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Abstract: Human activity recognition (HAR) using wearable sensors is an increasingly active research
topic in machine learning, aided in part by the ready availability of detailed motion capture data from
smartphones, fitness trackers, and smartwatches. The goal of HAR is to use such devices to assist
users in their daily lives in application areas such as healthcare, physical therapy, and fitness. One of
the main challenges for HAR, particularly when using supervised learning methods, is obtaining
balanced data for algorithm optimisation and testing. As people perform some activities more
than others (e.g., walk more than run), HAR datasets are typically imbalanced. The lack of dataset
representation from minority classes hinders the ability of HAR classifiers to sufficiently capture new
instances of those activities. We introduce three novel hybrid sampling strategies to generate more
diverse synthetic samples to overcome the class imbalance problem. The first strategy, which we call
the distance-based method (DBM), combines Synthetic Minority Oversampling Techniques (SMOTE)
with Random_SMOTE, both of which are built around the k-nearest neighbors (KNN). The second
technique, referred to as the noise detection-based method (NDBM), combines SMOTE Tomek links
(SMOTE_Tomeklinks) and the modified synthetic minority oversampling technique (MSMOTE). The
third approach, which we call the cluster-based method (CBM), combines Cluster-Based Synthetic
Oversampling (CBSO) and Proximity Weighted Synthetic Oversampling Technique (ProWSyn). We
compare the performance of the proposed hybrid methods to the individual constituent methods and
baseline using accelerometer data from three commonly used benchmark datasets. We show that
DBM, NDBM, and CBM reduce the impact of class imbalance and enhance F1 scores by a range of
9–20 percentage point compared to their constituent sampling methods. CBM performs significantly
better than the others under a Friedman test, however, DBM has lower computational requirements.

Keywords: activity recognition; wearable sensors; imbalanced activities; sampling methods

1. Introduction

Human activity recognition (HAR) using body-worn or wearable sensors is an active
research topic in mobile and ubiquitous computing [1]. Activity recognition is a useful
tool because it provides information on an individual’s behaviour that enables computing
systems not only to monitor but also to analyse and assist with a range of day-to-day
tasks [2,3].

Most HAR studies adopt a supervised learning approach [4]. Supervised learning
typically requires immense amounts of labelled sensor data in order to train [2]. For such
models to work well, the data are ideally recorded from a variety of real-word situations.
Additionally, a diversity of sensor modalities and placements can help improve recognition
performance [5,6].

Sensor data obtained from real-life settings is typically of poor quality (noisy) and
frequently has missing data [7]. These issues arise due to factors such as bad or faulty
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placement of sensors, or sensor malfunctioning [8]. Similarly, sensor data may often be
highly imbalanced due to significant individual variations, with limited labels for certain
activities [9]. Further barriers to obtaining sufficient quantities of real-world data include
the prohibitive cost of devices, issues related to privacy, or a desire to reduce battery
consumption [10]. Sensor data from certain activities can be difficult to obtain because
of the rare but critical nature of those activities, such as falls in the elderly [2] or heart
failure [11].

For HAR to succeed as a viable technique, there is an urgent need for new approaches
at making up for this shortfall in critical and underrepresented real-world data [2,12].
An important part of this is solving the class imbalance problem [13]. Imbalance can
occur in both the between-class distribution and as within-class imbalance [14]. Between-
class imbalance occurs, for example, when some activities are performed less often than
others [15]. As a result, the sample sizes for these activities are smaller, so a supervised
model might not have enough data to learn adequately. The related concept of within-
class imbalance occurs when the same activity is performed in different ways by the
same individual, yet there are insufficient examples from some of these for the model to
generalise adequately [12].

There are usually two methods to solve class imbalance: data level (sampling) methods
and algorithm level methods [16]. The data level approach involves changing a training
set’s class distribution by resampling. This might mean oversampling the minority classes,
undersampling the majority classes, or a combination of both [17]. The algorithm level
approach involves adjusting existing learning algorithms to focus more on the minority
classes [16]. In this work we use the data level approach, which is less complex to configure
and can be integrated with any learning algorithm.

The main contributions of the work are the following.

• We evaluate six sampling methods (SMOTE, Random_SMOTE, SMOTE_Tomeklinks,
MSMOTE, CBSO, and ProWSyn) as solutions to the class imbalance problem across
three commonly used datasets.

• We introduce three novel hybrid sampling approaches and show how these build on
and improve upon their constituent methods. These are (1) DBM, a distance-based
method that combines SMOTE and Random_SMOTE, (2) NDBM, a noise detection-
based method that combines SMOTE_Tomeklinks and MSMOTE, and (3) CBM, a
cluster-based method that combines CBSO and ProWSyn.

• We compare how useful the sampling methods are to improve the learning from
imbalanced human activity data using both shallow and deep machine learning
algorithms. Specifically, we test KNN, Logistic regression (LR), Random Forest (RF)
and Support Vector Machine (SVM), and a Multilayer perceptron (MLP) [18,19]. We
show that the sampling methods are only useful to improve the performance of the
MLP compared to the other classifiers for imbalanced human activity data.

The remainder of the paper is organised as follows. Section 2, shows some of the
existing work on class imbalance problem and techniques to deal with it in HAR. Section 3
provides background on the sampling methods used. Section 3.4 introduces the proposed
method and Section 4 describes the datasets. Section 5 describes the data analysis and
experimental setup. Section 6 introduces the experimental results, and Section 7 discusses
the findings from these.

2. Related Work

Several authors have highlighted the importance of the class imbalance problem in
HAR [2,12,20,21]. Ni et al. introduced a HAR system based on using the stacked denoising
autoencoder (SDAE) to recognise static and dynamic ambulatory activities, such as standing
and running, using accelerometers and gyroscopes [22]. The performance of their model
dropped as the class (activity) distribution of samples became unbalanced. They used
sampling techniques such as SMOTE and random undersampling to tackle the problem.
Based on their experimental result, the sampling techniques were more successful than
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random undersampling at successfully treating imbalance and improving recognition
performance. This is because the indiscriminate nature of the undersampling approach can
lead to useful data being discarded.

Despite the promising results, Ni et al’s. work is limited in that it oversamples the
entire dataset. Implementing oversampling before splitting a dataset into different train
and test partitions can result in information leakage from the original test data to the
newly produced training data and this can then lead to overly optimistic classification
performance [23]. In other words, the learning algorithm’s performance might be less about
its ability to generalise to the test data appropriately, than it is an indication of similar
patterns in both train and test data due to information leakage. In the current work we
avoid the information leakage problem by sampling exclusively on the training set.

Chen et al. [20] used data from accelerometers and gyroscopes to recognise activities
such as walking, jogging, and jumping—again using an imbalanced dataset. They reported
that the classifier always showed a good performance in recognising the majority class,
whereas its performance was inadequate for the minority classes. Again, SMOTE was
used to increase the count of underrepresented activities, leading to improved overall
performance. One limitation of this work was that it only evaluated a single oversampling
method. In contrast, our work evaluates a combination of different methods.

Inspired by the concept of data fusion, we introduce three hybrid sampling methods—
DBM, NDBM, and CBM—which combine the outputs from different sampling methods.
Fusion of diverse data sources and sensor modalities is a widely explored approach for
improving recognition performance in HAR (e.g., [5,18,24,25]). Similarly, fusion of multiple,
diverse, weak learners to produce a strong ensemble is a well-studied and effective ap-
proach in machine learning [26]. We hypothesise that by combining outputs from different
sampling strategies we diversify the synthetic data and in turn improve the generalization
ability of our learning models.

3. Sampling Methods

The underlying sampling methods used in this work can be categorised into three
types: distance-based, noise detection-based, and cluster-based.

3.1. Distance-Based

SMOTE and Random_SMOTE both use distance-based algorithms to oversample the
training data. SMOTE [27] takes an instance of the minority class x from the training set,
and then computes its K nearest neighbours, identified as the shortest Euclidean distances
between itself and other instances of the same class. To produce a synthetic sample, xnew,
SMOTE randomly selects the K nearest neighbours from the minority class, e.g., xk for the
kth nearest neighbour, and computes the difference xk − x. The new synthetic sample, xnew,
is computed by multiplying this difference by a random number between 0 and 1 using
Equation (1). The new synthetic instance xnew will lie along the line between x and xk:

xnew = x + ||x− xk|| × rand (0, 1) (1)

Unfortunately, the linear design of SMOTE can lead to overfitting. Random_SMOTE [28]
tackles this by opening up a much wider region for oversampling. For each minority
instance, x, two minority samples x1 and x2 (with x1,2 6= x) are randomly selected. A
temporary synthetic sample xtmp is then generated along the line between x1 and x2, as
shown in Equation (2):

xtmp = x1 + ||x2 − x1|| × rand (0, 1) (2)

The final synthetic sample xnew is then created along the line between xtmp and the
original sample x using Equation (3):

xnew = x + ||xtmp − x|| × rand (0, 1) (3)
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3.2. Noise Detection-Based

Real world data contain noise from a variety of sources that can lead to poor recog-
nition performance [29,30]. Frenay et al. [31] indicated that class noise (also known as
label noise) is one of the most harmful noises in machine learning. This kind of noise can
occur, for example, if a minority class sample is incorrectly labelled with a majority class
label [16]. The SMOTE-Tomek Link [32] and modified synthetic minority oversampling
technique (MSMOTE) algorithms are specifically designed to detect this kind of noise in
order to minimize the risk of creating noisy synthetic samples [33].

SMOTE-Tomek Links oversamples using SMOTE on top of a Tomek link data cleaning
step [32]. Tomek link works as follows: Consider two samples xa and xb belonging to
different classes, where d(xa, xb) is the Euclidean distance between xa and xb. A Tomek link
is identified as an (xaxb) pair if there is no sample z that meets the following conditions:
d(xa, z) < d(xa, xb) or d(xb, z) < d(xa, xb). That is, xa and xb are each other’s nearest
neighbours [34]. Tomek links are therefore likely to be comprised of either boundary
samples or noisy samples [30,35,36]. SMOTE-Tomek Links generates synthetic data in two
steps [32]. First, the original minority training data are oversampled using SMOTE. Second,
Tomek links are identified in the training data and removed to rebalance the data set.

MSMOTE is an improved version of SMOTE which first uses KNN to assign minority
samples into three types: safe, border, and noise [33]. If a minority labelled sample is the
same as the labels of its k near neighbours, then the sample is defined as ‘safe’. If the
labels are all different, then the sample is identified as ‘noise’. Finally, if the sample is
neither safe nor noise, it is classed as a ‘border’ sample. The second step of MSMOTE uses
SMOTE to generate new samples. However, the random selection of neighbours is different
depending on whether the sample is safe, border, or noise. For safe samples, MSMOTE will
randomly choose the K nearest neighbours. For border samples, the algorithm only selects
the nearest neighbour (i.e., K = 1). Noise samples are simply disregarded.

3.3. Cluster-Based

The cluster-based sampling methods include Cluster-Based Synthetic Oversampling
(CBSO) and Proximity Weighted Synthetic Oversampling Technique (ProWSyn).

CBSO integrate clustering and SMOTE-it uses agglomerative clustering to first cluster
minority samples with the aim of identifying those minority samples which are close to
the majority samples border [37]. CBSO produces samples only in the neighbourhood
of minority samples that are close to majority neighbours using SMOTE. For instance, in
order to produce a new sample, CBSO will select a sample x from the minority class and
randomly choose a minority sample xk from x’s cluster (using SMOTE Equation (1)), to
produce a new sample.

ProWSyn is another cluster-based sampling method [38]. This algorithm computes
the distance between minority class samples and majority class samples in order to assign
greater weights to the minority samples. These weights are then used to assign greater
significance to the minority samples during learning. ProWSyn operates in two steps: The
first step splits the minority data into partitions (P) according to their distance from the
class boundary. ProWSyn assigns a proximity level (L) to each partition. The level increases
with distance from the boundary. When minority class samples are assigned to lower
proximity levels, then they are considered more important for learning because they are
close to the boundary. However, in cases where they are assigned higher proximity levels
they are considered less important [38].

3.4. Proposed Hybrid Methods

All three proposed hybrid approaches, DBM, NDBM, and CBM, concatenate syn-
thesized training data obtained from the constituent sampling methods. DBM combines
SMOTE and Random_SMOTE. NDBM combines SMOTE_Tomeklinks and MSMOTE. Fi-
nally, CBM combines CBSO and ProWSyn. The three methods are evaluated as shown in
Figure 1. Taking D as the original dataset, we first split D into Dtrain and Dtest. Dtrain is
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then oversampled using the constituent methods. For more clarification, lets refer to the
Dtrain as d and, for instance, if DBM is used to oversample d, it will be:

dDBM = SMOTE(Dtrain, α) + Random_SMOTE(Dtrain, α) (4)

where α is the oversampling ratio. In case of using NDBM, it is denoted as:

dNDBM = SMOTE_TomekLinks(Dtrain, α) + MSMOTE(Dtrain, α) (5)

For the CBM, it is referred to as:

dCBM = ProWSyn(Dtrain, α) + CBSO(Dtrain, α) (6)

We then concatenate the synthesized data to increase the size of Dtrain. The oversam-
pled Dtrain is used to train a classifier, which is then evaluated on the left-aside Dtest.

Figure 1. Overview of the process used for splitting, oversampling, and evaluating the data.

4. Datasets

We use three datasets that are widely used by HAR researchers: Opportunity [39],
Physical Activity Monitoring (PAMAP2) [40], and Activities of Daily Living (ADL) [41].
Each of these comprise many individuals performing different types of human activity,
including ambulation and daily living activities [42]. The ambulation activities are typically
performed over a longer period of time, which comes in two difference forms: static
(less repetitive) such as standing, or dynamic (more repetitive), for example, running.
Shoaib et al. [43] describe these activities as ‘simple’ because they might be easily identified
using a wrist-worn accelerometer placed at an individual wrist. Daily activities might
consist of hand gestures such as waving hands or hand-to-mouth gestures (HMG), for
example, eating or drinking [44]. Daily activities are not as repetitive as ambulatory
dynamic activities, and these daily activities often are concurrent with each other due to
their similar gestures such as eating, drinking, and brushing teeth [45]. Such activities
are referred to as ‘complex’ because they are more challenging to identify using a single
accelerometer compared to simple activities [43].

4.1. Opportunity

The Opportunity dataset was collected from 72 sensors, with different types of sensors
integrated into the environment, objects and worn on participants’ bodies [39]. Four
participants performed daily living scenarios in a simulated kitchen environment. The
dataset included around 6 h of recordings and was sampled at 30 Hz. The activities were
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annotated on two different levels: locomotion and gesture. For example, cleaning up and
open door were labelled as gestures, with sitting and lying making up the locomotion subset.
Here we focus solely on gesture activities. Figure 2 shows 17 activities categorised as
gestures, including Open Door1, Open Door2, Close Door1, Close Door2, Open Fridge, Close
Fridge, Open Dishwasher, Close Dishwasher, Open Drawer1, Close Drawer1, Open Drawer2, Close
Drawer2, Open Drawer3, Close Drawer3, Clean Table, Drink from Cup, and Toggle Switch. The
dataset contains several on-body and object sensors, but in this paper we use only the
accelerometer in the lower right arm-worn inertial measurement unit (IMU).

Figure 2. Activity distribution of the Opportunity dataset.

4.2. PAMAP2

The Physical Activity Monitoring dataset (PAMAP2) was collected from 9 participants
who performed 12 activities for over 10 h and it was sampled at 100 Hz. Data were
recorded by using IMUs placed on the hand, chest, and ankle [40]. Here we use only the
accelerometer sensor of the hand-worn IMU. Figure 3 shows the activity distribution, and
it can be seen that the dataset is imbalanced. It contains both simple and sporting activities
such as walking, running, cycling, Nordic walking, and rope jumping. It also includes
posture activities such as lying, sitting, and standing. Activities of daily living (ascending
stairs, descending stairs), and households activities such as vacuum cleaning and ironing
are also included.

4.3. ADL

The Activities of Daily Living (ADL) dataset is a public dataset collected using a
single chest-worn wearable accelerometer on 15 participants [41]. The sampling rate of the
accelerometer was 52 Hz. The participants performed seven daily living activities. The
activities include Working at Computer (WAC), Standing Up, Walking and Going Up/Downstairs
(SWGUDS), Standing, Walking, Going Up/Downstairs (GUDS), Walking and Talking with Some-
one (WATWS), and Talking while Standing (TWS). Figure 4 shows the activities distribution
of the ADL dataset which indicates that the dataset is imbalanced.
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Figure 3. Activity distribution of the PAMAP2 dataset.

Figure 4. Activity distribution of the ADL dataset.

5. Data Analysis
5.1. Data Preprocessing

We explore how our proposed sampling methods might enhance a human activity
model’s performance in a real-life scenario where only a single 3-axis accelerometer is
available. Although recognition performance is typically better when multiple sensors are
used, in many scenarios access to multiple sensors is limited (e.g., in a single wrist-worn
device) [10].
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As a pre-processing step, we first calculate the Euclidean norm (
√

x2 + y2 + z2) of each
3-axis sensor to ensure the data are invariant to shifting orientation of the sensors [46]. We
then apply a non-overlapping sliding window to segment the data [24]. Table 1 provides
more details such as the number of subjects, sampling rate, the window size, and sensor
position we use.

We extract six time-domain features including mean, standard deviation, minimum,
maximum, median, and range. The selected features are highlighted further in Table 2.
These features are efficient as well as fast to compute [18].

Table 1. Datasets details.

Dataset Number of
Subjects

Sample
Rate Window Size (s) Sensor Position Number of

Sensors Used

Opportunity 4 32 2 Right Arm 1 accelerometer
PAMAP2 8 100 3 Dominant Wrist 1 accelerometer

ADL 15 52 10 Chest 1 accelerometer

Table 2. Features description [18,43].

Feature Description

Mean It provides the average value of sensor data within a segment

Standard deviation It describes how much sensor data are spread around the mean

Minimum The minimum value of sensor data within a segment

Maximum The maximum value of sensor data within a segment

Median It finds the middle number of a sample within a segment

Range The difference between the maximum and the minimum of sensor data within a segment

5.2. Parameters Setting

All of the evaluations in this work were carried out using a collection of shallow
learning methods—specifically, SVM, LR, kNN, and RF—as well as a deep learning method
based on MLP. The parameters for SVM, LR, and KNN were found using grid search (see
Appendix C for details). For RF and MLP, we use the default settings provided by the
Python implementation [47]. The MLP architecture that was used in the experiments is
presented in Table 3.

Table 3. MLP architecture details.

Hidden
Layers

Activation
Function Optimizer Loss

Function
Learning

Rate Regularization Epochs

100 Relu Adam Cross-entropy 0.001 L2 penalty 200

Note that for brevity we include only the full results related to the overall best-
performing classifier, MLP. The main findings using the remaining classifiers were broadly
in agreement (as will be shown in Section 6.7). The full results for the remaining four
classifiers are provided in Appendix B.

We also use the default settings on the Python implementation of our sampling
algorithms—SMOTE, Random_SMOTE, SMOTE_TomekLinks, MSMOTE, CBSO, and
ProWSyn. Number of neighbours and the number of samples to generate are common
parameters among all sampling methods. In addition, other sampling methods use specific
parameters, for example, ProWSyn utilizes number of levels. Ref. [37] provides more
details about these parameters.

The percentage of samples to be created by a sampling method was set to 100%, which
means that the number of minority samples in the training set will be equal to the number
of majority samples in the training set after sampling.
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5.3. Evaluation Method

Performance is measured using weighted F1 score, recall, and precision [12]. Precision
records the proportion of class predictions that are correct, whereas Recall records the
proportion of actual class samples that are correct [48]. The weighted F1 score used here
weighs classes based on their sample proportion and is calculated as (e.g., [1]):

F1 score = ∑
i

2 ∗ wi
×Precisioni × Recalli
Precisioni + Recalli

(7)

Here, i corresponds to the class. wi = ni/N corresponds to the proportion of class i
and ni is the number of samples of the class i. N is the total number of samples.

Pirttikangas et al. [49] suggested to combine all the data from different subject into
one dataset. They augured this was because of the individual variation in body worn
acceleration which is often dominates by strong commonalities among individuals in
activity patterns.

Consequently, we followed Pirttikangas et al.’s [49] suggestion in this work and used
3-fold cross-validation to train the parameters in our analyses. We did not use more than
3 folds as most of the activities have a very low number of samples in some datasets.
As an additional measure of reliability, our evaluations are all repeated 30 times using
different random selections of data. The final results are presented as the mean (and
standard deviation) of the F1 score over these repetitions. In the future we aim to use a
leave-one-subject-out approach.

ANOVA and Friedman statistical tests were performed to discover whether there
are significant differences in performance between the sampling methods across the five
classifiers [50,51].

6. Results

Here we present the final results of each of the sampling methods and our hybrid
methods vs the baseline (no resampling) case for each of the three datasets. We also present
an evaluation of the power considerations for each method.

6.1. Distance-Based Method (DBM)

Table 4 shows the main results for the MLP classifier using DBM versus its constituent
methods, SMOTE, and Random_SMOTE. The first thing to notice is a universal improve-
ment when sampling is used compared to the baseline.

On the ADL dataset, the DBM F1 score is 92.59%, a 5.39 percentage point (pp) im-
provement over baseline, a 0.35% improvement over SMOTE, and a 1.52 pp improvement
over Random_SMOTE. On Opportunity, DBM’s F1 score is low (48.49%), however, this is a
large 19.64 pp improvement on the baseline, and a 5 pp improvement over both constituent
sampling methods. On PAMAP2, DBM F1 score is 80.15%, which is an 8.3 pp improvement
on the baseline, and 5 pp on both constituent methods.
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Table 4. Distance-based method results. Comparing the performance of MLP on DBM, SMOTE, and
Random_SMOTE for multiple datasets. The reported mean of F1 score and (±standard deviation),
recall, and precision are obtained from 30 repetitions. The F1 score, recall, and precision are in %.
Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
SMOTE 92.24 (±0.069) 91.44 94.21

Random_SMOTE 91.07 (±0.086) 90.31 93.22
DBM 92.59 (±0.081) 91.9 94.26

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
SMOTE 42.95 (±0.043) 42.45 45.73

Random_SMOTE 42.74 (±0.04) 42.19 45.75
DBM 48.49 (±0.052) 48.18 50.63

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
SMOTE 74.73 (±0.055) 74.93 77.69

Random_SMOTE 74.59 (±0.055) 74.64 77.83
DBM 80.15 (±0.046) 80.23 81.93

6.2. Noise Detection-Based Method (NDBM)

Table 5 demonstrates the MLP classifier performance of baseline, NDBM,
SMOTE_TomekLinks, and MSMOTE across all datasets. Again, a large improvement
is evident for all datasets when using sampling versus baseline.

On the ADL dataset, the NDBM F1 score is 93.7%, a 5.39 pp improvement over the
baseline, and between 1–2 pp improvement over the constituent sampling methods. On
the Opportunity dataset, NDBM performance is low (with F1 at 46.95%)—however, this
is a dramatic 18.1 pp improvement over the baseline case. On the PAMAP2 dataset, the
NDBM F1 score is 79.43%, a 7.58 pp improvement on the baseline, and 5 pp improvement
over both constituent methods.

Table 5. Noise detection-based results. Comparing the performance of MLP for NDBM, MSMOTE,
and SMOTE_TomekLinks on multiple datasets. The reported mean of F1 score and (±standard
deviation), recall, and precision are obtained from 30 repetitions. The F1 score, recall, and precision
are in %. Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
SMOTE_TomekLinks 91.41 (±0.071) 90.52 93.56

MSMOTE 90.7 (±0.067) 89.65 92.66
NDBM 92.7 (±0.065) 91.69 94.77

Opportunity Baseline 28.85 (± 0.017) 34.1 29.57
SMOTE_TomekLinks 42.89 (±0.039) 43.15 45.34

MSMOTE 39.71 (±0.074) 39.58 42.07
NDBM 46.95 (±0.067) 46.97 48.86

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
SMOTE_TomekLinks 74.24 (±0.054) 74.51 77.13

MSMOTE 73.73 (±0.059) 73.78 77.03
NDBM 79.43 (±0.054) 79.46 81.35

6.3. Cluster-Based Method (CBM)

Table 6 demonstrates the MLP classifier performance of baseline, CBM, CBSO, and
ProWSyn across all datasets. Again, a clear improvement is evident for all datasets when
using sampling versus baseline.

On the ADL dataset, the CBM F1 score is 92.96%, a 5.76 pp improvement over the
baseline, and a 1.8–1.4 pp improvement over the constituent sampling methods. On the
Opportunity dataset, CBM performance is low (with F1 at 48.87%)—however, this is a
dramatic 20.02 pp improvement over the baseline case. On the PAMAP2 dataset, the CBM
F1 score is 81.15%, a 9.13 pp improvement over the baseline, and a 5.29 pp and 6.56 pp
improvement over CBSO and ProWSync, respectively.
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Table 6. Cluster-based results. Comparing the performance of MLP using CBM, CBSO, and ProWsyn
on multiple datasets. The reported mean of F1 scores and (±standard deviation), recall, and precision
are obtained from 30 repetitions. The F1 score, recall, and precision are in %. Highest scores are
shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
CBSO 91.16 (±0.09) 90.22 93.66

ProWSyn 91.56 (±0.091) 90.98 93.7
CBM 92.96 (0.087) 91.93 95.29

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
CBSO 42.92 (±0.023) 42.96 45.12

ProWSyn 42.78 (±0.055) 43.47 44.99
CBM 48.87 (±0.045) 48.82 50.67

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
CBSO 75.69 (±0.042) 75.43 78.19

ProWSyn 74.42 (±0.054) 74.4 77.5
CBM 80.98 (±0.051) 80.9 82.54

6.4. Comparing the Performance of the Proposed Sampling Approaches DBM, NDBM, and CBM

Table 7 combines the headline results from our proposed hybrid methods. On the ADL
dataset, CBM outperforms the others, with an F1 score of 92.96%. On Opportunity, CBM
(48.87% F1) narrowly outperforms DBM (48.49% F1) and NDBM (46.95% F1). Similarly, on
PAMAP2, CBM (80.98% F1) outperforms DBM (80.15% F1) and NDBM (79.43% F1). The
standard deviation across recognition scores for all evaluations is low throughout, with the
maximum deviation being no more than 0.087.

Table 7. Comparing performance of DBM, NDBM, and CBM on multiple datasets. The reported
mean of F1 scores and (±standard deviation), recall, and precision were obtained from 30 repetitions.
The F1 score, recall, and precision are in %. Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
DBM 92.59 (±0.081) 91.9 94.26

NDBM 92.7 (±0.065) 91.69 94.77
CBM 92.96 (±0.087) 91.93 95.29

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
DBM 48.49 (±0.052) 48.18 50.63

NDBM 46.95 (±0.067) 46.97 48.86
CBM 48.87 (±0.045) 48.82 50.67

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
DBM 80.15 (±0.046) 80.23 81.93

NDBM 79.43 (±0.054) 79.46 81.35
CBM 80.98 (±0.051) 80.9 82.54

6.5. Results for Minority Activities

For the Opportunity dataset, multiple activities were underrepresented, such as
Open_Fridge, Open_Drawer3, and Close_Drawer3. Figure 5 indicates that the proposed DBM,
NDBM, and CBM improve the F1 score of the MLP in recognising the underrepresented
activities. Figure 5 also shows that without applying the sampling methods (baseline),
the MLP classifier could not identify the Open_Fridge activity. By applying the proposed
sampling methods, the MLP’s ability to recognise underrepresented activities improved.
For example, the F1 of the MLP’s ability to classify the Open_Fridge activity improved by
more than 10 pp using the DBM, NDBM, and CBM.
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Figure 5. Opportunity minority classes. Comparing the impact of DBM, NDBM, and CBM on
activity recognition performance, using MLP for the most underrepresented activities Open_Fridge,
Open_Drawer3, and Close_Drawer3. The reported means of F1 scores are obtained from 30 repetitions.
The F1 score is in %.

On the ADL dataset, Figure 6 also suggests that by applying the DBM, NDBM, and
CBM MLP classifier, F1 score was improved by more than 10 pp and gained a significant
advantage in identifying the underrepresented activities, including Going Up/Downstairs
(GUDS), Standing Up, Walking and Going Up/Downstairs (SWGUDS), and Walking and Talking
with Someone (WATWS).

Figure 6. ADL minority classes. Comparing the impact of DBM, NDBM, and CBM on activity
recognition performance, using MLP for the most underrepresented activities (Going Up/Downstairs
(GUDS), Standing Up, Walking and Going Up/Downstairs (SWGUDS), and Walking and Talking with Someone
(WATWS)). The reported means of F1 scores are obtained from 30 repetitions. The F1 score is in %.

Similarly, on the PAMAP2 dataset, Figure 7 implies that the MLP classifier was more
capable of identifying the underrepresented activities, including rope jumping, running,
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descending stairs, and ascending stairs, when the proposed DBM, NDBM, and CBM were
used. For example, the performance of the MLP improved on the F1 score by at least 4 pp
when identifying the underrepresented rope jumping activity.

Figure 7. PAMAP2 minority classes. Comparing the impact of DBM, NDBM, and CBM on activity
recognition performance, using MLP for the most underrepresented activities (ascending stairs,
descending stairs, rope jumping, and running). The reported means of F1 scores are obtained from
30 repetitions. The F1 score is in %.

6.6. Run Times for DBM, NDBM, and CBM

Figure 8 offers a comparison for each proposed sampling method in terms of run
times. The analysis was performed on a Fierce PC with 16 GB RAM, Intel Core i7-7700
processor with 3.60 GHz and using Ubuntu 16.04 LTS (64-bits). DBM demonstrated the
best performance in terms of training time compared to NDBM and CBM.

Figure 8. Comparing run times in seconds of the proposed DBM and CBM for all training datasets.
The number of samples in the training sets for the ADL, Opportunity, and PAMAP2 datasets were
11,776, 1569, and 6450, respectively.

6.7. Statistical Analysis

A statistical analysis was performed to find out whether there are significant F1 perfor-
mance differences between the nine sampling methods across five classifiers. The sampling
methods analysed are SMOTE, Random_SMOTE, MSMOTE, SMOTE_TomeKLinks, CBSO,
ProWSync, as well as the hybrid methods DBM, NDBM, and CBM. The classifiers are LR,
RF, SVM, KNN, and MLP. The normality assumption is first estimated using the Anderson–
Darling normality test on each sampling method and classifier combination [50,52]. This
determines whether parametric statistical analysis, such as ANOVA, may be used in the
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case of normality, or a non-parametric method, such as the Friedman test, in the case of
non-normality [53].

Table 8 shows the results of the Anderson–Darling normality test on sampling methods
based on the five classifiers results for each dataset [52]. The mean F1 scores shown are
obtained from 45 ’samples’, where one sample represents one sample method and classifier
combination. On the PAMAP2 dataset, the Anderson–Darling p-value is more than 0.05
(α = 0.05)—suggesting the null hypothesis of a normal distribution—and so an ANOVA
could then be used. For the ADL- and Opportunity-based results, Table 8 shows a rejection
of the null hypothesis (p < 0.05) [52]. This indicates that these dataset results are not
normally distributed and, therefore, ANOVA cannot be applied [54]. In its place, we use a
Friedman test [55].

Table 8. Anderson–Darling normality test on sampling methods based on the 5 classifiers results × 9
sampling methods (5 × 9 = 45 sample size) on each dataset. The p-value is less than 0.05 (α = 0.05)
for ADL and Opportunity which suggests that ADL and Opportunity are not normally distributed
compared to PAMPA2.

Data Mean Standard Deviation Sample Size p-Value

ADL 0.8840 0.0399 45 0.0007
Opportunity 0.3773 0.0548 45 0.0000

PAMAP2 0.7272 0.0406 45 0.0680

6.7.1. ANOVA on PAMAP2

Table 9 reveals that the ANOVA test detected no statistical evidence to reject the
null hypothesis (p > 0.05). In other words, when using PAMAP2, all sampling methods
performed the same and none was found to perform significantly differently to the others.

6.7.2. Friedman Test on ADL and Opportunity

The Friedman test in Table 10 indicates that the p-values of the data are less than
0.05 (α = 0.05) for the ADL and Opportunity datasets. Therefore, the null hypothesis
is then violated. This means that there is a statistically significant difference across the
sampling methods. In other words, one or more of the sampling methods can show different
influences on these datasets.

Table 9. ANOVA for PAMAP2 dataset.

Data Degrees of
Freedom Sum of Squares Mean Square F Value p-Value

PAMAP2 8 0.0067 0.0008 0.4602 0.8757

Table 10. Friedman test results indicate that the p-value is less than 0.05 (α = 0.05) for the ADL and
Opportunity datasets. This means that one or more of the sampling methods is more effective than
the others.

Data Degrees of Freedom Chi-Square p-Value

ADL 8 21.8133 0.0053
Opportunity 8 24.2133 0.0021

Tables 11 and 12 display the ranks drawn from the Friedman test in the ADL and
Opportunity datasets [55]. The test compares rankings across the five classifiers (rows)
and nine sampling methods (columns). Ranking is conducted for each classifier row, with
sampling methods ranked between 1 (lowest) and 9 (high). The tables then summarize
the total ranks obtained for each column to obtain the overall ranking for each sampling
method [55].

Both Tables 11 and 12 show that CBM has a consistently high ranking compared to the
other sampling approaches across a range of classifiers. This supports our earlier finding
that CBM is the highest performer.
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Table 11. Friedman sum-of-ranks test on ADL-based results for all methods and classifiers. CBM is
the overall highest ranking method.

Classifier CBSO NDBM CBM DBM MSMOTE Pro-WSyn Random_SMOTE SMOTE_TomekLinks SMOTE

KNN 1 7 9 4 5 8 2 6 3
LR 1 8 3 9 2 5 6 7 4

MLP 3 8 9 7 1 5 2 4 6
RF 1 6 9 4 7 8 3 5 2

SVM 1 8 7 9 2 3 6 4 5
Sum of ranks 7 37 37 33 17 29 19 26 20

Table 12. Friedman sum-of-ranks test on Opportunity-based results for all methods and classifiers.
CBM is the overall highest ranking method.

Classifier CBSO NDBM CBM DBM MSMOTE Pro-WSyn Random_SMOTE SMOTE_TomekLinks SMOTE

KNN 5 6 9 7 1 4 8 3 2
LR 5 9 7 8 1 2 6 4 3

MLP 5 7 9 8 1 3 2 4 6
RF 4 5 8 3 1 9 7 6 2

SVM 2 7 8 9 1 4 3 5 6
Sum of ranks 21 34 41 35 5 22 26 22 19

7. Discussion and Future Work

Prior studies such as [2,4] have highlighted the lack of works that address and in-
vestigate the impact of the class imbalance problem in human activity recognition. Our
present study fills this gap by proposing three approaches, DBM, NDBM, and CBM, to
reduce the class imbalance and substantially improve human activity recognition (HAR)
performance. We found that the proposed hybrid sampling methods worked better than
applying any single sampling algorithm across three different HAR datasets. The benefit of
the proposed approaches is that they generate more diverse samples, and thus improve the
generalisability of the learning algorithm.

The cluster-based method (CBM) reveals consistently better performance than distance
(DBM) or noise detection (NDBM)-based methods. A Friedman test additionally showed
the statistical superiority of CBM over the other methods for two datasets, ADL and
Opportunity, across five different classifiers.

Minority classes in particular benefit from using CBM, as shown in Figures 5–7. This
indicates that CBM would be a good choice when working with imbalanced HAR data
involving activities similar to those found in Opportunity and ADL.

DBM, which is a combination of distance-based SMOTE and Random_SMOTE, pro-
vides the next highest performing combination. The main advantage of DBM, however, is
that it uses significantly less computational resources than CBM. We suggest this method
in instances where the training data suffer from small sample size and there is limited
computational power. The main issue with DBM compared to NDBM and CBM is more
likely to introduce noisy samples. The DBM does not perform any data filtering such as
clustering processes prior to oversampling the data. One way to improve the DBM is to
use a technique to assess the similarities between the synthetic samples and the training
data samples (i.e., the original data), then to use only the most similar synthetic samples
to the original sample in order to oversample the training data. For example, one can
use the SMOTE and Random_SMOTE approaches to generate synthetic samples from the
original training samples and use an efficient similarity metric such as Euclidean distance
to compare the generated synthetic data to the original training samples and then use
only the most similar synthetic samples and disregard the least similar. Our reason for
this is that it might ensure that high-quality synthetic samples are used to oversample the
training data.

Moreover, the key problem with the NDBM is that is relies on sampling methods
that eliminate some samples during the oversampling process. This can lead to losing
some valuable information of the activities. Therefore, we suggest that CBM be used by
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researchers to ensure they can be able to oversample the imbalance human activity data
without losing any information.

To minimise complexity, we opted to use the default settings for most of the classifiers
and sampling algorithms. Despite this, we believe that the general findings of the work
regarding the influence of sampling on HAR still hold, and we have left further optimisation
for future work.

One limitation of our proposed solutions is the choice of features. We chose to adopt
time-domain features because these are efficient and fast to compute. This work might
be extended by expanding on the feature set to incorporate, say, frequency domain fea-
tures [12]. Additionally, we only considered data from a single accelerometer and a single
location per dataset. How our sampling strategies might perform using an expanded
feature set and a larger number of sensors will be the focus of future work.

A further area of future work will be to investigate more complex ensembles of
sampling methods, e.g., combing distance with cluster-based methods. One challenge here
will be to reduce the computational complexity of the clustering method, while preserving
its ability to produce diverse samples.
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Appendix A

Table A1. Parammeters settting of SVM, LR and KNN on multiple dataset. Ref. [47] provides
description about the parameters that we used.

Algorithms Parameters ADL Opportunity PAMAP2

gamma 0.1 0.1 0.1
C 20 20 20

kernel rbf rbf rbf
max_iter −1 −1 −1

SVM

decision_function_shape ovr ovr ovr
multi_class multinomial multinomial multinomial

solver newton-cg sag sag
max_iter 250 250 250

C 2 2 2

LR

penalty L2 L2 L2
n_neighbors 3 5 3KNN

algorithm auto auto auto
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Appendix B

Table A2. Comparing the performance of the baseline classifiers on multiple datasets. The reported
mean of F1 scores and (±standard deviation) were obtained from 30 repetitions. The F1 score is as %.

Data Classifier F1 Score

ADL KNN 85.63 (±0.043)
LR 84.51 (±0.026)

MLP 87.2 (±0.047)
RF 82.76 (±0.037)

SVM 90.76 (±0.037)
Opportunity KNN 31.36 (±0.052)

LR 26.03 (±0.012)
MLP 28.85 (±0.017)
RF 33.15 (±0.032)

SVM 34.04 (±0.012)
PAMAP2 KNN 69.44 (±0.033)

LR 64.81 (±0.094)
MLP 71.85 (±0.081)
RF 71.72 (±0.057)

SVM 75.18 (±0.06)

Appendix C

We exhibited the F1 score of the baseline classifiers including the SVM, RF, LR and
KNN in order to compare the influence of the sampling methods in improving their F1
score. The sampling methods were the proposed DBM, NDBM and CBM as well as the
existing methods including, SMOTE, Random_SMOTE, SMOTE_Tomeklinks, MSMOTE,
CBSO, and ProWSyn.

The below figures compared the F1 scores of the SVM, RF, LR, and KNN on the
Opportunity, PAMAP2, and ADL datasets. For more details about the dataset, see Section 4.

Figure A1. F1 score of baseline (SVM), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.

Figure A2. F1 score of baseline (RF), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.
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Figure A3. F1 score of baseline (LR), the proposed method, and the sampling methods for the
Opportunity, PAMAP2 and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.

Figure A4. F1 score of baseline (KNN), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.
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