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Anxiety influences how the brain estimates and responds to uncertainty. The consequences of these processes on 

behaviour have been described in theoretical and empirical studies, yet the associated neural correlates remain 

unclear. Rhythm-based accounts of Bayesian predictive coding propose that predictions in generative models 

of perception are represented in alpha (8–12 Hz) and beta oscillations (13–30 Hz). Updates to predictions are 

driven by prediction errors weighted by precision (inverse variance) encoded in gamma oscillations ( > 30 Hz) 

and associated with the suppression of beta activity. We tested whether state anxiety alters the neural oscillatory 

activity associated with predictions and precision-weighted prediction errors (pwPE) during learning. Healthy 

human participants performed a probabilistic reward-based learning task in a volatile environment. In our pre- 

vious work, we described learning behaviour in this task using a hierarchical Bayesian model, revealing more 

precise (biased) beliefs about the tendency of the reward contingency in state anxiety, consistent with reduced 

learning in this group. The model provided trajectories of predictions and pwPEs for the current study, allowing 

us to assess their parametric effects on the time-frequency representations of EEG data. Using convolution mod- 

elling for oscillatory responses, we found that, relative to a control group, state anxiety increased beta activity 

in frontal and sensorimotor regions during processing of pwPE, and in fronto-parietal regions during encoding of 

predictions. No effects of state anxiety on gamma modulation were found. Our findings expand prior evidence on 

the oscillatory representations of predictions and pwPEs into the reward-based learning domain. The results sug- 

gest that state anxiety modulates beta-band oscillatory correlates of pwPE and predictions in generative models, 

providing insights into the neural processes associated with biased belief updating and poorer learning. 
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. Introduction 

Affective states closely interact with decision making ( Lerner et al.,
015 ). For example, altered computations —such as learning rates and
stimates of belief uncertainty —during decision making are consid-
red central to explaining clinical conditions including anxiety, depres-
ion and stress from a Bayesian predictive coding (Bayesian PC) per-
pective ( Browning et al., 2015 ; de Berker et al., 2016 ; Paulus and
u, 2012 ; Pulcu and Browning, 2019 ; Williams, 2016 ). The Bayesian
C framework proposes that the brain continuously updates a hier-
rchical generative model using predictions optimised through their
iscrepancy with sensory data —prediction errors (PE) —and weighted
y precision (inverse variance; Friston, 2010 ; Rao and Ballard, 1999 ;
rinivasan et al., 1982 ). This hierarchical message passing was hypoth-
sised (in the context of sensory processing) to be mediated by neu-
al oscillations at specific frequencies, in distinct cortical layers and re-
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ions ( Bastos et al., 2012 ). Empirical evidence supports this, identifying
redictions in alpha and beta frequencies and PEs in gamma frequen-
ies ( Arnal and Giraud, 2012 ; Auksztulewicz et al., 2017 ; Bastos et al.,
020 ; Sedley et al., 2016 ). Yet how affective states modulate the oscilla-
ory activity associated with predictions and PE signals has been largely
verlooked. 

Uncertainty makes refining predictions particularly challenging. Es-
imates of uncertainty (or its inverse, precision) regulate how influ-
ntial PEs are on updating our generative model of the environment
 Friston, 2008 ; Yu and Dayan, 2005 ), scaling precision-weighted PEs
pwPEs). Uncertain and changing environments may render prior be-
iefs obsolete, down-weighting predictions in favour of increasing learn-
ng about sensory input. Recent studies have highlighted that precision
stimates are important in explaining atypical learning and perception
n neuropsychiatric conditions ( Fletcher and Frith, 2009 ; Friston et al.,
013 ; Lawson et al., 2014 ; Montague et al., 2012 ). Anxiety, in par-
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icular, has been shown to lead to insufficient adaptation in the face
f environmental change ( Browning et al., 2015 ; Huang et al., 2017 ),
isruption in learning, and maladaptive biases —in both aversive and
eward-based learning contexts ( Hein et al., 2021 ; Huang et al., 2017 ;
im et al., 2020 ; Lamba et al., 2020 ; Piray et al., 2019 ; Pulcu and
rowning, 2019 ). Whether the learning alterations in anxiety are medi-
ted by oscillatory changes representing predictions and pwPEs remains
nknown. 

Within the Bayesian PC framework, growing evidence supports that,
uring perception, feedforward PE signals are encoded by gamma os-
illations ( > 30 Hz), while backward connections convey predictions ex-
ressed in alpha (8–12 Hz) and beta (13–30 Hz) oscillations ( Arnal and
iraud, 2012 ; Bastos et al., 2015 ; van Pelt et al., 2016 ; Wang, 2010 ).
recision weights are also modulated by alpha and beta oscillations
 Palmer et al., 2019 ; Sedley et al., 2016 ). Because precision weights
cale PEs during Bayesian inference and learning ( Feldman and Fris-
on, 2010 ; Friston, 2010 ), the modulation of pwPE signals could be ex-
ressed both in gamma and alpha/beta activity, as recent work sug-
ests ( Auksztulewicz et al., 2017 ). Specifically, gamma increases during
wPE encoding are accompanied by attenuated alpha and beta activ-
ty ( Auksztulewicz et al., 2017 ). Indeed, gamma and alpha/beta oscilla-
ory rhythms are anticorrelated across the cortex, as shown in investi-
ations of prediction violations ( Bastos et al., 2020 ; Bastos, 2018 ) and
uring working memory ( Lundqvist et al., 2020 , 2016 ; Miller et al.,
018 ). Complementing these findings, we recently showed that ab-
ormal increases in beta power and burst rate can account for the
ampening of pwPEs during reward-based motor learning in anxiety
 Sporn et al., 2020 ). Moreover, gamma oscillations in the dorsome-
ial prefrontal cortex (dmPFC) are associated with unsigned PEs during
xploration-exploitation behaviour ( Domenech et al., 2020 ), suggesting
ortical gamma activity as a relevant correlate of reward-based learn-
ng. Accordingly, we speculated that decreased anxiety-related learn-
ng during decision making could be associated with abnormally en-
anced beta in addition to reduced gamma oscillations during pwPE
rocessing. 

Predictions have been consistently associated with the modula-
ion of alpha-beta rhythms across multiple modalities, such as visual
 Gould et al., 2011 ), motor ( Schoffelen et al., 2005 ), somatosensory
 van Ede et al., 2011 ), and auditory ( Todorovic et al., 2015 ) —yet
requency-domain evidence for predictions about reward contingen-
ies in volatile environments is currently lacking. This is important
o understand as learning biases manifest in anxiety conditions dur-
ng environmental instability ( Browning et al., 2015 ; Pulcu and Brown-
ng, 2019 ). Crucially, predictions in deep layers are thought to function-
lly inhibit the processing of sensory input and PEs in superficial layers
 Bastos et al., 2015 ; Bauer et al., 2014 ; Mayer et al., 2016 ; Van Kerkoerle
t al., 2014 ). This suggests that aberrant oscillatory states modulating
redictions would be an additional route through which encoding of
wPEs is altered, contributing to impaired learning. 

Here, we used convolution modelling of oscillatory responses
 Litvak et al., 2013 ) in previously acquired EEG data to estimate the neu-
al oscillatory representations of predictions and pwPEs during reward-
ased learning in healthy controls and a state anxious group. Our pre-
ious computational modelling study ( Hein et al., 2021 ) revealed that
tate anxiety biases uncertainty estimates, increasing the precision of
osterior beliefs about the stimulus-reward contingency. We now ask
hether this bias is associated with altered spectral characteristics of
ierarchical message passing, which could represent a candidate marker
f biased belief updating and poorer reward-based learning in anxiety.
e hypothesised that, in state anxiety, increased precision in the predic-

ions about a certain stimulus-reward contingency should be associated
ith increased alpha and beta activity. This, in turn, would inhibit the
rocessing of expected inputs in line with PC accounts, resulting in a hy-
othesised lower gamma activity and concomitantly higher alpha-beta
ctivity for attenuating encoding of pwPEs. 
2 
. Materials and methods 

.1. Participant sample 

The data used in the preparation of this work were obtained from our
revious study Hein et al. (2021) , which was approved by the ethical re-
iew committee at Goldsmiths, University of London. Participants were
seudo-randomly allocated into an experimental state anxiety (StA) and
ontrol (Cont) group, following a screening phase in which we measured
rait anxiety levels in each participant using Spielberger’s Trait Anxiety
nventory (STAI; Spielberger, 1983 ). Trait anxiety levels were matched
n StA and Cont groups (average score and standard error of the mean,
EM: 47 [2.1] in StA, 46 [2.2] in Cont). Importantly, individual trait
nxiety scores above 46 have been shown to be typical in anxiety disor-
er patients ( Fisher and Durham, 1999 ), suggesting that a proportion of
ur participants had relatively high trait anxiety levels. Further, the age
f the control group (mean 27.7, SEM = 1.2) and their sex (13 female,
 male) were consistent with those from the state anxiety group (mean
7.5, SEM = 1.3, sex 14 female, 7 male). This is important to consider
s there are known age and sex-related confounds to measures of state
nxiety (see Voss et al., 2015 ). 

.2. Experimental design 

Both groups (StA, Cont) performed a probabilistic binary reward-
ased learning task where the probability of reward between two im-
ges changes across time ( Behrens et al., 2007 ; de Berker et al., 2016 ;
glesias et al., 2013 ). The experiment was divided into four blocks: an
nitial resting state block (R1: baseline), two reward-based learning task
locks (TB1, TB2), and a final resting state block (R2). Each resting
tate block was 5 min. Participants were instructed to relax and keep
heir eyes open and fixated on a cross in the middle of the presenta-
ion screen while we recorded EEG responses from the scalp and EKG
esponses from the heart. 

The experimental task consisted of 200 trials in each task block (TB1,
B2). The aim was for participants to maximise reward across all tri-
ls by predicting which of the two images (blue, orange) would reward
hem (win, positive reinforcement, 5 pence reward) or not (lose, 0 pence
eward). The probability governing reward for each stimulus (recipro-
al: p, 1 − p) changed across the experiment, every 26 to 38 trials. There
ere 10 contingency mappings for both task blocks: 2 x strongly biased

90/10; i.e. probability of reward for blue p = 0.9), 2 x moderately biased
70/30), and 2 x unbiased (50/50: as in de Berker et al., 2016 ). The bi-
sed mappings repeated in reverse relationships (2 × 10/90; 2 × 30/70)
o ensure that over the two blocks (TB1, TB2) there were 10 stimulus-
utcome contingency phases in total. 

In each trial the stimuli were presented randomly to the left or right
f the centre of the screen where they remained until either a response
as given (left, right) or the trial expired (maximum waiting time,
200 ms ± 200 ms). Next, the chosen image was highlighted in bright
reen for 1200 ms ( ± 200 ms) before the outcome (win, green; lose or
o response, red) was shown in the middle of the screen (1200 ms ±
00 ms). At the end of each trial, the outcome was replaced by a fixa-
ion cross at an inter-trial interval of 1250 ms ( ± 250 ms). 

Specific task instructions to participants were to select which image
hey predicted would reward them on each trial and adjust their predic-
ions according to inferred changes in the probability of reward (as in
e Berker et al., 2016 ). All participants filled out computerised question-
aires (state anxiety STAI state scale X1, 20 items: Spielberger, 1983 )
nd conducted practice trials as detailed in Hein et al. (2021) . Criti-
ally, the state anxiety manipulation was delivered just before the first
eward-based learning block (TB1) to the StA group (see the following
ection). 
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.3. Manipulation and assessment of state anxiety 

Our StA group was instructed to complete a public speaking task in
ine with previous work ( Feldman et al., 2004 ; Lang et al., 2015 ). This
eant, as detailed in Hein et al. (2021) , that StA participants were told

ust before TB1 that they would need to present a piece of abstract art
or 5 min to a panel of academic experts after completing the reward-
ased learning task, with 3 min preparation time. By contrast, the Cont
roup were informed that they would need to give a mental descrip-
ion of the piece of abstract artwork for the same time privately (rather
han to a panel of experts, see Hein et al., 2021 ). Importantly, the state
nxiety manipulation was then revoked in the StA group directly after
ompleting the second reward-based learning block (TB2) and before
he second resting state block (R2). They were informed that the panel
f experts was suddenly unavailable. Both groups, therefore, presented
he artwork to themselves after completing the reward-based learning
ask. 

To assess state anxiety, as in our previous work, we used the coef-
cient of variation (CV = standard deviation/mean) of the inter-beat

ntervals (IBI) as a metric of heart rate variability (HRV), as this index
as been shown to drop during anxious states ( Chalmers et al., 2014 ;
eldman et al., 2004 ; Gorman and Sloan, 2000 ; Kawachi et al., 1995 ;
uintana et al., 2016 ). Additional to this, the spectral characteristics
f the IBI data were analysed to obtain an HRV proxy of state anxi-
ty associated with autonomic modulation and parasympathetic (vagal)
ithdrawal ( Friedman, 2007 ; Gorman and Sloan, 2000 ). HRV and high-

requency HRV (HF-HRV, 0.15–0.40 Hz) measures were derived from
he R-peaks extracted from the EKG signal recorded throughout the ex-
erimental sessions (see details in Hein et al., 2021 , and section EEG

cquisition and analysis below). The HRV and HRV-HF measures dur-
ng performance blocks were normalised with the average baseline lev-
ls during R1, after we established that StA and Cont groups did not
iffer in these indexes in the initial resting state phase ( P = 0.76, 0.66
or HRV and HRV-HF, respectively). This outcome suggested that con-
rol and anxious participants were not significantly dissociated in these
hysiological measures at the beginning of the experiment. Hereafter
e refer to R1-normalised measures when summarising the results from
ein et al. (2021) on the HRV/HRV-HF measures during task blocks. 

In line with prior research, our previous study showed reduced HF-
RV and reduced HRV in state anxious participants relative to controls
 Fig. 1 C ). Reduction in these measures has been reliably shown across
rait anxiety, worry, and anxiety disorders ( Aikins and Craske, 2010 ;
riedman, 2007 ; Fuller, 1992 ; Klein et al., 1995 ; Miu et al., 2009 ;
ujica-Parodi et al., 2009 ; Pittig et al., 2013 ; Thayer et al., 1996 ), and

hus, significant changes to these metrics suggested physiological re-
ponses consistent with state anxiety. Subjective self-reported measures
f state anxiety (STAI state scale X1, 20 items: Spielberger, 1983 ) were
aken at four points during the original Hein et al. (2021) study, but
he data could not be used due to an error in STAI data collection. We
howed in a separate study, however, that HRV can effectively track
hanges in state anxiety, as validated by concurrent changes in STAI
cores (state scale; Sporn et al., 2020 ). 

.4. Behavioural analysis and modelling 

The behavioural data in our paradigm were analysed in
ein et al. (2021) using the Hierarchical Gaussian Filter (HGF,
athys et al., 2011 , 2014 ). This model describes hierarchically

tructured learning across various levels, corresponding to hidden
tates of the environment x 1 

(k) , x 2 
(k),…, x n 

(k) and defined as coupled
aussian random walks. Belief updating on each level is driven
y PEs modulated by precision ratios, weighting the influence of
recision or uncertainty in the current level and the level below.
he HGF was implemented with the open-source software in TAPAS
ttp://www.translationalneuromodeling.org/tapas , version 3.1.0). 
3 
To model learning about the tendency towards reward for
lue/orange stimuli and the rate of change in that tendency (volatility),
e used three alternative HGF models and two reinforcement learning
odels ( Hein et al., 2021 ). The input to the models was the series of
00 outcomes and the participant’s responses. Outcomes in trial k were
ither u (k) = 1 if the blue image was rewarded or u (k) = 0 if the orange
mage was rewarded. Trial responses were defined as y (k) = 1 if partic-
pants chose the blue image, while y (k) = 0 corresponded to the choice
f the orange image. We tested a 3-level HGF (HGF 3 , with volatility
stimated on the third level), a 2-level reduced HGF (HGF 2 , that fixes
olatility to a constant level), and a HGF where decisions are informed
y trial-wise estimates of volatility (see Diaconescu et al., 2014 ). We
dditionally tested two widely used reinforcement models, a Rescorla
agner (RW, Rescorla and Wagner, 1972 ) and Sutton K1 model (SK1,

utton, 1992 ). Following random effects Bayesian model comparison,
he model that best explained the behavioral data amongst participants
as the 3-level HGF for binary outcomes (see Fig. 1 A ). In this winning
odel, the first level represents the binary outcome in a trial (either blue

r orange wins) and beliefs on this level feature expected or irreducible
ncertainty due to the probabilistic nature of the rewarded outcome
 Soltani and Izquierdo, 2019 ). The second level x 2 

(k) represents the true
endency for either image (blue, orange) to be rewarding on trial k . And
he third level represents the log-volatility or rate of change of reward
endencies ( Bland and Schaefer, 2012 ; Yu and Dayan, 2005 ). In the HGF
pdate equations, the second and third level states, x 2 

(k) and x 3 
(k) , are

odelled as continuous variables evolving as Gaussian random walks
oupled through their variance (inverse precision). Hereafter we drop
he trial index k in most expressions for simplicity. 

Variational inversion of the model provides the trial-wise trajectories
f the sufficient statistics of the posterior distribution of beliefs about x i 
 i = 2,3): 𝜇i (mean, denoting participant’s expectation) and 𝜎i (variance,
ermed informational or estimation uncertainty for level 2; uncertainty
bout volatility for level 3). The coupling function between levels 2 and
 is as follows: 

 2 
(
𝑥 3 
)
def 𝑒𝑥𝑝 

(
𝜅𝑥 3 + 𝜔 2 

)
(1) 

In Eq. (1) , 𝜔 2 represents the invariant (tonic) portion of the log
olatility of x 2 and captures the size of each individual’s stimulus-
utcome belief update independent of x 3 . The 𝜅 parameter establishes
he strength of the coupling between x 2 and x 3 , and thus the degree
o which estimated environmental volatility impacts the learning rate
bout the stimulus-outcome probabilities —𝜅 in Hein et al. (2021) was
xed to one. 

Another relevant parameter in the HGF equations is 𝜔 3 , which
eizes upon ‘metavolatility’: how estimates of environmental volatil-
ty evolve —with larger values articulating a belief that the change-
bility of the task is itself changing. Note that in our experimental
ask, however, the rate of change (true volatility) was constant, as the
timulus-outcome contingencies changed every 26–38 trials (similarly
o de Berker et al. [2016] and Iglesias et al., [2013] ). Environmental
ncertainty is defined as exp ( 𝜅𝜇3 

(k-1) + 𝜔 2 ), which depends on the pha-
ic log-volatility estimates on the previous trial ( 𝜇3 

(k − 1 ) ) and the tonic
olatility ( 𝜔 2 ). Thus, the higher 𝜇3 

(k − 1 ) or 𝜔 2 are, the greater the envi-
onmental uncertainty (see Mathys et al., 2014 , page 15, Eq. (11)). 

In our implementation of the winning model, the 3-level HGF, we
stimated the perceptual model parameters 𝜔 2 , 𝜔 3 , while we fixed 𝜅
nd the initial values of the mean and variance of the belief trajectories
 𝜇
(0) 
2 , 𝜇

(0) 
3 , 𝜎

(0) 
2 , 𝜎

(0) 
3 ) . This choice was based on the previous work that

e used as reference for our study ( de Berker et al., 2016 ). The prior
alues on the model parameters can be found in Supplementary Table

 and Hein et al. (2021) . Hein et al. (2021) also includes the results of
imulations carried out to assess how well the HGF 3 estimated each free
odel parameter. In brief, 𝜔 2 could be estimated well, whereas 𝜔 3 was
ot recovered, in line with recent findings ( Reed et al., 2020 ). 

Paired with this perceptual model of hierarchically-related be-
iefs is a response model that obtains the most likely response for

http://www.translationalneuromodeling.org/tapas
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Fig. 1. HGF model and trajectory estimates with HRV, HGF, and behavioural results. (A) Schematic model of 3-level HGF used in Hein et al. (2021) . The free 

perceptual model parameters 𝜔 2 , 𝜔 3 and the response parameter 𝜁 were estimated by fitting the HGF to observed inputs (u) and individual responses (y). ( B) HGF 

trajectories of the computational quantities used to form our GLM convolution regressors, from one participant. The lowest level shows the sequence of outcomes 

(green dots: 1 = blue win, 0 = orange win) and the participant’s responses (dark blue dots) on each trial. The black line indicates the series of prediction errors (PE) 

about the stimulus outcome, and the pink line the precision weight on level 2. The middle layer of (B) shows the trial-wise HGF estimate of pwPE about stimulus 

outcomes (pwPE updating level 2, termed pwPE 2 in the graphic, 𝜀 2 in the main text; blue). For our GLM convolution analysis, we used unsigned values of 𝜀 2 as 

the first parametric regressor. The precision ratio included in the pwPE 2 term, in succession, weights the influence of prediction errors about stimulus outcomes 

on the expectation of beliefs on level 2. Predictions about the tendency towards a stimulus-reward contingency on level 2 are displayed on the top level (maroon). 

We took the absolute values of this quantity as our second parametric regressor (labelled Predictions 2 in the graphic). ( C) In Hein et al. (2021) , a significant drop 

in heart rate variability (HRV, a metric of anxiety using the coefficient of variation of the inter-beat-interval of the recorded heart beats), was observed in the StA 

group (pink) relative to Cont (black). Panel (C) shows the mean HRV (with vertical SEM bars) over the experimental task blocks 1 and 2 (TB1, TB2) and the final 

resting state block (R2). These blocks (TB1, TB2, R1) were normalised to the average HRV value of the first resting state block (R1: baseline). A significant effect of 

group and block was discovered using non-parametric 2 × 2 factorial tests with synchronised rearrangements. After control of the FDR at level q = 0.05, planned 

comparisons showed a significant between groups result (black bar) in TB1. ( D) State anxiety impeded the overall reward-based learning performance as given by 

the percentage of errors. In the above, the mean of each group (StA, pink, Cont, black) is provided with SEM bars extending vertically. On the right of the group mean 

are the individual values depicting the sample population dispersion. State anxiety significantly increased the error rate relative to Controls. ( E–G) HGF modelling 

results. Hein et al. (2021) reported significantly lower 𝜔 2 in StA relative to Cont. Simulations in that study showed that a lower 𝜔 2 is associated with reduced 

estimation (informational) uncertainty on level 2, 𝜎2 . ( E) In our StA group, the block average of estimation uncertainty about the stimulus-reward contingency ( 𝜎2 ) 

was significantly smaller than in Cont (main effect of group; StA, pink; Cont, black). ( F) We observed significantly lower environmental uncertainty in StA relative 

to Cont (main effect of group). ( G) State anxiety increased uncertainty about volatility ( 𝜎3 , main effect of block and group). Planned between-group comparisons 

additionally revealed a significantly higher 𝜎3 in StA relative to Cont in each task block separately (TB1, TB2, black bars). 
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ach trial using the belief estimates. The winning HGF model from
ein et al. (2021) used the unit-square sigmoid observation model for
inary responses ( Iglesias et al., 2013 ; Mathys et al., 2011 , 2014 ) and
he response model parameter 𝜁 , which represents decision noise, was
dditionally estimated for each participant (see Supplementary Table

 ). Simulations carried out in Hein et al. (2021) revealed that the deci-
ion noise parameter 𝜁 was also estimated well. We refer the reader to
he original HGF methods papers for more detail on the mathematical
erivations ( Mathys et al., 2011 , 2014 ), and to Hein et al. (2021) for
quations included in the original results. 

In the current study, we used two types of subject-specific trajec-
ories of HGF variables as parametric regressors for convolution GLM
nalysis: (a) unsigned predictions about the tendency towards a certain
timulus-reward contingency (| ̂μ2 |); (b) precision-weighted prediction
rrors on level 2 (| 𝜀 2 |) updating the beliefs on the tendency towards a
eward contingency. The arguments supporting our choice of unsigned
absolute) values for these computational quantities are given in sec-
ion Spectral Analysis below. The update steps for the posterior mean
n level 2 on trial k, μ(k) 2 , depend on the prediction error on the level

elow, δ(k) 1 , weighted by a precision term according to the following
xpression: 

( 𝑘 ) 
2 = 𝜇

( 𝑘 −1 ) 
2 + 

1 
𝜋
( 𝑘 ) 
2 

𝛿
( 𝑘 ) 
1 . (2)

The prediction about the tendency towards a stimulus-reward con-
ingency before observing the outcome, μ̂(k) 2 , is, in our winning model,

he expectation in the previous trial, μ(k−1) 2 . The pwPE term on level 2,
n the other hand, is the product of the estimation uncertainty (inverse
recision π2 ) and the PE about the stimulus outcome: σ(k) 2 δ(k) 1 . Thus,
he influence of PEs on updating μ2 decreases with greater precision on
hat level, π2 , or smaller estimation uncertainty, σ2 . The intuition from
his expression is that the less certain we are about level 2, the more
e should update that level using new information (prediction errors)

rom the level below. See Mathys et al. (2011 , 2014 ) for detailed math-
matical expressions for the HGF. Details on the free parameters of the
GF model that were estimated, including prior values, can be found in
ein et al. (2021) , and in Supplementary Table 1 . 

Trial-by-trial trajectories of the unsigned predictions about the
timulus-reward tendency | ̂μ2 | and pwPEs about the stimulus outcome
 𝜀 2 | for an exemplar participant are provided in Fig. 1 B . 

.5. EEG and EKG acquisition and analysis 

EEG, EKG and EOG signals were recorded continuously throughout
he study using the BioSemi ActiveTwo system (64 electrodes, extended
nternational 10–20, sampling rate 512 Hz). External electrodes were
laced on the left and right earlobes to use as references upon import-
ng the EEG data in the analysis software. EKG and EOG signals were
ecorded using bipolar configurations. For EOG, we used two external
lectrodes to acquire vertical and horizontal eye movements, one on top
f the zygomatic bone by the right eye, and one between both eyes, on
he glabella. For EKG we used two external electrodes in a two-lead con-
guration ( Moody and Mark, 1982 ). Please refer to Hein et al. (2021) for

urther details on the electrophysiology acquisition. 
EEG data were preprocessed in the EEGLAB toolbox ( Delorme and

akeig, 2004 ). The continuous EEG data were first filtered using a
igh-pass filter at 0.5 Hz (with a hamming windowed sinc finite im-
ulse response filter with order 3380) and notch-filtered at 48–52 Hz
filter order 846). Next, independent component analysis (ICA, runICA
ethod) was implemented to remove artefacts related to eye blinks,

accades and heartbeats (2.3 components were removed on average
SEM 0.16]), as detailed in Hein et al. (2021) . Continuous EEG data
ere then segmented into epochs centred around the outcome event

win, lose, no response) from − 200 to 1000 ms. Noisy data epochs de-
ned as exceeding a threshold set to ± 100 𝜇V were marked as arte-

actual (and were excluded during convolution modelling, see next sec-
5 
ion). Further to this, a stricter requirement was placed on the arte-
act rejection process to achieve higher quality time-frequency decom-
osition, as proposed for the gamma band (see Hassler et al., 2011 ;
eren et al., 2010 ). Data epochs exceeding an additional threshold set to

he 75th percentile + 1.5 ⋅IQR (the interquartile range, summed over all
hannels) were marked to be rejected ( Carling, 2000 ; Schwertman et al.,
004 ; Tukey, 1977 ). The two rejection criteria resulted in an aver-
ge of 22.37 (SEM 2.4) rejected events, with a participant minimum
f 80% of the total 400 events available for convolution modelling.
ollowing preprocessing, EEG continuous data were converted to SPM
2 ( http://www.fil.ion.ucl.ac.uk/spm/ version 7487) downsampled to
56 Hz and time-frequency analysis was performed ( Litvak et al., 2011 ).

Preprocessed EEG and behavioural data files are available in the
pen Science Framework Data Repository: https://osf.io/b4qkp/ . All

ubsequent results shown here are based on these data. 

.6. Spectral analysis 

Prior to assessing the effect of HGF predictors on “phasic ” changes in
he time-frequency representations, we determined whether the average
pectral power differed between state anxiety and control participants
uring task performance. To achieve this, we extracted the standard
ower spectral density (in mV 

2 /Hz) of the raw data within 1–90 Hz and
uring task blocks TB1 and TB2 (fast Fourier transform, Welch method,
anning window of 1 s, 75% overlap) and converted it into decibels

dB: 10 ∗ log 10 ). 
Standard time-frequency (TF) representations of the continuous EEG

ata were estimated by convolving the time series with Morlet wavelets.
F spectral power was estimated in the range 4 to 80 Hz, using a higher
umber of wavelet cycles for higher frequencies. For alpha (8–12 Hz)
nd beta (13–30 Hz) frequency ranges, we sampled the range 8–30 Hz
n bins of 2 Hz, using 5–cycle wavelets shifted every sampled point
 Kilner et al., 2005 )– achieving a good compromise between high tem-
oral and spectral resolution ( Litvak et al., 2011 ; Ruiz et al., 2009 ).
amma band activity (31–80 Hz) was also sampled in steps of 2 Hz,
sing 7-cycle wavelets. 

Following the time-frequency transformation, we modelled the
ime series using a linear convolution model for oscillatory responses
 Litvak et al., 2013 ). This convolution model was introduced to adapt
he classical general linear model (GLM) approach of fMRI analysis to
ime-frequency data ( Litvak et al., 2013 ). The main advantage of this
pproach is that it allows assessing the modulation of neural oscillatory
esponses on a trial-by-trial basis by one specific explanatory regressor
hile controlling for the effect of the other regressors included in the
odel. This control is particularly relevant in the case of stimuli or re-

ponse events with variable timing on each trial. Convolution modelling
f oscillatory responses has been successfully used in EEG ( Litvak et al.,
013 ; Spitzer et al., 2016 ) and MEG research ( Auksztulewicz et al.,
017 ). 

In brief, the convolution GLM approach is an adaptation of the clas-
ical GLM, which aims to explain measured signals (BOLD for fMRI or
ime-domain EEG signals) across time as a linear combination of ex-
lanatory variables (regressors) and residual noise ( Litvak et al., 2013 ).
n convolution modelling for oscillatory responses, the measured signals
re the time-frequency transformation (power or amplitude) of the con-
inuous time series, denoted by matrix Y in the following expression:

 = 𝑋𝛽 + 𝜀, (3)

Here 𝑌 ∈ ( ℝ ) 𝑡 ×𝑓 is defined over t time bins and f frequencies. These
ignals are explained by a linear combination of n explanatory variables
r regressors in matrix 𝑋 ∈ ( ℝ ) 𝑡 ×𝑛 , modulated by the regression coeffi-
ients 𝛽 ∈ ( ℝ ) 𝑛 ×𝑓 . The coefficients 𝛽 must be estimated for each regressor
nd frequency, using ordinary or weighted least squares. 

The convolution modelling approach developed by
itvak et al. (2013) redefines this problem into the problem of

http://www.fil.ion.ucl.ac.uk/spm/
https://osf.io/b4qkp/
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Fig. 2. Convolution general linear model. Standard continuous time-frequency (TF) representations of the EEG signal ( Y ) were estimated using Morlet wavelets. 

In GLM, signals Y are explained by a linear combination of explanatory variables or regressors in matrix X , modulated by the regression coefficients 𝛽, and with 

an added noise term ( 𝜀 ). Our design matrix X in this example included the following regressors (columns left to right): Outcome Win, Outcome Lose, Outcome No 

Response, and absolute pwPE on level 2, which were defined over time. Matrix X was specified as the convolution of an impulse response function, encoding the 

presence and value of discrete or parametric events for each regressor and time bin, and a Fourier basis function (left inset at the bottom). Solving a convolution GLM 

provides response images (TF estimate in the figure) that are the combination of the basis functions and the regression coefficients 𝛽 i for a particular regressor type 

i . Thus, convolution GLM effectively estimates deconvolved time-frequency responses (TF estimate, rightmost image at the bottom) to the event types and associated 

parametric regressors. 
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nding time-frequency images R i for a specific type of event i (e.g.
utcome or response event type): 

 𝑖 = 𝐵𝛽𝑖 (4)

Here, B denotes a family of m basis functions (e.g. sines, cosines)
sed to create the regressor variables X by convolving the basis functions
 with k input functions U representing the events of interest at their
nset latencies, and thus X = UB . The time-frequency response images
 𝑖 ∈ ( ℝ ) 𝑝 ×𝑓 have dimensions p (peri ‑event interval of interest) and f,
nd are therefore interpreted as deconvolved time-frequency responses
o the event types and associated parametric regressors. It is the images
 i that are used for subsequent standard group-level statistical analysis.
or a visual depiction of the convolution modelling of time-frequency
esponses, see Fig. 2 . 
6 
In our study, we were particularly interested in assessing paramet-
ic effects of computational quantities, such as pwPEs and predictions,
n the time-frequency representations of the EEG data in each electrode.
e implemented convolution modelling by adapting code developed by

pitzer et al. (2016) freely available at https://github.com/bernspitz/
onvolution –models –MEEG . The total spectral power was first con-
erted to amplitude using a square-root transformation to conform with
he GLM error assumptions ( Kiebel et al., 2005 ; Litvak et al., 2013 ).
ur trial-wise explanatory variables included discrete regressors cod-

ng for stimuli (blue image, orange image), responses (right, left, no
esponse), outcome (win, lose, no response) and relevant parametric
GF regressors: unsigned HGF model estimates of predictions about the

endency towards a stimulus-reward contingency on level 2 (| ̂μ2 |, here-
nafter termed ‘predictions’) and precision-weighted prediction errors
pwPEs) on that level encoding the magnitude of the update in the be-

https://github.com/bernspitz/convolution-models-MEEG
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iefs about the reward contingency (| 𝜀 2 |, hereinafter termed ‘pwPEs’;
ee Fig. 1 B ). We selected the absolute value of predictions and pwPEs
n level 2 because the sign in these HGF variables is arbitrary: a pos-
tive or negative value in pwPEs or predictions does not denote a win
r a lose trial (see other HGF work using unsigned HGF variables as re-
ressors, for instance, Auksztulewicz et al., 2017 ; Stefanics et al., 2018 ).
he absolute values of predictions do, however, represent a prediction
bout the tendency towards a particular stimulus-reward contingency,
nd thus the greater the value of | ̂μ2 | the stronger the expectation that
iven the correct stimulus choice a reward will be received. 

As in our previous work, pwPE on level 3 ( 𝜀 3 ) updating the log-
olatility estimates were excluded from this analysis due to multi-
ollinearity: high linear correlation between 𝜀 2 and 𝜀 3 (for further de-
ail, see Hein et al., 2021 ). Likewise, trial-wise HGF estimates of ab-
olute predictions about stimulus outcomes were highly linearly corre-
ated with predictions on the third level about volatility μ̂3 (Pearson
orrelation coefficients ranging from − 0.97 to − 0.03 across all 42 par-
icipants, mean − 0.7). As such, we also excluded μ̂3 from the analysis.
For details on the impact of multicollinearity of regressors on GLMs see
umford et al., (2015) and Vanhove (2020) ). Another factor informing

ur decision to choose level 2 over level 3 regressors was that, as shown
n simulations in Hein et al. (2021) , in the winning model 𝜔 2 can be es-
imated well, whereas 𝜔 3 is not (see also Reed et al., 2020 ). The chosen
GF pwPE and prediction regressors were consistently uncorrelated, be-

ow 0.25 in line with previous work using HGF quantities as regressors
 Auksztulewicz et al., 2017 ; Iglesias et al., 2013 ; Vossel et al., 2015 ). 

Our primary convolution GLM analysis introduced regressor values
or pwPEs at the latency of the outcome regressor. This allowed us
o assess the parametric effect of pwPEs about stimulus outcomes on
he time-frequency responses in a relevant peri ‑event time interval. Al-
hough previous work analysed the effect of pwPEs on neural responses
p to 1000 ms, we showed in Sporn et al. (2020) that pwPEs during
eward-based learning can modulate neural oscillatory responses in the
eta band up to 1600 ms, and these responses are dissociated between
nxiety and control groups. The recent studies by Bauer et al. (2014) and
almer et al. (2019) also showed that the latency of PE and pwPE ef-
ects on neural activity can extend up to 2 s. Accordingly, the pwPE con-
olution model was estimated using a window from − 200 to 2000 ms
elative to the outcome event, and the statistical analysis focused on the
00–1600 ms interval (see next section). 

Concerning the prediction regressor, we considered different time in-
ervals in which we could capture neural oscillatory responses to predic-
ions. This is a challenging task acknowledged before ( Diaconescu et al.,
017 ), as the neural representation of predictions likely evolves grad-
ally from the outcome on the previous trial to the outcome on the
urrent trial. It is thus not expected to be locked to a specific event.
his explains why most of the previous work using the HGF framework
xcluded predictions as a regressor for GLM analysis. Here we followed
uksztulewicz et al. (2017) , who analysed predictions locked to the cue,
nd Palmer et al. (2019) , who assessed a wide interval surrounding the
ovement (response); note that in the Palmer et al. (2019) study, the
otor response was the last event in each trial (i.e. there was no ad-
itional response feedback). We thus hypothesised that the neural rep-
esentation of predictions on the reward outcome contingencies could
e captured by focusing on two complementary windows of analysis: (i)
n interval following the stimulus presentation (stimulus-locked); (ii) an
nterval preceding the outcome on the current trial (outcome-locked).
nlike the targeted pwPE analysis described above, the analysis of the
rediction regressor was exploratory as we did not have a strong hypoth-
sis regarding which of both time windows would preferentially reflect
rediction-related neural modulations. 

To assess the stimulus-locked parametric effect of predictions on the
ime-frequency responses, we run a convolution GLM in a time interval
rom − 200 to 2000 ms. For the outcome-locked parametric effect of
redictions, the convolution GLM was run from − 2500 to 0 ms. This
ater interval extended to − 2500 to allow for the presence of a baseline
7 
nterval in every trial prior to the preceding stimulus —which we used
xclusively for within-subject analyses (see below). Thus, two separate
onvolution GLMs were run with the prediction regressor modulating
eural activity locked to either the stimulus or outcome events. These
road windows were further refined in our statistical analysis (see next
ection). 

In all alpha-beta convolution GLM analyses, discrete and parametric
egressors were convolved with a 12th-order Fourier basis set (24 basis
unctions, 12 sines and 12 cosines), as in Litvak et al. (2013) . For convo-
ution models run from − 200 to 2000 ms locked to an event type, using
 12th-order basis functions set allowed the GLM to resolve modulations
n the TF responses up to ∼ 5.5 Hz (12 cycles / 2.2 s; or 183 ms). For the
utcome-locked GLM run from − 2500 to 0 ms, the 12th-order Fourier
asis set resolves frequencies up to ∼5 Hz. Our choice of a 12th order set
as compatible with the temporal extent of the pwPE and prediction ef-

ects on alpha-beta oscillatory activity reported in previous work (200–
00 ms-long effects in Auksztulewicz et al., 2017 ) up to 2000 ms-long
ffects in Palmer et al. (2019) . In the case of gamma oscillations modu-
ating pwPEs, we considered a higher order basis function set to allow
or potentially faster gamma effects to be resolved. Using a 20th-order
ourier basis set on the gamma-band convolution GLM within − 200 to
000 ms enabled resolving modulations in the TF responses up to ∼ 9 Hz
20 cycles / 2.2 s; or 110 ms). 

.7. Statistical analysis 

The time-frequency images (in arbitrary units, a.u.) from the convo-
ution model were subsequently converted to data structures compati-
le with the FieldTrip Toolbox for statistical analysis ( Oostenveld et al.,
011 ). We used permutation tests with a cluster-based threshold cor-
ection to control the family-wise error rate (FWER) at level 0.05 (5000
terations; Maris and Oostenveld, 2007 ; Oostenveld et al., 2011 ). These
nalyses were conducted with spatio-spectral-temporal data, after aver-
ging the time-frequency responses within each frequency band (alpha,
eta and gamma ranges). We thus run the cluster-based permutation
ests along the spatial (64 channels), frequency-band (3) and temporal
imensions (FWER-controlled). Importantly, in convolution modelling
or oscillatory responses the TF images are usually not baseline corrected
s in standard TF analyses (no subtraction or division by the average
aseline level). Instead, the baseline activity is estimated —similarly to
he post-event activity —taking into account the latency variation of dif-
erent events in the continuous recording ( Litvak et al., 2013 ). Thus, TF
mages are not centred at 0 amplitude during the baseline period. 

The statistics approach consisted of investigating separately within
nd between-group effects. The within-group level analysis used
ependant-samples two-sided tests and aimed to assess whether the neu-
al oscillatory responses to the HGF regressors were larger or smaller
uring a window of interest as compared to a reference (baseline) in-
erval. Next, we separately evaluated between-group effects of HGF re-
ressors on oscillatory responses using one-sided tests ( N = 21 Cont, 21
tA). This allowed us to test our hypothesis of increased alpha and beta
ctivity and reduced gamma activity in StA compared to Cont. In the
ase of two-sided tests, the cluster-based test statistic used as threshold
he 2.5-th and the 97.5-th quantiles of the t-distribution, whereas we
sed the 95th quantile of the permutation distribution as critical value
n one-sided tests. 

.7.1. Analysis of the pwPE regressor 

At the within-group level, we assessed the changes in time-frequency
ctivity during the window of interest relative to a baseline period
given independently below) separately in StA and Cont groups ( N = 21
ach). For the within-group analysis of the pwPE regressor, we con-
rasted the time-frequency images between an interval from 100 to
600 ms post-outcome and a baseline level averaged from − 200 to
 ms, separately in each group. The 100–1600 ms time window of anal-
sis encompasses the effects from our previous single-trial ERP study
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 Hein et al., 2021 ) and our work on the modulation of beta oscillatory re-
ponses by pwPEs during motor learning in state anxiety, which revealed
ffects between 400 and 1600 ms ( Sporn et al., 2020 ). Between-group
ifferences in TF representations of pwPE were separately assessed. This
nalysis was also conducted within 100–1600 ms. Overall, we controlled
he FWER at level 0.05 to deal with the issue of multiple comparisons
merging from the spatial (64) × spectral (3) × temporal dimensions. 

.7.2. Analysis of the predictions regressor 

Within-group level statistical analysis of the stimulus-locked time-
requency images of the prediction regressor focused on the range 100–
000 ms, and relative to an average pre-stimulus baseline level from
 200 to 0 ms. This target window for statistical analysis balanced the
vidence from previous work ( Auksztulewicz et al., 2017 ; Palmer et al.,
019 ) and aimed to exclude an overlap with the outcome events, which
ppeared 1000 ms after the response. In the current study, participants’
eaction time was 598 ms on average (SEM 130 ms; minimum RT was
300 ms). However, the effects of the response were factored out from

he prediction-related oscillatory activity by including the response re-
ressor in the convolution GLM. This was validated in a control analysis
hat assessed the effect of the response regressor in the same time win-
ow, between 100 and 1000 ms stimulus-locked, to confirm indepen-
ent changes in sensorimotor electrode regions. 

Within-group statistical analysis of the outcome-locked effects of pre-
ictions was conducted in a similar window 100–1000 ms preceding the
utcome event (that is, from − 1000 to − 100 ms before the outcome).
ctivation in this interval was contrasted to a baseline level of 200 ms,

rom − 2300 to − 2100 ms. This baseline period was calculated to safely
recede stimuli presentation across all trials, during which participants
ere fixating on a central point on the monitor. As mentioned above,

o confirm independent changes in sensorimotor regions in response to
he response regressor, we used an identical window in an additional
ontrol analysis. 

The between-group level stimulus-locked analysis of predictions was
onducted within 100–1000 ms. The outcome-locked analysis targeted
he interval from − 1000 to − 100 ms, as mentioned above. In all GLM
nalyses, the FWER was controlled at level 0.05. 

. Results 

.1. Previous results: biases of state anxiety on processing uncertainty 

In Hein et al. (2021) we showed state anxiety (StA) significantly re-
uced HRV and HF-HRV (0.15–0.40 Hz) relative to the control group
Cont, Fig. 1 C ). This outcome suggested that our state anxiety manipu-
ation had successfully modulated physiological responses in a manner
onsistent with changes in state anxiety ( Friedman, 2007 ; Fuller, 1992 ;
lein et al., 1995 ; Miu et al., 2009 ; Pittig et al., 2013 ). We further
howed that state anxiety significantly increased the percentage of er-
ors made during reward-based learning when compared to the con-
rol group ( Fig. 1 D ). In parallel to the cardiovascular and behavioural
hanges induced by the anxiety manipulation, by modelling decisions
ith the HGF, we found that state anxiety impaired learning. First, we

ound significantly reduced estimation uncertainty ( 𝜎2 ) in StA relative
o Cont ( Fig. 1 E ). This bias in StA indicates that new information has
 smaller impact on the update of beliefs about the tendency towards
 stimulus-reward contingency (level 2). State anxious individuals also
xhibited an underestimation of environmental uncertainty when com-
ared with controls ( Fig. 1 F ). However, uncertainty on volatility ( 𝜎3 )
ncreased in StA relative to Cont ( Fig. 1 G ). StA also had a lower 𝜔 2 

arameter than control participants, which in Hein et al. (2021) was
ssociated in a simulation analysis with the reduced estimation uncer-
ainty in this group. Other model parameters (ω 3 , ζ) did not differ be-
ween groups. These HGF model-based results were aligned with the re-
ults of our separate standard behavioural analysis as mentioned above,
8 
emonstrating a significantly higher error rate in StA during reward-
ased learning performance ( Fig. 1 D ). 

.2. Time-frequency responses 

.2.1. General modulation of spectral power 

The average raw spectral power during task performance did not
iffer between state anxiety and control participants ( P > 0.05, cluster-
ased permutation test; Supplementary Fig. 1 ). Thus, the state anxiety
anipulation did not significantly modulate the general spectral profile

f oscillatory activity during task performance, as we showed in a recent
tudy ( Sporn et al., 2020 ). 

.2.2. Precision-weighted prediction errors about stimulus outcomes 

The overall time course of the parametric modulation of alpha (8–
2 Hz) and beta (13–30 Hz) oscillatory activity by pwPEs about stim-
lus outcomes is displayed in Figs. 3 A and 4 A , respectively. On the
ithin-subject level, there was a significant decrease relative to base-

ine in alpha and beta activity in the control group (one negative clus-
er, P = 0.0002, two-sided test, FWER-controlled). The effect was within
00–1400 ms for alpha, and 400–1120 ms for beta activity. No signifi-
ant clusters were found in the gamma band. The alpha-band effect orig-
nated in centro-parietal electrodes and later spread across the whole
calp ( Fig. 3 B ). The beta-band modulation, on the other hand, had a
idespread topography and started earlier than the alpha-band effect (at
00 ms; Fig. 4 B ). In the StA group, a negative cluster was also found,
orresponding to a decrease from baseline in alpha and beta activity
 P = 0.0054, two-sided test; 600–1000 ms for alpha, 440–1000 ms for
eta). The StA alpha-band effect also emerged in centro-parietal elec-
rodes but later shifted to frontocentral electrodes ( Fig. 3 C ). In the beta
ange, the negative modulation of oscillatory activity in StA had a right
rontocentral and left centro-parietal distribution ( Fig. 4 C ). 

Complementing the within-subject results, between-group statistical
nalysis across the alpha, beta and gamma ranges revealed one signif-
cant positive cluster in the beta range (between 1200 and 1570 ms,
 = 0.027, one-sided test; FWER-controlled). This effect was associ-
ted with higher beta activity at left sensorimotor and frontocentral
lectrodes in StA relative to Cont ( Fig. 5 AB) . The individual average
f beta-band activity in the significant cluster is shown in Fig. 5 C. Of
ote, in StA, a qualitative comparison of the sensorimotor and frontocen-
ral beta activity associated with the significant cluster of the between-
roup statistical analysis revealed a greater activity increase in the sen-
orimotor than in the frontocentral electrode region ( Fig. 5 D ). In the
ontrol group, the beta response to pwPE decreased in both electrode
egions, but the reduction was more pronounced in frontocentral elec-
rodes ( Fig. 5 E ). There were no additional significant clusters associated
ith between-group differences in the alpha or gamma ranges (see il-

ustration of gamma responses to pwPE in Supplementary Fig. 2 ). 
Because the within-subject and between-group modulation of TF im-

ges by the pwPE regressor were limited to the alpha and beta frequency
anges, we performed an additional control analysis to determine the
eparate effect of the precision weight ( 𝜎2 ) and PE (abs[ 𝛿1 ]) regressors.
f note, the absolute value of PEs (abs[ 𝛿1 ]) is often termed surprise (see
.g. de Berker et al., 2016 ). Like for pwPE about stimulus outcomes,
he sign in 𝛿1 is not informative and thus a sensible choice is to use
he unsigned values ( de Berker et al., 2016 ; Auksztulewicz et al., 2017 ;
tefanics et al., 2018 ). This control analysis could determine whether
he alpha and beta pwPE effects primarily stem from precision weights
odulating lower frequency activity, or rather from a modulation by the

urprise experienced by the participants. Moreover, similarly to PEs, sur-
rise about inputs has been shown to correlate with gamma oscillations
 Bauer et al., 2014 ). Thus, the analysis of the abs[ 𝛿1 ] regressor could
dentify gamma modulation effects that may not be observable in the
wPE analysis. This convolution GLM model included both continuous
egressors 𝜎2 and abs( 𝛿1 ) as well as the discrete regressors coding for
utcomes. 
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Fig. 3. Alpha activity is modulated by precision-weighted prediction errors about stimulus outcomes: within-group effects. (A) Time course of the average 

alpha response (8–12 Hz) to pwPEs in each group (Controls, black; StA, pink), given in arbitrary units (a.u.). The time intervals correspond to the dependant-samples 

significant clusters (B, C) in each group, and are denoted by horizontal bars on the x-axis. (B) Within-group effect of the pwPE 2 regressor modulating alpha oscillations 

relative to baseline in the Cont group (one negative cluster within 600–1400 ms, P = 0.0002). Left: The topographic distribution of this effect starts in posterior 

centroparietal regions and expands across widespread frontal and central regions. Right: Time-frequency image for pwPE on level 2, averaged across the cluster 

electrodes. The black dashed line marks the onset of the outcome, and black squares indicate the time-frequency range of the significant cluster. (C) Same as (B) but 

in the StA group. We found a significant negative cluster with the alpha-band effect between 600 and 1000 ms ( P = 0.0054) starting in posterior central electrodes and 

spreading later to frontocentral electrodes. Dashed and continuous black lines denote outcome onset and the extension of the significant cluster in the time-frequency 

range, as in (B). 
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At the between-subject level, we observed a significant increase in
eta-band oscillatory responses to surprise about stimulus outcomes
n the StA group relative to Cont (one positive cluster within 1380–
600 ms, P = 0.01, one-sided test, FWER-controlled). This effect was dis-
ributed across frontocentral and left sensorimotor electrodes ( Fig. 6 ),
imilarly to the pwPE effects. There was no significant difference be-
ween groups in alpha or gamma-band modulation by surprise. Within-
ubject effects also demonstrated that the absolute PE regressor alone
odulated alpha and beta oscillatory activity in each group separately

see details in Supplementary Results and Supplementary Figs. 3 and
 ). 

Using the precision weights term ( 𝜎2 ) as a regressor, the comparison
etween groups demonstrated a positive significant cluster exclusively
9 
n the alpha frequency range (within 1200–1600 ms, P = 0.01, FWER-
ontrolled). The positive cluster was associated with higher alpha activ-
ty primarily at central electrodes but also at fronto-central and tempo-
al electrodes in StA relative to Cont ( Fig. 7 ). At the within-subject level
e only observed that in Cont participants there was a negative change

n alpha activity to the precision weight regressor (one negative cluster
ithin 1270–1530 ms; P = 0.024 FWER-controlled, see Supplementary

ig. 5 ). 
Lastly, to exclude the possibility that our high-pass filter settings

0.5 Hz) explained the lack of significant modulation effects in the
amma band, we reanalysed the data in four representative participants
fter applying a 0.1 Hz high-pass filter during pre-processing. This anal-
sis was motivated by studies showing that higher cutoff frequencies
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Fig. 4. Beta activity is modulated by precision-weighted prediction errors about stimulus outcomes: within-group effects. (A) Time course of the average beta 

response (13–30 Hz) to pwPEs in each group (Controls, black; StA, pink), given in arbitrary units (a.u.). The time intervals corresponding to the dependant-samples 

significant clusters (B, C) in each group are denoted by horizontal bars on the x-axis. ( B) In Cont participants, beta-band oscillations were significantly modulated 

relative to a baseline level in one negative cluster spanning 400–1120 ms ( P = 0.0002, FWER-controlled due to multiple comparisons arising from testing across 

space × frequency-band × time dimensions) Left: The topographic distribution of the beta-band effect is widespread across the entire scalp. Right: Time-frequency 

image for pwPE on level 2, averaged across the significant cluster electrodes. The black dashed line marks the onset of the outcome, and black squares indicate the 

time-frequency range of the significant cluster. ( C) Same as (B) but in the StA group. We found a significant negative cluster across the beta band, with a latency of 

440–1000 ms ( P = 0.0054, FWER-controlled). The beta modulation started in posterior central electrodes and later spread to frontocentral electrodes. Dashed and 

continuous black lines denote outcome onset and the extension of the significant cluster in the time-frequency range, as in (B). 
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or high-pass filters can impact the signal-to-noise ratio (SNR) in gen-
ral and gamma activity in particular ( Bénar et al., 2010 ; Jas et al.,
018 ). In brief, using a 0.1 Hz cutoff as opposed to our choice of 0.5 Hz
or high-pass filtering did not reveal any prominent gamma modulation
y pwPE or surprise/PE regressors ( Supplementary Figs. 6, 7 ), and
id not substantially affect the general SNR level in the power spectral
ensity ( Supplementary Fig. 8) . 

.2.3. Predictions about the stimulus-reward contingency 

When assessing within-group level modulations in stimulus-locked
scillatory activity by the prediction regressor, there were no significant
ffects, neither in the Cont or StA group ( P > 0.05, FWER-controlled).
etween-group statistical analysis revealed that predictions about the
10 
endency towards a certain stimulus-reward contingency are associated
ith significantly higher levels of beta activity in StA than in Cont
cross frontocentral and parietal electrodes (one positive cluster in the
eta band only, from 200 to 640 ms, P = 0.04, one-sided test, FWER-
ontrolled; Fig. 8 AB ). There were no additional significant clusters ex-
ending to the alpha range. 

The between-group effect of predictions on beta activity was not con-
ounded by any concomitant effect of motor responses on the neural
scillatory responses, as we had included a response regressor in this
nalysis. A control analysis on this between-group effect of the response
egressor on beta activity showed no significant difference between the
wo groups (see Supplementary Fig. 9A ). 
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Fig. 5. Between-group effects of pwPEs on beta oscillatory activity. (A-B) Between-group difference (StA minus Cont) in the oscillatory activity (alpha 8–

12 Hz, beta 13–30 Hz, and gamma 31–90 Hz) modulations by pwPEs about stimulus outcomes were found exclusively in the beta band (one significant positive 

cluster between 1200 and 1570 ms; P = 0.0270, FWER-controlled). (A) The topography of this effect evolved in time from a left sensorimotor distribution to a (B) 

frontocentral electrode distribution. The time-frequency images on the right panels are averaged across the electrode selection from their corresponding topographic 

panel to the left (given in arbitrary units ([a. u.]). Note that there was one single significant cluster between 1200 and 1570 ms, represented by the solid black 

rectangle in each TFR plot. The dashed black line ‘O’ represents the time of the outcome. (C) The average beta response (a. u.) to pwPE for individuals in each group 

(StA, pink; Cont, Black) in the significant positive cluster. The modulation of time-frequency responses to pwPEs in beta is displayed separately in (D) sensorimotor 

and ( E) frontal electrodes pertaining to the significant positive cluster. Pink bars represent results in the state anxiety group (StA), whereas the control group (Cont) 

is denoted by black bars. Black “error ” bars indicate the standard error of the mean (SEM). 
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Fig. 8 C displays the time course of the parametric effects of pre-
ictions on outcome-locked beta activity. State anxious participants ex-
ibited a significant increase from baseline in beta oscillatory activity
one significant positive cluster from − 1000 to − 468 ms, P = 0.0106,
wo-sided test, FWER-controlled). This effect peaked at central parietal
nd left frontocentral electrodes (see Fig. 8 D ). There were no significant
hanges from baseline in alpha or beta oscillatory activity for the control
roup participants. Neither did we find significant between-group dif-
erences in outcome-locked alpha or beta activity. Like in our stimulus-
ocked results, the significant outcome-locked increase from baseline in
11 
eta oscillatory activity in the StA group was not confounded by motor
odulation, as this was included as a separate regressor in the convo-

ution model. A control analysis of the effect of the response regressor
n beta activity yielded non-significant changes from baseline in StA
 Supplementary Fig. 9B ). 

. Discussion 

This study investigated how anxiety states modulate the oscilla-
ory correlates of predictions and prediction errors during the learning
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Fig. 6. Between-group effects of surprise 

(absolute PEs) on beta oscillatory activity. 

The time-frequency images representing mod- 

ulation by the absolute value of PE about stim- 

ulus outcomes (abs[ 𝛿1 ]) were estimated in a 

control convolution GLM using two contin- 

uous regressors (abs[ 𝛿1 ], 𝜎2 ) and additional 

discrete regressors coding for outcome events 

(win, lose, no response). (A, B) Between-group 

differences in beta oscillatory activity (13–

30 Hz) modulations by surprise about stimu- 

lus outcomes (one significant positive cluster 

between 1380 and 1600 ms; P = 0.01, FWER- 

controlled). (A) This effect was topographically 

distributed across frontocentral and left senso- 

rimotor electrodes. The right panel shows the 

average TF image in the electrodes pertaining 

to the significant cluster from the left topo- 

graphic panel. TF images are presented in ar- 

bitrary units (a. u.). The solid black rectangle 

denotes the range spanned by the significant 

cluster; the dashed black line ‘O’ represents the 

time of the outcome. (B) The average beta re- 

sponse (a. u.) to surprise in each group (StA, 

pink; Cont, Black) within the frontocentral pos- 

itive cluster. Pink bars represent results in the 

state anxiety group (StA), whereas the control 

group (Cont) is denoted by black bars. Black 

“error ” bars indicate the standard error of the 

mean (SEM). (C) The average beta response 

to surprise for individuals in each group (StA, 

pink; Cont, Black) in the frontocentral positive 

cluster. 
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f stimulus-reward associations in a volatile environment. The analy-
is focused on low-level predictions about the tendency of stimulus-
utcome contingencies and prediction errors about stimulus out-
omes. Because in generative models of the external world precision
eights regulate the influence that PEs have on updating predictions
 Feldman and Friston, 2010 ; Friston, 2010 ), we assessed the neural
scillatory responses to precision-weighted PEs (pwPEs), similarly to
uksztulewicz et al. (2017) . We tested this by re-analysing data from
ur previous study, which investigated Bayesian predictive coding (PC)
n state anxiety ( Hein et al., 2021 ). That study showed that anxious indi-
iduals overestimate how precise their belief about the stimulus-reward
ontingency is, attenuating pwPEs on that level and decreasing learning.
n the current study, trial-wise model estimates of predictions and pwPEs
ere used as parametric regressors in a convolution model to explain
odulations in the amplitude of oscillatory EEG activity ( Litvak et al.,
013 ). 

Consistent with our hypotheses, we found that state anxiety alters
he spectral correlates of pwPE and prediction signalling. While pwPEs
id not significantly modulate gamma activity as a function of anxi-
ty, they enhanced the amplitude of beta oscillations in state anxiety
elative to control participants. This outcome is aligned with our re-
ent findings in temporary anxiety during reward-based motor learning
 Sporn et al., 2020 ). Below we discuss whether this result can be recon-
iled with hypotheses from generalised PC ( Brown and Friston, 2013 ;
eldman and Friston, 2010 ) in which attention modulates precision
eights on PEs through changes in synaptic gains and lower frequency
12 
scillations ( Bauer et al., 2014 ; Sedley et al., 2016 ). Our exploratory
nalysis of the neural representation of predictions suggested that anxi-
ty states enhance beta oscillations during the generation of predictions
bout the stimulus-reward contingency. This finding should be taken
ith care as a between-group difference was observed exclusively in

he stimulus-locked analysis, not in the outcome-locked analysis. If vali-
ated in future work, this outcome could be an indication that state anx-
ous individuals exhibit a stronger reliance on prior beliefs ( Bauer et al.,
014 ; Sedley et al., 2016 ), down weighting the role of PEs in updating
redictions and suppressing gamma responses ( Bauer et al., 2014 ). Over-
ll, our results extend computational work on maladaptive learning in
nxiety, suggesting that altered beta frequency oscillations may explain
mpeded reward-based learning in anxiety, particularly in volatile envi-
onments ( Browning et al., 2015 ; Piray et al., 2019 ; Pulcu and Brown-
ng, 2019 ). 

.1. Oscillatory correlates of precision-weighted prediction errors in state 

nxiety 

In Hein et al. (2021) , a 3-level HGF model best explained learning
ehaviour. Key findings were that state anxiety decreased the over-
ll learning rate and led to an underestimation of environmental un-
ertainty and estimation uncertainty about the tendency towards a
timulus-reward contingency. As lower estimation uncertainty (greater
recision) drove smaller pwPEs on that level, decreasing learning rates,
ere we predicted lower gamma activity during processing pwPEs in the
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Fig. 7. Between-group effects of precision 

weights on beta oscillatory activity. (A-B) 

Between-group differences in alpha oscillatory 

responses (8–12 Hz) modulated by precision 

weights ( 𝜎2 ; one significant positive cluster be- 

tween 1170 and 1600 ms; P = 0.01, FWER- 

controlled). (A) In the topographic map this ef- 

fect can be seen over central, fronto-central and 

temporal electrodes. The right panel displays 

the time-frequency responses in the significant 

cluster after averaging the TF images across the 

central/fronto-central electrodes in the cluster. 

The TF image is given in arbitrary units (a. u.). 

The solid black rectangle shows the significant 

cluster, while the dashed black line ‘O’ repre- 

sents the time of the outcome. (B) The aver- 

age beta response (a. u.) to precision weights 

in each group (StA, pink; Cont, Black) within 

the central/fronto-central positive effect. State 

anxiety group (StA, pink); Control group (Cont, 

black). Black “error ” bars indicate the standard 

error of the mean (SEM). (C) The average beta 

response to precision weights for individuals 

in each group (StA, pink; Cont, Black) in the 

central/fronto-central positive cluster. 
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tate anxiety group. Given that both enhanced gamma and suppressed
eta (and alpha) activity have been associated with pwPE during per-
eptual learning ( Auksztulewicz et al., 2017 ) and with processing un-
xpected stimuli ( Bastos et al., 2020 ), we also hypothesised concur-
ent higher alpha and beta modulation in state anxiety during pwPE
ignalling. More generally, gamma oscillations are anticorrelated with
eta (and alpha) oscillations across the cortex, as shown for senso-
imotor processing and working memory ( Hoogenboom et al., 2006 ;
undqvist et al., 2020 ; Lundqvist et al. 2018 , 2016 ; Miller et al., 2018 ;
otes et al., 2014 ). 

Our results provide novel insights into how rhythm-based formula-
ions of (Bayesian) PC —initially proposed for sensory processing —can
e extended to learning about changing stimulus-reward associations.
ur findings show that unsigned pwPEs about stimulus outcomes de-
reased alpha and beta activity 400–1000 ms post-outcome, separately
n each group, suggesting that attenuation of lower frequency responses
s associated with processing pwPEs independently of anxiety. Simi-
ar findings were observed when analysing separately the unsigned PEs
bout stimulus outcomes —representing the surprise experienced by the
articipants —and after controlling for the concomitant effect of pre-
ision weights on the update of beliefs. Subsequently, during 1200–
570 ms, state anxiety relative to controls increased beta responses
o pwPEs (and similarly for surprise) in sensorimotor and frontocen-
ral electrode regions. This effect is closely aligned with the effects of
tate anxiety on beta activity (power and burst events) during process-
ng pwPEs in reward-based motor learning ( Sporn et al., 2020 ). Reduced
lpha-beta activity was linked to pwPEs in Auksztulewicz et al. (2017) .
n addition, beta oscillations have been shown to be involved in updat-
13 
ng the content of sensory predictions in auditory processing and visuo-
otor learning paradigms ( Sedley et al., 2016 ; Tan et al., 2016 ). This

s also in line with our results, as the update steps of beliefs about the
endency of the stimulus-outcome contingency in the HGF are a func-
ion of the pwPEs on level 2. Accordingly, the increased beta activity
n anxiety during the encoding of pwPEs could reflect smaller updates
o predictions, explaining poorer learning in this group. The frontal and
ensorimotor distribution of the beta effects, however, should be vali-
ated in future work combining EEG/MEG with individual MRI scans to
onduct convolution modelling in the individual source space. 

While recent studies observed an attenuation of low frequency activ-
ty during encoding PEs/pwPEs in perceptual tasks, this effect was par-
lleled by increased gamma oscillatory activity ( Auksztulewicz et al.,
017 ; Bastos et al., 2020 ) —in line with PC hypotheses. We failed to
nd any effects of pwPEs or unsigned PEs (surprise) on gamma activ-

ty, limiting the interpretation of the results. We outline below different
ccounts that could partially explain the lack of gamma-band effects in
his study. 

Hierarchical models of sensory information message-passing pro-
ose that suppression of PEs conveyed by gamma oscillations can occur
hrough two main mechanisms: (1) the inhibitory effects of top-down
redictions, and (2) postsynaptic gain regulation ( Bauer et al., 2014 ;
rown and Friston, 2013 ; Larkum et al., 2004 ). Both mechanisms could
artly account for our findings, yet not exclusively. On the one hand, the
reater beta activity associated with predictions in state anxiety would
onvey inhibitory input to superficial pyramidal neurons encoding PEs,
ecreasing gamma ( Bastos et al., 2012 ; Sedley et al., 2016 ). On the
ther hand, the estimation uncertainty 𝜎2 is the term modulating PEs
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Fig. 8. Stimulus-locked and outcome-locked modulation of beta activity by predictions about the reward tendency. (A) Average time course of stimulus- 

locked beta activity modulated by predictions about the tendency towards a stimulus-reward contingency in Cont (black) and StA (pink). Modulation of time- 

frequency images by a regressor is dimensionless, and thus given in arbitrary units (a.u). (B) The leftmost column displays the average beta activity (a. u.) in the 

cluster of significant between-group effects, shown for individuals in each group (StA, pink; Cont, Black). An independent-samples test on beta activity revealed 

a significant increase in StA relative to Cont from 200 to 640 ms across parietal and frontocentral electrodes (one significant positive cluster, P = 0.04, FWER- 

controlled). (C) Outcome-locked modulation of beta activity by predictions about the reward tendency. Average time course in a.u. of outcome-locked beta activity 

reflecting modulation by predictions in Cont (black) and StA (pink). The significant within-group effect in StA is shown by the pink horizontal bar on the x-axis. (D) 

Within-group statistical analysis with dependant-samples cluster-based permutation tests revealed one positive cluster in the state anxious group ([ − 1000, − 468] 

ms, P = 0.0106, two-sided test, FWER-controlled), reflecting increased beta activity in centroparietal and left frontal electrodes during processing predictions. Solid 

black lines represent the time and frequency of the significant cluster. Dashed black lines represent the average time of the stimuli presentation ‘S’, participant’s 

response ‘R’ and the outcome ‘O’. 
14 
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bout stimulus outcomes: 𝜀 2 = 𝜎2 𝛿1 ( Eq. (2) ). Accordingly, the lower

2 in state anxiety would attenuate pwPEs, and the putative associated
amma activity would decline. 

Mechanistically, precision is thought encoded via postsynaptic gain,
odulated by neurotransmitters and attentional processes ( Bauer et al.,
014 ; Feldman and Friston, 2010 ; Friston and Kiebel, 2009 ; Moran et al.,
013 ). Empirical investigations of sensory PEs implicate alpha and beta
scillations in the encoding of the precision of predictions about upcom-
ng sensory input ( Bauer et al., 2014 ; Palmer et al., 2019 ; Sedley et al.,
016 ). Because we investigated biases in learning about stimulus-reward
ontingencies in anxiety, the relevant precision term in our computa-
ional model was 𝜋2 (1/ 𝜎2 ): the precision of the posterior belief about
he tendency towards a stimulus-reward contingency. Increased preci-
ion 𝜋2 , or reduced estimation uncertainty 𝜎2 , as we observed in state
nxiety, was associated in our control GLM analysis with increases in
lpha activity. One possible interpretation of our results is that the en-
anced alpha modulation by 𝜎2 in StA could decrease synaptic gain, as
roposed for attentional alpha ( Bauer et al., 2014 ), thereby dampening
he transmission of prediction errors about stimulus outcomes and the
ssociated gamma oscillations. 

Importantly, however, our results do not show that state anxiety at-
enuates gamma oscillatory activity during encoding pwPE or surprise
absolute PEs). Rather, our analysis suggests that, in our paradigm,
ven in a normative population such as our control group, encoding
wPEs and surprise about stimulus outcomes is not associated with
amma modulation. This outcome was unexpected as growing evidence
ndicates that cortical gamma activity is modulated by reward infor-
ation in different domains beyond perception. Earlier work demon-

trated a prominent gamma-band coupling between the frontal cortex
nd striatum in rats during reward processing and under pharmacologi-
al manipulation of dopamine ( Berke, 2009 ). More recently, optogenetic
timulation of dopamine neurons in the rodent ventral tegmental area
as shown to increase gamma activity in the medial prefrontal cortex

mPFC, Lohani et al., 2019 ). The effects were larger on sustained relative
o phasic gamma and therefore it remains unclear whether dopamine in
he PFC can provide transient teaching signals about stimulus-outcome
ontingencies ( Ellwood et al., 2017 ). Yet a recent study in humans
emonstrated a role of dmPFC gamma oscillations in the encoding of
nsigned reward prediction errors during an exploration-exploitation
ilemma ( Domenech et al., 2020 ). Using invasive local field potential
LFP) recordings across the dmPFC and ventromedial PFC, this latter
tudy provided compelling evidence that the rhythm-based PC mecha-
ism proposed for sensory processing can account for decision making
uring exploration-exploitation behaviour. Because the pwPE and sur-
rise regressors in our model are not directly coding reward PEs, it is
ossible that the lack of gamma effects in our study is due to our choice
f experimental task and modelling approach. On the other hand, the
educed sensitivity of EEG (unlike invasive LFPs) to gamma oscillations
ay also account for the lack of gamma activity correlates of pwPEs
uring reward-based learning in our study. Using invasive LFP record-
ngs in humans, when available, could be particularly relevant in future
ork to inform an extension of rhythm-based proposals of Bayesian PC

o more general learning contexts. 
More generally, EEG/MEG studies consistently show that frontocen-

ral beta oscillations are modulated by positive reward feedback or
redicting cues ( Bunzeck et al., 2011; Cunillera et al., 2012; Marco-
allares et al., 2008 ). The effects seem to stem from cortical structures
inked to the reward-related fronto-subcortical network, such as the PFC
 HajiHosseini et al., 2012; Mas-Herrero et al., 2015; O’Doherty, 2004 ).
hese studies, however, did not directly model the update of predictions
bout the stimulus-reward contingency via PEs. Beyond the Bayesian
C interpretations, a common view is that reduced beta activity in the
refrontal, somatosensory, and sensorimotor territories facilitates the
ncoding of relevant information to shape ongoing task performance
 Engel and Fries, 2010; Schmidt et al., 2019; Shin et al., 2017 ). Accord-
ngly, state anxiety could be more broadly associated with disrupting
15 
rocessing of relevant information through changes in beta oscillations,
n line with some of the evidence on EEG markers of social anxiety dis-
rders ( Al-Ezzi et al., 2020 ) and subclinical state anxiety ( Sporn et al.,
020 ). This can also account for the lack of anxiety-related effects on
he modulation of EEG signals in the time domain in our previous work
 Hein et al., 2021 ). In that study we observed that pwPEs about the
timulus tendencies modulated the event-related potentials (ERP) ex-
lusively in the control group during ∼400–600 ms. This effect had a
imilar latency and topography to the P300-ERP components that had
een associated with Bayesian surprise or precision in previous com-
utational studies using EEG ( Kolossa et al., 2015; Mars et al., 2008;
stwald et al., 2012 ). Although not directly comparable, given that the
mplitude of the P300 decreases with increased beta power ( Enriquez-
eppert and Barceló, 2018 ; Polich, 2007 ), it is possible that the abnor-
ally enhanced amplitude of beta oscillations in state anxiety during

ncoding pwPE may be paralleled by a reduced pwPE-ERP amplitude,
xplaining the null results in Hein et al. (2021) . Overall, the current re-
ults suggest beta oscillations as a candidate marker of biased learning
nd attenuated belief updating in state anxiety and, as such, could be
sed as an intervention target in non-invasive brain stimulation, neuro-
eedback or pharmacological studies. 

.2. Biased predictions in state anxiety are associated with enhanced beta 

scillations 

Capturing neural modulations by predictions is challenging
 Diaconescu et al., 2017 ). The neural representation of predictions could
evelop anywhere between the previous and current trial’s outcome.
o address this, we separately analysed oscillatory correlates of pre-
ictions about the tendency towards a certain stimulus-reward contin-
ency, both post-stimulus and pre-outcome. Between-group effects were
btained exclusively in the stimulus-locked analysis, corresponding with
n increase in beta activity between 200 and 640 ms in the state anx-
ety group relative to controls, with a widespread topography. This ef-
ect was paralleled by a significant beta activity increase in the state
nxiety group, yet exclusively in the outcome-locked representation,
rom − 1000 to − 500 ms prior to the outcome. The topography of this
ffect extended across central, parietal, and frontal electrode regions.
ur analysis focusing on two different yet dependant windows was ex-
loratory; we did not have a strong hypothesis concerning which time
nterval would be best suited to assess the effect of anxiety on neural
scillatory correlates of predictions, given the gradual modulation of
redictions argued before ( Diaconescu et al., 2017 ). The results are, ac-
ordingly, interesting yet preliminary and require validation in future
ork. Previous studies associated alpha and beta oscillatory power to

ncoding predictions —potentially down-modulating precision weights
 Auksztulewicz et al., 2017 ; Bauer et al., 2014 ; Sedley et al., 2016 ).
his work, however, focused on sensory predictions and healthy control
articipants, which leaves open the question of how aberrant affective
tates may interact with oscillatory correlates of prediction signals. In
ur study, interpretation of results in healthy controls is limited given
he lack of a significant modulation by prediction in this group. 

Further investigation is needed to identify the oscillatory responses
o prediction and PE signalling in healthy controls, opening up rhythm-
ased accounts of Bayesian PC to learning stimulus-reward contingen-
ies in volatile environments. Above all, our findings extend recent com-
utational work on learning difficulties in anxiety ( Browning et al.,
015 ; de Visser et al., 2010 ; Huang et al., 2017 ; Lamba et al., 2020 ;
iu et al., 2008 ; Piray et al., 2019 ). We propose amplified beta os-

illations as one neurophysiological marker associated with impaired
eward-based learning and attenuated belief updating in state anxiety. 
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