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Applied Natural Language Processing and Machine
Learning in Algorithmic Trading

Abstract

The frequent ups and downs are characteristic of the stock market. The

conventional predictive models that assume that investors act rationally have not

been able to capture the irregularities in the stock market. They rely mainly on

fundamental data such as assets, liabilities, among others. As such, these models

seem to fail to capture the stock market trends that are extremely sensitive to

social, economic, and political behavioural elements. As a result, behavioural

finance is embraced to attempt to correct these model shortcomings by adding

some factors to help capture the sentimental contagion which may be at play in

determining the stock market. Many research works have attempted to establish

this relationship between emotions and the stock market but, surprisingly,

findings from these works have been rather conflicting due to the generic nature

of sentimental information. This thesis is therefore relevant in that it helps to

clarify on the relationship between sentiments and the stock market. First, this

work explores different sources of data including pre-processed sentiments and

sentiments extracted directly from raw financial news data based on a proposed

novel BERT-based Natural Language Processing (NLP) algorithm. Also, most of

the previous studies claiming that emotions have predictive value on the stock

market do so by developing various machine learning predictive models, but do

not validate their claims rigorously. Such findings may be clearly misleading. This
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problem is addressed in this thesis with a focus on the relevance and

appropriateness of model applicability and statistical validation. Finally, this

thesis proposes an approach that incorporates our proposed NLP and stock

market trading algorithms. The NLP algorithm automatically extracts the

sentiment polarities from financial news and activates the proposed stock market

trading algorithm to predict the directions of the stock market prices.
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1
Introduction

1.1 Background andmotivation

Stock market prediction is a subject that earns attention from researchers, traders,
stockbrokers, and policy makers, just to mention a few. Researchers would like to
develop reliably working predictive models, traders and stockbrokers would like
to use the developed models, and policy makers may be keen to understand how
the models impact businesses and the economy. The interests of these parties are
clearly diverse, but they all have something in common: to have a predictive
model that is reliable. All starts with identifying the key stock market indicators
and using these to predict the stock market trends and future prices with the aim
of beating the market and earning profits in the highly volatile and complex stock
market; hence, the need for the stock market predictive model development.
Several such predictive modelling approaches have been developed under the
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assumption that historical stock prices and volume data can be used to predict
future stock prices. Deng and Sakurai [118] proposed a set of trading rules based
on the model developed using purely the traditional stock data and volume. Their
findings suggest that the data is sufficient in developing profitable trading rules.
Neto et al. [97] developed a predictive model using the stock market data and
artificial neural network (NN) algorithms. A series of NN models were
compared by using the mean square error (MSE) [26], receiver operating
characteristics (ROC) [126] and absolute mean square error. They reached the
conclusion that with their models they were able to predict the stock market.
Wang et al. [132] studied the composite price performance of 225 highly
capitalized stocks trading on the Tokyo Stock Exchange (TSE). The study
combined some macroeconomic variables such as GDP, interest rate, consumer
price index, short-term interest rate, long-term interest rate, among others, with
the stock market data. The predictive model explored in the research work made
use of the support vector machine (SVM) ([138]) framework with the aim of
predicting the future directions of the stock index. Findings from the work also
support the sufficiency of the data in stock market modelling.

Most of these models are classified as standard finance models in view of their
strong assumption that the past stock market information has correlation with
the future prices, and hence, the directions of the future prices can be determined
using solely the historical data.

But come to think of it, if the past stock data information is sufficient to
capture the future directions of the stock market, and that there are many rational
stock market players in the market, would there still be any possibility of making
profits in the market? If all the players are expected to act rationally and employ
predictive models, then the market would be expected to be operating under the
Efficient Market Hypothesis (EMH) [37] with no profit. Clearly, these are
models built with the assumption of investor rationality. But the long-held belief
in such models is now being questioned: the models appear too basic judging by
their inefficiency in capturing the complex and dynamic nature of the stock
market as the stock market returns and investor behaviour diverge away from the
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fundamental prices and rationality respectively. In fact, some renowned financial
experts with years of experience in financial modelling strongly doubt the
predictive power of models.
For example, UBS global chief economist, Paul Donovan [57], states point-blank:

“Economists should not forecast.

Economic models are not precise. Models use lots of assumptions.
Those assumptions may not turn out to be true. Models give a
range of possibilities rather than a single, certain number.”

They consider most variables used in modelling as mere noise with no statistical
significance. That is, all financial data is purely nonstationary and noisy as a result
of the volatile nature of the stock market. These call for attention in behavioural
finance ([99],[42]) to resolve the shortcomings of the standard finance models.
Behavioural finance relaxes the assumption that investors act rationally. It
underlines the importance of sentimental contagion in investment. Since then,
researchers have been focusing on the relationship between sentiment and the
stock market. Shiller [114] opposed the EMH by stating that factors related to
the field of behavioural finance influence the stock market as a result of some
psychological contagion which makes investors to overreact or underreact.
Sprenger et al. [130] also disagreed with the EMH. They argue that the stock
market is inefficient and therefore abnormal returns can be earned. They implied
that investors have the tendency to underreact or overreact to new information,
which could be in the form of business news, online social networking blogs, and
other forms of online expressions.

Observations from related research works sprang up interest in advancing the
standard finance models to include sentiment in the predictive model
development with the aim of enhancing the model reliability and efficiency. Yet
in order to statistically validate this inclusion, one needs to consider the source of
the sentiment, examine its statistical significance and the Granger causality
between the sentiment and the stock market variables by using appropriate
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models ([31],[109]), and also the time sensitivity of the sentimental information
in order to possibly benefit from the market imperfection [113]. Figure 1.1.1
emphasizes how the impact of relevantly sentimental information may disrupt
the stock market. On the 1st of March, 2018, the former US president Donald
Trump [51] announced that there would be tariff on steel import. After the
announcement there was fear in the market that countries affected, especially
China, would attempt to retaliate. This led to the downward movements in the
volume and stock price of United States Steel Corp. This is clearly the influence
of sentimental contagion on the stock market.

Figure 1.1.1: The former US president announced on the 1st of March, 2018,
that he would impose tariff on the steel import. This shows the impact of the
proposed tariff on United States Steel Corp. After the announcement there
was downward movements in the stock price and stock volume. The picture is
taken from [54].

In view of this observation, one may go in favour of the models that incorporate
this element of information. But first, statistically investigating this hypothesis in
order to establish its validation is very important. Luckily, a good number of
studies have attempted to establish this relationship.

Oliviera et al. [103] examined if the sentiment from social blogs would
statistically impact the stock market. In their study data from StockTwits, a
microblogging platform that extracts sentiments from stock market-related blogs,
was used as a proxy for sentiment. They analysed the impacts of the sentiment on
the stock market returns, volatility ,and trading volume respectively. Their
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findings show that the sentiment explored does not impact the stock market
returns.

Smales [84] approached the study of the relationship between the financial
news and the stock market in an interesting way. It measured the impacts of
unscheduled financial news on the stock market using a linear framework with
lengthy intraday financial data in the period 4th of January 2000 to 1st of
November 2011. The paper concluded that sentiment from financial news has an
influence on stock market activity, volatility, and spreads. Further disaggregating
the financial news into negative and positive sentiments showed that the negative
sentiment has greater impacts on the stock market than the positive sentiment.
The intuition behind this finding is that investors respond more to negative
sentiment than they do to positive sentiment since investment losses are more
costly.

Bollen et al. [66] used the public mood conveyed from a large-scaled
collection of tweets to measure the influence of sentiment on the stock market.
In the process a Self-Organizing Fuzzy Neural Network model was employed and
a Granger causality test was carried out. Their results supported the claim that
emotions do influence the stock returns. However, Mao et al. [49] and Jahidul et
al. [4] express some doubt about any possible non-linear Granger causality
([31],[109]) between the sentiment generated from the public mood and the
stock market.

Gilbert and Kahahalios [38]’s work is one of the very few that have attempted
to statistically validate their approach. It investigated the causal relationship
between the stock market returns and sentiment and reached the same
conclusion that sentiment influences the stock market returns. Results from [38],
based on a collection of LiveJournal blogs, showed that sentiment possesses
predictive information on the stock market returns.

As it stands, based on the aforementioned research work so far, one can hardly
conclude on the statistical relevance of sentiment on the stock market - some
work in favour and others against.
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1.2 Research questions addressed in the thesis

So far, conclusions from related research works that explored the relationship
between sentiments and the stock market have been clearly conflicting and
unhelpful. Rather than solving the mystery behind this relationship, these works
have exposed us to many questions that need answering:

1. Why do findings from many researches conflict each other in establishing
the impacts of sentiment on the stock market?

2. Is it that the source of sentiment information explored could influence the
relationship between sentiment and the stock market?

3. Could wrong model selection introduce a bias in examining this
relationship leading to these conflicting findings?

4. Even with the right sentiment data source and appropriate model
selection, could the established relationship be biased due to the time
sensitivity of the sentiment information as strongly emphasized by the
EMH?

These are therefore the research questions we attempt to answer in this thesis.
Valid answers to the aforementioned questions can help to resolve these
conflicting conclusions regarding the relevance of sentiment on the stock market.

1.2.1 Research objective and scope

Understanding the true impacts of sentiment on the stock market is one of the
main objectives of this thesis. In the process of achieving this objective, we
explored different sources of sentiment information. We start with the processed
and aggregated sentiment data at daily intervals to generate the sentiment
information and examine its relationship with the stock market. We extend this
work by developing a high-performing NLP algorithm that has been pre-trained
on a large corpus of Wikipedia. Thereafter, the pre-trained model would be
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trained on financial news data and the resulting trained NLP model would be
tasked with extracting sentiment polarities from financial news and the results
incorporated into our proposed event-driven stock market predictive models.
Findings from this work would help to clarify the Granger causality between
sentiment and the stock market. In addition to this knowledge, we would also use
our models to predict the directions of the stock market.

Finally, the time sensitivity of the sentiment information with respect to its
relevance on the stock market would be examined statistically with the aim of
assessing the possibility of exploiting market imperfection due to information
asymmetry.

1.2.2 Structure of the thesis and contributions

The work starts with a critically robust examination of the Granger causality
between sentiment and the stock market. Of course, the first question that comes
to mind would be: what is sentiment? Sentiment has very broad contextual
implications. But for simplicity, we consider sentiments as emotional reactions or
expressions to events communicated through news, blogs and/or other means of
communications.

In our case we begin by assessing the Granger causality between the
sentiments extracted from the public mood and the stock market. That is, our
sentiment data is sourced from public blogs that are not focused on the stock
market. This is addressed in Chapter 2 with a view to assessing if the sentiment
data is influential in predicting the directions of the stock market.

We extend the work to also assess the influence of focused sentiment
information on the stock market. In this case, we explore the sentiments that are
related to the stock market index of interest and its constituents as detailed in
Chapters 3 and 4. However, there is limited information in literature regarding
the processing of the sentiment datasets explored in the chapters mentioned
above. Another limitation was that the approaches used to construct these
sentiment datasets, which are only described at the high level, were developed
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before 2018 when a new powerful BERT-based NLP model was proposed in
literature (Devlin et al. [69], Araci [21], and Olaniyan [111]). In light of these
challenges, we developed a high-performing BERT-based NLP model with a high
level of accuracy. The model is used to extract the sentiment polarities from the
financial news dataset covered in Chapters 5 and 7.

In the previous chapters we utilised daily time series datasets - the sentiment
and stock market variables are sampled at constant time interval of a day. We use
intraday sentiment and stock market datasets in Chapters 6 and 8. One of the
rationales for this choice is to examine the time sensitivity of the sentiment and
the stock market variables. Also, we attempt to address the concerns with the use
of daily time series such as poor statistical properties, among others (Easley et al.
[24]).

For the visual illustration of the structure of the thesis, we have Fig. 1.2.1. Also,
the subsections that follow detail the work conducted in each chapter.

Figure 1.2.1: Structure of the thesis. Based on how the chapters relate to
each other.
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Chapter 2 - Social web-based anxiety index’s predictive information
on S&P 500 revisited

To investigate if sentiment has an impact on the stock market, this chapter begins
by sourcing sentiment information from the public mood. In particular, the work
of Gilbert and Karahalios [38] is revisited in this chapter. The aim is to examine
the relationship between the stock market returns and the public mood obtained
by extracting sentiment polarities from social blogs. A non-linear Granger
causality approach is employed, in addition to the linear approach used by [38],
to validate the Granger causality between them. But one still needs to exercise
caution in reaching any conclusions. Clearly, there are some limitations in the
research scope covered in Chapter 2. Can the findings from Chapter 2 be
considered as a golden validation of the relationship between sentiment and the
stock market? What are the asymmetric impacts of the positive and negative
sentiments, if any at all? These important questions are answered in Chapter 3.

Chapter 3 - Sentiment and Stock Market Volatility Predictive Mod-
elling - a Hybrid Approach

First, using the findings from Chapter 2 might not be sufficient enough to
establish categorically the relationship between sentiment and the stock market
as the sentiment data is sourced from the public mood. For example, one would
hardly agree that some sentiments from completely random and unrelated public
expressions would have an impact on the stock market. It is like saying the loud
noise from an old slow-moving train might have an impact on the stock market.
As a result of this concern, it is therefore important to use focused sentiment data
that are directly related to the stock market to assess this relationship. That is, it
would be wrong to generalise the relationship between sentiment and the stock
market based on the findings from Chapter 2 simply because of the sentiment
data source explored. Findings from Chapter 2 could only attempt to assess if the
sentiment from the public mood has any statistical relevance on the stock market
subject to the selection of appropriate models.
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Chapter 3 would therefore extend the work by focusing on the sentiments
related to the stock market as opposed to the public mood and assess the
asymmetric impacts of the positive and negative sentiments on the stock market
prices and volatility. The proposed non-linear Granger causality approach
explored in Chapter 2 would be applied as well in Chapter 3.

Chapter 4 - Predicting S&P 500 based on its constituents and their
social media-derived sentiment

To further assess the statistical significance of sentiment information on the stock
market, the sentiments and the stock returns from the constituents of the S&P
500 are explored.

Chapter 4 is developed in light of the findings from the previous chapters by
extracting the sentiments that are directly linked to the stock market indices of
interest. This is achieved by generating the sentiments from news that contains
any of the constituents of the S&P 500. This chapter is different from the
previous chapters in that Chapter 2 focuses on the sentiments obtained from the
public mood, and Chapter 3 uses the sentiments that are related to the stock
market. The novelties of Chapter 4 begin with the peculiar nature of the data
explored. At first, over 400 variables representing the closing stock prices of the
S&P 500 constituents are pre-processed using clustering [18] and Principal
Component Analysis (PCA) [94] in order to reduce the inherent dimensionality
challenge. Then, we pre-process over 400 sentiment variables for the S&P 500
constituents. The combined results from these two exercises with lagging largely
increase the dimensionality of the final data used. The use of a rolling window of
100 data points for the model development and 10 days for the forecasting
further complicates the already complicated issue. In fact, to our knowledge, no
other research work has used this dataset with lagging before. There are over 1200
variables to process after including lagging for every rolling window. Knowing
that we could not include every variable in our predictive model development, we
propose a variable selection model that allows us to identify the most significant
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variables. This is another novelty of this chapter. The proposed variable selection
model appears to have performed better than the popular Random Forest model.
This piece of work takes an extra step to propose a strategically optimal trading
algorithm based on the incorporation of machine learning and evolutionary
optimisation algorithm [85] . This clearly shows another novelty of this chapter.

Chapter 5 - A two-step optimised BERT-based NLP algorithm for ex-
tracting sentiment from financial news

The research works from the previous chapters would attempt to evaluate the
impacts of sentiment on the stock market. But the works seem to be limited in
scope in that processed and aggregated sentiment datasets at a daily level are
explored. The concern with the use of daily processed and aggregated sentiment
data is that the stock market might have already incorporated any relevant new
sentiment information into its prices, probably due to the time-sensitive nature of
sentiment. To achieve market imperfection, some level of information
asymmetry would be expected [113] and this requires us exploring news in real
time as it becomes available.

As a starting point we aim to develop a NLP model. With this we can extract
sentiments from raw financial news as opposed to using any refined sentiment
data made available by third parties. A BERT-based NLP model that relies on the
model pre-training for language transfer would be explored.

Chapter 6 - Event-based algorithmic intraday trading

We introduce an event-driven sampling of intraday financial data based on the
time-varying return volatility. This ensures that only the informative features
from the high volume of intraday stock market data are extracted for training our
stock market predictive models. The aim is to develop a model for predicting the
directions of the stock market. During this model development, we incorporate
both the stock market data and technical analysis indicators.

In addition, we would introduce a novel approach for detecting
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non-stationarity or white noise in variables and propose an optimal approach that
fractionally differences variables in order to have them stationary as opposed to
using a log differencing approach and compare the results from the models
developed from these two stationarity approaches.

Chapter 7 - Event-based algorithmic intraday trading with applied
natural language processing algorithms (NLP)

Chapter 7 would focus on the development of a systematic algorithm trading
model that captures the events and trends in the stock market. As we are
exploring high-frequency intraday stock market data, we would expect this to be
highly voluminous. Clearly, we do not intend to inject all the data into the model
- we sample more data during some events. Our methodology that detects the
events in the market is detailed in the chapter.

There are two key questions to consider when defining events - are events
driven by contagious sentiment or by the underlying stock index of interest itself?
We apply our proposed optimised BERT-based NLP model developed in chapter
5 to extract sentiments from the raw financial news related to the constituents of
the S&P 500 stock index. With this information we aim to examine the statistical
relevance of sentiment on the stock market.

Chapter 8 -Contracts forDifference (CFDs)machine learningalgo-
rithm for optimising portfolios

In CFDs trading the chance of losing is very high. The Financial Conduct
Authority (FCA) [59] has expressed some serious concerns that over 82% of
people involved in the betting and CFDs trading lose money based on a sample
of industry data. In light of this, expectations would be very high that any
machine learning predictive models developed are statistically appropriate,
perceptive, insightful, and have a high level of accuracy relatively before they
become deployed for algorithmic trading. But there are frequent ups and downs
and expected surprises in the stock market which could potentially weaken the
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predictive power of the relevant models developed.
This chapter introduces a novel event-driven forward labelling approach for

predicting the directions of the stock market based on the identified stock market
events. In addition, a 2-step machine learning model based on the OXGBoost
framework is employed.

Chapter 9 - Conclusion

This part summarises the work completed in each chapter of this thesis. It would
include the contributions, constraints and limitations of the thesis and finally
suggest future research work.
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2
Social web-based anxiety index’s

predictive information on S&P 500
revisited

According to the investment theory [37], stock market is operating under the
Efficient Market Hypothesis (EMH), in which stock prices are assumed to
incorporate and reflect all known information. Sprenger et al. [130] strongly
disagree with EMH by saying that the market is inefficient and therefore
abnormal returns can be earned. In search of abnormal earnings, researchers now
‘listen’ to news and mine online aggregated social data all in the course for these
attractive profits.

Schumaker and Chen [115] are among the early researchers to investigate
whether emotions can predict the stock market. Machine learning algorithms
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such as SVM, Naive Bayes, etc, are utilised to develop predictive models used to
claim that financial news has a statistically significant impact on the stock market.
Bollen et al. [66] present an interesting machine learning based approach to
examine if emotions influence stock prices. Their results support the claim that
emotions do influence the stock market.

The linear Granger causality analysis ([31],[109]) is employed by Gilbert and
Karahalios [38] as a method to illustrate that web blog contained sentiment has
predictive information on the stock market, but this method proved to have clear
limitations as explained later in this chapter. A linear model and the Granger
causality test are used also by Mao et al. [49] to examine the influence of social
blogs on the stock market. The authors do raise some concerns about the
possible non-linear nature in the relationship, but such concerns are not further
explored. The non-linear Granger causality test, which relies on a Self-Organising
Fuzzy Neural Network model, is unpopular in this area of work as it is thought
not to be strong enough to capture volatile stock market movements, as revealed
by Jahidul et al. [4]. Mittal and Goel [7] use machine learning algorithms to
investigate if stock blogs, as a proxy for news, can predict this complex financial
movement. Their findings make the same claim that stock blogs can be used to
predict stock prices, and they use some level of accuracy of the predictive models
to support their results.

The stock market is highly volatile. Therefore, capturing its movement and
identifying relationships between stock prices and possible predictive variables
require the use of appropriate approaches. These approaches should normally
meet two requirements. The first requirement is to generate models for
prediction, and the second requirement is to rigorously prove the models’
predictive value.

As illustrated earlier in this section, there is a growing research work trying to
establish that online expressed emotions have predictive information on the
stock market. Most of these works fulfil the first requirement by devising and
proposing various predictive models, but very few works attempt to fulfill also
the second requirement by rigorously / statistically proving the predictive value
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of these models. Gilbert and Karahalios [38] are among the very few that do
consider both requirements, by proposing a statistical approach, which is based
on the Granger causality analysis and Monte Carlo simulations. We recognise the
large interest and potential generated by [38] in inspiring further research that
demonstrates the link between the online expressed emotions and the stock
market. Our work builds upon the approach presented in [38], and does so by
critically analysing it, by clearly identifying its drawbacks and limitations, by
tackling these limitations, and by extending the approach and the results
presented in the chapter. As such, we establish our findings on data which has
been obtained from the [38] ’s authors website.

The remainder of this chapter is organized as follows. Section 3.1 briefly
revisits the empirical analysis of Gilbert and Karahalios [38]. It presents the data,
and the Anxiety Index’s building process. In addition, we discuss the essential
limitations of the approach of [38], and provide and discuss the results of our
alternative Monte Carlo simulations. Section 3.2 presents our new statistical
based approach which captures efficiently the stock market volatility, and the
predictive information relationship direction between stock prices and emotion.
Section 3.3 entails our findings and conclusion.

2.1 Discussion on theWeb blog based Anxiety Index

Four stationary daily time series variables were explored in Gilbert and
Karahalios [38]: the Anxiety Index (AI), the stock return, and two control
variables which are the trading volume and the stock volatility. All the variables
were generated from the stock market data S&P 500, except for the Anxiety Index
AI.

[38] introduced the Anxiety Index using 20 million posts and blogs from
LiveJournal, that had been gathered within three periods of 2008: January 25th
to June 13th; August 1st to September 30th, and November 3rd to December
18th. Some of the examples of the raw public mood LiveJournal posts are
provided below:
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1. WELCOIN is a WELUPS MainNet token based on the TRC20 Token
Standard and issued by NEEBANK - Digital Bank. In Welups - Blockchain
and NFT platform, WELCOIN is a digital currency used for all trades,
contracts, and services. Grab the opportunity to become a millionaire in
the next few years.

2. Asian shares held onto their recent gains on Wednesday. The Shanghai
composite is up 0.41% at 3,528.82. Overall, the Singapore MSCI up 0.21%
at 357.75. Over in Hong Kong, the Hang Seng Index up 0.07% at 25,655.
In Japan, the Nikkei 225 flat at 27,740, while the Topix index is up...

Two sets of linguistic classifiers trained with a LiveJournal mood corpus from
2004 were employed to build the Anxiety Index metric. First, a corpus of 624,905
mood´-annotated LiveJournal posts from Balog et al. [76] was used. 12,923
posts that users tagged as ‘anxious’, ‘worried’, ‘nervous’ or ‘fearful’ were extracted.
Then two classifiers were trained to distinguish between ‘anxious’ and ‘non
anxious’ posts. The first classifier C1, which was a boosted decision tree, as
introduced by Yoav and Robert [44], used the most informative 100 word stems
as features. The second classifier C2 consisting of a bagged Complement Naive
Bayes model [29], used 46,438 words obtained from the 2004 corpus mentioned
above. C1t and C2t were defined as the standard proportions of posts classified as
‘anxious’ by C1 and C2, respectively, during the closing trading day t. C1t and C2t
were integrated in the series C defined by Ct = max(C1t,C2t). The Anxiety Index
was finally defined as the series At = log(Ct+1)− log(Ct). 174 values were
generated for this series from the available data.

The S&P 500 index was used as a proxy for the stock market and was employed
to generate three variables participating in the development of predictive models,
namely the stock market acceleration metric denoted as M, the return volatility
denoted as Q, and the volume of stock trading denoted as V. The stock return at
time t was defined as Rt = log(SPt+1)− log(SPt), where SP is the closing stock
price. The stock market acceleration metric was obtained from the stock return as
Mt = Rt+1 − Rt. The stock return volatility was expressed as
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Table 2.1.1: Granger Causality results and Monte Carlo Simulation.
MCpGausskern, MCpinv and MCpboot are the p-values of the simulations using a
Gaussian kernel assumption, the inverse transform sampling, and bootstrap
sampling respectively.

F3,158 pGranger MCpGausskern MCpinv MCpboot

3.006 0.0322 0.045 0.045 0.045

Qt = Rt+1 ∗ Rt+1 − Rt ∗ Rt, and finally Vt was expressed as the first difference of
the lagged trading volume.

2.1.1 Findings and limitations

The two OLS models employed by Gilbert and Karahalios in [38] are:

M1 : Mt = α + Σ3
i=1βiMt−i + Σ3

i=1γ iVt−i + Σ3
i=1δiQt−i + εt (2.1)

M2 : Mt = α + Σ3
i=1βiMt−i + Σ3

i=1γ iVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + εt

(2.2)

The models M1 and M2were used to measure the influence of the Anxiety
Index on the stock prices. The difference in the models is that M1 does not
include the Anxiety Index variable; it only uses the lagged market variables
mentioned above in this section. M2 adds the lagged Anxiety Index to the M1’s
variables. If M2 performs better than M1, one could conclude that the Anxiety
Index has predictive information on the stock market. The first two columns of
Table 2.1.1 show that M2, with the Anxiety Index included in the analysis, would
outperform M1, judging from the Granger causality F statistics F3,158 = 3.006,
and the corresponding p-value pGranger = 0.0322.

The main disadvantage of the approach of Gilbert and Karahalios [38] was
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that the Granger causality analysis’s linear models M1 and M2 were actually not
valid from a statistical point of view. These models suffered from major
shortcomings, as, for instance residuals were non-normally distributed, and they
presented a heterogeneity of the variance. As such, although the p-value
pGranger < 0.05 suggests that the Anxiety Index significantly adds some predictive
information on the stock market; such a conclusion is not supported by a valid
statistical reasoning.

Due to the mentioned pitfalls, [38] proposed also a Monte Carlo simulation
with a Gaussian kernel distribution assumption for the Anxiety Index, in an
attempt to retrieve the same conclusion as in the non-statistically supported
Granger causality analysis. The authors generated 1 million sets of samples for
the Anxiety Index. These new series were used in (2) by iterating 1 million times
to generate the same number of F statistic values, and then to classify these values
based on if any F statistic is at least 3.01. The total number of F statistic’s values
that were at least 3.01 was then divided by the number of iterations to obtain the
Monte Carlo experimental p-value, MCpGausskern = 0.045, shown in Table 2.1.1.

Although MCpGausskern < 0.05 seemed to confirm the conclusion of the
Granger causality analysis, the Monte Carlo simulation suffered at its turn of the
issue of retrieving a significantly different experimental p-value with respect to
pGranger. This issue seemed to be the consequence of another issue, consisting of
the fact that the empirical distribution of the F-statistic computed in the Monte
Carlo experiments significantly deviated from the expected F-distribution, as
confirmed by the Kolmogorov-Smirnov test, i.e. D = 0.0337, p < 0.001 [38].

This realization constitutes a nontrivial reason to question the Monte Carlo
estimates, and a natural question which arises is: would the assumption of the
Gaussian kernel distribution for the Anxiety Index have possibly introduced a
bias in the simulation? To answer the question, we apply other non-parametric
Monte Carlo simulation methods based on the inverse transform sampling
method using the continuous version of the empirical distribution function
corresponding to the original Anxiety Index’s sample, and bootstrap sampling.
We follow the same procedure as that used in [38]. OurMonte Carlo p-values are
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presented in the columns four and five of Table 2.1.1, where MCpinv and MCpboot

denote p-values issued from the use of the inverse transform sampling and the
bootstrap sampling methods. Both simulations led to a similar value of 0.045.
Moreover, in both cases the empirical distribution of the F-statistic computed in
the Monte Carlo experiments is different from the expected F-distribution.
These shortcomings confirm once again that proving the relationship between
the Anxiety Index and stock prices is problematic if linear models are involved.

To this end, we propose a new statistical approach to solve the limitations in
[38] and to also reveal the relationship direction between the variables of interest.

2.2 Anxiety Index’spredictive informationonthestockmar-

ket, revisited

We follow the guidelines from Diks and Panchenko [16] ( see [50] for detailed
explanation and software) to examine the line of Granger causality between the
variables involved in our analysis. The idea of the non-parametric statistical
technique for detecting nonlinear causal relationships between the residuals of
linear models was proposed by Baek and Brock [35]. It was later modified by
Hiemstra and Jones [17] and this has become one of the most popular
techniques for detecting nonlinear causal relationships in variables.

Consider two series Xt and Yt as follows: let the Lx and Ly be the lag length of
the lag series XLx

t and YLy
t of Xt and Yt respectively, and let us denote the k-length

lead vector of Yt by Yk
t . In other words,

Yk
t ≡ (Yt, Yt+1, ..., Yt+k−1), k = 1, 2, ..., t = 1, 2, ..,

YLy
t ≡ (Yt−Ly, Yt−Ly+1, ..., Yt−1), Ly = 1, 2, ..., t = Ly + 1, Ly + 2, ...,

XLx
t ≡ (Xt−Lx,Xt−Lx+1, ..., Yt−1), Ly = 1, 2, ..., t = Lx + 1, Lx + 2, ...,

(2.3)

Given arbitrary values for k, Lx, Ly ≥ 1 and ε > 0, then Xt does not strictly
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nonlinearly Granger cause Yt if:

Pr(∥ Yk
t − Yk

s ∥< ε | ∥ YLy
t − YLy

s ∥< ε, ∥ XLx
t − XLx

s ∥< ε)

= Pr(∥ Yk
t − Yk

s ∥< ε | ∥ YLy
t − YLy

s ∥< ε)
(2.4)

where Pr(A | B) denotes the probability of A given B, ∥ · ∥ is the maximum
norm, i.e. for a vector V ≡ (v1, v2, . . . , vm), ∥ V ∥= max{v1, . . . , vm},
s,t = max(Lx, Ly) + 1, . . . ,N − k + 1, N is the length of the time series and ε is
N-dependent and typically has values between 0.5 and 1.5 after normalising the
time series to unit variance. The left hand side in ( 2.4) is the conditional
probability which implies that two arbitrary k-length lead vectors of Yt are within
a distance ε, given that two associating Lx- length lag vector of Xt and two
associating Ly-length lag vector of Yt are within a distance of ε. The right hand
side in ( 2.4) is the probability that two arbitrary k-length lead vectors of Yt are
within a distance of ε, given that the two corresponding Ly-length lag vector of Y
are within the distance of ε.

Eq.( 2.4) can be rewritten using conditional probabilities in terms of the ratios
of joint probabilities as follows:

CI(k + Ly, Lx, ε)
CI(Ly, Lx, ε)

=
CI(k + Ly, ε)

CI(Ly, ε)
(2.5)

The joint probabilities are defined as:

CI(k + Ly, Lx, ε) ≡ Pr(∥ Yk+Ly
t − Yk+Ly

s ∥< ε, ∥ XLx
t − XLx

s ∥< ε),

CI(Ly, Lx, ε) ≡ Pr(∥ YLy
t − YLy

s ∥< ε, ∥ XLx
t − XLx

s ∥< ε),

CI(k + Ly, ε) ≡ Pr(∥ Yk+Ly
t − Yk+Ly

s ∥< ε),

CI(Ly, ε) ≡ Pr(∥ YLy
t − YLy

s ∥< ε)

(2.6)

The Correlation-Integral estimators of the joint probabilities expressed in Eq.(
2.6) measure the distance of realizations of a random variable at two different
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times. They are proportions defined as the number of observations within the
distance ε to the total number of observations. Let us denote the time series of
realizations of X and Y as xt and yt for t = 1, 2, ...,N and let yk

t , y
Ly
t and xLx

t denote
the k-length lead, and Lx-length lag vectors of xt and the Ly-length lag vectors of
yt as defined in ( 2.3). In addition, let I(Z1,Z2, ε) denote a kernel that equals 1
when two conformable vectors Z1 and Z2 are within the maximum-norm distance
ε of each other and 0 otherwise. The Correlation-Integral estimators of the joint
probabilities in equation ( 2.6) can be expressed as:

CI(k + Ly, Lx, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yk+Ly
t , yk+Ly

s , ε) · I(xLx
t , xLx

s , ε),

CI(Ly, Lx, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yLy
t , yLy

s , ε) · I(xLx
t , xLx

s , ε),

CI(k + Ly, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yk+Ly
t , yk+Ly

s , ε),

CI(Ly, ε, n) ≡ 2
n(n − 1)

∑∑
t<s

I(yLy
t , yLy

s , ε),

(2.7)

where t, s = max(Lx, Ly) + 1, ...,N − k + 1, n = N + 1− k − max(Lx, Ly).
Given that two series, X and Y, are strictly stationary and meet the required

mixing conditions mentioned in Denker and Keller [90], under the null
hypothesis that X does not strictly Granger cause Y, the test statistics T is
asymptotically normally distributed and it follows that:

T =
√

n
(CI(k + Ly, Lx, ε, n)

CI(Ly, Lx, ε, n)
− CI(k + Ly, ε, n)

CI(Ly, ε, n)

)
∼ N

(
0, σ2(k, Ly, Lx, ε)

)
(2.8)

where n = N + 1− k − max(Lx, Ly) and σ2(·), the asymptotic variance of the
modified Baek and Brock test statistics, and an estimator for it are defined in the
Appendix in Hiemstra and Jones [17].

To test our variables for a possibly non-linear relation, we start by introducing
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the general framework of our models. Consider a regression model with a
constant conditional variance, VAR(Yt | X1,t, ...,Xm,t) = σ2ε . Then regressing Yt

on X1,t, ...,Xm,t can be generally denoted as:

Yt = f(X1,t, ...,Xm,t) + εt, (2.9)

where εt is independent of X1,t, ...,Xm,t with expectation zero and constant
conditional variance σ2ε . f(·) is the conditional expectation of Yt | X1,t, ...,Xm,t.
Eq.( 2.9) can be extended to include conditional heteroscedasticity as follows:

Yt = f(X1,t, ...,Xm,t) + σ(X1,t, ...,Xm,t)εt (2.10)

where σ2(X1,t, ...,Xm,t) is the conditional variance of Yt | X1,t, ...,Xm,t and εt has
the mean 0 and the conditional variance 1. Since σ(X1,t, ...,Xm,t) is a standard
deviation, it is captured using a non-linear non-negative function in order to
maintain its non-negative structure. This leads us to GARCH models [108].
Comparing Eq.( 2.9) and Eq.( 2.10), the first part of the right hand side of Eq.(
2.9) is the same with that of Eq.( 2.10). This is a linear model. The second part of
the right hand side of Eq.( 2.9) are residuals of the linear process. They represent
the second part of the right hand side of Eq.( 2.10). Eq.( 2.9) can finally be
presented in the VAR framework as:

Mt = c + Σ3
i=1hiMt−i + Σ3

i=1γ iVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(2.11)

At = c + Σ3
i=1hiMt−i + Σ3

i=1γ iVt−i + Σ3
i=1δiQt−i+

Σ3
i=1ηiAt−i + at

(2.12)

Following the second part of the right hand side of Eq.( 2.10), the residuals at
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Table 2.2.1: Assigning values to ε, as of Diks and Panchenko [16]

n 100 200 500 1000 2000 5000 10,000 20,000 60,000

ε 1.5 1.5 1.5 1.2 1 0.76 0.62 0.51 0.37

from Eq.( 2.11) and Eq.( 2.12) are presented in GARCH(1,1) as:

at = σ tεt (2.13)

where σ t =
√

w + α1a2t−1 + β1σ
2
t−1, in which w, α1 and β1 are constants. We finally

derive the GARCH(1,1)-filtered residuals, standardized residuals, as

εt =
at

σ t
(2.14)

We obtain the residuals from the VAR model in Eq. ( 2.11) and ( 2.12). The
test statistic in Eq. ( 2.8) is then applied to these residuals to detect the causal
relation between the Anxiety Index and stock prices. Diks and Panchenko [16]
provide some important improvement to the Non-linear Granger Causality test.
[16] demonstrates that the value to be arbitrarily assigned to the distance ε is
highly conditional on the length n of the time series. The larger the value n, the
smaller the assigned value for ε and, the better and more accurate the results.

Most of the related works choose k = Lx = Ly = 1. The length of the series
we are analysing is less than 200, so choosing ε=1.5 conforms with Table 2.2.1.
Given ε = 1.5, k = Lx = Ly = 1, the results from the test are presented in Table
2.2.2.

Our first result in this framework seems to support the idea that the Anxiety
Index has predictive information on the stock market, as this is based on the
p-value of 0.017 shown in the first row of Table 2.2.2. Some re-considerations are
necessary though.

Hiemstra and Jones [17] state that the non-linear structure of series is related
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to ARCH errors. Anderson [127] proves that the volatility of time series contains
predictive information flow. But Diks and Panchenko [16] warn that the presence
of conditional heteroscedasticity in series could produce spurious results. To
avoid any possible bias in our results, the residuals are applied to Eq.( 2.13) to
filter out any conditional heteroscedasticity in the residuals of the VAR models.
We also rely on the GARCH(1,1)-filtered residuals to re-establish our findings.

We are able to identify, using the GARCH(1,1) results, that at from Eq.( 2.11)
is a GARCH process with εt being a Gaussian white noise (having the p-values
α = 0.003, β < 0.001 and Shapiro-Wilk = 0.383) and that at from Eq.( 2.12)
does not contain significant heteroscedasticity except that εt is an i.i.d. white
noise with a heavy-tailed distribution (having the p-values α = 0.136, β = 0.454
and Shapiro-Wilk = 0.018). We obtain GARCH(1,1)-filtered residuals and the
test statistic in Eq.( 2.8) is re-applied to three sets of residuals: OLS residuals
from Eq.( 2.11) and Eq.( 2.12); GARCH(1,1)-filtered residuals of stock returns
and OLS residuals from Eq.( 2.12); and GARCH(1,1)-filtered residuals from
both stock returns and Anxiety Index. The results we present in rows 2 and 3 of
Table 2.2.2 show p-values> 0.05 and thus confirm that our earlier result
presented in row 1 of Table 2.2.2 is biased by the presence of heteroscedasticity
in the residuals. We are thus able to show that the Anxiety Index does not possess
any significant predictive information on the stock market.

In view of our results above, we therefore claim that the conclusion from
Gilbert and Karahalios [38] according to which the Anxiety Index has predictive
information on the stock market is not valid, which is supported also by the fact
that the statistical conditions to validate their results are not met.

2.3 Conclusion

This chapter proposes a new approach to statistically examine the relationship
between the stock market and emotions expressed online. It proves that the
Anxiety Index introduced by Gilbert and Karahalios [38] does not possess
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Table 2.2.2: Non-linear Granger non-causality test

AI => SP SP => AI

Lx=Ly=1 p Lx=Ly=1 p
Before filtering 0.017 Before filtering 0.182
GARCH(1, 1)SP 0.349 GARCH(1, 1)SP 0.922
GARCH(1, 1)SP,AI 0.718 GARCH(1, 1)SP,AI 0.685

predictive information with respect to the S&P 500. It does so by addressing the
statistical limitations present in, and by extending the approach of [38].

The main drawback of the approach in [38] to proving the existence of the
predictive information of the Anxiety Index with respect to the stock market was
that this approach used a Granger causality analysis based on producing and
assessing predictive linear models, which were actually not valid from a statistical
point of view. These models suffered of major shortcomings as for instance
residuals were non-normally distributed, and they presented a heterogeneity of
the variance. In an attempt to partially correct the above shortcomings, the
Monte Carlo simulation performed by assuming a Gaussian kernel based density
for the Anxiety Index, was also biased as the empirical distribution of the
employed F statistic significantly deviated from the expected F-distribution [38].

We note that Monte Carlo simulations using the Gaussian kernel density
approach have their own bandwidth selection problem, which may bias the
simulations - see Zambom and Dias [12]. We therefore re-designed the Monte
Carlo simulation presented in [38] by using bootstrap samples of the Anxiety
Index first, and the inverse transform sampling based on the continuous version
of the empirical distribution function corresponding to the original Anxiety
Index sample. The results showed no improvement. This re-confirms the
non-linear nature in the relationship between the stock market and emotion, and
the erratic volatility in the variables. Linear models appear to be too ‘basic’ to
capture these complexities.
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We have therefore extended the approach of [38] by proposing a more capable
framework based on the non-linear models introduced in [16]. Our first result,
based on a p-value of 0.017 obtained in the non-linear Granger non-causality test,
capturing the predictive information of the Anxiety Index with respect to S&P
500, is biased by the presence of heteroscedasticity. We filtered out the
heteroscedasticity in the residuals using Eq. ( 2.13) and our
GARCH(1,1)-filtered residuals were used with the test statistic in Eq. ( 2.7). Our
results, based on p-values> 0.05, express the true non-causality relationship of
Anxiety Index with respect to S&P 500.

Although our work has established that the Anxiety Index does not have
predictive information with respect to the stock market, by proposing a new
approach which is statistically sound and more conclusive, there are still some
concerns on how the Anxiety Index was built, based on incomplete data,
non-specific LiveJournal posts, corpus challenges, non-representative data
sample, among others. Further refining the process of defining the Anxiety Index
by addressing the above-mentioned concerns, may help to fine-tune our
empirical results and provide us with a more reliable predictive model.
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3
Sentiment and stockmarket volatility

predictivemodelling - a hybrid approach

Standard finance models are built under the main assumption that investors act
rationally. These models make use of conventional data like the stock market
data. The models assume that stock market returns are equal to fundamental
returns, where the market returns reflect all known information. In view of the
assumptions of market efficiency and investor rationality, the Efficiency Market
Hypothesis (EMH) became popular. This hypothesis adds substance to the
traditional finance models as these reflect the idea that all new information has
already been factored into the stock market prices. As shown in Chapter 2 the
validity of the Standard finance models has become questionable because of their
inability to capture the stock market trends. This has led to a new branch in stock
market modelling - behavioural finance centred around sentiments.
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Schumaker and Chen [115], Bollen et al. [66], Baker and Wurgler [88],
among other, examined the causal relationship between sentiment and the stock
market, and they all agreed that sentiment is statistically significant in stock
market modelling.

So far, the causality relationship between the stock market and sentiment has
been investigated. But there is little evidence to support that sentiments resolve
stock market uncertainty: as we will show here, evidence rather indicates that
sentiments induce volatility. How can we predict the impacts of sentiment on the
stock market volatility? How can we investigate the asymmetric effects of
different sentiments on the stock market volatility? Knowing that the GARCH
framework is popular in predicting the stock market volatility, how can we
develop a much more efficient stock market predictive model by using the
GARCH model as a benchmark? These are the main questions this chapter
focuses on.

Black [41] observed a negative correlation between current stock return and
future return volatility because bad news tends to increase volatility as the
realised return is lower than expected, and good news tends to reduce volatility as
the realised return is higher than expected. Lee et al. [133] employed a
generalized autoregressive conditional heteroscedasticity-in-mean specification
to examine the impact of investment sentiments on stock return and volatility.
They emphasized that focusing alone on the impact of sentiments either on the
mean or variance in asset returns alone could lead to misspecification problems.
A GARCH framework was used to analyse their effects, and results showed that
shifts in sentiments are negatively correlated with market volatility. That is,
volatility increases (decreases) when investors become more bearish (bullish).

Yanlin et al. [123] employed a nonlinear model that investigated the impact of
sentiment-based information flow on the stock return volatility. A GARCH
framework was introduced and results from their work supported that sentiments
have statistical influence in predicting the stock volatility. This also attracts our
interest as evidence from growing research work suggests that sentiments do not
necessarily resolve uncertainty; rather, they induce volatility [123].
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Mittal and Goel [7] used machine learning algorithms to investigate if stock
blogs, as a proxy for news, can predict this complex financial movement. Their
findings made the same claim that stock blogs can be used to predict the stock
prices, and they used some level of accuracy of the predictive models to support
their results.

In view of this area of growing interest, this thesis attempts to examine the
relationship among stock market returns, volatility, and stock-related sentiments.
Secondly, we investigate the asymmetric impacts of good and bad stock-related
sentiments on the stock market volatility. More so, we propose a much more
efficient volatility predictive model that incorporates both an EGARCH
framework and an artificial neural network framework.

The remainder of this thesis is organized as follows: Section 3.1 describes the
non-parametric approach we use, and presents our results of the causality
relationship between sentiment and the stock market return. It also presents our
benchmark volatility predictive model and assesses the asymmetric effects of
good and bad sentiments on the stock market volatility. Section 3.2 entails our
new hybrid approach that incorporates both the GARCH framework and the
artificial neural network framework. Section 3.3 reveals our findings and
concludes the thesis.

3.1 Stock market and sentiment

We use stationary daily time series variables obtained from stock market data and
also stock-related sentiments to measure the influence sentiment has on the stock
market returns. The S&P 500 index values from the 6th of September 2012 to
12th of May 2014 are used as a proxy for the stock market data and are employed
to generate two variables participating in the development of predictive models,
namely the stock market acceleration metric denoted as M and the volume of
stock trading denoted as V. The stock return at time t is defined as
Rt = log(SPt+1)− log(SPt), where SP is the closing stock price. The stock market
acceleration metric is obtained from the stock return as Mt = Rt+1 − Rt. Vt is
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expressed as the first difference of the lagged trading volume. The sentiment
series S is obtained directly from StockTwits, which contains sentiment-filled
S&P 500 blogs on Twitter (see the Downside Hedge website for more detailed
explanation about the sentiment building process [34]). The sentiment data
obtained has already been processed with the positive values representing
positive sentiments and the negative values denoting negative sentiments. The
examples of the StockTwits below represent the original stock-tweets:

1. $SPY Go down in Louisiana and chase down like five $10 million worth of
deposits Monday or Tuesday.

2. Gold Stocks Very Oversold, But Need Macro Catalyst $GDXJ $HUI Also
$GLD $SPX talkmarkets.com/content/com.

3. AABB AABBG.X Gold Exchange coming in September. AABBG.X
Exchange will have 20 trading pairs allowing for cryptocurrency loans,gift
cards,tied to Gold. AABB OTC has 100M+ in assets 72M Cash on hand
30M in Gold bullion. (TECHY) OTC has 9.46B OS & SP hit 99$ in
February compared to AABB 2.3B OS less than 1/4 as many shares. Mr
William Snyder owns 275M Shares and JUST RETIRED 120M of those
shares, goes to show you his obscene confidence in AABB Mr Snyder also
has strong connections to Barrick Gold. Have a Great weekend and
remember Voyager Pre Exchange launch SP was .17 cents fast forward 5
months later Post Exchange launch SP hit 30$.

These examples represent the stock-related tweets that have been processed by
StockTwits and explored in our work.

We now define At = St − St−1. Moreover, we include sentiment dummy
variables so that we could measure the asymmetric impacts of positive and
negative sentiments on the stock market volatility. We do not have access to these
different sentiments. We resolve to using proxies for positive sentiment dummy
variable Dt = 1where At − At−1 > 0 and 0 otherwise. We are able to generate
the positive sentiment and negative sentiment series by defining Pt = A2

t ∗ Dt
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and Nt = A2
t ∗ (1− Dt), respectively. Our volatility series Q is generated using

the exponential GARCH(1,1), denoted also by EGARCH(1,1), as follows:

Qt = ln(σ2t ) = ω + βln(σ2t−1) + α
[ | εt−1 |

σ t−1
−

√
2
π

]
+

γ
(εt−1

σ t−1

)
+ θ1Pt−1 + θ2Nt−1

(3.1)

where β measures the impact of past volatility on future volatility, α measures the
impact of positive stock market shock on the stock volatility, γ captures the
impact of negative stock market shock on the stock volatility, and θ1 and θ2
measure the impact of positive and negative sentiments, respectively, on the stock
volatility.

3.1.1 ConventionalGrangercausalitybetweensentimentandstock
returns

In the process of determining the causal relationship between sentiment and
stock market return we present these two OLS models:

M1 : Mt = α1 + Σ3
i=1β1iMt−i + Σ3

i=1γ1iVt−i+

Σ3
i=1δ1iQt−i + ε1t

(3.2)

M2 : Mt = α2 + Σ3
i=1β2iMt−i + Σ3

i=1γ2iVt−i+

Σ3
i=1δ2iQt−i + Σ3

i=1η2iAt−i + ε2t
(3.3)

The models M1 and M2 are used to measure the influence of the sentiment on
stock prices. The difference in the models is that M1 does not include the
sentiment variable; it only uses the lagged market variables mentioned above in
this section. M2 adds the lagged sentiment to the M1’s variables. If M2 performs
better than M1, one could conclude that the sentiment has predictive information
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on the stock market. But such a conclusion is dependent on the conditions under
which the estimated residuals are normally distributed and homoscedastic in
variance.

Before Eq. (3.2) and (3.3) can be estimated, the volatility series Q must be
established and the influence of sentiment on volatility assessed. Does sentiment
have predictive information on volatility? What asymmetric impacts do positive
and negative stock market shocks have on volatility? What asymmetric impacts
do good and bad sentiments have on volatility? Solving Eq. (3.1) and (3.3)
provides answers to the questions.

The traditional volatility model is built using a GARCH approach that uses the
residuals from a linear model as input to generate the volatility series.

We start by introducing the general framework of our models. Consider a
regression modelling with a constant conditional variance,
VAR(Yt | X1,t, ...,Xm,t) = σ2ε . Then regressing Yt on X1,t, ...,Xm,t can be generally
denoted as:

Yt = f(X1,t, ...,Xm,t) + εt, (3.4)

where εt is independent of X1,t, ...,Xm,t with expectation equal to 0 and constant
conditional variance σ2ε . Here f(·) is the conditional expectation of
Yt | X1,t, ...,Xm,t. Eq. (3.4) can be extended to include conditional
heteroscedasticity as follows:

Yt = f(X1,t, ...,Xm,t) + σ(X1,t, ...,Xm,t)εt (3.5)

where σ2(X1,t, ...,Xm,t) is the conditional variance of Yt | X1,t, ...,Xm,t and εt has
the mean 0 and the conditional variance 1. Since σ(X1,t, ...,Xm,t) is a standard
deviation, it is captured using a non-linear non-negative function in order to
maintain its non-negative structure. This leads us to the traditional GARCH
model defined as:

σ2t = ω0 + β1σ
2
t−1 + α1ε2t−1 (3.6)
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Table 3.1.1: Only parameters from Eq. (3.1) that are statistically significant
are reported. LjungBoxR and LjungBoxR2 denote Ljung-Box tests on the stan-
dardised residuals and squared residuals respectively.

Variable Estimate t value p-value
ω -2.1849 -3.7214 < 0.001
β 0.7690 12.4479 < 0.001
λ 0.2926 4.2497 < 0.001
θ1 -6.1031 -2.3453 0.0190

Test LjungBoxR LjungBoxR2 ARCHLM
p-value > 0.05 > 0.05 > 0.05

The problem with Eq. (3.6) is that the asymmetric effects of different market
shocks could not be captured. As a result, a new model was introduced by [22].
This model is called the Exponential GARCH model defined in Eq. (3.1) to
capture these asymmetric effects of different shocks on the stock market
volatility. This proposed model has earned popularity as it makes it possible to
measure the asymmetric effects of market shocks. We use this model as our
benchmark in predicting the stock market volatility.

In order to obtain the volatility series Eq. (3.3) is estimated without the
variable Q and the model residuals are applied to Eq. (3.1) to generate Q. Table
3.1.1 presents the results of the estimated volatility model.

It is revealed that past volatility has a positive relationship with regard to future
volatility. In fact, it is observed that it influences future volatility the most. It has
been shown that negative market shocks are positively related to market return
volatility. They increase the level of market risk and therefore influence the stock
volatility positively. The asymmetric impacts of different sentiments on stock
volatility are also captured. As it would be expected, positive sentiment reduces
volatility. Oddly, negative sentiment does not appear to be statistically important.
Goodness of fit tests are also employed on the standardised residuals and squared
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residuals of the estimated EGARCH model. The insignificant p-values from the
Ljung-Box tests on both the standardised residuals and squared residuals, and the
ARCH LM test, suggest that the EGARCH model would fit the data well.

The volatility series obtained in Eq. (3.2) and (3.3) are estimated, and the
linear Granger causality test results are presented in Table 3.1.2. The first two
columns in the table show that M2, with the sentiment included in the analysis,
would outperform M1, judging from the Granger causality F statistics
F3,401 = 6.5385, and the corresponding p-value pGranger = 0.0003.

Table 3.1.2: Granger Causality results and Monte Carlo Simulation.
MCpGausskern, and MCpboot are the p-values of the simulations using a Gaussian
kernel assumption, and bootstrap sampling respectively.

F3,401 pGranger MCpGausskern MCpboot Shapiro-Wilk

6.5385 0.0003 0.0005 0.0005 0.0047

However, there are some concerns in the estimated models: the estimated
residuals possess serious autocorrelation, are non-normal and heteroscedastic in
variance (having p-values Ljung-Box< 0.05 for lags from 3, and Shapiro-Wilk=
0.0047) and the heteroscedastic presence is revealed in the EGARCH process in
Table 3.1.1 (with p-value of β < 0.001). These are major shortcomings of the
linear Granger causality test results according to which sentiment would be a
determining factor in predicting the stock market returns. In an attempt to see if
we could still rely on the test results, Monte Carlo simulations with a Gaussian
kernel distribution assumption for the sentiment series are employed. 1 million
sets of samples are generated for the sentiment and are fed into (3.3) by iterating
1 million times. The same number of F statistic values are generated in the
process and then classified based on if the F statistic is at least 6.5385. The total
number of F statistic values that are at least 6.5385 is then divided by the number
of iterations to obtain the Monte Carlo experimental p-value MCpGausskern =
0.0005 as shown in the third column of Table 3.1.2.
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Although MCpGausskern = 0.0005 seems to confirm the conclusion of the
Granger causality analysis, the Monte Carlo simulation suffered at its turn of the
issue of retrieving a significantly different experimental p-value with respect to
pGranger. This issue seems to be the consequence of another issue, consisting of the
fact that the empirical distribution of the F-statistic computed in the Monte
Carlo experiments significantly deviated from the expected F-distribution, as
confirmed by the Kolmogorov-Smirnov test (D = 0.0348, p < 0.001).

This realization constitutes a nontrivial reason to question the Monte Carlo
estimates, and a natural question which arises is: would the assumption of the
Gaussian kernel distribution for the sentiments have possibly introduced a bias in
the simulation? To answer this question, we apply another non-parametric
Monte Carlo simulation method based on the bootstrap sampling. We follow the
same procedure as that used in the Gaussian Kernel Monte Carlo simulation. The
result is presented in the fourth column of Table 3.1.2, whereMCpboot denotes the
p-value issued from the use of the bootstrap sampling method. The simulation
led to a similar p-value of 0.0005. Also, the empirical distribution of the
F-statistic computed in the bootstrap sampling Monte Carlo experiment is
different from the expected F-distribution (Kolmogorov-Smirnov test result
having D = 0.0351, p < 0.001). These shortcomings confirm once again that
proving the relationship between the sentiment and the stock market is
problematic if linear models are involved.

Although there are strong reasons to accept the Granger causality results, on
one hand, there are also issues regarding the assumptions clearly stated under the
linear regression modelling, such as the residuals must be independent, normally
distributed, and homoscedastic in variance. All these assumptions are violated in
our estimated models despite the fact that our Monte Carlo simulations fairly
validate the Granger causality test results. As such, in the next subsection we
devise a non-parametric non-linear Granger causality test in the context of our
problem, in an attempt to overcome the limitations illustrated in the present
subsection.
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3.1.2 Extendingtheapproachtonon-parametricnon-linearGranger
causality

The stock market exhibits frequent volatility, and this makes linear frameworks
less capable of capturing and predicting its trends. For stock market predictive
values to be considered reliable, two key necessary and sufficient requirements
must be met. The first would be to generate an acceptable predictive model and
the second would be to prove the model’s predictive value rigorously and
statistically. The inability of any model to satisfy these two conditions casts doubt
on its predictive value. This has been the case with most research work
attempting to examine the causality direction between the stock market and
sentiment-filled online expressions. Gilbert and Karaholios are among the very
few that attempted to statistically prove their models’ predictive value in their
highly cited work [38]. But their results appeared to be biased as a consequence
of their non-normal estimated model residuals and heteroscedasticity. These
results have finally been proved not to be valid by further investigation in
subsequent work [109].

In this section we apply the non-parametric statistical technique for detecting
nonlinear causal relationships between the residuals of linear models, technique
which was originally proposed by Baek and Brock [35] and was later modified by
Hiemstra and Jones [17] to become one of the most popular techniques for
detecting nonlinear causal relationships among variables. The technique is
explained in detail in Chapter 2.

To resolve the shortcomings of the linear Granger causality test, VAR models
for stock returns and sentiment are exploited. For stock market return, we make
use of (3.3) and for sentiment model, we have:

At = c3 + Σ3
i=1h3iMt−i + Σ3

i=1γ3iVt−i+

Σ3
i=1δ3iQt−i + Σ3

i=1η3iAt−i + ε3t
(3.7)

43



Table 3.1.3: Non-linear Granger non-causality tests. A and M are the senti-
ment and stock market returns, respectively. A => M, for example, denotes
the Granger causality test with direction from A to M, i.e. sentiment predicts
stock returns.

Lx=Ly=1 p − value
A => M 0.66433
M => A 0.30186

Note that (3.3) and (3.7) are estimated and the residuals from the estimated
models are applied to (3.6).

The results of the tests presented in Table 3.1.3 show that sentiment does not
have any predictive power on the stock market return, as the corresponding
p-value of 0.66433 does not show statistical significance. This is clearly contrary
to the findings of the linear Granger causality tests which have been invalidated
by the presence of residual non-normality and heteroscedasticity.

Having observed no causal relationship between sentiment and stock market
returns, can one reach the same conclusion that sentiment has no predictive
power over the stock market volatility? Is the EGARCH model used for volatility
models efficient in reliably predicting stock market volatility? We investigate
these problems in the next section.

3.2 A hybrid approach to predicting stock volatility

In this section we will demonstrate the predictive power of sentiment on stock
market volatility by proposing a hybrid approach based on the GARCH
framework and the artificial neural network framework in which we consider
feed-forward and recurrent neural networks. However, in order to propose this
hybrid approach, we start by simply attempting to assess the predictive influence
of sentiment on the volatility using the EGARCH framework alone first and
evaluate the relative improvements when we enhance our approach with
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feed-forward and Elman neural networks.
Monfared and Enke [117] recently proposed a hybrid approach that

incorporated GJR GARCH and feed-forward neural networks (NNs) in
predicting volatility. Their model was applied to conventional variables such as
the market returns, and the variance of ten NASDAQ indices. Their findings
showed that incorporating NNs into the GARCH framework improves volatility
predictive performance. But how accurate is the GARCH framework employed
in predicting the stock market? Can some non conventional variables like
sentiment improve the performance of predictive models? We answer these
questions by presenting new models that combine both EGARCH and neural
network (NN) models.

Advancement in information processing technology contributed to the birth
of NNs. According to Malliaris and Salchenberger [96], NNs present the
relationship between the inputs and outputs using the architecture of human
brain to process large information and detect patterns by interconnecting and
organizing them in different layers for information processing purposes. These
layers are formed by a set of processing elements or neurons. The layers are
structured in a hierarchy consisting of input layers, output layers, and hidden
layers. The connected nodes possess some weights which define the influence of
the individual input cell to the output cell. These weights are extracted from the
training data employed in the process of learning the relationship between the
inputs and the outputs. Each of the processing elements is assigned an activation
level, specified by continuous or discrete values. For neurons in the input layers,
their activation levels are determined from the response obtained in the input
signals within the environment. For neurons in the hidden or output layers, their
activation levels are defined as a function of the activation levels of the neurons
connected to them and the corresponding weights. The functions are called
transfer functions, which may be in the form of a linear discriminant function
with a value 1 for a positive signal if the value of the function exceeds a threshold
level and 0 otherwise. The function may also be continuously nondecreasing, as
is the case with the sigmoid functions. A feed-forward NN, for example, has a
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Table 3.2.1: Correlation. Res denotes the response variable.

Res Q1 Q2 Q3 P1 P2 N1 N2

Res 1.000 0.342 0.166 0.079 0.006 -0.045 0.028 0.075
Q1 0.342 1.000 0.663 0.454 -0.437 -0.207 0.120 -0.070
Q2 0.166 0.663 1.00 0.664 0.125 -0.437 -0.187 0.119
Q3 0.079 0.454 0.664 1.000 0.069 0.123 -0.099 -0.187
P1 0.006 -0.437 0.125 0.069 1.000 -0.110 -0.158 0.281
P2 -0.045 -0.207 -0.437 0.123 -0.110 1.000 0.397 -0.157
N1 0.028 0.120 -0.187 -0.099 -0.158 0.397 1.000 -0.105
N2 0.075 -0.070 0.119 -0.187 0.281 -0.157 -0.105 1.000

one-directional signal flow mapping the inputs into the outputs from the input
layer to the output layer. The applications of the NN family are very popular in
areas such as classifications, predictions, and pattern recognition, among others.

The NN family have different parameters in their design and these parameters
may alter their outputs. Therefore, they are designed for different research goals.
The backpropagation NN is one of the most popular regarding the areas of
research work aforementioned. Collins et al. [36] applied it to underwriting
problems. Malliaris and Salchenberger [91] also applied the backpropagation
network in estimating option prices. To determine the values for the parameters
in the algorithms, mean square error and gradient descent are employed. At each
iteration, current parameters are updated by minimizing the mean square error
differences between the actual response values and desired response values. A
detailed explanation of the process is provided by Rumelhart and McClelland
[27]. Feed-forward, multilayer, and recursive NN, such as Jordan recursive NN
and Elman recursive NN, have become popular and preferred to the traditional
NN techniques. The relationship between input variables and response variable
is learned during the data training process with networks learning repeated from
previous examples and data.
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We build our stock volatility predictive approach based on feed-forward and
recurrent NN combined with EGARCH models. In order to assess the impact of
sentiment on the performance of the prediction we consider two sets of input
datasets. The first set contains only the lagged volatility series fitted by the
EGARCH model, Qt−1, and Qt−3. The second dataset includes, in addition to the
first dataset, lagged positive and negative sentiments Pt−1, Pt−1,Nt−1 and Nt−2.
Qt−2 is excluded in both datasets because it is highly correlated with Qt−1 as
presented in Table 3.2.1.

We employ the series on various classes of NN models: the feed-forward NNs,
the Elman recursive NNs and the Jordan recursive NNs. Knowing that the
output of NN models is sensitive to the values assigned to the parameters in the
models (including the number of hidden layers, the number of their nodes, and
the weights), with some computational efforts optimised NN models have been
generated, and the Root Mean Square Errors (RMSE) have also been obtained as
presented in Tables 3.2.2 and 3.2.3. The Elman NN and the feed-forward NN
provide closely the same results and are clearly better than the Jordan NN. The
RMSE from the Feed-forward and Elman models in Table 3.2.3 are lower than
their corresponding RMSE in Table 3.2.2. This observation confirms the
importance of including sentiments among the predictors of stock market
volatility. The RMSE are clearly diminished when sentiment variables are
included in the training. This observation is further investigated by employing
the graphical representations of the trained NN models.

Figure 3.2.1 presents the regression plots of our fitted volatility for the two
datasets. The performance is judged by the closeness of the fitted volatility plot in
red to the optimal line in black. The plots in the first column of Figure 3.2.1
represent charts from the dataset without sentiment variables, and the plots in
the second column denote charts from the dataset with sentiment variables
included. The difference between the two datasets used is clearly presented by
the feed-forward and the Elman NN models. The plots in the second column
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Table 3.2.2: Results from the use of the dataset without sentiment series.
Size refers to the number of hidden units, Max denotes the number of iter-
ations, Weight denotes the weight decay and RMSE is the root mean square
error which is the square root of MSE.

NN Size Max Weight RMSE

Jordan 16 340 0.00017
Elman 24 1440 0.00010
Feed-Forward 29 1400 0.001 0.00011

Table 3.2.3: Results from the use of dataset with sentiment series. Size refers
to the number of hidden units, Max denotes the number of iterations, Weight
denotes the weight decay and RMSE is the root mean square error which is the
square root of MSE.

NN Size Max Weight RMSE

Jordan 20 1240 0.00017
Elman 30 1040 0.00004
Feed-Forward 30 1920 0.001 0.00005

appear much better than those in the first column and this suggests that by
including sentiment variables one produces better predictions. That is, sentiment
plays an important role in predicting stock market volatility.

Substantial evidence shows that sentiment has predictive information on the
stock market. The previously produced EGARCH model has shown the
significant importance of individual predictors. The relative importance of
individual input variables in predicting stock market volatility is also investigated
now in the context of our proposed hybrid approach combining EGARCH and
NNs models. The information contained in Figure 3.2.2 follows the same
direction of interpretations as that presented in Table 3.1.1. Past volatility
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Figure 3.2.1: Regression model. It presents the information about the fit-
ted volatility line in red and the optimal line in black. The figures in the first
column represent plots of NN models with the dataset without sentiment
variables. The figures in the second column represent volatility plots of the
dataset with sentiment variables.

influences future volatility the most and it is positively related to future volatility.
Positive sentiment has a negative relationship with future volatility. Of all the
predictors, negative sentiments appear to have the least influence on the stock
volatility.
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Figure 3.2.2: Relative importance. It measures the relative importance of
the predictors in the model. Variables on the horizontal lines are the predic-
tors. The variables with values below 0 have a negative relationship with the
response variable and those with values above 0 have a positive relationship
with the response variable. The response variable is the future volatility.

3.2.1 Sensitivity analysis

We have shown how individual variables impact on the response variables. Our
findings present sentiment variables to be influential in predicting the stock
market volatility. We have also shown the direction of the influence each variable
has in predicting the stock market volatility. Recalling from the benchmark
GARCH model used, past volatility has a positive impact on future volatility.
Positive sentiment has a negative influence on the stock market volatility. From
the relative importance information of the explanatory variables presented in
Figure 3.2.2 it is observed that positive sentiment and past volatility have higher
impacts on the volatility just the same way as presented from the results obtained
in the GARCH model. The most relevant questions about the relationship
between sentiment and the stock market variables have been answered from a
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rigorous / statistical point of view. Equally important is the proposed hybrid
approach that derives a larger efficiency from the combination of the GARCH
framework and the neural network framework in developing more advanced
volatility predictive models. We have shown that our proposed model is highly
efficient in this regard. Yet, some important questions are still left unanswered.

For a basic linear regression model, it is easy to observe how each explanatory
variable impacts on the dependent variable by keeping other explanatory
variables constant. Secondly, it provides categorical information about the
direction of relationships between individual explanatory variables and the
dependent variable. Being categorical implies that a relationship shows if an
explanatory variable has a positive or negative influence on the dependent
variable, and that this direction of the relationship is constant. Clearly, linear
models are simple, categorical, and straight-forward. This brings forward the
question: is there any way to present the form of relationship of every individual
explanatory variable with the response variable from the proposed hybrid
approach? That is, given other explanatory variables constant, what amount of
change will be impacted on the response variable for a unit change in an
explanatory variable?

Neural networks are considered a ‘black box’ as they do not offer any insightful
explanations about the impacts of individual input variables in the prediction
process. Gevrey et al. [93] are among the early researchers that provided these
long-awaited insights. This makes it possible to carry out sensitivity analysis on
these individual explanatory variables. In order for us to answer the pressing
question about the form of relationship of each explanatory variable on the
dependent variable we use techniques of sensitivity analysis. We intend to
examine how a unit change in each explanatory variable influences the dependent
variable. We also aim to examine if the relationship between an explanatory
variable and response changes with regard to the constant values of all other
explanatory variables.

Figure 3.2.3 presents our sensitivity analysis results. Each of the 6 columns

51



Figure 3.2.3: Sensitivity analysis plots. It depicts the forms of the relation-
ship between each explanatory variable with regard to the dependent variable
while keeping the other explanatory variables constant. N1 and N2 denote first
and second lagged negative sentiment variables respectively. P1 and P2 denote
first and second lagged positive sentiment variables respectively. Q1 and Q2
are first and third lagged volatility variables. The dataset is normalised to be
between 0 and 1.

corresponds to each explanatory variable whose label is provided on top. At the
far-right of Figure 3.2.3 we have Splits, which denotes the different constant
values assigned to other explanatory variables, while one explanatory variable is
under consideration with respect to the response variable. For each constant
value there is a corresponding colour line as illustrated in the figure.

First, we determine the relative importance of the individual explanatory
variables based on the slope of the curves. Starting with the first column with the
label N1, when other variables are kept constant at value 0, the topmost line
denotes the relationship of the negative sentiment variable N1with respect to the
response variable. It is observed that there is a negative relationship between
these two variables, up until N1 is 0.5. At this stage, the relationship is inelastic.
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That is, less than a unit change is expected in the sentiment variable N1 to cause a
unit change in the response variable. From the point where N1 is 0.5 and above,
the form of the relationship changes to positive, and the relationship is elastic.
This shows that the form of the relationship between the explanatory variable and
the response variable may not necessarily be constant over time. In the second
column corresponding to the negative sentiment variable N2, we observe a
positive relationship up to the point where the value of N2 is around 0.2 when
other explanatory variables are held constant at value 0. When it has values
between 0.25 and 0.5, the direction of the relationship changes to negative and it
is also inelastic, which means that less than a unit change in N2 is expected to
cause a unit change in the response variable. Above the value of 0.5, the
relationship changes again. This also confirms that the form of the relationship
using our hybrid approach is not constant and that may be the case with most
neural network models. Comparing the two negative sentiment variables N1 and
N2, all lines of N2 are longer than those of N1, which means that the relationships
for N2 are generally more inelastic (less elastic) than those for N1. In terms of
these variables’ relative importance, N2 is therefore more important than N1.
Interestingly, it is revealed that the form of the relationship between an
explanatory variable with respect to the response variable differs for different
constant values for all other explanatory variables. When the other explanatory
variables are kept constant at the maximum value 1, column 1 shows a change in
relationship and it reveals that N1 does not have any influence on the response
variable. At this stage, variables N2 and Q1 appear to be the most important
predictors in relation to other predictors. When the constant values are set
between 0.2 and 0.8, P1 and Q3 are the most important predictors with very
strong inelastic relationships. Comparing all the explanatory variables relatively,
P1,Q1 and Q3 are the most influential predictors. Recalling from Figure 3.2.2 and
the EGARCH results in Table 3.1.1 that show positive sentiment to be negatively
related with volatility, the information presented in Figure 3.2.3 does not
disprove this form of relationship. These results from Figure 3.2.2 and the
estimated EGARCH model are retrievable under some constant values of other
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explanatory variables.
This analysis underscores the importance of sentiment variables in developing

stock market volatility predictive models. Considering stock-related online
expressions, our sensitivity analysis supports that positive sentiment is
significantly influential in predicting stock market volatility. We have shown also
that individual explanatory variables do not necessarily have a constant form of
relationship with respect to the response variable. Different values of other
explanatory variables may cause an explanatory variable to change the form of the
relationship it has with the response variable.

3.3 Discussion and conclusion

This thesis proposes a hybrid approach that incorporates a GARCH framework
and feed-forward neural network model in developing a much more efficient
volatility predictive model. It also details the relationship among sentiments,
stock market returns and volatility by applying a non-parametric non-linear
Granger causality framework to assess the causality direction between sentiment
and stock market returns.

The linear Granger causality test shows that sentiment has a significant
influence on the stock market returns. But the residuals obtained from the
estimated linear model are non-normal and heteroscedastic in variance. These
shortcomings invalidate the linear approach. But many related research work
reach a conclusion based on the results from the linear approach without
statistically validating their results as revealed by [109]. The violations of the
linear assumptions about non-normal residuals and heteroscedasticity
completely render the linear results invalid. Although Monte Carlo simulations
based on the assumptions of Gaussian Kernel and Bootstrap sampling are also
used to see if the experimental p-values obtained would provide some level of
support. Well, the Monte Carlo results do support that sentiment does influence
the stock market returns. As would be expected, the experimental F distribution
from the Monte Carlo simulations deviates from the expected F-distribution.
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This renders invalid the relationship between the Monte Carlo experimental
results and our original linear results. In view of these shortcomings, the
non-parametric nonlinear Granger test introduced by [109] was employed to
examine the true relationship between the variables. The causality test reveals
that there is no line of Granger causality between them. The linear model is
biased as revealed by the violations of the key linear assumptions for validity. The
strong relationship as shown in the linear Granger causality result disappears
when the non-parametric nonlinear model is applied. It implies that the price of
sentiments from stock-related blogs have already been factored into the stock
market returns. The only logical reason one could reach is that since the
information from stock-related blogs is public, then the news or blogs are not
new so as to have any effect on stock market prices. The market is already
considered efficient and therefore no advantage can be obtained from public
information. Having concluded this, does it mean that sentiment does not
influence the stock market at all? We move further to investigate the influence of
sentiment on stock market volatility. In addition, we develop upon the existing
stock market volatility predictive model by introducing a neural network
framework into the traditional model.

Our volatility model built on the EGARCH framework shows that future
volatility is influenced by factors such as past volatility and positive sentiments.
Negative sentiment from stock-related news does not appear to have any
influence on volatility. The RMSE obtained from the EGARCH model is
9.724997. This is used as a benchmark to compare the efficiency of our proposed
hybrid model. The RMSE is reduced to 0.0005 by our proposed model. It clearly
confirms the superiority of our model over the benchmark. The model also
reveals the relative importance and directional influence of individual variables.

We are able to show the asymmetric impacts of positive and negative
sentiments on the stock market volatility using both the conventional and our
hybrid models. Positive sentiment influences volatility. This could be because the
stock market is considered highly risky and therefore investors react to future
volatility based on the information from past volatility. As such, substantial
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positive sentiment is expected to cause changes in their investment portfolio.
We employ sensitivity analysis to examine the form of relationship each

explanatory variable has with respect to the stock market volatility from our
hybrid model. Our results show that the form of relation could be positive,
negative, bi-modal or come in any kind of form. It all depends on the values of
other explanatory variables employed at a point in time. Regardless, our
sensitivity analysis shows that positive sentiment possesses predictive power on
stock market volatility. It also shows that past volatility impacts future volatility.

In conclusion, we have shown that sentiment built-up process is a determining
factor when measuring the effects of sentiments on stock market volatility. [109]
uses sentiments that are not stock related. The findings from their work showed
that past volatility and negative sentiments influence stock market volatility.
Positive sentiment does not have any significant impact on volatility. But when
sentiments are generated from stock-related blogs, past volatility still appears to
have the strongest effect on future volatility. Positive sentiment has more effects
on stock market volatility than negative sentiment. This implies that the source of
sentiments used also has importance and therefore one must pay attention to the
source of sentiments used in developing stock market predictive models.
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4
Predicting S&P 500 based on its

constituents and their social media
derived sentiment

4.1 Motivation

We examined the Granger causality relationship between sentiment and the
stock market in chapters 2 and 3 but with some variant based on the different
sources of sentiment data. Interestingly, both chapters agree that sentiment does
not significantly influence the stock market returns. But Chapter 3 reveals that it
does impact the stock market volatility. Yet, attempts made so far have not
yielded any objective conclusion as to this relationship. On this account we
approach this sensitive subject by exploring sentiment directly sourced from the
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constituents of the S&P 500 in examining this causal relationship between
sentiment and the stock market.

4.2 Introduction

The influence of sentiments on the stock market has been extensively studied and
so are the asymmetric impacts of positive and negative news on the market. But
little has been done in devising efficient predictive models that can help to
maximise investment portfolios while taking into consideration the statistical
relevance of sentiment, and the proposed work addresses this concern. The main
aim of this chapter is to predict reliably the directions of the S&P 500 closing
prices, by proposing a predictive modelling approach based on integrating and
analysing data on S&P 500 index, its constituents, and sentiments on these
constituents. Indeed, this study is the first work to use constituent sentiments
and its closing stock prices containing over 800 variables (combined closing stock
prices of the S&P 500 constituents (Appendix A.0.2) and their respective
sentiment data (Appendix A.0.3) without taking into account lagging - which
further increases data dimensionality in a n-fold fashion) to predict the stock
market.

First, we tackle the data high dimensionality challenge by devising and
proposing a method of selecting variables by combining three steps based on
variable clustering, PCA (Principal Component Analysis) [94], and finally on a
modified version of the Best GLM variable selection method developed by
McLeod and Xu [6].

Then we propose an efficient predictive modelling approach based on Jordan
and Elman recurrent neural network algorithms. To avoid the pitfall of a time
invariant relationship between the response and the explanatory variables in the
highly volatile stock market data, our approach captures the dynamic of the
explanatory variables set for every rolling window. This helps to incorporate the
time-variant and dynamic relationship between the response and explanatory
variables at every point of the rolling window using our variable selection
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technique mentioned above. Finally, we propose an efficient hybrid trading
model that incorporates a technical analysis, and machine learning and
evolutionary optimisation algorithms [15].

We prove that our constituent and sentiment based approach is efficient in
predicting S&P 500, and thus may be used to maximise investment portfolios
regardless of whether the market is bullish or bearish ¹. This study extends our
previous recent work on XLE index constituents’ social media based sentiment
informing the index trend and volatility prediction [43].

The remainder of this chapter is organized as follows. Section 4.3 presents our
data pre-processing methodology, which is our proposed method for handling
the data high-dimensionality challenge outlined above, for selecting the variables
with predictive value. Section 4.4 elaborates on the results of the causality
relationship between sentiment and the stock market returns using special
techniques of Granger causality. Section 4.5 presents the predictive modelling
approach that we propose based on machine learning techniques including
Jordan and Elman recurrent Neural Network algorithms. Section 4.6 entails our
proposed trading model that combines a technical analysis strategy and the
estimated results from the machine learning framework to optimise investment
portfolios with evolutionary optimisation techniques. Finally, Section 4.7
discusses our findings and concludes this thesis.

4.3 Stock data and sentiment information

In order to develop our approach to predicting the S&P 500 close prices, we rely
on three main datasets which we integrate. The first dataset involves the
collection of all the closing stock prices for the S&P 500 constituents obtained
directly from Yahoo Finance website [58]. The second dataset is sentiment data
for the constituents of the S&P 500 index, obtained from Quandl. It collects the
contents of over 20 million news and blog sources in real time. These contents are

¹Bullish and bearish are terms used to characterize trends in the stock markets: if prices tend
to move up, it is a bull market; if prices move down, it is a bear market.
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similar to the examples provided in Chapter 3. They retain the relevant articles
and extrapolate the sentiments. The sentiment score is generated via its
proprietary algorithm that uses deep learning, coupled with a bag-of-words and
n-grams approach. According to Quandl, negative sentiments are rated between
-1 and -5, while positive sentiments are rated between 1 and 5 ([55]). And the
third dataset contains the S&P 500 historical close prices and trading volume,
obtained also from [58].

All the data collected covered the period from 8th of February 2013 to 21st of
January 2016. For S&P 500 and its constituents, the stock market return at time t
is defined as Rt = log(SPt+1)− log(SPt), where SP is the closing stock price. The
stock market acceleration metric is obtained from the stock market return as
Mt = Rt+1 − Rt. Moreover, Vt is expressed as the first difference of the logged
trading volume. Finally, the sentiment acceleration metric is defined as
At = St − St−1, where St represents sentiment for each constituent of the S&P
500 at moment t.

By combining the three datasets, in all we have more than 800 initial variables
to explore (not including lagged variables), which will lead to one of the
challenges encountered in our framework in terms of high data dimensionality.

Figure 4.3.1 shows the data pre-processing process flow. It highlights all the
processes undertaken to refine the data.

To handle the high data dimensionality challenge, we propose an approach to
reducing the number of dimensions, adapted to our framework, based on 3 steps,
consisting consecutively of performing variable clustering, PCA, and by applying
a variable selection method that we introduce here based on Best GLM variable
selection method developed by McLeod and Xu [6]. These steps are described in
the following subsection.

4.3.1 Reducing data dimensionality

As mentioned, the prices and sentiments of the S&P 500 constituents are the
variables of two of the datasets we dispose of initially. For analysis, it is important
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Figure 4.3.1: Data pre-processing process flow that details the processes fol-
lowed to tackle the complexity of high dimensionality dataset. The three gray
boxes represent the three main datasets. Detailed results of the K-means clus-
ter are presented in Appendixes A.0.4 and A.0.5 for the constituents’ stock
prices and sentiments respectively.

to classify each constituent into groups. Of course, classifying the constituents
based on their respective industries would have been the easiest way to group
them since predefined information is readily available. Instead, we follow a more
analytically rigorous approach in grouping the constituents based on pattern
recognition and similarities in time series by using clustering.

In our case we use K-means clustering on each of the two sets of S&P 500
constituents for closing prices and sentiments respectively in order to group the
variables in clusters. On the other hand, as we intend to use a rolling window of
100 days for testing and 10 days for forecasting, we note here that clustering is
therefore applied on each rolling window, by forming 4 clusters. We note that by
exploring different numbers of clusters between 3 and 10 on sample sets of 100
days rolling windows, 4 appeared to be the optimal number of clusters in all
cases. Due to the generic property of within cluster similarity, it is expected that
variables in a cluster are more or less similar.

When it comes to reducing the dimensionality of a numeric dataset, one of the
most used methods is the well known Principal Component Analysis (PCA)
[94].
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With the advancement in data analytics, researchers and investment analysts
have been able to explore big data in the process of developing predictive models.
This helps to reduce the possibility of excluding relevant variables. But this
benefit does not come at no cost. Imagine a situation whereby more than 500
variables are collected. Including all these variables in the final model might
weaken the predictive power of the developed model. Then there comes the
choice of selecting the variables that are statistically significant. And again, there
is a likelihood that in the process of the selection, some important variables are
ignored. This is the situation with high-dimensional data. In devising the means
to solving this problem, various dimensionality reduction techniques have been
considered by many researchers. Maaten et al. [87] explains dimensionality
reduction as follows. Assume there is a dataset denoted as n × D matrix X with
data vectors xi(i ∈ {1, 2, 3, ..., n}) and dimensionality D. If it is further assumed
that the dataset has some intrinsic dimensionality denoted as d where d < D,
then the intrinsic dimensionality implies that the points in the dataset X are lying
on or near a manifold with the dimensionality d which is within the
D-dimensional space. Principal Component Analysis (PCA) is one of the most
popular dimensionality reduction algorithms. It assumes that a number of
observed variables can be reduced to a smaller number of artificial, called
principal components, and still capture most of the variance of the observed
variables. Hotelling [48] describes PCA as a linear technique for dimensionality
reduction by embedding the data into a linear subspace of lower dimensionality.

Instead of applying PCA on all variables at once, we apply it to the groups of
variables corresponding to each of the 4 clusters. When we combine the principal
components from both sentiments and closing prices, we are still faced with a
high number of dimensions of the combined dataset. By lagging the combined
dataset up to 3 lags, its dimensionality increases to 1243 variables as shown in Fig.
4.3.1, which keeps the intended predictive modelling at a challenging level
computationally and from a predictive modelling point of view. This led us to
propose a variable selection method to handle this complexity in our approach.

As random forest is a popular technique used in variable selection, it was our
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first choice to consider in order to further reduce data dimensionality in this 3rd
step of our approach. We use a random forest model with default
hyper-parameter values to select the best features. Interestingly, this solution
performed very poorly on our dataset, judging by the poor goodness of fit with an
Adjusted R-Squared being below 0.3 and 6 significant variables - 4 of these
variables have 1% level of statistical significance and the remaining 2 variables
have 0.5% level of statistical significance. We therefore proposed an alternative
solution which is based on the modified best GLM method below developed by
McLeod and Xu [6]. The latter selects the best subset of inputs for the GLM
family. Given output Y on n predictors X1, ...,Xn, it is assumed that Y can be
predicted using just a subset m < n predictors, Xi,1, ...,Xi,m. The aim is therefore
to find the best subset of all the 2n subsets based on some goodness-of-fit
criterion. Consider a linear regression model with a number of t observations,
(xi,1, ..., xi,n, yi)where i = 1, 2, ..., t. This may be expressed as

Mi = β0 + β1xi,1 + ...+ βnxi,n + εi (4.1)

It is clear that when n is large, building 2n regressions becomes computationally
too expensive, and even untractable in our case with n > 1200 predictors, as
mentioned above. As such, we modify McLeod and Xu’s method of [6] as
follows, and we call the resulting method MBestGLM. First, the lagged dataset is
divided into subsets whereby each subset contains 35 predictors, and then the
variable selection technique of [6] is applied on each subset with the intention of
obtaining statistically significant predictors from each subset. The statistically
significant predictors are then combined and the process of dividing the result
into other subsets and applying the variable selection technique continues until
the set of predictors can no longer be reduced. The regression results from these
selected predictors produce a high adjusted R-Squared of over 0.65. The final
dataset we obtain has an average number of predictors of 35. Indeed, from
experiments we have seen that its number of predictors varies between 30 and 40
according to the instance of the rolling window on which the dataset is generated.
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Overall, the dimensionality reduction process including the 3 steps of variable
clustering, PCA, and the MBestGLM method we introduced above, are
repeatedly applied on the rolling window as we work under the more general and
thus more complex assumption of time-variant relationship between
independent variables and return.

4.4 Sentiment’s predictive information on S&P 500

As mentioned in the Introduction, it has been shown in a series of studies that
sentiment variables help improve stock market prediction models ( [88], [38],
[66] and [110]). In light of this, it becomes imperative for us to investigate if the
sentiment variables of S&P500 constituents included in our framework have
some significant predictive power on this stock index.

In examining the relevance of sentiment variables, we use two methods, the
first based on linear models, and the second one, more general, based on
non-linear non-parametric models, respectively. These are Granger causality
statistical tests and are used to see if sentiment has predictive information on
S&P 500 in our framework.

4.4.1 Granger causality test: the linear model

Using the linear model framework represented by the Granger causality statistical
test [20], we examine the causal relationship between sentiment and stock
market returns. According to [20] we write the general linear VAR models as:

Model1 : Mt = α1 + Σ3
i=1ω1iMt−i + Σ3

i=1β1iStockt−i + ε1t (4.2)

Model2 : Mt = α2 + Σ3
i=1ω2iMt−i + Σ3

i=1β2iStockt−i + Σ3
i=1γ2iSentt−i + ε2t (4.3)

where Mt is the response variable which is the S&P 500 stock market return at
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Table 4.4.1: Linear Granger causality results. AdjR2
M1, and AdjR2

M2 are the
adjusted R-squared for M1 and M2 respectively. pGranger is the p-value for the
Granger causality test between sentiment and the stock market.

AdjR2
M1 AdjR2

M2 F16,165 pGranger

0.4319 0.6697 9.1439 < 0.0001

time t, Mt−i is the lagged S&P 500 market return with lag period of i, and Stock
and Sent are variables generated by our 3-step dimensionality reduction process
from the stock components and sentiment variables respectively. These VAR
models Model1 and Model2 are used to examine if sentiment influences the stock
market in our setting. As observed in the two equations, Model1 uses the lagged
stock market return and the lagged stock market return principal components
generated from the close prices of the S&P 500 constituents. In Model2 the
lagged principal components, generated from sentiment variables related to the
S&P 500 constituents, are added to the variables used in Model1. That is, Model1
does not contain sentiment variables while Model2 does. Sentiment variables
would be considered to be influential if Model2 outperforms Model1 in prediction
performance based on the adjusted R-squared metric. This is checked by using
the standard Granger causality statistical test [20]. We consider the hypothesis
H0 that Model2 does not outperform Model1, and we reject it by obtaining a
significant p-value.

Our results, presented in Table 4.4.1, show that Model2, with the sentiment
included in the analysis, outperforms Model1, based on the Granger causality F
statistics F16,165 = 9.1438, and the corresponding p-value pGranger 0.05, and
Shapiro-Wilk> 0.05), so the Granger causality test was applied correctly, and its
conclusion is valid. Thus, sentiment has predictive information on S&P 500. In
the next subsection we verify this conclusion with a more general non-parametric
non-linear Granger causality test.
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4.4.2 Granger causality test: the nonlinear model

The causality test from the linear model has already shown that sentiment
variables have predictive power on the stock market. And the robust tests
confirm that the results are not biased by the presence of autocorrelation or
heteroscedasticity. Still, we examine the influence of sentimental information on
the stock market using a non-linear non-parametric test which was originally
proposed by Baek and Brock [35] and was later modified by Hiemstra and Jones
[17].

Interestingly, the significant p-values from the nonlinear non-parametric
technique (see [16] and [56] for detailed explanation and software used
respectively) displayed in Table 4.4.2 prove that sentiment has predictive power
on the stock market.

Table 4.4.2: Nonlinear non-parametric Granger tests. A and M are the senti-
ment and stock market returns respectively within the period 12/07/2013 and
16/05/2014. A => M, for example, denotes the Granger causality test with
direction from A to M, i.e. sentiment predicts stock market returns. Similarly,
M => A is a Granger causality test if the stock market predicts sentiment.

Lx = Ly = 1 p − value
A => M 0.0077
M => A 0.0103

As a conclusion of this section, we can confidently state that the inclusion of
sentiment variables does improve significantly stock market predictive models in
terms of prediction performance, in our framework. Another interesting finding
based on the significant p-value of M => A in the nonlinear non-parametric
Granger causality test, reveals that the stock market Granger-causes sentiment in
this framework of S&P500 with its constituents and their sentiment.
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4.5 Jordan and Elman neural network based approach to

predicting S&P500with sentiment

Linear and nonlinear models have been employed to assess the influence of
sentiments on the stock market, and results have shown the statistical
significance of sentiments’ influence on the stock market in our setting. A linear
model has also been developed in the previous section (see Model2) to
investigate if the future S&P 500 close prices can be predicted with sentiment.

Neural Networks are predictive models capturing the relationship between
inputs and outputs using a computational architecture inspired of the human
brain, to process large information and detect patterns by interconnecting and
organizing them in different layers for information processing purposes
(Malliaris and Salchenberger [96]). These layers, hierarchically structured to
consist of an input layer, an output layer, and hidden layers, are formed by a set of
processing neurons. These layers are linked together by connected nodes and
in-between the output layer and the input layer are the hidden layers which act as
intermediaries. The connections between nodes possess some weights which
define the strength of these connections. These weights are determined from the
training data employed in the process of learning the relationship between the
inputs and the outputs.

Each of the processing elements is assigned an activation level, specified by
continuous or discrete values. For neurons in the input layers, their activation
levels are determined from the response obtained in the input signals within the
environment. For neurons in the hidden or output layers, their activation levels
are defined as a function of the activation levels of the neurons connected to them
and the corresponding weights. The functions are called transfer functions which
may be in the form of a linear discriminant function with a value 1 for a positive
signal if the value of the function exceeds a threshold level and 0 otherwise.

This section evaluates the relative improvements to the linear model when we
enhance our approach by using Recurrent Neural Networks algorithms, more
specifically for Jordan and Elman networks. The backpropagation algorithm is
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one of the most popular techniques for training Neural Networks. It has been
used in research works such as Collins et al. [36] which applied it to
underwriting problems. Malliaris and Salchenberger [91] also applied
backpropagation in estimating option prices. To determine the values for the
parameters in the algorithms, the gradient descent technique is mostly employed
Rumelhart and McClelland [27]. Multilayer, feed-forward, and recurrent Neural
Networks such as Jordan and Elman Neural Networks which are used in this
study, have become very popular.

As the datasets explored in our framework are highly dimensional, we rely on
our variable selection methodology that we proposed in Subsection 4.3.1, to
assist in selecting a reduced subset of variables based on S&P 500 index, its
constituents and their sentiment, to implement a predictive modelling approach
with Elman and Jordan Neural Network algorithms. That is, the same variable
selection process used to obtain results from the estimated linear model in
Section 4.4, is also used with our Neural Network models. It is important to note
that in our approach we use a rolling window of 100 days for model development
and fitting, and a rolling prediction period of 10 days. This choice was made
based on several experiments we ran with our approach.

Table 4.5.1: Linear model (Linear), Jordan Neural Network (Jordan NN) and
Elman Neural Network (Elman NN): The information represents the mean
square errors in the period 11/08/2014 and 08/12/2014 based on the com-
bined results from consecutive rolling windows.

Linear Jordan NN Elman NN

Mean Square Error 0.0001092 0.0000980 0.0000993

Knowing that the output of Neural Network models is sensitive to the values
assigned to the parameters in the models (including the number of hidden layers,
the number of their nodes, and the weights), with some computational efforts,
fairly optimised Neural Network models have been generated. Since at each
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rolling window we may have a different selection of the set of predictors, the
values assigned to Neural Network parameters would therefore be expected to be
different for each fairly optimal result.

As observed in table 4.5.1, the Jordan and Elman Neural Network algorithms
capture the stock market close price better than the linear model.

4.6 Evolutionary optimised trading model

In the previous sections we have demonstrated that sentiments influence stock
market prices based on the results from the linear and Neural Network
frameworks. But with all the information we have so far, are we able to maximise
our investment portfolio by leveraging on the insightful information from our
estimated models? We note that the information available still looks raw and
therefore needs refining before we could make good use of it. In the process of
refining the information, we resolve to introduce some stock market technical
analysis and an evolutionary optimisation algorithm to our developed model. In
doing so we propose the following strategies:

1. Active investment in put option with the expectation that price will fall in
the future. The investor therefore profits from the fall in price. This helps
to exploit bearish market.

2. Active investment in call option with the expectation that price will rise in
the future. The investor therefore profits from the rise in price.

3. Hold position which implies that no investment should be made.

4. Passive investment refers to investment in stock market for a period of
time without any optimal investment strategy.

Points 1 - 3 will be used to maximise investment portfolio under active
investment and point 4 will be used to compare active and passive investment
strategies.
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Figure 4.6.1: The three investment portfolios are presented on two separate
charts, each related to Jordan Neural Networks (Jordan NN) at the top and
Elman Neural Networks (Elman NN) at the bottom. The values on the y-axis
denote portfolio values (£) with an initial value of £5,000. The trends in blue
and yellow present the optimised models from the evolutionary optimisation
algorithms and ordinary Neural Networks active investment portfolios respec-
tively. The trend in gray represents the passive investment portfolio.
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The active investment strategies use the input from the estimated Neural
Network models and also technical analysis data variable K, called the Chaikin
Oscillator, which determines the position of the forces of demand and supply -
see details on the calculation of the variable in [63]. To maximise the investment
portfolio, we employ an evolutionary optimisation algorithm. Given the
objective investment function below:

f(call, put) =


Investn−1 + (Pricen − Pricen−1) call

Investn−1 + (Pricen−1 − Pricen) put

Investn−1 else

where
call : Predn > a,△Kn−1 > b,△Kn−2 > c,△Kn−3 > d,
put : Predn < e,△Kn−1 < f,△Kn−2 < g,△Kn−3 < h, Predn is the predicted
value at day n,△Kn is the change in Chaikin Oscillator at day n, and
a, b, c, d, e, f, g, h are variables whose values must be determined. In order to
maximise the objective investment function, we consider the following
maximization problem:

maximise
a,b,c,d,e,f,g,h

f(call, put)

subject to − 0.4 <= b, c, d, f, g, h <= 0.4
(4.4)

The evolutionary optimisation algorithm is then applied to Equation (4.4) in
order to generate the values for a, b, c, d, e, f, g , and h. The objective function is
fairly optimised using just the first 35 days and the estimates obtained are kept
constant to estimate portfolio values and trends for the next 100 days.
Expectations regarding the relevance of this optimisation algorithms and
technical analysis method are that trends obtained from the optimised models
would be more stable than the ones that are not optimised. Also, we expect rising
trends as these trends interpret to portfolio values. Decreasing trends would
imply investment losses. Looking at the results from Figure 4.6.1 the optimised
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active models outperform the ordinary estimated machine learning models and
the passive portfolio. This conclusion is based on the fact that the trends in blue
appear to be the most stable and fairly rising trends when compared with the
trends from the ordinary estimated machine learning models. Even when
persistent loss is reported in the passive portfolio in the period 07/10/2014 –
21/10/2014, trends from the optimised models appear fairly stable and rising.
This is due to the fact that the optimised models take account of both bearish and
bullish stock market using put and call options respectively.

4.7 Discussion and conclusion

This chapter delivers its first novelty by the nature of the data explored, which at
our best knowledge, was not considered by previous studies. For analysis
purposes, our framework combined the closing prices of S&P 500 constituents
and their related sentiments which in total provides about 800 variables. This
dimensionality challenge is n-fold increased due to lagging operation common
with time series. To tackle the challenge of high dimensionality of the dataset in a
computationally expensive prediction modelling approach that we proposed, a
specially designed data pre-processing methodology was introduced. To the best
of our knowledge, this is the first work to have used constituent sentiments and
its closing stock prices (containing over 800 variables combining closing stock
prices of the S&P 500 constituents and their respective sentiment data without
lagging) in stock market predictive modelling.

With the rolling window of a 10-day predictions period and time-variant
relationship between response variable and predictors - an approach which
involves obtaining a new set of predictors for every rolling window - the analysis’
challenge became compounded. The random forest method failed to do a good
predictor selection, as a first method of choice that we considered. As such, we
proposed a 3-step feature selection methodology involving the consecutive
phases of variable clustering, PCA, and our own method of further feature
selection that we call MBestGLM.
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Having established the most significant variables in our proposed predictive
modelling approach and justified the inclusion of sentiment in the approach as
we proved its predictive value using Granger based methods, we develop models
based on Recurrent Neural Network algorithms to predict the S&P 500 closing
prices. However, this information per se is not sufficient to reliably predict the
stock market trends and maximise investment portfolios. As such, we enhanced
our approach by proposing investment strategy models which make use of the
generated estimates from the predictive models as input variables to bridge these
gaps. Results show that our proposed model appears to be stable even when the
stock market is bearish and other approaches are failing. The rationale is that the
proposed model is engineered to perform using put and call options during
bearish and bullish moments, respectively. This represents another novelty of our
work.

We currently develop further work on exploring the extension of this approach
and of the approach proposed in our recent work [43], for several stock market
indices.

In order to develop the computationally demanding approach that we
proposed in this innovatory study, a parallel processing was performed using the
R software package on a data analytics cluster of 11 servers with Xeon processors
and 832GB of fast RAM. We note that approaches based on computationally
cheaper predictive modelling techniques which encapsulate also feature
selection, such as Lasso and Elastic Net, were investigated, among other several
attempts in a preliminary phase of this study, and did not provide satisfactory
results.
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5
A two-step optimised BERT-basedNLP
algorithm for extracting sentiment from

financial news

5.1 Motivation

Sentiment analysis involving the identification of sentiment polarities from
textual data is a very popular area of research. Many research works that have
explored and extracted sentiments from textual data such as financial news have
been able to do so by employing Bidirectional Encoder Representations from
Transformers (BERT) based algorithms in applications with high computational
needs, and also by manually labelling sample data with help from financial
experts. We propose an approach which makes possible the development of
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quality Natural Language Processing (NLP) models without the need for high
computing power, or for inputs from financial experts on labelling focused
datasets for NLP model development. Our approach introduces a two-step
optimised BERT-based NLP model for extracting sentiments from financial
news. Our work shows that with little effort that involves manually labelling a
small but relevant and focused sample of financial news, one could achieve a high
performing and accurate multi-class NLP model on financial news.

5.2 Introduction

The internet is full of online expressions which could be in the form of social
blogs, financial news, or other kinds of textual expressions - thanks to the
advancement in computer systems. With this advancement comes the ease of
accessing, storing and processing large amounts of textual data. And now,
sentiment analysis which helps to detect the element of feelings in textual data,
has become popular due to its vast applicability in areas such as artificial
intelligence, stock market trading, politics, psychology, among others (Qie et al.
[45], Bechara [2] and Hatfield [3]). For example, the polarity of sentiment
extracted from textual data can be identified using sentiment analysis. This may
be categorised as factual, positive reflecting a happy state of mind, negative
referring to a sad mood, or neutral. In addition, one may also use sentiment
analysis to assess the degrees of polarised sentiments by scoring the different
polarities of sentiments.

Sentiment analysis in the domain of finance, especially where the sentiments
obtained are used to improve the predictive power of stock market predictive
models, is of utmost importance. The predictive value of sentiments is highly
time-sensitive with respect to first mover advantage in the face of market
imperfection (Vayanos and Wang [32]). That is, one would expect the prices of
the stock market to reflect all available information. As new information becomes
available, players in the market adjust their positions and this new information
becomes fully incorporated into the prices. There is a gap between these two
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points of information arrival and the time when prices reflect the new
information. This short time window is termed as market imperfection (Vayanos
and Wang [32]). This aspect supports the rationale behind the time sensitivity of
the statistical significance of sentiment variables. Financial news could be the
source of new information, expressed as sentiment, which has proved to be useful
in enhancing stock market prediction with statistical and machine learning
approaches (Smales [84], Shiller [114], Olaniyan et al. [110], and Marechal et al.
[43]). Advanced NLP approaches are powerful tools that can be used to reliably
and effectively extract sentiment polarity information from financial news, and
we propose such a novel approach here based on adapting and extending the
BERT algorithm [69].

Worryingly, it appears difficult - or so it seems - applying supervised NLP
methods in this domain for two obvious reasons: 1) Developing NLP
classification models requires a significant amount of effort to correctly label a
huge amount of the training data to be used in the model training development.
2) The model to develop depends on the domain-specific corpus for learning
transfer as opposed to any general corpora which are not well-suited for
supervised tasks.

As a result of these concerns, NLP transfer learning methods have become a
popular choice. They have been proven to be very promising and advanced the
state of the art across natural language tasks. Moreover, the foundation of these
models, the language model (LM) pre-training, is considered effective as the
initial step required when developing natural language models (Dai and Le [8],
Dolan and Brockett [131], Howard and Ruder [73], Baevski et al. [1]). The
rationale for this choice of models is that they learn contextualized text
representations by predicting words based on their contexts using very large
corpora, and can be fine-tuned to adapt to downstream tasks (Peters et al. [92]).
The challenge from the paucity of labelled data is avoided as the LM does not
depend on it - rather, it predicts words from contexts based on the semantic
information it has learnt. And the fine-tuning of the NLP transfer learning
methods on labelled data uses the semantic information learnt to predict labels.
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Here is where the problem lies: the fine-tuning of the NLP model on reliable
labelled downstream tasks.

Manually labelling data for fine-tuning is a difficult task. First, it requires much
time and effort. Second, the manually labelled data must be reliable and
representative. Table 5.2.1 presents the experimental results on Financial
PhraseBank [62] of 4845 financial news that were randomly selected from
LexisNexis database and annotated by 16 financial experts. Interestingly, all the
participants were able to agree on just 46% of the data’s sentiment polarities. This
clearly confirms the inherent challenge in manually labelling financial news data
and, as a result, fine-tuning of models would suffer as a consequence.

Table 5.2.1: This table was taken from Araci [21]. Distribtution of sentiment
labels and agreement levels in Financial PhraseBank

Agreement level Positive Negative Neutral Count
100% %25.2 %13.4 %61.4 2262
75%-99% %26.6 %9.8 %63.6 1191
66%-74% %36.7 %12.3 %50.9 765
50%-65% %31.1 %14.4 %54.5 627
All %28.1 %12.4 %59.4 4845

Our framework is therefore centred on developing a reliable high-performing
NLP model with no exposure to any of these aforementioned challenges.

The rest of this chapter is structured as follows: Section 5.3 introduces our
proposed approach. Section 5.4 presents the basis of the NLP model that would
be used in this work. Section 5.5 provides information about the data sources,
the various datasets, and the methodology applied. Results from the use of the
primary model are presented in Section 5.6. Section 5.7 details the rationales
behind the use of the secondary model that we propose, and presents some
empirical findings about why any NLP models with very high level of accuracy
may perform poorly on real life data. Finally, section 5.8 provides the conclusion
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to our work.

5.3 Proposed approach

Considering these challenges, our research focus is centred on developing a
reliable NLP model for sentence polarity identification of financial news and we
aim to achieve this with very minimal effort. In fact, our proposed two-step
optimised BERT-based model overcomes these challenges. The main
contributions to this work are therefore highlighted below:

1. We propose a two-step approach that includes: (a) a primary model that
relies on the labelled data from the experiment results on Financial
PhraseBank and an optimised BERT-based NLP model called the Roberta
NLP introduced by Liu et al. [135], and (b) a secondary model that
combines the experimental results and a small data sample of financial
news data that has been manually labelled by us and validated with the
primary model. This is to ensure that the secondary model has been
fine-tuned with focused data.

2. We evaluate the primarymodel, and compare it with other related works in
terms of their respective degrees of accuracy. The aim of this comparison is
to see how the model fine-tuned with just the experimental results would
perform on the financial news data related to the constituents of the S&P
500 index. The data is obtained from Intrinio platform [60].

3. We evaluate the results of the secondary model and compare with the
primary model with the aim of assessing if the results obtained from both
models are statistically different. Findings from the results would help us
to understand the relevance of the secondary model, especially when it is
trained on focused data. In addition, we aim to assess the quality of our
proposed two-step BERT-based model that does not rely on high
computing power and on inputs from financial experts on manually
labelling focused data for fine-tuning.
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We use the BERT model introduced by Devlin et al. [69] as the framework for
developing our proposed two-step optimised NLP model. As the name implies,
the centre-piece of the BERT model is the transformer which was first published
by Vaswani et al. [11] and which is a great breakthrough in the world of language
modelling. The section that follows will detail the BERT-based NLP framework.

5.4 BERTNLP

The likes of convolutional neural networks (CNN) and Long-Short Term
Memory (LSTM) are useful language modelling, but there are some constraints
around them. One of these constraints is their poor performance when it comes
to processing long sentences - the probability of learning the contextual relations
between words when they are far away from each other diminishes linearly
(Kalchbrenner et al. [101]) or exponentially (Gehring et al. [70]) depending on
the language model used. Although some transduction models -models that
convert input sequence of elements into another output sequence - have been
able to overcome this challenge through the coupling of neural nets with an
attention learning mechanism that facilitates attention learning of specific words
with the notion that these words could be embedded with contextual relevance
(Bahdanau et al. [23], Kim et al. [134], Parikh et al. [9] ). Another common
problem with these transduction models is their inflexibility to parallel
computation of tasks or their inefficient flexibility to it. This is where the
transformer plays the leading role whereby it does not depend on any coupling of
neural nets with attention mechanism. It uses its inherent self-attention
mechanism solely to draw the contextual relations between input and output,
and it also allows for efficient parallel computation of input and output (Devlin et
al. [69]).

In the wake of the transformer, many language model pre-trainings have
sprung up, and results from research works support the fact that these models are
effective for enhancing NLP-related undertakings (Peters et al. [92], Howard and
Ruder [73]). These models are applicable in a broad range of tasks such as
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named entity recognition (Li et al. [74]), sentiment analysis( Sun et al. [19]),
text summarisation (Miller [28]), among others.

Most of the pre-training-based models are unidirectional - from the left to the
right - in learning the general language representations. Devlin et al. [69] state
that such architectural constraint limits the choice of architectures in the first
place and are sub-optimal for sentence-level tasks. In view of this BERT is
proposed for fine-tuning because of its uniquely bidirectional approach for
general language representations.

The optimised version of the pre-trained BERTmodel will be used in this work
as originally presented by Liu et al. [135] for developing the primary model. This
model will be the basis upon which our secondary model is developed.

5.5 Methodology

In the process of conducting sentiment analysis on financial news, we source for
financial news data from Intrinio platform [60]. The data collected covers the
period September 2012 and July 2019 and comprises 1.05 million records - our
interest is to extract multiclass sentiment polarities from this data. The financial
news data collected are related only to the constituents of the S &P 500 index.
Our aim is to identify the sentiment polarities from this data by applying our
proposed NLP model. Extra care is required in ensuring that false positives and
false negatives are minimised. In doing this we propose a two-step optimised
BERT-based NLP model where the first step is to produce the primary model
that explores both the labelled data from the experimental results on Financial
PhraseBank and an optimised BERT-based NLP model. The level of accuracy of
the model would be examined to see if it qualifies enough to become our primary
model. More specifically, we employ the Roberta NLP model which is
considered the optimised version of the BERT model. We train the optimised
BERT-based NLP model with the experimental results on the financial
PhraseBank dataset which is the dataset used also in [107] and [21]. The dataset
consists of 4,845 financial news that were randomly selected from the LexisNexis
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database. In the process of manually labelling the financial news data, 16 financial
professionals were asked to participate. 47% (2263 of the 4845) of the financial
news had 100% agreements from all the participants. This implies that some
sentences were assigned different labels by different participants. Clearly, this is a
confirmation that manual labelling is complex and challenging to correctly assign
true labels due to varyingly and subjectively contextual perspectives. It is also
laborious to manually label a high volume of sentences for developing training
models.

In view of these issues, we resolve to using only the financial news with 100%
agreement level from all the participants totalling 2263 sentences in training our
primary model. The summary of the selected sample data is presented in Table
5.5.1.

Table 5.5.1: Experimental results on the Financial PhraseBank dataset con-
taining the 2263 financial news with 100% agreement level labelled by the 16
financial professionals.

Value Polarity Count
0 Neutral 1390
1 Positive 570
-1 Negative 303
Grand total 2263

The second step in our approach is to develop the secondary model that
explores combined datasets from two data sources: a) the same dataset used in
the primary model which is the experimental results from the Financial
PhraseBank, and b) a small sample dataset of 2,000 records from [60] that has
been manually labelled by us and also validated by the developed primary model.
The aim is to see if by including focused labelled data the secondary model will
outperform the primary model. Clearly, the primary model is a key and integral
part of the secondary model. Attention would therefore be paid to the degree of
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accuracy of the model with the assumption that a high degree would constitute
its acceptance as a basis for developing the secondary model. Recall that 16
professionals were involved in the experimental labelled results on the Financial
PhraseBank. One of the possible reasons for involving many financial
professionals was to ensure that the experimental results produced were reliable
and of high quality in the labelling task.

Understandably, going through at least the same level of effort of involving
many financial experts in the manual labelling exercise is resource-consuming
and time-taking. As a result, we are proposing the two-step NLP approach that
we consider to be effective both in labelling and in model training. It is worth
mentioning that the manual labelling of sentences itself is challenging not just in
regard to the volume of sentences to label, but also in correctly labelling
sentences because sometimes there seems to be a very thin line among the classes
e.g. positive and neutral, for example.

Below are some examples:

1. InvestorPlace Stock Market News Stock Advice amp Trading Tips Apple
NASDAQ AAPL will be reporting its third quarter earnings on July. Apple
stock has performed well since the start of June posting a gain since June
but on July all bets are off.

2. Why Apple Stock May Be a Case of Near-Term Pain, Long-Term Gain

3. UPDATE -Ireland invests disputed Apple taxes in low-risk bonds

4. American CEO reiterates confidence in Max return by mid-August despite
unclear timetable from Boeing, FAA

5. UPDATE -Apple explores moving -% of production capacity from China -
Nikkei

Manually labelling over 1 million financial news would be very laborious and
we would expect a lot of disagreements in labelling some news among us, if we
were to perform this task: hence, the need to manually label a small sample and

82



use the trained model to validate the results of our labelled news. Where we have
disagreements in the results between our manual labelling and the trained model,
we review carefully in order to identify the true labels. We are more interested in
the false positives and negatives from the model’s results so that we could review
the sentences that we consider to be wrongly labelled and add the reviewed
sentences to the training data and finally obtain the secondary model. Eventually,
with help from the trained primary model, we have 2,000 labelled news - that
have been randomly selected from [60] - to be added to the original training data.
Our secondary model is therefore trained by combining the 2,000 labelled news
items that have been reviewed and the experimental results on the financial
PhraseBank. The trained secondary model is then applied to over 1 million
financial news data in order to obtain sentence polarities which could be positive,
neutral or negative.

5.6 PrimaryNLPmodel

Before the BERT NLP model could be used, it has to go through two key steps.
First, the BERT would have to be pre-trained like every other language model, so
that they could learn the contextual relations between words. Pre-training a
model on a very large corpus is a very resource-consuming effort, especially with
the amount of time and computing architecture capacity required. For example,
most of the BERT pre-training exercises were conducted on the Google
cloud([69], [139]) and Amazon cloud([21]) translating to the high dependence
of the pre-training stage on high computing machines. Devlin et al. [69]
pre-trained the model using the corpus that contained the combination of the
BooksCorpus (800M words) (Zhu et al. [139]) and English Wikipedia (2,500M
words).

The second stage would require that the pre-trained model goes through
supervised learning where the training dataset contains texts and their respective
labels e.g. “The US stock market is bullish” is the text and the label is “positive”.
The results predicted using the trained BERT-based models have been promising
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and this accounts for its popularity.
Araci [21] examined if by both pre-training(unsupervised learning) and

training (supervised learning) the BERT on downstream tasks could improve
further the BERT model. In the process, the author pre-trained the BERT model
on the financial news data obtained from Reuters at first, and then trained the
model using the experimental results on the financial PhraseBank dataset which
was the same data used in [107]. Findings showed that such process could
improve the model performance by 15% in accuracy.

Liu et al. [135] revisited the work done by [69] and concluded that the
pre-trained BERTwas not at its optimal level. They pre-trained the model all over
and finally obtained the optimised BERT model. In view of this development, we
would be using the optimised BERT model to compare the results with the Araci
[21]’s. Findings from this work would help us to answer the following questions:

1. Is pre-training the BERT model with targeted downstream task necessary
as opposed to the huge corpus of BooksCorpus (800M words) and
English Wikipedia used to pre-train the BERT?

2. Is the downstream data used by [107] and [21] for the supervised model
training and evaluation representative enough of the financial news?

As shown in Table 5.6.1 the optimised BERT-based model appears to have
achieved the same level of accuracy as the FinBERT model. The optimised BERT
is only trained with the downstream tasks and the results show that it performs as
highly accurate as the FinBERT’s which was proposed by [21]. In view of this, it
would be hard to conclude that pre-training the BERT model with downstream
tasks would improve the accuracy level of the BERT as [21] has claimed.

The optimised BERT model performs well with a very high level of accuracy
when trained on the Financial PhraseBank dataset. Would this trained model
perform well on real life data? To answer the question, we apply the trained
primary model to a new financial news dataset in order to evaluate its reliability
when applied to a real life situation. This task is addressed in the next section.
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Table 5.6.1: Most of the information in this table was taken from Araci [21]
with reference to Malo et al. [107], Krishnamoorthy [120] and Maia et al.[95]
regarding the results using LPS, HSC and FinSSLX respectively. The last row
added by us represents the results obtained from the optimised BERT-based
model - this report was based on a 5-fold cross-validation results.

Data with 100% agreement
Model Loss Accuracy F1-Score
LSTM 0.57 0.81 0.74
LSTM with ELMo 0.50 0.84 0.77
ULMFit 0.20 0.93 0.91
LPS - 0.79 0.80
HSC - 0.83 0.86
FinSSLX - 0.91 0.88
FinBERT 0.13 0.97 0.95
ROBERTA 0.12 0.97 0.97

5.7 SecondaryNLPmodel

We use the experimental results on the Financial PhraseBank data to train the
optimised BERT model and this achieves a high accuracy level of 97% as
presented in Table 5.6.1. In order to assess how representative the training data is,
we evaluate the predicted results obtained from the trained model (primary
model) on a new set of financial news obtained from [60]. If the results obtained
show at least 90% level of accuracy on the new data, we would conclude that the
training data is highly representative of the financial news and that the model is
reliable without the need for the proposed secondary model.

In this process we start by manually labelling 3000 financial news randomly
sourced from [60]. We understand the concern that we might not be 100%
accurate in the manual labelling; hence, the need to rely on the primary model for
the validation of the manual labels and the review and correction of the labels
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Table 5.7.1: This report represents the out-of-sample evaluation results from
the primary model when applied to new focused data.

Class Precision Recall F1-Score Support
-1 0.93 0.93 0.93 42
0 0.86 0.59 0.70 63
1 0.77 0.93 0.84 91

Table 5.7.2: This report represents the out-of-sample confusion matrix ob-
tained from the primary model when applied to new focused data. The confu-
sion matrix leads to an accuracy of 82%.

True Label

Label -1 0 1 Total
-1 39 1 2 42

Predicted Label 0 2 37 24 63
1 1 5 85 91

Total 42 43 111 196

that appear as false positives and false negatives.
The results from the model are presented in Tables 5.7.1 and 5.7.2. The results

show that when the trained primary model is applied to predict the sentiments
from a different sample data, the level of accuracy drops significantly to 82%. On
this ground we conclude that the initial sample data - the experimental results on
the Financial PhraseBank dataset - is short of being considered as a representative
of the financial news in general. Considering this, we develop the secondary
model which is the second step of our proposed two-step optimised BERT-based
NLP model. The secondary model clearly shows improvement judging by the
performances presented in Tables 6 and 7, including an overall accuracy of 99%.
We should note that in repeated test experiments we obtained accuracies of at
least 97%.
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Table 5.7.3: This report represents the out-of-sample evalutation results from
the secondary model when applied to new focused data.

Class Precision Recall F1-Score Support
-1 0.98 1.0 0.99 42
0 1.0 1.0 1.0 63
1 1.0 0.99 0.99 91

Table 5.7.4: This table represents the confusion matrix obtained from the
secondary model when applied to new focused data. The confusion matrix
leads to an accuracy of 99%

True Label

Label -1 0 1 Total
-1 42 0 0 42

Predicted Label 0 0 63 0 63
1 1 0 90 91

Total 43 63 90 196

5.8 Discussion and conclusion

The application of BERT framework in NLP modelling has gained huge
popularity, judging my its surprisingly high-performing and promising results in
broad NLP-related endeavours. As a result of this outstanding success, many
research works have embraced this framework. Some researchers have attempted
to improve on the BERT-related work by proposing the pre-training of the BERT
models on downstream tasks as opposed to the use of general corpora (Araci
[21]). They claim that doing so would improve the accuracy level of the
BERT-based models.

First, this suggested approach is clearly laboriously resource-consuming in that
one would have to source for the focused corpus for the BERT pre-training. To
further complicate the challenge, the pre-training would have to be performed on
high computing machines. These are very daunting. Another clear concern is the
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input required from professional experts on manually labelling the sample data
for model fine-tuning.

We acknowledge how arduous manually labelling a high volume of financial
news data for fine-tuning BERT-based models could be, the need to involve
professional experts in the labelling effort, and the dependency on high
computing machines in the pre-training process.

In view of these challenges, we propose a two-step optimised BERT-based
approach which has the tendency of achieving sound results without the need for
these ‘requirements’. That is, with our proposed approach we consider it
unnecessary to pre-train the BERT model. And we would need to manually label
just a small sample for the fine-tuning stage. And noting that our manually
labelled training data might contain some false labels our approach has therefore
considered such occurrence by searching for false labels (otherwise known as
mismatches between the results from the primary model in the first step and our
manual labels) and correcting before they are fed into the secondary model
which is the second step of our proposed model. This is done by establishing a
primary model developed by first training the optimised BERT model using the
experimental results from the Financial PhraseBank news data. The trained
primary model is then applied to the small sample of 3000 manually labelled
news for validation. In doing so, the false matches between the manual labelling
and the results from the primary model are identified, reviewed and corrected
accordingly. The manually labelled data that has been properly updated
-reviewed and corrected - are then added to the initial training data resulting in a
combined training data which would then be used to re-train an optimised BERT
model. This becomes the trained secondary model. The rationale for these two
steps is that the trained primary model on its own is not sufficient due to the
misrepresentation of the initial training data as shown by its low accuracy level of
82%. But with the secondary model that has been developed with more focused
data and little manual input, we are able to achieve a higher accuracy of over 97%.
This is achieved with minimal and manageable effort.

This work can be further extended to explore the relationship between
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financial sentiments and the stock markets. This can be achieved by using our
model to extract the sentiment polarities from financial news.
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6
Event-based algorithmic intraday trading

6.1 Motivation

“When” and “how” as simple as they look play key roles jointly in investment
portfolio optimisations. Especially in the stock market, investors are keen to
understand “when” and “how” to invest with the aim of profit-taking and/or
stop-losing. Understanding these elements requires learning from historical
information with respect to the stock market. Interestingly, intraday data for a
year alone is voluminous and this can be challenging to explore. But more
complexities are introduced where high frequency intraday stock market data is
explored - such data contains both relevant and irrelevant information.

We explore a considerable volume of high frequency intraday data and
introduce a predictive machine learning model that incorporates an event-driven
algorithm. This event-driven algorithm helps to filter out the irrelevancies in the
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data for model development. In addition, we propose a fractional differencing
technique for achieving variable stationarity as opposed to using the popular
method of log differencing with its inherent shortcoming of variable’s memory
loss and weakened predictive power.

Technical analysis indicators are also included as part of the model variables
for predicting the directions of the stock market.

A machine learning framework such as support vector machine is used in
developing our proposed stock market predictive model. Our aim is to
demonstrate that with the right data and the appropriate selection of data
processing techniques, our model can generate good and reliable results. In
particular, the model developed can help with strategic investment decisions as
to when and how to trade in the highly volatile stock market.

6.2 Introduction

A reliably good machine learning predictive model is expected to yield high
financial gains while hedging against market losses. Models like this are hard to
come by especially in the stock market world known to be full of many
expectedly unknown surprises, market uncertainties, irregularities and frequent
ups-and-downs volatilities (Marszalek and Burczynski [5],Abu–Mostafa and
Atiya [122]). Yet, the searches for these good models continue.

First, the stock market is volatile. Exploring intraday financial data complicates
the challenge of developing these stock market predictive models. Of course, it is
not a problem training any machine learning predictive models on all the
voluminous intraday data, but one should not be surprised if the outputs from
these models are mere numbers with no human-friendly economic value (Lee
[121]) - predictive models learn well when they are trained on relevant data
(Lopez [105]). And with the growing popularity of high frequency trading that
relies on intraday data, volatility modelling and event-driven sampling are now
becoming popular among researchers. Abdersen and Bollersleve [128] were
among the early researchers of the intraday volatility modelling. They developed
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a framework for the integration of high frequency intraday data into the
measurement, modelling and forecasting of daily low frequency return volatilities
and return distribution. Their results showed that from just a simple Gaussian
vector autoregressive volatility forecast incorporated with a parametric
log-normal mixture distribution they got well-calibrated density forecasts of
future returns.

The interesting work of [105] largely expanded on the capabilities of the
intraday volatility modelling by incorporating a CUSUM (Cumulative Sum)
technique initially introduced by Lam and Yam [81] to the volatility modelling.
The basic idea behind the CUSUM technique supports the notion that data
irrelevancies should not be fed into any predictive models. That is, only the data
with informative elements should qualify to go into modelling. In this process, a
data sampling technique that samples much more frequently during some
noticeable events is proposed. And to identify these events, the volatility
modelling is introduced. In our work we follow the same approach introduced by
[105] in generating the sample required to train and test our model.

Some of the key questions about event-driven intraday sampling modelling are
related to the positions to take for achieving profit and/or loss optimisations at
any point in time. For simplicity, let us assume we are involved in an option
contract which is an agreement between a buyer and a seller to trade an
underlying security or index at a future date (Clarke et al. [112]). If we are
buying a call option, we expect the price of the financial instrument to go up in
the future so that profit can be made off the contract by exercising our right to
buy the financial instrument. Clearly our positions on the contract today would
be determined by what we think we know about the financial instrument now.
That would require us giving much thought to some key questions such as: How
do we know the future directions of the stock market of interest? Should we go
long or short? Many investors and traders in at least the futures and option
markets have found some comfort in the application of Bollinger Band Strategy
(Ni and Zhang [98], Butler and Kazakov [89]).

In this work we use the meta-labelling technique introduced by Lopez [105] as
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the basis for deciding on the market directions. We modify [105]’s work on the
ground that we are interested in what happens immediately after there has been
some market jumps or events in the stock market. This is one of the main aims of
this chapter.

It is also worth mentioning that variable stationarity data pre-processing
technique is a key element in developing a quality predictive model. As
mentioned earlier, with the high volume of intraday financial data in collection,
we intend to extract only the informative features for model development. This
effort needs to be complemented with the right data preprocessing technique as
well on account that the informative features extracted from the stock market
data are highly likely to be non-stationary. Unfortunately, predictive models that
consume stock market data require the inputs to be stationary. To this end, log
differencing is a very popular data-preprocessing technique. But authors such as
Alexander [14], Hosking [72] and Lopez [105] have voiced some concerns with
the use of this technique. They argue that this technique causes variable (or data)
memory losses leading to poor model performance. They therefore support an
alternative approach known as the fractional differencing technique. When a
variable is log differenced once, it implies that the variable is integrated at order
one and this is denoted as I(K = 1)where I denotes integration and K is the
order for making a variable stationary. They argue that variables could also be
made stationary for the value of K < 1. In this case the variables retain some
memory insightful in the model development. Now, the unknown remains the
value of K < 1 to use. We therefore propose a scalable algorithm for detecting the
variables that are non-stationary, identifying the optimal values of K < 1 for
making these variables stationary and processing them for stationarity. To the
best of our knowledge, this is the first work to have developed such an algorithm
without any need for human try-and-error approach as stated in [105].

The main contributions of this chapter are as follows:

1. We propose a stock market machine learning predictive model applicable
to high frequency trading stock market with the aim of predicting the
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directions of the stock market prices. The proposed model is incorporated
with the event-driven CUSUM sampling introduced by ([81]), our
proposed modified meta-labelling technique originally introduced by
[105], and a set of technical analysis indicators.

2. We introduce a new technique for achieving variable stationarity as
opposed to using log differencing for obtaining variable’s integration of
order I(K < 1) in view of the fact that this long-preserved tradition
diminishes the predictive power of variables. Instead, we propose a
technique that identifies the non-stationary variables in a dataset and
transforms these variables based on I(K < 1) for achieving stationarity.
We build on the fundamental approach of the fractional differencing
originally introduced by Hosking [72].

3. We compare and evaluate the results from the two models built using the
two datasets pre-processed based on the traditional log differencing and
our proposed fractional differencing approaches respectively.

The rest of this chapter is organised as follows: Section 6.3 provides the
information about the data sources explored. Section 6.4 details the stationarity
techniques employed to our data. Section 6.5 presents our empirical findings
from the use of both the log differencing and our proposed fractional differencing
techniques and compare the results from both techniques. And finally, we have
the conclusion in section 6.6.

6.3 Methodology

Two high frequency datasets are explored in developing our stock market
predictive model. These datasets are purely stock-market-related. The main data
source from where the datasets are created is the E-mini S&P 500 futures data
which is obtained from the platform Kibot [53]. The data covers the period
between April 2013 and July 2019 and it comprises over 1 million transactions.
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The information is reported using the time zone in Chicago, Illinois, USA
(GMT-5). At the initial stage, the data needs to be refined and properly
structured before it can be used in modelling. To do this, two steps are followed.
The first step is to sample the data so that only the relevant and informative
observations and features are extracted for use in the model development. The
other step involves the stationarity pre-processing of the relevant data. This effort
ensures that the processed data satisfies some statistical and modelling properties
like stationarity.

6.3.1 Sampling methodology

The E-mini S&P 500 futures information is provided in the form of tick data/bars
meaning that the data containing bid, ask, size and price are recorded and
updated whenever a trade occurs and they represent the “national best bid and
offer” (NBBO) prices across multiple exchanges and electronic communication
networks (ECNs), and they are not reported in any aggregated form according to
[53]. In other words, the data obtained is unstructured. To make it meaningful
and useful, the data needs to be properly structured. The most popular option is
that it is structured in the form of time bars by sampling the data at a constant
time interval, e.g. once every second, minute, daily or monthly. Sadly, this
approach has some drawbacks, and these could not be simply overlooked. In real
life, financial information is not processed at a constant time interval. More
specifically, we expect low and high activities in the stock markets - the high
activity period during the opening period for example. Oversampling therefore
occurs during the low activity period and vice versa, as the difference in the
activity periods is not considered. It has also been found that time-sampled data
exhibits poor statistical properties e.g. non-normality of returns,
heteroscedasticity, among others (Easley et al. [24]).

This section covers how the data obtained in its original form is structured and
the sampling method employed in extracting the informative features.
Highlighted below are the processes followed:
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1. Data structuring - it details the approach employed in having the data
structured.

2. Event-driven sampling - we endeavour to filter the irrelevancies from our
data knowing that models learn well from the informative observations.
To this end, we employ an event-driven sampling method to filter for the
relevant observations.

3. Strategic trading positions and observation labelling - in investment
trading it is important to identify strategic trading positions. By doing this
we manage our profit-taking and/or loss limiting positions.

Data structuring

According to Investopedia [52] E-mini is considered as an electronically traded
futures contract that represents a fraction of the value of its corresponding
standard futures contract. E-mini future contracts are predominantly traded on
the Chicago Mercantile Exchange (CME) and are available on a wide range of
indices such as the NASDAQ 100, S &P 500, S &P MidCap 400, and Russell
2000, commodities such as gold, and currencies such as the euro. These contracts
specify the cash flows to be exchanged among the holders and writers of the
contracts whose values rely on the underlying S &P 500 Indices (Harris [86]).

We use the E-mini S &P 500 futures in this chapter. The data contains the bid
price (bid) which is the highest price a buyer is willing to pay, the ask price (ask)
known as the lowest price a seller is willing to sell, the price (price) as the price
paid for the contract(s), and the size (size) representing the volume of
transactions/contracts recorded at the specified price at a given time. The stock
market and technical analysis indicators are extracted from the E-mini S &P 500
futures. In total, 1.8 million transactions are collected.

As mentioned earlier, the raw data is unstructured. So, we apply the dollar bar
approach to refining it. Let us look at some examples that explain more clearly
the methodology behind the data sampling and structuring.
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Given that we have 10 transactions with the following time stamps t1, ..., t10
with the condition that the time stamps are not equally spaced but occurrences
are sequential. That is, tn − tn−1 ̸= tn−1 − tn−2 where n ∈ [1, 10] and tn > tn−1.
Corresponding to these time stamps we have the following prices
[100, 110, 120, 110, 110, 130, 120, 150, 100, 100] and sizes
[1000, 1000, 1200, 1000, 800, 900, 1000, 1000, 1500, 1200]. This is better
illustrated in Table 6.3.1.

Table 6.3.1: Tabular illustration of Dollar bar sampling.

Time stamp Price Size Dollar value Cumulative sum
t1 100 1000 100,000 100,000
t2 110 1000 110,000 210,000
t3 120 1200 144,000 354,000
t4 110 1000 110,000 110,000
t5 110 800 88,000 198,000
t6 130 900 117,000 315,000
t7 120 1000 120,000 120,000
t8 150 1000 150,000 270,000
t9 100 1500 150,000 420,000
t10 100 1200 120,000 120,000

Let us assume that the pre-determined value for dollar bar sampling is
300, 000 and that the dollar value is defined as Pt ∗ sizet where Pt is the stock
price and sizet is the stock size. For sampling we start by having the cumulative
sum of the dollar value until we get the cumulative sum that is at least 300, 000.
From our example we can see that the first one is achieved at the time stamp t3
because the corresponding cumulative sum of the dollar value of 354, 000 is
greater than the threshold of 300, 000which implies that it qualifies into our
sample data. We then restart the cumulative sum from the next dollar value after
t3. We can see that the next time stamp to qualify is t6. This goes on and on and
the results obtained become the sample data. The values in bold text under the
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Cumulative sum column in Table 6.3.1 indicate the values to qualify into our
sample data. This is therefore the approach followed in sampling the E-mini S &P
500 futures data as opposed to sampling at a constant interval.

In light of these concerns, we use the dollar bar sampling approach proposed
in [105] whereby sampling takes place every time a predefined market value is
exchanged. In this case, the number of shares is a function of the dollar value
exchanged. This approach is considered robust to high price variations [105] and
the drawbacks highlighted in the time-sampled data are addressed in this robust
but yet unpopular approach.

Event-driven sampling

The previous subsection has detailed how the dollar bar has been applied to
structure our raw stock market data sampled per second of time. Unfortunately,
the structured data in its state is still not good enough to have it fed into any
machine learning algorithms on the ground that the data contains a lot of
irrelevant features and it would be good to have them filtered out. Generally,
predictive models perform well when they are trained on informative features.
But, in our case we have over 1 million transaction records. The challenge is how
to extract only the informative features from the data so that our predictive model
could be trained on the selected informative features. One common approach is
to apply an event-based sampling approach to generate the relevant training data.

Easley et al. [25] revealed the potential problem from the use of time-sampled
data. They argued that today’s markets are being operated by automated
algorithms with little human intervention and this may result in information
oversampling during low-activity periods and vice versa. This implies that the
stock markets are more active and process more information during the opening
hours than during the period around noon or night, depending on the products.
But automated algorithms trained on time-sampled data disregard the time
sensitivity of activities.

Astrom et al. [80] examined an event-based sampling using a simple first order
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system with event-based sampling and compared the achieved closed loop
variance and sampling rate with results from their time-sampled data. The paper
concluded that event-based sampling performs better than time-based sampling.

Event-sampling techniques require the observation of activities and the
detection of regime changes or structural breaks leading to deviations away from
the mean of a time series e.g. spikes in volatilities. One such technique that can
help to detect these changes is known as the Cumulative Sum (CUSUM)
technique developed in the fifties (Page [39], Page [40], Kemp [82] and Kemp
[83]). The CUSUM technique is designed to detect a shift in the mean value of a
measured quantity away from a target value. Consider IID observations
y1, y2, y3, ..., yt representing a stationary process. Let us assume that we are
interested in detecting upward deviations. We define the cumulative sums as:

Ct = max{0,Ct−1 + yt − Et−1[yt]} (6.1)

with boundary condition C0 = 0. A CUSUM procedure would activate action at
the first satisfying Ct ≥ h for a threshold value h. Extending the CUSUM
procedure to cover downward deviations we have the CUSUM filter defined as:

C+
t = max{0,C+

t−1 + yt − Et−1[yt]},C+
0 = 0

C−
t = max{0,C−

t−1 + yt − Et−1[yt]},C−
0 = 0

Ct = max(C+
t ,−C−

t )

(6.2)

Eq. (6.2) is applied to sample our data whenever the condition Ct ≥ h is
satisfied, at which point Ct is reset. This CUSUM technique is applied to our
structured data.

Many research works do not support the use of time-sampled data. We move
away from it as well and rather support the exploitation of an alternative approach
which is an event-driven sampling approach. In this case we do not assume any
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constant time intervals between the estimation data points. Therefore, in this
process of extracting our event-driven data we begin with volatility estimation.

The stock market is influenced by many events. Each event in isolation could
result in structural breaks in the stock market. For example, Huang [106] and
Lobo [13] studied the impacts of political risk element and election on the stock
returns and volatility. Regarding the stock market, it was revealed that the stock
returns were negative in the election year and positive in the preceding years. It
was also found that the stock volatility was very high during the period. These
findings led to the conclusion that political events such as elections create
uncertainty as a political risk factor for the stock market and that this factor
influences the stock market. Stock market volatility often ignites stock market
uncertainties. In view of this, we attempt to sample the stock market index of
interest more frequently during some events in the market using the stock market
volatility as a point of activation. This is calculated using the daily volatility at the
intraday estimation points applied to a span of 100 days to an exponentially
weighted moving (EWM) standard deviation. The Python function for
estimating the volatility is stated in SNIPPET 3.1 of [105].

Having estimated the volatility, we now apply the CUSUM technique
expressed in Eq. (6.2) to extract our event-driven sample but with some
modification. Eq. (6.2) assumes that the value h is a constant threshold value. In
our case, we assume the threshold value to be time-dependent and redefine it as
ht = vt ∗ θ where vt is the volatility-based EWM standard deviation and θ = 0.3.

With these significant elements of information, we proceed to determining our
trading positions which are detailed in the next subsection.

Strategic trading positions and observation labelling

One of the main purposes of our research work is to be able to develop reliable
predictive models for predicting the directions of the stock market. The scope
does not cover predicting by how much a stock market price would change under
any event scenario. Rather, we focus on the strategic positions we should take for
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any investment actions. Three strategic trading positions would be considered.
The first position would be to go long - buying a stock in the hope that the stock
price would go up in the near future. The second position would be that we go
short - selling a stock in the hope that the price would drop and then re-buy when
it does. And then we have the hold position implying that we retain our current
position without going long or short. Consider a feature matrix X with M rows,
Xjj=1,2,...,M. For an observationXj it would be associated with a label yj ∈ [−1, 0, 1]
and the condition upon which the label value would be assigned is defined below:

yt =


−1, if rti,0,ti,0+γ < −τ

0, if | rti,0,ti,0+γ |≤ τ

1, if rti,0,ti,0+γ > τ

(6.3)

where the stock price return rti,0,ti,0+γ is defined as rti,0,ti,0+γ =
pti,0+γ

pti,0
− 1, γ is a

constant time step between the time ti,0 and ti,0 + γ when considering
time-sampled data, and τ is a constant pre-defined threshold value representing
the size of a return that determines the trading position one should take.

With help from the CUSUM technique in the previous subsection we have
been able to extract event-driven data. But in trading one must take into
consideration other cost factors e.g. trading commission. As a result, it is
insightful to trade only when the benefits from doing so outweigh the costs. That
is the basic rationale behind the threshold constant τ.

Recall that Eq. (6.3) is established on the assumption of constant time step γ
implying that the equation is only applicable to a constant time series. Therefore,
the stock market return rti,0,ti,0+γ is associated to time-sampled data. [105]
modified this original equation to also cover event-driven sampling. As we are
also exploring an event-driven sampling we therefore follow the same direction as
[105]’s but with some proposed modification. First, we take into consideration
the complete investment trading time horizon. That is, the stock market price pti,0

at the first time ti,0 that one secures a trading position and the price pti,0+γ at the
time ti,0 + γ that one comes out of trading.
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For the purpose of identifying the time to enter a trading position and time to
leave we apply the SNIPPET 3.6 in [105] and for generating the label values yt we
modify the SNIPPET 3.7 in [105]. Our modified version presented in Appendix
A.0.1 assumes that the label yt in Eq. (6.3) considers prices immediately after
events have occurred as opposed to using the prices at the points where events
occur. This will normally be achieved through automated trading algorithm
development.

6.3.2 Stock market variables

Table 6.3.2 presents the variables explored as stock market indicators. These
variables are derived from the S&P 500 E-mini. Spread is the difference between
the ask and bid prices. Standard deviations with different rolling windows of 13,
30 and 50 are used to denote the price volatility variables.

Table 6.3.2: Stock market predictive indicators.

Index Variable name
1 Stock price
2 Lags(1-5) of stock price
3 Average price with a rolling window of 20 (price_avg)
4 Lags(1 - 5) of rolling average price
5 Price volatility with a rolling window of 50
6 Price volatility with a rolling window of 30
7 Price volatility with a rolling window of 15
8 Spread
9 Size

6.3.3 Technical analysis variables

There are many variables that could qualify as technical analysis indicators, but
we use 9 of them as presented in Table 6.3.3. From a technical analysis
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perspective stock prices are expected to be contained within the upper and the
lower bands. It implies that prices would normally operate within the bands, of
course, depending on the value used to multiply the standard deviation. The
functional relationships among standard deviations, the upper and lower bands
can be expressed as:

upper = RollingMean + ρ ∗ std

lower = RollingMean − ρ ∗ std
(6.4)

where upper is the upper band, lower is the lower band, ρ ∈ (0, 4], std is the
standard deviation, and RollingMean is the rolling mean. ρ normally determines
the percentage of the stock prices contained within the upper and lower band.
The higher the value, the more contained are the prices in the bands. In our case
we use 1.5, and for the rolling mean the window of 50 is arbitrarily selected.

Figure 6.3.1: The figure depicts the relationships among price, average price,
upper and lower bands. ρ is assigned with a value of 1.5.
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As displayed in Figure 6.3.1 most of the stock prices are contained in the
bands. There is a popular perception among technical analysis traders that when
the stock price touches the upper band, then a fall in price would be expected and
vice versa ([98], and [89]). The pivot point variable is used to determine the
overall market strength. When the stock price cuts through above it, the market
is considered to be bullish, and vice versa.

Table 6.3.3: Technical analysis predictive indicators.

Number Variable name
1 Pivot point
2 Supports (S1,S2,S3)
3 Resistances (R1,R2,R3)
4 Chaikin oscillator (Chaikin)
5 Relative strength index (RSI)
6 Serial autocorrelation with a rolling window of 50
7 Lags (1-5) of serial autocorrelation (price_autocorr_1,...,price_autocorr_5)
8 high (maximum value within a rolling window of 20)
9 low (minimum value within a rolling window of 20)
10 Upper band (upper)
11 price_uppr (price - upper)
12 Lower band (lower)
13 price_lwr (price - lower)

Resistance, or a resistance level, is the level where there is pressure on stock
prices to come down. Every seller would like to sell when the price of an asset is
high. As the stock prices move up, there is a growing number of sellers willing to
sell. As the prices reach this level, there is an expectation of a price trend reversal.
This notion may not hold true especially when there is new information that
could disrupt market attitudes. New information could have a positive impact on
the asset and the trend shoots upwards beyond the resistance. Support is related
to falling prices. When prices keep falling, it leads to a growing number of buyers
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bidding for stocks. This action adds pressure to the stock prices and finally results
in trend reversal ceteris paribus. Figure 6.3.2 presents the relationships among
resistance, support, price and pivot point. It shows how the stock price cuts
above the pivot point, for example, confirming the expected upward price trends
and vice versa.

Figure 6.3.2: The figure depicts the relationships among pivot point, price,
resistance and support.

To obtain the pivot point (PP), resistance (R1,R2,R3), and support
(S1,S2,S3) variables, we use the high and low stock prices. In our work we use
maximum (high) and minimum (low) prices with a rolling window of 20. Then
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we define the technical analysis indicators as:

PP = (high + low + price)/3

R1 = 2 ∗ PP − low

S1 = 2 ∗ PP − high

R2 = PP + high − low

S2 = PP − high + low

R3 = high + 2 ∗ (PP − low)

S3 = low − 2 ∗ (high − PP)

(6.5)

The concept of the relative strength index (RSI) was first proposed by Wilder
[75]. It is considered a momentum indicator that assesses the magnitude of
recent price changes. This assessment is used to determine if a stock is being
overbought or oversold and can have a value between 0 and 100. When the RSI is
above 70, the stock in the market would be considered as being overbought and
this may add some corrective pressure for a trend reversal. When the RSI is
below 30, it would mean that the market is in an oversold situation.

In the process of calculating the RSI the first step is to estimate the magnitude
of the price changes. Recall that our high and low variables are based on the
maximum and minimum prices with a rolling window of 20 respectively. So,
these are used to first estimate the magnitude of the price changes as expressed
below:

Upwardt =

hight > hight−1 hight − hight−1

else 0

Downwardt =

lowt−1 > lowt lowt−1 − lowt

else 0

where t is the time point. Next step is to estimate the RSI which is the ratio of the

106



n-period exponential moving averages (EMA) of Upwardt and Downwardt

respectively. A 14-period EMA is very popular, and we would be using the same
value. RSI is finally obtained using Eq. (6.6).

RS = EMA(Upward, n)/EMA(Downward, n)

RSI = 100− 100/(1+ RS)
(6.6)

where n represents the 14-period.
The Chaikin oscillator (Chaikin) is also a popular technical indicator that

measures market movement. This is established by estimating the
accumulation-distribution line of the moving average convergence-divergence
using the difference between the 10-period EMA of the
accumulation-distribution line and the 3-period EMA of the
accumulation-distribution line. The equation is expressed below:

ad = (2 ∗ price − high − low)/(high − low) ∗ size

Chaikin = EMA(ad, 3)− EMA(ad, 10)
(6.7)

6.4 Stationarity

In statistical analysis, one of the most basic requirements is the ability of the
financial data under consideration to exhibit some statistical properties of
invariance over time. This statistical element relates to the stationarity hypothesis
defined as:
Given a set of time instants t1, ..., tn and time interval τ the joint distribution of
the returns r(ti,T), ..., r(tn,T) is the same as the joint distribution of the returns
r(ti+τ,T), ..., r(tn+τ,T) and since τ does not affect r(·) then r is not a function of
time. As most financial data are known to be non-stationary differencing at first
order is very common in virtually all the financial time series literature. But why
is differencing at first order considered as the optimal level? It seems the
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preference is based on the popularity of log differencing - and it is simple to apply.

6.4.1 Log differencing for stationarity

We examine the variables at the level in order to see if they are stationary or not.
In doing so we apply the Augmented Dickey Fuller stationarity test on the
variables and as expected, most of the variables are not stationary. For example,
the S&P 500 E-mini stock price is not stationary at level. To make them
stationary the prices are log differenced. Model performance is assessed based on
this traditional stationarity pre-processing technique.

6.4.2 Proposed fractional differencing technique for stationarity

Alexander [14] and [105] expressed some concern in the use of first order
differencing. The papers mentioned that the use of first order differencing makes
data transformation stationary but at the expense of memory loss. They propose
the idea of fractional differencing which still achieves stationarity and, at the
same time, keeps the relevant signal or memory that improves a model’s
predictive power. Interestingly, this technique was mentioned first in Hosking
[72] but it still remains almost non-existent in recent literature. The general
overview of the technique can be expressed in the form of a difference operator as
presented below.

Given the backshift operator B and a matrix of real-valued features {Xt}with
the relationship between them expressed as BkXt = Xt−k for any integer k ≥ 0.
For example, (1+ (−B))n=2Xt ≡ (1+ 2(−1)B + (−1)2B2)Xt becomes
(1− 2B + B2)Xt = Xt − 2Xt−1 + Xt−2. For a real number f,
(1+ (−B))f =

∑∞
k=0

( f
k

)
(−B)k as a binomial series. And with respect to
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fractional model its binomial series expansion could be expressed as:

(1+ (−B))f =
∞∑
k=0

(
f
k

)
(−B)k =

∞∑
k=0

∏k−1
i=0(f − i)

k!
(−B)k

=
∞∑
k=0

(−B)k
k−1∏
i=0

f − i
k − i

= 1− fB +
f(f − 1)

2!
B2 − f(f − 1)(f − 2)

3!
B3 + ...

(6.8)

Finally, when the binomial series expansion in Eq. (6.8) is applied to the
matrix of real-valued features Xt the results would become

(1+ (−B))fXt = (1− fB +
f(f − 1)

2!
B2 − f(f − 1)(f − 2)

3!
B3 + ...)Xt (6.9)

First order differencing of time series at level, as explained in the previous
subsection 6.4.1 is equivalent to Eq. (6.9) for f = 1 as demonstrated below:

(1− B +
1(1− 1)

2!
B2 − 1(1− 1)(1− 2)

3!
B3 + ...)Xt = (1− B + 0− 0+ ...)Xt

= (1− B)Xt

= Xt − BXt

= Xt − Xt−1

(6.10)

A second order differencing is also equivalent to Eq. (6.9) for f = 2 as
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presented below:

(1− 2B +
2(2− 1)

2!
B2 − 2(2− 1)(2− 2)

3!
B3 + ...)Xt = (1− 2B + B2 − 0+ ...)Xt

= (1− 2B + B2)Xt

= Xt − 2BXt + B2Xt

= Xt − 2Xt−1 + Xt−2 ≡ (Xt − Xt−1)− (Xt−1 − Xt−2)

(6.11)

In almost all cases we expect time series to be stationary at order I(1) when
they are not stationary at order I(0), in its original form. The idea of fractional
differencing is that time series that are not stationary at I(0) can still be
transformed to become stationary at order I(0 < f < 1) instead of at order I(f = 1).
We therefore propose a novel approach built upon the fractional differencing
technique developed by [105]. Our approach automatically examines each
variable in a data for stationarity and transforms it to a stationary series where
necessary based on the individual optimal value of f for each variable. Optimal
value is the least value between 0 and 1 of the parameter f that makes a time series
variable achieve stationarity.

6.5 Stock market predictive models

In this section we apply a simple machine learning framework to two different
datasets - one that has been stationarised using log differencing and the other that
has been processed using our proposed optimal fractional differencing technique.
These two datasets are denoted as order of integrations I(f=1) and I(f<1)
respectively. We are keen to understand how the model developed with the
dataset of I(f<1) would compare with the model developed with the data of
I(f=1). To this end we split each of the datasets into three subsets. The first is the
training data that we employ in training the model. Then we have the test data to
evaluate the model performance. Finally, there is the validation data for
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validating the model performance, consistency, reliability, and accuracy.
The fact that the intraday financial data is the basis for our model does not

necessarily imply that we are working with a high volume of data on the account
that we are only interested in the event-driven sampled data. That is, we explore
only the sample data that has been obtained using Eq. (6.2). This sampled data
requires some filtering as we are interested in the sampled data that satisfies our
investment return threshold as defined in Eq. (6.3) where the minimum
expected return τ is assigned the value 0.2 .

The processed stock market data contains two labels suggesting when and how
to go short or long. We refer to the holding period during the labelling, but this
position would not be included in the model development as part of the labels,
but it would still remain an integral part of the model. For example, the model we
are developing would suggest when to enter a trading position, how long to hold
the position, and when to exit the trading position. Referring to Eq. (6.3), ti,0 is
denoted as the time to enter the trading position, γ is the holding period and the
time to exit is represented as ti,0 + γ.

In total, we have 2,035 trading positions which represent the data points to
explore in developing our predictive models. Table 6.5.1 presents how the data is
split into training, test and validated datasets.

Table 6.5.1: Datasets for model development and validation.

Datasets
Label Training Test Validation Total
-1 491 164 164 819
1 730 243 243 1216

Total 1221 407 407 2035

We explore the support vector machine (SVM) framework for simplicity. We
evaluate the model quality and performance and also compare the results on the
two datasets processed by using synthetic minority oversampling technique
(SMOTE) and stratified 10 folds to achieve balanced classification between the
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labels as shown in Table 6.5.2.

Table 6.5.2: Datasets processed by SMOTE to achieve a balanced training
dataset.

Set: Training dataset balanced

Label Training Test Validation
-1 730 164 164
1 730 243 243

Total 1460 407 407

In the next subsections we would present the results obtained from applying
our trained SVM-based predictive models on both the log differenced and
fractionally differenced datasets. Findings would help us to determine if log
differencing for stationarity reduces the predictive power of variables and if the
proposed fractionally differencing technique is more effective than log
differencing technique.

Our model trained on log differenced dataset

The primary aim in this subsection is to evaluate the effectiveness of our
predictive models in correctly predicting the directions of the S&P 500 E-mini
options using log differenced stationary dataset (I(1)). Presented in Tables 6.5.3
and 6.5.4 are the results from our trained model. Based on the recall, precision,
accuracy, and confusion matrix of the model performance on the test dataset, we
can agree that our model is able to predict the directions of the stock price. The
trained model is also employed on the validation dataset and the results obtained
once again confirm the high accuracy of our model. In view of these findings, we
conclude that our variables of interest would be able to capture the directions of
the stock prices.

In light of these findings, we would also like to see if the fractionally
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Table 6.5.3: Support vector classification evaluation results from log differ-
enced (I(1)) test and validation datasets.

Training dataset balanced

Label Precision Recall F1-Score Support
-1 0.56 0.59 0.57 163
1 0.71 0.70 0.70 243

Test sample accuracy 0.65
Validation accuracy 0.67

Table 6.5.4: Support vector classification confusion matrix results from log
differenced (I(1)) test dataset.

True Label

Label -1 1 Total
-1 96 68 164

Predicted Label 1 74 169 243
Total 170 237 407

differenced dataset would provide at least the same level of performance.

Our model trained on proposed fractionally differenced dataset

As we have seen from the previous subsection the model developed using the
I(1) dataset captures well the directions of the stock prices. We are keen to also
explore if our proposed SVM-based predictive model trained on the fractionally
differenced dataset would provide at least the same level of performance. The
works from [72], [14] and [105] have shown that fractionally differenced data
retain some memory that helps to improve the predictive power of variables. This
subsection would therefore be tasked with two key aims: examine if the model
results from using I(<1) would be able to predict the directions of the stock
prices; and if the trained model on I(<1) dataset would outperform the trained
model on I(1) dataset judging by the values from precisions, recalls, F1-Score
and accuracies. Tables 6.5.5 and 6.5.6 display the results from the model trained
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on I(<1) dataset.

Table 6.5.5: Support vector classification evaluation results from fractionally
differenced (I(<1)) test and validation datasets.

Balanced training dataset

Label Precision Recall F1-Score Support
-1 0.61 0.65 0.63 163
1 0.75 0.72 0.74 243

Test sample accuracy 0.69
Validation accuracy 0.70

Table 6.5.6: Support vector classification confusion matrix results from frac-
tionally differenced (I(<1)) test dataset.

True Label

Label -1 1 Total
-1 106 58 164

Predicted Label 1 68 175 243
Total 174 233 407

As we can see the values of the precisions, recalls, F1-Score and accuracies
from Table 6.5.5 are all higher respectively than the ones from Table 6.5.3 clearly
confirming the findings from [72], [14] and [105] - log differencing erases
memory from data. In light of this we conclude that fractionally differencing data
for stationarity is more effective and retains the relevant memory that helps to
improve the predictive power of variables. The final list of variables used in these
models are also presented in Figure 6.5.1 where autocorr_4 for example is the 4th
lagged price serial autocorrelation. From the symbol price_frac_t3, price denotes
the stock price, _frac implies that the variable has been fractionally differenced,
and _t3 indicates the 3rd lagged price. Most of the technical analysis indicators
appear to be relevant.
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Figure 6.5.1: The variable importance representation of the selected vari-
ables.

6.6 Discussion and conclusion

We explore our proposed fractionally differenced E-mini S&P 500 intraday data
to predict the directions of the stock prices by developing a stock market
predictive model. In this process of model development, we employ the CUSUM
technique for data sampling. On account of the high volume of intraday stock
data, the CUSUM technique is crucial for extracting only the informative
features from the data. So, the CUSUM technique is employed to sample more
frequently during some events. To determine events within the stock market, we
make use of a time-varying return volatility.

For identifying strategic trading positions regarding when to enter and exit
trading positions, we modify the approach proposed by [105]. We would expect
that trading positions are taken immediately after some events have been
identified. This is therefore one of the modifications introduced in [105]’s work.
This is one of the contributions to this work.

Another notable contribution is the introduction of a stationarity algorithm
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that detects variables with white noise in a dataset, optimally stationalises them
with an order that is less than 1. For example, when a variable is long differenced,
it is denoted as I(1) implying that a series is stationary at order one. [72]
expresses some concerns that variables at I(1) may have been over-differenced
and this may cause memory loss which could adversely impact the predictive
power of the variables. As a result, [72] suggests that variables should be allowed
to retain some memory as long as they are stationary. The challenge here is how
to make a variable stationary at a value that is less than 1. That is, instead of
having a variable stationary at I(1) we should as well be able to have the variable
stationary at I(<1) in order for the variable to retain some memory vital during
model development. To achieve this, we propose a technique that detects the
optimal value of K - the least value of K - that makes a variable stationary without
causing much memory loss.

In addition to developing an approach that helps to detect the optimal value
for making a variable stationary, we also develop predictive models based on two
datasets. The first dataset is generated from variables that have been made
stationary using the popular approach of log differencing. The second dataset has
been processed using our fractional differencing approach. We compare the
results in order to examine if it is worthwhile to put forward our proposed
approach of fractional differencing based on the model results. The score metrics
considered are F1-Score, precisions, recalls and accuracies. All these metrics are
higher from the model developed from our proposed approach when compared
with the model results from the dataset processed using log differencing. This is a
very notable contribution to our work.

Interestingly, the models we have developed have also performed well in
predicting the directions of the stock market with an accuracy of 70%. We follow
the same approach by [105] in identifying events based on time-varying volatility
event-sampling. We introduce some popular technical analysis indicators into the
model and our findings show that these indicators do improve our developed
models as shown in Figure 6.5.1.

It would be interesting to incorporate sentiment elements into this model in
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order to see if it can help to detect events more effectively. We understand that
this model is applicable in Options-like trading in that it considers just two time
points e.g. the price at the time one enters trading and the price at the time one
exits the trading position. Only these two prices are considered, and the
directions are predicted based on these two time points. This approach can
therefore be extended to also cover spread betting and contracts for difference
(CFDs) whereby all prices that occur between the entry and exit points are taken
into account - the cumulative sum of returns.
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7
Event-based algorithmic intraday trading
with applied natural language processing

algorithms

7.1 Motivation

So far, in previous chapters, we have explored daily sentiment data that have
already been processed by third parties to examine the statistical influence of
sentiments on the stock market.

In this chapter we aim to establish the causal relationship between sentiments
and the stock market without reliance on any processed sentiment data from a
third party. To do this, we employ our proposed and trained BERT-based NLP
model introduced in chapter 5 to extract sentiment polarities from the financial
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news collected.
We develop a high frequency stock market predictive model by combining the

traditional stock market predictors used in chapter 6 and the extracted sentiment
polarities from the financial news collected to see if the model with sentiment
variables would outperform the model without the variables.

7.2 Introduction

The stock market is considered to be connected with many other sectors of the
economy. In chapter 2 for example, a reference was made where former US
president Donald Trump announced a tariff increase on steel imports in March
2018. This announcement caused disruptions in steel-related stock indices as a
result of the sentimental contagion in the stock market. It led to the downturn in
steel-related stock prices. Clearly, this had nothing to do with the fundamental
stability of the industry. This view was also shared by Zhong and Enke [140] by
stating that the stock market is affected by many interrelated factors such as
economic, social, psychological and company-related variables. All these factors
contribute to the highly ups-and-downs market volatility ([116],and [79]).

The causal relationship between sentiments and the stock market has been
heavily studied in many researches and also covered in chapters 2, 3 and 4 with
findings validating the causal relationships between them.

The sentiment variables captured in the previous chapters are processed daily
time series and so are the stock market predictors - all the variables are
time-sampled at a constant daily time interval.

In this work we explore intraday data. Doing this will help us to understand
the time sensitivity of the sentimental information on the stock market. As
opposed to the previous chapters, we attempt to extract the sentiments directly
from the financial news by employing our proposed optimised BERT-based NLP
algorithm developed in chapter 5. The financial news data collected relates to the
constituents of the S&P 500 stock index. Presented in Figure 7.2.1 are the trends
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Figure 7.2.1: Graphical representation of the relationship between sentiments
and the S&P 500 E-mini prices.

from the stock market and the sentiment indicators.
All the predictors have been normalised to values between 0 and 1. The topmost
trend in the Figure indicates the stock price trends. As presented in Figure 7.2.1
the relationship between the sentiments and the stock market is hard to decipher
by mere looking at their trends. On the one hand, looking at the net sentiment
trend, we could see that the occurrences of the troughs and peaks coincide more
frequently with the price trend’s. This, of course, does not provide any credible
substantiation to conclude that sentiments do influence the stock market. On the
other hand, fluctuations in the price trend seem to have occurred much more
frequently than they did in the sentiment trends. This observation could as well
invalidate the possible relationship between the sentiments and the stock market.
The frequent fluctuations would be normal expectations in the stock market
because of its highly volatile nature. Establishing the relationship between the
sentiments and the stock market is of interest in this chapter especially in view of
high frequency trading where the stock price data is reported in nanoseconds -
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we would not expect the sentiment data to occur in nanoseconds.
Clarity would be provided in the next section about how the sentiment

variables are derived. Extracting the causal relationship between these variables is
therefore the centrepiece of this chapter.

We aim to establish the causal relationship between the sentiments and the
stock market and also to predict the directions of the stock market returns. In the
process we propose a predictive model based on the integration of the stock
market indicators, technical analysis indicators and the sentiments extracted
from the financial news that are related to the constituents of the S&P 500 stock
index. Indeed, this study is the first work to have employed a BERT-based NLP
model for extracting sentiments from the financial news and incorporated the
derived sentiment polarities, technical analysis indicators and stock market
variables in building a stock market model for predicting the directions of the
stock market. The contributions of this chapter are highlighted below:

1. We employ our proposed fractional differencing technique to the intraday
stock market and technical analysis variables in order to achieve variable
stationarity property.

2. We derive the sentiment polarities from over 1 million financial news
related to the constituents of the S&P 500 stock index by employing our
proposed BERT-based NLP model developed in chapter 5.

3. We develop an event-driven machine learning predictive model that
depends on the stock market volatility, intraday stock market data,
technical analysis indicators and extracted sentiments in predicting the
directions of the stock market.

The novelties of the work in this chapter are centred on how sentiments are
extracted from the financial news related to the constituents of the S&P 500 stock
index and how the non-stationary variables are made stationary by employing
our developed fractional differencing technique that optimally differences
variables in order to achieve stationarity.
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The remainder of this chapter is organized as follows. Section 7.3 presents our
data preprocessing methodology. Section 7.4 details the machine learning model
introduced and the results obtained. Our findings about the causal relationship
between sentiments and the stock market are provided in this section. Finally,
Section 7.5 discusses our findings and concludes this chapter.

7.3 Stock data and sentiment information

Three datasets are explored in the process of developing our stock market
predictive model. Two of the datasets are obtained from the S&P 500 E-mini
stock index. They are the stock market variables and the technical analysis
indicators. The last dataset would be sentiment variables extracted from the
financial news. The financial news data is sourced from a news aggregator
platform [60] and is related to the constituents of the S &P 500. The data
collected covers the period between September 2012 and July 2019 and we have
1.05 million records. Figure 7.3.1 illustrates how the datasets employed are
generated from the two main sources.

Figure 7.3.1: This information captures the datasets explored. The stock
market variables and the technical analysis indicators are both extracted from
the E-mini S &P 500 stock data. The sentiment dataset is derived from the
financial news related to the constituents of the S &P 500. The experimental
results from the Financial PhraseBank are obtained from [62] with more detail
in chapter 5
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To simply put, the focuses of this chapter would be to examine the statistical
relevance of the sentiment information on the stock market and predict the stock
market directions using our proposed predictive model. The predictive model
developed in chapter 6 employs the stock market variables and the technical
analysis indicators to predict the directions of the stock market. In order to
evaluate the impacts of the sentiments on the stock market we develop a model
that includes the same data employed in chapter 6 and, in addition, we include
sentiment variables. This can be generalised as:

Accuracy1,Recall1, Precision1 : Model1 = α1+β1Stock+γ1TechIndicator+ε1 (7.1)

Accuracy2,Recall2, Precision2 : Model2 = α2 + β2Stock + γ2TechIndicator+

η2Sent + ε2
(7.2)

where Stock, TechIndicator and Sent denote the stock market variables, technical
analysis indicators and sentiment variables respectively. The models Model1 and
Model2 would be used to measure the influence of the sentiments on the stock
prices. The difference in the models is that Model1 does not include the sentiment
variables - it only uses the stock market variables and technical analysis
indicators. Model2 adds the sentiment variables to the Model1’s variables. If
Model2 performs better than Model1 judging by the values of their accuracies,
recalls, and precisions, one could conclude that the sentiments have predictive
information on the stock market. Model1 represents the model employed to
generate the findings presented in Table 6.5.5 because the model was developed
based on the stock market variables and the technical analysis indicators. We
would therefore be developing a model that is similar to Model2 and the findings
from this model would be compared with the findings from Model1 captured in
Table 6.5.5 with respect to their values of accuracies, recalls and precisions. The
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details of the methodology behind the stock market variables and the technical
indicator indicators are provided under the methodology section 6.3 of chapter 6.
Regarding how the sentiment variables are derived we present the details in the
subsection that follows.

7.3.1 Sentiment variables

Recalling the Efficiency Market Hypothesis (EMH) that states that the market is
efficient because stock market prices already reflect all known information and as
a result, it would be hard to profit from any active trading engagement ([37]).The
implied interpretation of this concept is that regardless of the amount of effort
invested in the stock market trading active and passive traders earn almost the
same returns. If one should place a value/cost on the level of effort invested by
these traders, it would mean that the active traders would be worse off because of
their cost of effort. But one thing is unclear regarding this hypothesis: how much
time does it take for the arrival of new information to reflect in the stock market?
Could it be microseconds, seconds, minutes, hours, or even days?

Grossman and Stiglitz [47] looked into the EMH by constructing a simple
model of a futures market that was considered to be informationally efficient - the
model assumed there was a large number of farmers, each of whom had perfect
information about his own crop, but with little or no information about the crops
of others. But the role played by the equilibrium price on the futures market
coupled with the assumption that all farmers had the same constant absolute risk
aversion utility function would help to aggregate this diverse information and
make the market efficient.

But the assumption of this constant risk aversion utility mentioned in [47]
seems impractical. Traders in general have disparate levels of risk aversion. As a
result, the market is informationally inefficient. This is later supported by Gale
and Stiglitz [65] by concluding that markets cannot be informationally efficient,
in the sense that prices convey all of the information of the informed to the
uninformed.
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Many researchers disagree with the EMH, but there seems to be a very thin line
where they all seem to have one thing in common with the hypothesis - market
reactions to the arrival of new information. How fast does the stock market react
to the arrival of new information? Who are the informed and who are the
uninformed? How long does it take the informed to inform the uninformed?

To answer these questions, we investigate the sentiment analysis of financial
news to see if the sentiments extracted from the financial news gathered would be
statistically significant in the stock market modelling and, if so, how relevant is
the time sensitivity of the sentiments? Answers to these questions would help to
clarify on the impacts of sentiments on the stock market as a whole and uncover
if there are first-mover advantages in the first place.

In the process of conducting sentiment analysis on financial news we source
for financial news data from [60]. The data collected covers the period between
September 2012 and July 2019 and it comprises over 1.05 million records. The
financial news data is associated with the constituents of the S &P 500 index. The
reason for limiting the data collection scope to cover just the constituents is
because of the stock market data of interest which is the E-mini S &P 500 futures
used in our stock market predictive model development.

We use our trained BERT-based NLP model developed in chapter 5 to extract
the sentiments from the financial news. This is achieved by following a two-step
approach of training the optimised BERT model introduced by Liu et al. [135]
with the experimental results on the Financial PhraseBank data containing the
2263 financial news with 100% agreement level labelled by 16 financial experts.
The second step is to use the trained BERT model to validate the manual labels of
the 3000 financial news sampled from [60] (please see chapter 5 for details of our
trained BERT-based NLP model). This model is then used to extract the
sentiments from the financial news we have gathered from [60]. Four sentiment
variables are generated in this process.

1. Positive sentiment is the count of all the financial news classified as
positive in constant time interval of 1 second.

125



2. Negative sentiment is the count of all the financial news classified as
negative in constant time interval of 1 second.

3. Neutral sentiment is the count of all the financial news classified as neutral.

4. Net sentiment is the 10-period exponential moving average of the
difference between the counts of the positive and negative sentiments
(Positive sentiment - negative sentiment).

In the final model we only include the net sentiment denoted as Sent and its
lags Sentt where t = 1, ..., 5. Table 7.3.1 contains the list of the sentiment
variables employed in the model.

Table 7.3.1: List of the sentiment variables explored.

Index Variable name
1 Sent indicating the net sentiment at the current time
2 Lags of Sent (Sent1, Sent2, ..., Sent5)

7.3.2 Stationarity

Some of the variables in our dataset are non-stationary. Instead of applying the
traditional technique of log differencing we follow the proposed approach we
introduced in chapter 6 by fractionally differencing them. Findings from chapter
6 have shown that the fractional differencing of variables is more effective for
achieving stationarity as it helps the variables to retain their memory and
consequently improve on their predictive power.

Our approach has been developed in such a way that it would optimally
identify the best value needed in making the non-stationary variables stationary.
For example, when a non-stationary variable is log differenced and becomes
stationary, we say the variable is integrated at order 1. We could denote this as
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I(K = 1). But our proposed approach examines if a variable is stationary. If found
not to be, it identifies the optimal value K that makes the variable stationary at
K < 1.

7.4 Model development and applications

We would like to compare the results from the two models Model1 and Model2 in
Eq. (7.1) and Eq. (7.2) respectively. We have the results for the model Model1 as
presented in Table 6.5.5. Therefore, we would need to establish the results for the
model Model2. This would imply that we combine the three datasets in Tables
6.3.2, 6.3.3 and 7.3.1 as defined in the general expression of the model Model2.

Having employed all the relevant datasets to a simple SVM model the findings
are therefore presented in Table 7.4.1.

Table 7.4.1: Support vector classification evaluation results from the frac-
tionally differenced (I(<1)) test and validation datasets.

Balanced training dataset

Label Precision Recall F1 Score Support
-1 0.57 0.64 0.60 161
1 0.74 0.69 0.71 246

Test sample accuracy 0.67
Validation accuracy 69

Interestingly, the results show that there is no statistical significance between
Model1 and Model2 on account that the values of their recalls, precisions, and
accuracies are relatively the same. The implication is that the sentiment variables
incorporated into the model Model2 do not add any statistical improvement to
the model. In other words, they are irrelevant in the model development. For a
clearer understanding of their relative relevance with respect to other variables
Figure 7.4.1 presents the feature importance of the final list of the variables used
in the model. The sentiment variables appear to have the least importance
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relatively.

Figure 7.4.1: Feature importance of the variables explored in the predictive
model development.

The features importance of the variables is presented in 7.4.1 where the
sentiment variables appear to be the least important in the model. Are we to
generally conclude that sentiments do not have any statistical significance with
respect to the stock market based on the findings from this chapter? There are
many factors that we need to consider first. Among the factors are the following:

1. Is the financial news gathered complete?

2. Is there any time delay before the news is reported?

First, many stock market automation algorithm developers source financial
news data from multiple and popular news aggregators like Bloomberg and
Reuters. These news aggregators have been around for a long time and with years
of experience. So, it is highly questionable if the financial news explored in our
model is complete because the news was sourced from a single aggregator.
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Another important factor to consider is the potential delay in the financial
news gathered. Are the financial news explored in our chapter the first source or
just a repetition of news by other financial news sites? If the news sourced are not
aired for the very first time, then they might have lost their economic influence
on the stock market. In other words, the stock price might have already reflected
the information from the financial news.

It was observed in Figure 7.2.1 that fluctuations occurred much more in the
stock price trend than from the sentiment trends. This is very understandable
because of the volatile nature of the market. And the stock market data is
re-sampled using our introduced event-driven CUSUM technique that depends
on the stock market volatility. These events may not necessarily match well with
the sentiments generated in the stock market. For example, support and
resistance indicators from the technical analysis react strongly to the forces of
demand and supply in the stock market and they are there to control the stock
market prices.

In view of these factors, it appears hard to conclude that sentiments do not
have statistical influence on the stock market. Sourcing financial news from
multiple sources, eliminating duplicates from financial news, and sampling the
stock market data-based events from the financial news may help to reveal the
true relationship between sentiments and the stock market.

7.5 Discussion and conclusion

Findings from many research works have attempted to examine the relationships
between sentiments and the stock market. Establishing the true relationship
requires complete care and attention to detail with respect to many factors. The
stock market is full of many unsurprising surprises and we would expect to come
across many frequent ups and downs. By nature, the stock market is highly
sensitive not just to the fundamental values of their underlying stocks but also to
many other factors that seem to relate to the stock market. One of the most
noticeable examples is the political factor. This is just an example of how highly
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sensitive the stock market is to a myriad of factors. As a result, we would expect
maximum care in the process of developing a stock market predictive model for
predicting the directions of the stock market.

Wemade an attempt to examine the relationship between sentiments extracted
from financial news based on our developed optimised BERT-based NLP model
and the event-driven stock market sampling based on the CUSUM technique and
technical analysis indicators. Findings from our model reveal no significantly
statistical relationship between them. However, we express some limitations
about the source of the sentiments generated and how they were exploited in the
model. These concerns may have biased the findings from our model.

For future work, we suggest a sentiment-driven stock market intraday data
sampling whereby data sampling occurs more frequently during high sentiments
as opposed to event-driven sampling that relies on high return volatility. We
would also like to consider sourcing sentiment data from multiple and reliably
popular sources such as Bloomberg and Reuters for example. This may help to
reveal the true relationship between sentiments and the stock market.
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8
Contracts for Difference (CFDs)machine

learning algorithm for optimising
portfolios

8.1 Motivation

Machine learning is a fast-growing trend in many industries. Its applicability
covers areas such as corporate finance, retail, banking, and health, among others.
More specifically, stock market traders are leveraging machine learning
algorithms in making informed decisions that include investment and strategic
trading. Trained automation algorithms automatically detect opportunities and
act on them much faster than humans can. Interestingly, the literature related to
these predictive algorithms on contracts for difference (CFDs) is almost
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non-existent. Clearly, the stock market is a very sensitive environment known for
its extremely volatile nature. This chapter ventures into developing CFD-focused
predictive algorithms and evaluates their efficiency in portfolio optimisations.

8.2 Introduction

High frequency trading (HFT) has become popular in the capital markets
around the world. HFT has been brought to life with the advancement in big
data and high-speed computing technology. It involves developing a computing
algorithm embedded with instruction parameters to carry out automated trading
strategies at high frequency with no human intervention. HFT traders are known
as algorithm traders that trade via electronic systems. They rely heavily on
high-speed computing technology to connect them to trading platforms for
placing and executing orders. Among the popular products traded by these
algorithms traders are financial security derivatives such as ETF futures and
contracts for difference. These are mainly arrangements between parties where
the differences in the settlements between the open and closing trade prices are
cash-settled. For simplicity, let us assume that a trader holds a long position with
a futures contract value of $ 5000 at time t1. The investment time horizon is
denoted as t1, t2 and t3 with stock prices at $40, $43.50 and $42.50 respectively
where t3 > t2 > t1. At the exit time t3, the trader would have made $125 generated
from ((43.50− 40) + (42.50− 43.5)) ∗ 5000/100.

The question that comes to mind is how to develop HFT algorithms on
futures trading that can guarantee us positive returns. Despite the extensive
success of machine learning models in strategic decisioning, their literature in
CFD securities seems non-existent. One would expect any machine learning
algorithms for this aspect of the capital market to help maximise profits while
minimising investment risks. The asks and expectations from these algorithms
are very high, ranging from their statistical appropriateness, perceptiveness, and
insightfulness in portfolio optimisation. But there are frequent ups and downs
and expected surprises in the stock market. And the stock market is highly
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susceptible to a myriad of events. Understandably, in the face of these challenges
developing a reliable machine learning algorithm that can satisfy these high
expectations would be hard to come by; hence, the lack of literature presumably.

In this chapter we take a bold step to lead the literature in the applications of
machine learning models in the HFT futures market. To start with, we introduce
a novel event-driven forward labelling approach for extracting insights from the
historical HFT ETF data and training a machine learning model with the insights
learnt with the aim of optimising our investment portfolios. Our proposed model
would be able to automatically detect opportunities in the HFT-EFT market,
advise on the trading positions to take, and suggest when to exit the positions.
This is similar to the goal of the meta-labelling technique introduced by [105] in
that our proposed approach helps to identify a trading position for a given data
point based on the patterns learnt. This would be the first work that has boldly
endeavoured in this research direction. Our proposed event-driven forward
labelling technique incorporates the CUSUM with the expected cumulative sum
of returns in identifying the informative patterns during the model development.
The event-driven sampling is required for identifying the events in the stock
market, but it does not constitute making strategic investment actions in
isolation, but when combined with the expected cumulative sum of n returns, it
helps in the labelling of the training dataset during the model development.

We explore an OXGboost framework for developing our stock market
predictive model. And the focus would be that we predict the directions of
futures contracts which are also similar to contracts for difference. The
contributions of this chapter are highlighted below:

1. We introduce a novel event-driven forward labelling technique for
identifying the patterns in the stock market trends and labelling the
training data for model development.

2. We develop a machine learning predictive model for predicting the
directions of the CFDs. The literature on applying machine learning
models to CFDs is almost non-existent. This is clearly a bold step we have
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taken in this direction.

3. We propose a novel HFT predictive model that incorporates both the
binary and multi-class OXGboost frameworks. Our proposed model is
designed to detect trading opportunities and action on them accordingly.
This model would advise regarding when to enter a trading position, what
position to take and when to exit the position with the purpose of
optimising investment portfolios.

The remainder of this chapter is organized as follows. Section 8.3 presents the
data explored and introduces the event-driven forward labelling proposed in this
chapter. The empirical findings are presented in section 8.4. Finally, section 8.5
ends this chapter with a summary and discussion.

8.3 Methodology

We use the same ETF data explored in chapter 6 except that we explore a longer
data period. The data is sampled at a constant time interval of 1 second of time
and it covers the period between 5th of October 2009 and 12th of June 2020. The
details of the data, the variables obtained, and how they have been pre-processed
using our novel stationarity technique are provided in chapter 6.

For the independent variables we use all the variables established in chapter 6.
The proposed model in chapter 6 focuses on Options market. But in this chapter
we are considering futures ETF trading like CFDs. So, we would diverge away
from the labelling approach employed in chapter 6. Instead, we introduce a novel
labelling approach termed as the event-driven forward labelling approach. The
details of this approach are presented in the subsection that follows.

Event-driven forward labelling

In futures trading one could be in any of the following position: long, short or
hold positions. With the long position expectation is that the cumulative sum of
every price change between the point of entry and the point of exit is positive. If
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this is the case, then a futures trader would realise positive returns. This implies
that on average there is a stock price increase, and this generates investment
returns. On the other hand, we expect the cumulative sum to be negative where a
short position is held if one is to realise profit when there is a price fall on the
average. And for the hold position, no trading action is undertaken. The
challenge here is to know how to label the data so that the three scenarios are
captured. And this leads us to introduce our proposed event-driven forward
labelling. This is an advancement to the CUSUM technique and a diversion to
the meta-labelling approach introduced by [105] in view of the different financial
instruments under consideration.

Given n as the forward looking number of futures ETF transactions, and
corresponding to the number of transactions is the forward looking cumulative
sum representing the return on investment denoted as rn. We therefore present
below the condition upon which the label indicating an investment position is
assigned:

yt =


−1, if − rn > −r2xn > −r3xn > −r4xn

1, if rn < r2xn < r3xn < r4xn

0, if else

(8.1)

where 2xn implies multiplying the number of transactions n by 2. For example,
for n = 360, 2xn would result in 720 forward looking transactions between the
trading points of entry and exit. r720 would therefore be the forward looking
expected return (cumulative return) after 720 transactions. Appendix A.0.8 is the
Python function for our proposed event-driven forward labelling.

Table 8.3.1 demonstrates how transactions are labelled based on the Eq. (8.1).
As we can see that only the transactions with forward looking expected returns
that are monotonically increasing and decreasing are labelled as 1 and−1
respectively. Even when all the returns for the 4 sets of forward looking
transactions - expected returns at 360, 720, 1080 and 1440 transactions - are just
positive or negative, they are still labelled as 0. For transactions to be labelled as 1
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we would expect that the conditions stated in Eq. (8.1) are satisfied. That is, all
the four cumulative sums of returns are positive and monotonically increasing.
The reverse is the case with label−1.

Table 8.3.1: An illustrative example of how the event-driven forward looking
labelling assigns labels where times = 4 and factor = 360 as defined in Appendix
A.0.8. “>” denotes the consecutive cumulative returns are monotonically in-
creasing and “<” implies the reverse.

Transactions 360 720 1080 1440 Description Label
Expected return1 0.54 2.26 1.67 7.04 Positive 0
Expected return2 -0.54 -2.26 -1.67 -7.04 Negative 0
Expected return3 -0.54 2.26 1.67 -7.04 Unstable 0
Expected return4 2.96 4.39 6.4 7.04 > 1
Expected return5 -2.96 -4.39 -6.4 -7.04 < -1

Model methodology

Our interest is to be able to identify and exploit trading opportunities. That is, we
would like to know when we can trade, what trading positions to take, and when
to exit them. So, the labels 1 and−1 indicating long and short respectively
represent the main points of interest. We would expect label 0which indicates no
trading action to dominate the whole transactions. As we are seeking
opportunities in the stock market and with the thousands of transactions per day
in the HFT-ETF market, the trading opportunities we are interested in occur
very rarely - we would not be surprised if they occur once or twice in hours or
days. We would also expect a likelihood of not identifying any trading positions
for days as well.

The parameters in Eq. (8.1) are pre-defined as follows:times is assigned the
value of 2, the sampling frequency freq is set as hourly and the initial cumulative
sum factor is assigned the value of 100. The frequency of sampling being set as
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hourly is to ensure uniqueness in the sample data gathered for the model
development - we do not want to have any overlap in the training data among
some data points.

In order to avoid some information leakage between the training and
out-of-sample datasets we stay away from shuffling the data during the data
splitting. Training dataset is in the period from the 28th of September 2009 to the
12th of June 2019. The out-of-sample dataset is for the period from the 13th of
June 2019 to June 2020.

Table 8.3.2: Distribution of trading position labels.

Label Count Percent
0 6906 74%
1 1337 14%
-1 1087 12%

Having applied our proposed event-driven forward looking labelling approach
in Appendix A.0.8 on the EFT data the distribution of the labels is presented in
Table 8.3.2. Most of the data is labelled as value 0. Now, the question is how to
identify opportunities. This leads us to our proposed predictive model that
incorporates both the binary and multi-class OXGboost frameworks.

First, we develop a binary classification algorithm that makes use of only the
labels 1 and−1 obtained by applying our proposed event-driven forward labelling
technique. That would imply that the label value 0 is filtered out having applied
our proposed labelling technique. In this process we ensure that only the data
with extreme labels 1 and−1 is used in training the binary model. Second, we
develop a multi-class model that makes use of the 3 labels generated. This is
illustrated in Fig. 8.3.1.

With the multi-class model, we identify the long and short trading positions.
In addition, we use the outputs predicted as long and short positions from the
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Figure 8.3.1: Proposed OXGboost Model Architecture.

multi-class model as inputs in the step-2 binary model to predict the directions of
the stock market. The benefit of adding the binary model is to complement and
improve on the results from the multi-class model.

In the next section our proposed OXGboost model is applied to the ETF data
and the findings are presented.

8.4 Model application and findings

In the process of developing our proposed predictive model, the ETF data is split
into 2 datasets: the training and out-of-sample datasets.

For the binary model, the label value 0 is excluded in the model development.
We employ OXGboost to the training dataset with stratified 10-fold cross
validation and some parameter fine-tuning. We evaluate the model performance
on the out-of-sample dataset at some future times. The results obtained are
presented in Table 8.4.1

As observed from Table 8.4.1 the levels of accuracy obtained from the training
dataset is similar to that of the out-of-sample dataset’s. The out-of-sample dataset
is ahead in time of the training dataset. This shows that the model is reliable
because of the consistency in the model performance between the two datasets.
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Table 8.4.1: Binary classification model. We employ stratified 10-fold cross
validation. The best parameters identified are the following: subsample 1.0,
min child weight 1, max depth 4, gamma 0.5, and colsample bytree 0.8.
Training dataset is between the 28th of September 2009 and 12th of June
2019. The out-of-sample dataset is between the 13th of June 2019 and June
2020.

Binary OXGboost model results

Label Precision Recall F1-Score Support
-1 0.58 0.66 0.62 157
1 0.71 0.63 0.66 203

Out-of-sample accuracy 0.64 360
Training accuracy 0.64 2024

Our interest would be that we correctly identify strategic trading positions
such as the long or short positions. We would also expect that the hold positions
indicating trading inactivities to be disproportionately high in relation to the
other labels. We may also be faced with the situations that no strategic trading
positions are identified in days. In order to identify and filter out the trading
inactivities we also develop a multi-class model and the results are presented in
Table 8.4.2

Table 8.4.2: Multi-class model. We employ stratified 10-fold cross validation.
The best parameters identified are the following: gamma 0, learning rate 0.01,
max depth 16, n estimators 400, reg lambda 1, subsample 0.7.

Multi-class OXGboost model results

Label Precision Recall F1-Score Support
-1 0.21 0.56 0.30 157
0 0.67 0.31 0.43 685
1 0.27 0.39 0.32 203

Out-of-sample accuracy 0.36 1045
Training accuracy 0.55 3261

It can be seen fromTable 8.4.2 that the multi-class model performs very poorly

139



judging by the levels of accuracy, precisions and recalls. Many features with
actual label 0 are incorrectly predicted as 1 and/or−1. For a clearer view this is
also presented in Table 8.4.3.

Table 8.4.3: Confusion matrix results from the multi-class model on the out-
of-sample dataset.

Predicted

Actual -1 0 1
-1 80 49 20
0 270 214 201
1 65 58 80

Before we introduce the trained binary model to correct the mismatches
between the actual labels and the predicted labels, we relax the strict labelling
conditions. Below are the strict conditions:

1. Consecutive cumulative sums to be monotonically increasing for label 1,
decreasing for label−1 and label 0 otherwise.

2. The initial cumulative sum of return must be at least 0.2 for label 1,−0.2
for label−1 and label 0 otherwise.

Each of these conditions is necessary but not sufficient in the labelling process.
That is, both conditions must be satisfied. So, we introduce a new condition to
the labelling of the out-of-sample data before applying our trained binary model
to the output of the multi-class model having filtered out outputs with label 0.
This condition is applied so that the old conditions are relaxed and the new one is
used to label the out-of-sample data. Below is the new condition applied:

1. Cumulative sum at the exit point must be> 0 for label 1 and< 0 for label
−1.

Let us assume that we are interested in the cumulative sum of the 100
transactions, and that labels are assigned based on if the cumulative sum of return
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is positive and negative, and that we only select the informative features predicted
as 1 and−1 from the multi-class model. Then, the new condition is applied to the
data before using the outputs from the multi-class model as inputs in the binary
model. This process flow is employed to the binary model and the out-of-sample
data and our findings are presented in Table 8.4.4.

Table 8.4.4: Trained binary model incorporated. The model uses the outputs
with the predicted labels 1 and −1 from the multi-class model as inputs.

Results from our proposed model.

Label Precision Recall F1-Score Support
-1 0.56 0.72 0.63 329
1 0.69 0.53 0.60 390

Out-of-sample accuracy 0.62 719

As it appears in Table 8.4.4 we have a good model that is able to predict the
directions of the CFDs securities. This has been achieved, in part, by relaxing the
conditions initially applied during labelling. Also, the trained binary model is
applied to the outputs of the multi-class model.

8.5 Discussion and conclusion

This chapter is centred on developing a stock market predictive model for CFDs
securities which have become popular in the capital market. High frequency
intraday data of 1 second is employed during model development.

We introduce a novel technique termed the event-driven forward labelling that
helps to sample the available high frequency intraday data during some stock
market events, filter out the data points with no informative features, and support
with the labelling of the relevant data points. This technique incorporates the
popular event-driven CUSUM method, puts forward a list of conditions that
includes expected consecutive cumulative sums of returns with monotonic
trends and minimum expected returns.
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We employ the OXGboost framework that combines the binary and
multi-class models. The main aim is for the model to help in detecting trading
opportunities, advising on what strategic investment positions to take for
achieving profit maximisation based on longing and shorting.

The findings from our proposed model are promising. First, the model is able
to identify strategic investment opportunities in the CFDs trading market, advise
on the trading positions to take, and suggest when to exit the positions based on
the expected cumulative sums of returns. This would imply that by employing
the model, traders can benefit both from shorting and longing in the capital
market. It is well known that the chance of profiting in the stock market is
extremely low. According to the Financial Conduct Authority (FCA) [59] over
82% of people involved in betting and CFDs trading lose money based on a
sample of industry data, and as a result, the FCA has raised significant conduct
concerns about the amount of leverage being offered.

So, having a model with a high level of accuracy is promising. Second, the
trained model is applied to the data that the model has not seen before, and the
model still performs very well in terms of its accuracy, recall and precision.

As a future work, it would be interesting to see how the proposed model will
work in real a life situation.
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9
Conclusion

With knowledge of how highly volatile the stock market is this thesis examines
the statistical significance of sentiment on the stock prices. More specifically, it
studies the causal relationship between sentiment and the stock market with the
goal of developing a stock market model for predicting the directions of the stock
market prices.

So far, the literature within this purview has offered conflicting conclusions
about how sentiment influences the stock market. The scope of this thesis
therefore covers the clarifications of the relationship. First, it is noteworthy to
understand that sentiment is a broad subject - it can be extracted from many
sources such as social blogs to represent public mood, financial news to indicate
financial expert opinions, among others. Different sources of sentiment
information are explored in order to understand the relevance of the sources of
sentiment with respect to the stock market.
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In addition, we examine the time sensitivity of sentimental information by
exploring daily and very high-frequency sentiment information and establishing
their relationships with the directions of the stock prices.

Equally important is the applicability of the right model selection. We show
that model selection plays a key role in validly establishing the relationship
between sentiment and the stock market. The selection of a wrong model could
bias model results and make them completely misleading. This thesis proposes
some novel approaches that cover areas such as variable stationarity, data
dimensionality reductions, model robustness, and market direction predictions.

We explore the stock market data from various sources and structures. For
example, daily-based and event-driven intraday models that predict the
directions of the stock market prices are developed. Included in this thesis is a
novel optimised BERT-based NLP algorithm that extracts sentiments directly
from financial news. The multi-class NLP model proposed shows very promising
results judging by its high level of accuracy in identifying the sentiment polarities
from financial news.

In the next section we provide the summary of the thesis in each chapter for a
better understanding of the scope of the thesis.

9.1 Summary of the thesis

One of the focuses of this thesis is the examination of the causal relationship
between sentiments and the stock market. This area of interest is covered in most
of the chapters but with different data sources, methodologies, model selections,
among others. We also develop stock market predictive models that predict the
directions of the stock market prices. Both daily and high-frequency intraday
datasets are explored. In this section we summarise the work presented in each
chapter and emphasize on their respective contributions.

Chapter 2. Most of the previous studies claiming that emotions have predictive
influence on the stock market do so by developing various machine learning
predictive models, but do not validate their claims rigorously by analysing the
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statistical significance of their findings. In turn, the few works that attempt to
statistically validate such claims suffer from important limitations of their
statistical approaches (Gilbert and Karahalios [38]). Stock market data exhibit
erratic volatility, and this time-varying volatility makes any possible relationship
between these variables non-linear, which tends to statistically invalidate linear
based approaches. We therefore re-visited the work of [38] that relied on a linear
framework which turned out to be unsuitable for accessing the causal
relationship between the sentiments obtained from LiveJournal posts. Our work
tackles these kinds of limitations, and extends linear frameworks by proposing a
new, non-linear statistical approach that accounts for non-linearity and
heteroscedasticity. Although our work has established that the Anxiety Index
does not have predictive information with respect to the stockmarket, we observe
some concerns as to how the Anxiety Index was built, based on incomplete data,
non-specific LiveJournal posts, corpus challenges, non-representative data
sample, among others. Further refining the process of defining the Anxiety Index
by addressing the above-mentioned concerns, may help to fine-tune our
empirical results and provide us with a more reliable predictive model.

Chapter 3. This chapter assesses the asymmetric impacts of positive and
negative sentiments on the stock market returns by using a non-parametric
nonlinear approach that corrects specific limitations encountered in previous
related work. In addition, it proposes a new approach to developing stock market
volatility predictive models by incorporating a hybrid GARCH and artificial
neural network framework, and proves the advantage of this framework over a
GARCH only based framework. Daily aggregated sentiments from StockTwits
which contains sentiment-filled S&P 500 blogs on Twitter are used as the
sentiment variables. Our results reveal that past volatility and positive sentiments
appear to have very strong predictive power over future volatility. In conclusion,
we emphasize on the importance of the source and suggest that one must pay
attention to the source of sentiments used in developing stock market predictive
models.
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Chapter 4. Collective intelligence, represented as the sentiment extracted from
social media mining, is encountered in various applications. Numerous studies
involving machine learning modelling have demonstrated that such sentiment
information may or may not have predictive power on the stock market trend,
depending on the application and the data used. This chapter proposes, for the
first time, an approach to predicting S&P 500 based on the closing stock prices
and sentiment data of the S&P 500 constituents. One of the significant
complexities of our framework is due to the high dimensionality of the dataset to
analyse, which is based on its constituents and their respective sentiments, and
their lagging. Another significant complexity is due to the fact that the
relationship between the response and the explanatory variables is time-varying,
and it is difficult to capture. We propose a predictive modelling approach based
on a methodology specifically designed to effectively address the above
challenges and to devise efficient predictive models based on Jordan and Elman
recurrent neural networks. We further propose a hybrid trading model that
incorporates technical analysis, and the application of machine learning and
evolutionary optimisation techniques. We prove that our unprecedented and
innovative constituent and sentiment-based approach is efficient in predicting
S&P 500, and thus may be used to maximise investment portfolios regardless of
whether the market is bullish or bearish.

Chapter 5. Some of the previous chapters that studied the causal relationship
between sentiments and the stock market have explored daily pre-processed
sentiment datasets obtained from third parties. As a result, we were able to avoid
the challenges and complexities behind identifying and extracting sentiment
polarities from financial news. But how reliable were the sentiment datasets
explored? Until recently, NLP models such as the convolutional neural network
and LSTM were common frameworks for sentiment analysis with models
achieving their best accuracy of around 70%. Still, a good number of sentences
are misclassified using these frameworks. Therefore, the reliance on such

146



processed sentiment data comes at its own cost. In fact, it calls into question the
findings regarding the causal relationship between sentiment information and the
stock market. Another concern is the use of daily aggregated sentiment data.
Extracting sentiment polarities from financial news as they become publicly
available could benefit from first-mover advantage. But these benefits may
become eroded over time due to information symmetry. In view of these
challenges, chapter 5 is centred on developing a BERT-based NLP model for
extracting sentiments from financial news with the expectation of a much higher
accuracy level. We proposed an optimised BERT-based NLP model and
compared the results from our model with some notable works in NLP. Our
proposed model shows very promising results and appears best in relation to the
notable works revisited in the literature on NLP.

Chapter 6. We proposed a fractional differencing approach for processing
non-stationary stock market variables in the process of developing a model for
predicting the directions of the S&P 500 E-mini stock prices. On account of the
high volume of intraday stock data, we introduced a CUSUM technique to help
generate the event-driven data used during model development. The technique
samples data more frequently during some events based on some time-varying
return volatilities pre-estimated.

We examined and compared the effectiveness of the models developed with
the two datasets processed using log differencing and our proposed approach of
fractional differencing. The results show that the model trained with the variables
stationalised using our proposed fractional differencing approach performs better
because these variables retain some informative memory that helps them to
improve their predictive power judging by the higher accuracy of 70% achieved.

Chapter 7. In chapter 7 three datasets were incorporated into developing a
stock market predictive model. We used the traditional stock market dataset that
has been generated using the CUSUM technique that helps to filter out features
with no informative elements. We introduced some technical analysis indicators
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as the second dataset. The third dataset covers the sentiment variables generated
from financial news. The sentiment dataset was produced by using our proposed
optimised BERT-based NLP model to extract sentiment polarities from over one
million financial news related to the constituents of the S&P 500 stock index.

We attempted to examine the relationship between sentiments and the stock
market. Presented in Figures 7.2.1 are some indications of commonalities in the
trend movements between the sentiments and the stock market prices. But the
findings from our model reveal no significantly statistical relationship between
them. Upon further examinations it was observed that most values of the
sentiment variables are zero. This makes the evaluation of their relationship
impractical.

Chapter 8. Chapter 8 focuses on developing a model for predicting contracts
for difference. Literature in this field seems non-existent. We take a bold step to
lead in the literature by introducing a novel technique termed the event-driven
forward labelling that helps to sample high frequency intraday data more
frequently during some stock market events, filter out the data with no
informative features, and support with the labelling of the relevant data points.
Our proposed model would be able to automatically detect opportunities in the
market, advise on the trading positions to take, and suggest when to exit the
positions. The trained model is applied to the out-of-sample data the model has
not seen before and it performs very well. This confirms the efficiency of our
proposed model in the capital market where over 82% of traders often lose.

9.2 Summary of contributions

Overall, the thesis makes the following contributions:

1. It proposes a non-parametric statistical technique for detecting the
nonlinear causal relationships between sentiments and the stock markets
and this helps to avoid the limitations around the linear framework.

2. It introduces a new approach to developing stock market volatility
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predictive models by incorporating a hybrid GARCH and artificial neural
network framework and proves the advantage of this framework over a
GARCH only based framework. In addition, it evaluates the asymmetric
impacts of positive and negative sentiments on the stock market volatility.

3. It proposes, for the first time, an approach to predicting the S&P 500 based
on the closing stock prices and the sentiment data of the S&P 500
constituents.

4. It introduces a hybrid trading model that incorporates a technical analysis,
machine learning and evolutionary optimisation techniques for predicting
the directions of the stock market prices.

5. It proposes an approach to reducing the number of dimensions, adapted to
our framework, based on a 3-step approach, consisting of performing
variable clustering, PCA, and by applying a variable selection method that
we introduce here based on the modified Best GLM variable selection
method initially developed by McLeod and Xu [6].

6. It proposes a novel optimised 2-step BERT-based NLP model for
extracting sentiment polarities from financial news, and some findings
from the multi-class model shows promising results judging by its high
accuracy level in identifying sentiment polarities. A sample of the results
from the developed model is presented in Appendix A.0.6.

7. It introduces a newmethod of achieving variable stationarity as opposed to
log differencing for obtaining the Integration of Order I(1) in view of the
fact that this long-preserved tradition diminishes the predictive power of
variables. Instead, we propose a method that would first check for variable
stationarity in a dataset, and then automatically detect and assign an
appropriate optimal value to each of the variables in the dataset for them
to satisfy the stationarity property. We build on the fundamental approach
of the fractional differencing originally introduced by Hosking [72].
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8. To the best of our knowledge, this thesis would be the first to extract
sentiments from financial news based on our proposed optimised
BERT-based model, and combine the results with technical analysis
indicators and event-driven stock market variables sampled on
time-varying return volatilities for predicting the directions of the stock
market prices.

9. It proposes a new CFDs-focused predictive model that incorporates both
the binary and multi-class OXGboost frameworks for automating trading
strategies. This model is designed to advise on when to enter a trading
position, what trading position to take and when to exit the position with
the purpose of optimising portfolios.

9.3 Constraints and limitations

One of the main focuses of this thesis is the assessment of the causal relationship
between sentiments and the stock market. To this end, different sentiment and
stock market data sources have been considered and examined. As expected,
each of the sources presents its own unique findings. As a result, we are unable to
reach a very simple and categorical conclusion as to whether there is a Granger
causality between the sentiment and the stock market variables. Regardless, we
have some comforting resolutions leading us to conclude that data sources and
model appropriateness play pivotal roles in assessing the Granger causality
between them. However, there are some inherent limitations encountered
ranging from the data sources, data validation, data availability, model
development, among others.

We explored the relationship between sentiment and the stock market in
Chapters 2, 3 and 4. Regarding the sentiment data sources, we have limited
information with respect to the processing of the sentiments.

Another limitation is the restricted model selection and its level of accuracy
covered. Chapters 2, 3 and 4 rely on processed sentiment datasets. Given that the
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sentiments in the aforementioned chapters where processed before 2018 when a
new powerful BERT-based NLP model had not been developed, we see this as
another limitation of the sentiment datasets explored (Olaniyan et al. [111]).

More so, we observe some limitations around the limited model development
approaches introduced. In Chapter 8, for example, we introduced a
volatility-based event-driven technique to sample the stock price data used.
Thereafter, we examined the Granger causality between the sentiment and stock
market. This technique might have also weakened this relationship. It would be
interesting to see what this relationship would be if we would introduce a
sentiment-induced event-driven technique. Since this approach was not explored
in our work, we consider this a limitation.

In Chapters 6, 7 and 8 we claim to have developed stock market predictive
models. Applying these models developed in real life would have been the best
way to evaluate their effectiveness, but we did not achieve this. This is seen as a
limitation to this thesis.

9.4 Future research directions

Chapter 7 studied the statistical relevance of sentiments on the stock market. In
the process, the event-driven stock market data is combined with the sentiments
extracted from the financial news related to the constituents of the S&P 500 stock
index and technical analysis indicators. Due to a significant proportion of missing
values from the sentiment data, we were unable to identify the influence
sentiment exerts on the stock market.

The causal relationship between sentiments and the stock market could have
been better examined if the stock market data would have been sampled based on
some events rather determined by the market sentiments as opposed to the stock
market return volatility used. With this we could have easily compared the
statistical relevance of the sentiment variables by looking at their variable
importance and their contributions to the model predictions. This thesis can
therefore be extended to address this issue.
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Figure A.0.1: This was an extract from SNIPPET 3.7 of [105] but with some
modification that assumes that labels should be assigned immediately after
events.
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Figure A.0.2: This shows the list of the S&P 500 constituents with closing
stock prices that we explored in Chapter 4. Those excluded in the analysis
do not have sufficient data, hence their exclusion. Please see [64] for more
information about the S&P 500 constituents.
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Figure A.0.3: This shows the list of the S&P 500 constituents with senti-
ment polarities that we explored in Chapter 4. Those excluded in the analysis
do not have sufficient data, hence their exclusion. Please see [64] for more
information about the S&P 500 constituents.
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Figure A.0.4: Cluster pre-processing. This presents the results of the K-
means clustering applied to the closing prices of the S&P 500 constituents
detailed in Fig. 4.3.1. There are four clusters.
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Figure A.0.5: Cluster pre-processing. This presents the results of the K-
means clustering applied to the sentiments of the S&P 500 constituents de-
tailed in Fig. 4.3.1. There are four clusters.
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Figure A.0.6: Sample of the results of our proposed optimised BERT-based
NLP algorithm: the sentiments extracted from the financial news related to
the former US president, Donald Trump. This confirms that the optimised
BERT-based NLP model has a high level of accuracy.

Figure A.0.7: The sub function required in A.0.8 for observation labelling.
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Figure A.0.8: Proposed Extreme Forward Labelling.
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