feature map uc ∈ RH×W .

Self-Attention Generative Adversarial Networks (2018)

The Self-Attention Generative Adversarial Network (SAGAN) [103] is an attention-based GAN

which was recently introduced in 2018. The SAGAN is a convolutional GAN for image generation,

which were able to improve on the quality of the images generated by introducing a self-attention

mechanism which allows for efficient long-range dependency modelling. The SAGAN’s attention

mechanism is a module which are able to successfully enable both the generator and the dis-

criminator networks to model relationships between widely separated spatial regions which helps

in generating images with more complex geometry. In addition to the SAGAN also implements

spectral normalisation to the weights which controls the training dynamics and two time-scale

update (TTU) rule which varies the learning rate for discriminator and generator as a way to

further stabilise the GAN training.

2.12 Mathematics for Colours

The purpose of this section is to familiarise the reader with colour concepts and colour spaces, and

their mathematical relations. These will be most relevant to later chapters of this study which

involves many of the transformation of colour spaces.

2.12.1 Basic concepts and terminology

As humans, colour is experienced as sensations when light in the visible region is reflected from a

surface and enters the eyes through the pupil which is then focused onto the retina. The human

retina normally have three types of colour photoreceptor cone cells which allow the perception

of colour. These three types are the short-wavelength, medium-wavelength and long-wavelength

cone which differ in their absorption spectra. By not taking into account the influences of the

2.13 Colour Spaces and Transformation Formulae 48

spatial and temporal affect which influence perception, the sensation of colour is determined by

the the three types of photoreceptor. Therefore, in theory only three numerical components are

necessary and sufficient to describe a colour.

The CIE14 has defined a system which specifies colours according to the human visual system

known as the CIE system. The CIE system weights the spectral power distribution in terms of

three colour matching functions, which are the sensitivities of a standard observer to a light. This

weighting is done over the visual spectrum, 360nm to 830nm in set intervals. This requires a

carefully defined lighting and viewing geometry as they affect the appearance of the colour and

produces the XYZ CIE tristimulus values from which many colour measurements are made.

Colour spaces, (or colour models) are abstract mathematical model which describes the range

of colours as tuples of numbers, which usually have three values. A colour space can be device

dependent or independent. A colour space for which the resultant colour does not depend on

equipment and set up are said to be device independent. CIELAB is an example of a device inde-

pendent colour space. A colour gamut is the area enclosed by a colour space in three dimensions,

and the range of colours available in the device independent colour space.

2.13 Colour Spaces and Transformation Formulae

This section introduces the RGB colour spaces and a few alternative colour spaces with their

transformation formulae from RGB. Furthermore, the colour spaces below are limited to abstract

colour spaces, which do not include colour spaces used for physical printing such as CMY (Cyan,

Magenta and Yellow).

14CIE the (International Commission on Illumination) cie.co.at

2.13 Colour Spaces and Transformation Formulae 49

2.13.1 RGB

RGB is a device dependant colour space and is one of the most common colour space for digital

images as colour images are usually digitized in the RGB. The RGB colour space can be considered

a cube space based on the three axis which correspond to red, green and blue. RGB are usually

in 24-bits (8-bits for each R, G and B channel).

2.13.2 CIE XYZ

The CIE XYZ is a visual primary space based on the imaginary primary colour XYZ which have

been selected so the all the colours can be which are perceived by the human eye are within

the colour space. The XYZ system is based on the response curves of the three colour receptors

of the eye which differ slightly from one person to person. The CIE has therefore defined a

standard observer which corresponds to the average response of the population. There are various

mathematical models to transform the RGB device dependant colour to the XYZ trsitmilus values.

One of the simplest form of the model, is a simple matrix transform given below [17]:

X

Y

Z

 =

3.06322 −1.39333 −0.475802

−0.969243 1.87597 0.0415551

0.0678713 −0.228834 1.06925

−1

·

R

G

B

 (2.46)

2.13.3 CIELAB and CIELUV

CIELAB and CIELUV (or CIE L∗a∗b∗ and CIE L∗u∗v∗) are perceptually uniform colour spaces and

are based on the CIE XYZ. They are a non-linear transformations which require a reference white

(Z0, Y0, Z0). They are an attempt to linearise the perceptibility of a unit colour difference, and

are intended to mimic the logarithmic response of the eye. The transformation for the CIELAB

and CIELUV is given as follows [19].

2.13 Colour Spaces and Transformation Formulae 50

L∗ = 116(Y
Y0

)
1
3 − 16 if Y

Y0
> 0.008856

L∗ = 903.3(Y
Y0

) if Y
Y0
≤ 0.008856

a∗ = 500[f X
X0
− f Y

Y0
]

b∗ = 200[f Y
Y0
− f Z

Z0
]

(2.47)

where f(U) = U
1
3 if U > 0.008856

f(U) = 7.787U + 16/116 if U ≤ 0.00885

(2.48)

and U(X, Y, Z) = 4X
X+15Y+3Z

V (X, Y, Z) 9Y
X+15Y+3Z

(2.49)

L∗ = 116(Y
Y0

)
1
3 − 16 if Y

Y0
> 0.008856

L∗ = 903.3(Y
Y0

) if Y
Y0
≤ 0.008856

u∗ = 13L∗[U(X, Y, Z)− U(X0, Y0, Z0)]

v∗ = 13L∗[V (X, Y, Z)− V (X0, Y0, Z0)]

(2.50)

2.13.4 YUV and YIQ

The YUV and YIQ are colour spaces for video standards which were commonly used for analogue

television transmission, they are therefore often called transmission primaries. The transforma-

tions for these are as follow[19]:

Y

U

V

 =

0.299×R + 0.587×G+ 0.114×B

−0.147×R− 0.289×G+ 0.436×B

0.615×R− 0.515×G− 0.100×B

 (2.51)

and

2.13 Colour Spaces and Transformation Formulae 51

Y

I

Q

 =

0.299×R + 0.587×G+ 0.114×B

0.596×R− 0.274×G− 0.322×B

0.212×R− 0.523×G+ 0.311×B

 (2.52)

2.13.5 HSV and HSI

The HSV and HSI are alternative colour spaces which were developed as a more intuitive colour

space for human observers. In particular the HSV colour space which was invented by Alvy Ray

Smith stands for Hue, Saturation and Value. The HSI stands for Hue, Saturation and Intensity.

For HSV the transformation is given below as follows15:

R′

G′

B′

 =

R/255

G/255

B/255

 (2.53)

Cmax = max(R′, G′, B′), Cmin = min(R′, G′, B′) (2.54)

4 = CmaxCmin (2.55)

H =

0◦, 4 = 0

60◦(G
′−B′
4 mod6), Cmax = R′

60◦(B
′−R′
4 + 2), Cmax = G′

60◦(R
′−G′
4 + 4), Cmax = B′

(2.56)

15https://www.vocal.com/video/rgb-and-hsvhsihsl-color-space-conversion/

2.13 Colour Spaces and Transformation Formulae 52

S =

0, Cmax = 0

4
Cmax

, Cmax 6= 0

(2.57)

V = Cmax (2.58)

For HSI the transformation is as follows [19]:

H = arctan(β

α
)

S =
√
α2 + β2

I = (R +G+B)/3

(2.59)

where α = R− 1
2
(G+B)

β =
√

3
2

(G−B)

(2.60)

The purpose of this section was to provide the reader with a few colour concepts. In particular,

the above provides some information on colour spaces which will become most relevant in later

chapters of this study which involves transformations of colour spaces. In the above section, the

details for several colour space transformations from the RGB were given. It is interesting to

observe many of the intricate transformations of colour spaces. When transforming colour spaces

from RGB, though not all, many of them are non-linear, with some even having cyclical relations.

53

Chapter 3

Self Supervised Deep Learning with Colour:

Image Colourisation vs Contrastive Learning

3.1 Introduction

At present, supervised learning is the most predominant approach for training Deep Learning

models, which involve using large databases containing hand labelled data which are used as

supervisory signals. An alternative to the supervised learning are known as the self supervised

learning methods which require no hand labelled data. This chapter compares two kinds of self

supervised learning. The first kind are those which attempt to solve a predictive, hand-crafted

pretext tasks by either systematically or stochastically corrupting the inputs and attempting

to recover them, thus requiring no manual labels. An example of this method include using a

Deep Learning model to solve image colourisation by corrupting input images systematically by

separating them by L and ab channels [106]. The other kind are known as the contrastive learning

methods which learn representations by contrasting data points of positive and negative examples,

where positive examples are data points that are congruent to each other, while negative examples

are data points which are incongruent to each other.

It was hypothesised that colourisation would seem to serve as a reasonable task for learning visual

representations because predicting colours require object level reasoning, and thus, a model which

can solve colourisation may have useful representations which could be re-used i.e., transferred to

other vision tasks. Yet in practice, these representations are found to lack the generality to solve

other more basic tasks such as image classification. contrastive learning methods methods on the

3.2 Overview 54

other and have been shown to be more success in learning representations that can generalise to

other vision tasks.

This motivates an investigation for a self supervised learning method which can combine the task

of predicting colours with contrastive learning framework, and if there are any benefits from this

method.

3.2 Overview

The remainder of this chapter is structured as follows: Section 3.3 begins by providing some

context around the works that are related to this chapter. Section 3.4 investigates the how

useful the predictive task of image colourisation is as a self supervised learning method for visual

representations by reviewing a few existing methods and conducting a short experiment to test

the transferability of the learnt features using one of the method. Section 3.5 compares predictive

and contrastive learning self supervised methods and proposes a method to combine the two, for

which an experiment is conducted to evaluate the proposed method against previous methods.

Section 3.6 provides a summary for this chapter, some direction of future works as concluding

remarks.

3.3 Related Work and Context

This section aims to provide some context around the related works. There are various forms of

self supervised learning which relies on solving some predictive pretext tasks in which the inputs

and labels can be both derived from the raw image data. These are considered the predictive

self supervised learning. Some examples of the predictive tasks include: image colourisation

[104, 106, 55], solving jigsaw puzzles [67], predicting rotation angle of rotated images [28] and

predicting relative positions of a patch for a corrupted image [24]. Proponents of these predictive

form of self supervised learning would argue that representations learned through solving many

of the above tasks are sufficiently generalisable to other tasks in the vision domain making them

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 55

useful as self supervised tasks.

A yet another kind of self supervised learning are known as the contrastive learning methods

which have recently become increasingly popular as they been shown to learn better visual rep-

resentations than the predictive self supervised methods, these often involve contrasting pairs of

examples from the same data by creating different views from them. Some examples of these in-

clude: learning by classifying whether a pair of global features and local features are from the same

image [40]; learning representations from contrasting sequential data such as speech, images, text

and reinforcement learning - Contrastive Predictive Coding (CPC)[69];, learning representations

from contrasting different views of the same image Contrastive Multiview Coding (CMC)[88]; and

contrastive learning based on two differently augmented views of the same image (SimCLR) [13].

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning

This section begins by first investigating if the predictive task of image colourisation alone is useful

for Convolutional Neural Network models to learn useful visual representations. To this end, the

following introduces two methods for self supervised feature learning using image colourisation,

known as the Cross-channel auto encoders [104] and the Split-brain auto encoders [106]. For

the latter of the two methods above, a short experiment is conducted with the aim of testing

the transferability of the learnt features from the method for the down-stream task of image

classification.

3.4.1 Cross-Channel Encoders

The Cross-channel encoders is a self supervised learning method which involves learning a rep-

resentation using a convolutional network for inputs X ∈ R
H×W×C ie., the images with with H

height W width and C channels. The input is split into data X1 ∈ RH×W×C1 and X2 ∈ RH×W×C2

where C1, C2 ⊂ C. These subsets can be a split between the L and ab channels of the image for the

Lab colour spaces. The Convolutional Neural Network is then tasked to solve X̂2 = F(X1). The

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 56

function F is learnt by a convolutional neural network which produces a layered representation

of input X1. By performing the colourisation task of predicting X2 from X1, the representation

F(X1) is learnt. The network can be trained on various loss such as the regression l2:

ll2 = F(X1,X2) =
1

2

∑
h,w

‖X2,h,,w −F(X1)h, w‖2
2 (3.1)

Or alternatively a classification loss can be used by encoding the output X2 ∈ R
H×W×C2 into a

distribution Y2 ∈ 4H×W×Q using a function H where Q is number of elements of the output

space which was quantized. In this case the Convoluational Network is trained to predict the

distribution Ŷ2 = F(X1 ∈ 4H×W×Q) where a cross entropy loss can be used as follows:

lcl = (F(X1),X2) = −
∑
h,w

∑
q

H(X2)h,w,qlog(F(X1)h,w,q) (3.2)

3.4.2 Split-Brain Auto Encoders

However, the disadvantage of the Cross-channel auto encoders is that as the prediction is from one

set of channels to the another, therefore at inference time one set of channel is lost (for example by

learning a mapping L→ ab, the signals from channel ab is lost since they are discarded due to the

input nodes of the architecture). The Split-Brain auto encoder [106] was an extension to solve this

problem by making use of the entire input signal by training two dis-joint, sub-networks, which

concatenate features. Split-Brain auto encoder consists of two sub-network, which each predicts

one subset of channels of the input from the other such that the sub-networks F1 and F2 are

optimised to minimise the loss functions L1 and L2 as follows:

F1 = argminF1L1(F1(X1),X2) (3.3)

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 57

F2 = argminF2L2(F2(X2),X1) (3.4)

where the loss functions L1 and L2 can be either the classification or regression losses ll2 or lcl

described previously. In the most simplest case, the Split-Brain auto encoder is used to solve the

colourisation problem in Lab space, i.e. one sub-network learns to predict the L channel from

the ab channels, while the other learns to predict the ab channels from the L channel (it is also

possible extended this to other color spaces and splits using other kinds of channels beyond colours

such as RGB and the depth in RGB-D images). The learnt representations are then concatenated

layer wise at each layer l as F l = [F l1,F l2]. This way, the input and the output to the network F

is the full input X. The original implementation of the Split-brain auto encoder consisted using

a base model of AlexNet by splitting the architecture in the middle i.e., dividing the number of

features in each layer by two to create two dis-joint sub-networks which are concatenated layer

wise, although in principal any convolutional network architecture can be used to implement the

Split-brain auto encoder.

3.4.3 Experiment

The purpose of this experiment is to investigate the Split-Brain auto encoder’s ability to transfer

the learnt features from image colourisation to a classification task. The experiment involves two

phases 1) implementing the self supervised learning though the pretext colourisation task, and

2) fine-tuning the network with the learnt features to be used for the classification task. For

the experiment that follows, several implementations of the Split-brain auto encoders with slight

variations in the fine-tuning phase are used, which are compared against a Fully-supervised base-

line model trained on the same quantity of labelled data. The experiment is conducted on the

challenging unsupervised learning benchmarking dataset - STL10 [18] (an overview and samples

of images can be found in Section: 1.4). In the following implementations, the ResNet18 architec-

ture is adapted as the base model for the Split-brain auto encoder which offers the simplicity of

implementation, robust performance, and due to their popularly used among comparative studies.

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 58

Additionally, the choice of using the most light weight variant of the ResNet, i.e., the ResNet18

(instead of ResNet50 or ResNet101 etc.) was simply a matter of feasibility due to limited compu-

tation resources.

Self supervised Learning with ResNet Split-Brain Auto Encoders

For the Split-Brain auto encoder implementation all images in the STL10 datasets are first con-

verted into Lab colour space to be used as inputs. The Split-Brain auto encoders architecture

was created by the splitting a ResNet18 architecture to form two dis-joint sub-networks as de-

scribed in Section 3.4.2. The self supervised Learning for Split-Brain auto encoders receive input

image signals for the colour channels of either L or ab for each sub-network. The networks are

optimised to minimise the loss between the predicted and input colour images for the L to ab, or

ab to L mapping at pixel level for each sub-network. The colour predictions are made at a lower

resolution than the original image. The loss functions was varied so that either a classification

(cross-entropy) loss is used by quantising the L and ab spaces (into 100 and 256 bins for L and

ab channels respectively), or by using a regression (L2) loss for the L and ab values between the

predictions and the ground truth colour images. All self supervised training for the Split-Brain

auto encoders used the Unlabelled set of the STL10 which include 100,000 images was optimised

using the Adam optimiser with learning rate 1e-3 for 5 epochs.

Additionally, to improve the quality of the image colourisation during the self supervised learning

phase, the Split-Brain auto encoder models which uses the classification loss functions are trained

using a tailored classification loss function to re-balance the penalty of the classes, (more details

for the loss function tailored to image colourisation provided in Section 4.4.1). This was done to

combat the negative effects of the severe imbalance found in the statistical distribution for the

quantised L and ab pixel values for natural images which may hinder the optimisation (among

them is the risk of the models simply learning to predict a majority class colour in the quantised

L and ab channels). To present some evidence of this imbalance, Figures 3.1 and 3.2 show the

statistics on the pixel distributions of L and ab values for all the unlabelled STL10 images. In

particular, histogram in Figure 3.1 shows the distribution of L channel pixels has a ’spike’ at the

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 59

Figure 3.1. Distribution (in Log scale) of the a
and b values for the unlabelled set in the STL10
dataset

Figure 3.2. distribution of the L values for the
unlabelled set in the STL10 dataset

0 and 100 values. Investigating further it was found that some of the images where sometimes

cropped, leaving the cropped area black (0) while others are taken against a while background

(100). Figure 3.2, show a concentration around 0 due to the ab values in natural photos having a

tendency to be biased towards greyish desaturated colours [104].

Fine-tuning for Classification Task

For the Fine-tuning phase of the experiment, an MLP classification layer is added on top of the con-

centrated representations of the Split-Brain auto encoders models. The Split-Brain auto encoders

are fine-tuned to perform the classification task using on the training set portion of the STL10

dataset which contain the labels for the images, by minimising the classification loss between the

predicted class and the ground truth labels supplied by the STL10 dataset. Furthermore, when

fine-tuning the models, two variants of fine-tuning are implemented described below. For both

variants the models are trained for 400 epochs.

• Freeze & Training Top-layers: by fine-tuning only the top 2 layers of the network while

freezing (fixing) the rest of the network weights. Only top-layers are fine-tuned using the

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 60

Adam optimiser with a learning rate of 1e-2.

• Fine-tune with Differential Learning [98]: where the whole network is fine-tuned, with

different learning rates. The Fine-tuning with Differential Learning uses the adam optimiser

with a learning rate of 1e-2 for the top 2 layers of the network and 1e-3 for the rest of the

network.

Fully Supervised Models (Baseline)

In addition, the Split-Brain auto encoders described above are also compared against a ResNet18

model with RGB inputs, trained fully-supervised on the classification task, initialised with random

weights using only the training set portion of the STL10 dataset. These models were optimised

using the Adam optimiser with learning rate 1e-2, with dropout applied with the rate of 0.5 for

400 epochs to minimise the classification loss between the predicted class and the ground truth

labels. These models serve as a baseline to the self supervised alternatives for the experiment.

Evaluation

The final results are given as the Classification accuracy score for the model performance of the

STL10 test set unseen to the models which involves comparing the model’s predicted class with the

ground truth labels. The classification accuracy is the percentage of correct predictions made by

the model. The evaluations are carried out in two ways: 1) by using only 1000 labelled examples

from the training set to train the model according to 10 predefined folds supplied by the authors

[18] for which the performance is averaged for all folds or 2) by using all 5000 training examples

provided in the dataset to train a model.

3.4 Colourisation as a Predictive Tasks for Visual Representation Learning 61

3.4.4 Results

Method 1000 Labels 5000 Labels

Fully Supervised (Baseline)

Random Initialisation + Dropout 53.59±0.7 69.63

Freeze body & Training Top-layers

Re-Balanced Classification 51.87±0.56 64.24

Fine-tune with Differential Learning

Re-Balanced Classification 54.78±0.58 68.7

Regression 53.66±0.64 69.07

Table 3.1. STL10 Classification accuracy performance of standard ResNet Split-Brain auto encoders

The results of the experiment is given in Table 3.1. The table shows the classification accuracy in

percentage for the test set images in STL10 for each of the varying methods. For models trained

with 5000 labelled images are available for training set, the self supervised learning methods do not

offer any advantage over the supervised learning method as they do not obtain better performance.

When only 1000 labelled image are available for training set, the self supervised learning methods

obtains a gain of no more than 1 percent by when using a classification-based loss Split-brain

auto encoders. When comparing between the different loss functions used for the self supervised

learning phase, it is difficult to find a clear winner between the the classification and regression

losses. The above results also show that when fine-tuning a model, the differential learning method

is recommended, as shown by better classification results. This may be from the flexibility the

model to adapt to the classification task when compared to freezing the weights.

3.4.5 Discussion

From the above results, the loss functions used (classification or regression) during the self super-

vised learning phase of Split-brain auto encoder models seem to have little effect on the quality

3.5 Visual Representation Learning with Colours and Contrastive Learning 62

of the learnt features. The above results also show that the features learnt from the colourisation

task may not be generalising well enough to the down-stream task of image colourisation when

comparing the differential learning method with the fixing (freezing) weights method.

It has been previously hypothesised that image colourisation provides a reasonable pretext task for

self supervised learning because predicting colours require object level reasoning, and thus, a model

solving colourisation would have useful representations which could be re-used i.e., transferred

to other vision tasks. However, the results presented in the experiments above however, do

not provide encouraging evidence in support of this, but rather reveals the difficulty learning

visual representations based on image colourisation alone. For the down-stream task of image

classification the feature representations learnt from colourisation perhaps lack generality and

transferability of the learnt features. These results motivates the next section which explores

other alternative methods of self supervised learning for visual representations that can better

generalise and uses colour information.

3.5 Visual Representation Learning with Colours and Contrastive Learning

This section compares the predictive and contrastive self supervised methods for visual feature

learning, and in addition also investigates means to combine the two. The following will first intro-

duce a simple contrastive learning method, and describe how a few contrastive learning methods

can be applied in practice. After that, an alternative method which combines the contrastive

learning methods with the predictive (colourisation) learning is proposed. Lastly, an experiment

which evaluates and compares the representation quality learnt from the predictive, contrastive

and the proposed alternative is carried out based on a linear evaluation method.

3.5.1 Learning From Augmented Views: Simple Contrastive Learning (SimCLR)

SimCLR [13] is a recently introduced contrastive learning algorithm which learns representations

by maximizing the agreement between differently augmented views of the same data example

3.5 Visual Representation Learning with Colours and Contrastive Learning 63

using a contrastive loss. The framework consists of four major components:

• A stochastic data augmentation module is used on a data example which results into corre-

lated view of the same example denoted by x̃i and x̃j which is considered a positive pair.

• A Neural Network base encoder f(·) which extracts representations hi = f(x̃i). In the

original implementation, a ResNet was used thus, hi = f(x̃i) = ResNet(x̃i) where hi ∈ Rd

• A small Neural Network projection head g(·) maps the representation where the contrastive

loss is applied, which uses a MLP with one hidden layer with a ReLU activation.

• A contrastive loss function defined for a contrastive prediction task. Where given a set {x̃k}

which includes positive pair examples of x̃i and x̃j, the contrastive prediction task aims to

identify x̃j in {x̃k [k 6=i]} for a given x̃i.

A mini batch of N examples are sampled for the contrastive prediction task on pairs of augmented

examples derived from the minibatch, resulting in 2N data points. Given, sim(u, v) = u>v/ ‖

u ‖‖ v ‖, i.e., the cosine similarity between vectors u and v, the loss function for a positive pair of

examples (i, j) is defined as

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k 6=i]exp(sim(zi, zk)/τ)
, (3.5)

where 1[k 6=i] ∈ [0, 1] which is 1 iff [k 6= i] and τ denotes a temperature parameter.

At the time of writing, the SimCLR is a state of the art among contrastive learning methods while

presenting a simple approach to self supervised learning compared to other comparable methods.

Among its achievement, the SimCLR is able to outperform the fully supervised AlexNet models

with 10 times fewer labelled training data for classification task with the ImageNet benchmarking

challenge.

3.5 Visual Representation Learning with Colours and Contrastive Learning 64

3.5.2 Contrastive Learning with Images

The following describes two simple instances of contrastive learning with images:

Contrastive Leaning on differently augmented views of the same images. The SimCLR frame-

work suggests creating pairs of differently augmented views of the same image by using a stochastic

data augmentation modules which distorts the images by randomly applying some of the follow-

ing to the images: 1) randomly cropping of the image, 2) applying colour distortion to the im-

age (which involves randomly changing the brightens, contrast, saturation, or hue), grey-scaling

(colour dropping), and 3) applying some Gaussian blur to the image.

Contrastive Leaning on different views of images. Alternatively, different views of the data

can also be considered to create pairs (e.g., luminance and chrominance of the same image) as

previously suggested by Tian et al., [88]. For a simple case, using the Lab colour space would

suffice, i.e., the L and ab channels from the same image can be considered as the positive pair.

3.5.3 Combining Contrastive Objectives with Colourisation

This section additionally investigates an alternative method for self supervised learning by propos-

ing a method that combines the image colourisation (predictive) task with the contrastive learning

method described above. This involves jointly solving the image colourisation task, contrastive

learning task for differently augmented views of images, using a special network architecture de-

scribed below.

The Proposed Network Architecture

The structure of the network architecture proposed is shown in Figure 3.3. It consists of a base

encoder which comprises two-disjoint sub-networks as proposed by the Split-brain auto encoder,

which splits the Lab channels to receive one of either the L or ab channels which contain different

views of the image. Each of the sub-networks are tasked to solve the image colourisation task

3.5 Visual Representation Learning with Colours and Contrastive Learning 65

Figure 3.3. Structure of the Proposed Predictive/Contrastive Learning Network

using a dedicated task head. The colourisation task heads are convolution layers which predicts

the pixel values of the colours for the image for the L or ab channel opposite to the channel which

the sub-network received where the L2 regression loss is applied. Additionally, the sub-networks

are concatenated layer wise for the full representation of the base encoder which has a projection

head which is a MLP with a single hidden layer with ReLU non-linearity where the contrastive

loss based on differently augmented views (i.e., the contrastive loss defined for the SimCLR) is

applied. For each training iteration, the total loss of the base encoder is calculated as the sum of

the contrastive loss and the colourisation losses from each of the sub-networks. The

3.5.4 Experiment

The aim of this experimental section is to compare the quality of the learnt representations for

predictive (colourisation), contrastive and the proposed self supervised learning methods by learn-

ing representations from the unlabelled set of the STL10 dataset. The following provides details

for the self supervised methods used to compare with the proposed method and the evaluation

procedure used for the experiment.

3.5 Visual Representation Learning with Colours and Contrastive Learning 66

Compared Self supervised Methods

To keep the comparison fair, the following self supervised methods described all adapt the Resnet18

architecture with a representation dimension of 512, as the base encoder or the equivalent Split-

brain auto encoder by splitting the parameters of the Resnet18 architecture in half. All of the

methods below are trained for 20 epochs with batch size 128, on the unlabelled potion of the

STL10 dataset which contain 100,000 images.

• Split-Brain auto encoder The Split-Brain auto encoder is implemented as described in

previous sections by training on the colour prediction task using L2 regression loss.

• SimCLR The SimCLR is implemented as described in Section 3.5.1 with a projection head

which has 1024 dimensions and temperature parameter τ = 0.5 using the data augmentation

module described in Section 3.5.2.

• Contrastive Learning on Channels L and ab In addition to the SimCLR, a contrastive

learning method based on the Lab channels is implemented which adapts the Split-brain

auto encoder architecture as a base encoder and uses the same contrastive loss set-up as the

SimCLR framework, except instead of using data augmentation to create congruent pairs,

different views of the Lab channels from the images are used to create the pairs i.e., the L

and ab channels from the same image is considered a positive pair.

• The proposed method The proposed method is impelmented as described in Section 3.5.3.

It should be noted that the colour predictions are made despite the colour distortions being

applied to the images from the data augmentation module, which makes the task more

challenging.

3.5 Visual Representation Learning with Colours and Contrastive Learning 67

Evaluation

The learnt representation are evaluated by freezing the weights of the base models and a training a

(linear) logistic regression classifier1 using the labelled data on top of the models for each methods

from which the test set accuracy is used as a proxy for evaluating the representation quality.

Using the STL10 dataset, allows for 2 evaluations for each method 1) by using only 1000 labelled

examples from the training set to train the linear classifier according to 10 predefined folds for

which the performance is averaged, and 2) by using all 5000 training examples provided in the

dataset to train the linear classifier.

3.5.5 Results and Discussion

Linear evaluation
Method Self supervised learning type 1000 Labels 5000 Labels
Split-Brain auto encoders Predictive 32.8 39.2
Contrasting channels (L and ab) Contrastive 35.9 41.3
SimCLR Contrastive 43.1 49.7
Proposed method Predictive/Contrastive 45.7 52.3

Table 3.2. Linear separability of different methods for the STL10 test set

Table 3.2 shows the results for the test set classification accuracy of the linear model calculated

in percentage. The results shows that the contrastive learning methods are better for learning

visual representations compared to the predictive method (i.e, the Split-brain auto encoder method

which performed the worst) as shown by linear evaluation. Notably the proposed method showed

a notable empirical gain over the already strong performance of SimCLR.

The results from the above experiment is promising particularly because it shows that when

learning visual representations, the contrastive learning and predictive learning methods can be

1The linear classifier used was based on the scikit-learn machine learning library: software available from
github.com/scikit-learn/scikit-learn.

3.6 Conclusion and Future Work 68

applied jointly as a self supervised method, and can improve the quality of the learnt representation

for Convolutional Neural Network models.

3.6 Conclusion and Future Work

This section concludes by providing a summary of this chapter and mentioning some future work.

The aim of this chapter was to explore self supervised learning methods for learning visual repre-

sentations and to explore what roles colours could play in achieving this. Previously, self supervised

learning methods based on teaching a Deep Learning to solve various pretext tasks such as image

colourisation has been proposed. This work therefore reviewed two of these methods known as

the Cross-channel auto encoder [104] and the Split-brain auto encoders [106] However, through

experiment it was found that on a practical level, the representations learned from the Split-brain

auto encoders lacked the generality to be useful for solving classification tasks.

The above therefore motivated the later sections of this chapter to investigate more recent ap-

proaches for self supervised learning which involve contrasting pairs of examples from the data

by creating different views from them i.e, Contrastive Leaning methods, and particular reviewed

a simple framework for this known SimCLR [13]. An experiment that was conduced which com-

pared the different self supervised learning methods found that the Contrastive Leaning methods

are better at learning visual representation than the Split-brain auto encoder method. More-

over, a proposed self supervised learning method which performs both the image colourisation

task jointly with contrastive learning was able to demonstrate notably improved results over the

previous methods tested in the experiment.

The experiments in this chapter is limited by the fact that the visual representations are evaluated

only for the downstream classification task, and therefore expanding variety of downstream task

for evaluation is likely to benefit this study.

69

Chapter 4

Efficient Generative Adversarial Image

Colourisation

4.1 Introduction

This chapter explores Deep Learning for the graphics task of image colourisation. Colourisation

is the process of adding colours to black and white images which were done traditionally by artist

who scrupulously hand-colour the images. As a computer graphics problem, image colourisation

is highly ill-posed due to the multi-modal nature of the task since objects and scenes can appear

in various plausible colours. Despite this, in recent years, there have been significant interest in

automating the colourisation task by using Deep Learning models by mapping gray-scale inputs

images to colourised output images.

Many Deep Learning systems that achieve visually impressive results often require extremely

large Convolutional neural network models with excessive computation requirements, large mem-

ory footprints and lengthy training time to converge. Subsequently, previous Deep Learning ap-

proaches have also required either the need for a complex architecture which extract multiple levels

of abstractions from the input images or the use of complex hand engineered loss functions. De-

spite this, the convolution layers used by conventional Deep Convolutional neural networks have

been found to have trouble in generating complex geometries and modelling long-range spatial

dependencies.

In particular this work focuses on network architecture design with efficiency of computational

4.2 Overview 70

resource in mind, in addition to building on important insights from state of the art Deep Learning

models for image synthesis. By using depth wise separable convolution layers, this work shows that

model architectures can be streamlined to have low memory requirements, and reduce computation

costs. By adapting a Generative Adversarial Network to the colourisation problem, a structured

loss is learnt through the process of training, allowing the network to be unconstrained by a

complex hand-crafted one. The Self-attention mechanism for generative adversarial networks

as proposed by Zhang et al., [103] (originally applied for image synthesis models) are found to

be better able to handle the modelling of long-range spatial dependencies when compared to

conventional Convolutional layers further improving output quality.

4.2 Overview

The remainder of this chapter is structured as follows: Section: 4.3 gives a brief survey on the

previous Deep Learning approaches to image colourisation. Section: 4.4 delves into more technical

details of the colourisation problems and in particular discusses two common approaches to image

colourisation using Deep Learning. Section: 4.5 provides details to the proposed method which

is implemented in this work. Section: 4.6 provides a some qualitative results for the proposed

method. Finally, Section: 4.7 provides a conclusion for this chapter.

4.3 Related Work

The following provides a brief survey on the previous Deep Learning approaches to image colouri-

sation listed roughly in the order of appearance. It should be noted that the related works below

only include systems which colourise images automatically and excludes systems which require

any additional user inputs or interactions:

• Dahl’s work [22] is an unpublished early colourisation model which uses ImageNet features

on a pre-trained VGG model which was trained on a regression loss.

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 71

• Iizuka et al., [46] introduced a colourisation model where a two-stream architecture is used

which fuses global, medium and local features allowing the colourisation output to be based

on many levels of abstractions of the input grey scale image.

• Zhang et al., [104] proposed a VGG styled network with added depths of up-sampling and

dilated convolutions and defined a classification based loss which rebalances the classification

penalty for rarer colours to promote more diversity in the predictions.

• Larsson et al., [55] used a VGG network with hyper-columns which allows features from

higher level layers to be connected with layers deeper in the network. The model predicts a

histogram distribution of colours.

• Pix2pix by Isola et al., [48] generalised the conditional GANs as a general propose solution

for image-to-image translation, solving among them the colourisation task. This approach

involves an adversarial training where a Generator network minimises a loss objective which

combines the l1 distance (between the real ground truth image and the generated image)

and an adversarial loss, while the Discriminator network evaluates on patches of the real

image and fake generated images.

• Nazeri et al., [66] also introduced an GAN based colourisation model building upon the work

of pix2pix with some more improvements.

• Deoldify [5] is recent, image colourisation model based on GANs which uses state of the

art techniques such as self-attention [103] and spectral normalisation [65] which seemed to

improve the visual results substantially. In addition, the work also introduces a new GAN

pre-training method called NoGAN which is trained based a perceptual loss.

4.4 Image Colourisation with Encoders and Generative Adversarial Networks

This section contrasts two different approaches to the image colourisation problem. This is done

to discuss some of the challenges involved with image colourisation and to provide some context

around the problem and delve into more technical details. In particular the following discusses

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 72

using an encoder based approach [104] by Zhang et al., which uses a hand engineered loss function

to achieve vibrant colourisation results, and an image translation method that uses Generative

Adversarial Networks by [48] Isola et al., which showed that reasonable image colourisation results

can be achieved without hand engineering a complex loss functions. Additionally, this section also

includes technical details to a self-attention module employed by state of the art GANs used for

image synthesis [103].

4.4.1 Image Colourisation using an Encoder

The image colourisation Deep Learning model proposed by Zhang et al. [104] is a single Con-

volutional neural network Encoder model trained on the imageNet database [78] containing over

1.2 million images. The network architecture is based on the VGG convolutional neural network

model (described in Section: 2.8.2 in Chapter 2) which was modified for colourisation. The model

takes an input image’s lightness channel (L) and predicts a corresponding a and b channels of

the image in CIE Lab colour space. The final layer of the architecture is a softmax layer which

outputs a distribution of quantized ab colour values at each pixel location of the image.

The Loss Function

Perhaps the most interesting part of this work is the loss function used to train the model which was

tailor made to the colourisation problem. The loss function by Zhang et al. treats colourisation

as a multinomial classification problem. When the ImageNet training data of over 1.2 million

training images, are quantized by the ab values pairs by grid size 10, 313 spaces of quantized ab

values pair bins are in gamut, thus making the colourisation problem a Classification problem

of a 313-way prediction at each point (pixel) location of the output image. For a given image’s

lightness (L) channel X, a mapping to a probability distribution over possible colours Ẑ = G(X)

are learnt where Ẑ = [0, 1]H×W×Q and Q is the 313 possible classes (of quantized ab value bins).

To compare the ground truth image Y against the prediction Ẑ, an additional function Z =

H−1
gt (Y), is used where a soft-encoding scheme converts the ground truth colours Y into the vector

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 73

Z, by finding a weighted 5-nearest neighbours to the ground truth colour Yh,w in the output

space by taking the 5 closest colours and their proportional distance from the ground truth using

a Gaussian kernel with σ = 5. The loss function is therefore a multinomial cross entropy loss

function Lcl which was defined as:

Lcl(Ẑ, Z) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,qlog(Ẑh,w,q) (4.1)

where v(.) is a weighting term which is used to rebalance the loss based on colour’s rarity based on

the distribution of ab values. Empirically it was shown that in natural images, the ab values tend

to be severely biased towards low values. This results in the imbalance of class which presents a

problem when optimising a classification loss. Therefore, in order to account for this, the colour

class are re-weighted during training time to emphasize rarer colours, where each pixel is weighted

by a factor w ∈ RQ based on the closest ab bin as follows:

v(Zh,w) = wq∗ , q
∗ = argmax

q
Zh,w,q (4.2)

w ∝
(

(1− λ)p̃+
λ

Q

)−1

,E[w] =
∑
q

p̃qwq = 1 (4.3)

where p̃ ∈
aQ is a smoothed empirical distribution, which is obtained by smoothing the distri-

bution of the empirical probability of colours in the quantized ab space p ∈
aQ with a Gaussian

kernel Gσ. The the distribution is then mixed with a uniform distribution λ ∈ [0, 1], where the

reciprocal is taken and normalized so the weighting factor is 1 on expectation.

Predictions Made at Inference

At inference time, another additional function Ŷ = H(Ẑ) is used to map the predicted distribution

Ẑ (i.e. the network’s final softmax layer predictions) to a pixel location in ab space to produce the

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 74

final output image Ŷ . The function H is necessary to balance the trade-off between final output

results which have spatial consistency and desaturated colour predictions when mapping from the

Ẑ distribution to a final output image. This is because it was found that taking the mode of the

softmax layer’s predicted distribution (i.e the colour with the highest activation) for each pixel

results in spatially inconsistent results whereas taking the mean of the softmax layer’s distribution

results in output images that have desaturated colours due to the effect of averaging. Thus, the

function H is used to alter the distribution of the softmax layer predictions ẑ, from which the

mean is taken from that distribution to produce the final end results. This function was described

as:

H(Ẑh,w) = E[fT (Ẑh,w)], fT (ẑ) =
exp(log(ẑ)/T)∑
q exp(log(ẑq)/T)

(4.4)

where T is a temperature hyper-parameter. Setting T = 1 leaves the distribution of Ẑ unchanged,

lowering T results in a more sharply peaked distributions of activations where T → 0 results in

the output producing a one-hot vector representation. Thus, the final system is composed of the

Convolutinal Neural network G which predicts a distribution of colours over all the pixels for the

output image and H which produces the final output which is spatially smoothed.

Image Colourisation with Encoders: Limitations

The Encoder approach described thus far are able to achieve results which have vibrant colours

and was an improvement over previous results at the time of its publication. Despite the merits

of the above system, there are several downsides to the Encoder based approach, discussed below.

First, is the limitations of the system with respect to the visual quality. These are best described

by presenting a few visual examples. Figures 4.1 and 4.2, each shows a comparison between the

original images and examples of output results for the re-colourised images from the Author’s

replication [2] of the original work, trained from scratch on a subset of the ImageNet.

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 75

Figure 4.1. Example output (from a validation set) of colourisation using the encoder approach: An
image of an object - the image on the left is generated, and the right image is the original

Figure 4.2. Example output (from a validation set) of colourisation using the encoder approach:: An
image of an indoor structure - the image on the left is generated, and the right image is the original

Figure 4.1 shows an object colourised in red which lacks spacial consistency. The lack of spatial

consistency despite the built-in spatial smoothing of the outputs done though the function H.

Figure 4.2, shows a particularly poor result for an indoor scene wall, with the confusion resulting

red and blue artefacts being introduced in the image, (in addition to some other objects incorrectly

coloured red) this is perhaps an indication of some difficulty in inferring structures which span

the image globally, hence different parts of the walls are colourised with patches of red and blue

colours. Some improvements for these common problems are further discussed in Section 4.5.

Second, is the limitation of hand engineering a suitable tailored loss function to colourisation.

While hand engineering a loss function such as the kind described above can improve the visual

quality of image colourisation, it would seem more desirable to allow a network to discover a

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 76

suitable loss function automatically. To that end, the Generative Adversarial Networks may

provide a better path to improvement as loss functions are learnt through training.

4.4.2 Image Colourisation using Conditional Generative Adversarial Networks

Whereas the encoder approach learns a mapping where each output pixel is independent from

each other, GANs are able to learn a structured loss. Isola et al., [48] popularised the conditional

Generative Adversarial network (cGAN) as a general propose image to image translation system.

In Isola et al.,’s work [48], it is demonstrated that visually compelling image synthesis can be

achieved without using a hand-engineering loss functions, by introducing a simple framework

known as Pix2pix. The distinction of a cGAN compared to a standard GAN can be described as

follows: whereas a GAN (see section 2.10.3) learns a mapping from a random noise vector to a

target output y, G : {z} → y, a cGAN in contrast, learns a mapping from an observed input x

and a random noise vector z to y, G : {x, z} → y.

The Conditional Generative Adversarial Network Objective

The Pix2pix framework [48] trains a cGAN which observes an input image x and uses a generator

network G which produces output images that are difficult to distinguish from the ’real’ images

by using a discriminator network D. The objective for the framework proposed by Isola et al.,

was described as:

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (4.5)

where G is optimised to minimise the objective against the adversarial network D which tries to

maximize it. In addition, the generator is also optimised to be close to the ground truth ’real’

images by mixing the L1 loss to the objective such that:

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 77

G∗ = arg minGmaxDLcGAN(G,D) + λLL1(G), (4.6)

where the λ is a hyper parameter used to control the strength of the L2 objective, and

LL1(G) = Ex,y[‖y −G(x)‖1], (4.7)

i.e., it is the L1 pixel wise distance between the generator network’s output and the ’real’ image.

Overall, the objective described above allows differences between the generated images and the

’real’ images to be penalised such that the low-frequency structures of images are penalised by

the L1 objective while the discriminator’s D network’s objective enforces the correctness higher-

frequency structures of the images.

The Architecture and Optimisation

The Discriminator network uses an architecture which consists of contracting layers which down-

samples the input image to capture context, which is proceeded by and symmetric expanding

layers which up-samples the images. In addition, skip connections [73] are added between each

ith and n − ith layer where n is the total number of layers, and each skip connections simply

concatenates all the channels at the two layers.

The Pix2pix frame work also showed that better quality of outputs are generated by restraining

the evaluation of the Discriminator Network to local patches of images rather than evaluating on

the whole image. This requires a special architecture for the discriminator network termed the

PatchGAN. The PatchGAN discriminator network evaluates and classifies each N×N patch from

the generator network’s output, convolutionally where they are averaged across the whole image.

This allows the discriminator to evaluate on local structures of the generated image instead of the

image as a whole.

The optimisation follows the standard GAN approach where training is alternated between one

4.4 Image Colourisation with Encoders and Generative Adversarial Networks 78

gradient descent step on the Discriminator, then one step on Generator. Training is done using

SGD with the Adam solver [49] for both networks.

4.4.3 Self-attention Mechanism for Image Synthesis using GANs [103]

Figure 4.3. Self-attention module for the SAGAN (Image source [103])

The following provides details for the self-attention module introduced by Zhang et al., [103].

Briefly, the self-attention module calculates a response at a point as a weighted sum of the features

of all positions. This self-attention module is shown in Figure 4.3, where ⊗ denotes a matrix

multiplication. The self-attention module are layers in a generative adversarial networks. The

SAGAN attention modules takes the image input features from the previous hidden layer x which

are transformed into two feature spaces f, g where f(x) = Wfx, g(x) = Wgx. These two feature

spaces are then used to calculate the attention by:

βj,i =
exp(si,j)∑N
i=1 exp(si,j)

,where si,j = f(xi)
Tg(xj), (4.8)

βj,i therefore indicates the extent the model attends to the ith location when synthesising the jth

region. The output of the attention layer is then given as o = (o1, o2, ..., oj, ..., oN) ∈ RC×N , where:

oj = v(
N∑
i=1

βj,i), h(xi) = Whxi, v(xi) = Wvxi (4.9)

4.5 The Proposed Method 79

where, Wg ∈ RC̄×C , Wf ∈ RC̄×C , Wh ∈ RC̄×C and Wv ∈ RC×C̄ which are learned weight matrices

by 1 × 1 convolutions, and the channel numbers C̄ is reduced by C
k

where k = 1, 2, 4, 8 (i.e., if

k = 8, then C̄ = C
8

) for memory efficiency. Lastly, the final output is obtained by multiplying o

with a learnable scaling parameter γ and adding the input as a residual connection, therefore the

final output is given by:

yi = γoi + xi. (4.10)

4.5 The Proposed Method

This work borrows from the Pix2pix framework and treats image colourisation as a image trans-

lation problem while building on crucial insights from state of the art in image synthesis using

GANs to improve output quality. Additionally, the network architecture implemented in this work

is computationally resource light, and is streamlined to reduce memory requirements and training

time. The method can be summarised as having the following advantages:

• Learning a structured loss using generative adversarial networks - The framework offered

by Pix2pix allows for a structured loss to the colourisation problem compared to a pixel-

wise, unstructured losses used by encoder approaches where each output pixel is learned

conditionally and independently from the others in a given input image. Furthermore,

given that with Deep Learning, features are no longer engineered, but are automatically

discovered through training, it is likewise perhaps more practical to adapt a GAN based

approach which learns the mapping and loss function through training. This eliminates the

need of hand-engineering a loss function for colourisation. This shifts the problem from

engineering a tailored loss to discovering more suitable models and implementing better

training to achieve better colouration results.

• Colourisation with better spatial modelling using attention - Conventional convolution

layers seem to have difficulty in modelling long-range dependencies, and synthesising images

4.5 The Proposed Method 80

with complex geometries which have many structural constraints, compared to images which

have few structural constraints such as images of landscapes. Zhang et al., [103] pointed

out the limitations of using conventional convolution layers for image synthesis because of

the difficulties of modelling dependencies across spatially far apart regions of the images,

due to the small sizes of the convolutional operator’s local receptive fields. As a result, with

conventional convolution layers, details in images are generated as a function of spatially local

points from a low resolution feature maps. To better model long-range dependencies the Self-

Attention Generative Adversarial Networks [103] introduced the self-attention module which

work complementary to the operations in convolutional layers. Since the successful image

colouration hinges on the model’s spatial coherence and modelling of long-range dependencies

self-attention modules provide a path for improvement.

• Efficient architecture design and training - To optimise for efficiency, the proposed model

uses no more than 4.14M parameters in total for both the discriminator and generator

network, which is achieved by employing depth-wise separable convolutions (see Section:

2.8.1) which allows for computation efficiency, and the reduction of memory requirement.

In addition the model is trained by applying spectral normalisation (introduced by Miyato

et al., [65]) to both the discriminator network and the generator network, as suggested by

Zhang et al., which sets the spectral norm of all the weight layers to 1. Spectral normalisation

require no extra hyper-parameter tuning, and require little additional computational cost.

4.5.1 Architecture Details

The system has a network architecture as shown in Figure 4.4. The generator architecture has

an encoder-decoder structure and formed of 14 Res-block [35] like modules which uses depth-wise

separable convolutions (see Section: 2.8.1). The number of channels allocated for each res-block in

the encoder-decoder structure is as follows: encoder uses [64, 128, 256, 256, 256, 256, 256]channels,

while the decoder uses [256, 256, 256, 256, 256, 128, 64]. The generator network also uses U-net

[73] skip-connections which concatenates the features between the ith and n − ith for the i > 3

Res-blocks, where n is the number of the total res-blocks. In between the encoder and the decoder

4.5 The Proposed Method 81

Figure 4.4. The proposed Efficient Image Colourising GAN (this figure is not exact to the scale of
parameter sizes)

of the generator, the self-attention module (as described in Section 4.4.3) was inserted with 256

channels to handle the modelling of long range dependency. Additionally, the architecture has

initial layer which uses convolution-BatchNorm-ReLU layer and a final convolution layer which

uses convolution-BatchNorm-Tanh which produces the final output colourised image.

The discriminator network has a PatchGAN architecture (see Section: 4.4.2) where the discrim-

inator tries to classify if a patch region of an image is generated by the generator network (i.e.,

fake), or sampled from the ground truth (real) image with colours . The discriminator consists

of an initial convolution layer with 64 channels immediately followed by a self-attention module

with 64 channels, which is then followed by a series of 3 res-blocks which each have double the

number of channels from the previous res-block, with a final PatchGAN classier of size 12 × 12

pixels. All convolution layers used in the discriminator uses convolution-BatchNorm-leakyRelu

with slope value of 0.2

4.6 Experiments and Results 82

4.5.2 Training Details and Optimisation

For training data, the unlabelled set from the STL10 dataset was used which contain 100,000

images which has sizes of 96×96 pixels. The discriminator and generator networks are trained on

the Pix2pix loss objective as described in Section: 4.4.2, and follows the standard GAN optimisa-

tion procedure by alternating between one stochastic gradient descent step of the Discriminator

and one step of the Generator. The Adam optimiser was used with a learning rate of 2e-4 for 5

epochs, with batch sizes of 128.

4.6 Experiments and Results

This section provides some experimental results to provide some quantitative assessment of the

method proposed against several alternative models. The experiment consists of evaluating the

predictions of the models for 8000 unseen images from the STL10 test set. Henceforth, referring

to the proposed model as the cGAN+Att+DSConv+SN model, this model is compared against

the following alternative models:

• cGAN. A conditional generative adversarial network for image colourisation. Unlike the

proposed model, the network architecture in this implementation does not include the self-

attention modules or depth wise separable convolution layers.

• cGAN+Att. A conditional generative adversarial network with standard conovlution layers

which uses self-attention modules in the same layers as the proposed model.

• cGAN+Att+DSConv. A conditional generative adversarial network with self-attention

modules and depth wise separable convolution i.e., it a model with a network architec-

ture that is identical to the proposed model. However, unlike the proposed model, it is

trained without applying the spectral normalisation [103].

To keep the comparison as fair as possible, all models are trained with the same training parameters

as the proposed model. The models are evaluated for the following key metrics:

4.6 Experiments and Results 83

• Average pixel RMSE (RGB)- The pixel wise average euclidean distance between the colouri-

sation predictions of the model and the original colour images in RGB space.

• Average pixel dE Lab - The pixel wise average colour difference between colourisation

predictions of the model and the original colour images in Lab space.

• Total parameters - The total number of parameters required for the GAN architectures.

• Train time - Total training time taken to complete 5 epochs of training.

Method RMSE (RGB) dE Lab Total parameters Train time
cGAN 30.69 11.64 11,740,484 21291
cGAN+Att 26.87 10.59 11,874,089 24360
cGAN+Att+DS Conv 29.32 11.04 4,135,798 17018
cGAN+Att+DS Conv+SN(Proposed) 25.51 10.38 4,135,798 17144

Table 4.1. Comparison of Image Colourising GAN models using qualitative measures

Table 4.1 shows the results for each model for the above metrics. It should be noted that the

results for the RMSE and dE Lab, which serves as a proxy for assessing the Image colourisation

quality are generally quite high in values across all the models. This is somewhat expected since

this is not strictly a image reconstruction task, but rather, the networks are predicting plausible

coloured version of the image. Nonetheless, against the other models tested, the proposed model

produces the lowest average pixel wise RMSE and dE Lab while using the least amount of total

parameters and reasonable training time. With the input image resolution of 96×96 pixel, whereas

a standard cGAN architecture requires approximately 11.7M total parameters using standard

convolution layers, models which use depth wise separable convolutions are able to reduce the

required total parameters to approximately 4.1M, in addition to significantly reducing training

time for computing the same amount of iterations. The implementation of spectral normalisation

during training produces the best results while requiring little additional computation.

Additionally, some samples of the outputs from the proposed system can be found in Appendix

C to provide some visual samples of the outputs. One open question that remains is that a small

4.7 Conclusion 84

number the of samples from the colourised images, appeared to suffer from a failure mode, where

the outputs are left in grey-scale which have also been reportedly found to be common in the

study by Isola et al., [48].

4.7 Conclusion

This chapter explored the application of Deep Learning for image colourisation which has the

potential to automate the traditionally labour intensive graphics task. Many popular early work

of Deep Learning image colourisation involved the Encoder based approach, which predicts each

output pixels independent from each other. Despite carefully defined loss functions, and efforts

to manually spatially smooth the final outputs, it was found that the Encoder based approaches

often produced colouration results that are spatially inconsistent. Thus, many later works in the

literature seem to favour the use of generative adversarial networks which trains the networks

to learn both the mapping function of the generator network and a structured loss through the

discriminator network.

This work demonstrated that the complex task of image colourisation can be achieved with a

network architecture streamlined for efficient using factorised convolution layers to significantly

reduce parameter size and computation cost while achieving visually good results. The implemen-

tation in this work adapted the GAN approach to image colourisation, and builds on insights from

state of the art GAN models, and in particular recently introduced training techniques and efficient

factorised convolution to reduce excessive computation requirements and while improving colouri-

sation results. The use of self-attention modules are explored to better model long-range spatial

dependency and thus provided some improvements over using of using conventional convolution

layers. In addition, more recent training techniques were used such as the Spectral Normalisation,

which when applied during training has also found to further improve the colourisation quality.

85

Chapter 5

Supervised Deep Learning and Colours:

Colour Spaces and Attention for Image

Classification

5.1 Introduction and Motivation

The objective of this chapter is to explore colour spaces as a means for improving Convolutional

Neural Networks for the supervised learning setting. The motivation for this study comes from the

fact that most modern deep Convolutional Neural Networks are simply trained on the RGB colour

components of the input image. By using the various transformation formulae (described in Chap-

ter 2.12), it is possible to convert between the colour spaces, to transform the input representation.

The purpose of this study is to investigate if the various colour space transformations would result

in performance difference for the task of image classification with Convolutional Neural Networks.

5.2 Related Work

There are ample amounts of examples which colour space transformations as a preprocessing step

as they have been commonly used as parts traditional machine learning pipelines [11, 89, 90]. In

more recent works which uses Deep Learning, colour space conversion are treated as engineered

solutions for very specific application needs. For example a recent study [10] applied HSV colour

space transformation to the inputs be used as a spatial image segmentation step which are fed to

5.3 Experiment 1: Alternative Colour Spaces for Convolutional Neural Networks 86

neural network that uses the LeNet5 [59] architecture for the tasks of traffic sign detection and

recognition. If not for a specific application needs, generally Convolutional Neural Networks, use

the RGB colour spaces as inputs.

However, there are few studies which used more than just the RGB colour space for image classifi-

cation tasks and achieved performance boots. An example is a recent study by Gowda et al., [32]

which proposed a system which uses an ensemble of DenseNets models which each uses a different

colour spaces as inputs.

5.3 Experiment 1: Alternative Colour Spaces for Convolutional Neural Net-

works

As a first experiment, the following aims to find out if converting between different colour spaces,

to transform the input representation using the various colour space transformation equations will

result in any notable difference in performance for the Convolutional neural networks. This is

done by converting the original RGB images into different colour spaces of LAB, HSV, YUV, and

XYZ.

Another alternative would be to combine different colour spaces by stacking the colour components

of multiple colour spaces channel-wise as input (e.g., RGB and LAB) and increasing the number

of input node channels for the Convolutional neural network as needed by the additional channels

for the colour spaces.

To test the methods above, two modern architectures of Convolutal neural network models

(Densenet and Mobilenet) were selected to be trained on the popular Cifar 10 and 100 bench-

marking datasets [52]. The two models were chosen arbitrarily, but they provide a comparison

for different kinds for networks. The full training details could be found in the Appendix (see

Appendix B.0.2). Each models were individually trained on the LAB, HSV, YUV, and XYZ colour

spaces and creating different combinations of ’stacked’ multi colour spaces by combining different

combinations colour components from the RGB, LAB, HSV, YUV colour spaces. These models

5.4 Hybrid Colour Spaces using Attention 87

were evaluated by the standard protocol of the Cifar dataset i.e., the classification performance of

the trained models on the predictions for test set. [52].

5.3.1 Results

Densenet121 Mobilenet224
Cifar 10+ Cifar 100+ Cifar 10+ Cifar 100+

RGB(baseline) 94.84 76.71 93.66 73.61
LAB 94.18 (-0.66) 74.4 (-2.31) 92.69 (-0.97) 71.3 (-2.31)
HSV 94.95 (0.11) 75.85 (-0.86) 93.78 (0.12) 73.31 (-0.3)
YUV 95.1 (0.26) 76.26 (-0.45) 93.46 (-0.2) 73.22 (-0.39)
XYZ 94.68 (-0.16) 75.65 (-1.06) 93.32 (-0.34) 72.75 (-0.86)

Multi Colour spaces
RGB, LAB 95.09 (0.25) 77.04 (0.33) 93.92 (0.26) 73.32 (-0.29)
RGB, LAB, HSV 94.76 (-0.08) 76.53 (-0.18) 93.8 (0.14) 73.31 (-0.3)
RGB, LAB, HSV, YUV 95.11 (0.27) 76.98 (0.27) 93.86 (0.2) 73.84 (0.23)

Table 5.1. Performance (accuracy) comparison for Densenet and Mobilenet on different colour spaces
against baseline RGB the best performance for each category is highlighted in bold font

The Table 5.1 shows the results of the classification accuracy performance for text set in percentage.

The results does not seem to show meaningful patterns and the use of different colour spaces of

Convolauional neural networks only results in minute difference in performance.

5.4 Hybrid Colour Spaces using Attention

A hybrid colour spaces is the idea of either interactively or adaptively combining different colour

components from different colour spaces to increase the effectiveness of the colour components

to discriminate colour data, and to reduce the rate of correlation between colour components

[89, 19]. The use of hybrid colour spaces specifically for Convolutional Neural Network seem to

be sparse in the literature. The challenge of using a hybrid colour space is determining relevant

colour components. Previous methods for for finding optimal colour component combination for

the hybrid colour space include the use of generic algorithm heuristics and principal component

analysis [68] which adds complexity to the process.

5.4 Hybrid Colour Spaces using Attention 88

The following attempts to explore an automatic method of determining a the relevant colour

components for a hybrid colour space specific to a convolutional network architecture by using the

self-attention modules, since in theory the self-attention modules in convolutional neural networks

learn a vector of importance weights by using gating mechanisms. The Squeeze-and-Excitation

module (see section 2.11.2) is an example of a popular self-attention mechanism which uses a

gating mechanism .

By using the attention modules from the Squeeze-and-Excitation networks (see section 2.11.2) in

the first layer of network architecture and observing vector of activations of the attention modules

some patterns was found to emerge, it is hypothesised that these reveal some amount of colour

component importance. These colour component importance can then be used to determine the

relevant colour components to create a hybrid colour space of a convoltuional neural network

architecture.

Attention Hybrid Colour Spaces

The method for building hybrid colour spaces using the self-attention mechanism is implemented

as follows:

1. Convolutional network model of a model architecture which uses the Squeeze and Excitation

module is trained on a data set. The Convolutional network model has an arbitrary number

of colour channels, call this number C.

2. Once the model is trained, the forward pass is computed on a large number of images, and

the activations of the vector s (in Equation 2.44) form the Squeeze and Excitation module

in the first layer is recorded.

3. The recorded activations are averaged. The averaged activations is a vector, which is the

same length as the number of input channels of Convolutional network model. Each element

in the vector corresponds to an input channel of Convolutional neural network input i.e, a

single colour component.

5.4 Hybrid Colour Spaces using Attention 89

4. using the averaged pattern of activations by ranking the corresponding colour components

with the strongest activations first, a hybrid hybrid colour spaces which uses the number

of colour components < C is created for the model architecture by discarding the colour

components corresponding to the lowest ranking activations.

Using the above process for the DenseNet and the MobileNet for the cifar10 and cifar100 dataset

with C = 12, produces the results in shown Table 5.2.

Colour Component Ranking by Highest Activation
DenseNet MobileNet

Channel Cifar10 Cifar100 Cifar10 Cifar100
RGB(R) 10 7 11 10
RGB(G) 7 2 9 8
RGB(B) 2 1 7 11
LAB(L) 1 6 8 7
LAB(A) 5 8 5 3
LAB(B) 8 4 2 4
HSV(H) 12 10 3 1
HSV(S) 11 11 6 2
HSV(V) 3 12 12 12
YUV(Y) 6 5 10 6
YUV(U) 9 9 4 5
YUV(V) 4 3 1 9

Table 5.2. A colour component ranking based attention activation values for each task and architecture

Using Table 5.2 to create a hybrid colour space for DenseNet with 3 colour components for Cifar10

would result in colour components in the order of L (from LAB), B (from RGB) and V (from

HSV) as these were the ranking order of the highest activation values. The rankings from table

5.2 was then used to create Convolutional network with hybrid colour spaces with 6 and 9 colour

component channels for the classification task of Cifar10 and Cifar100. The results for these

models on the classification accuracy performance for test set in percentage and compared against

RGB baselines from the previous experiment is shown in Tab 5.3. Lastly, the averaged activation

patterns for the different hybrid colour spaces, for different datasets and models can be found on

Appendix D these are included only for reference as it does not provide any more information

than the individual activation patterns for different models for different Datasets.

5.5 Conclusion 90

Densenet121 Mobilenet224
Cifar 10+ Cifar 100+ Cifar 10+ Cifar 100+

Attention & Hybrid Colour Spaces
12-channels (With Colour Attention) 95.10 (0.26) 76.90 (0.19) 94.04 (0.38) 73.60 (-0.01)
Top 6-channel hybrid 94.97 (0.13) 77.07 (0.36) 94.15 (0.49) 73.78 (0.17)
Top 9-channel hybrid 95.11 (0.27) 77.17 (0.46) 94.05(0.39) 73.65 (0.04)

Table 5.3. Comparison of classification accuracy for Densenet and Mobilenet using hybrid colour
spaces

5.5 Conclusion

This chapter explored the utility of different colour spaces other than RGB as a means for im-

proving Convolutional Neural Networks. First an experiment comparing colour spaces for different

architectures, was conducted, which also included multi colour space which uses a combination

of different colour spaces which are fed as inputs to the Convolutional Neural Networks. In the

experiment conducted it was found that the uses of different colour spaces only results in minute

differences in performance if any gains are made (no more than half-percent gains were mode),

though most colour spaces perform worst off than RGB. It is therefore concluded that at least for

classification tasks for convolutional neural networks, using the RGB colour space is a safe choice.

This chapter then introduced a method which purportedly creates hybrid colour spaces auto-

matically using Self-attention mechanism which are specific to different architectures and tasks

(datasets). Experimentally, the initial results seem to be no worst than using the different non-

RGB colour spaces, although some more thorough analysis would be required for verifying this

method.

91

Chapter 6

Conclusion

6.1 Thesis Summary

This thesis was written in the hopes of making a small but meaningful contribution towards the

research areas which concern Deep Learning for vision and colours.

Chapter 2 provided an overall literature review for Artificial Neural Networks and Deep Learning.

This chapter began with an introduction to machine learning, and the various learning paradigms.

Then, a historical context an Artificial Neural Network as provided, where it was stated that one

of the long standing challenges that remained for Deep Learning is making the Deep Learning

algorithms learn without using human annotated data. Following that, details for the Multi-

layer perceptron, Convolutional Neural Networks and details for more advanced concepts were

provided. Thereafter, several methods for unsupervised learning with Deep Learning was discussed

and some details on Attention Mechanisms for Deep Learning was provided. Lastly, a brief

summary on colour concepts were provided and in particular described some of the mathematics

for transforming colour spaces.

In chapter 3 the aim was to explore methods of self supervised learning for visual representations

and how colours could play a role in achieving this. This chapter began by providing a brief review

of works in the literature which relate to self supervised learning while building some context

around them. Following that, this chapter investigated the self supervised learning methods

which involve the predictive task of image colourisation, leading to an implementation of one

of the methods, which lead to the conclusion that in practice, using colour predictions alone as

6.1 Thesis Summary 92

a predictive task for self supervised learning is not sufficient, likely because the representations

learnt by them do not generalise well enough to other tasks. This motivated the investigation of

other methods for visual representation learning and in particular a method known as contrastive

learning. This lead to the development of a self supervised learning method which combines both

the colour prediction task with the contrastive learning method which delivered some promising

results as a method improving visual representations.

Chapter 4 explored the application of Deep Learning for the task of image colourisation from a

graphics task perspective, which has the potential to automate this tremendously labour intensive

task usually performed by human artists. This chapter provided a brief survey of literature for

the related work and found that the earlier approaches to this problem which used Convolutional

Neural Network models often used carefully defined loss functions and manually smoothed the

final outputs, yet despite this, was often fell short of producing spatially consistent results and

satisfactory outputs. It was hypothesised that these were in part due to the limitations of the

conventional convolution layers and the encoder network based approach. Therefore, the imple-

mentation in this work adapted the Generative Adversarial Network approach while building on

insights from recently introduced Deep Learning models with the aim of improving colourisation

quality. The final model proposed used a streamlined architecture, with efficient convolution layers

which demonstrated that the a task as complex as image colourisation can be achieved with signif-

icantly low computation cost while producing visually good results, this was found by comparing

qualitative results with several other baseline models.

Chapter 5 investigated colour space Deep Convolutional Neural Networks classification models,

and originally sought to find if performance gains are available using different colour spaces for

Different models by searching different combinations to however, it was concluded that in most

cases the differences in performance were minute. Instead, some experiments were conducted by

using attention mechanism to observe patterns of internal activations in the Convolutional Neural

Networks.

6.2 Future Work and Limitations of this Study 93

6.2 Future Work and Limitations of this Study

Finally this section summaries some directions of future work for this study:

• In chapter 3 it was noted that the experiments in was limited by the fact that the vi-

sual representations are evaluated only for the downstream classification task, and therefore

expanding variety of downstream task for evaluation is likely to benefit this study. Addi-

tionally, given that it is claimed that contrastive learning benefits from larger batch sizes

and longer training [13], a larger scale implementation to find the upper-bounds limits of

performance for the method proposed is a future work.

• In chapter 4, in the context of image colourisation, there is currently is no standard evaluation

metric for quantifying the quality of colourisation models despite there being evaluation

metrics available of for tasks such as image synthesis using generative models [8]. Therefore,

formulating one would benefit this work.

• In chapter 5, a novel concept was introduced, however these were based on intuition and

empirical results only, some more through analysis would be required to prove its validity.

Lastly, as a general note, many of the experiments in this study was done on moderate compu-

tational resources which presents clear limitations as a Deep Learning research. Nonetheless the

experiments presented in the sections above were designed with the intention to provide valid

results for the limited implementation scale.

6.2 Future Work and Limitations of this Study 94

BIBLIOGRAPHY 95

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[2] A. Akanuma. Transfer report - fine inference deep learning models for image colourization. 2017.

[3] I. Aleksander and H. Morton. Aristotle’s Laptop: The Discovery of Our Informational Mind,

volume 1. World Scientific, 2012.

[4] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan, B. C. V. Esesn, A. A. S. Awwal,

and V. K. Asari. The history began from alexnet: A comprehensive survey on deep learning

approaches. CoRR, abs/1803.01164, 2018.

[5] J. Antic. Deoldify https://github.com/jantic/deoldify, 2019.

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder

architecture for scene segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2017.

[7] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate, 2014.

[8] S. Barratt and R. Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973, 2018.

[9] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is

difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[10] J. Cao, C. Song, S. Peng, F. Xiao, and S. Song. Improved traffic sign detection and recognition

algorithm for intelligent vehicles. Sensors, 19(18):4021, 2019.

BIBLIOGRAPHY 96

[11] D. Chai and A. Bouzerdoum. A bayesian approach to skin color classification in ycbcr color space.

In 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat.

No. 00CH37119), volume 2, pages 421–424. IEEE, 2000.

[12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR,

abs/1606.00915, 2016.

[13] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[14] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks. CoRR, abs/1707.01629,

2017.

[15] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine

translation: Encoder-decoder approaches. CoRR, abs/1409.1259, 2014.

[16] F. Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,

abs/1610.02357, 2016.

[17] A. K. R. Choudhury. Principles of colour and appearance measurement: Object appearance, colour

perception and instrumental measurement. Elsevier, 2014.

[18] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.

In Proceedings of the fourteenth international conference on artificial intelligence and statistics,

pages 215–223, 2011.

[19] P. Colantoni and Al. Color space transformations. 2004.

[20] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, Sept. 1995.

[21] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in Telecommuni-

cations and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

[22] R. Dahl. Automatic Colorization http://tinyclouds.org/colorize/, 2016.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

[24] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context

prediction. In Proceedings of the IEEE International Conference on Computer Vision, pages 1422–

1430, 2015.

[25] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011.

[26] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning, 2016.

BIBLIOGRAPHY 97

[27] K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition.

Neural Networks, 1:119–130, 1988.

[28] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image

rotations. arXiv preprint arXiv:1803.07728, 2018.

[29] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.

In Aistats, volume 9, pages 249–256, 2010.

[30] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,

pages 2672–2680, 2014.

[32] S. N. Gowda and C. Yuan. Colornet: Investigating the importance of color spaces for image

classification. In Asian Conference on Computer Vision, pages 581–596. Springer, 2018.

[33] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

[34] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and

fine-grained localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 447–456, 2015.

[35] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. CoRR,

abs/1603.05027, 2016.

[37] D. O. Hebb. The organization of behaviour. 1961.

[38] G. E. Hinton. Learning multiple layers of representation. Trends in cognitive sciences, 11(10):428–

434, 2007.

[39] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.

Science, 313(5786):504–507, July 2006.

[40] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and Y. Ben-

gio. Learning deep representations by mutual information estimation and maximization. arXiv

preprint arXiv:1808.06670, 2018.

[41] T. K. Ho. Random decision forests. In Proceedings of the Third International Conference on

Document Analysis and Recognition (Volume 1) - Volume 1, ICDAR ’95, pages 278–, Washington,

DC, USA, 1995. IEEE Computer Society.

BIBLIOGRAPHY 98

[42] J. J. Hopfield and D. W. Tank. neural computation of decisions in optimization problems. Biological

cybernetics, 52(3):141–152, 1985.

[43] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

CoRR, abs/1704.04861, 2017.

[44] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. CoRR, abs/1709.01507, 2017.

[45] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional networks. CoRR,

abs/1608.06993, 2016.

[46] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: joint end-to-end learning of global

and local image priors for automatic image colorization with simultaneous classification. ACM

Transactions on Graphics (TOG), 35(4):110, 2016.

[47] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[48] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adver-

sarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 5967–5976, 2016.

[49] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[50] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013.

[51] D. P. Kingma and M. Welling. Stochastic gradient vb and the variational auto-encoder. In Second

International Conference on Learning Representations, ICLR, volume 19, 2014.

[52] A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[54] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks without

residuals. CoRR, abs/1605.07648, 2016.

[55] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization.

In European Conference on Computer Vision, pages 577–593. Springer, 2016.

[56] Q. V. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, and A. Y. Ng. Building

high-level features using large scale unsupervised learning. CoRR, abs/1112.6209, 2011.

[57] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–, May 2015.

BIBLIOGRAPHY 99

[58] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.

[59] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[60] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–

3440, 2015.

[61] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh

IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee, 1999.

[62] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The

bulletin of mathematical biophysics, 5(4):115–133, 1943.

[63] M. Minsky and S. Papert. Perceptrons. 1969.

[64] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1997.

[65] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adver-

sarial networks. arXiv preprint arXiv:1802.05957, 2018.

[66] K. Nazeri, E. Ng, and M. Ebrahimi. Image colorization using generative adversarial networks.

Lecture Notes in Computer Science, page 8594, 2018.

[67] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles.

CoRR, abs/1603.09246, 2016.

[68] M. M. Oghaz, M. A. Maarof, A. Zainal, M. F. Rohani, and S. H. Yaghoubyan. A hybrid color

space for skin detection using genetic algorithm heuristic search and principal component analysis

technique. PloS one, 10(8):e0134828, 2015.

[69] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.

arXiv preprint arXiv:1807.03748, 2018.

[70] N. Qian. On the momentum term in gradient descent learning algorithms. Neural Netw., 12(1):145–

151, Jan. 1999.

[71] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-

tional generative adversarial networks. 11 2016.

[72] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are

unsupervised multitask learners. 2018.

BIBLIOGRAPHY 100

[73] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image

segmentation. In International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 234–241. Springer, 2015.

[74] F. Rosenblatt. Principles of neurodynamics. 1962.

[75] S. Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747, 2016.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. Technical report, DTIC Document, 1985.

[77] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Cognitive modeling, 5(3):1, 1988.

[78] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[79] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved

techniques for training gans. CoRR, abs/1606.03498, 2016.

[80] L. Sifre and S. Mallat. Rigid-motion scattering for texture classification. CoRR, abs/1403.1687,

2014.

[81] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

CoRR, abs/1409.1556, 2014.

[82] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, Jan. 2014.

[83] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and mo-

mentum in deep learning. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th

International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning

Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[84] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc., 2014.

[85] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second

edition, 2018.

[86] D. Swanston, J. Bishop, and R. Mitchell. Simple adaptive momentum. 30(18):1498–1500, 1994.

[87] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

BIBLIOGRAPHY 101

[88] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. 2019.

[89] N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color pixels classification in an hybrid color

space. volume 1, pages 176 – 180 vol.1, 11 1998.

[90] N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color image segmentation by pixel classification

in an adapted hybrid color space. application to soccer image analysis. Computer Vision and Image

Understanding, 90(2):190–216, 2003.

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-

sukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[92] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust

features with denoising autoencoders. In Proceedings of the Twenty-fifth International Conference

on Machine Learning (ICML’08), pages 1096–1103. ACM, 2008.

[93] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion. J. Mach.

Learn. Res., 11:3371–3408, Dec. 2010.

[94] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences.

1974.

[95] M. R. William T. Freeman. Orientation histograms for hand gesture recognition. Technical Report

TR94-03, MERL - Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, Dec. 1994.

[96] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep

neural networks. 2016.

[97] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Ben-

gio. Show, attend and tell: Neural image caption generation with visual attention. CoRR,

abs/1502.03044, 2015.

[98] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural

networks?, 2014.

[99] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015.

[100] S. Zagoruyko and N. Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

[101] M. D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

[102] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In In CVPR,

2010.

BIBLIOGRAPHY 102

[103] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention generative adversarial networks.

In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7354–7363.

PMLR, 09–15 Jun 2019.

[104] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European Conference on

Computer Vision, pages 649–666. Springer, 2016.

[105] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-

channel prediction. CoRR, abs/1611.09842, 2016.

[106] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-

channel prediction, 2016.

[107] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural

network for mobile devices. CoRR, abs/1707.01083, 2017.

103

Appendix A

Stochastic Gradient Descent Optimisers

This section includes a more detailed explanation for the various grandest decent variants. Many

of the explanations comes from the excellent original source [75] which the reader is referred to

for more details.

A.0.1 Gradient Descent

Gradient descent minimises an objective loss function J(θ) parametrised by the model’s parameters

θ ∈ R
d by updating the parameters in the opposite direction to the gradient of the loss function

∇θJ(θ) w.r.t. to the parameters. This involves iteratively taking steps of a determined size set by

a learning rate η as follows:

θ = θ − η · ∇θJ(θ)

Importantly, this involves following the direction of the slope of the surface created by the loss

function to a local minima. However, as raised by Ruder [75] the basic gradient descent in its

form noted above are faced with the following challenges:

1. Finding an appropriate learning rate is difficult as optimising with a small learning rate leads

to painfully slow convergence while a learning rate that is too large can hinder convergence

to a solution since it can cause the loss function to fluctuate.

2. A dataset’s characteristics are often unknown in advance, which makes it difficult to specify

a learning schedule to appropriately adjust learning rate while learning in order to achieve

104

optimal learning.

3. Standard gradient decent applies a uniform learning rate to all parameters which can be

problematic if data is sparse and have features with very different frequencies, making it

difficult to learn from useful features that occur only rarely in the dataset.

Modern neural networks used for Deep Learning are optimised by some variants of the basic

gradient descent algorithm with improvements motivated by the challenges noted above. Below

are some of the gradient descent optimisation algorithm which have become popular in recent

years.

A.0.2 Adagrad

Adagrad [25] is an algorithm that adapt the updates to each individual parameter. Therefore,

they have adaptive learning rates for each parameter, allowing for larger updates for infrequent

and smaller updates for frequently adjusted parameters improving the robustness of learning.

Additionally, this makes Adagrad suitable for learning with sparse data such as word embeddings,

as infrequent (rare) words require larger updates than frequent (commonly occurring) words.

Whereas momentum performed updates for all papramter θ for every parameter θi with the same

learning rate η. Adagrad uses a per-parameter update which are vectorized. As shown in the

following, setting gt,i to be the gradient of the loss function, w.r.t the the parameter θi at time

step t:

gt,i = ∇θtJ(θt,i)

The update for every parameter θi at each time step t becomes:

θt+1,i = θt+1,i − η · gt,i

Using this update rule, Adagrad modifies the overall learning rate η at each time step t for every

105

parameter θibased on the past gradients that have been computed for θi:

θt+1,i = θt+1,i −
η√

Gt,ii + ε
· gt,i

where G ∈ Rd×d, a diagonal matrix wgere each diagonal element i, i is the sum of squares of the

gradients w.r.t. θi up to the step t. Additionally, ε is a smoothing term to avoid division by 0

(usually set to a small value such as 1e-8).

Thus, withGt containing the sum of squares of the past gradients w.r.t to all parameters θ diagonal,

the implementation is vectorised by performing an element-wise matrix-vector multiplication �

between Gt and gt:

θt+1 = θt −
η√

Gt + ε
� gt

A.0.3 Adadelta

Adagrad’s weakness is the accumulation of the squared gradients in the denominator: the accumu-

lated sum keeps growing during training which causes the learning rate to shrink and eventually

become infinitesimally small. Adadelta [101] improves Adagrad by restricting the window of ac-

cumulated past gradients to a fixed size. In adadelta, the sum of gradients is recursively defined

as a decaying average of all past squared gradients by maintaining the running average E[g2]t at

time step t which depends only on the previous average and the current gradient as follows:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t

where γ is set to a similar value to the momentum term of 0.9. By rewriting the gradient descent

update in terms of the parameter update vector as ∆θt it gives the following:

106

∆θt = −η · gt,i

θt+1 = θt + ∆θt

Then, the previously derived parameter update vector of Adagrad takes the form:

∆θt = − η√
Gt + ε

� gt

The diagonal matrix Gt is then replaced with the decaying average over past squared gradients

E[g2]t:

∆θt = − η√
E[g2]t + ε

gt

Notice the denominator is just the root mean squared error criterion of the gradient, therefore it

is replaced with the shorthand (RMS):

∆θt = − η

RMS[g]t
gt

Note that since the units in the update do not match (GD, momentum or adagrad) the updates

should have the same hypothetical units as the parameter, another exponentially decaying average

is needs to defined for the squared parameter updates:

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2
t

The root mean squared error of parameter updates is thus:

107

RMS[∆θ]t =
√
E[∆θ2]t + ε

Replacing the learning rate η in the previous update rule with [∆θ]t finally yields the Adadelta

update rule:

∆θt = −RMS[∆θ]t−1

RMS[∆θ]t
gt

θt+1 = θt + ∆θt

A.0.4 RMSprop

RMSprop is an unpublished adaptive learning rate method introduced by Geoffrey Hinton. It is

identical to Adadelta, except Adadelta uses the additional RMS parameters for the updates in

the numerator for its update rule where as RMSprop does not. Thus, similar to Adadelta:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t

θt+1 = θt −
η√

E[g2]t + ε
gt

Hinton suggests γ to be set to 0.9, learning rate η to be 0.001 and 10−8 for ε.

A.0.5 ADAM

Finally, the Adaptive Moment Estimation (Adam) [49] is yet another method that computes

adaptive learning rates for each parameters. The Adam, like Adadelta and RMSprop, stores the

108

exponentially decaying average of past gradients vt, and keeps an exponentially decaying average

of past gradients mt, similar to momentum:

mt = β1mt−1 + (1− β1)g1

vt = β2mt−1 + (1− β2)g2
1

Additionally, as mt, vt, are initialized as vectors of 0’s, they are biased towards 0. These biases

are counteracted by computing the bias corrected estimates:

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2

These are used to update the parameters as seen with Adadelta and RMSprop, yielding the Adam

update rule:

θt+1 = θt −
η√
v̂t + ε

m̂t

The authors gives default values of 0.9 for βt1, 0.999 for βt2 and 10−8 for ε.

109

Appendix B

Additional Materials and Extended Results

B.0.1 Archetecture Details of Popular Models Featured in this Study

The following includes the details for the exact architectures of the models described in various

parts of this thesis. To avoid errors, the tables below are taken from the exact original source for

ResidualNets, DenseNets and MobileNets from [35], [45] and [43] respectively.

ResidualNets

DenseNets

110

MobileNet

111

B.0.2 Implementation Details of Models Trained in Chapter 6

This section provides implementation details for the models trained in the Experimental section.

All models were trained from scratch and the architectures used were based on the Densenet121

and Mobilenet shown in Appendix B.0.1. To be more precise the Densenet used was a DenseNet-

BC variant with parameters k = 12, which uses transition layers and compression (θ = 0.5) [45]

while the Mobilenet was implemented as standard. In addition, since these two architectures were

originally designed for the ImageNet dataset which uses relatively high resolution images, some

minor spacial adjustments were made to the networks to accommodate the Cifar dataset image

sizes of 32× 32 pixels. This was done by changing the first Conv layer from 7× 7 sized filters to

3 × 3 sized filters and removing the first Max-pooling layer of the Densenet. The final classifier

layers of the architectures where adjusted for the 10 and 100 units for the class labels for Cifar

10 and 100 respectively and no other changes were made architecturally unless stated otherwise

specifically, in the Chapter.

Both models were trained with SGD using batch sizes of 32 for 300 epochs and using a training

schedule that divides the initial learning rate by 10 upon completing 50% and 75% of the total

number of training epochs. The Densenet uses an initial learning rate of 0.1, a weight decay of 2e-4

and nesterov momentum of 0.9 while the mobilenet uses an initial learning rate of 0.01, a weight

decay of 5e-4 and nesterov momentum of 0.9. Both models uses the Xavier weight initialisation

method [29].

Furthermore, during training the popular data augmentation method implemented used in works

such as [35, 45] were where for every training image 4 pixels are padded on each side and a 32×32

crop is randomly taken from the resulting image which is horizontally flipped by a chance of 0.5.

For testing time, only the single view of the original 32× 32 image is evaluated. No validation set

split was used and models were trained on the full 50000 training set split for both Cifar 10 and

100.

112

Appendix C

Qualitative Results

C.0.1 Samples of Generated Images from the Efficient Generative Adversarial Colourisation Network for

images from an un-seen test set

For all the images shown below, the top image is the grey scale input images, the middle are

the ground truth images and the bottom are the colourised images.

113

114

115

116

Appendix D

Patterns of Attention Distribution for

Different Architectures and Datasets

117

Figure D.1. Attention distribution for Densenet on
Cifar10 with 12 channels

Figure D.2. Attention distribution for MobileNet
on Cifar10 with 12 channels

Figure D.3. Attention distribution for Densenet
on Cifar10 with 9 channels

Figure D.4. Attention distribution for MobileNet
on Cifar10 with 9 channels

118

Figure D.5. Attention distribution for Densenet
on Cifar10 with 6 channels

Figure D.6. Attention distribution for MobileNet on Ci-
far10 with 6 channels

Figure D.7. Attention distribution for Densenet
on Cifar100 with 12 channels

Figure D.8. Attention distribution for MobileNet on Ci-
far100 with 12 channels

119

Figure D.9. Attention distribution for Densenet on
Cifar100 with 9 channels

Figure D.10. Attention distribution for MobileNet
on Cifar100 with 9 channels

Figure D.11. Attention distribution for Densenet on
Cifar100 with 6 channels Figure D.12. Attention distribution for MobileNet

on Cifar100 with 6 channels

