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Abstract: This paper presents the network bending framework, a new approach for manipulating
and interacting with deep generative models. We present a comprehensive set of deterministic
transformations that can be inserted as distinct layers into the computational graph of a trained
generative neural network and applied during inference. In addition, we present a novel algorithm
for analysing the deep generative model and clustering features based on their spatial activation maps.
This allows features to be grouped together based on spatial similarity in an unsupervised fashion.
This results in the meaningful manipulation of sets of features that correspond to the generation of a
broad array of semantically significant features of the generated results. We outline this framework,
demonstrating our results on deep generative models for both image and audio domains. We show
how it allows for the direct manipulation of semantically meaningful aspects of the generative process
as well as allowing for a broad range of expressive outcomes.

Keywords: deep generative models; expressive manipulation; active divergence

1. Introduction

The network bending framework [1], allows for the direct and expressive manipulation
of deep generative models. First demonstrated solely for generative models in the image
domain, this paper presents how network bending can be used in both the image and
audio domains. Network bending allows for active divergence [2,3] from the original training
distribution in a flexible way that provides a broad range of expressive outcomes. Our
framework includes a wide array of filters that can be inserted into the network and applied
to any assortment of features, in any layer, in any order. We use a plug-in architecture
to dynamically insert these filters as individual layers inside the computational graph of
the pre-trained generative neural network, ensuring efficiency and minimal dependencies.
As this process is altering the computation graph of the model, changes get applied to
the entire distribution of generated results. We also present a novel approach to grouping
together features in each layer, that can be used for both image and audio domains. This
clustering is based on the spatial similarity of the activation map of the features and is
done to reduce the dimensionality of the parameters that need to be configured by the
user, an overview of which can be seen in Figure 1. It gives insight into how groups of
features combine to produced different aspects of the image. We show results from these
processes on two kinds of generative models; using StyleGAN2, the current state-of-the-
art for unconditional image generation [4], and a custom variational autoencoder (VAE)
trained on spectrograms of music samples. We map out a pipeline to harness the generative
capacity of deep generative models in producing novel and expressive outcomes.
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Figure 1. Overview of our network bending approach where deterministically controlled transforma-
tion layers can be inserted into a pre-trained network. As an example, a transformation layer that
scales the activation maps by a factor of kx = ky = 0.6 is applied (Section 5.2) to a set of features
in layer 5 responsible for the generation of eyes, which has been discovered in an unsupervised
fashion using our algorithm to cluster features based on the spatial similarity of their activation
maps (Section 4). On the left we show the sample generated by StyleGAN2 [4] trained on the FFHQ
dataset without modification, while on the right we show the same sample generated with the scaling
transform applied to the selected features. NB: the GAN network architecture diagram shown in the
middle of the figure is for illustrative purpose only.

2. Related Work
2.1. Deep Generative Models

A generative model consists of the application of machine learning to learn a config-
uration of parameters that can approximately model a given data distribution. This was
historically a very difficult problem, especially for domains of high data dimensionality
such as for audio and images. With the advent of deep learning and large training datasets,
great advances were made in the last decade. Deep neural networks are now capable
of generating realistic audio [5,6] and images [4,7,8]. In the case of images, variational
autoencoders [9,10] and Generative Adversarial Networks (GANs) [11] have been major
breakthroughs that provide powerful training methods. Over the past few years there
has been major improvements to their fidelity and training stability, with application of
convolutional architecture [12], progressively growing architecture [13], leading to the
current state of the art in producing unconditional photo-realistic samples in StyleGAN [8]
and then StyleGAN2 [4]. One class of conditional generative models that take inputs in
the form of semantic segmentation maps can be used to perform semantic image synthesis,
where an input mask is used to generate an image of photographic quality [14–16].

Understanding and manipulating the latent space of generative models has subse-
quently been a growing area of research. Semantic latent manipulation consists of making
informed alterations to the latent code that correspond to the manipulation of different
semantic properties present in the data. This can be done by operating directly on the latent
codes [17,18] or by analysing the activation space of latent codes to discover interpretable
directions of manipulation in latent space [19]. Evolutionary methods have been applied
to search and map the latent space [20,21] and interactive evolutionary interfaces have
also been built to operate on the latent codes [22] for human users to explore and generate
samples from generative models.

2.2. Analysis of Deep Neural Networks

Developing methods for understanding the purpose of the internal features (aka
hidden units) of deep neural networks has been an on-going area of research. In com-
puter vision and image processing applications, there have been a number of approaches,
such as through visualisation, either by sampling patches that maximise the activation of
hidden units [23,24], or by using variations of backpropagation to generate salient image
features [23,25]. A more sophisticated approach is network dissection [26] where hidden
units responsible for the detection of semantic properties are identified by analysing their
responses to semantic concepts and quantifying their alignment. Network dissection was
later adapted and applied to generative models [26], by removing individual units, while
using in combination a bounding box detector trained on the ADE20K Scene dataset [27].
This led to the ability to identify a number of units associated with the generating of certain
aspects of the scene. This approach has since been adapted for music generation [28].
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2.3. Manipulation of Deep Generative Models

The manipulation of deep generative models is itself a nascent area of research. An in-
teractive interface built upon the GAN Dissection approach [26] was presented with the
GANPaint framework in 2019 [29]. This allows users to ‘paint’ onto an input image in order
to edit and control the spatial formation of hand-picked features generated by the GAN.

An approach that alters the computational graph of the model such that a change
alters the entire distribution of results, is presented as an algorithm for “rewriting the rules
of a generative model” [30]. In this approach, the weights from a single convolutional layer
are used as an associative memory. Using a copy-paste interface, a user can then map a new
element onto a generated output. The algorithm uses a process of constrained optimisation
to edit values in the weight matrix to find the closest match to the copy-paste target. Once
the rules of the weight matrix have been altered, all results from the generator have also
been altered.

3. Base Models

To demonstrate our framework, we have used two different architectures of generative
models in different data domains for analysis and manipulation. To demonstrate our
method in the image domain we use StyleGAN2, analysing models trained on three
separate data domains. To demonstrate our method on audio, we train a custom VAE
on spectrograms trained on a dataset of varied musical genres. The two architectures are
detailed in the following subsections.

3.1. StyleGAN2

In our experiments we used three StyleGAN2 models trained on different datasets:
the Flickr Faces High Quality (FFHQ) [8], LSUN churches and LSUN cats datasets [31].
Details of the implementation of StyleGAN2 can be found in the original paper [4].

3.2. Spectrogram VAE

We train a variational autoencoder (VAE) [9,10] on spectrograms extracted from a
custom dataset of varied musical genres, totalling 3461 audio tracks. We base our approach
on previous methods for learning generative models of spectrograms [32] and melspec-
trograms [33] with VAEs. The tracks are randomly split up into short sequences and the
Fourier transform is performed with a hop size of 256 and a window size of 1024 to pro-
duce spectrograms that have a bin size of 513. The spectrograms are then cut into shorter
sequences of a window length of 128. These shortened spectrograms are then converted to
decibels and then normalised for training with the VAE.

For the VAE we employ a convolutional architecture with a latent vector with dimen-
sion #»v ∈ R512 . The encoder has 5 layers that use standard convolutions with a kernel size
of 5 × 5, a stride of 2 × 2 and no padding for all of the layers. The decoder uses transposed
convolutions, Table 1 lists the output resolution, kernel size, stride, and padding parameters
for each of the 5 convolutional layers. A fully connected layer is used in both the encoder
and decoder to interface between the convolutional layers and the latent vector. The model
was trained for 50 epochs on the dataset with batch normalisation using a batch size of 64.
The model was trained using the Adam optimiser [34] with a learning rate of 0.0003 and
with β1 = 0 and β2 = 0.99.
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Table 1. Table shows resolution, number of features of each layer, convolutional kernel size, strides,
padding parameters for the decoder network in the spectrogram VAE. The last two columns on the
right show the number of ShuffleNet [35] convolutional blocks for each CNN model used for metric
learning, and the number of clusters calculated for each layer using k-means.

Layer Resolution #Features Kernel
Size

Stride Padding CNN Depth #Clusters

1 8 × 33 512 5 × 5 1 × 2 0 × 2 1 5
2 17 × 65 256 3 × 5 2 × 2 2 × 2 2 5
3 32 × 129 128 4 × 5 2 × 2 2 × 2 3 4
4 64 × 257 64 4 × 5 2 × 2 2 × 2 4 4
5 128 × 513 1 4 × 5 2 × 2 2 × 2 - -

After training it is possible to sample randomly in the latent space and then sample
directly from the decoder. It is also possible to input audio sequences, both from the training
set and outside of it, and produce reconstructions of the audio track mediated through
the VAE model, in a method that we have previously referred to as autoencoding [36].
By performing this autoencoding procedure in combination with network bending, we can
provide a new way of transforming and filtering audio sequences.

4. Clustering Features

As most of the layers in current state of the art generative models, such as StyleGAN2,
have very large numbers of convolutional features, controlling each one individually would
be far too complicated to build a user interface around and to control these in a meaningful
way. In addition, because of the redundancy existing in these models, manipulating
individual features does not normally produce any kind of meaningful outcome. Therefore,
it is necessary to find some way of grouping them together into more manageable ensembles
of sets of features. Ideally such sets of features would correspond to the generation of
distinct, semantically meaningful aspects of the image, and manipulating each set would
correspond to the manipulation of specific semantic properties in the resulting generated
sample. In order to achieve this, we present a novel approach, combining metric learning
and a clustering algorithm to group sets of features in each layer based on the spatial
similarity of their activation maps. We train a separate convolutional neural network
(CNN) for each layer of the respective generative models (the StyleGAN2 generator and the
decoder of our VAE) with a bottleneck architecture (first introduced by Grézl et al. [37]) to
learn a highly compressed feature representation; the later is then used in a metric learning
approach in combination with the k-means clustering algorithm [38,39] to group sets of
features in an unsupervised fashion.

4.1. Architecture

For each layer of both generative models, we train a separate CNN on the activation
maps of all the convolutional features. As the resolution of the activation maps and number
of features varies for the different layers of the model (a breakdown of which can be seen
in Table 2) we employ an architecture that can dynamically be changed, by increasing the
number of convolutional blocks, depending on what depth is required.
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Table 2. Table shows resolution, number of features of each layer, the number of ShuffleNet [35] con-
volutional blocks for each CNN model used for metric learning, the number of clusters calculated for
each layer using k-means and the batch size used for training the CNN classifiers for the StyleGAN2
models. Note: LSUN church and cat models have only 12 layers.

Layer Resolution #Features CNN Depth #Clusters Batch Size

1 8 × 8 512 1 5 500
2 8 × 8 512 1 5 500
3 16 × 16 512 2 5 500
4 16 × 16 512 2 5 500
5 32 × 32 512 3 5 500
6 32 × 32 512 3 5 500
7 64 × 64 512 4 5 200
8 64 × 64 512 4 5 200
9 128 × 128 256 5 4 80
10 128 × 128 256 5 4 80
11 256 × 256 128 6 4 50
12 256 × 256 128 6 4 50
13 512 × 512 64 7 3 20
14 512 × 512 64 7 3 20
15 1024 × 1024 32 8 3 10
16 1024 × 1024 32 8 3 10

We employ the ShuffleNet architecture [35] for the convolutional blocks in the network,
which is one of the state-of-the-art architectures for efficient inference in computer vision
applications in terms of memory and speed. For each convolutional block we utilise a
feature depth of 50 and have one residual block per layer. The motivating factor in many
of the decisions made for the architecture design was not focused on achieving the best
accuracy per se. Instead, we wanted a network that can learn a sufficiently good metric
while also being reasonably quick to train (with 12–16 separate classifiers required to be
trained per StyleGAN2 model). We also want a lightweight enough network, such that
it could be used in a real-time setting where clusters can quickly be calculated for an
individual latent encoding, or it could be used efficiently when processing large batches
of samples.

After the convolutional blocks, we flatten the final layer and learn from it a mapping
into a narrow bottleneck #»v ∈ R10, before re-expanding the dimensionality of the final layer
to the number of convolutional features present in the layer of the respective generative
model. The goal of this bottleneck is to force the network to learn a highly compressed
representation of the different convolutional features in the generative model. While
this invariably looses some information, most likely negatively affecting classification
performance during training, this is in-fact the desired result. We wanted to force the CNN
to combine features of the activation maps with similar spatial characteristics so that they
can easily be grouped together by the clustering algorithm. Another motivating factor
is that the clustering algorithm we have chosen (k-means) does not scale well for feature
spaces with high dimensionality.

4.2. Training

We generated a training set of the activations of every feature for every layer of
1000 randomly sampled images, and a test set of 100 samples for the models trained on
all of the datasets used in our experiments. We trained each CNN using the softmax
feature learning approach [40], a reliable method for distance metric learning. This method
employs the standard softmax training regime [41] for CNN classifiers. Each classifier has
been initialised with random weights and then trained for 100 epochs using the Adam
optimiser [34] with a learning rate of 0.0001 and with β1 = 0.9 and β2 = 0.999. All
experiments were carried out on a single NVIDIA GTX 1080ti. The batch size used for
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training the classifiers for the various layers of StyleGAN2 can be seen in Table 2. the
classifiers for the VAE were all trained with a batch size of 100.

After training, the softmax layer is discarded and the embedding of the bottleneck
layer is used as the discriminative feature vector where the distances between points in
feature space permit to gauge the degree of similarity of two samples. Our approach differs
from standard softmax feature learning in that we use the feature vector from the bottleneck,
rather than the last layer prior to softmax classification, giving a more compressed feature
representation than the standard softmax feature learning approach.

4.3. Clustering Algorithm

Once the CNNs for every layers have been trained, they can then be used to extract
feature representations of the activation maps of the different convolutional features cor-
responding to each individual layer of the generative model. There are two approaches
to this. The first is to perform the clustering on-the-fly for a specific latent for one sample.
A user would want to do this to get customised control of a specific sample, such as a
latent that has been found to produce the closest possible reproduction of a specific person
from the StyleGAN2 model trained on the FFHQ dataset [4,42]. The second approach is to
perform clustering based on an average of features’ embedding drawn from many random
samples, which can be used to find a general purpose set of clusters.

The clustering algorithm for a single example is activated by a forward pass of the
generative model performed without any additional transformation layers being inserted,
this to obtain the unmodified activation maps. The activation map Xd f for each layer d
and feature f is fed into the CNN metric learning model for that layer Cd to get the feature
vector #»v d f . The feature vectors for each layer are then aggregated and fed to the k-means
clustering algorithm—using Lloyd’s method [38] with Forgy initialization [39,43]. This
results in a pre-defined number of clusters for each layer. Sets of features for each layer can
then be manipulated in tandem by the user.

Alternatively, to find a general purpose set of clusters, we first calculate the mean
feature vector #»v̄ d f that describes the spatial activation map for each convolutional feature
in each layer of generative model from a set of N randomly generated samples—the results
herein are from processing 1000 samples. Then we perform the same clustering algorithm
as previously for individual samples on the mean feature vectors. The number of clusters
for each layer in StyleGAN2 can be seen in Table 2. Table 1 shows the number of clusters
for each layer of the decoder of the spectrogram VAE.

5. Transformation Layers

We have implemented a broad variety of deterministically controlled transformation
layers that can be dynamically inserted into the computational graph of the generative
model. The transformation layers are implemented natively in PyTorch [44] for speed
and efficiency. We treat the activation maps of each feature of the generative model as 1-
channel images in the range −1 to 1. Each transformation is applied to the activation maps
individually before they are passed to the next layer of the network. The transformation
layers can be applied to all the features in a layer, or a random selection, or by using
pre-defined groups automatically determined based on spatial similarity of the activation
maps (Section 4). Figure 2 shows a comparison of a selection of these transformations
applied to all the features layer-wide in various layers of StyleGAN2.
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Figure 2. A comparison of various transformation layers inserted and applied to all of the features in
different layers in the StyleGAN2 network trained on the FFHQ dataset, shows how applying the
same filters in different layers can make wide-ranging changes the generated output. The rotation
transformation is applied by an angle θ = 45. The scale transformation is applied by a factor of
kx = ky = 0.6. The binary threshold transformation is applied with a threshold of t = 0.5. The dilation
transformation is applied with a structuring element with radius r = 2 pixels.

5.1. Numerical Transformations

We begin with simple numerical transformations f (x) that are applied to individual
activation units x. We have implemented four distinct numerical transformations: the
first is ablation, which can be interpreted as f (x) = x · 0. The second is inversion, which
is implemented as f (x) = 1− x. The third is multiplication by a scalar p implemented as
f (x) = x · p. The final transformation is binary thresholding (often referred to as posterisation)
with threshold t, such that:

f (x) =

{
1, if x ≥ t
0, otherwise

(1)

5.2. Affine Transformations

For this set of transformations we treat each activation map X for feature f as an
individual matrix, that simple affine transformations can be applied too. The first two are
horizonal and vertical reflections that are defined as:

X

−1 0 0
0 1 0
0 0 1

 , X

1 0 0
0 −1 0
0 0 1

 (2)
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The second is translations by parameters px and py such that:

X

1 0 px
0 1 py
0 0 1

 (3)

The third is scaling by parameters kx and ky such that:

X

kx 0 0
0 ky 0
0 0 1

 (4)

Note that in this paper we only report on using uniform scalings, such that kx = ky. Finally,
fourth is rotation by an angle θ such that:

X

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (5)

Other affine transformations can easily be implemented by designing the
matrices accordingly.

5.3. Morphological Transformations

We have implemented two of the possible basic mathematical morphological transfor-
mation layers, performing erosion and dilation [45] when applied to the activation maps,
which can be interpreted as 1-channel images. These can be configured with the parameter
r which is the radius for a circular kernel (aka structural element) used in the morphologi-
cal transformations.

6. Manipulation Pipeline

In our current implementation, transforms are specified in YAML configuration files [46],
such that each transform is specified with five items: (i) the layer, (ii) the transform itself,
(iii) the transform parameters, (iv) the layer type (i.e., how the features are selected in the
layer: across all features in a layer, to pre-defined clusters, or to a random selection of
features), and (v) the parameter associated with the layer type (either the cluster index,
or the percentage of features the filter will randomly be applied to). There can be any
number of transforms defined in such a configuration file.

After loading the configuration, we either lookup which features are in the cluster
index, or randomly apply indices based on the random threshold parameter. Then the
latent is loaded, which can either be randomly generated, or be predefined in latent space
z, or be calculated using a projection in latent space w [4,42] (in the case of StyleGAN2).
The latent code is provided to the generator network and inference is performed. As our
implementation is using PyTorch [44], a dynamic neural network library, these transfor-
mation layers can therefore be inserted dynamically during inference as and when they
are required, and applied only to the specified features as defined by the configuration.
Once inference is unrolled, the generated output is returned. Figure 1 provides a visual
overview of the pipeline, as well as a comparison between a modified and unmodified
generated sample.

Chaining Stochastic Layers

By combining multiple stochastic layers, it is possible to create a vast number of
permutations using a single configuration. Figure 3 shows that by using one configuration,
many stochastic variations of an audio sample can be produced. In this example a drum
break has been reconstructed using the SpectrogramVAE with a configuration applying
three different stochastic transformations to 25% of the convolutional features in layers 1, 2
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& 4 in combination with a layer-wide transformation being applied in layer 3. This method
allows for a workflow where through experimentation a user can iteratively experiment
with different configurations in an exploratory fashion until finding one that produces
interesting results. Once a suitable configuration is found, a large number of stochastic
variations can be produced, and then the best ones can be selected by the user. This process
is one that could be particularly useful for music production, where an artist may want to
create multiple variations of recordings they have created, that can later be layered into a
music composition. An alternative use-case of this process used in the image domain is
given in [1], where the chaining of multiple stochastic layers was used in the production of
a series of five EP (extended play record) artworks that shared a common aesthetic theme.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Creating stochastic variations of an audio sample by chaining stochastic transformation
layers. (a) Spectrogram of an original source track not in the training set. (b) Reconstruction of
source track using VAE without manipulation. (c–f) Reconstruction of the same signal using different
random permutations of the same configuration, which is as follows: 25% of the features in layer 1
have been eroded with a structuring element with radius r = 2 pixels, 25% of the features in layer 2
have been dilated a structuring element with radius r = 2 pixels, 100% of the features in layer 3 have
been filtered with the binary threshold filter with a threshold of t = 0.5, 25% of the features in layer 4
have been multiplied by a factor of 1.5. Audio sample is reprinted and transformed with permission
from [47]. CC0 1.0 licence.
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7. Discussion

In this section, we discuss five perspectives: expressive manipulation, active diver-
gence, comparisons of our results between the image and audio domains, comparisons
with other methods, and finally we show some real work examples where network bending
has been used in the production of artworks.

7.1. Expressive Manipulation

The main motivation of the clustering algorithm presented in this paper was to sim-
plify the parameter space in a way that allows for more meaningful and controllable
manipulations whilst also enhancing the expressive possibilities afforded by interacting
with the system. Our results show that the clustering algorithm is capable of discovering
groups of features that correspond to the generation of different semantic aspects of the
results, which can then be manipulated in tandem. These semantic properties are discov-
ered in an unsupervised fashion, and are discovered across the entire hierarchy of features
present in the generative model. For example, Figure 4 shows the manipulation of groups
of features across a broad range of layers that control the generation of: the entire face,
the spatial formation of facial features, the eyes, the nose, textures, facial highlights and
overall image contrast. Figure 5 shows how our clustering algorithm performed in the
audio domain, to demonstrate how aspects of the audio signal such as the transients and
frequency components can be manipulated with various kinds of transformations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Examples from our clustering approach in the image domain. Clusters of features in
different layers of the model are responsible for the formation of different image attributes. (a) The
unmanipulated result. (b) A cluster in layer 1 has been multiplied by a factor of −1 to completely
remove the facial features. (c) A cluster in layer 3 has been multiplied by a factor of 5 to deform
the spatial formation of the face. (d) A cluster in layer 6 has been ablated to remove the eyes. (e) A
cluster in layer 6 has been dilated with a structuring element with radius r = 2 pixels to enlarge the
nose. (f) A cluster in layer 9 has been multiplied by a factor of 5 to distort the formation of textures
and edges. (g) A cluster of features in layer 10 have been multiplied by a factor of −1 to invert the
highlights on facial regions. (h) A cluster of features in layer 15 has been multiplied by a factor of 0.1
to desaturate the image. All transformations have been applied to sets of features discovered using
our feature clustering algorithm (Section 4) in the StyleGAN2 model trained on the FFHQ dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Examples from our clustering approach in the audio domain. (a) Spectrogram of an original
source track not in the training set. (b) reconstruction of source track using VAE without manipulation.
(c) Reconstruction of the same signal where a cluster in layer 1 responsible for the generation of the
transients of the signal has been ablated. (d) Reconstruction of the same signal where the same cluster
in layer 1 responsible for the transients has been multiplied by a factor of 2, increasing the intensity
of the transients in the resulting signal. (e) Reconstruction of the signal where a cluster in layer 3
responsible for the low and mid-range frequencies has been eroded with a structuring element with
radius r = 2 pixels, diminishing the intensity of these frequency components. (f) Reconstruction of
the signal where the same cluster in layer 3 responsible for the low and mid-range frequencies has
been dilated with a structuring element with radius r = 2 pixels, increasing the intensity of these
frequency components. The audio sample used is a clip from Saulsalita Soul by Mr.RuiZ, reproduced
and transformed with permission granted under the CC BY-NC 4.0 licence.

Grouping and manipulating features in a semantically meaningful fashion is an
important component for allowing expressive manipulation. However, artists are often
also ready to consider surprising, unexpected results, to allow for the creation of new
aesthetic styles, which can become uniquely associated to an individual or group of creators.
Therefore the tool needs to allow for unpredictable as well as predictable possibilities,
which can be used in an exploratory fashion and can be mastered through dedicated and

Figure 5. Examples from our clustering approach in the audio domain. (a) Spectrogram of an
original source track not in the training set. (b) Reconstruction of source track using VAE without
manipulation. (c) Reconstruction of the same signal where a cluster in layer 1 responsible for the
generation of the transients of the signal has been ablated. (d) Reconstruction of the same signal where
the same cluster in layer 1 responsible for the transients has been multiplied by a factor of 2, increasing
the intensity of the transients in the resulting signal. (e) Reconstruction of the signal where a cluster in
layer 3 responsible for the low and mid-range frequencies has been eroded with a structuring element
with radius r = 2 pixels, diminishing the intensity of these frequency components. (f) Reconstruction
of the signal where the same cluster in layer 3 responsible for the low and mid-range frequencies has
been dilated with a structuring element with radius r = 2 pixels, increasing the intensity of these
frequency components. Audio sample is reprinted and transformed with permission from [48]. CC
BY-NC 4.0 licence.

Grouping and manipulating features in a semantically meaningful fashion is an impor-
tant component for allowing expressive manipulation. However, artists are often also ready
to consider surprising, unexpected results, to allow for the creation of new aesthetic styles,
which can become uniquely associated to an individual or group of creators. Therefore the
tool needs to allow for unpredictable as well as predictable possibilities, which can be used
in an exploratory fashion and can be mastered through dedicated and prolonged use [49].
There is usually a balance between utility and expressiveness of a system [50]. While it will
be required to build an interface and perform user studies to more conclusively state that
our approach has struck such a balance, our current results do show that both predictable
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semantic manipulation and more unpredictable, expressive outcomes are possible. This
is a good indication that our approach represents a good initial step, and with further
refinements it can become an innovative powerful tool for producing expressive outcomes,
when using deep generative models.

7.2. Active Divergence

One of the key motivations of our network bending approach, was to allow for the
direct manipulation of generative models, in order to achieve active divergence from the
training data [2,3]. One common criticism of using deep generative models in an artistic
and creative context, is that they can only reproduce samples that fit the distribution of
samples in the training set. However, by introducing deterministic controlled filters into
the computation graph during inference, these models can be used to produce a large array
of novel results. Figure 2 shows how the results vary drastically by applying the same
transformation with the same parameters to different layers. Because our method alters
the computational graph of the model, these changes to the results take effect across the
entire distribution of possible results that can be generated. The results we have obtained
markedly lie outside the distribution of training images, and allow for a very large range
of possible outcomes. In addition, the combination of autoencoding [36] and network
bending techniques allows for completely novel approaches to filtering and transforming
pre-recorded audio, which can be seen in Figure 3.

7.3. Comparison between Audio and Image Domains

In this paper, we have demonstrated our network bending framework in both the
image and audio domains. For the image domain we have used StyleGAN2 [4], the state
of the art generative model for unconditional image generation, in the audio domain we
have built our own custom generative model to demonstrate how the same principles
of clustering features and applying transformations to clustered features first presented
in [1] can be applied directly to another domain. The generative model for audio we
have presented is building on a much smaller body of research, and has more room for
improvement in terms of the fidelity of the generated outputs, however it is still adequate
and demonstrates that our clustering algorithm is capable of discovering semantically
meaningful components of the signal (Figure 5). Some of the transformation layers that were
designed for image based models such as rotation and scaling do not transfer meaningfully
into the audio domain. However, numerical and morphological transformations do work
effectively in the audio domain, representing a completely new approach for manipulating
audio signals.

7.4. Comparison with Other Methods

With respect to the semantic analysis and manipulation of a generative model, our
approach of clustering features and using a broad array of transformation layers is a
significant advance over previous works [26,28,29,51]. This recent thread of techniques
only interrogate the function of individual features, and as such are unlikely to be capable
of capturing a full account of how a deep network generates results, since such networks
tend to be robust to the transformation of individual features.

We also show that sets of features, which may not be particularly responsive to certain
transformations, are very responsive to others. Figure 6 shows that in the model trained on
the LSUN church dataset, a cluster of features, that when ablated has little noticeable effect
on the result, can produce significant changes when using another transformation on the
same cluster, here removing the trees and revealing the church building that was obscured
by the foliage in the original result. This, we argue, shows that the functionality of features,
or sets of features, cannot be understood only through ablation (which is the approach
used in GAN dissection [26]), because of the high levels of redundancy present in the
learned network parameters. We show that their functionality can be better understood by
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applying a wide range of deterministic transformations, of which different transformations
are better suited to revealing the utility of different sets of features (Figures 4 and 6).

Figure 6. Groups of features that are not particularly sensitive to ablation may be more sensitive to
other kinds of transformation. Left: original unmodified input. Middle: a cluster of features in layer
3 that has been ablated. Right: the same cluster of features that has been multiplied by a scalar of
5. As can be seen ablation had a negligible effect, only removing a small roof structure which was
behind the foliage. On the other hand, multiplying by a factor of 5 removes the trees whilst altering
the building structure to have gable roof sections on both the left and right sides of the church - which
are now more prominent and take precedence in the generative process. Samples are taken from the
StyleGAN2 model trained on the LSUN church dataset.

Our method of analysis is completely unsupervised, and does not rely on auxiliary
models trained on large labelled datasets (such as in [14,16,26]) or other kinds of domain
specific knowledge. This approach therefore can be applied to any CNN based generative
model architecture which has been trained on any dataset, as we demonstrate by using
the exact same clustering method for both image and audio domains. This is of particular
relevance to artist who create their own datasets and would want to apply these techniques
to models they have trained on their own data. Labelled datasets are prohibitively time
consuming (and expensive) to produce for all but a few individuals or organisations.
Having a method of analysis that is completely unsupervised and can be applied to
unconditional generative models is important in opening up the possibility that such
techniques become adopted more broadly.

The framework we have presented is the first approach to manipulating generative
models that focuses on allowing for a large array of novel expressive outcomes. In contrast
to other methods that manipulate deep generative models [29,30], our approach allows
the manipulation of any feature or set of features in any layer, with a much broader
array of potential transformations. By allowing for the combination of many different
transformations, it is evident that the outcomes can diverge significantly from the original
training data, allowing for a much broader range of expressive outcomes and new aesthetic
styles than would be possible with methods derived from semantic image synthesis [14–16]
or semantic latent manipulation [17–19].

7.5. Network Bending in Practice

Since we introduced it, network bending has been used in the production of a number
of artworks. The artist Derrick Schulz utilises network bending frequently in their practice
of chaining models, where multiple generative models and deep learning based manipula-
tion techniques are used in sequence to produce desired results [3]. For instance, to make
the work You Are Here [52], Schultz chains multiple techniques including: a custom uncon-
ditional GAN, network bending, custom image translation models, and super-resolution.

Figure 7 shows three examples of artworks made using network bending techniques
applied to the official StyleGAN2 FFHQ model. The series of artworks Teratome [53] is
obtained by using stochastic network bending transforms to disrupt the image formation
process at its very earliest incarnation in the highest layers of StyleGAN2, to produce highly
detailed imagery from the corrupted formations. This results in images that have the photo-
realistic qualities of portraits, but with impossible distortions and formations. The video
piece Fragments of Self presents a self portrait (achieved by projecting a photograph into
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the StyleGAN2 FFHQ latent space [4,42]) that violently oscillates in and out of recognition,
leaving only traces of likeness. This is achieved by ablating the convolutional features of
the second layer of the model using a predetermined sequence calculated using the Perlin
noise algorithm that is used to determine which of the 512 features in the convolutional
layer are ablated at any given frame in the video sequence. Disembodied gaze [54] is a video
piece that demonstrates what can be achieved by utilising the clustering method presented
in this paper. The cluster of features in layer 5 that represent eyes, when ablated lead to the
eyes not being generated and the model contextually fills in the blank area with skin (as
can be seen in Figure 4d). To make Disembodied gaze, all of the clusters in layer 5 other than
the cluster that generates eyes have been ablated, leaving the eyes perfectly generated but
the surrounding areas are textural field of features that have the appearance of hair and
skin. The video piece is composed by performing a latent space interpolation between the
various identities that are generated by the FFHQ model.

Figure 7. Three illustrative samples from using network bending in the production of artworks. Left:
an image from the series of artworks Teratome [53]. Middle: a still from the video piece Fragments of
Self [55]. Right: a still from the video piece Disembodied gaze [54]. Images reproduced with permission
from the copyright holder.

8. Conclusions and Future Work

In this paper, we have introduced a novel approach for the interaction with and
manipulation of deep generative models that we call network bending, which we have
demonstrated on generative models in the image and audio domains. By inserting de-
terministic filters inside pre-trained networks, we present a framework for performing
manipulation inside the networks’ black-box and utilise it to generate samples that have no
resemblance to the training data, or anything that could be easily created using conven-
tional media editing software. We also present a novel clustering algorithm that is able
to group sets of features, in an unsupervised fashion, based on spatial similarity of their
activation maps. We demonstrated that this method is capable of finding sets of features
that correspond to the generation of a broad array of semantically significant aspects of
the generated results in both image and audio domains. This provides a more manageable
number of sets of features that a user could interact with.

We have demonstrated that network bending is a framework that is sufficiently ex-
pressive and flexible that it has been used in different ways in the production of a number
of artworks. We have shown how this framework can be utilised for creative expression
in various workflows: either by controlled direct manipulation over specific semantic
properties, or in an exploratory fashion by chaining multiple stochastic transformation
layers. These different approaches can be used in both the audio and image domains.

The inserting of deterministic filters into pre-trained models, has been adopted and
utilised in the development and evaluation of the next generation of generative models,
namely StyleGAN3 [56], which has been designed such that their internal representations
are fully equivariant to either translation or rotation. This has been done in order to design
models that are better suited for post-training manipulation that can be used for producing
video and animations, adding weight to our claim that network bending is an important
new approach to media creation with generative deep learning.

In future work we look to further advance our network bending framework in the
audio domain (alongside existing parallel efforts [57,58]). We intend to do this by extending
this framework to non-CNN based generative model architectures, such as sequential,
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autoregressive, and transformer based architectures. We also plan to extend our work into
further domains such as those that produce text, video or 3D images and meshes. Finally
we look to build an interface around our network bending framework and aim to better
understand how artists would want to use it in their practice.
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