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Abstract - This paper explores deterioration in 

Alzheimer’s Disease using Machine Learning. Subjects 

were split into two datasets based on baseline diagnosis 

(Cognitively Normal, Mild Cognitive Impairment), 

with outcome of deterioration at final visit (a binomial 

essentially yes/no categorisation) using data from the 

Alzheimer’s Disease Neuroimaging Initiative 

(demographics, genetics, CSF, imaging, and 

neuropsychological testing etc). Six machine learning 

models, including gradient boosting, were built, and 

evaluated on these datasets using a nested cross-

validation procedure, with the best performing models 

being put through repeated nested cross-validation at 

100 iterations. We were able to demonstrate good 

predictive ability using CART predicting which of those 

in the cognitively normal group deteriorated and 

received a worse diagnosis (AUC = 0.88). For the mild 

cognitive impairment group, we were able to achieve 

good predictive ability for deterioration with Elastic 

Net (AUC = 0.76).  
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I. INTRODUCTION 

 Alzheimer’s Disease which accounts for 60-80% of all 

dementias [1], remains a pernicious threat to older people. 

As of 2017, it is estimated that over 50 million people 
globally are living with dementia [2]. Unlike other chronic 

diseases such as cancer and heart disease, dementia can 

require intensive care for many years after diagnosis. As a 

result, the cost of care is significantly higher as sufferers 

increasingly require round-the-clock care. Furthermore, the 

burden of caring for someone with dementia can negatively 

impact the wider families wellbeing, with associated 

detrimental effects on mental and physical health. The cost 

of long-term care also puts a disproportionate financial 

burden onto families and the wider community of those 

with a diagnosis. It is estimated that the cost of caring for 

those with dementia currently stands at 1% of global GDP 

[3]. Furthermore, 60% of those with dementia live in low- 

and middle-income countries [4] and, as these countries 

transition into developed economies, with the associated 

lengthening life expectancy and falling birth rate, the strain 

on these nations to care for dementia sufferers will become 

financially untenable.  

In lieu of effective treatment for Alzheimer’s disease [5], 

research has turned towards the possibility of early 

detection of Alzheimer’s biomarkers before the onset of 

symptoms [6]. Work in this area has noted that accurate 

prediction of the risk of developing Alzheimer’s disease 

and subsequent early interventions aimed at delaying the 

onset of symptoms would ease the burden of suffering as 

well as financial costs of care for the patient and their 

family. Even if no intervention were available, a pre-

warning of the risk of dementia would allow patients and 

carers to prepare for the possibility of cognitive decline, 

and thus may help reduce the psychological and practical 

effects of diagnosis. Indeed, research has suggested that the 

structural brain changes that precipitate Alzheimer’s 

symptoms may begin several years before the onset of 

notable symptoms [6], and this may provide an opportunity 

to develop techniques for assessing dementia risk. 
 

There have been several attempts to create predictive 

models for Alzheimer’s Disease.  Mathotaarachchiet et al. 

used the same repository (ADNI) as the present paper to 

build Support Vector Machine (SVM) and Logistic 

Regression models with PET neuroimages for SVM and 

regularized logistic regression, achieving an AUC of 0.91 

[7]. Casanova et al. investigated a range of models as they 

explored genetic and non-genetics data as predictors of 

cognitive decline. The best model found in that study was 

Random Forest with an accuracy of 78% [8]. The work of 

Stamate et al used several different machine learning 

techniques in the exploration of the ADNI dataset, with a 

view to assessing the predictive power of variables found 

in the dataset. This work utilised, among others, the 

Gaussian Process technique which has, hitherto, seldom 

been explored in this context [9]. The present paper also 

explores several techniques including Gaussian Process. 

Gill et al. collapsed the final visit diagnosis of baseline 

cognitively normal subjects, into a binary classification 

indicating whether the subject had deteriorated and 

received a diagnosis of either Mild Cognitive Impairment 

(MCI) or Alzheimer’s Dementia (AD). The model from 

Gill et al. achieved a good predictive power within this 

paradigm (AUC 84.4%) [10]. 

 

 This paper emulates this binary classification for 

cognitively normal subjects, but also extends it for those 

who were diagnosed with mild cognitive impairment at 

baseline. We seek to utilise statistical learning as a 
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mechanism to predict those who would suffer cognitive 

deterioration resulting in receiving a diagnosis of Mild 

Cognitive Impairment or Alzheimer’s Disease. To this end, 

we will split the well-known dataset from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) into two separate 

groups at baseline: those who were Cognitively Normal 

(CN), and those who received a diagnosis of Mild 

Cognitive Impairment (MCI). We then predict what 

diagnosis each subject received upon their final visit to the 

ADNI test sites. We tune and test six different models on 

these datasets separately. As discussed, this study collapses 

the multinomial diagnosis received at final visit into a 

binomial progression outcome of whether there is a 

deterioration, i.e., received either “no deterioration”: the 

same diagnosis (or a more favourable one) or deteriorated 

and consequently received a worse diagnosis at final visit. 

Such a separation would have potential clinical benefits, as 

it would allow a greater understanding of the mechanisms 

that underpin deterioration for the two groups. An accurate 

prediction would serve as both a predictive and inferential 

tool as we may be afforded greater understanding of 

potentially modifiable risk factors that, if interventions 

were implemented, would allow delay or prevention of the 

onset of cognitive decline. Thus, this paper aims to join an 

existing body of work which specifically looks at dementia 

prediction through the lens of deterioration across a 

longitudinal data collection period.  

 

The goal of this study is therefore to predict, using 

predictors derived at baseline, those who would go on to 

receive a worse diagnosis upon their last visit to a testing 

site. 

 

II. METHODS 

A. Alzheimer’s Disease Neuroimaging Initiative. 

The Data used in this paper was derived from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. This multicentre longitudinal study was initiated 

in 2004 by the National Institute of Aging (NIA), The 

National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), The Food and Drug 

Administration (FDA), private pharmaceutical companies 

and non-profit organizations in the US. It was conducted 

over six years, with 400 subjects diagnosed with Mild 

Cognitive Impairment, 200 subjects with Alzheimer’s 

Disease and 200 healthy controls. The initial goal of the 

ADNI study was to test whether repeated collections of 

neuroimaging, biomarker, genetic, and clinical and 

neuropsychological data could be combined to contribute 

in an impactful way to research into dementia [11]. 
 

Data for the present paper was downloaded on the 10th of 

June 2021 through the ADNIMERGE package in R. This 

package combines several variables from the different 

ADNI datasets and studies (ADNI1, ADNIGO, ADNI2, 

and ADNI3). The final combined dataset contains 115 

variables and 15,157 observations, which included multiple 

observations per participant. These observations represent 

data collection events, where participants made multiple 

(up to 23) visits to study sites.  

 

The data used for this paper is a subset of the full dataset, 

containing only information from the original ADNI1 

study. The different ADNI protocols contain diagnostic 

classifications that have been reached using procedures that 

differ across the studies. Thus, an attempt to classify based 

on diagnostic labels in ADNI1 will necessitate different 

predictors than in ADNI2, for example. Therefore, the 

decision was taken to use only data from ADNI1. After 

some initial cleaning, the resulting data for this paper 

contains 35 variables with 5,013 observations, with 34 

input attributes, and 1 outcome attribute. The outcome 

attribute consisted of three diagnostic classes: those who 

received a diagnosis of Cognitively Normal (CN), those 

who received a diagnosis of Mild Cognitive Impairment 

(MCI), and those who received a diagnosis of Alzheimer’s 

Disease (AD). 

 

B. Description of Variables 

● Baselines Demographics: age, gender, ethnicity, 

race, marital status, and education level were 

included in the original dataset. All were preserved 

after pre-processing, but nominal values were 

dummified to numeric format. 

 

● Functional Activities Questionnaire (FAQ) is a 

test that can be used to assess the dependency on 

another person that a participant requires to carry 

out normal daily tasks. FAQ consists of 

questionnaires and multiple-choice questions, 

which are given to yield an aggregate score from 0 

to 30. 

 

● Mini-Mental State Exam (MMSE) is used to 

estimate the severity and progression of cognitive 

impairment and to follow the course of cognitive 

changes in an individual over time. 

 

● PET measurements (FDG, PIB, AV45) are 

indirect measures of brain function.  

 

● MRI measurements (Hippocampus, intracranial 

volume (ICV), MidTemp, Fusiform, Ventricles, 

Entorhinal and WholeBrain) are structural 

measurements of a participant’s brain. 

 

● APOE4 is an integer measurement representing the 

appearance of epsilon 4 allele of the APOE gene. 

 

● Variables ‘ABETA’, ‘TAU’, ‘PTAU’ are 

cerebrospinal fluid (CSF) biomarker measurements. 

 

● Rey's Auditory Verbal Learning Test (RAVLT) 

are neurophysiological test evaluating an 

individual’s episodic memory. 

 

● Everyday cognitive evaluations (Ecog) are 

questionnaires that illustrates a participant’s ability 

to carry out everyday tasks. 

  

● Logical Memory – Delayed Recall Total Number 

of Story Units Recalled (LDELTOTAL) is a 



 

 

neuropsychological test that evaluates a person’s 

ability to recall information after a prescribed 

amount of time. 

  

● Modified Preclinical Alzheimer Cognitive 

Composite (mPACC) are tests that evaluate a 

person’s cognition, episodic memory and timed 

executive function. 

 

● ADAS and MOCA are generalized 

neuropsychological tests that evaluate a person’s 

cognitive ability (e.g., memory, visuospatial, etc.). 

 

● Last Visit is a variable, defined for this paper as the 

number of months from baseline data collection to 

the subject’s last visit at a test centre. This variable 

was added to control for the differing time periods 

between subjects first and last visits. 

 

C. Data Cleaning and Missing Value Imputation  

The data was cleaned using the caret package in R. The 

preProcess function was used to implement a centring and 

scaling of the data. KNN was used with K = 5 to estimate 

and replace missing data. However, predictors with more 

than 90% missing data were excluded from the final 

dataset. Thus, the variable PIB was excluded. All nominal 

predictors were dummy coded. The final dataset, therefore, 

contained 42 predictor variables and 1 outcome 

variable. The pre-processing was conducted within the 

nested cross-validation procedure described below, with 

the training and test data being pre-processed separately to 

avoid any ‘information bleed’ that could bias the model’s 

performance measures, with the pre-processing model 

trained on the training set used to pre-process the test 

dataset. 

 

D. Diagnostic Classes 

The goal of this study was to predict, using predictors 

derived at baseline, those who would go on to receive a 

worse diagnosis upon their last visit to a testing site. 

Therefore, the data was split into two groups, denoting the 

different diagnoses received at baseline. 

 

Those who received a diagnosis of CN at baseline were in 

group one (CN_b group), with the goal of predicting 

whether they received the same diagnosis at their last visit 

or received a worse diagnosis. For the sake of ease of 

inference, the two worse diagnoses (MCI and AD) were 

combined into a single classification, ‘MCI/AD’.  

 

Those who received a diagnosis of MCI at baseline were 

in the second group (MCI_b group), with the goal of 

predicting whether they received the same 

diagnosis/received a more favourable diagnosis at their 

last visit or received a worse diagnosis. For the sake of ease 

of inference, subjects who received a diagnosis of MCI or 

CN were combined into a single classification 

(‘CN/MCI’). The worse diagnosis was denoted by the 

classification labels of AD. 

 
 

 

TABLE I. THOSE WHO RECEIVED A DIAGNOSIS OF 

COGNITIVELY NORMAL (CN) AT BASELINE WERE THE ONLY 

GROUP INCLUDED. THE MODELS PREDICTED WHAT 

DIAGNOSIS WERE RECEIVED FOR THESE SUBJECTS AT THE 

FINAL VISIT, WITH THE BINOMIAL OUTCOMES DETAILED 

HERE. 
 

Outcome Definition 

Cognitively Normal 

(CN) 

Those, having received a diagnosis of CN 

at baseline, received the same diagnosis at 
their last visit. 

Mild Cognitive 

Impairment (MCI/AD) 

Those, having received a diagnosis of CN 

at baseline, either received a diagnosis of 

AD or MCI at their last visit.   

 

TABLE II. THOSE WHO RECEIVED A DIAGNOSIS OF MILD 
COGNITIVE IMPAIREMENT (MCI) AT BASELINE WERE THE 

ONLY GROUP INCLUDED. THE MODELS PREDICTED WHAT 

DIAGNOSIS WERE RECEIVED FOR THESE SUBJECTS AT THE 

FINAL VISIT, WITH THE BINOMIAL OUTCOMES DETAILED 

HERE. 

 

Classification Definition 

Cognitively 

Normal/Mild Cognitive 

Impairment (CN/MCI) 

Those, having received a diagnosis of MCI 
at baseline, either received the same 

diagnosis at their last visit or received a 

more favourable diagnosis of CN. 

Alzheimer’s Disease 

(AD) 
Those, having received a diagnosis of MCI 
at baseline, received a diagnosis of AD at 

their last visit. 

 

The resulting datasets had the following dimensions: 

 

TABLE III. THE FINAL DIMENSIONS OF THE TWO DATASETS 

AFTER PREPROCESSING. 

 

E. Model Tuning  

To produce optimised predictive models, we controlled the 

parameter values for each algorithm using grid searches. 

Models were fitted with a 5-fold cross-validation, after 

being pre-processed, using the procedures described above. 

Models were then evaluated on the test sets. We chose a 

range of models to train using the ADNI data. The models 

trained used the following algorithms: 

 

1. Random Forest (RF) 

2. Support Vector Machines with a radial kernel (SVM) 

3. Gradient Boosting Machine (GBM) 

4. Elastic Net (EN) 

5. Gaussian Processes with a radial kernel (GP) 

6. Classification and Regression Tree (CART)  

 

The models were tuned with the following range of values 

for each dataset. 

 

 

Dataset Variables Observations/Subjects 

CN at baseline 43 285 

MCI at baseline 43 392 



 

 

● CN_b Group 

Random Forest models were tuned over mtry between 1 

and the number of columns for the training dataset, max 

depth between 1-10, minimum split improvement between 

0.01 and 0.2 by intervals of 0.01, minimum rows between 

1-7. The optimal values were found at mtry = 6, max depth 

= 9, minimum rows = 1, and minimum split improvement 

= 0.06. 
 

Support Vector Machines with radial kernels were tuned 

with C from 0 to 5 by intervals of 0.1, and sigma from 0 to 

5, by intervals of 0.1. The optimal values were found at 

sigma = 0.8, and C = 0.2. 
 

Gradient Boosting Machine models were tuned with trees 

from 1 to 400, max depth values of 25-100 by intervals of 

25, learn rate from 0.01 to 0.2 by 0.1. and minimum rows 

between 1-50. The optimal values were found at tree = 10, 

max depth = 50, min rows = 40 and minimum split 

improvement = 0.00001.  
 

Elastic Net was tuned over values of lambda from 0 to 10 

by 0.1 and alpha from 0 to 1 by 0.01. the optimal values 

were found at lambda =10, alpha = 0. 

 

Gaussian Process with a radial kernel was tuned with sigma 

from 0.001- 2 by intervals of 0.001. The optimal value for 

sigma was found at 1.288. 

 

CART was tuned over complexity between 1-250 with 

whole number values. The optimal value was cp = 200. 

 

● MCI_b Group 

Random Forest models were tuned over mtry between 1 

and the number of columns for the training dataset, max 

depth between 1-10, minimum split improvement between 

0.01 and 0.2 by intervals of 0.01, minimum rows between 

1-7. The optimal values were found at mtry = 6, max depth 

= 10, minimum rows = 4, and minimum split improvement 

= 0.06. 
 

Support vector machines with radial kernels were tuned 

with C from 0 to 5 by intervals of 0.1, and sigma from 0, 

5, by intervals of 0.1. The optimal values were found at C 

= 0.1, Sigma = 0.1. 
 

Gradient Boosting Machine models were tuned with trees 

from 1 to 400, max depth values of 25-100 by intervals of 

25, learn rate from 0.01 to 0.2 by 0.1. and minimum rows 

between 1-50. The optimal values were found at tree = 100, 

max depth = 50, min rows = 40 and minimum split 

improvement = 0.00001.  
 

Elastic Net was tuned over values of lambda from 0 to 10 

by 0.1 and alpha from 0 to 1 by 0.01. the optimal values 

were found at lambda =3, alpha = 0.01. 

 

Gaussian Process with a radial kernel was tuned with sigma 

from 0.001- 2 by intervals of 0.001. The optimal value for 

sigma was found at 1.191. 

CART was tuned over complexity between 1-250 with 

whole number values. The optimal value was cp = 200. 

  

 

F. Nested cross-validation 

The CN_b group suffered from a lack of data points. Once 

train/test splitting was performed, the number of rows in 

the test data was less than 100. This led to very high 

variances within the models. Thus, it was decided to 

implement a form of nested cross-validation to estimate the 

performance of a large test set. This procedure involves 

randomly creating N-folds, where N = number of rows/3. 

For each fold, three randomly selected rows were taken for 

the test set, with the remainder as the training dataset. On 

the training dataset, a 5-fold cross-validation is used, where 

we tune different hyperparameters for the model. Once the 

optimal hyperparameters are found, and the model built, we 

predict on the test set, and record the probabilities that are 

returned. We then proceed onto the next fold where the 

process is repeated. This continues until all folds have been 

used, resulting in all data points being predicted as part of 

the test set. This results in a vector of probabilities, one for 

each row of the complete dataset. From there we can then 

compute the performance statistics. We can then proceed 

to test these statistics’ stability using the repeated nested 

cross-validation procedure described below. For the sake 

of consistency, we ran this procedure on both the CN and 

MCI datasets. Further post-processing was performed on 

summary statistics, taking the sensitivity, accuracy, 

specificity, and kappa statistics at the Youden point on the 

ROC curve. 

 

G. Repeated nested cross-validation procedure. 

The stability of a best performing subset of the models was 

explored using a repeated nested cross-validation 

procedure. This procedure involves running the nested 

cross-validation procedure 100 times, such that we can 

demonstrate the variance in model performance. For this 

simulation we repeated the process 100 times, and the mean 

and standard deviations of the AUC was taken. Only one 

model from the nested CV procedure from each dataset was 

chosen for this extension.  

 

III. RESULTS 

The top performing model for the CN data was based on 

the CART with an AUC of 0.88. This indicates a 

significantly strong pattern and decision boundary in the 

data. The CART nested cross-validation was then run 100 

times to test stability, with a resulting average AUC of 0.89 

(SD = 0.006). When considering the variable importance 

chart for this model we can see neuropsychological testing 

being the most important predictors. 

 

The top performing model for the MCI data was based on 

the Elastic Net with an AUC of 0.75. This indicates a 

significantly strong pattern and decision boundary in the 

data. The Elastic Net, after going through the repeated 

nested CV at 100 iterations achieved an AUC of 0.76 (SD 

= 0.01). When considering variable importance, the 

‘last_visit’ predictor proved to be the most important when  

building the best performing model. However, unlike the 

CN dataset, some MRI imaging measurements; the 

midtempal and hippocampal volume, proved to be 



 

 

important, with less neuropsychological tests appearing in 

the top important predictors in this model. 

 
TABLE IV. STATISTICS FOR MODELS APPLIED TO THE CN_b 

GROUP. 

 
TABLE V. STATISTICS FOR MODELS APPLIED TO THE MCI_b 

DATASET. 

 

 
TABLE VI. MEAN(SD) VALUES OF PERFORMANCE STATISTICS  
FOR REPEATED NESTED CROSSVALIDATION OF THE CART  

MODEL FOR THE CN GROUP. 

 
TABLE VII. MEAN(SD) VALUES OF PERFORMANCE STATISTICS 

FOR REPEATED NESTED CROSSVALIDATION OF THE ELASTIC 

NET MODEL FOR THE MCI GROUP. 

 

 

IV. Discussion and Conclusions 

This paper represents a broad attempt to classify on an 

existing dataset, using a range of techniques. We were able 

to demonstrate that, by collapsing final diagnoses into a 

binary classification problem, one can achieve good results 

using several recognised algorithms. We further 

demonstrated marked differences in the apparent decision 

boundaries, when predicting for those with a diagnosis of 

Cognitively Normal, vs Mild Cognitive Impairment, at 

baseline. The separation of the two groups in this study was 

required, as the outcome of the CN_b group shared the 

same diagnoses as the baseline of the second group, 

however this did afford us the opportunity to study these 

groups as distinct datasets. Such findings would indicate 

that there is value in treating these two groups separately. 

To be more explicit, the task of predicting which 

cognitively normal elderly people will deteriorate, is 

apparently different from predicting which of those with 

subjective memory complaints will get worse, with 

differing predictors of import. Such a finding should 

inform future studies, as we move away from ‘one size fits 

all’ approach to ML as a predictive tool within dementia 

research. 

Of further interest is the differing variable importance 

measures for models in the two datasets. The best model in 

the CN_b group was CART, but this technique does not 

Model AUC Sensitivity Specificity  Accuracy Kappa 

Random 
Forest 

0.83 0.72 0.89 0.73 0.24 

SVM 

with 

Radial 
Kernel 

0.85 0.77 0.94 0.79 0.33 

GBM 0.87 0.80 0.94 0.82 0.37 

Elastic 

Net 

0.60 0.65 0.11 0.92 0.15 

Gaussian 
Process 

0.59 0.33 0.86 0.82 0.14 

CART 0.88 0.76 1 0.78 0.33 

Model AUC Sensitivity Specificity  Accuracy Kappa 

Random 
Forest 

0.67 0.91 0.24 0.53 0.13 

SVM 

with 
radial 

kernel 

0.69 0.35 0.82 0.62 0.18 

GBM 0.62 0.82 0.37 0.56 0.17 

Elastic 
Net 

0.75 0.80 0.60 0.68 0.38 

Gaussian 

Process 

0.66 0.88 0.47 0.65 0.33 

CART 0.62 0.60 0.60 0.60 0.20 

AUC 0.89(0.006) 

Sensitivity 0.76 (0.008) 

Specificity 1(0) 

Accuracy 0.78(0.007) 

Kappa 0.34(0.01) 

AUC 0.76(0.01) 

Sensitivity 0.68 (0.06) 

Specificity 0.76(0.06) 

Accuracy 0.71(0.01) 

Kappa 0.43(0.02) 

Fig. 1. Variable Importance for the CN_b group from a Random Forest model. 

Fig. 2. Variable Importance for the MCI group from an Elastic Net model. 



 

 

provide a natural way to calculate variable importance. 

However, we can look at the variable importance chart for 

a related model (Random Forest) and observe that the most 

important variables were neuropsychological tests such as 

the LDELTotal and the CDRSB. In comparison, the 

variable importance plot for the MCI_b group, derived 

from the best model (Elastic Net) demonstrates the most 

important variables to be the time to the last visit (measured 

in months), and a raft of neuroimaging metrics. This would 

seem to indicate that early deterioration (from CN to 

MCI/AD) indicators can be picked up by 

neuropsychological testing at baseline, but later 

deterioration would seem to rely more on changes 

detectable by neuroimaging. The former would support the 

work of Wang et al who used the ADNI repository to 

demonstrate good predictive power (AUC 0.83) in a model 

predicting, using baseline neuropsychological test results, 

those cognitively normal who would go on to develop MCI 

[12]. For the latter, there have been several studies 

indicating the effectiveness of using neuroimaging data to 

predict MCI deterioration e.g. [13]. However, our results 

would suggest that this data demonstrates a particular 

sensitivity for prediction in subjects with Mild Cognitive 

Impairment. 

 

As mentioned previously, this work aims to contribute to 

an existing body of literature which addresses deterioration 

in dementia. This aspect of Alzheimer’s research is 

challenging and multi-faceted. Indeed, a recent review of 

current literature concluded that the progression within 

dementia is heterogenous, both within and between 

persons, and originates from disease characteristics. The 

same paper recommends that possible risk factors should 

be evaluated at baseline, but also at intervals during disease 

progression [13]. To the first point, our current work 

suggests that heterogeneity exists, at the very least between 

the two groups described here. Such heterogeneity would 

indicate differing approaches may be appropriate with 

these groups, when selecting treatments or interventions. 

To the second point, our paper suggests a difference in the 

expression of risk factors at baseline, as compared to the 

subject's final visit. This does indeed support the 

conclusions of the review.  

 

However, a limitation to this study that should be kept in 

mind is the relatively small sample size, particularly within 

the CN_b group. In this dataset the class imbalance was 

90% CN to 10% MCI/AD. This impacted the overall 

stability of the models generated and, although we took 

steps to account for this, using the nested cross-validation 

and repeated nested cross-validation approaches, we 

cannot predict how the model may hold up when presented 

with a larger test set. The decision was made to only use 

data gathered through the ADNI1 study protocol and this 

significantly limited the sample size. This decision was 

reached because the diagnostic criteria differed markedly 

across the different ADNI studies, and therefore direct 

comparisons between the classifications would have been 

difficult. Thus, an obvious avenue to explore is to compare 

the results from this work with future models, built on the 

back of other ADNI studies, such as ADNI2 ADNIGO, or 

ADNI3. 
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