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Abstract
Anxiety affects approximately 5–10% of the adult population worldwide, placing a large burden on the health systems.

Despite its omnipresence and impact on mental and physical health, most of the individuals affected by anxiety do not

receive appropriate treatment. Current research in the field of psychiatry emphasizes the need to identify and validate

biological markers relevant to this condition. Neurophysiological preclinical studies are a prominent approach to determine

brain rhythms that can be reliable markers of key features of anxiety. However, while neuroimaging research consistently

implicated prefrontal cortex and subcortical structures, such as amygdala and hippocampus, in anxiety, there is still a lack

of consensus on the underlying neurophysiological processes contributing to this condition. Methods allowing non-invasive

recording and assessment of cortical processing may provide an opportunity to help identify anxiety signatures that could

be used as intervention targets. In this study, we apply Source-Power Comodulation (SPoC) to electroencephalography

(EEG) recordings in a sample of participants with different levels of trait anxiety. SPoC was developed to find spatial filters

and patterns whose power comodulates with an external variable in individual participants. The obtained patterns can be

interpreted neurophysiologically. Here, we extend the use of SPoC to a multi-subject setting and test its validity using

simulated data with a realistic head model. Next, we apply our SPoC framework to resting state EEG of 43 human

participants for whom trait anxiety scores were available. SPoC inter-subject analysis of narrow frequency band data

reveals neurophysiologically meaningful spatial patterns in the theta band (4–7 Hz) that are negatively correlated with

anxiety. The outcome is specific to the theta band and not observed in the alpha (8–12 Hz) or beta (13–30 Hz) frequency

range. The theta-band spatial pattern is primarily localised to the superior frontal gyrus. We discuss the relevance of our

spatial pattern results for the search of biomarkers for anxiety and their application in neurofeedback studies.
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1 Introduction

Anxiety disorders are one of the leading causes of the

global health-related burden. The COVID-19 pandemic

had a significant impact on the prevalence of anxiety dis-

orders worldwide, leading to an estimated increase of 25.6

% globally (374 million in total [1]). This calls for a need

to identify novel therapeutic approaches that can comple-

ment established pharmacological treatment protocols. The

use of non-invasive techniques to record brain activity with

high temporal resolution, such as Electroencephalography

(EEG) or Magnetoencephalography (MEG), provides an

opportunity to assess changes in the dynamics of neural

activity associated with anxiety. The analysis of neural

oscillations, in particular, is ideally suited to identify

markers of aberrant physiological processing [2] in neu-

ropsychiatric conditions. By linking alterations in neural

oscillations to clinical and subclinical manifestations of

anxiety, it is possible to define novel neurophysiological

targets for neuromodulatory and neurofeedback interven-

tions [3], as well as for pharmacological treatment [4].
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In recent years, an enormous effort has been devoted to

understanding the neurobiology of anxiety disorders,

combining animal work with human neuroimaging studies

in healthy and clinical populations. Converging neu-

roimaging evidence in clinical and subclinical anxiety

indicates that alterations in dorsal medial prefrontal (an-

terior cingulate) cortex and subcortical brain regions can

explain an array of cognitive-affective alterations in these

populations [5–7]. On a neurophysiological level, EEG

recordings in clinical and subclinical populations have

identified cross-frequency correlations as a candidate

marker for anxiety disorders [8–12]. In particular, alter-

ations in the amplitude-amplitude cross-frequency corre-

lations (AAC) between delta (\4 Hz) and beta (13–30 Hz)

oscillations have been associated with social anxiety and

with aberrant stress regulatory processes [9, 10]. The

direction of the effect remained, however, unclear, as

increased delta-beta AAC at frontal regions was associated

both with a pronounced increase in social anxiety [8] and

reduced trait anxiety [13]. Analysis of phase-amplitude

coupling (PAC), which is a different measure of informa-

tion transfer between neuronal populations, has provided

more consistent results, exhibiting a reliable modulation on

a within-subject level following a social anxiety manipu-

lation [11]. Despite suggestions that delta-beta AAC and

PAC could reflect altered coupling between frontal and

sub-cortical circuits implicated in anxiety disorders, the

functional significance of these effects remains elusive.

An alternative EEG marker of aberrant neural dynamics

in anxiety conditions could be the oscillatory power over

frontal regions. Measures of alpha power (8–12 Hz) have

been used to obtain the index of frontal alpha asymmetry

(FAA), which is sensitive to a range of emotional changes

including anxiety [14, 15]. Attenuated or enhanced right

relative to left frontal alpha power has been associated with

approach or withdrawal motivation, respectively [16, 17].

Given this association, FAA can inform about an array of

clinical mood and anxiety disorders that interfere with

approach-avoidance behaviour, such as major depression,

bipolar disorder, panic and anxiety disorder [18, 19].

However, the direction of the association between FAA

and affective state, as well as the sign of change in alpha

power are often inconsistent [15, 20, 21]. Moreover, in

cases of comorbid anxiety and depression, it is unclear how

reliable the FAA index can be. These inconsistencies pose

a challenge for mental health research acknowledged in

previous work, as a reliable and unique association

between FAA and specific psychiatric conditions seems

elusive [22, 23].

Animal studies suggest hippocampal theta oscillations

(4–7 Hz; extended to 4–12 Hz in the rodent literature) as an

important marker of anxiety, due to their involvement in

the modulation of the behavioural inhibition system that is

associated with processing approach-avoidance conflict

[24, 25]. Human studies validate the role of theta oscilla-

tions in anxiety, with novel data demonstrating in clinical

and subclinical samples that anxiolytic drugs reduce frontal

theta (and alpha) oscillations during conflict processing [4].

Consistent with those findings, earlier work demonstrated

heightened frontal theta power in healthy individuals with

high trait anxiety levels, which was accompanied by overly

cautious and avoidant behaviour [26]. Theta power at rest,

by contrast, is negatively correlated with anxiety, as shown

in individuals with social phobia [27].

Although resting-state studies in anxiety conditions are

scarce, the published findings have been used to design

neurofeedback protocols. Neurofeedback training is a non-

pharmacological and non-invasive neuromodulatory

approach to modify neural activity in real time using brain-

computer interfaces (BCI, [2, 28–34]). Theta and alpha

rhythms are the preferred signals in EEG-based neuro-

feedback studies aiming to mitigate anxiety and arousal, as

well as promote relaxation (see recent review: [3]). The

evidence so far is promising but inconclusive. Reasons are

limited sample sizes, suboptimal study design and lack of

control of confounding factors, such as the closed-loop

interactions between learning and anxiety, which could

negatively influence how participants learn from neuro-

feedback [3]. We suggest that an additional issue in pre-

vious neurofeedback interventions is the lack of consensus

on the spatial distribution of the EEG oscillatory modula-

tions targeted. Indeed, previous correlation analyses

between oscillations and clinical or subclinical anxiety

features were conducted in the sensor space, which may

lead to inconsistencies due to the mixture of noise and

source signals. Accordingly, sensor-based scalp distribu-

tions of oscillatory measures may not be optimal as targets

for neurofeedback and BCI. Moreover, the spatial distri-

bution of these sensor-based correlation results cannot be

interpreted in terms of source activity and, thus, is less

informative. A potential answer to these inconsistencies

lies in methods that provide not only optimal solutions for

the search of associations between neuronal measures and

behavioural or psychological parameters, but also neuro-

physiologically interpretable results.

In this work we present results of a novel framework to

extract invariant sources correlated to trait anxiety across

subjects. It consists of a dimensionality reduction coupled

with a spatial filtering technique called Source Power

Comodulation (SPoC, [35]). SPoC was designed to find

filters and patterns of sources whose power maximally

comodulates with an external behavioural or psychological

variable. By construction, the obtained sources are opti-

mally related to the external variable, and can thus easily

be used as neurofeedback target in online paradigms.

Previously, SPoC was validated using simulated and
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experimental data of single participants [35]. In that study,

the EEG activity of each participant was assessed to

identify modulation by an external variable across trials

(reaction times). In the current study, we implement SPoC

on a multi-subject level whereby each participant is rep-

resented as one trial, and the value of the external variable

describes a feature of each individual: trait anxiety. First,

we perform the analysis on simulated data with realistic

head models to assess whether SPoC is robust under dif-

ferent noise levels. Next, we apply SPoC to EEG resting

data of 43 participants with varying levels of trait anxiety.

This approach allows us to identify patterns of sources

whose power at specific frequency bands maximally

comodulates with trait anxiety scores.

Multi-subject SPoC allows finding patterns more

strongly correlated to anxiety than usual sensor-based

correlation analyses. In contrast to sensor-space correla-

tions, SPoC results can be directly transformed to source

activity using standard approaches, such as eLORETA

[36]. Accordingly, SPoC results can be interpreted in terms

of neurophysiological sources. The identified pattern could

thus be used to inform future neuromodulation studies (e.g.

non-invasive brain stimulation, neurofeedback) aiming to

mitigate features associated with anxiety.

2 Data description

2.1 Simulated EEG data

SPoC was originally developed to find subject-specific

patterns from trial-wise data of a single participant. In the

current study we extend the use of SPoC to several par-

ticipants and assess its ability to find patterns of comodu-

lation between participants’ neural and behavioural or

psychological variables. This use of SPoC can be imple-

mented by defining each of the epochs as the data of one

participant. To the best of our knowledge, this approach

was previously tested only in our previous work [37]. In the

present paper, we first validated it by conducting SPoC on

simulated data using a realistic head model, where SSD

was previously applied to reduce dimensions and reduce

the risk of over fit.

Simulated data were generated by fitting 30 EEG

channels to the outermost layer of the standard Montreal

Neurological Institute (MNI) head [38]. The EEG forward

solutions were obtained with a head model based on a three

compartment realistic volume conductor [39].

The brain sources were modelled as pseudo-random

cortical dipoles, defined by three location and three ori-

entation variables. For each subject five brain sources were

generated. One of them had only approximately the same

location in all participants. This was done to individually

simulate the different brain folding of each subject. It was

achieved by including random orientation variability of up

to �10% in the ‘‘invariant’’ source. The other sources had

different random positions for each participant (in each

trial). Background EEG noise was also generated with 500

uncorrelated dipoles of random orientation and distribution

on the cortex with 1/f type spectrum. These dipoles differed

from person to person (trial to trial) to simulate the dif-

ferent background noise of each participant.

EEG oscillations were generated by band-pass filtering

independent white noise in the frequency band of interest,

in this case we selected the alpha band between 8 and 12

Hz. The power of one time series was manipulated to be

negatively correlated to an external variable and projected

on the ‘‘invariant source’’.

Finally, the SNR was calculated as the ratio between the

mean variance across channels for the invariant source and

the mean variance of additive background noise and the

individual oscillatory sources in the centre frequency of the

brain source. We generated data with three different signal-

to-noise ratios, 0.01, 0.05 and 0.1.

We simulated 45 persons for whom 300 seconds of data

were generated at a sampling frequency of 200 Hz. We

repeated the analysis for 100 different random positions of

the target (invariant) source, to be able to analyse the

ability of SPoC to recover the source whose power co-

modulates with an external variable and whose orientation

is slightly different for each subject.

To assess whether SPoC could correctly recover the

pattern of interest, the error between the original and the

SPoC pattern was calculated according to [40]:

Err ¼ 1 � jaToaSPoCj
kaokkaSPoCk

ð1Þ

where ao is the original generated pattern and aSPoC is a

pattern recovered by SPoC. The final error estimate was

obtained averaging over all errors.

2.2 Real data description

The data analysed in this paper were obtained from our

previous study [41], which was approved by the local

ethical review committee at Goldsmiths, University of

London. EEG data were available from 43 participants

during wakeful rest (5 minutes, eyes open). Participants

were on average 27 years old (standard error of the mean or

SEM 0.9, range 18–35; 28 females). In this sample, trait

anxiety scores were available; these had been obtained with

the Spielberger State-Trait scale (STAI, Trait sub-scale,

T-STAI, 20 items, score in range 20–80). The trait values

in our sample were distributed in the 30–68 range (mean

[SEM]: 46 [2]; Fig. 1). T-STAI scores above 45 are con-

sidered high, as these values are typically reported in
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patients with anxiety disorders [42]. Note that in the

original study [41], neural and behavioural data during task

performance were available in 42 participants, yet resting

state recordings were collected for one additional partici-

pant (N = 43). In [41], the 42 participants were split into

two groups after the resting-state recordings. One partici-

pant group underwent a manipulation aiming to induce

sustained anxiety during task performance (experimental

group). The analysis in that study therefore focused on

neural and behavioural differences between a control and

experimental group. By contrast, the current study focuses

on data from all 43 participants prior to the subsequent

group manipulations. We refer the reader to [41] for further

details.

EEG signals were recorded using the BioSemi Acti-

veTwo system (64 electrodes, extended international

10–20, sampling rate 512 Hz, high-pass filter 0.1 Hz).

External electrodes were placed on the left and right ear-

lobes to use as references upon importing the EEG data in

the analysis software. The signals had been pre-processed

already as described in [41], using the EEGLAB toolbox

[43] for MATLAB�. In that study, the continuous EEG

data were filtered using a high-pass filter at 0.5 Hz and then

notch-filtered at 48–52 Hz. Next, artefacts related to eye

blinks, saccades and heartbeats were removed from the

signals using independent component analysis (ICA,

runICA implementation; 2.3 components were removed on

average). See [41] for further details on pre-processing.

The analyses performed in this work were based on a

subset of 30 electrodes covering the whole scalp (Fig. 2).

Artifactual channels were removed by inspecting their

variance in the band between 4 and 30 Hz. Those dis-

playing high power were rejected, individually for each

participant [44], at the same time trying to maintain as

many as possible on the frontal and fronto-central areas

[14, 15]). In order to run SPoC over all subjects simulta-

neously, the set of channels must be common to all data

sets. The selected 30 channels were noise free in all

participants.

3 Methods

3.1 Source power comodulation, SPoC

Source Power Comodulation or SPoC is a method designed

to decompose multivariate neuroimaging data (EEG/MEG)

into source components by using the information contained

in an external target variable to direct the decomposition

[35]. As a result, a set of spatial filters is found that opti-

mizes the covariation or correlation (depending on the

selected objective function) between the external target z

and the power time course of the corresponding SPoC

source. That is, SPoC maximizes the correlation between

the power of the neural signals and a variable of interest,

thereby identifying the filters and patterns maximally

related to the variable of interest. Furthermore, the obtained

patterns can be neurophysiologically interpreted and their

sources located with standard algorithms such as eLOR-

ETA [36].

Two different SPoC algorithms exist SPoCk and SPoCr2 .

SPoCk provides an analytical solution and obtaining a

Fig. 1 Histogram of the Spielberger trait anxiety scores in our

participant sample, with x-axis representing the trait anxiety score of

each participant and y-axis the number of participants associated with

each score

Fig. 2 Electrodes selected for the analyses
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result is significantly faster than for SPoCr2 , thus it was our

preferred option in this work. As described in [35], by

maximizing the covariation between a power of a brain

source and an external variable, one can arrive at the fol-

lowing optimization problem:

argmax
w

wTCzw ð2Þ

with respect to the following norm constraint:

wTCw ¼ 1 ð3Þ

with Cz being the covariance between the power (in form

of a covariance matrix) of the band-pass filtered EEG

signal at each epoch and the standardized external value z

(with zero mean and unit variance); and C the averaged

value of the epoch covariance matrices of the band-pass

filtered EEG signal. In the context presented in this

manuscript, an epoch is the complete data of one partici-

pant. Thus, for N participants we would have N epochs.

The aforementioned constrained optimization problem

can be solved using the method of Lagrange multipliers.

Setting the first derivative of the corresponding Lagrangian

to zero leads to the following generalized eigenvalue

equation:

Czw ¼ kCw ð4Þ

On the other hand, SPoCr2 directly maximizes the squared

correlation between the experimental variable and the

power time series:

fr2 ¼ ðw>CzwÞ2

hðw>ðCðeÞ � CÞwÞ2i
ð5Þ

with CðeÞ the covariance matrix of one epoch e of data and

h�i denoting averaging across epochs. According to [35]

‘‘The weight vector w that maximizes fr2 cannot be found

analytically. It should therefore be found using iterative

optimization methods.’’ This makes SPoCr2 significantly

slower than SPoCk.

3.2 Spatio-spectral decomposition, SSD

An important aspect to consider when applying an inter-

subject approach of an optimization procedure is that the

total number of subjects should largely exceed (typically

by a factor of five to ten) the number of unknowns. In

SPoC, the number of unknowns is the dimension of the

weight vector w, which equals the number of selected EEG

channels. However, it is common that the number of par-

ticipants in a study is not much greater or even smaller,

than the number of electrodes of interest. One solution to

this problem is to apply a dimensionality reduction

algorithm.

In this work we selected the spatio-spectral decompo-

sition (SSD) to reduce dimensionality [45–47]. SSD can

find spatial filters which maximize the signal-to-noise ratio

(SNR) of oscillatory signals, such as band-pass filtered

EEG, [48]. This study showed that maximizing the SNR of

the measured signals, also maximizes the SNR of the

sources of interest. The optimization problem takes

advantage of the positive definite property of covariance

matrices as power estimators and reduces to a generalized

eigenvalue problem.

SNR ¼ Psðf Þ
Pnðf Þ

� Pmðf Þ
Pmðf � Df Þ þ Pmðf þ Df Þ ð6Þ

SNRðwÞ ¼wTRmw

wTRnw
ð7Þ

with Psðf Þ and Pnðf Þ the power of the source signal and the

noise at a narrow frequency band, respectively, and Pmðf Þ
the power of the measured signal. Finally, Rm and Rn are

the covariance matrices of the measured signal and noise

(the later is measured at the flanking frequencies) of the

filtered EEG and w is the spatial filter to obtain a source of

maximal SNR.

The selection of components was performed by pro-

jecting the filtered EEG data into the SSD directions and

correlating their power with the external variable. Those

five components with higher correlation were selected to

then conduct SPoC. The possible over fit was estimated

using permutation tests.

3.3 Calculation of sensor-space correlations

The usual way to investigate the association between the

power of neuronal oscillations and some behavioural/clin-

ical variable is to directly use channel data. Specifically,

sensor-based correlations were computed with respect to a

variable of interest in simulated and real EEG data as

described in the next sections.

3.3.1 Simulated EEG data

We computed 30 small-Laplacian derivations from the

original 30 channels by allowing computations with an

incomplete number of neighbouring channels. They were

filtered in the alpha band (8 to 12 Hz) and the variance of

each channel and each person (trial) was computed. Then,

the correlation of the trial-wise variance and the external

variable was calculated. Finally, the most significant result

was selected. We employed the Spearman correlation

coefficient which is robust against the presence of outliers.
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3.3.2 Real EEG data

The sensor signals of the resting-state recording were

spatially filtered using small-Laplacian derivations to

obtain 30 Laplacian channels by allowing computations

with an incomplete number of neighbouring channels.

Then, the data were filtered in three narrow bands corre-

sponding to theta (4–7 Hz), alpha (8–12 Hz) and beta

ranges (13–30 Hz). Subsequently, the data were cropped

into 2 second windows.

For each of those windows, the variance of a sensor was

computed and averaged across windows, obtaining one

power value per sensor. Finally, the correlation of each

sensor to the external value (trait anxiety score) was

computed. We estimated both Spearman and Pearson cor-

relations. Note that power is a measure that often presents

outliers. A way to reduce their influence is to apply a

logarithm to power values before computing correlations,

thus all Pearson correlations were performed with log-

power values.

3.4 Application of inter-subject SPoC
to simulated and real data

3.4.1 Simulated EEG data

SSD was applied to the simulated EEG data in the band

8–12 Hz. Then, five SSD directions were selected as

described in Sect. 3.2. After that SPoC was computed to

those five components and the correlation between the

power of the selected SPoC component and the external

variable calculated. Again, we employed Spearman corre-

lation due to its robustness against possible outliers.

Finally, in order to show the advantage of applying SSD

previous to SPoC, we also computed SPoC directly from

the band-pass filtered sensor data.

3.4.2 Real data

The EEG data were pre-processed as in Sect. 3.3, i.e. they

were filtered in narrow bands and cropped into 2-second

long windows. Then, instead of the variance of each

electrode, the corresponding covariance matrix was com-

puted for each window and averaged over epochs. In order

to apply SSD, also noise covariances were computed fol-

lowing the same procedure, with the exception that the data

were filtered in the flanking frequency bands. Those signal

and noise covariance matrices were used to compute SSD

and five components were selected as in Sect. 3.2. The

EEG data were then projected into those components and

then both SPoC algorithms together with the standardized

trait score results of each participant were applied. To

analyse the results we computed both Spearman and

Pearson correlations, in this last case using log-power

values.

Spatial patterns in sensor space could be recovered by

multiplying the resulting SPoC pattern in SSD space with

the matrix formed with the five selected SSD patterns.

Then, this sensor-space pattern could be located using

eLORETA [49].

3.5 Statistical analyses

3.5.1 Significance of the results

The confidence limit for the correlation obtained with

SPoC in real and simulated data was estimated with per-

mutation tests [50]. One thousand permutations were per-

formed and for each of them, where all optimization steps

were repeated using a shuffled external variable. After

computing SSD, the five components were selected by

correlating the shuffled variable with the power of the

projected data. Then, SPoC was applied and the Spearman

correlation of the selected SPoC component and the shuf-

fled variable was estimated. In the case of real data, the

results with Pearson correlation between the log-power and

the permuted trait anxiety index were also computed.

Positive significant correlation values of the original data

were those exceeding the 97.5 percentile of permuted

correlations. In case of negative correlations, significant

results were those below the 2.5 percentile of permuted

correlations. Furthermore, the p values were estimated as

the proportion of permuted correlation values which

exceeded (for positive correlations) or were smaller (for

negative correlations) than the original unpermuted result.

3.5.2 Differences between methods

Differences between methods were assessed using Fried-

man tests because correlation results were not normally

distributed [51]. In case the result was significant, post hoc

analyses were performed using the Nemenyi test, an

equivalent to Tuckey’s HSD for nonparametric testing

[52]. Only factor ‘‘Method’’ was considered for these tests.

SNR was not included as a factor because it is clear that

higher SNRs produce better results. Furthermore, SNR is

not known for real data.

4 Results

4.1 Simulations

Averaged correlation results over 100 repetitions obtained

by simulations are summarized in Table 1. There, it is

visible that for higher SNRs (0.1 and 0.05), all SPoC
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studied methods (both SPoC variants with and without

SSD) deliver very similar outcomes. However, for

SNR=0.01 SPoCr2 seems to strongly overfit (obtains on

average positive correlations) in comparison to the rest of

SPoC methods. Differences between methods were studied

using Friedman tests, one for each SNR, with all results

being significant (p value\\0:001). Thus, post hoc tests

followed. In the case of SNR=0.1 and SNR=0.05, the dif-

ferences between SPoC-related methods were not found to

be significant, whereas the best Laplacian derivation

obtained significantly worse results than all SPoC results.

In the case of SNR=0.01, SPoCr2 was found significantly

worse than the rest of SPoC methods and also worse than

the best Laplacian derivation. Otherwise the results with

the best Laplacian derivation were significantly worse than

using all other SPoC-related methods.

Averaged pattern recovery errors over 100 repetitions

are presented in Table 2. Note that Laplacian derivations

do not return patterns, thus a recovery error cannot be

computed. Again, SPoC variants with SSD seem to per-

form better than those without dimensionality reduction

when the SNR is low. Friedman tests with factor ‘‘Method’’

returned significant results for all SNRs. Differences were

not found significant between SPoC methods without

dimensionality reduction for any of the SNRs. On the other

hand SPoCk was significantly better than the rest of

methods for all SNRs.

Finally, an example of a recovered pattern is visible in

Fig. 3. The first column displays the original pattern,

whereas the rest display results with different SPoC ver-

sions. Each row presents one SNR with 0.1 on the top. For

the lowest SNR, SPoC versions with SSD find the correct

pattern, whereas without SSD the result does not resemble

the original pattern, specially for SPoCr2 with the highest

recovery error.

4.2 Real data

We applied both SPoC algorithms to three different fre-

quency bands, namely theta, alpha and beta. Real data are

usually more noisy than simulated data, thus we employed

SSD and selected five components prior to the application

of SPoC. Next, SPoC extracted the source patterns that had

power maximally correlated (positively and negatively)

with the external variable (trait anxiety score of each par-

ticipant). We used permutation tests to assess the statistical

significance of the results. We also employed both Spear-

man and Pearson correlation coefficients to assess the

results. However, as Pearson can be heavily affected by

data outliers, we applied a logarithm to the extracted power

values to improve the result.

The results obtained with both SPoC algorithms and

both correlation options are presented in Table 3. As

expected, the outcomes of either method were similar. In

particular, power in the theta band is significantly anti-

correlated with the trait anxiety score, with a very similar

value for Spearman and Pearson methods (- 0.54, - 0.53,

respectively; see Table 3 and Fig. 4). The corresponding p

values from the permutation tests are also shown in

Table 3, (0.016 and 0.028 for Spearman and 0.016 and

0.018 for Pearson, respectively). These outcomes indicate

that larger power values in the obtained spatial pattern are

associated with lower trait anxiety across participants. No

other significant effects were found for alpha and beta

bands.

The corresponding patterns obtained with SSD?SPoCk

and SSD?SPoCr2 are displayed in the middle and right

panels of Fig. 4. These topographies correspond to the

strongest association between power of theta oscillations

and the anxiety score. Both patterns are almost equal, and

display a difference of only 2:3 10�16, supporting that both

SPoC algorithms return the same pattern in these data. The

strongest activity is observed over centro-frontal areas.

Correspondingly for this pattern, inverse modelling using

eLORETA revealed neuronal sources being located

Table 1 Averaged Spearman

correlation values over 100

repetitions ± standard error of

the mean

SNR SPoCk SSD?SPoCk SPoCr2 SSD?SPoCr2 Best Lap.

0.1 - 0.960 ± 0.003 - 0.961 ± .003 - 0.960 ± 0.003 - 0.961 ± 0.003 - 0.845 ± 0.016

0.05 - 0.908 ± 0.007 - 0.914 ± 0.005 - 0.739 ± 0.055 - 0.915 ± 0.005 - 0.741 ± 0.020

0.01 - 0.554 ± 0.019 - 0.602 ± 0.016 0.236 ± 0.073 - 0.611 ± 0.016 - 0.421 ± 0.016

Table 2 Averaged source

recovery errors over 100

repetitions ± standard error of

the mean

SNR SPoCk SSD?SPoCk SPoCr2 SSD?SPoCr2

0.1 0.00061 ± 0.00004 0.00031 ± 0.00003 0.00061 ± 0.00004 0.00210 ± 0.00087

0.05 0.00192 ± 0.00034 0.00069 ± 0.00008 0.07020 ± 0.020901 0.00465 ± 0.001495

0.01 0.31175 ± 0.03396 0.08981 ± 0.01992 0.49903 ± 0.03330 0.09426 ± 0.01702
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Fig. 3 Left: Original generated

pattern. Rest: recovered patterns

of SPoC algorithms with and

without SSD for the three SNR

studied

Table 3 Correlation results and

p-values for each of the SPoC

algorithms and each of the

studied bands. Results in bold

face are significant

Band Correlation results p values

SSD?SPoCk SSD?SPoCr2 SSD?SPoCk SSD?SPoCr2

Theta Spearman � 0.54 � 0.54 0.016 0.028

Pearson � 0.53 � 0.53 0.016 0.018

Alpha Spearman -0.34 -0.34 0.314 0.403

Pearson -0.38 -0.38 0.227 0.297

Beta Spearman -0.30 -0.30 0.417 0.552

Pearson -0.34 -0.34 0.346 0.461

Fig. 4 Left: Spearman correlation obtained for SSD?SPoCk and

SSD?SPoCr2 (circled in red) and for each permutation (points in

green and blue, respectively). To achieve these results, the external

variable was shuffled previously to the selection of SSD components

and the corresponding SPoC variant applied. After that, power

features were extracted and the Spearman correlation coefficient

obtained with the shuffled variable. Right: SSD?SPoC pattern of

sources for the results shown on the left
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bilaterally in the superior frontal gyrus extending posteri-

orly to the precentral gyrus (Fig. 5).

Complementing the SSD?SPoC analyses, we also

obtained Spearman and Pearson correlation results in sen-

sor-space for the same frequency bands (4–7, 8–12 and

13–30 Hz). Among all Laplacian channels, we selected

those with the most extreme correlation values for each

band. The results are shown in Table 4. None of the results

was significant in any of the channels or bands, although

some results showed a trend towards significance. The

distribution over the scalp of non-significant correlation

results is shown in Fig. 6.

The distributions of correlation values in the scalp using

Laplacian channels seem to be very similar in all studied

bands and for both correlation coefficients. However, none

of the results is significant. Furthermore, as aforemen-

tioned, the obtained spatial distributions from Laplacian

channels cannot be interpreted in terms of sources because

the activity in each channels is first squared (to obtain

power) and only then correlated with the anxiety. There-

fore, the polarity of sources is lost and thus no meaningful

neurophysiological interpretation is possible. As a conse-

quence inverse modelling, such as eLORETA cannot be

applied to these results.

5 Discussion

The present work aims to identify neurophysiological

markers in subclinical trait anxiety that could be used as

intervention targets for neurofeedback and neuromodula-

tion studies. Unlike other EEG paradigms, where discrete

classes are identified and discriminated [53–59], here we

deal with continuous scores or levels of anxiety obtained

from T-STAI. The main finding is the extraction of a

spatial pattern in the theta band of resting state oscillatory

EEG activity. This pattern is significantly and maximally

associated with trait anxiety across participants. Further-

more, it can also be directly interpreted as a source pattern,

and is localised primarily to the superior frontal gyrus

using eLORETA. The results across simulated and real

EEG data validate the usefulness of SPoC as a method for

identification of markers of neurophysiological activity

optimally representing psychological or behavioural

features.

Previous work typically conducted standard correlation

analyses between sensor-level EEG activity and an external

variable of interest to establish associations between

behavioural or psychological features and neural data [35].

This approach has limitations, however, as the mixing of

source and noise activity at the scalp renders those results

non-interpretable. In particular, when the computation of

the neural measures involves nonlinear operations, estab-

lishing an association between the individual electrode

estimates and their sources in the brain is not possible

anymore. This is the case with regard to spectral power

estimates, which rely on squaring the frequency-trans-

formed data. Moreover, this operation removes phase

information in the data, which is important for the adequate

reconstruction of neuronal sources. Accordingly, classical

sensor-level correlation results on the scalp cannot be

related to the neuronal origin of the observed effects.

Our simulation results show that both SPoC variants can

recover the true inter-subject source whose power is cor-

related with an external variable. The addition of SSD as a

pre-processing step turns both methods robust against

overfit (see Table 1), returning the sources of interest more

efficiently (Tables 2 and 3). Such advantage of SSD to

avoid overfitting has been also previously shown earlier

[45, 46]. In particular, both SSD?SPoC algorithms are able

to recover the artificially generated pattern of sources in all

investigated conditions, whereas this was not the case for

any SPoC alone method (see Table 2 and Fig. 3 for an

exemplary result). Notably, according to our statistical

Fig. 5 eLORETA localization of the significant SSD?SPoCk pattern

at theta band. The resulting SSD?SPoCr2 is the same

Table 4 Correlation results and p-values for the best Laplacian

channel and each of the studied bands. None of the results are

significant

Band Correlation results p values

Spearman Pearson Spearman Pearson

Theta - 0.194 - 0.229 0.106 0.070

Alpha - 0.192 - 0.229 0.108 0.075

Beta - 0.205 - 0.214 0.093 0.084
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analyses, SSD?SPoCk is the most reliable method to

recover sources. The results also demonstrate that

SSD?SPoC-related correlations are stronger than those

based on sensor-space results. Furthermore, SPoCr
2

strongly overfits for the lowest SNR studied, in comparison

also to SPoCk. These outcomes suggest that SPoCk, apart

from being faster to calculate is also more robust against

noise. Also, our simulations show that inter-subject SPoC

can be a useful procedure to obtain neurophysiological

markers optimised for an external target variable, in addi-

tion to being interpretable as neural sources and, thus,

informative for neuroscientific research.

With respect to the analysis of empirical EEG data,

SSD?SPoC (k and r2) reveals a spatial pattern with its

corresponding activity being maximally comodulated with

trait anxiety. This was specific to the theta band;

SSD?SPoC values in the alpha and beta bands were non-

significant in any of the studied cases (both SPoC methods

and both correlation coefficients, Spearman and Pearson).

Moreover, the associated nonparametric correlation values

for the theta band are stronger (- 0.54) than those observed

in the standard analysis of sensor-space correlations (-

0.194 for Spearman - 0.229 for Pearson in theta band, and

similarly for alpha and beta).

Beyond SPoC, the use of spatial filters aiming to opti-

mise a target measure is widespread in BCI applications

[46]. Common spatial patterns, for instance, which max-

imise the variance of the spatially filtered signal in one

condition, while minimising it in a second condition, have

been shown to increase online BCI decoding accuracy

[60–63]. Here, using SSD?SPoC, we identify a theta-band

spatial pattern that could be a candidate target in resting-

state EEG neurofeedback studies, potentially increasing the

efficacy of the neurofeedback-based modulation of neural

activity and associated level (scores) of trait anxiety. This

is a promising extension of previous neurofeedback work

in anxiety, which primarily used theta or alpha oscillatory

power [3].

The choice of theta and alpha power in previous

research was based on the vast evidence linking theta with

deep relaxation states, and decreased arousal, similarly to

alpha activity [64, 65]. In addition to managing arousal and

facilitating relaxation, alpha-based neurofeedback training

has been shown to decrease trait anxiety levels, and

increase the feeling of control in stressful settings [28, 66].

While theta oscillations have been more widely used as

target for neurofeedback interventions in post-traumatic

stress disorder than in anxiety [3], our findings suggest a

specific spatial pattern (and a corresponding spatial filter)

that could be used in BCI protocols to test the efficacy of

theta-band neurofeedback for anxiety. The spatial pattern

findings are complemented with the source analysis using

eLORETA, which localised the theta-band spatial pattern

in the superior frontal gyrus. This region is associated with

frontal midline theta in anxiety, in addition to cognitive

control [26]. Crucially, a large body of neuroimaging evi-

dence demonstrated that regions of the prefrontal cortex

and anterior cingulate cortex, which are part of the cog-

nitive control network, overlap with the circuitry of anxiety

[67, 68]. Along a similar line, the superior frontal gyrus has

been associated with anxiety, in particular with social

anxiety disorders [69], while it is also involved in cognitive

control [70].

6 Conclusion

Our study presents a novel framework for the optimal

identification of neural cortical biomarkers relating to

anxiety. It aims at the identification of neural sources that

Fig. 6 Distribution over the scalp of the correlation results for each frequency band (theta, 4–7 Hz; alpha, 8–12 Hz; beta, 13–30 Hz). Red denotes

positive correlation values, while blue represents negative correlations. None of these results were significant
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are invariant across subjects. Our results are encouraging

and can be potentially used to monitor neuronal activity as

a result of therapeutic manipulations to alleviate anxiety.

Our framework uncovered a biomarker from resting-state

EEG that is in line with previous literature, yet future work

using a larger number of participants will be necessary to

refine the spatial patterns/filters observed here.
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(2022) Oscillatory source tensor discriminant analysis (ostda): a

regularized tensor pipeline for ssvep-based bci systems. Neuro-

computing 492:664–675

48. Nikulin VV, Nolte G, Curio G (2011) A novel method for reliable

and fast extraction of neuronal EEG/MEG oscillations on the

basis of spatio-spectral decomposition. Neuroimage

55(4):1528–1535

49. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer

P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-

Lirio R, Kinoshita T (2011) Assessing interactions in the brain

with exact low-resolution electromagnetic tomography. Philos

Trans A Math Phys Eng Sci 369(1952):3768–3784

50. Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R

(2005) In: Moore DS, McCabe GP (eds) Bootstrap methods and

permutation tests. W.H. Freeman, New York, pp 14–11470

51. Friedman M (1937) The use of ranks to avoid the assumption of

normality implicit in the analysis of variance. J Am Stat Assoc

32(200):675–701

52. Nemenyi PB (1963) Distribution-free Multiple Comparisons.

Princeton University, New Jersey

53. Samek W, Müller K-R, Kawanabe M, Vidaurre C (2012) Brain-

computer interfacing in discriminative and stationary subspaces.

In: 2012 Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society, pp 2873–2876. IEEE

54. Kawanabe M, Vidaurre C (2009) Improving bci performance by

modified common spatial patterns with robustly averaged

covariance matrices. In: World Congress on Medical Physics and

Biomedical Engineering, September 7-12, 2009, Munich, Ger-

many, pp 279–282. Springer

55. Millán JdR, Buttfield A, Vidaurre C, Cabeza R, Schlögl A,
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