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Abstract

This thesis investigates how assistive technology can be made to

facilitate communication for people that are unable to or have dif-

ficulty communicating via vocal speech, and how this technology

can be made more universal and compatible with the many di↵er-

ent types of sign language that they use. Through this research, a

fully customisable and stand-alone wearable device was developed,

that employs machine learning techniques to recognise individual

hand gestures and translate them into text, images and speech. The

device can recognise and translate custom hand gestures by train-

ing a personal classifier for each user, relying on a small training

sample size, that works o✏ine on an embedded system or mobile

device, with a classification accuracy rate of up to 99%. This was

achieved through a series of iterative case studies, with user testing

carried out by real users in their every day environments and in

public spaces.
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Chapter 1

Introduction

Research currently suggests that sign language is one of the earliest documented

methods of communication between primitive hominids. Premaratne et al. suggests

that before the development of the highly structured languages we have today, we

used hand gestures, facial expressions and body language to express ourselves (Pre-

maratne et al. 2010). Today, the majority of those using sign language for daily

communication are either diagnosed with a disability or have a family member who

has been. More recently, partly as a result of better diagnosis of a wide range of

Autism Spectrum Disorders, children with non-verbal or non-vocal autism use a

form of sign language to communicate (Bonvillian et al. 1981).

As technology development is accelerating, new fields of Assistive Technology

have emerged. Such technology is directed towards developing innovations to help

people considered to have disabilities live better lives and integrate more easily into

their communities. As a result, healthcare technology innovations are receiving a

great deal of attention from the medical field, and research is being pursued in

healthcare innovations relating to assistive technology.

One of the goals of this research project is to help people with limited or no speech

abilities interact with technology and use it to communicate in public with those who

do not understand sign language. The research focuses on exploring new methods to

make this technology more accessible and universal in a number of ways, including

adding translation features, and more easily allowing customisation of di↵erent sign

language libraries and their variations, as well as recognising individual di↵erences

in signing, and finally by improving usability through design, making the device

unobtrusive to wear and easier to control.

14
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1.1 Background

Hand gesture recognition is perhaps the most significant application of human com-

puter interaction (HCI) research that contributes to innovating technology for sign

language users. In such investigations, patterns emerging from hand movement and

orientation are classified using sign language segmentation (Han et al. 2009). This

can be done using two approaches:

1. Vision-based systems

2. Data Glove-based systems

A Vision-based system is a gesture recognition system that is based on com-

puter vision. Such systems employ the usage of cameras, either individually or in

multi-camera systems (C. Vogler and D. Metaxas 1998), to detect the motion of

the signer’s hands and to translate those motions into segmented gestures. Alter-

natively, a Data Glove-based system uses a “glove” that is fitted with an array of

gyroscopic sensors that measure rotation, flex sensors that measure the bending of

the fingers and accelerometers that measure the forces acting on the hand due to

its own acceleration. The data is streamed from these sensors in real-time and pro-

cessed by a computer or micro-controller (a small processing chip). This processing

engine interprets the motions of the hand into sign-language gestures. After the

gestures have been interpreted, using either system, the meanings of each can be

“looked up” and their spoken translations can be played from a speaker.

Vision based systems often require complex programming to isolate the hands

from the image backgrounds, making them hard to use in non-controlled environ-

ment and almost impossible to use for daily communication or as mobile, wearable

devices. Some studies have attempted to improve the output of vision-based systems

by adding multiple cameras (C. Vogler and D. Metaxas 1998), using coloured gloves

(T. Starner et al. 1998), using a depth camera (Borba 2019) or employing neural

network models (F. Zhang et al. 2020). However, the size of the gesture library able

to be recognised remains limited.

In contrast, data glove based systems have proven to be more reliable in register-

ing and relaying hand gestures. Data gloves use sensors that can more reliably detect

finger flexing, hand movement, and orientation (Anetha K 2014). They can also be

simpler than vision based systems. As such, they can o↵er a wider vocabulary and
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a higher recognition accuracy. However, such systems are still not robust enough,

and in the past 10 years, no significant improvement has been achieved in accuracy

rates (Premaratne et al. 2010). This is possibly because researchers currently seem

to be more focused on vision based systems.

There are many versions of the Data Glove that translate sign language to text or

speech. Most of these gloves rely on a smart device for output and it seems that none

have yet moved beyond prototyping. There is almost no published work showing

evidence of sign language data gloves being tested by speech-disabled participants

for daily communication. This may be due to the low accuracy, complexity and the

high cost of the electronic hardware currently required.

1.2 The purpose of the Research

Assistive technology designed to enable communication for non-verbal disabilities is

currently available in the form of software. Special communication apps are used

to help children with speech disabilities communicate via tablets and smart devices.

Throughout this research process, it emerged that parents try to limit access to other

features on the tablet by locking the device to be used only with the communication

app. Through observation (as detailed in Section 5.3.4) while visiting schools and

sitting in classrooms, I noted that this causes frustration to the children although it

was designed to make their lives easier. I identified a need for a stand-alone device

that serves the purpose of communication without o↵ering any other features.

For these reasons, I have chosen to explore the data glove approach to the trans-

lation of sign language for this research, primarily because they have potential to

operate independently from a smart device. Additionally, glove based sign language

recognition systems have been reported to o↵er a wider vocabulary and better recog-

nition accuracy than computer vision systems.

It is still important to consider that such systems struggle to find a match as the

sign language vocabulary data base grows larger (Premaratne et al. 2010). Another

drawback is the limited manoeuvrability due to wires connecting the gloves to the

computer. I address these two problems during the iterative cycles of prototyping

and identify them as essential criteria for evaluation.
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1.3 Location and scope of the Research

In this research, I explore the many opportunities and challenges for the design of

a robust, stand-alone Data Glove to translate sign language hand gestures to text

and speech. The glove would have sensors to monitor the flexing of fingers and

to calculate hand orientation in order to more accurately classify complex hand

gestures.

Previous research has shown that many systems have failed because of the vast

range of sign language vocabulary they had been manually programmed to process

(Dipietro et al. 2008). I propose programming a limited vocabulary of signs and rely

primarily on machine learning-driven software to train the glove for new words.

I explore the implementation of machine learning techniques to allow users to

train the glove and upload their own sign language gestures and dialects. Impor-

tantly, I have chosen not to use approaches that require large amounts of data

including some ‘deep learning’ approaches due to the complexities of deploying and

testing such systems using embedded devices for the purposes of improving acces-

sibility and customisation, as well as the fundamental requirement for each user

to spend an unreasonable amount of time creating such a dataset. However, some

cloud-based systems that require similar methods are tested as part of the research.

I move on to adding more features, such as speech translation to di↵erent languages

and wireless smart-phone communication to make the glove more usable in external

environments and more easily integrated into daily technology contexts, in the same

way as conventional phones or tablets.

I recruit participants who use sign language as their primary language for com-

munication and conduct a series of usability studies in their natural environments

at home, school and public spaces.

People with a various range of abilities, both sensory and physical, were involved

in the evaluation cycles of the proposed glove. However, the most important research

findings were relevant to school-aged-children, primarily those with speech and/or

hearing impairments as well as non-verbal Autism. As such, special considerations

were in place to best cater for the chosen user groups.

A big part of the research took place at Special Educational Needs (SEN) schools

in the UK with the collaboration of Essex County Council.
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1.4 Research Questions

Research Questions:

• RQ1: How can an assistive technology innovation be developed to facilitate

communication for people with speech disabilities who use sign language for

their daily communication?

• RQ2: How can this innovation be made more universal and compatible with

di↵erent libraries of sign language?

• RQ3: Can machine learning be employed to extend the applications of this

system beyond sign language recognition to enable building a library of custom

signs by training a personal classifier for the purpose of recognising individual

and unique hand gestures?

1.5 Structure of the Dissertation

I present the research findings through a series of controlled usability studies. I

employ interactive user centred design research methods where most of the findings

are gained through iterative prototyping. I engage non-verbal participants in the

case studies and implement their feedback into the research cycle.

The plan to limit pre-programmed vocabulary and simplify recognition is a novel

attempt to reduce the size and number of components required for the hardware and

reduce the complexity of the minimum required software to use the system, in order

to make the data glove simpler to run, easier to wear and cheaper to produce.

During the research, a great deal of discussion arose around the innovation as-

pect of the technology used. As the case studies progressed, it was found that the

technological development, as guided by the iterative prototyping process, strongly

aligned with the progression towards the commercialisation of that technology (Sec-

tion 9.3). This eventually lead to the development of a fully integrated on-body

hand gesture classification system and a patent was filed and ultimately granted

(Appendix F.1), documenting this contribution to the field of research.
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1.6 Summary

After looking at previous work in this field, I was motivated to introduce a new

technology to the assistive wearables and healthcare innovation markets and give a

chance to speech disabled individuals to try it and use it.

I showcased the technology developed for this research at multiple tech exhibi-

tions globally, gave talks about it at conferences and won prestigious awards, in-

cluding IBM Grand Prize for Artificial Intelligence for Social Care and MIT Award

for Challenging Minds in Artificial Intelligence Solving Social Issues.

A spin o↵ start-up resulted from this research, after a need for such technology

was identified by usability studies participants. The start-up was awarded govern-

ment grants which funded further development of the data glove and allowed the

research to expand to six schools for Special Educational Needs (SEN) in the UK.

As of now, more than 30 children are using the data glove, developed as part of this

research, in the classroom to overcome daily communication challenges.

On a social and economical level, I have worked closely with councils, assistive

technology providers and medical insurance companies in the UK to get the data

glove approved on their platforms, as part of a scheme to issue it as a benefit for

education and employment, thus sparing the user the cost, and insuring they get

the technology they need for communication.

This research is part of a programme to develop and produce an accessible data

glove that translates sign language to text and speech, facilitating daily communi-

cations between individuals with speech disabilities and the general public.

Some of the work demonstrated in this research was drafted into a patent ap-

plication titled: “Method and system for gesture recognition”, filed to the United

Kingdom Intellectual Property O�ce (UKPTO) on the 20th December 2019, and

granted on the 16th November 2021 with patent No. GB2590502 (Appendix F.1).



Chapter 2

Literature Review

2.1 Sign Language Applications of Hand Gesture

Recognition in Human Computer Interaction

(HCI) Research

In this section I discuss various approaches taken by researchers, over the last two

decades, to enhance the accuracy of hand gesture recognition and expand its appli-

cations.

Gesture recognition is a research field of computer science that is explored in a

number of fields, including robotics, machine learning and Human Computer Inter-

action (HCI). Gesture recognition focuses on the computer recognition of expressions

or motions by humans including hands, body language and facial expressions. HCI

has gained a lot of research attention utilizing hand gestures (Chen 2003). There

are many applications which employ gestures to control output such as media play-

ers, gaming controllers, robots and virtual objects or environments (Mäntyjärvi et

al. 2004; Ong and Ranganath 2005). The output of sign language is considered

to be “one of the single most prominent applications of hand gesture recognition”

(Premaratne et al. 2010).

Researchers have explored the idea that sign language hand gestures can be

used to interact with computer interfaces (P. Premaratne and Nguyen 2007). The

advancements in sensors, accelerometers and infrared cameras further enhanced the

accuracy of recognition modules.

Since the 1990s, there has been lots of research into developing technology for sign

20
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language users (T. Starner et al. 1998). Advancements in hand gesture recognition

research has helped improve recognition for sign language assistive technology. Sign

language hand gestures can be recognized by processing four patterns: “hand shape

also known as hand configuration, hand movement, orientation and classification.”

(X. Zhang et al. 2009).

In his book Human Computer Interaction Using Hand Gestures, Dr Prashan

Premaratne explores the impact of this kind of technology in depth:

“Today the focus has shifted again from the mundane use of sign lan-

guage to the more advanced human-machine interaction. This would,

in e↵ect, advance the interactions that disabled people would have with

technology as well as make sign languages easily understandable by ordi-

nary users. The technology can also pave way for automatic translation

to other languages in other parts of the world making a silent commu-

nication revolution for the disability. Yet, the challenges are enormous

and the di↵erent approaches taken by researchers around the world have

shed light on di�culties ahead as well as the progress made so far.”

- Premaratne et al. 2010

In this section, I start with an overview of the historical development of hand

gesture recognition in HCI research, highlighting the invention of data glove-based

control interfaces and how that was eventually combined with computer vision,

where gloves used markers and colours for finger tracking rather than sensors, leading

up to the glove based systems we know today.

2.2 Overview of Hand Gesture Recognition Re-

search in Human Computer Interaction (HCI)

Since the 1980s

In this section, I collate a non-exhaustive summary of hand gesture recognition

prototypes highlighting elements which relate to this research.

Humans have always used hand gestures as a natural means of non-verbal com-

munication. The field of Human Computer Interaction (HCI) incorporates extensive

literature on research for recognizing hand gestures through machine learning, for
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the purpose of replacing keyboard and mouse interaction with electronic devices

(Takahashi and Kishino 1992). For the last few decades, hand gesture recognition

research has made significant contributions to interactive human-machine interfaces

and virtual environments (Takahashi and Kishino 1992).

Some gesture recognition studies focus on static hand postures (Kılıboz and

Güdükbay 2015), while others analyse dynamic hand motions (Rigoll et al. 1997).

HCI interpretation of gestures require the posture and movement of hands, arms

and sometimes other parts of the body to be measurable by the machine (Pavlovic

et al. 1997).

Since the 1980s there have been a number of studies dedicated to developing

gesture-based interaction techniques in the domain of HCI (Rautaray and Agrawal

2015). These studies are mainly classified as glove-based or vision-based (Pavlovic

et al. 1997; Rautaray and Agrawal 2015).

The first research approach to recognize hand gestures was to measure the bend-

ing of finger joints and hand orientation by designing special gloves called “Data

Gloves” (Liang and Ouhyoung 1998; Pavlovic et al. 1997; Rautaray and Agrawal

2015; Takahashi and Kishino 1992). Data Gloves are gloves wired with flex sensors,

which are used to measure finger bends and joints angles, accelerometers and gy-

roscopes, which are used to measure hand orientation and direction. Data Gloves

have proved to be very reliable in relaying hand gestures’ position and motion data

(Mitra and Acharya 2007). However, the multiple wires which connected the gloves

to the computer limited users’ mobility. This led to the development of a wireless

approach to gesture recognition defined as “vision-based systems” (Rautaray and

Agrawal 2015). Vision-based hand gesture recognition systems employed multiple

cameras to classify hand gestures but required complex software for image process-

ing to isolate the hand gestures and deal with finger occlusion (Pavlovic et al. 1997;

Shen et al. 2012).

Before flex sensors were available, researchers used light tubes, fibreoptic (Taka-

hashi and Kishino 1992), and resistive ink (LaViola 1999) to detect if fingers were

flexed or bent.

The earliest documentation of a sensor-based Data Glove was developed in 1983

by Gary Grimes (Dipietro et al. 2008) commissioned by “Digital Entry Data Glove”.

This glove was wired with multiple sensors. Touch and proximity sensors were

attached to determine if two fingers were making contact with each other. Flex
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sensors were placed over the knuckles to measure fingers bending, and a tilt sensor

was positioned at the wrist to detect hand orientation. This glove was programmed

to recognize 80 “alphanumeric characters”. Despite the complex circuitry, this glove

had low accuracy rates and had heavy wiring. The development of this glove stopped

at the proof of concept phase and never made it to commercialisation.

The “MIT data glove” (Premaratne et al. 2010) was one of the earliest advanced

data gloves of the 1980s. It became a commercial product for the gaming industry

and was considered an example of pioneering HCI research to replace keyboard input.

Registered as AcceleGlove (Mobile Mag - AcceleGlove 2020; WTOL - AcceleGlove

2020), the glove was wired with an accelerometer to record hand and finger move-

ment in 3D. AcceleGlove has applications in video games, sports training, physical

rehabilitation and virtual reality. It costs between $1000 and $5000.1

More data gloves started to appear in the industry, designed for motion cap-

ture, music applications and animation. I mention below three examples that were

considered important commercially: CyberGlove II & III2, 5th Dimension Technolo-

gies’ (5DT) Data Glove3 and P5 Glove4. These gloves were highly accurate but very

expensive and could only be operated by professionals and in a studio setting.

CyberGlove II and CyberGlove III are two generations of data gloves developed

by CyberGlove Systems. They are designed for motion capture for the motion

picture, visual e↵ects and animation industries. These gloves are wired with 22

sensors including flex sensors and a WiFi™ chip to send data wirelessly to a controller

computer.

5DT Data Glove was also designed specifically for motion capture for the motion

picture and animation industries. It is wired with an array of sensors and is Blue-

tooth™ enabled to allow the provision of a wireless data transfer system, running in

real time.

X-IST Data Glove5 is a motion capture glove with touch sensors placed on the

fingertips. It was designed to be used for music related applications. It requires a

1Cost is an important consideration for this research. Making an a↵ordable and accessible glove

is highlighted as one of the research goals.
2CyberGlove - http://www.cyberglovesystems.com/cyberglove-ii
35th Dimension Technologies - https://5dt.com/5dt-data-glove-ultra/
4P5 Glove - http://www.mindflux.com.au/products/essentialreality/p5glove.html
5X-IST - https://www.globalsources.com/si/AS/SouVR-International/6008831878791/pdtl/

X-IST-Data-Glove/1023350755.htm

http://www.cyberglovesystems.com/cyberglove-ii
https://5dt.com/5dt-data-glove-ultra/
http://www.mindflux.com.au/products/essentialreality/p5glove.html
https://www.globalsources.com/si/AS/SouVR-International/6008831878791/pdtl/X-IST-Data-Glove/1023350755.htm
https://www.globalsources.com/si/AS/SouVR-International/6008831878791/pdtl/X-IST-Data-Glove/1023350755.htm
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connection to the computer via a USB cable.

A great example of a data glove which replaced keyboard and mouse input for

gaming is the P5 Glove. The P5 Glove was developed by MindFlux™ as a way to

provide a cheaper alternative to many expensive wired gloves available in the market

that can be used for gaming. The P5 incorporates a flex sensor as well as remote

camera tracking technologies. It provides users intuitive interaction with 3D virtual

environments; such as games, websites and educational software.

Data Gloves have come a long way in employing advanced sensor technology

resulting in satisfactory hand gesture recognition output. However, they remain

heavy in wiring and are still largely extremely expensive to manufacture. Vision

based recognition systems proved to be more convenient in terms of hand gestures

(Lamberti and Camastra 2012), as they do not constrain the flexibility of hand

movements. However, they still retain majour issues, for example hand isolation

and lack of mobility, as described below.

Although this research focuses on sensor-based Data Gloves for hand gesture

recognition, I will highlight briefly the history of Vision-based systems, how they

work and what are the main comparable features to glove-based gesture recognition.

In the early stages of vision based recognition systems, low resolution cameras

and limited computer power made it very di�cult to isolate gestures. To help the

camera in tracking hand gestures, non-wired coloured gloves were sometimes used

to enhance recognition (James and Mubarak 1994).

With the advancement of video cameras and greater processing power, researchers

have moved towards developing vision based gesture recognition systems employing

real-time vision processing software (Pavlovic et al. 1997).

The earliest computer vision gesture recognition system emerged in the 1980s.

This was a glove developed by MIT Media Lab where the finger tips were marked

with coloured LED which created di↵erent “illumination patterns for di↵erent ges-

tures” (Sturman and Zeltzer 1994) which could then be segmented and interpreted

by the computer.

Occlusion resulted in very poor performance of the glove, especially since there

were many variations in hand gestures when performed by di↵erent users.

Vision-based recognition modules used multiple layers of feature extraction soft-

ware, skeletal tracking, sample matching and 3D positioning (Berci and Szolgay

2007). However, researchers were only able to extract static gestures. Extracting
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dynamic gestures was still not possible with this approach.

More attempts were made at combining coloured gloves with cameras for vision

based hand gesture recognition. One of which was reported by Davies et al. (Stur-

man and Zeltzer 1994) who used gloves with coloured finger tips combined with a

grey-scale camera. The system could determine seven hand gestures and was mainly

designed as a proof of concept as opposed to being a commercialisable product.

Although these approaches represented progress, the problem of occlusion re-

mained. It was later addressed specifically by multiple studies. The earliest being

in 1996 by Iwai et al. (Iwai et al. 1996) who introduced the use of decision tree-based

methods to allow the computer to recognize di↵erent gestures. The results of this

study led to the creation of further research, including the first system to be used

for virtual reality applications (Wang and Popović 2009). The late 1990s witnessed

a shift in approach for vision based hand gesture recognition systems. Researchers

were able to develop hand recognition systems which relied on computer vision but

that did not require the use of gloves or markers (Rehg and Kanade 1994). This was

due to improvements in camera technology, resulting in enhanced resolution and

also more reliable detection and analysis. Researchers added a second and in some

instances, a third camera to improve the recognition of hand gestures (Darrell and

Pentland 1993; Gennery 1992). Depth cameras were later introduced and proved to

be revolutionary.

For the first time, real-time gestural extraction was demonstrated in 1995 (Bo-

bick and Wilson 1995; Utsumi and Ohya 1999) through the use of depth cameras.

However, this required a static background to be present behind the subject.

At the turn of the millennium, vision-based hand-gesture recognition systems

were finally able to identify a growing number of gestures in real time, but only

for static gestures. This encouraged researchers to combine the new multi-layered

gesture recognition software with the latest camera technology; in an attempt to

decipher dynamic hand gestures using computer vision (T. E. Starner and Benton

1995).

As hardware technologies improved, high resolution cameras became easily avail-

able to researchers and at a low cost, compared to the more expensive versions used

in previous vision based studies. As a result, researchers “devised new ways to rely

on feature extraction from the high quality images available instead of sophisticated

multi camera system”(Chen 2003).
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A pioneer study in recognizing dynamic hand gestures using computer vision was

conducted by Chen et al. in 2003 (Chen 2003). The system was designed to recog-

nize dynamic hand gestured in real time against a static background. Recognition

accuracy levels were above 90% in identifying 20 gestures. The system used com-

plex multilayer software employing hand tracking, feature extraction, and Hidden

Markov Model (HMM) training for gesture recognition (Chen 2003).

Many studies followed (Berci and Szolgay 2007; Binh et al. 2005; Gastaldi et al.

2005; P. Premaratne and Nguyen 2007) using di↵erent approaches for vision based

gesture recognition. Results vary but the primary challenge remains in isolating

hand gestures from the background and retaining the mobility of the system.

“The development of the computer vision based gesture recognition will

have to go a long way in realizing what has been achieved by glove based

systems. No single one prominent strategy in camera setup to feature

extraction to classification has been established as the research indicates

di↵erent trends in myriad of ways. Yet, a powerful application such as

sign language stands to challenges the brightest minds to develop the

best of approaches in the above areas for a cohesive solution.”

- Premaratne et al. 2010

It is important to note that computer vision based hand-gesture recognition will

never be mobile as it relies on high resolution cameras and powerful computing to

be successful. The unfavourable impacts of this on the form factor and cost of the

technology mean that glove-based hand-gesture recognition has a better chance on

multiple counts to serve as a communication tool for modern sign language users.

In the following section, I narrow the prior research in gesture recognition to

focus on sign language translation, and how it evolved with both vision based and

glove bases systems. I show examples of translating di↵erent standardised libraries

of sign language, though they could equally be applied to custom hand gestures and

personal libraries of sign language.

Sign language hand gesture recognition research builds on the background re-

search summarized above.
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2.3 The Development of Sign Language Recogni-

tion Systems to Date

A central goal of Human Computer Interaction research is to explore the use of new

types of interfaces that use di↵erent kinds of inputs, for example human gesture. By

the 1980s, systems had “..already been developed to react to limited hand gestures,

especially in gaming and in consumer electronics control.” (P. Premaratne and

Nguyen 2007).

Since then, hand gesture recognition research has been used to attempt to deci-

pher sign language (Kawai and Tamura 1985). There are a range of di↵erent sign

language libraries and types, just like any language and these vary from one region

to another.

This research focuses on classifying a standardised library of sign language hand

gestures using a machine learning software that can then be trained to recognize

customized sign language.

I chose to start with a standardised sign language because they are widely used

by the hearing impaired and deaf communities around the world. Recent statistics

estimate as many as 70 million people around the world use a standardised sign lan-

guage library including immediate family members of speech disabled individuals6.

It is important to identify the fundamental features of most standardised sign

language libraries’ hand gestures to accurately address segmentation and classifica-

tion research queries. Finger spelling, hand orientation, facial expressions and body

language are essential elements to be considered (Kyle et al. 1988). A good example

for facial expression is raising the eyebrows to indicate a higher pitch or to ask a

question. It is also important to consider that some sign language hand gestures are

static, meaning that the hands remain still, while others are dynamic, where hand

movement a↵ects the meaning of the sign (Armstrong and Karchmer 2009). In ad-

dition, it is crucial to examine the dictionary of hand shapes for sign language to

determine whether it is necessary to track two hands in recognition systems or if one

hand would be su�cient. Taking American Sign Language (ASL) as an example, in

signs using two hands, either both hands are performing identical gestures, or the

dominant hand is moving while the passive hand is still (Tennant and Brown 1998).

6World Federation of the Deaf - https://wfdeaf.org

https://wfdeaf.org
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It is therefore likely that a recognition system that tracks a single hand, which is

the dominant hand, might be reliable in evaluating sign language translation.

Di↵erent research approaches employ di↵erent classification methods. However,

they all use a combination of the elements identified above. Just like hand gesture

recognition systems, sign language recognition systems are based on either computer

vision or data gloves.

2.4 Computer Vision Based Sign Language Recog-

nition Systems

Computer vision based sign language recognition systems are divided into two cat-

egories: static gesture recognition and dynamic gesture recognition (Waldron and

Kim 1995) systems. Static gesture recognition is designed to classify isolated hand

posture whereas dynamic gesture recognition records and processes continuous hand

movement. Both static and dynamic hand gesture recognition systems face the chal-

lenge of isolating the hand from the background, not to mention incorporating body

movement and facial expression for an accurate translation of sign language.

Depth cameras (Borba 2019) and coloured marker gloves (T. Starner et al. 1998)

were used to help the computer isolate hand gestures. This proved to be very di�cult

in non-controlled environments, limiting recognition to labs and research facilities.

As a result, computer based recognition systems were never upgraded to become

mobile systems. The size and high cost of the equipment also made it di�cult to

test outside of the lab.

I mention here, in chronological order, previous research that has attempted to

enhance sign language hand gesture recognition using computer vision, mostly utiliz-

ing the same methods highlighted in hand gesture recognition research background

(Section 2.2).

The earliest accurate system was reported in 1988 by researchers Kawai and

Tamura of Osaka University. Kawai and Tamura published a study featuring their

attempt at machine recognition of Japanese sign language in real-time (Shinichi

Tamura and Kawasaki 1988). In this study, Kawai and Tamura used image pro-

cessing techniques to recognize 20 Japanese hand gestures. They could isolate hand

gestures from the background by “comparing a grey scale intensity of two consecu-
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tive image frames” (Shinichi Tamura and Kawasaki 1988).

A decade later, in 1995, MIT researchers Starner and Pentland published research

on “dynamic gesture recognition and classification based on coloured gloves and

Hidden Makov Model (HMM) classifier” (T. E. Starner and Benton 1995). They

reported a 92% success rate in accurate translation of American Sign Language

(ASL) without explicitly modelling the fingers, rather, by deciphering hand outlines.

Recognition models were based on camera tracking of coloured gloves. Their system

used a limited vocabulary of 40 hand postures (T. E. Starner and Benton 1995).

In 1997, Grobel and Assan, researchers at Aachen University of Technology in

Germany, utilized HMM classifiers for a video based recognition system of Nether-

lands sign language (Grobel and Assan 1997). They designed a vision-based system

to recognize 262 isolated hand postures. Accuracy level was reported at 94%. They

also used coloured gloves but with an improved design to enhance accuracy levels.

By 2000, most vision based recognition systems incorporated both static and

dynamic sign language hand gestures. This was referred to as local (hand posture

and location) and global (hand movement and path) information (Imagawa et al.

2000).

The first research addressing both local and global gesture information was by

Imagawa et al. in Japan (Imagawa et al. 2000). They used a clustering technique

to layer multiple images of hands extracted from sign language images. Accuracy

was recorded at “...around 94% which was a significant achievement given that they

relied on very low resolution images” (Premaratne et al. 2010).

In 2004, researchers Vogler and Metaxas at the University of Pennsylvania also

devised both static and dynamic gesture recognition system for ASL but this time

relied on HMM and 3D motion analysis” (Christian Vogler and Dimitris Metaxas

2004). Their system was the first to “...break down the signs into their constituent

phonemes, modelling simultaneous events in stochastically independent channels”

(Christian Vogler and Dimitris Metaxas 2004). They used a vocabulary of 22 signs

and three channels to validate their system. Results were recorded at the 96%

accuracy mark.

Another breakthrough in 2004 was the employment of neural networks to classify

sign language hand gestures by feature extraction.

A pioneering approach using neural networks to recognize sign language hand

gestures was attempted by Isaacs and Foo in Florida. Similar to Imagawa et al.



CHAPTER 2. LITERATURE REVIEW 30

(Imagawa et al. 2000), Issac and Foo also used hand images for attempting video-

based sign language recognition. However, they utilize a vector to feed a neural

network that recognizes the ASL alphabet (Isaacs and Foo 2004). Their system

results in 99% accuracy in the context of finger spelling. According to Premaratne

et al., They planned to expand recognition models by designing “algorithms for ASL

feature vector recognition” (Isaacs and Foo 2004), however, no record was found of

them having achieved that to date.

The above studies suggest that sign language hand gesture segmentation has

high accuracy results. More recent research has built on this theory combining it

with new emerging computational technologies.

The debut of Kinect had a very strong impact on the sign language recognition

community. Kinect o↵ered a real time solution to pose estimation and hand gesture

isolation, that was able to run without substantial computational power and could

be acquired at a low cost. This presented a “short-cut to real time performance and

made recognition possible in di↵erent environments” (Cooper et al. 2012).

A study in 2012, conducted by Cooper et al. at University of Surrey presents

what they call a “sophisticated sign language recognition system based on Kinect”

(Cooper et al. 2012).

For sign language recognition, Cooper et al. used a two-stage recognition system

based on linguistic sub-units paired with Kinect 3D hand tracking in real time. The

collected data was combined using a sign language classifier. A neural network was

then employed to encode the variations in sub-units (Cooper et al. 2012). This

approach resulted in recognition rates of 99% based on a 20 sign multi-user data set

and 81% on a 40 sign test data set.

Cooper et al.’s research is a culmination of all previous research in the field of

gesture recognition based on computer vision and is the most comprehensive e↵ort

to date. It was published in many machine learning journals and HCI conferences.

Sign language recognition based on computer vision gives high accuracy rates

when it is used with a limited vocabulary of trained signs. As the number of words

increase the accuracy rate declines (Fang et al. 2003). Results vary greatly between

di↵erent users due to the variation in hand shapes, speed, position and orientation.

Sign language libraries are enormous with some signs being very similar and dif-

ficult to distinguish. Computers still struggle with isolation, depth, classification

and segmentation. Sophisticated software and multi-stage processing is required to
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recognize sign language. As a result, it is unlikely that these systems can exist yet

as accessible mobile devices or become available universally to sign language users

and deaf communities.

It is for these reasons that I opt to exclude vision based recognition systems from

this research and emphasize on data glove based sign language recognition systems.

2.5 Data Glove Based Sign Language Recognition

Systems

Data glove based systems have proven to be more reliable in registering and relaying

hand gestures than vision based systems. Data gloves use sensors that can more

reliably detect finger flexing and bending, as well as hand movement and orientation

(Parvini et al. 2009) as well as global and local features. These systems are simpler

than vision based systems because they don’t have to consider background isolation

or hand motion tracking.

There are many versions of the data glove that translate sign language to text

and/or speech. I mention here an overview of the prototypes developed to date, and

how they progressed to the versions we know today. One of the earliest attempts to

translate sign language hand gestures to speech was Fels and Hinton’s Glove Talk

(Fels and Hinton 1993) in 1992. They used a data glove and a speech synthesizer

to translate 66 root words with six di↵erent endings and a vocabulary of up to

200 words. Their data glove is wired with sensors to collect finger bending data and

hand orientation over 16 parameters which is measured every 1/60th of a second. The

data is then sent through a computer which defines the text and sends it to a speech

synthesizer to translate it into human-like speech. The computer starts processing

when it detected a motion from the glove. A stop in motion gives the computer a

message of the end of the gesture and it stops processing. One of the challenges

they faced was adjusting the signing speed to tell the system when to start/stop

processing. Another challenge was the response delays since three di↵erent software

were being used at the same time and sharing the same memory. Glove Talk resulted

in 1% incorrect output and 5% non-identifiable gestures. The system was not tested

with di↵erent users to observe system adaptation to user variation.

In 1998, building on Fel’s and Hinton’s Glove Talk system (Fels and Hinton
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1993), researchers Liang and Ouhyoung (Liang and Ouhyoung 1998) from National

Taiwan University were able to interpret Taiwanese Sign Language in real time using

a data glove and HMM. They first solved the end-point detection problem - a major

challenge for Glove Talk - by creating a threshold for gesture time variance. They

classified recognition models based on four gesture parameters: “posture, position,

orientation and motion” (Liang and Ouhyoung 1998). Their prototype system was

programmed to recognize a vocabulary of 250 words with an accuracy rate of 80.04%

In 2003, building on both Fel’s and Hinton (Fels and Hinton 1993) and Liang and

Ouhyoung‘s (Liang and Ouhyoung 1998) research, Fang et al. (Fang et al. 2003)

attempted to develop an advanced sign language recognition system by improving

processing speed for a large vocabulary of sign language based on hierarchical de-

cision trees. They acknowledged that output delays were due to the systems being

programmed to recognize more words and so their proposal helped the computer

prioritize which clusters to look through first. Fang et al‘s research addressed and

solved a major challenge in previous data gloves - how to reduce recognition time

without the loss of accuracy. Their testing results showed processing speed was 11

times faster than previous systems and was able to process a vast vocabulary of

5113 words.

In 2011, a di↵erent approach to sign language recognition systems was proposed

by Oz and Leu (Oz and Leu 2011) who used a motion tracker, an artificial neural

network and a sensor glove to translate ASL to speech. Three sets of data were

collected and aligned for an improved classification of sign language.

Finger and hand shape data was collected from the sensory glove. Hand motion

data was collected from the motion tracker. Both data sets were then classified by

the artificial neural network. Gestures feature extraction was continuously being

performed in real time. The system was trained to recognize 50 ASL gestures with

accuracy results of 90%.

2.6 Current Academic Projects and Early Proto-

types of Sign Language Data Gloves

Sign language recognition technology is currently being developed by many research

teams at universities and digital technology labs. Recognition systems are still based
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on either computer vision or data gloves. However, researchers continue to explore

solutions that bring them closer to producing a reliable and embedded system which

could be integrated into the speech-disabled community and enable them to express

themselves more naturally.

In this section, I mention some of the most significant academic research projects

in this field and highlight the features and limitations of this work. Many of these

projects build on the literature mentioned above and show great promise but have

not yet moved beyond the research phase, to taking it outside of a lab environment,

testing with real users, or production.

Perhaps one of the earliest academic debuts of a working sign language data

glove was AcceleGlove, developed by researcher Jose Hernandez-Rebollar at George

Washington University in 2003 (Mobile Mag - AcceleGlove 2020). AcceleGlove was

presented as an experimental device that translated the hand gestures and body lan-

guage of ASL into spoken words. It was perceived as a wearable computer with very

small electric circuits which was considered revolutionary at the time. AcceleGlove

is a right-hand glove with two small armbands, for the wrist and the upper arm. The

glove is wired with sensors and a micro-controller attached to the wrist, mapping

the placement and movement of the arm and fingers. The collected data from the

sensors is processed by the computer and converted into speech spoken out through

a speaker or text displayed on a computer screen. This single glove can produce up

to 200 words which could be signed using only one hand and a few expressions. As

for accuracy, Jose Hernandez-Rebollar stated that “the device usually is accurate,

though the precision declines with complicated movements; for example, words that

start with the same hand movement or orientation” (WTOL - AcceleGlove 2020).

This was one of the most powerful data gloves in terms of output to be published

in 2003. However, the processing happens on the computer itself as well as the text

display, so AcceleGlove could not operate as a mobile device.

In 2012, a data glove was designed and programmed by two Ukrainian students

to translate sign language into speech. The glove was called Enable Talk7 and was

part of a competition organized by Microsoft in which it won the first prize. Enable

Talk is fitted with “flex sensors, touch sensors, gyroscopes and accelerometers, as

well as some solar cells to increase battery life” (Enable Talk 2017). The glove has

a system that can translate sign language into text and then into spoken words

7EnableTalk - http://enabletalk.com

http://enabletalk.com
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using a text-to-speech engine. The whole system then connects to a smartphone

over Bluetooth™. A major drawback is that the Enable Talk system mostly uses

Microsoft technology and is not compatible with any other platform.

The team has built a number of prototypes and claim to have tested them with

sign language-users in the Ukraine, although no documentation of usability studies

have been shared or published. Enable Talk would have been highly competitive if

introduced into the market because it was set to cost under $100 and also promised to

come equipped with a software the enables the users to teach the system new gestures

and eventually build a library of custom gestures. However, no further research has

been done on this project since 2012 and it did not move into production.

In 2013, inspired by Jeremy Blum‘s innovation, the Sudo Glove (Blum 2012)

which is a sensor data glove for non sign language applications, Roman Kozak8

set out to create a device that could utilise the same technology (flex sensors, ac-

celerometer and microcontroller) while accomplishing a di↵erent task: translating

sign language into text and speech. Roman Kozak, a high school student at the

time, is probably the youngest programmer who designed a glove-based sign lan-

guage translator. He was also the first to program an Arduino9 to read analog data

from flex sensors and outputs them as letters matching the sensor data with a series

of if-statements. In his own (albeit limited) tests, he encountered no errors. How-

ever, it was still limited to letters, specifically, one letter at a time. Letters were not

aligned to form sentences. Kozak stated that “distinguishing between similar sign

language gestures was very challenging” (Rozak 2017). Processing and display of

letters happened on a computer screen or a smart device tablet sent wirelessly via

Bluetooth™. Kozak has now stopped working on this glove and instead moved on to

create other innovations with di↵erent technology10.

In 2014, Gesture Glove11 was another project that generated significant press

attention. It was designed by two groups of students at Cornell University who have

developed a di↵erent version of a glove which translated sign language to speech.

Designed and built to be worn on the right hand, this glove used a machine learning

algorithm to translate sign language into words. The glove hardware is very similar

8Roman Kozak - http://www.romanakozak.com/sign-language-translator/
9Arduino - https://www.arduino.cc/en/Main/Products/

10Verdi - http://www.verdiag.com
11Gesture Glove - http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/

rdv28 mjl256/webpage/

http://www.romanakozak.com/sign-language-translator/
https://www.arduino.cc/en/Main/Products/
http://www.verdiag.com
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
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to previous gloves, including most data gloves (Prashan Premaratne et al. 2013). It

consisted of five flex sensors, a gyroscope and a micro-controller. The incoming data

from the sensors are sent serially to a computer to be analysed in conjunction with a

Python script. By collecting a moderate amount of this data for each letter or word

and feeding it into a machine learning algorithm, it can train over this dataset and

learn to associate a given hand gesture with its corresponding sign. It is interesting

that the glove continuously learns from the user. However, there are important

features to discuss about this glove, namely the lack of accessibility. First, much of

the computation happens on the computer and not the glove itself, which makes the

glove heavily reliant on a computer to operate. Secondly, from an accuracy point

of view, in some cases, the change in the resistance from the flex sensor will be

negligible and the algorithm may be unable to discern the di↵erence between these

signs. Thirdly, this glove is only programmed to recognize and output letters, which

is not necessarily practical for sign language users. The hardware is also bulky at

this early prototype state, making it di�cult to wear.

Also in 2014, Anetha K, assistant professor at the Institute of Technology, Coim-

batore in India, developed a sign language recognition data glove called Hand Talk

(Anetha K 2014). Hand Talk uses an artificial neural network (ANN) to trans-

late ASL alphabet into text and sound. The glove circuit consisted of a controller

unit, text to speech conversion module and an LCD display. The glove itself was

wired with flex sensors, a 3-axis accelerometer and sEMG sensors to capture ges-

tures (Anetha K 2014). Just like previous data gloves discussed above, the flex

sensor produced the change in resistance value depending on the degree of bend in

each finger. The corresponding hand movement and orientation was reported by

the tri-axial accelerometer. A novel aspect of this technology was its use of sEMG

sensors, which are used to measure the muscle activity of the hand while performing

gestures in terms of electrical signals. The recognized gestures were then converted

and displayed as corresponding text and speech using a text to speech conversion

module (Anetha K 2014). This glove builds on all previously discussed glove proto-

types. Testing for Hand Talk was published based on its ASL alphabet output only,

which again makes it not necessarily practical for sign language users. Hand Talk

hardware was not wearable. Output relied on a computer to display letters and to

produce sound(Anetha K 2014).

One of the latest sign language translation data glove prototype was developed
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by researchers at Mexico’s National Polytechnic Institute (IPN). This prototype,

created by Miguel Felix Mata and Helena Luna Garcia, senses hand movements of

the user and identifies them with the 26 letters of the English alphabet (Mexico’s

National Polytechnic Institute 2020). Once the message reaches the device, it plays

a voice. Listeners can then understand what their di↵erently-abled companion or

acquaintance is trying to say. Presently, the glove can only read letters of the ASL

alphabet, but the researchers indicate that Mexican sign language support is a target

feature. Smart textiles with conductive features have been used to detect if the fin-

gers are open or closed. A combination of nylon and polyester was used to support

the embedded hardware and give the glove better manoeuvrability. “Words and

phrases are transmitted by Bluetooth™ to a mobile device with a pre-loaded appli-

cation that displays and reads the signs“, Luna said (Mexico’s National Polytechnic

Institute 2020). This by far is the only sign language data glove that addressed glove

materials, appearance and durability. This is also the only glove which designed an

application for smart devices to pair with the glove for output. The application is

available on the Android platform as Glove Translator but needs the glove to work.

The main drawbacks of this prototype are the size of the glove and the output mode.

It depends on the app for output and cannot operate as a stand-alone glove. This

glove prototype is patent pending with plans to enter manufacturing.

Another feature that was not addressed in prior research is continuous classifica-

tion of incoming gesture data. A single study was published in 2016 with promising

results (Luzhnica et al. 2016). It demonstrated the additional usage of a sliding

window to translate a pre-trained list of sign language hand gestures. By recording

the minimum, maximum, range, average, and standard deviation of the data glove

sensors (bend sensors, accelerometer and gyroscope), and using a KNN classifier, the

system achieved continuous recognition of ASL signs in real time, with an accuracy

level of 98%.

Most data gloves mentioned above are single gloves, specifically right hand gloves.

Further investigation was conducted to explain the lack of literature on using a sec-

ond data glove, as it seemed that a set of two data gloves should improve accuracy

results in recognition modules and could be a potential area to explore in this re-

search.

It was found that there were several attempts to integrate a second glove to sign

language recognition systems. The most recent one was published in 2017 by a team
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of researchers in Montreal (Natesh et al. 2017). They implemented an “intelligent

two hand gesture recognition system” by creating a primary system for the right

hand glove and sub-system for the second glove. Their system recognised 196 static

gestures from eight di↵erent sign language libraries with an accuracy range of 80 to

93%. The reported result is lower than some of the previously published projects,

discussed above, that use only one data glove. Therefore, the prospect of pairing

one right hand glove with a left hand glove and integrate signals from both gloves

to form one more accurate output is not a consideration for this research.

2.7 Summary

In summary, all data gloves described above use some form of a standardised sign

language library base to process alphabet letters or static gestures, they all use an

external device for output and some of them are extremely bulky with little or no

consideration of being e↵ectively wearable.

As this research is multidisciplinary and is placed across the fields of art, com-

putation, and technology, issues of hardware, design and software development were

explored in iterative action research cycles with an extensive range of user base

outside of the lab environment.

The goal is to enhance performance and increase accuracy in comparison with

existing data gloves, while making a single stand-alone data glove which is accessible,

universal and wearable.

Rather than output letters or words, the aim was to develop a glove and accom-

panying software which can process full sentences worth of incoming gesture data,

in real time.

Instead of relying on a smart device or a computer, a wireless and stand-alone

data glove with all required hardware for output would be embedded in the design

of the glove which is powered with a battery. The challenge for this approach is to

reduce hardware to make it wearable. In order to make this glove as universal as

possible, it should be paired with a translation API to output the speech in di↵erent

spoken languages, regardless of which library is used for sign language.

Considering the vast variations in sign language libraries, the system would be

equipped with machine learning software to allow each user to train the glove using

customized hand gestures. This would be most useful for users on the Autism
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Disorder Spectrum who use the Makaton sign language library12.

A user interface (UI) would be designed to interact with the glove for training

new gestures and building a customized library. This UI could further be used to

set the speech language or connect to the internet for future upgrades.

To make this glove accessible to everyone that needs it, it must be a↵ordable

by trying to reduce hardware and replace it with software when possible and also

integrating all parts onto one circuit board.

To make this glove wearable, smart textiles should be utilized with a customized

glove design pattern to house all hardware in correspondence with hand and arm

ergonomics. Fabric used should be water resistant, machine washable, fire resistant

and employ safety measures to insulate the electrical circuit from contact with skin.

12The Makaton Charity - https://www.makaton.org

https://www.makaton.org


Chapter 3

Research Methodology

3.1 Research Methods

Human-problem oriented inventions (Cox and Cairns 2008), similar to the proposed

design of the data glove, have conventionally employed user-centred design research

methods (Bevan and Curson 1999). Rather than starting with an idea for a system

based on what technology can do, and then trying to determine whether people will

be able and willing to use it, instead I will start with a specific user group’s needs

and ability; and find a technology that they will be able to use to fulfil that need.

This strategy is confirmed in multiple research resources in HCI (Dix et al. 2004)

and is referred to as ‘Interaction Design’.

The main steps in such a strategy are the following:

1. Identify a problem that requires a solution, which then becomes the research

goal. This can be confirmed through surveys, interviews and observation.

2. Find the source of the problem. What is causing the di�culty?

3. Invent, or this case innovate, a solution to help people with their di�culty.

This can be done through multiple rounds of testing and developing to prove

that the proposed solution is valid. Interaction design research will be used in

this phase to develop and test iterations of the designed system, in a build-

measure-learn loop.

4. Create a system which incorporates findings and make it available to the people

who struggled with the previously identified problem. If the function people

wanted to perform but couldn’t do well is made more available, chances are

39
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it will be successful, considering of course it is a↵ordable, which is a major

consideration in this research.

In this research, interaction design methods will be applied to collect data

through a series of usability studies. These studies will mainly consist of iterative

case studies followed by a single longitudinal and in-depth case study. I combine

this with iterative prototyping as the prototyping cycles are continuous. This will

be discussed in detail under evaluation methods (Section 3.2). I chose to integrate

two research methods because it is more of a holistic approach to problem-solving,

rather than a single method for collecting and analysing data (O’Brien 2001). I

propose starting with iterative prototyping rounds for the preliminary case studies

to maximise gained feedback while testing multiple features of the proposed sys-

tem. Finally, a longitudinal user-centred design study will be used to validate the

proposed solution through usability testing.

Evaluation criteria in this research as identified in the research question are:

• Assistive: E↵ective in facilitating daily communication between sign language

users and the public. This specifically measures the performance of the glove,

its durability and comfort and mobility.

• Adaptable: Can be used by adults (all genders), children, output di↵erent

languages, compatible with any platform, translate di↵erent libraries of sign

language including customized gestures.

• Accessible: Can be made available to people who need it, not requiring any

external hardware or device, stand alone and wireless.

• A↵ordable: Cost e↵ective - priced at a reasonable point relative to existing

solutions (Section 9.2).

As in most research in the HCI field, both text-based information and multimedia-

based information will be collected from the participants (Lazar et al. 2010). How-

ever, since I will be designing new technology and studying speech-based interaction,

I will also need to evaluate a number of issues relating to the recognition rate, which

requires comparison between the recorded data and the system output. To evalu-

ate system performance, I will combine with the identified evaluation criteria, the

following methods (Rogers et al. 2011):
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• Failure Analysis: to find out specifically where things go wrong.

• Individual Di↵erence Analysis: to identify that certain kinds of users,

ones with certain background characteristics or abilities, a↵ect the results of

testing the system in di↵erent ways. This is directly relevant to the proposed

universal design of a sign language data glove to be used by all ages, genders,

languages and abilities.

• Time Profiling: to measure and analysing how much time is spent on isolated

tasks within the system. Time profiling is important in identifying problems

in the system and potential areas for improvement (Cox and Cairns 2008).

3.1.1 Interaction Design: Build - Measure - Learn

Drawing on standard methods for research in HCI (Cox and Cairns 2008; Dix et

al. 2004; Lazar et al. 2010; Zimmerman et al. 2007), the practice portion of this

research will employ interaction design as a research method. The start and focus

of any interaction design is the intended user or users (Dix et al. 2004). The user

in this case is speech disabled individuals who use sign language for their daily

communication.

The research, design and evaluation will be based on their needs. Consequently,

testing rounds will employ user-centred design research methods.

In principle, interaction design research is “learning by doing”: researchers iden-

tify a problem, design a solution, test and evaluate their proposal, and if not satisfied,

try again using the feedback they gained from the research cycle. While this is the

essence of the approach, there are other key attributes of interaction design research

that di↵erentiate it from other problem-solving research methods. One being its

heavy emphasis on scientific study. In interaction design research, the problem is

studied systematically, and intervention is informed by theoretical considerations.

As such, data is presented on an ongoing basis. All the while, the methodological

tools are being refined to suit the demands of the research (O’Brien 2001). An-

other reason that I chose Interaction Design research, is because it is a user-centred

research methodology. Interaction design research focuses on turning the people

involved in the studies and testing into researchers, too. “People learn best, and

more willingly apply what they have learned, when they do it themselves. It also
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Identify a Problem Analysis

Design a Solution

Test &
Evaluate

Prototype

Implement &
Deploy

Figure 3.1: Interaction Design Process; based on Figure 5.1 of Dix et al. 2004

has a social dimension - the research takes place in real-world situations, and aims

to solve real problems” (O’Brien 2001). This is the exact setting for the proposed

research studies, where real participants will test and use the data glove, sometimes

over a long period of time and mostly in their own environments. The interaction

design process (Dix et al. 2004) of the research will be divided into four main phases

plus an iteration loop (feeds evaluations back into the design), focused on the design

of interaction, illustrated in Figure 3.1.

Requirements: The first stage is establishing what exactly is needed. As a

pioneering study in this field it is necessary to find out what is currently happen-

ing. For example, how do individuals with little or no speech abilities currently

interact in public using sign language? How does the process of communication

work? A number of techniques have been documented for this in HCI (Dix et al.

2004; Zimmerman et al. 2007) including interviews, video documentation and direct

observation.

Analysis: Observations and interviews are analysed to highlight how people

carry out various tasks in relation to the problem identified. The results are classified

in a format to outline key issues resulting in task models. Task analysis methods

are then developed and applied to formulate a proposal for a design solution.

Design: Design is at the core of the interaction design process. This phase

starts with the data gathered from previous steps and moves from what we need to

design, to how we should design. Design loops are then attempted based on user

testing and feedback, in compliance with user-centred design principles.

Iteration and prototyping: Evaluation of prototypes will be based on us-

ability testing feedback. Observations will be made in terms of performance and
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improvement areas. Most user interface designs involve some form of prototyping,

producing early versions of systems to try out with real users (Bevan and Cur-

son 1999). This is the approach for the proposed data glove design. Prototyping

iteration will be discussed in more detail in Evaluation Methods (Section 3.2).

Implementation and deployment: Finally, when the design gives indications

that is successful based on user feedback from testing rounds, the plan is to build it

and deploy it. This will involve finalising writing code, concluding hardware design,

writing documentation and manuals - everything that goes into a real system that

can be given to others in preparation for production.

As the user centred design loop of build-measure-learn is continuous in this re-

search, iterative design through cyclic prototyping (Nielsen 1993) becomes an in-

tegral part of the research and is combined with interaction design as a research

method.

3.1.2 Iterative Design: Cyclic Prototyping

Cyclic prototyping is also known as “continuous prototyping” and is usually referred

to in the context of iterative design; based on a looping process of building a pro-

totype solution, testing it, analyzing its performance, and then refining the design

of the solution. The results of the testing phase of the latest iteration of this cycle

inform the changes and refinements to be made (Carey 1990).

Much like the Interaction Design methodology described above, using a Build-

Measure-Learn loop, this iterative design system utilises a cycle of processes, with

the output of each in turn feeding into the next.

In each cycle, a prototype is developed, based on prior knowledge as well as

informed by the conclusions drawn from the observation and analysis of the testing

of previous prototypes in the process, with an emphasis of course being on the most

recently tested design. By incrementally refining each prototype based on the flaws

and areas for improvement of the last, the process aims to make the ultimate design

more utile and functional for its target users. The study of the interaction between

target users and each prototype constitutes the research that in turn informs the

next prototype, each time bringing the researcher closer to the end goal of an ideal

solution to the central problem that the design process is attempting to solve. The

process should conclude once the product has been developed to a level satisfactory
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to those it exists to serve (Bailey 1993).

While this methodology can be applied at any stage during the process of de-

veloping a new project, changes are most often easier and far less expensive, both

in terms of monetary expense as well as development time, if they are implemented

in the earliest stages of development. The consequence is that if this methodology

is applied ideally, the most invasive and substantial changes are made in the first

few prototypes, with further prototypes only being subject to increasingly minor

refinement (Bailey 1993).

Iterative prototyping and user-centred design are two methodologies that have

been successfully integrated in prior research with promising results (Gulliksen et al.

2003) and especially with new technology such as the one proposed in this research.

Specifically, when designing an interface between a user and a machine, the

designer of that interface can observe users interacting with that machine, using

the prototype of the interface that they have designed. By noting and analysing

the mechanisms that users found di�cult or frustrating, the designer can produce

the next prototype having refined those mechanisms, in turn making the interface

more functional and easier to use. While some projects opt to gather much larger

amounts of quantitative data on which to base their refinements, su�cient feedback

and insight into the issues that users face can often be obtained with a relatively

small testing group (Nielsen 1993).

It is important, however, to ensure that this process is continued for a su�cient

number of iterations, in order to be confident that the end product is of su�cient

quality. Multiple studies show that basing user interface design on iterative user

testing methodologies such as this, producing at minimum three prototypes with two

testing rounds, can improve the ultimate usability of the interface in a substantial

way (Nielsen 1993). It was found to be the case that adding more rounds is likely

to further improve the utility of the design.

Finally, in order to ensure that measurements of the e↵ectiveness of user inter-

faces, particularly wearable ones, do translate into the genuine usability of the final

product in the real world, it is important to select the tasks that users complete

as a part of the testing process such that they are representative of the goals and

environments that users in the real world would experience. By considering the

users’ usage of such interfaces in terms of the mental models they construct of their

actions early on, the interface can be designed and tuned both quicker and more
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optimally, requiring fewer iterations before feedback converges to a near-optimal

product (Smailagic and Siewiorek 1996).

3.2 Evaluation Methods

For the proposed data glove prototype, preliminary iterative case studies will be

conducted followed by one in-depth longitudinal case study.

Evaluation methods will be divided into two overlapping sets (Fallman and Wa-

terworth 2005):

1. Formative evaluation and iterative testing - for the preliminary case studies

2. Full-scale evaluation studies - for the longitudinal and in-depth case study

Two main groups of users will be recruited for this research: adults with speech

disabilities and children who are non-verbal. Testing will be conducted in a natural

environment where participants spend their day time, like a workplace or school.

There are several factors to consider when conducting case studies with participants

with di↵erent abilities:

• Due to the nature of the participants’ disabilities, it is not feasible to conduct

studies in a group setting or with large numbers of participants.

• One-on-one time will be needed with study participants to train them on how

to use the new technology, keeping in mind that disabilities will vary between

users.

• It is common for testing with participants who have disabilities to gain feed-

back through a care giver, a therapist or a family member (Lazar et al. 2010)

3.2.1 Formative Evaluation and Iterative Testing

Cost is an important factor to consider when building hardware for an ongoing

research such as this. Therefore, it is essential to justify why conducting multiple

rounds of prototype building and testing is required. Designing multiple prototypes

each performing an isolated task and testing a single particular feature is more

e↵ective than prototyping a fully executed system and testing multiple features at

once.
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“The best strategy for good design is to try various options (suggested,

of course, by experience with previous similar systems, guidelines, and

available principles), test them, and be guided by the failures, successes

and comments garnered in watching their use, redesign trying new op-

tions, and iterate. This is called formative evaluation or developmental

evaluation. The idea is simple enough. The barriers to its more frequent

use are largely lack of will (organizational resistance), lack of time, or

lack of ingenuity.”

- Dix et al. 2004

It is documented in previous HCI research (Cox and Cairns 2008; Lazar et al.

2010) that formative testing can be both extremely e↵ective and quite economical.

Although a single test is not su�cient, multiple iterations of the whole system are

not required to evaluate it. “There are many reports in the literature, of dramatic

improvements in usability in cases where two or three iterations were made on each

important interface design problem, each requiring about a dozen hours of human

testing and an equivalent amount of reprogramming” (Georges and Romme 2004).

HCI researchers (Cox and Cairns 2008; Lazar et al. 2010) have strongly recom-

mended that user testing begin as early in the development cycle as possible, so

that improvements can be made before design processes and coding become com-

plex. For this to become feasible, it is advised to keep the system development

flexible and easily modified to be able to conduct continuous user testing. This is

known as “rapid prototyping, and consists of first developing a system specifically

designed to be easily modifiable” (Wania et al. 2006). It is done through segmenting

performance and postponing the launch of the full system to a later stage in the

study (Dix et al. 2004; Georges and Romme 2004).

An exemplary case study and rational account of the iterative testing and rapid

prototyping approach is given in an article by Good et al. (Cox and Cairns 2008)

in which they describe the process as “User derived interface design”.

In this way, a series of prototypes of the data glove will be designed and iterative

prototyping becomes the pillar of the research method, following the same struc-

ture illustrated in Figure 3.2. First prototype will be a proof of concept, to prove

that the system works with minimal hardware and software. Testing will be con-

ducted and feedback will be applied to the development cycle of the next prototype.
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Figure 3.2: Iterative Prototyping; based on Figure 5.14 of Dix et al. 2004

The consequent prototypes’ features will be upgraded gradually based on usability

testing, always considering the four main elements of this research: a↵ordable, acces-

sible, adaptable and most importantly e↵ective in facilitating daily communication

between speech disabled individuals and the public.

As an example, when designing an interface for a prototype voice store and

forward system, a first attempt-by an expert human factors team at a set of user

procedures produced around 50% unrecoverable errors in attempts to use the ser-

vice. After four weeks of testing and three revisions in the protocol, field tests found

the procedure to result in less than one error for every hundred uses (Landauer

1988). The voice message system demonstrated by IBM at the 1984 Olympics in

Los Angeles (Gould 1988) was developed by a team of programmers and behavioural

scientists who continuously tried new versions of the system and its protocol and

made revisions for several months. Despite what would ordinarily be considered

a rather small-scale development e↵ort, usability in the initial full-scale trial was

extraordinarily good. The development of the much acclaimed user interface for the

Apple Lisa computer (including design lessons later incorporated into the Macin-

tosh) was accomplished by almost continuous formative testing during system and

interface development. In this case the testing was done by the manager of the

interface programming group, named Larry Tesler, himself (Blackwell 2009). The

tests were relatively informal. Tesler selected a particular issue, for example where

to put an “exit” icon on the screen, for semi-formal evaluation, (i.e. for some sub-

jects it was in one place and for others in another), for each small experiment. Then

he would have a handful of subjects try each of the two options. Most of the gain

was not, however, from the comparison of the options but merely from observing
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the di�culties experienced by the users, and from the participants’ comments and

suggestions.

According to Tesler the formal comparison served primarily to help in the disci-

pline of systematizing observations. Di�culties were then either taken back to the

design team for immediate alterations and retest, placed on a wish list for later so-

lution, or ignored for practical reasons. Iterating this step every time an interesting

design question arose, and after every significant milestone in the interface devel-

opment, required running only about two dozen subjects per week through trials

of the system, and caused almost no delay in the total development process since

the fixes were made concurrently with the normal course of programming. This

whole procedure strikes me as exemplary, as do the somewhat more elaborate and

ingenious techniques utilized by Gould, Boies, Levy, Richards and Schoonard (Cox

and Cairns 2008).

3.2.2 Full-Scale Evaluation Studies

HCI studies have used full scale evaluation to compare the performance of di↵erent

systems (Wania et al. 2006). Full scale evaluations are also known to have been

used to examine specific features of existing systems for the purpose of further

development. In full scale evaluation studies “A group of representative subjects

are recruited to learn and use each of the systems and compare them on a pertinent

set of performance measures” (Cox and Cairns 2008).

The aim of the longitudinal case study in this research is to observe how the

adoption of the proposed data glove impacts participants who use it for communi-

cation over an extended period of time. These studies will only be feasible by doing

direct experiments with real users participating on a full time basis for at least six

months.

Evaluation criteria will be classified under two main categories:

• Performance Metrics: Isolating performance features and setting them as

evaluation criteria is key to identifying why a system works better than an-

other. One proposal (Roberts and Moran 1983) is to use a set of “benchmark”

tests that are chosen to represent the important functions performed with a

system.
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• Usability issues: In users’ feedback I will be keen to observe and discover

possible trouble-spots in the use of the prototypes, so that solutions can be

proposed in the next cycle of prototype design (Klasnja et al. 2011). To

be valuable, evaluations of this kind must look at the details of use (such

as time, errors or user reactions) for isolated functions rather than overall

performance. Lessons learned from such studies provide important foundation

for the development of future systems designs (Cox and Cairns 2008).

3.3 Literature Relating to Chosen Methods

In this section I present a number of case studies that implement the same research

methods chosen for this research, as evidence for how and why they were selected,

and for the reference of other researchers looking to undertake similar work.

This research is user-centred. It is therefore based entirely on case studies. It is

important to highlight the goals of HCI case studies (Cox and Cairns 2008; Lazar

et al. 2010) and the role they play feeding straight into interaction design research:

• Exploration: Case studies provide valuable feedback in understanding novel

problems especially in the early phases of the research. Results often set the

foundation for further investigation to inform new system design.

• Explanation: Case studies of tools are used to understand a context of the

proposed technology. It is very common in computer systems that study par-

ticipants use the technology in unexpected ways that were not considered in

the initial design which impacts the iterative design loop (Klasnja et al. 2011).

“As HCI researchers often use a case study as a tool for understanding the

technology usage and needs of populations of potential users, HCI case studies

often largely draw upon representative users and use cases, omitting extreme

cases” (Lazar et al. 2010).

• Description: Descriptive case studies are longitudinal and in-depth case stud-

ies. They contribute to documenting a system, a context of technology use,

and the process that led to a proposed design. They are particularly useful for

technology involving new design methodologies. In interaction research, the

process behind the design is usually the focus of the case study. “Case studies
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that describe design processes and results have been written for a wide variety

of topics in HCI, specifically for participants with impairments.” (Cox and

Cairns 2008; Lazar et al. 2010).

• Demonstration: Demonstrative case studies are shorter and less in-depth

than descriptive case studies. Their purpose is to show how a new tool was

successfully used. Participants demonstrate the e↵ective use of a new tool to

complete one or more assigned tasks.

Case studies in this research will be of two types: The first set are a series of

demonstrative case studies where iterative prototyping evolves into a final product.

Those are followed by a final descriptive longitudinal and in-depth case study to

evaluate the system over an extended period of time.

3.3.1 Demonstrative Case Study

A good example is a case study conducted by Shinohara and Tenenberg (Shinohara

and Tenenberg 2009) of a blind person’s (Sara) use of assistive technology. Sara’s

case study focused on one person’s use of technology. How a blind person might

use a variety of assistive technologies to achieve tasks, user interactions, including

failures and response to those failures. In this case study, Shinohara and Tenenberg

(Shinohara and Tenenberg 2009) used three types of technology biography (Blythe et

al. 2002): “demonstrations of devices (technology tours), reflections on memories of

early use of and reactions to devices (personal histories), and wishful thinking about

possible technological innovations (guided speculation)” (Shinohara and Tenenberg

2009). Data sources used in this study demonstrate three types of case study data:

“artefacts, observation, and interviews” (Shinohara and Tenenberg 2009).

A total of 12 hours was recorded in Sara’s home, broken down into six, two hour

sessions. Raw data consisted of written notes, audio recordings, inter- views and

photo documentation. Twelve tasks were defined and recorded in terms of their

goals. The insights from the individual tasks guided the design of improved tools

(Shinohara and Tenenberg 2009).

Although Sara does not provide a comprehensive picture of the needs and con-

cerns of all blind people, the investigations of her needs and goals led to valuable

insights that might apply to many other blind people. The Shinohara and Tenenberg
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(Shinohara and Tenenberg 2009) case study helped the researchers to understand

how Sara used a variety of technologies to accomplish multiple tasks. They were

specifically interested in understanding “what technologies were most valued and

used, when they were used and for what purpose” (Shinohara and Tenenberg 2009).

Conducting the study in Sara’s home helped the investigators gain insights into how

she actually addressed real challenges, as opposed to the more engineered results

that might have been seen in the lab.

Sara’s case study demonstrates four key aspects used to describe case studies for

users with impairments. These points align with the chosen research methods and

will be followed as guidelines in the case studies of the research:

• In-depth investigation of a small number of cases: In-depth, broad

examinations of a small number of cases are used to address a vast range of

concerns.

• Examination in context: Labs have the advantage of removing undesired

external influences which is not a realistic or credible environment to show how

the technology would work. On the other hand, single case studies conducted

in a realistic context give meaningful results which are applicable in the real

world and are more informative than large scale case studies conducted in a

lab.

• Multiple data sources: Known as data triangulation and is especially im-

portant in single case studies. Multiple data sources are combined to validate

the evidence and the quality of the data. Contradictions are important too

because they compel the researcher to dig deeper, consulting new data sources,

which is the essence of action research.

• Emphasis on qualitative data and analysis: Question of how the tech-

nology was used to achieve an assigned task are more important than how

long it took to complete it. Researchers focus on the quality of the system in

successfully delivering what is was designed for rather than the system speed.

It is important to highlight that although single case studies can be very infor-

mative about the success of a system, results cannot be generalized to include

all members of user criteria especially in disability. The real value of single

case studies lie in creating realistic insights into design challenges which can
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be applied to a broader scale of users. “Sara’s case study led to some sugges-

tions for the design of assistive devices that would help Sara with her daily

challenges, but could go further, to influence insights that apply to many blind

people. As a result, designs might be useful to a much broader range of blind

users.” (Shinohara and Tenenberg 2009)

The goal of Sara’s case study was: a deeper understanding of a blind user’s use

of assistive technology in her home. Similarly, usability case studies in this research

will have a centre goal of understanding speech disabled participants’ use of the data

glove and how e↵ective it is in facilitating their daily communication and interaction

within a public setup.

3.3.2 Descriptive Longitudinal and In-Depth Case Study

In depth case studies executed in-context, in realistic environments, present cred-

ible and valuable evidence. Careful consideration is given to the selection criteria

of case study participants. Analyzing the data from the case studies and further

interpretation is of the upmost importance (Yin et al. 2008).

In these studies, the process of developing a new system or interaction technique

is more important than the end product, especially for innovations that tackle new

challenges in the context of use (Cohene et al. 2007).

A study at the University of Toronto (Cohene et al. 2007) provided the base

for a very interesting single in-depth case study involving the design of an assistive

technology tool to help people with Alzheimer’s disease. “This project was based

in a body of prior work that firmly established the importance of reminiscences for

people with Alzheimer’s disease.” (Cohene et al. 2007). The goal of the case study

was to develop a multimedia tool to help people with Alzheimer’s disease recall and

relive old memories. The sole participant of the case study was a 91 year old woman

named Laura. Laura and her two daughters were fundamental in the study which

focused on developing a system to help Laura with her memory (Cohene et al. 2007).

The study started with an exploratory phase to understand Alzheimer’s dis-

ease challenges faced by patients and their families. A broad understating of the

disease was necessary even though the study was aimed to develop a tool specifically

tailored to the needs and abilities of Laura. Researchers’ observations resulted in a

comprehensive understanding of the “abilities and impairments of the participants,
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leading to a set of design principles” (Cohene et al. 2007). The study also included

feedback from caretakers and therapists which acted as a basis in outlining a set of

guidelines to assist with memory recollection. As part of the study, family members

were required to complete a “family workbook” accumulating stories in the form of

pictures, videos and music. The collected media was to be included in the tool the

researchers were working on developing, with the main purpose of helping the study

participants with Alzheimer’s disease remember. The tool was developed through a

series of prototypes which lead to an interactive multimedia device informed by the

system with output displayed on a screen. The prototypes were refined based on

the feedback of the study participants during eight testing sessions over a period of

four weeks (Cohene et al. 2007).

The research team conducted follow-up interviews with family members which

confirmed that the system contributed in enhancing the memory of the participants.

“This project as a whole is an exploratory case study. As relatively little work has

been done on user interfaces for people with Alzheimer’s disease, the description of

a successful process is valuable in and of itself” (Cohene et al. 2007). The proposed

design served to generate further investigations rather than as a solution.

It is very hard to generalize when it comes to disability and especially a cognitive

one like Alzheimer’s disease. Researchers on this case study aimed at extending the

applicability of this work by scaling the design process to include more participants

to improve the tool (Cohene et al. 2007).

This research required serious time commitment from all parties involved: partic-

ipants with Alzheimer’s disease, their family members, and research team members.

This, combined with the emotional strain, required intensive resources. Even though

the result could not be generalized to other users, the documentation of the design

process and the resulting designed tool were considered important contributions

(Cohene et al. 2007).

“The most broadly applicable results from this story lie in the lessons learned.

The authors concluded that new design methods and principles were needed for

working with individuals with Alzheimer’s disease, that active participation was

more stimulating than passive, and that working with both the patients and their

family members throughout the entire design process was necessary. Practical con-

cerns included the resource-intensive nature of the research, the emotional commit-

ment required of the family members, the need to make the approach practical for
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larger numbers of families, and the need for standards for evaluation” (Cohene et al.

2007).

Although drawn from this particular project, these insights might be extremely

valuable to others interested in conducting related research. Similar to this study, the

research presented here requires working directly with speech disabled participants

and children with non-verbal autism. The research dictates interacting with family

members, therapists and caregivers of case study participants. Also, through the

process of testing and collecting information, a lot can be learnt about the nature

of the disability and how the design of an assistive tool can help not only the

participants but also the broad spectrum of users with similar disabilities making

the technology developed for this research potentially universal and accessible to

many people.

3.4 Special Considerations Relating to Testing with

Vulnerable Participants

In order to collect credible usability data and e↵ectively evaluate the proposed tech-

nology, particularly while being used as a tool for daily communication in public,

we plan to conduct case studies with real users in their natural environments. This

means that most of the users will have a speech disability that renders them non-

verbal, with the expectation that a number of them will have that condition com-

bined with either a cognitive disability and may additionally or alternatively have

physical limitations. As such, we looked at previous research in HCI conducted with

users with disabilities (Long et al. 1995), and considered their needs in all phases of

the research.

Due to the nature of the user groups, stricter protection measures are expected

to be in place to ensure the safety of the participates while taking part in the case

studies. Ethics approvals will be more comprehensive with supplementary granted

permission by the local council and participating school’s board of governance. In

addition, access to user data will be highly scrutinised and the storage of testing data

will only be permitted locally on the technological devices being evaluated. These

challenges are discussed in far more detail under the section detailing limitations

(Section 6.4).
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There are multiple additional factors to consider when testing with young users or

users with disabilities. In previous HCI research, it has been reported that the most

common issues related to study duration and user feedback (Newell et al. 1995). In

this research, we have allotted more time than one usually might for study sessions

and have accounted for the majority of the feedback to be gained through a carer or a

parent rather than directly from the user. As such, the evaluation methods described

above have been chosen to best cater for these special user groups (Subsection 3.2).

Additionally, some of the technology features are required to be modified in order

to provide di↵erent types of system feedback, so as to accommodate the diverse range

of cognitive and sensory abilities of the selected user group, with especial regard to

the younger participants. Prior research with children documents that emoticons,

the smiley face in particular, were used successfully as communicative symbols to

reflect the children’s feedback and for evaluation (Hall et al. 2016).

As a direct implementation of this practise, in the last case study (Chapter 5),

a smiley face was introduced as a form of system feedback to reflect the successful

completion of the training task – that being the recording of gestures. We docu-

mented that the children found it easy to understand, especially for the participants

who were not yet able to read. The smiley face was alternatively used as a design

feature of the glove used in the first case study (Chapter 4). It was printed as a

sticker and placed on the back of the glove, to cover the wires, in an attempt to

make the glove appear more user friendly, and less intimidating, which was indeed

successful in encouraging the children to wear it.



Chapter 4

Data Collection, Analysis &

Evaluation: Preliminary Case

Studies

In this research, data was collected primarily through case studies. As described in

Chapter 3, an interaction design research methodology (Dix et al. 2004), specifically

iterative prototyping, was used for the design and implementation of the activities

performed in all of the case studies described in this chapter. Due to its inherent role

in this methodology of research, user feedback necessarily played a highly important

role in the evaluation of the design, and informed the design changes applied to each

of the subsequent iterations of the design-research loop.

Iterative testing (Cox and Cairns 2008) was used to evaluate the di↵erent data

glove prototypes developed for each case study. This testing system, explained in

far more detail in Section 3.1.1, allows the researcher to begin testing as early as

possible in the design and development process and to make changes to the product

being tested, in response to user feedback from usage in constrained as well as

real world environments, as making alterations can become increasingly costly, time

consuming and convoluted as the complexity of the system increases, particularly

when approaching the final iterations of the design.

In total, three glove prototypes were developed over the course of this research.

Each of these prototypes went through the build-measure-learn cycle as described

in Section 3.1.2. Each of the case studies was constructed to evaluate its respec-

tive glove prototype and to inform the development of the subsequent improved

56
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versions through user feedback. In each of the following case studies, the stages

of development every prototype went through, are described under the following

three categories: software, hardware and design. As the studies progressed, the

data glove prototypes developed into di↵erent and increasingly enhanced versions

based on observed user needs and user feedback as documented below.

As described in Section 3.2 a set of preliminary case studies were conducted,

starting with a short, initial pilot study, followed by a more substantial 3-stage

iterative case study. The results from each of those studies in turn informed a final

in-depth, longitudinal case study, based on the refined prototype developed through

the iterative studies.

The pilot case study (Section 4.1) was a controlled study in which two students at

the Jeddah Autism Centre, selected by their teachers and therapists, were engaged

to perform specific tasks while wearing the data glove. This study acted as an

important early proof of concept, and set the scene for the research questions to begin

to be explored while validating the scope for further investigation and refinement.

In the 3-stage-iterative case study (Section 4.2), a series of user-centred design

studies were carried out at public exhibitions, in which iterative prototyping was

employed as the primary research methodology. Small tasks were isolated to be

evaluated independently in each study. The majority of design changes emerged from

user feedback, which motivated the outline for following study, in turn continuing

the design-research cycle.

The final longitudinal and in-depth case study (Chapter 5), documented and

discussed in Chapter 5, took place over a period of six months and engaged fif-

teen students across six Special Educational Needs (SEN) schools. The results from

this study conclude the research findings for this research and answer the research

questions. It lastly paves the way for future research as well as a route to commer-

cialisation for the data glove developed during this research.

4.1 Pilot case study, Jeddah Autism Centre 2016

4.1.1 Introduction

The focus of this study was to design a hand gesture recognition system to trans-

late the Makaton sign language to text and speech (as mentioned in Section 2.7).
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The study took place at the Jeddah Autism Centre, in Jeddah, Saudi Arabia, and

engaged two students diagnosed with non-verbal autism and who use Makaton to

communicate as their primary language.

For this study, a limited vocabulary of ten Makaton sign language hand gestures

were selected and pre-trained by the researcher (in advance) using a wireless and

standalone data glove, with sensors placed and a�xed to the glove to monitor the

flexing of fingers in order to provide accurate input corresponding to each of the

hand gestures. Recognition modules were based on fixed, unmoving, hand shapes

and orientations (static signs) rather than changing hand position, orientation or

movement through time (dynamic signs). Sign recognition was simplified in an

attempt to reduce the hardware and processing requirements (see the section below),

in turn making the data glove simpler to run and lighter to wear. In this study,

issues derived from these modifications were explored through feedback gathered

from the carers of the non-verbal, autistic participants, when consulted about the

participants’ use of the data glove and how it a↵ected their daily communication.

4.1.2 Prototyping and Development

The glove prototype used for this first study was developed as part of a masters

degree in Computational Arts, conducted by the researcher at Goldsmiths College

at the University of London in 2015.

The primary aim when designing this prototype was to produce a data glove,

which was standalone and wireless, so that it could be easily wearable without

substantial impedance to the movement of the user, and could be operated indepen-

dently from any other device, such as a smartphone or laptop. As such, the goal

was to achieve the development of an accurate data glove with on-board, on-body

processing being performed using minimal hardware for the input and computation

of sensor data.

Hardware

In order to achieve a wireless glove, an Arduino Lilypad1, a sewable microcontroller

chip, was used as the main computing and I/O assembly. Once the code was up-

loaded to the Lilypad board, and with an external battery attached, the data glove

1Arduino Lilypad - https://www.arduino.cc/en/Main/ArduinoBoardLilyPad/

https://www.arduino.cc/en/Main/ArduinoBoardLilyPad/
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Figure 4.1: Glove schematic

did not need to be connected to an external device in order to operate. A speech

synthesis chip (Emic2) was added to support the generation of English speech cor-

responding to the recognised signs’ labels. A small screen and miniature speaker

were also connected to the assembly in order to provide textual and audio output,

specifically the label of the recognised sign as well as speech synthesised by the afore-

mentioned chip corresponding to that label. To record the shape of the fingers, flex

(bend) sensors were placed in correspondence with the five fingers of the glove (see

Figure 4.1) along the back of the fingers. These sensors served to register the exact

position of each finger relative to the hand and detect its level of flex or bend (see

Figure 4.3). Finally, a 3-axis accelerometer chip was placed on the back of the hand

to gather accurate orientation data, in the form of the forces acting on the hand in

the X, Y and Z directions – the primary one of which being gravity, thus indicating

the “down” direction. This force data can be trivially converted into rotation angles

describing the orientation of the hand, using trigonometry.
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Figure 4.2: Software Block Diagram

Figure 4.3: Flex Sensor Values and Positions
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Software

The signs that were selected to be included in this study were pre-trained and

hard-coded by the researcher. Any static sign can be programmed, by defining

acceptable ranges of sensor values and orientation angles within which to successfully

recognise the relevant hand gesture. By monitoring the sensor data in real time

using an external display, while holding the position of the gesture, an ideal value

for each sensor and orientation angle was calculated, corresponding to the specific

hand configuration for that sign. Exemplar values, calculated in this way, for seven

di↵erent signs, can be seen in Figure 4.4.

Raw sensor values were linearly mapped between 0 and 255, with values clamped

to this range, according to the following rules. Only three distinct positions were

required for classification (see Figure 4.3). A fully straightened finger position does

not generate any resistance in the flex sensor and so should return a value of 0. A 45°

finger bend will cause the sensor to exhibit an increased electrical resistance between

its two terminals, which is defined as a value greater than 0 but less than 255. A 90°

bend should increase the resistance to the maximum mapped sensor value of 255.

To accommodate for di↵erent motor abilities and thus some variation in the input

sensor values, as well as variability due to inconsistencies in sensor alignment with

the fingers as well as manufacturing inconsistencies, when classifying finger positions,

any value between 0 and 10 was interpreted as a straight finger, any value between

10 and 250 as a 45° bend, and any value greater than 250 as a 90° bend. Similarly, for

accelerometer values, indicating the overall rotation of the glove, a margin of error

was added, to ensure that variations in orientation were still classified correctly. As

an example, a block of sample code illustrating the assertions made to attempt to

recognise the word “Hello”, can be seen in Figure 4.5.

Flex Sensors Accelerometer

1 2 3 4 5 X Y Z

1 1 1 1 1 87 0 -1

1 1 1 1 1 90 -1 -1

1 1 1 1 1 89 0 -1

Table 4.1: Sample sensor values for three separate recordings of the sign for “Hello”
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1 2 3 4 5 X Y Z

1 1 1 1 1 87 0 -1
1 1 1 1 1 90 -1 -1
1 1 1 1 1 89 0 -1

3 1 1 1 1 -73 -178 0
3 1 1 1 1 -73 -180 -1
2 1 1 1 1 -72 -179 0

2 1 2 2 1 88 1 90
2 1 1 2 1 89 2 90
1 1 2 2 1 90 1 89

6 249 251 248 4 -178 0 -1
2 249 251 249 2 -176 1 -1
1 250 251 248 1 -180 0 0

2 3 1 1 1 89 -1 -1
1 1 2 1 1 88 0 -1
2 1 1 1 1 89 1 0

1 255 255 255 255 90 87 0
1 255 255 255 255 90 88 -1
1 255 255 255 255 89 89 -1

5 255 255 255 255 -88 89 -1

4 255 255 255 255 -87 89 0
1 255 255 255 255 -88 89 0

//--------------------------------OK-----------------------------

		if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	>	200	&&	sensorValueMIDDLE	>	200	&&	sensorValueRING	>	200	&&	
sensorValuePINKY	>	200	&&	accelerationX	>	75	&&	accelerationY	>	75)	{

//--------------------------------HELP-----------------------------

	if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	>	200	&&	sensorValueMIDDLE	>	200	&&	sensorValueRING	>	200	&&	
sensorValuePINKY	>	200	&&	accelerationX	<	0	&&	accelerationY	>	75)	{

//--------------------------------Please-----------------------------

		if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	<	10	&&	sensorValueMIDDLE	<	10	&&	sensorValueRING	<	10		&&	
sensorValuePINKY	<	10	&&	110	>	accelerationX	>75	&&	110	>	accelerationZ	>	75	)	{

//--------------------------------Play-----------------------------

		if	(sensorValueTHUMB	<	10		&&	sensorValueINDEX	>	200	&&			sensorValueMIDDLE	>	200		&&	sensorValueRING	>	200	&&	
sensorValueRING	<	10)	{

				

		//--------------------------------Quiet-----------------------------

		if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	<	10	&&	sensorValueMIDDLE	<	10	&&	sensorValueRING	<	10	&&	
sensorValuePINKY	<	10	&&	accelerationX	>	75)	{

FLEX	SENSOR	VALUES	(0,	255) AXXELEROMETRE	ANGLES	(-180,	180)

//--------------------------------Hello-----------------------------

		if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	<	10	&&	sensorValueMIDDLE	<	10	&&	sensorValueRING	<	10		&&	
sensorValuePINKY	<	10	&&	accelerationX	>	75	)	{

//--------------------------------ThankYou-----------------------------

		if	(sensorValueTHUMB	<	10	&&	sensorValueINDEX	<	10	&&	sensorValueMIDDLE	<	10	&&	sensorValueRING	<	10		&&	
sensorValuePINKY	<	10	&&	accelerationX	<	0	&&	accelerationY	<	-100	)	{

Figure 4.4: Sample sensor values for seven di↵erent gestures
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1 i f ( sensorValueTHUMB < 10 && sensorValueINDEX < 10 &&

2 sensorValueMIDDLE < 10 && sensorValueRING < 10 &&

3 sensorValuePINKY < 10 && acce l e r a t i onX > 75 ) {

4

5 // Print word He l l o to s e r i a l

6 S e r i a l . p r i n t l n ( ”He l l o ” ) ;

7 S e r i a l . p r i n t l n ( ” ” ) ;

8

9 // Moves a l l the t e x t one space to the l e f t each time a l e t t e r i s

added

10 d i sp l ay . a u t o s c r o l l ( ) ;

11

12 // Print ’ h e l l o ’ on graph ic d i s p l a y screen

13 d i sp l ay . p r i n t l n ( ”He l lo ” ) ;

14 d i sp l ay . d i sp l ay ( ) ;

15

16 // This charac t e r r ep r e s en t s the beg inn ing o f the package o f the f i v e

va l u e s

17 S e r i a l . wr i t e ( ”<” ) ;

18

19 // The va l u e s are sen t v ia the Tx pin

20 S e r i a l . wr i t e ( ”He l l o ” ) ;

21

22 // Send the de s i r ed s t r i n g to conver t to speech

23 em i cSe r i a l . p r i n t ( ”He l l o ” ) ;

24 em i cSe r i a l . p r i n t ( ’ \n ’ ) ;

25

26 // Turn on LED whi l e Emic i s ou t pu t t i n g audio

27 d i g i t a lWr i t e ( ledPin , HIGH) ;

28

29 // Wait here u n t i l the Emic 2 responds wi th a ”:” i n d i c a t i n g t ha t i t ’ s

ready to accep t the next command

30 while ( em i cS e r i a l . read ( ) != ’ : ’ ) ;

31

32 d i g i t a lWr i t e ( ledPin , LOW) ;

33

34 // 500 m i l l i s e c ond de lay

35 de lay (500) ;

36 }

Figure 4.5: Sample Code: Classification of Hello sign
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To enable complete gesture control for the system, negating the need for an

external display or device to be attached, a hand position corresponding to a space

character and another to clear the screen of the previously recognised signs were

defined, to be recognised using the same mechanism as signs corresponding to words.

To be able to build up a fuller conversation, an automatic scrolling feature was added

to stack the incoming words vertically and to align them to the left, allowing the

users and researcher to see a record of a few of the most recently recognised words,

rather than only showing the last word detected.

Design

As this was the first prototype data glove, it was designed to be a proof of concept

rather than a finished product, meaning that relative to functionality and speed of

development, aesthetics was not a substantial priority. However, a sticker with a

smiley face was placed on the back of the data glove, to cover the main board and

circuitry, and make it more visually appealing and less intimidating for the study

participants (Figure 4.6).

Figure 4.6: Participant A making the sign for “Hello”
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4.1.3 Study Method

The system was programmed to identify a limited vocabulary of ten signs selected

from the Makaton sign language, based on ten right hand postures and three hand

orientations, using the first data glove prototype (as described above) to get accurate

input information. In the situation in which the data received from the flex sensors

and accelerometer did not fit one of the ranges pre-defined for the trained signs, this

constituted a failure to detect any gesture. Failure to detect or correctly identify

the gesture was programmed to result in no words being spoken. The accelerometer

was used to di↵erentiate between when the glove was being used to sign, or merely

worn during play. Only when the glove was in an upright position did it begin

processing input data, in an attempt to recognise any sign. In Makaton signs that

would usually use both hands, only the right hand was measured in this study. This

was still e↵ective because in the signs from our vocabulary that use both hands, in

the vast majority of cases, both hands perform the same action simultaneously, or

the non dominant hand stays motionless in holding a single fixed position, while the

dominant hand makes the shape and movement of the sign. A good example, that

illustrates this property, is the sign for “dance”, in which the left hand remains com-

pletely static while the right hand performs the movement for the sign. Alternative

examples include the signs for “play” and “happy”. In both of these signs, the right

and left hand perform the same gesture, albeit mirrored laterally.

Two di↵erent conversation scenarios were written for the participants of the

study, during which they could communicate exclusively using the ten gestures pre-

viously programmed by the researcher.

Five participants with non-verbal autism were recruited for this research, how-

ever, ultimately only two of them, a pair of boys aged 9 and 12 years old respectively,

were able to continue the study and commit to all of the required sessions. Selec-

tion criteria and eligibility for a student’s participation in the study was based on

the participant’s familiarity with the Makaton sign language as well as according

to the attending speech therapist’s recommendations. The initial training session

consisted of a 2 hour long task (described in detail below), broken into four, 15

minute segments. Each participant was shown videos of each of the signs, and prac-

ticed performing them with the researcher and their speech therapist. The speech

therapist’s primary role was to help the researcher communicate e↵ectively with the
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participants and provide important feedback and insight into the user’s usage of

the data glove, based on their expert observations. Participants began to become

increasingly familiar with how the glove worked, within approximately half an hour

of their first introduction to it. Video documentation of the participants using the

glove during this study was recorded 2. Usability feedback from the participants,

parents and therapists was noted by the researcher for later reference.

Task outline

A short, natural conversational dialogue was drafted between the therapist and the

participant corresponding to two simple scenarios. In these scenarios, the therapist

would ask simple questions to the participant, and the participant would sign the

reply while wearing the data glove. Words, corresponding to signs performed by the

participant, would in turn appear on the small screen and would be spoken from

the miniature speaker on the data glove as in Figure 4.7. The therapist would then

proceed on to read the next line in the dialogue. This dialogue is an example of a

conversation that the participants might engage in every day.

The data glove had the following Makaton sign language gestures programmed

in advance as an available vocabulary by the researcher (as well as the additional

gestures for clearing the screen and adding a space, as previously described): Yes,

No, Okay, Play, Dance, Colour, Happy, Hungry, Eat, Drink

Task I - Participant A - Playtime Dialogue

Therapist: Hello! So what are you doing? How was your day so far?

...Conversation progresses...

Therapist: Let’s do something else? What would you like to do?

Participant: [Replies with an activity]

Therapist: Really, you like to [insert activity]?! Do you have any ideas?

Participant: [Mimes one of the sign language activities]

Therapist: And how does that make you feel?

Participant: [Replies with an emotion]

2Access video of study session at the following URL - https://resources.brightsignglove.com/

pilot study

https://resources.brightsignglove.com/pilot_study
https://resources.brightsignglove.com/pilot_study


CHAPTER 4. PRELIMINARY CASE STUDIES 67

Task II - Participant B - Restaurant Dialogue

Therapist: Hey, do you want to go to a restaurant?

Participant: [Yes/No]

Therapist: Cool, let’s get going! What will you order?

Participant: [Replies with a food item]

Therapist: Do you want to use the bathroom before we go?

Participant: [Yes/No]

(a) Play (b) Hungry

(c) Dance (d) Eat

Figure 4.7: Participants A & B making hand signs, with translated outputs on

the screen

4.1.4 Results and Discussion

After testing, results showed that 4 out of 5 of the participants’ attempts to perform

a sign resulted in accurate classification of that sign and corresponding textual and

audible output from the data glove. Testing with the participants demonstrated
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that the system was capable of translating sign language to text and speech with

an accuracy rate of 80-85% with about 15% of the total number of attempts to

translate a sign resulting in no words being spoken, due to a failure of the glove

to detect any gesture (i.e. the sensor values recorded fell outside of the acceptable

range of trained values for any sign).

The primary reason for these failures is that it is possible for signs to vary

meaningfully in position and speed when performed multiple times, even by the

same user, particularly when that user is less familiar with the sign language that

they use (Premaratne et al. 2010). In this specific case, the glove was initially

programmed based on the sensor values reported by the researcher’s hand size and

position, both of which di↵ered substantially from the those of the participants, in

turn a↵ecting the input ranges of sensor values received. The fact that the glove

was being used by the participants while they were engaging in other activities, not

just signing, and so was processing a continuous stream of data rather than short

segments – something that it was not designed to do, also contributed to some of

the issues observed.

Another factor that had an e↵ect on the results, was that the second of the two

participants had somewhat decreased motor abilities, meaning that he therefore was

not able to bend his fingers all the way into a fist. This caused the received sensor

values to appear as if the fingers were far less bent, even when he was attempting to

close his hand, in turn causing issues in a number of cases with the pre-programmed

ranges defined to recognise each sign for some gestures.

Feedback from the participants was conveyed through observation of them, and

communicated to the researcher by their therapist. This method of gathering feed-

back from a third party, usually very familiar with the specific participants, is gen-

erally used in academic studies in which the participants are unable to communicate

themselves, or where they are unable to process information due to their impairment

(Lazar et al. 2010), in which case, caregivers and family members may alternatively

act as the primary information source, as opposed to direct feedback from the user

themselves.

The majority of feedback related primarily to power issues, where the data glove

sometimes appeared to freeze and cease providing any output or where the glove did

not respond when the battery was running low on charge. Occasionally, the glove

exhibited substantial delays while processing the incoming data, before providing
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(a) Playing with blocks (b) Arranging letters on a board

Figure 4.8: Participants often wanted to use the glove for other activities

any output. It was observed that under these near-continuous usage conditions, the

glove’s battery lasted for about two and a half hours of use between each charging

cycle.

The participants’ feedback was largely related to the design of the glove and of

the hardware enclosure. Both participants expressed that the glove was overly bulky

and that they felt a little intimidated by the exposed wires running along the back

of the hand and into the enclosure on the wrist. They further felt that the glove was

too uncomfortable to wear for any prolonged periods of time and reported that it

caused them some di�culties and restrictions when attempting to bend their fingers.

In several situations, it was noted that issues and delays when using the glove due

to technical problems caused frustration amongst the participants, because they

thought the issues were their fault, or somehow caused by their actions. As a result,

video documentation took much longer than the time which had been allocated for

it, which extended the duration of the study.

The researcher’s observation was that the participants wanted to use the glove

for various other activities while wearing it, such as playing or holding things (see

Figure 4.8) rather than just perform the task. This unexpected change of usage

somewhat a↵ected the output of the glove meaning that programming had to be

revisited during the testing phase of the study. A quick solution that was found to

allow the researcher to rapidly progress through the testing session without undue

disruption was to make changes to the software running on the glove to cause it to

process gestures only when the accelerometer registered an upright position. Other

potential solutions are discussed in the below sections.
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4.1.5 Conclusion

A revised design was proposed based on the feedback of this study in which im-

provements were to be made including the refinement of the design and hardware

used as well as reconfiguration of the software.

Design

Exposed electronic hardware was found to be intimidating for the children par-

ticipating in the study and discouraged them from using the data glove at times.

Inadvertent tugging on external wires while the participants were performing other

tasks, as well as subsequently while simply trying to sign, also caused substantial

issues throughout the study due to the damaged connections between the sensors

and the processor. It was decided that the glove design would have to be revised

to be more approachable and user friendly, particularly for younger users, as well

as to be made more robust to resist any stresses that it would undergo as a part of

normal usage.

To address this, the hardware enclosure would need to be redesigned, with sensors

embedded between two layers of the glove textiles as opposed to a�xed to the outside

of the glove material, along the back of each finger. It was suggested that a custom

textile pattern should be designed for the glove to contain the sensors in channels and

to enclose the electronic hardware in the inner lining of an improved glove design,

leaving only the bare minimum of the screen and the speaker externally visible. This

new design would ensure that the circuit would be far better protected while keeping

it insulated from any form of skin contact with the participant, thereby retaining the

negation of any risk of electric shock or discomfort due to the electronics increasing

in temperature.

In addition, stretchable fabric could further be used to make finger movement

more flexible, with less resistance, and ensure easier bending of the fingers for small

children and those with any form of decreased motor ability, which is common in

those with autism. To ensure the complete safety of any future users, fireproof,

non-conductive material should always be used to house the circuit and insulate the

glove electronics from the user and from the environment.
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Hardware

To resolve other key issues, such as the slow processing and short battery life

caused by power-hungry but computationally insubstantial components, the hard-

ware would need to be further reduced and enhanced. It was suggested that the

Arduino Lilypad micro-controller should be replaced by the Raspberry Pi Zero3.

This change would reduce the cost of the hardware by a half, as well as increase the

computational performance and battery life of the system. The Raspberry Pi also

features a built-in software based text-to-speech synthesizer, which would allow the

removal of the external Emic2 text-to-speech chip from the circuit, in turn making

the glove lighter to wear and reducing excess demand on the battery. This change

would also further reduce the cost of the hardware by a third.

The accelerometer could be replaced with a gyroscope in order to allow more

accurate classification. The usage of a gyroscope as opposed to an accelerometer

would provide more detailed input data for the orientation of the glove covering the

full range of gesture motions in space, and thus improve its ability to recognise more

dynamic gestures as opposed to the entirely static positions recognised to date.

It was further proposed that a button could be added to the glove, on the back of

the hand, to instruct the glove when to start processing. This would be particularly

useful for those who want to keep wearing the glove when they are not immediately

signing, as the existing mechanism of requiring the hand to be held vertically to

trigger the start of classification was deemed to be too inconvenient for regular usage.

A second button could also be added to switch between a newly created training

mode and classification mode, proposed in the software development section below.

Equipping the glove with a BLE (Bluetooth™ Low Energy) chip could, in addition,

provide the option to connect the data glove with a smart device or to connect to a

separate external network for purpose of training new gestures. A final refinement

would be to make all of the electronic hardware removable from the glove in an

easy manner, to enable the washing of the glove textiles, as the glove was soiled and

heavily stained during the participants usage for the duration of the study sessions.

For that, di↵erent options to encapsulate the circuit in a removable manner, or

alternatively to properly waterproof the electronics and sensors, would have to be

explored.

3The Raspberry Pi Zero - https://www.raspberrypi.org/products/raspberry-pi-zero/

https://www.raspberrypi.org/products/raspberry-pi-zero/
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Software

Delays in processing were largely due to the substantial variance in hand gestures,

exhibited in the form of material di↵erences between the values encoded in the form

of the pre-programmed signs and those subsequently generated as a result of the

signer’s abilities. Errors often occurred because the glove was being used for other

activities by the participants and did not have a meaningful and reliable indication

of when to start or stop processing.

It was proposed that the software could be developed in such a way that it

could be personalised to each user, in order to increase the accuracy of gesture

classification, through the addition of a new training mode, separate to the existing

classification functionality. Such a training mode would enable users to upload

the gestures and labels corresponding to signs in their own sign language, adapted

according to their individual specific motor abilities and signs. To support this, the

glove would need to be paired with machine learning software to train and classify

the gestures, using an individual machine learning classifier, trained for each user

based on their uploaded sign data. Enabling users to upload their own version of

each of their signs would make this data glove accessible to everyone who needs

it regardless of which sign language library they use, as well as to those that use

common languages but with decreased motor abilities (such as those that are unable

to fully bend one or more fingers, or those that have restriction in the angles through

which they can rotate their wrist). It would also allow users who do not follow any

single standard sign language library to customise their hand gestures and be able

to communicate with those who are unfamiliar with their specific sign language.

Lastly, the glove could be paired with a pre-existing translation API, such as

those provided by numerous cloud platforms, to allow for translation of the output

speech into other spoken languages either ahead of time, or, in real time, if the

glove could maintain a continuous connection to the intent. This would make the

glove far more widely usable, able to communicate with those speaking any of the

supported languages in any country, rather than just the users native language (or

the language of their family), breaking yet another language barrier.
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4.2 A three-stage iterative case study

4.2.1 Introduction

The first study (as described above) existed as a proof of concept, to illustrate the

potential for the technology to be further developed and refined through design

iterations (see Section 3.2). It was conducted in a controlled testing environment

with a carefully selected group of participants, the results of which laid out the plan

for this second iterative case study. To further test the usability of the data glove and

improve the underlying technology, this study took place in a public setting, with

participants that had di↵ering speech abilities due to various sensory impairments,

which in some cases were further combined with additional physical limitations and

disabilities.

As such, a three-stage iterative case study was set up, with each phase taking

place during a number of exhibitions, each attached to a conference that the early

(promising) results of this research were being presented at. The three stages of

iterative study each took place at the following conference exhibitions respectively:

• IBM Artificial Intelligence for Social Care in Seoul, South Korea in December

2016

• No Barriers Summit’s Innovation Village in Lake Tahoe, USA in June 2017

• CENMAC Assistive Technology for Education in London, UK in May 2018

The studies’ primary aim was to engage a range of users of a number of existing

hand gesture and sign language translation systems and acquire their feedback about

the proposed data glove solution. The same data glove prototype was developed and

used for testing at all three of the exhibitions listed above, however, some minor

changes were made between each of them, based on the users’ experiences in each

of the studies, and in response to their feedback.

Bearing the conclusions from the previous study in mind as a starting point, in

which low accuracy levels when recognising signs were largely the result of di↵erences

in the performance of signs between the person training the classifier and the per-

son using the glove for translation, development for this study was instead focused

towards generating a personalised individual classifier that could be trained by each

of the user’s themselves rather than in advance by the researcher. Consequently, the
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primary goal for this study was to evaluate the performance of a gesture recognition

classifier when allowing individual users to train it for their own individual hand

signs, and whilst accommodating their di↵erences in motor abilities and range of

movement, as used in a more realistic, public environment.

4.2.2 Prototyping and Development

The data glove that was used for this study followed largely the same structure

as the previous pilot study’s prototype in terms of design, hardware and software,

but was modified in a number of ways after having added a consideration for the

manufacturing and component cost of the system, given that it was developed with

a plan for future commercialisation in mind.

Relatively major changes to the prototype were required to be made in order to

minimise the external size of the electronic hardware and its enclosure, and maximise

overall system performance, while making it more wearable and able to support the

proposed enhancements to the software (as detailed in the section below).

Hardware

The LilyPad Arduino micro processor was replaced by a Raspberry Pi Zero system-

on-a-chip, as the main microcontroller board. Migrating the circuit from an Arduino-

based system to a Raspberry Pi board posed many challenges due to the di↵erent

configuration of pins as well as due to the di↵erent software requirements. Rasp-

berry Pi boards, for example, only have digital input pins, whereas the flex sensors

as used in the previous prototype usually require analogue pins to report variance

in resistance values. For their continued usage to be possible, an analogue to digital

converter (an MCP3008) was added to perform the conversion of the raw analogue

sensor outputs into digital values that were readable by the digital pins on the

Raspberry Pi board (Figure 4.9). This made the connections di�cult to group and

so a complete redesign of the circuit board was necessary to host all components

of the new circuit, including the wearable flex sensors, gyroscope (as detailed be-

low), speaker, OLED screen and power supply (Figure 4.10). This development

required substantially more wiring than the previous version, however, hosting all

the electronic components onto a single circuit breadboard minimised the size of the

hardware significantly, allowing the design of a wrist band to house it.
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Figure 4.9: Circuit schematic diagram
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Figure 4.10: Circuit hardware
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The circuit was further reduced due to the elimination of the text-to-speech chip

used in the previous circuit to generate the audio to be outputted for each sign,

since the Raspberry Pi board has a built-in audio processor and output system,

as well as more advanced, software based text-to-speech support built in. A final

change made to the circuit was to replace the existing three axis accelerometer

with a gyroscope. The usage of a gyroscope has the primary key advantage that

it measures the orientation of the sensor itself directly, rather than measuring the

forces on the glove due to gravity as in the case of the accelerometer. This means

that it is able to accurately capture changes in orientation throughout time, in the

plane perpendicular to the action of any gravitational force, allowing the capture and

processing of dynamic (moving) instead of static (still) gestures, as was a limitation

of the previous study’s prototype.

Performance-wise, running a full Linux-based operating system, the Raspberry

Pi Zero additionally provides a far superior platform for processing the updated soft-

ware with its additional proposed enhancements - the additional processing power

required for running a machine learning algorithm to train individual personalised

classifiers for each user. Raspberry Pi boards such as the Pi Zero are also able to

connect to a cloud service, where the new classifier was to be hosted, utilising its

on-board Wi-Fi™ network chip.

Software

In multiple studies, machine learning algorithms have been implemented and used

successfully in prior research for the classification of sign language hand gestures

(Fang et al. 2003; Parvini et al. 2009; Takahashi and Kishino 1992). The most com-

mon ones, such as Hidden Markov Models (HMMs) and Artificial Neural Networks

(ANNs), require far more complex computations to process data, as well as requir-

ing intensive training in advance, usually on very large, sanitised data sets. There

is however, a third option that can be used. K-nearest neighbours (KNN), using

Dynamic Time Warping (DTW) (Berndt and Cli↵ord 1994) as a distance measure

has been shown to be both versatile and accurate when producing time series classi-

fication models, while also being highly computationally e�cient, particularly with

the usage of faster approximations such as FastDTW (Salvador and Chan 2007)

or PrunedDTW (Silva et al. 2018), as well as with the addition of lower bounding
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methods. It also has the key advantage of working well with far less training data

than many other machine learning models, functioning accurately with down to only

a few samples per trained class, provided the classes are situated relatively far apart

within the feature space.

Therefore, Dynamic Time Warping (DTW) and K-nearest neighbours (KNN),

were employed in the updated data glove prototype to allow each individual user

to train the glove on their own signs and according to their personal motor ability.

A cloud translation API was added as a plug in, with calls made to the API at

classification time, to allow speech output to be set to any one of a large number

of listed spoken languages. The new enhanced software was designed to enable

each user to build their own library of gestures, which they were able to label and

then select the language of speech they wanted that gesture to be translated into.

A detailed description of user tasks and their corresponding software actions and

mechanisms are explained later in this section.

A web based platform was created to facilitate the storage of sign data and labels,

text-to-speech conversion and language translation. A front end user interface (UI)

(see Figure 4.13) was also designed as a web app to allow users to interact with

the system through a web browser, specify the labels for the gestures that they had

recorded, and select their desired options for speech output, such as the language,

gender and voice of the generated speech, which would be passed as parameters

when making calls to to the text to speech system.

The system requirements were as follows:

• The minimisation of computational strain on the embedded system by moving

crucial computation to remote servers.

• The ability to create, update and modify a persistent dictionary of gesture-

word mappings in real time.

• The improvement language accessibility by using a cloud based language trans-

lation API.

• The use of IBM Bluemix™ and Watson4 APIs including CloudFoundry ap-

plication hosting, Cloudant™ CouchDB DBaaS (Database as a Service) and

the Watson text-to-speech and translation APIs. Bluemix™ is a well-suited

4IBM Watson - https://www.ibm.com/uk-en/watson

https://www.ibm.com/uk-en/watson
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platform for rapid prototyping of real-time web applications due to the inte-

gration of each system component in a single environment with a single set

of credentials. Figure 4.11 shows the integration of Bluemix™ with the glove

system.

• Text-to-speech and language translation: In order to substantially reduce the

burden of computation to be performed on the data glove’s embedded system,

the RESTful IBM™ Watson APIs were used to facilitate text to speech gen-

eration for the labels of classified gestures, as well as the translation of those

labels from English into other spoken languages prior to output. The language

translation API simply returns a translated string for a provided input string

and the language code of the desired destination language. The text to speech

API accepts a string to synthesize audio for, as well as a voice parameter,

and returns a WAV file of the generated speech (MIME type audio/wav).

The voice parameter specifies which voice to use for the synthesis from a list

of options provided by the API based on the selected language, with many

languages o↵ering both male and female voices.

The core CloudFoundry application used a simple NodeJS server running Ex-

press5 to expose an API and simple web app. It served a single-page web app,

“BrightSign Collection”, which provided a way to inspect and modify a set of

gesture-word mappings created in the embedded system and stored in the Cloudant™

CouchDB instance. Real-time communication between the server and connected web

clients (including the embedded system) is facilitated by SocketIO6.

SocketIO uses an underlying WebSockets protocol to send small amounts of data

asynchronously between clients connected to a server. The web platform used the

following set of messages:

• gesture is sent to the server by the embedded system on the glove when a

new gesture has been defined. It contains a unique ID generated on the glove

as well as the raw sensor data for that gesture. This gesture is saved to the

database on the server, and kept in a “detached” state until the user associates

a word with it.
5Express.js - http://expressjs.com/
6Socket.io - http://socket.io/

http://expressjs.com/
http://socket.io/


CHAPTER 4. PRELIMINARY CASE STUDIES 80

Figure 4.11: End-to-End flow diagram for gesture training and classification
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• updateName is sent to the server by a web client when the user associates a

word with a gesture, or overwrites an existing gesture-word mapping. The

server then updates all connected clients with the new dictionary.

• state is sent by the server to all clients (including the embedded system) when

a change to the gesture dictionary has occurred

To control the system, a file was created to run call-back functions in response

to changes in the gloves state (referred to hereafter as state.py). This file ran

callbacks, if defined, based on state changes such as starting recording sensor data,

ending a recording of sensor data, each frame while sensor data was being recorded

and when the buttons were pressed (long and short presses, for each of the red and

black buttons). This file also tracked whether the glove was currently in its training

or classification mode.

The main file featured a loop controlled by a timer that locked the glove to a

certain number of frames per second, to keep the sample rate of the sensor data at

a consistent, arbitrary rate. Each iteration of this loop made a call to the state.py

file, in turn running any appropriate call-back functions based on the state of the

glove. For example, a call-back was defined such that when the red button was

pressed for a short duration, the glove would write the incoming sensor data each

frame to a file.

Training and classifying task software description

In training mode, when one button on the glove was pressed, data from the bend

sensors and gyroscope was recorded into a bu↵er. Recording ceased when the button

was pressed for a second time. The device then made an API request to the gesture

endpoint of the web backend, which added a newly generated Universally Unique

Identifier (UUID) to the cloud database, but with the raw gesture data remaining on

the glove. This API function sent an update message using a persistent WebSocket

connection to any currently connected web app frontends, notifying them of the

change to the database, as well as a standard response to the glove, confirming that

the request had been fulfilled successfully.

Any web app frontend currently connected to the server would refresh its dis-

played list of gesture UUIDs and corresponding phrases based on this notification.

The user could then use the web app to assign a word or phrase, corresponding to
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1 def g e t l a b e l ( a l l g e s t u r e s , a l l l a b e l s , que ry ge s tu r e ) :

2 ”””

3 Get the l a b e l f o r the neares t ne ighbour o f a g i ven

4 query g e s t u r e in a l i s t o f recorded ges ture s ,

5 us ing DTW.

6

7 a l l g e s t u r e s : a l i s t o f g e s t u r e samples ’ data

8 a l l l a b e l s : a l i s t o f l a b e l s corresponding to each

9 data item

10 que r y g e s t u r e : the g e s t u r e data we are a t t empt ing

11 to c l a s s i f y

12

13 re turn � the l a b e l o f the c l o s e s t g e s t u r e from a l l g e s t u r e s

14 ”””

15

16 # I n i t i a l i s e empty l i s t o f d i s t anc e s

17 d i s t an c e s = [ ]

18

19 for cu r r en t g e s tu r e , l a b e l in

20 zip ( a l l g e s t u r e s , a l l l a b e l s ) :

21 # Convert curren t and query g e s t u r e from l i s t s

22 # in to NumPy arrays

23 c u r r e n t g e s t u r e s e r i e s =

24 np . array ( cu r r en t g e s tu r e , dtype=’ f l o a t ’ )

25 q u e r y g e s t u r e s e r i e s =

26 np . array ( query ges ture , dtype=’ f l o a t ’ )

27

28 # Ca l cu l a t e the DTW di s t ance and path between

29 # both s e r i e s , us ing euc l i d ean d i s t ance

30 d i s tance , path = fastdtw ( c u r r e n t g e s t u r e s e r i e s ,

31 qu e r y g e s t u r e s e r i e s ,

32 d i s t=euc )

33

34 d i s t an c e s . append ( l abe l , d i s t anc e )

35

36 # Return the l a b e l wi th the s h o r t e s t DTW di s t ance

37 d i s t an c e s . s o r t ( key=lamda tup : tup [ 1 ] )

38 return d i s t an c e s [ 0 ] [ 0 ]

Figure 4.12: Sample Code: Dynamic time warping nearest neighbour
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Figure 4.13: IBM Bluemix™ hosted web app interface

the gesture data that had just been recorded. The web app, once a new or updated

phrase had been input by the user, made a request to the updateName endpoint

of the backend API. This endpoint updated the entry in the cloud database for

that UUID, adding or updating the specified phrase, and then again sent a response

confirming the successful update as well as notifications to all connected web apps

and devices.

When in classification mode, the glove similarly allowed the user to start and

stop recording gesture data with the press of a button, however, when recording was

ceased, rather than saving the data as when training, the glove instead used it to

find a closest match based on the already saved gestures in the database. This was

done using a k-Nearest Neighbours (k-NN) classifier, using Dynamic Time Warping

(DTW) as a distance measure. In order to allow gestures of varying lengths to

be compared without bias, array interpolation was used to increase the length of

all gesture data bu↵ers to the same number of frames. This classifier output the

corresponding UUID of the closest matched gesture that had previously been saved

during training.

A request was then made to the API to provide output for the corresponding

phrase, based on that UUID. This API function queried the cloud database for the

provided UUID to retrieve the corresponding phrase. Based on options specified

in the web app frontend by the user, including language and voice selection, this

phrase was then sent to the IBMWatson Translation API, along with the desired ISO

language code for the language and dialect to which the phrase would be translated.
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The translated response from the Translation API was then sent to the IBM Watson

Text-to-Speech API, again specifying the language, but also the specific voice to use

to generate speech output. This API provided as its response a lossless WAV file,

containing the audio of the generated speech for the requested phrase, based on the

language and voice options provided. This audio was then sent using the WebSocket

connection to the web app frontend, which in turn played the audio to the user. The

classified phrase was also displayed in large text on the screen, overlaid on top of

the web app interface.

Design

A custom pattern was designed for the textiles of this glove prototype (see Figure

4.14) in which all wearable sensors were embedded and fully enclosed within special

channels sewn into a separate inner lining of the glove. The circuit board was encap-

sulated in a plastic wrist band casing and was fully insulated with non-conductive

and fire resistant fabric to ensure the complete safety of the user at all times. The

addition of the channels for the flex sensors, as well as the single enclosed electronics

casing, made the circuit removable, which enabled the washing of the textile por-

tion of the glove - an important hygiene point as this prototype would be used by

a number of di↵erent users in a public setting. The glove fabric was selected after

testing a number of potential options, to be stretchable but still soft, in order to

accommodate the many di↵erent sized hands of its potential users, as well as to add

su�cient durability for long term use and to increase the comfort of the wearer.

Furthermore, by grouping all of the components onto a single circuit breadboard

and by placing the bulky parts of the electronic circuitry on the wrist rather than

sewn into the glove on the back of the hand, the glove was able to withstand much

longer and more numerous testing sessions without breaking, and did not have issues

when pressure was applied to the connections to the wires at the base of each flex

sensor – something that was reported as a major issue with the previous design and

that limited the results of the pilot study.

Cost

The component cost of this prototype was reduced by over a half, compared to

the previous iteration, as some hardware components were replaced by cloud based
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Figure 4.14: Updated glove design, with wearable sensors embedded in channels

in an inner lining
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software APIs (such as the text to speech chip). However, the design cost increased

due to the necessity of commissioning a custom pattern for the glove’s textiles. In

addition, the software had to be paired with a capable cloud computing platform

to host the previously described web application, which required an expensive, con-

tinuous, ongoing subscription, hindering the long term cost e↵ectiveness of the final

solution.

4.2.3 Method

A series of usability testing sessions were set up at three conferences (IBM Artificial

Intelligence for Social Care, No Barriers Summit’s Innovation Village and CENMAC

Assistive Technology for Education), all of which exist specifically to discuss and

address issues directly relevant to the core purpose of this research. Attendees who

were invited to participate in the studies had a range of di↵erent disabilities and

were all at the time using various forms of assistive technology to communicate with

those around them day to day.

Study sessions were able to be reserved by attendees on the conference portal

or by using a sign up sheet in person at the exhibition. A study session of thirty

minutes was allocated for each participant to test the new data glove prototype and

for their experiences to be documented. For participants below the age of eighteen,

it was stipulated that an accompanying adult was required to be in attendance.

Only one glove prototype was able to be made available for the first of the three

case studies, which greatly limited the number of participants able to test it, and

required substantial recovery time between the sessions to reset any damage that had

occurred to the glove while wearing, using, and then removing it, as well as time to

clear the saved gesture library in preparation for the next participant’s session. This

eventually triggered a number of changes to the study schedule, first to extend the

testing sessions for an additional 15 minutes per user, and also to allow for a short

break between each of the sessions to allow the researcher to reset the cloud based

system and the glove, which further reduced the number of study participants that

could be seen over the course of the exhibition days. A second glove prototype was

made for the second and third studies with the specifications implied by feedback

from the first group of sessions at the first conference.

A computer screen was used with the testing glove to display the web appli-
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cation with the user interface designed for participants to label personalised signs

in order to build individual gesture libraries and to select preferred language and

voice output. At exhibitions that used public networks, it was challenging to keep a

reliable connection between the glove and the server, where the classifier was hosted,

so a physical wire was used to connect the glove to the computer; although it was

originally designed to operate as a stand-alone device. This a↵ected the mobility of

the glove and the range of motion within which the users could perform their signs.

All study sessions were held one-to-one with the participant and the researcher.

Sessions started with a demonstration of how to use the glove to record and then

classify custom sign language hand gestures. The participant then put on the glove,

with the help of the researcher if required, and followed the steps as demonstrated,

often guided by the researcher. To record a new gesture, the participant presses

the record button (red) on the glove, makes a dynamic hand gesture, then releases

the button. Up to three samples could be recorded for each sign. Once a sign was

trained, the participant pressed the red button again (short press) to send the data

to the web application. A new gesture ID appeared on the computer screen (see

Figure 4.13) with an empty text field in the user interface. The participant inputs

the word they wanted to correspond to that sign by typing it into the text field.

The gesture was then saved with that corresponding label. The same process was

repeated to record multiple signs. When the participant had trained five gestures

(which was the minimum requirement to consider a study session complete) they

could choose to stop and test the system recognition.

To set their speech output preferences, the participant chose a language and a

voice from the drop-down menus on the interface. To classify signs, the participant

pressed the black button on the glove, and then performed any of the hand gestures

they had previously recorded. If the system found a match, the corresponding label

was displayed on the screen and spoken out through the speaker in the language

and voice selected. If no match was found, an error message appeared on the screen.

If the displayed label did not correspond to the performed sign, then the system

failed to recognise the gesture and the sign was retrained. The data from the new

training samples always replaced the old ones. At the end of the session, gesture

data was saved on the cloud server and the gesture library was cleared on the user

interface ready for the next user. A simple user guide was printed for participants

who wished to operate the glove independently.
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To train the glove:

1. Open the web application for BrightSign7

2. Wear BrightSign glove

3. Press the on button (red button)

4. Record a sign by pressing and holding the record button (black button) while

making the hand gesture for a specific sign / word

5. Release the record button and a pop up window will appear on the web app

6. Type in the word you wish to classify the sign you just made

7. Pick a language for speech from the drop-down menu (English, French, etc)

8. Pick a voice from the drop-down menu (male, female, child)

9. Press enter

10. The sign/hand gesture has now been saved and classified

Notes:

• Use this method to build your personal library of sign language.

• You can record and classify multiple signs at a time by recording the gestures

one after the other then classifying them in the web application, given that

they are in the same order.

To translate the signs into speech:

1. Wear BrightSign glove

2. Press the on button (red button)

3. Press and hold the black button and make the hand gesture/sign

4. Words/speech will be spoken out through the speaker in the voice and language

that you have previously specified.

Notes:
7BrightSign is the name used to refer to the data glove developed for this research
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• To preserve battery power, the glove has been set to go into sleep mode if it

remains still for more than 5 minutes.

• To turn it back on, just press the on button (red button)

• To reset the glove or recover from errors, press and hold the red button until

the screen is turned o↵.

4.2.4 Results and Discussion

This 3-stage-iterative case study engaged twenty-seven participants in total. Gesture

data was collected from twenty fully executed testing sessions with a total of 130

trained hand gestures. A wide range of users participated in this study varying in

age, needs and abilities. Some extreme cases were included to ensure that the testing

of the proposed system was comprehensive and addressed all user requirements.

The outcomes of each study iteration, and the various factors that influenced

them, are discussed in detail, under their respective sections below.

Although the method for study sessions was unified across the exhibitions, there

was some variation due to the di↵erence in conference scope and the nature of

participants in each attendance demographic. In addition, minor changes to the

prototype and session outlines were made based on research reflections between

study stages. Therefore, the discussion has been categorised below per study:

Usability Study A - IBM Artificial Intelligence for Social Care Confer-

ence, Seoul, South Korea, December 2016

This conference started with a global AI Hackathon that ran in parallel, during

which the prototype hardware and software was created. IBM software was initially

used for this prototype due to being granted free access to IBM Watson APIs and

cloud services. The hackathon was followed by an exhibition which hosted the first

of the iterative usability studies for the second glove prototype of this research.

For this conference only, I lead a team of two members (Leon Fedden and Jakub

Fiala), who assisted with the testing sessions carried out at the exhibition, and

helped with troubleshooting system performance as well as provided support to

resolve connectivity and arising technical challenges. These team members accom-

panied me on stage for the final presentation of the data glove at the end of the
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hackathon (Figure 4.15). As part of this presentation, I gave a demonstration illus-

trating how the full system works8, winning my team, and Goldsmiths University

of London, the hackathon’s grand prize.

Figure 4.15: Presentation of the data glove at the end of the hackathon, by team

members Leon Fedden9and Jakub Fiala10.

The exhibition ran over two days, for six hours per day. Initially, 25 participants

signed up for the testing sessions. However, due to technical di�culties while con-

necting the glove to the wireless network and having to reset the libraries between

users, only 18 could secure slots. From those, 11 completed the full study session

tasks of building a library of five gestures or more. That was due to the fact that

most sessions ran over the scheduled time of 30 minutes and some of the participants

were not able to stay longer. Participants age range was between 16 and 28 and

most were attending the exhibition to explore emerging technology for social care.

All participants were at the time of the study using software solutions for com-

munication, mostly in the form of an app on their phones. 35% of them did not learn

sign language when they were young and therefore never used it. Testing a hardware

prototype to translate sign language was the first experience for all participants.

The system collected the data for 72 trained gestures, with an average of 6

trained signs per participant and 2 samples per sign. 92% of participants completed

the task within 20 minutes. 30% were able to do so independently, and without the

8Video of my presentation is accessible at the following URL - https://resources.brightsignglove.

com/ibm study
9Leon Fedden - https://leonfedden.co.uk

10Jakub Fiala - https://fiala.uk

https://resources.brightsignglove.com/ibm_study
https://resources.brightsignglove.com/ibm_study
https://leonfedden.co.uk
https://fiala.uk
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researcher’s help. The system was able to recognise 100% of the signs accurately

within a library of 5 signs. This is because the glove was trained and tested by the

same person, so the high number of errors that previously occurred because of hand

gesture variations in the previous study were eliminated in this instance.

For the few participants who trained a library with more than 5 gestures, the

system mismatched 13% of the signs performed. Lower accuracy levels were specifi-

cally observed with participants who had smaller hands, mostly females, due to the

large size of the glove which meant that the flex sensors were often placed out of

alignment along the fingers. It was also noted that participants who did not know

a formal sign language struggled to remember exactly how they trained the signs as

the library size grew.

Most participants struggled to remember which mode the glove was in, train-

ing, classifying or processing, as there was no visual feedback on the glove that

informed the participant of the current mode. Furthermore, the majority of partic-

ipants did not keep track of which button they had pressed and for how long. This

was particularly a problem for participants who were constantly switching between

training/recording and classifying as opposed to doing one phase at a time.

Direct feedback from several participants suggested that once they trained a

library of gestures, they preferred to keep eye contact while signing and didn’t

have a use for the on-board screen attached to the glove. The screen displayed the

word for the recognised hand gesture in the original text input language which is

English. Although the screen was not essential for communication, it confirmed

to the hearing-impaired signers that what was being signed was indeed what was

being output through the speaker. This feature was especially useful while using

the glove in a non-English speaking country, such as South Korea, where this study

took place, since all users set the speech output to Korean – which is a language

that some didn’t actually understand themselves.

Reflecting on this study, a duplicate glove was made for the next study to allow

more users to participate and to minimise the turnover time between sessions. This

glove was slightly smaller in size to accommodate participants with smaller hands,

especially children. In addition, a dedicated device with a 4G chip was acquired

to provide a reliable internet connection in order to avoid troubleshooting venue

networks which proved to be challenging at times and further delayed the sessions.

The on-board screen was also updated to display the mode the glove was in while
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(a) Participant A (b) Participant B

Figure 4.16: Participants at the No Barriers Summit in Lake Tahoe

training/classifying and showed sample numbers of the signs while recording them.

Usability Study B - No Barriers Summit: Innovation Village, Lake Tahoe,

USA, June 2017

No Barriers Summit11 is an annual conference bringing together assistive technology

and individuals with di↵erent disabilities to interact with the technology in an open

four-day exhibition. Testing sessions were set on the second and fourth days of the

conference. Users who participated in the study had di↵erent speech disabilities,

some combined with hearing and/or visual impairment (Figure 4.16).

Seven participants completed the testing sessions in the same format described

above. Study sessions exceeded one hour at times due to di�culty in communication

with the participants who spoke a di↵erent version of American Sign Language,

which the researcher was unfamiliar with. That required hands-on guidance from

the researcher with every task. Accuracy rate was 100% with no errors in matching

gestures even with a gesture library of more than 5 signs. This was likely due

to the close supervision of the researcher when recording gesture samples, and the

consistency of the performance of signs by the participants, as they were all proficient

users of sign language, unlike a third of the group from the previous study. Numerous

participants recorded multiple gestures forming a sentence or phrase rather than a

11No Barriers - https://nobarriersusa.org

https://nobarriersusa.org
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single word, such as “I love dogs” (see Figure 4.13). Others created shortcuts by

recording the gesture for just one sign but assigning a full sentence to it as a label.

Participant reactions varied between amazement at the technology, and feeling

enabled. They had a sense of achievement when they trained the glove and the

output was accurate12.

Observation revealed that the participant with visual impairment did not know

which buttons to press, since buttons were colour coded (red and black), had the

same shape and provided no haptic feedback. The on-site solution was to guide

them to feel the buttons and determine the position of the top button which is the

record button.

Reflecting on this study and in preparation for the next one, one major change

was identified as necessary in the future – to make the glove run o✏ine. This was,

however, not immediately able to be implemented, as running more computationally

intensive processes such as the speech generation on the glove itself required an

increase in the available processing power, which in turn would necessitate a change

of hardware. Although this was the ultimate plan for the third and final glove

prototype of this research, a temporary solution was found to allow the training

to occur when connected to the cloud API but the classification to happen o✏ine.

Under this method, the user would assign the label to each gesture using the web UI,

however, rather than waiting for classification-time to generate each speech audio

sample, the cloud back-end immediately used the Watson API to pre-generate the

required audio files and then transmitted those files to the glove, to be stored on

the a microSD card attached to the Raspberry Pi board and then played back by

the glove itself when corresponding signs were classified. As such, a library of signs

could be built while connected to the cloud system and web app, however, the glove

could then be taken o✏ine while being used for classification, meaning that it could

be used in public without the need to connect to a network or other external device.

Usability Study C - CENMAC Assistive Technology for Education Con-

ference, London UK, May 2018

CENMAC one of the primary providers of assistive technology for education in

schools in the UK since 1969 (CENMAC 2020). They organise an annual conference

12Video of a participant testing the system during the exhibition can be accessed at the following

URL - https://resources.brightsignglove.com/no barriers study

https://resources.brightsignglove.com/no_barriers_study
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Figure 4.17: Participant using the glove to perform the sign for “Fish” at the

CENMAC Assistive Technology for Education Conference, 2018

at Charlton Park Academy in Blackheath every year.

Charlton Park Academy is an inclusive school for children with Special Edu-

cational Needs (SEN). Most of the students in the school use assistive technology

to communicate. This ongoing research project of the data glove was presented in

a talk, and the latest prototype was showcased in their 2018 exhibition for assis-

tive technology called “Communication Works” amongst a wide range of assistive

technology designed to enable communication13.

The impact of the talk was positive and a queue of parents formed to sign up

their children for the case study, many of which also expressed an interest to acquire

a data glove if possible.

As all children with non-verbal disabilities in the school used special tablets with

communication apps, I was keen to get direct feedback about their experience with

this type of technology.

I was specifically interested in parents’ reflection and so a small focus group was

formed to discuss the advantages and drawbacks of such systems. Most parents had

similar input, with their main concerns summarised here. They universally felt that

they had to limit the use of tablets by their children, resorting to locking the tablet

to restrict its usage to only the communication app, which caused frustration to the

children. Another disadvantage was that children often didn’t learn how to sign or

keep eye contact while interacting with the public. They hid behind the screen and

13Video of a student testing the glove prototype (as an excerpt from a documentary video

produced by CENMAC) is accessible at the following URL - https://resources.brightsignglove.

com/cenmac study

https://resources.brightsignglove.com/cenmac_study
https://resources.brightsignglove.com/cenmac_study


CHAPTER 4. PRELIMINARY CASE STUDIES 95

often kept their eyes low or fixated on the tablet. Cost was highlighted by many,

as at the time (and is still the case to date) available solutions for communication

started at £2000 for standard devices and could go up to £9000 when customised.

Although the devices used were provided by CENMAC, the process to get them

granted was a lengthy one, with a minimum of six years usage to qualify for a device

upgrade, when needed.

With that in mind, and to move forward with the research, five study sessions

were scheduled. Three sessions were conclusive, two of which testing was conducted

with the same user.

The first session was with a seven year old student who had very limited limb

movement, a common symptom of cerebral palsy, a condition with which they were

born. The participant usually used a plush toy with sensors which they pressed to

communicate when they required attention. When pressed, the toy produced a low

beep sound and lit up. Their attending teacher and the researcher replaced the toy

with the glove and recorded the same gesture performed when using the toy to ask

for help. The attending teacher assigned “I need help” as the identifying word for

that gesture. The system successfully classified that gesture 100% of the time when

it was the only gesture in the library. Training additional gestures proved to be

very di�cult as the participant did not have the range of movement required for a

distinguishable di↵erence to be reported by the glove sensors.

The conclusion was made by the team of teachers and the researcher that al-

though the participant is not benefiting from the full extent of the data glove tech-

nology, they can still use it for the same purpose their primary plush toy serves,

with the additional feature of assigning custom words/speech output. From the

perspective of this research, however, this session proves that users with restricted

motor abilities may not be the best candidates for this study, or the data glove, as

they do not test the limitations of the system or benefit from the wider range of

communication library the system was designed to provide for them.

The second session was with a 13 year old student who used Makaton sign lan-

guage in school and at home, but not in public. They were proficient in signing but

had a neurological condition that caused their hands to shake involuntarily. They

managed to put the glove on unassisted and followed the researcher’s instructions

largely accurately to complete all of the study tasks. Five gestures were trained but

only one was ever classified accurately, and that is the sign for “slowly”. As you can
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Figure 4.18: Graphic demonstrating the sign for “Slowly”14

see in Figure 4.18, the gesture for “slowly” requires the signing hand to rest on the

opposite elbow then slides along the length of the arm. This provided additional

support for the signing hand and greatly reduced the shaking of the participants

hand when training the gesture.

Analysing the trained gesture data received, considerable noise was detected,

enough to substantially distort the underlying form of the gesture such that the

recognition system could not distinguish it. That prompted an update in the method

with an increased number of samples required to train gestures. A second session

was booked with the same participant. This time ten samples were recorded to

train each of the five gestures. With this updated method, the system was able to

classify three out of five gestures accurately. This indicates that the supplementary

gesture data improved the system’s recognition as it enabled it to better generalise

the motion from the surrounding noise, identify the patterns of movement, and

gradually disregarded the extra motion coming from the individual sensors. This is

shown in Figure 4.19, where the progressive smoothing of the detected motion can

be observed as more training samples are recorded.

14https://british-sign.co.uk

https://british-sign.co.uk
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(a) Detected motion with a single training sample

(b) Detected motion with 5 training samples

(c) Detected motion with 10 training samples

Figure 4.19: Charts showing the reduction of noise in detected motion with in-

creasing numbers of training samples



CHAPTER 4. PRELIMINARY CASE STUDIES 98

The attending teacher strongly recommended having a set of two data gloves,

instead of one, suggesting that getting feedback from two hands rather than one

will maximise the chances of classification accuracy. As I did not have a second

glove synchronised with this one, I was unable to test that suggestion. While it

is plausible and worth exploring, it conflicts with the goal of reducing the cost of

assistive technology, which was a primary concern expressed by most of the parents

interviewed, as the usage of two gloves would necessarily double the acquisition cost.

However, once a commercial route is in place, it is likely that such a decision will

fall to the end user whether to acquire one or two gloves. The system would have to

be designed to support two gloves, so users who start with one glove could upgrade

to two gloves if needed.

4.2.5 Conclusion

The system performed well within the boundaries it was designed for. However, a

more inclusive and advanced system is required to address special cases which do

not conform to the usual expected usage.

Collating feedback from the three usability case studies, an outline for the next

prototype has emerged employing solutions suggested by the users, their parents,

and attending teachers. The primary issues to be addressed were as follows:

Design

In order to consistently retrieve accurate data from the sensors, it is important that

a correctly-sized, form-fitting glove is provided for each user. With a su�ciently

stretchable textile, two sizes (small and large) should be enough to cater for the

vast majority of users. However, if the glove is to feel su�ciently unobtrusive to be

worn in public and on a regular basis, there should be fewer thick wires contained

inside the glove, and the enclosure containing the Raspberry Pi should be minimised

in size. Portability and discreetness was flagged by many users and parents as a key

driver in their adoption of any assistive technology. It was specifically important to

them that any new technology should serve to aid in communication, but not act as

a barrier between the user and the person that they are communicating with, as in

the case of their current tablet-based solutions.
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Hardware

As described above, the key motivator for change in hardware was to allow the

classification system to be moved entirely o✏ine, such that no external connection

to the cloud would be needed, either during training or during daily use.

Simultaneously, the battery life should be further increased, such that a full day

of usage can be extracted from a single glove, as well as decreasing the bulkiness

of the sensors and their accompanying wiring. A proposed solution was to design

a custom flexible Printed Circuit Board (PCB), connecting the flex sensors and

gyroscope to a separate, wrist-mounted enclosure via a ribbon cable. This hand

PCB would also include the necessary analogue to digital converters to provide the

sensor values to the processor. A Raspberry Pi based platform would still be used,

but with the addition of a second custom expansion board providing a port for

connecting and charging a larger battery (to be housed within the enclosure) as well

as hosting a small speaker for audio output, an OLED screen to display text, two

capacitive touch buttons and a ribbon connector with which to connect the flexible

PCB. The individual channels in this ribbon connector would pass through to the

digital input pins of the Raspberry Pi board, with the speaker connected to the Pi’s

audio output.

Software

The software would be updated such that training and classification would both

occur on the device, rather than using an external, cloud-based solution. An of-

fline, software-based, text-to-speech system would be used to generate the audio

corresponding to each label and save it on an SD card within the enclosure. The

user would use the buttons on the device to select a label for which to train a sign

and record the corresponding gesture. Rather than this data being transmitted to

the cloud-based server, it would instead be saved on the aforementioned SD card.

When being used for classification, the glove would use a similar, but more e�cient

DTW and KNN based classifier as ran on the cloud server, running o✏ine. The

glove would then display the corresponding label on the on-board screen and output

the previously generated audio from the speaker, after reading it from the SD card.

A settings menu would also be added, similarly controllable using the two touch

buttons, which would allow the user to control the output volume and to select the
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voice used to generate speech.



Chapter 5

Longitudinal and In-Depth Case

Study

5.1 Introduction

In the first study, a basic data glove was hard-coded with a pre-programmed hand

gesture library to translate a limited vocabulary of Makaton sign language to English

text and speech. This design was a proof of concept and verified that the proposed

technology was potentially e↵ective. However, following analysis of the first study

it was decided that the design should be augmented to allow users to individually

train the device in order to increase the accuracy of the results, and making the

device more customisable.

Augmentation of the device was followed by a three-stage iterative study that

evaluated the new design. Users were able to train personal classifiers which were

then stored on a cloud platform. This enabled users to build their own personal

libraries of sign language hand gestures by performing them interactively with the

device. Gestures were translated to speech in di↵erent languages and voices to

match individual user needs. This was possible by pairing the glove with a user

interface (UI) that allowed them to choose their preferred output options. The

aim of the proposed system was to make the technology more accessible to a wider

range of users. The study demonstrated that a personal classifier is more successful

in translating hand gestures than a pre-defined generalised classifier (with a single

library, shared by all users), and plans were made to upgrade this system to permit

o✏ine use, as well as to make the technology as customisable as possible to give the

101
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users full control over the features and the appearance of the gloves.

By implementing the recommendations from the previous case study, alterations

were made to accommodate participants with di↵erent abilities. Gesture classifica-

tion was enhanced to recognise variations in signing and consistency, and to add

structure and feedback when training samples. The new prototype was therefore

developed with di↵erent user needs in mind. This included changing the output to

images for younger participants who could not yet read, and creating shortcuts to

bypass features that are not used frequently for users who found it di�cult to follow

or remember the operation sequence.

This final study was more in-depth than the previous studies and took part over

a period of six months, during which three periods of evaluation were performed.

This study was conducted in collaboration with Essex County Council and engaged

six Special Educational Needs (SEN) schools, who required the use of assistive tech-

nology in the classroom to help their students overcome communication challenges.

This required a higher-level clearance from University of London Ethics Committee

to ensure that participants from vulnerable groups (Appendix A.1), such as chil-

dren or individuals with disabilities, remained safe and protected during their role

in this research study. In addition, public liability insurance was in place to cover

all participating children (Appendix A.5).

When designing the prototype for this study, the aim was to develop a bespoke

and user-friendly, wireless and standalone data glove which could track hand shapes,

orientation, position and dynamic hand movement of children with non-verbal dis-

abilities, for the purpose of translating custom sign language hand gestures to speech.

The software was created to operate o✏ine by applying recorded sensor data to train

a personal K-Nearest Neighbours classifier, using Dynamic Time Warping (DTW),

for each user. A comparison was made between personal classifiers and general clas-

sifiers when trained by individual and group gesture data collected over the duration

of the study.

To comply with the ethical approval for this study, all testing data was stored

locally on the glove and was not accessible remotely or communicated wirelessly at

any time. Measures were implemented to ensure the safety of the wearable device,

discussed in more detail in the hardware section.

Throughout this study, the iterative design cycle became increasingly shorter,

with the prototype rapidly being developed between study sessions, to fulfil the
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ongoing needs of the participants. During this process, a lot of discussion arose

around the innovation aspect of the technology used. As the case study progressed,

innovation became part of the research and the user’s feedback aligned with the

industrial progression of the technology being evaluated. This eventually led to the

development of a fully integrated, on-body hand gesture classification system, and

a patent was filed to and granted by the UK Intellectual Property O�ce (UKIPO)

titled “Method for Gesture Recognition”, patent No. GB2590502 (Appendix F.1).

The aim of this study was to evaluate an o✏ine personal hand gesture classification

system and by extension, to explore the di↵erent applications of such a system.

5.2 Prototyping and Development

A more child-friendly, wearable device was designed which implements dynamic time

warping, in order to build an on-body system for custom hand signal translation.

Some alterations in hardware, software and design were required in consideration

to the obtained ethics clearance guidelines, discussed in detail under the relevant

sections.

Prototype features were updated constantly during this study. I show in this

section the final version produced after implementing the last evaluation phase of

this study. Glove prototypes were eventually handed over to participants to keep

after the conclusion of this study.

5.2.1 Hardware

The hardware for the glove consisted of three primary units; a micro-controller (a

Raspberry Pi Zero W1), a custom circuit board featuring the speaker and display,

and a hand-shaped, flexible Printed Circuit Board (PCB) that contained the various

sensors used. The board and Pi were soldered together, on top of one another, with

the flexible PCB connected to the main assembly via a short ribbon cable (see Figure

5.1).

The flexible PCB featured 5 flex sensors, one per finger, one accelerometer and

one gyroscope. The accelerometer and gyroscope were on the same physical inte-

grated circuit in the centre of the back of the hand (see Figure 5.2). The values from

1Raspberry Pi Zero W - https://www.raspberrypi.org/products/raspberry-pi-zero-w/

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
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the flex sensors were transmitted to the Pi in raw form, with the accelerometer and

gyroscope unit connected via an I2C bus, as seen on schematics Figure 5.3.

As per the school’s request and to conform with the ethical clearance for this

study, some measures were taken to ensure that hardware was not accessible by the

children while using the gloves. All electronic components were encapsulated and

sealed inside a wearable enclosure, secured via an adjustable wrist band (see Figure

5.11). An opening was placed to allow charging the battery internally, rather than

replacing it, as in the previous prototype. A fail-safe switch was added to turn the

battery o↵ while charging. A battery risk assessment was carried out to ensure the

safety of the wearable circuit:

• Short circuit to the battery: The battery has short circuit protection

built-in

• Over-voltage charging of the battery: The battery is permanently con-

nected to the hand PCB and can only be charged by the battery charger on

the hand PCB. The charger selected is designed to charge to a maximum volt-

age of 4.2V which is below the maximum safe charge voltage of the battery.

The Input of the battery charger IC also has a Transient Voltage Suppressor

(TVS), designed to protect against ESD and also limit the input voltage to

5V (within the safe input voltage range of the battery charger IC). If a higher

voltage is connected, then it will clamp and if present for too long, short the

TVS. This in turn will cause the 1.5A input fuse to blow, stopping the battery

encountering the high voltage. The battery also has over-voltage protection

built-in so if the charger failed then the battery would still be protected. The

connector to the battery charger is a micro USB at the standard nominal 5V

(min/max 4.5-5.5V), all within specification of the battery charger.

• Over-discharge of the battery: The battery has over-discharge protection,

currently set at 2.75V.

• Over-charging - Charging the battery above its maximum charge

rate: The maximum charge rate for the battery is 0.5C, C=2Ah, so the max

charge current is 1A. The battery charger on the PCB is set to charge at its

maximum of 1A; the power supply provided also being 5W (5V, 1A). There is
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Figure 5.2: Final glove circuit design
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a 1A series fuse onto the battery to restrict the charging current and discharge

current. The battery also has over-current protection built-in

• Over-current - Discharging the battery above its maximum discharge

rate: The maximum discharge rate for the battery is 1C, C=2Ah, so the max

discharge current is 2A. There is a 1A series fuse on to the battery to restrict

the discharge current. The battery also has over-current protection built-in

• Over-charging - Due to trickle charge over a long time: The battery

charge has a built-in timeout of 4hrs for charging the battery, this cannot be

disabled. The battery also has overcharging protection built-in.

• Over-temperature: The battery charger has a NTC temperature sensor to

mnitor the battery temperature whilst charging. The battery also has built-in

over-temperature protection.

5.2.2 Software

The crucial development towards the prototype for this study was to make it stand-

alone, able to run independently from any external device and to fully operate o✏ine.

Therefore, the primary software upgrade from the previous prototype was for the

classifier to work o✏ine and to run locally on the glove. To enable user interaction

with the system, a simple User Interface (UI) was designed to be displayed on the

on-board screen with capacitive (touch) buttons to allow the users to scroll between

menu options, seen in Figure 5.4.

When the children trained the glove, recordings for all sensors were stored for

each sign, with multiple examples of each sign being recorded. These recordings

were labelled with the name of their corresponding sign, for example “Please” or

“Thank You”.

Children selected the label of the sign for which they wished to record a new

sample, while wearing the glove, using the glove’s on-screen display, and pressed a

button to start the recording of sensor data. They then performed the sign, before

pressing the button again to cease recording.

The system, after receiving the raw data from the sensors embedded in the glove,

normalised them between 0 and 1, based on values that were recorded from each

sensor as the maximum and minimum possible readings during normal use. This
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Figure 5.4: Glove UI Flowchart

prevented any sensor from overly weighting the classification result. The sensor

values were stored after normalisation.

After pressing another button to begin recording a sign for classification, each

child again performed the sign, and pressed the same button to cease recording.

As during training, sensor values were immediately normalised to provide values

between 0 and 1.

A DTW algorithm, explained in detail below, was then applied to each of the pre-

recorded training samples in turn, with the new recording for classification. This

provided the distance between each sample (and therefore its label) and the new

recorded gesture.

A K-Nearest-Neighbours algorithm, explained in the following section, was then

used to select the output audio and text, based on the distances calculated in the

previous step. K was set to di↵erent values to test its impact on classification

accuracy.

The label for the classified sign was ultimately displayed on the screen, with

corresponding audio being output from the on-board speaker. While this is fun-

damentally the same classifier used in the prototype developed for the second case

study (see sample code in Figure 4.12), the key di↵erence is that the audio and

label output of the system is now hosted on the local board and can be used o✏ine

instead of connecting to a cloud based system like the previous prototype used in

the previous chapter for the iterative case study of Section 4.1.
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Figure 5.5 explains the classification process and Figure 5.6 the training process

in the form of flow charts.

The classification software was based on a K-Nearest Neighbours classifier using

Dynamic Time Warping (DTW), to calculate a distance measure between time series

recordings.

Dynamic Time Warping is an algorithm that enables the calculation of similarity

between temporal sequences while allowing for variations in speed and position in

time. In this case, this means that the similarity measurements are largely invariant

to di↵erences in the speed of signs being performed, and small variations in the delay

when recording, prior to the user performing each sign.

Figure 5.7: Example of Dynamic Time Warping to measure distance between two

time series for the hand sign for “Please”.

An example of this can be seen in Figure 5.7. Recordings of the value of one

axis of the accelerometer on the glove were taken as a user performed the sign for

“Please” multiple times at di↵erent speeds. This value is graphed over time (with

the raw value of the sensor on the vertical axis, and time on the horizontal axis) in

the below chart in the form of two dark blue line plots. The orange lines represent

the mapping between the points in the two series as dictated by the DTW algorithm.

In this example, the algorithm has largely correctly identified the mapping between

the macroscopic features of each series (namely the two consecutive spikes towards
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Figure 5.5: Classification task flow chart
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Figure 5.6: Training task flow chart
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the start of the time series, followed by a slow decrease in value).

Implementations of the DTW algorithm that guarantee the optimal match have

at best quadratic (O(n2)) time complexity of computation. As such, alternative

algorithms that will find good approximations of the optimum, such as FastDTW

(Salvador and Chan 2007) and SparseDTW (Al-Naymat et al. 2012), can be used

instead, some of which run in linear (O(n)) time. The FastDTW algorithm was

selected to be used for this prototype’s system.

When DTW is used in situations where time-series data is multi-dimensional for

each frame, two di↵erent variations are possible (Shokoohi-Yekta et al. 2015) - the

dependent variant (DTWD) and the independent variant (DTWI). DTWI calculates

a separate minimal warping path (and therefore distance) for each dimension of the

data, which is then summed (either linearly or as a Euclidean distance) whereas

DTWD finds a single shared optimal match between points for all dimensions si-

multaneously, with distance calculated per frame. DTWI can be used when the

dimensions are only loosely coupled in time. DTWD is most appropriate when

the values for each dimension are either mutually dependent or strongly coupled in

some way. In this case, it is appropriate as the sensor data is physically coupled -

corresponding to the real-world configuration of the user’s hand.

5.2.3 Design & Enclosure

As the council granted the participants ownership of the glove prototypes after the

completion of the study, it was possible to personalise the size (two di↵erent sizes of

PCB were created to accommodate smaller and larger gloves - see Figure 5.8), colour

and design of each prototype as per the each child’s preference (see Figures 5.9 and

5.10). This was particularly useful in making the participants more comfortable

using the technology, so that they did not feel intimidated by it, as well as to help

them treat it as a personal item.

To ensure the safety of the children wearing the technology and to comply with

the ethical approval, all sensors were embedded within an inner lining of each glove.

Insulating the sensors was a necessary design and safety solution to prevent direct

contact with the children’s skin and to make the glove appearance discreet for partic-

ipants who did not wish to wear an obvious assistive technology device. The children

were invited to communicate their desired glove designs. Each child received a right
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Figure 5.8: Flexible PCB size options: small with 2.2” flex sensors and large with

4.5” flex sensors

Figure 5.9: Personalised glove designs
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Figure 5.10: Exemplar scans of participant hand outlines

or left hand glove (corresponding to their dominant hand when signing) that was

personalised to their preference, in terms of size, colour, and design. A plain glove is

shown (Figure 5.11) to preserve anonymity, as gloves also had the children’s initials

and/or names embroidered. Involving the children in designing their own gloves

proved to help them in overcoming their initial intimidation by the technology, that

was observed in previous studies, where the gloves were more obtrusive and the

design was unified across participants.

A hard-case wrist band was designed to house the micro-controller, a custom

circuit board featuring the speaker, screen and two buttons, and a battery (Figure

5.11). The case was sealed to insure children were not able to access any of the

electronic components. The two buttons were added to allow children to interact

with the glove and use it for sign language training and translation; a red button

for training (record a new gesture) and a blue button for translation (recognise a

gesture and output the corresponding audio). The battery was charged using a USB

port without opening the case. An automatic fail-safe switch was added to disable

the operation of the glove while charging as an additional safety feature.
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(a) Winter glove option (b) Summer glove option

Figure 5.11: The assembled glove, flexible PCB and hard enclosure with a winter

and summer textile option

5.3 Method

5.3.1 Setting-up the study with relevant parties: schools,

teachers and parents

This study recruited fifteen participants aged between five and sixteen, registered

in primary Special Educational Needs (SEN) schools in Essex. Speech therapists at

participating schools selected children who were non-verbal and used sign language

as their primary means of communication. Children gave consent by nodding or

making the hand sign for “Yes” when asked if they wanted to wear the glove. All

testing sessions were supervised by a member of school sta↵ and with a guardian

present, both of whom also provided consent. Participating schools were required

to sign a consent form allowing the study sessions to be run on campus. Minimal

disruption was promised by the researcher to school’s daily operations. An initial

meeting was conducted with the parents and teachers of selected students to present

the study proposal. A detailed document outlining the timeline, progress and eval-

uation contribution required of parents and teachers was distributed (see Appendix

C).

Three evaluation periods were suggested to take place during the six-month



CHAPTER 5. LONGITUDINAL CASE STUDY 117

duration of the study, scheduled at two-month intervals. Teachers were asked to

evaluate participant’s experience with the prototypes in school, and parents when

at home. Evaluation forms were explained in detail to both teachers and parents,

discussed in more detail in the section entitled “Evaluation”.

A user guide was distributed to aid with the operation of the glove prototype

(see Figure 5.12) It included step-by-step instructions of how to train the glove then

use it for translation. A simple care and troubleshooting section was also added to

help with possible user challenges.

One-to-one sessions were scheduled with each student, their parent(s) and at-

tending teacher to train them on how to use the glove, described in detail below.

The gloves were then handed over to each participant to keep in their possession for

use in school and at home. The researcher scheduled weekly visits to each of the six

participating schools for observation and the provision of additional support using

the technology (see Figure 5.13).

5.3.2 Study framework

Fifteen non-verbal participants were recruited, between the ages of 5 and 16 years

old. Teachers identified the students who would be good candidates for the study.

Selection criteria was based on familiarity with a form of sign language, consistency

in signing and those who could benefit from using this technology to overcome

communication challenges in school. A preliminary meeting was held at participat-

ing schools with children’s parents and teachers to introduce the technology and

describe all features. A usability guide was distributed to ensure adults who su-

pervised children using the gloves, in school and at home, were aware of the safety

regulations. Training sessions consisted of a two-hour long task (described below)

and were broken into four, fifteen minute segments. Training sessions were done with

the researcher and the participant’s speech therapist in attendance. The first seg-

ment was reserved for getting the children familiar with the glove and asking them

if they wanted to wear it. Once they gave consent, they were helped with putting

the glove on and the researcher demonstrated how to use it. The participant was

always the one who pressed the buttons while wearing the glove.

The glove has two modes: Training and Classifying. Participants were first

shown how to use the glove to record signs (Figure 5.14 & 5.15). Each participant
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• Place	hand	inside	the	

glove	and	adjust	the	

strap.	

• Turn	the	switch	ON	

(downwards)	to	power	

up	the	glove.	

• It	may	take	a	few	

minutes…	

• “BrightSign”	will	appear	

on	the	screen	

	

Start-up	

1. Press	blue	button	to	go	through	the	menu	

2. Once	on	Training,	press	the	red	button	to	

select	it.		

3. A	list	of	words	are	stored	which	you	can	go	

through	and	train	one	by	one.		

4. Use	the	blue	button	to	move	through	the	

list.	

5. Select	the	word	you	want	to	train	a	sign	for	

by	pressing	on	the	red	button.	

6. Each	sign	needs	to	record	3	samples.		

7. Press	the	red	button	again	to	record	the	

first	sample.	

8. Make	the	sign	with	your	hand.		

9. Repeat	3	times.		

10. Trained	signs	will	display	a	smiley	face	

emoji	:-)		

11. Press	the	blue	button	to	go	back	to	the	list	

of	words.		

12. To	train	another	sign	repeat	steps	5	to	9.	

13. To	go	back	to	the	main	menu	go	through	

the	entire	list	of	words	until	“main	menu”	

appears	on	the	screen	then	press	the	red	

button.		

	

Training	the	glove	

• The	glove	has	two	

modes:	Classifying	and	

Training.		

• Press	the	blue	button	to	

go	between	modes.	

• To	select	a	mode:	press	

the	red	button.		

• To	tell	the	glove	you	will	

make	a	sign,	press	the	

blue	button	twice,	then	

make	the	sign.		

• The	glove	will	print	the	

word	on	the	screen	and	

say	it	out	loud.	

	

Using	the	glove	

• Turn	the	switch	OFF	to	

shut	down	the	glove.	

• Connect	the	charger	

cable	to	the	glove	and	

the	other	end	to	a	power	

socket.		

• Battery	takes	4	hours	to	

charge	fully.	

• Do	not	use	the	glove	

while	charging.	

 

Charging	

• Always	store	the	glove	in	

a	cool	and	dry	place.		

• When	taking	the	glove	to	

school,	keep	it	in	the	

original	case.	

	

Storage	

-2-	 -3-	 -4-	

	

	

	

	

• Remove	the	hand	flexible	board	

from	the	inner	lining	of	the	glove.	

• Do	not	pull	on	the	long	ribbon	cable	

connecting	the	flexible	board	to	the	

wrist	band.		

• Place	the	flexible	board	in	a	safe	

place	with	the	wrist	band	(original	

case).	

• Wash	the	glove	fabric	in	warm	

water	with	mild	detergent.		

• Dry	completely.	

• Insert	the	flexible	board	back	into	

the	glove		

• 	Carefully	push	each	sensor	into	the	

running	channel	for	each	finger.	

	

Washing	Instructions	

User	Manual	&	Care	Guide	

Troubleshooting	

-5-	 -6-	

• Sign	not	being	recognised:	Try	again	

• Glove	not	responding:	Switch	off	

then	on	again.	

• To	retrain	a	sign:	Record	it	again	

following	same	steps.	

• Please	send	an	email	to	

hayou001@gold.ac.uk	if	you	need	

help	with	any	of	the	instructions.	

Precautions	

• Glove	is	designed	to	fit	your	child,	

not	anyone	else.	Bigger	hands	may	

damage	the	sensors.		

• Do	not	wash	hands	while	wearing	

the	glove.	

• Do	not	place	glove	near	a	heat	

source	(kettle,	heater,	hot	drink)	

• Glove	must	be	used	under	adult	

supervision	at	all	times	

• Do	not	immerse	glove	electronics	in	

water	

• When	traveling,	make	sure	you	

have	proper	documentation	before	

going	through	airport	security		

	

Figure 5.12: User manual and care guide for prototype used in this study
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BRIGHTSIGN STUDY MEETINGS SCHEDULE
Parents	&	Schools	

Study	Brief	&	Forms	
Group	meeting

• Study	schedule	&	
timeline

• Study	information	
sheet	

• Consent	forms	
(schools)

• Entry	survey	(parents)

• Gestures’	list	(parents	
&	teachers)

Gloves	Training	&	Handover
Individual	meetings

• Tasks	outline

• Glove	user	manual	guide

• Children	verbal	approval	

• Glove	training	with	
children

• Consent	forms	(parents)

End	of	Study	Review		
Individual	meetings

• Individual	meetings	with	
parent	&	children	

• Exit	survey	(parents)

• Glove	tech	support	
instructions	

Study	Mid	Point	Review		
School	Visits

• School	visits	

• Video	documentation

• Teacher’s	survey

October	 November	 December	 January

Hand	over
1. BrightSign	Gloves	
2. User	manual		
3. Evaluation	forms	booklet

Figure 5.13: Study meeting schedule handed out to schools and parents

Figure 5.14: Participant training the hand sign for “Okay”
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(a) Participant looking at the UI (b) Participant training sample #5

for “Help”

Figure 5.15: Participants training the glove

recorded up to 10 sign samples for each word (as in Figure 5.16) by pressing the

record button before and after making the hand gesture. This was necessary to

train a personal classifier for each user. Gesture data was captured at 20 frames

per second. To translate signs, the participant then switched to Classifying mode

on the glove and made a sign. If the sign had a match it was displayed as text

on the screen and spoken as speech though the speaker. Children had a selection

of male or female voices to choose from. If no match for the sign was found, the

screen displayed a “failed” message and returned to Classifying mode, waiting for

new signs. If a sign continued to give a failed message it would be re-trained. The

newly recorded samples would then replace the old ones for that sign.

The system was programmed to record dynamic gestures’ sensor data received

from a right or left-handed glove. In signs using both hands, only the participant’s

dominant hand was used for training. This was still e↵ective because in the major-

ity of signs using both hands, either both hands perform the same motion or one

hand stays motionless in holding one position, while the other hand makes the sign

(Tennant and Brown 1998).

The data glove screen showed a list of words with a user interface menu for the

user to scroll through them. Each participant selected ten words from the list of

50 most used words in school, provided to us by attending teachers (see Table 5.1.



CHAPTER 5. LONGITUDINAL CASE STUDY 121

Figure 5.16: Ten samples have been recorded for the label ”Game”
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Each word (label) corresponded to a notional gesture which initially had no data

recorded for it. Gesture data was recorded by the children during training sessions

(described below). This method of a pre-defined dictionary of words was chosen

although the software supports the definition of personalised labels. This was due

to school regulations and the ethics clearance which did not allow the technology

to connect to the internet, in order to protect children’s data and to ensure none of

the testing data was sent to the cloud or stored on any external servers.

Yes please Wait Can I play

outside?

Water Hello

No thank you I don’t

understand

Can I have

cake?

Friends Can I help

you?

I need help I need the

toilet

School Can I use the

computer?

Colour

Stop Good

morning

Cup of tea Sorry Puzzle

More Can you sign? What is your

name?

I need my

chair please

I want to

sleep

Finished Food I don’t want

to

Class time Home

Mom Can you play

with me?

I need a bath I’m thirsty I’m happy

Dad I’m tired Goodbye Swimming I’m sad

Please I’m hungry This is fun I’m cold I don’t feel

well

Thank you I need a break I love you I’m hot Where are we

going?

Table 5.1: List of gesture labels

5.3.3 Study task outline

This is the process followed to use the glove and record new signs, which was ex-

plained to parents and teachers and follows the same structure in the distributed

leaflet (see Figure 5.12).
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Start-up

• Place hand inside the glove and adjust the strap.

• Turn the switch ON (downwards) to power up the glove.

• It may take a few minutes. . .

• “BrightSign” will appear on the screen

To use the glove

• The glove has two modes: Classifying and Training.

• Press the blue button to go between modes.

• To select a mode: press the red button.

• To tell the glove you will make a sign, press the blue button twice, then make

the sign.

• The glove will print the word on the screen and say it out loud.

Training the glove

1. Press blue button to go through the menu

2. Once on “Training”, press the red button to select it.

3. A list of words are stored which you can go through and train one by one.

4. Use the blue button to move through the list.

5. Select the word you want to train a sign for by pressing on the red button.

6. Each sign needs to record a minimum of 3 samples.

7. Press the red button again to record the first sample.

8. Make the sign with your hand.

9. Repeat 3 or more times.

10. Trained signs will display a smiley face symbol :-)

11. Press the blue button to go back to the list of words.
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12. To train another sign repeat steps 5 to 9.

13. To go back to the main menu go through the entire list of words until “main

menu” appears on the screen then press the red button.

Notes

1. To preserve battery power, the glove has been set to go into sleep mode if it

remains still for more than 5 minutes.

2. To turn it back on, just press the on button (red button)

3. To reset the glove or recover from errors, press and hold the red button until

the screen is turned o↵.

5.3.4 Study evaluation methods

Parents entry and exit surveys

An entry survey (Appendix E) for participating children’s parents was designed to

collect background information about each participant: their age, nature of disabil-

ity(ies), and sign language library used2. This helped the researcher better under-

stand the needs of each participant in order to provide them with the technology

features most suitable to their condition. The survey also allowed the participant

to make a choice with regards to the design, size and colour of the glove. A fi-

nal feature was to collect the preferred voice and language for the speech to make

sure all participant’s preferred options were available in the software. This was par-

ticularly important as the glove needed to be able to operate o✏ine, so only the

languages and voices that were pre-loaded on the glove board would be available for

the participants to use.

As in the previous study, in section 4.2, I was particularly keen to document

what current technologies the participants used for communication in school and

at home, and what the drawbacks were. This proved to be very useful and some

changes were reflected to improve the proposed technology solution for this study.

The parents were asked to disclose the reasons they agreed to allow their child to

participate in the study, and what they hoped to gain from it. These questions were

2For access to digital, anonymised copies of all survey responses and participants profiles, please

visit https://resources.brightsignglove.com/study surveys

https://resources.brightsignglove.com/study_surveys
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included to act as an evaluation reference for the exit surveys where the parents

reflect on the same points they have highlighted at the beginning of the study.

The exit survey acted more as an overall evaluation, documenting parents’ expe-

rience throughout the study and whether the technology delivered the solution they

were hoping for. Considering the fact that each family got to keep the prototype

used by their child during the study, I was especially interested to know how they

intended to use the gloves after the conclusion of the study and if there was any

additional support that could be provided to help with that.

Parents’ and teachers’ periodic evaluation forms

A simple checklist evaluation form was provided to document the user experience

of each participant at school, filled by the teacher and at home filled by the parent.

The form was designed to take an average of five minutes to complete and to be

submitted every two weeks (Figure 5.17).

Getting regular feedback throughout the duration of the study was essential to

address challenges as they arise and resolve them when possible. Two evaluation

criteria were defined, evaluating the technology and evaluating the participant’s

social and academic performance while using it. Even though this research is focused

on the development and evaluation of the technology, it is of course essential to

document the impact of using it for the purpose it was designed for.

Researcher’s observation documentation

Regular visits to participating schools were scheduled for the researcher to observe

the participants while using the gloves in the classroom. Evaluation criteria, ex-

plained in detail below, focused on the prototype’s usability issues, as well as the

participants’ social and performance changes while using the technology. Teachers

also used these visits to report on participants’ experience and to address technical

challenges.

Glove gesture and accuracy data on the attached board

Gesture data was stored on the glove micro-controller board. Recorded sensor data

for each gesture training task was essential to explain performance issues with the

classifier. Factors like number of samples, and consistency when signing greatly
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	-																																																																									Usability	Study	Evaluation	Form																																																																								-	
	

	

Participant	Name:	______________________________________________												Date:______________________	
	

	

Evaluator	Name:_________________________________						[			]			PARENT								[			]			TEACHER								[			]			RESEARCHER		
	

	

-																																																																																								Evaluation	Scale																																																																																							-	
 
	

Please	evaluate	the	following	criteria	by	ticking	the	metric	that	best	reflects	your	observation:	1	being	the	lowest	

score	where	the	criteria	was	not	met/unsatisfactory	and	5	being	the	highest	score	where	the	criteria	exceeded	

expectations.	If	any	of	the	points	do	not	apply	to	the	participant,	please	leave	it	blank.	The	baseline	point	of	

evaluation	is	the	beginning	of	the	study,	NOT	the	last	point	of	evaluation.		
 
	

-																																																														Evaluation	Criteria:	[1]	BrightSign	Technology																																																													-	

	

	 	 	 	 	 	 													1	 							2																	3																		4																		5	

Time	to	complete	tasks	is	reasonable	

Tech	output	is	accurate	

Tech	gives	adequate	feedback		

Easy	to	recover	from	errors	

Overall	tech	is	easy	to	use		

-																																																	Evaluation	Criteria:	[2]	Participant’s	Observed	Improvement																																																-	

Academic	performance		

Communication	skills	

Self	confidence		

Relationships		

Overcoming	challenges		

Overall	social	behaviour		

-																																																																																			Additional	Comments																																																																																		-	

	

	

	

	

	

	

Signature:	_____________________________________________________________________________________	

Figure 5.17: Periodic evaluation forms for parents and teachers
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a↵ected classification rates and was only possible to measure by analysing training

gesture sensor data. This is visualised in multiple graphs in the results section and

examined in detail in the discussion.

Gesture classification sensor data was extremely valuable in understanding how

the software algorithm performed with each classification request. Matching training

data with classification data, while considering participants’ personal di↵erences and

observed factors like age, physical ability, and numbers of samples trained, was the

backbone of this study’s evaluation and results.

Further evaluation was made by comparing variations between individual trained

samples’ gesture data for each sign, and cross-examining that with the gesture data

across participants for the same signs. An argument for personal classifiers and a

general classifier arose and is explored in detail in the discussion.

Video documentation

Initially, video documentation was proposed and although some parents and schools

opted out, it was still set-up to document the few participants who allowed it.

However, many children felt uncomfortable being observed when trying to learn how

to use a new technology device and it created a lot of tension during study sessions.

As a result, the collection of video documentation was reconsidered as it caused

distress to some of the participants and halted the progress of study sessions. The

decision was therefore made to not include video documentation as an evaluation

method for this study. With the exception of a few of the earliest sessions3, the

only video documentation retained on record for the study was of the participants

verbal consent to participate in the study, which was the requirement of the ethical

approval obtained for the study.

5.3.5 Study evaluation criteria to be measured

Technology usability and tasks issues

• The time it takes to complete a task: The time for recording gestures

and translating signs was recorded locally on the glove. User experience was

3An example of this early documentation, of a participant that did not have a problem with

the presence of a camera, is accessible at the following URL - https://resources.brightsignglove.

com/essex study

https://resources.brightsignglove.com/essex_study
https://resources.brightsignglove.com/essex_study
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reflected on the periodic evaluation form and documented during observation

by the researcher. Triangulation of data was e↵ective in identifying delays and

resolving them between study sessions.

• Error margins and output accuracy: The number of attempts it took to

get correct classification was the primary reason to document error margins.

It was particularly useful to compare those margins between participants for

the purpose of identifying the cause of the inaccuracies and implementing a

rapid solution for the following sessions.

• Ease of use: In this research, feedback is not gained directly from the par-

ticipants but through their teachers and parents. By observing how the users

interacted with the technology, it was possible to document the approximate

level of confidence versus confusion while completing the di↵erent tasks of

training and classifying. This was reflected in the evaluation forms and through

the researcher’s observation notes.

Participant’s social and performance issues

Participant’s social and performance issues are evaluated through the triangulation

of data collected and reported by parents, teachers and the researcher. This is

mostly done through periodic evaluation forms (Figure 5.17) and observation notes.

• Performance in the classroom during the use of the glove: As dis-

cussed above, although this criteria is not the purpose of the study, it would

be valuable to document if there was an improvement observed in academic

performance while using the glove. Classroom performance is evaluated by

teachers and general performance by the parents, both reflected on the evalu-

ation forms.

• General social behaviour while using the glove: This covers but is

not limited to, does the technology make the participants calmer or more

anxious while using it for communicating? Are the participants using it to

initiate communication with people around them? Has using the glove given a

boost to participants’ self-confidence, now that they are able to communicate

with non-signers? Some of the feedback in prior studies was related to the

appearance and the design of the gloves and so by evaluating the behaviour of
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the participants, consideration was made to help them feel more relaxed when

using them.

• Sign language skills while using the glove: Most of the study participants

were proficient signers. However, many of them did not use sign language

outside the school because no one at home understood it. Another factor was

that the existing technology they were using to communicate did not require

signing. So, it was valuable to observe and document how using the glove

prototype altered their signing habits, as it was a direct reflection of whether

the glove was solving their communication challenges outside of the study

constraints.

Prototype wearability issues

• Glove design restrictions or durability limitations: This was only doc-

umented during the researcher’s initial introductory one-to-one session with

participants and during the regular schools visits. Questions that needed to

be addressed were: Is the glove easy to wear and take o↵ without tugging on

parts or pulling sensors and causing damage to the hardware? Does wearing it

restrict the participants hand movement when the enclosure is positioned on

the wrist? Is the glove too tight or too loose? This can a↵ect sensor placement

and throw o↵ recognition modules.

• Glove and hardware enclosure size, design or comfort: This was docu-

mented during researcher’s observation school visits and verbally by the teach-

ers. Hardware design is an integral part of the design iterative cycle of this

research. Comfort was important because the participants were using the

gloves for an average of six hours per day between school and home. Size and

design are directly relevant and contribute a great deal to the user’s comfort

or lack thereof.

5.3.6 Study evaluation phases

The full duration of this study was six months. The first month was allocated to

connecting with participating schools, finalising students’ selection, and conducting

introductory meetings with parents – described in detail above. This was followed
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by a month of individual meetings for the handover of the glove prototypes. One-

to-one sessions were scheduled for each participant at their local school, with the

attendance of their teacher, parent(s) and the researcher. During these sessions,

gloves were fitted to each child’s hand, wearable safety measures were explained and

glove guide leaflets distributed.

The active phase of the study was then initiated. It was set to take place over

a duration of three months. During which, the gloves were to be used by the

participants in classrooms and at home for communication.

Three evaluation phases were defined, each having an evaluation period of three

weeks followed by a reflection period of one week. During evaluation periods, a

variety of problems were encountered. Those were addressed during the reflection

period, which was primarily designed to implement feedback and upgrade prototypes

for subsequent evaluation phases.

The final month of the study was dedicated to refining all glove prototypes con-

sidering feedback from the study, and preparing for the final handover to participants

to keep, after the conclusion of the study.

As this is a longitudinal study, in-depth evaluations were conducted. Trian-

gulation of records included parents’ and teachers’ evaluation forms, researcher’s

observation notes and sensor data from the glove board.

Evaluation phase 1: Weeks 1 to 4

This phase started immediately following the delivery of introductory meetings with

schools, teachers and parents associated with the fifteen participants selected to

enrol in the study. Background surveys were circulated and returned and relevant

consent forms, for parents and schools, received. Glove allocation was complete and

each participant had in their possession their own individual glove prototype which

was designed specifically for them, according to the choices they had made on the

registration forms.

Observation visits were arranged for two schools per week, in order to cover the

six participating schools during the three-week period of this evaluation. Individual

sessions were scheduled for the fifteen participants to record their hand gestures

with the glove and build an individual library for each.

In this sense, this evaluation period was used to evaluate early usability issues
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rather than an early evaluation of using the full system. Wearability and durability

of the glove design and enclosure was also assessed.

Evaluation methods used for this phase were the researcher’s observation during

training sessions and attending teacher’s feedback through verbal communication.

Parents and teacher’s evaluation forms were not used in this phase as the system

was being trained and not used for communication yet.

As this was the first evaluation phase, participants encountered a variety of

issues, specifically with usability, and many changes were required before moving

forward with the next phase of the study evaluation.

Glove prototypes were collected at the end of week 3 to implement feedback from

this evaluation period during the reflection interval between evaluation phases.

Evaluation phase 2: Weeks 5 to 8

After implementing the changes to the prototypes during the reflection period of

phase 1, the gloves were delivered to the schools, and in turn handed over to partici-

pants. Teachers requested that the gloves remain in school during the three-weeks of

phase 2, for closer monitoring and until the children are more familiar with the sys-

tem, and were able to operate the prototypes independently. It also made it easier

for the researcher to have access to the gloves when/if modifications were needed.

In this phase, all gloves had individual gesture libraries stored on the local board.

This period of evaluation was to report on using the gloves at school for communica-

tion. Observation visits were set for each participant to document their experience

with the gloves in the classroom.

Evaluation methods used were teacher’s evaluation forms, researcher observation

visits and analysing gesture data stored locally on the glove. Most of the reporting

during this phase was on the system performance.

To continue the iterative development loop, glove prototypes were again collected

at the end of this evaluation period in order to implement gained feedback during

the reflection interval before phase 3.

Evaluation phase 3: Weeks 9 to 12

Just like the previous phase, after upgrading the system during the reflection period,

glove prototypes were returned to schools to be handed over to participants.
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Prototypes for this phase were retained by the participants to be used in school

and at home. Evaluation was collected from teachers, parents, the researcher and

the system data. Emphasis was mostly on system performance in this phase. Trian-

gulation of evaluation data was possible due to the participation of parents in this

round.

Evaluation for this phase documented a fully executed system and concluded the

study findings. It resulted in a new, final system that is described in detail under

results.

5.4 Results

Fifteen participants’ data was documented, but only ten of them were analysed due

to gaps in data sets of the remaining five caused by incomplete sessions or failure

to comply with the study’s usability guidelines (see more under Discussion, Section

5.5).

Parent’s surveys indicated that the ability to personalise the features of the

technology to their children’s individual needs was a primary concern. It is therefore

addressed extensively in the iterative development cycles and results recorded below,

and is considered to be one of the main contributions of this research.

Results are presented in the format of iteration cycles, described in Research

Methods (Chapter 3), following the structure of the three evaluation phases that

were defined in the previous section (Section 5.3.6).

5.4.1 Phase 1 Iteration and Evaluation Results

Many challenges were faced during the first evaluation period, some with usability,

hardware, and a few with software. A considerable amount of time was therefore

spent troubleshooting and debugging. Issues are listed below in chronological order,

as written by the researcher at the time:

Technology usability and system architecture issues

Gesture training had a timer of three seconds to record a sample. It was observed

that many participants would press the record button, start the timer, but do not

immediately perform the gesture. This meant that the sensor data being recorded
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does not accurately reflect the gesture or correspond to the assigned label. Multiple

solutions were considered to help resolve this issue. One solution, that was tested

on site, was to only press the button after the participant starts performing the

gesture. Another solution, that required a change in programming, was to make

the recording samples longer, in order to guarantee that the recording window cap-

tured the gesture, even with a delay in performance. A di↵erent solution that was

implemented and seemed to work better, was to replace the timer with a trigger

to stop recording. That was set to a stationary gesture, which was detected when

the hand was still and the feedback from the sensors was static. This update solved

the issue for the majority of participants apart from one who was unable to keep

their hand still. In this instance, the teacher’s intervention was required to help

the participant hold a static position so that the system can exit sample recording

state. This prompted yet another change that finally did resolve this issue which

was to set a before and after button for gesture sample recording. This proved to be

e↵ective and also improved previously detected inconsistencies in training samples.

Some teachers reported that “Classifying” and “Training” as terms used on the

UI menu were confusing. They suggested simplifying them to “Teach” and “Sign”

to make it easier for the children to understand as they seemed to be more relatable.

Their request was easily resolved and implemented as part of the software upgrade

during the reflection period.

Some participants, specifically younger ones, were not yet able to read. Teachers

requested to change gesture labels displayed on the glove screen from text to images.

They supplied a chart illustrating pictures used at school (Figure 5.18) which the

children are familiar with and correspond to the signs they are training on the glove.

This valuable feedback was added as a feature to choose for visual output of gestures,

like choosing a voice and a language which is a fundamental experience we are trying

to provide all users.

A few children wanted to play with the buttons and were constantly pressing

them in no order. Although the system did not crash, it was di�cult to focus on

the task at hand and to press the buttons in the sequence required to perform a

task. Parents and teachers suggested having a “lock” feature. While active, a “lock”

feature would stop the UI from interacting with the user. A quick software solution

was to activate such feature by pressing and holding on one of the buttons. Many

of the children were fast to learn this feature and so it was no longer e↵ective in



CHAPTER 5. LONGITUDINAL CASE STUDY 134

Figure 5.18: Sign language flashcards as used by the schools
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resolving this issue. This lead to the conclusion that a hardware solution might be

more suitable, like adding a hidden button on the back of the enclosure. As there

was no room on the current board to add a third button, this suggestion would

have to be taken in consideration for future board design revisions. To minimise

unnecessary interaction with the board, and after the training phase is complete, a

possible solution was updating the system to initiate Classifying mode at start-up.

This way, participants can use the glove to sign immediately when turning it on and

don’t need to fiddle with any menus or buttons. This update greatly improved the

experience of some children who were distracted with the button sequence. This

way, the children would only have go through the UI menu in the event that they

intend to train a new sign or retrain an existing one.

Connection issues

In some cases, the glove would turned on, LED on board would go green, but the

screen would be black and the programme would not start. Charging the glove did

not solve this. The glove was taken back to the lab for investigation. Upon switching

the glove on, it appeared to be working. Looking at the code, a network issue was

detected. The glove was attempting to connect to the lab’s network, despite not

needing it to operate, before initialisation of the programme. That line of code was

amended and the issue was resolved.

Prototype design and wearability issues

The two touch buttons were placed within a plastic frame as part of the enclosure

design. Some participants found it di�cult to press them and couldn’t align their

fingers with the capacitive touch sensor. This was solved by clipping the acrylic

divider for all prototypes which made it easier for users to interact with the system.

The text displayed on the screen was facing away from the participant, intended

to be read by the receiver. Participants were distracted by this and kept trying to

rotate the screen towards themselves. This issue was not resolved as there was no

readily available font or text editing library for this piece of hardware (OLED screen

model). It was also soldered onto the board with a ribbon cable and it proved to

be very di�cult to re-arrange other components on the board to accommodate this

design revision within the time-frame of the study.
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The glove screen displayed a “waiting” message when a request to record samples

for training gestures was initiated. It was deduced that the board was not receiving

any data from the sensors and therefore was not moving to the next line of the

code which was to display a message with the sample number to be recorded. To

eliminate hardware malfunction, the ribbon cable connection was replaced with a

new one, and a fresh glove board was used. This did not solve the problem and

the glove had to be taken back to the lab for examination. Upon connecting the

glove to a debug screen, it was found that the flexible hand PCB was failing to send

any sensor data as some of the connections were not intact. This was the result of

tugging on the components by some of the participants who were curious to explore

the insides of the glove, despite sealing the sensors inside the textiles, but that only

made them pull harder, eventually breaking the connections. The only solution was

to replace the faulty PCBs in order to continue with the sessions. However, a more

sturdy design would have to be considered for the final product.

Summary of changes

To reflect the feedback from phase 1 evaluation period, much of which is mentioned

above, some design revisions were required before the glove prototypes were ready

to be used in phase 2. The gloves were therefore collected from the schools, and par-

ticipants were informed that they will be returned to them after they are upgraded

during the reflection period.

• Network connection was bypassed in the initialisation code to allow the system

to start in schools without internet access.

• Enclosure design was modified by removing the acrylic frame to allow better

access to the touch buttons.

• Faulty hand PCBs were replaced with new ones due to connections breaking

during training sessions.

• UI menu was updated to display “Sign” and “Teach” to replace “Classifying”

and “Training”, in order to make it more user friendly.

• UI menu was updated to add “image” as an option for the displayed gesture

label. This was to accommodate participants who were not yet able to read

the text labels.
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• Gesture training samples were recorded by pressing a button before and after

performing the gesture. This replaced the initial 3 second timer for recording

samples which did not always capture fully performed gestures.

• System was updated to initiate Classifying mode (which was updated to Sign)

when it started, to minimise the steps required to use the glove for communi-

cation.

5.4.2 Phase 2 Iteration and Evaluation Results

This evaluation period revealed an enhanced independence experience for the par-

ticipants while using the glove prototypes. Once the participants realised that the

glove was saying what they were signing, they wanted to use it without assistance

and outside of the classroom too.

Behaviour-wise, 6 out of 10 teachers reported a boost in self-confidence, while

two teachers reported their students, three participants, initiated communication in

the classroom for the first time. 70% of teachers reported an increase in interaction

between participants and their peers, who are non-signers.

After using the glove for three weeks, it was found that a gesture library of fifty

words was considered limited and that more words need to be added for the gloves

to be fully functional communication devices. A unanimous request received from

teachers, parents and students was to allow them to define and add new gesture

labels on the system. This was communicated during group meetings the schools

arranged for study participant’s families and teachers. Although the system was

designed to enable that feature, it would require connection to the internet to im-

port the speech audio clips relevant to the label in the language requested. This

was not possible during the study due to the regulations in place by the school,

council and ethical clearance. This restriction will be removed after the conclusion

of this research when the gloves ownership transitions to become the property of

the participants, so they would be able to connect them to the internet at home to

define and train new gestures. To increase the vocabulary provided by the system,

a new list was collated from the schools with additional labels to be included.

Some classification errors were observed, specifically mismatching gestures. Train-

ing mistakes were eliminated based on the close observation of the participants,

which reflects their signing consistency when recording gesture samples. To this
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e↵ect, an investigation of the classifier performance was necessary to detect the

cause.

Inspection of the gesture classification data showed that most of the signs trained

were similar in finger positions, only minor di↵erences detected in flex sensor mar-

gins, but varied mainly in orientation and/or position. The code was updated to

prioritise the gyroscope and accelerometer data over the flex sensor values and re-

duce the error margins on the flex sensors. This adjustment improved accuracy

when finding a gesture match.

Another issue was that when the system misclassified a gesture, it almost always

output the first sign that was trained. Reflecting on the code, it appeared that the

system was classifying based on first match rather than best match, and because it

always started to search for a gesture match in order of training, any gesture that was

within the classification boundaries of the first trained gesture was classified as that

one, even if another gesture was a better match. The code was amended to change

classification from first match to closest match and slightly relaxing classification

boundaries. This resulted in the system taking longer to classify (on average twice

as long), as it had to go through the entire library to establish the best match,

but accuracy levels were greatly improved. However, it is worth looking at di↵erent

classification solutions as the system can get significantly slow when the gesture

library grows in size, especially when exceeding the current capacity of fifty gestures.

Some of the software issues observed during the evaluation period prompted revi-

sions to the classification algorithm that was not always possible to be implemented

on location, especially with the lack of internet connection. This meant that occa-

sionally, the gloves had to be taken back to the lab for further investigation. Many

issues were discovered while analysing the gesture data and various attempts were

made for improvements.

Five participants who shared the same sign language library were selected for

further analysis. Personal classifiers were retrained using greater processing power

which was not possible to be performed in real time on the local glove boards. For

comparison, general classifiers were also trained using the data of all users apart

from the one whose signs were being tested in each case. This was to simulate the

use of a pre-trained system, where the individual user would have no impact on the

classifier.

Participants whose personal classifiers performed well (higher than 70%), achieved
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Attempt

1 16 13 82.05% 32/39 58.97% 23/39 71.79% 28/39 51.28% 20/39

2 9 12 72.22% 26/36 63.88% 23/36 55.50% 20/36 55.56% 20/36

3 12 11 66.67% 22/33 90.91% 30/33 69.70% 23/33 72.72% 24/33

4 5 7 47.62% 10/21 80.09% 17/21 52.38% 11/21 57.14% 12/21

5 7 7 31.58% 6/19 73.36% 14/19 36.84% 7/19 42.1% 8/19

Table 5.2: Gesture data recordings for five participants using personal and general

classifiers

lower results when their gesture data was tested with the general classifier. On the

other hand, participants whose personal classifiers performed poorly (between 30-

60%), mostly due to noisy or fewer training samples, greatly benefited from the

greater number and quality of training samples used to produce the general classi-

fiers, despite the fact that their own data did not feature.

As seen in Table 5.2, Participant 1, who was the oldest in this study group,

achieved the highest classification accuracy of 82.05%, where 32 out of 39 their

performed gesture attempts produced the correct label and resulted in the sign

accurately being translated into speech. However, when their data was used to train

a general classifier, the accuracy rate dropped to 58.97% with only 23 out of the 39

test signs being matched successfully. In contrast, participants 4 and 5, who were

the youngest of the group, got an accurate match less than half of their attempts and

gained improved accuracy results. It was observed during the training sessions that

due to their younger age, participants 4 and 5 had substantially less experienced

with sign language and were often not consistent when recording gesture samples.

This theory was further validated with the pattern reflected by participants 2

and 3. Participant 2 was also more experienced and was largely very consistent

when signing, despite being slightly younger than some of the others, and as with

participant 1, had better results using their own personal classifier than with a

generalised one. Conversely, participant 3, who had only been signing for a shorter

period of time, and who was far less confident, saw an improvement in accuracy

when using the general classifier versus their own personalised one, replicating the

results observed with other less proficient signers.
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Another comparison made was between the K-nearest neighbours algorithm us-

ing one and three neighbours. Results established that with both the personal and

general classifiers, one neighbour produced better results.

These results prompted the development of a new method for classification com-

bining the two types of classifiers, still implementing personal classifiers but also

using a general classifier to help guide the quality of recorded gestures. For the

three unified libraries of sign language used across the six schools, a baseline for

each gesture was generated by the general classifier trained by the group data. This

baseline gesture was set to act as a benchmark for gesture samples recorded by par-

ticipants. During training, the system will either accept or reject a gesture sample

if it does not fall within the boundaries of the reference baseline gesture.

An initial calibration helped in defining the minimum and maximum boundaries

of each sensor reflecting each user’s motor ability and applying those to all baseline

gestures in the library. To this e↵ect, a smiley face was added to confirm to the

participant if the gesture sample they just recorded was acceptable by the system

or not. This improvement greatly enhanced the quality of gesture samples being

recorded. It also allowed us to reduce the number of samples required to train a

sign from ten to five or possibly three.

Summary of changes

Essential upgrades to the system for this phase were mostly executed to improve

software classification. This was done by adding a gesture benchmarking system

and giving users feedback when training samples of either accepting the sample and

receiving a smiley face or to try again. The system was also upgraded to include

an increased gesture library to provide participants with a larger vocabulary for

communication.

5.4.3 Phase 3 Iteration and Evaluation Results

In this phase, the full system was evaluated by parents, teachers, and the researcher.

This was in addition to the data stored on the glove boards. Gloves were being used

in schools and at home for communication. Most of the participants, ages 7 and

above, used the glove prototypes independently, both for training new gestures and

classifying.



CHAPTER 5. LONGITUDINAL CASE STUDY 141

Parents feedback highlighted that wearing the glove for long hours made their

children’s hands sweaty and so they suggested making a glove textile design with

open ended fingers. Another observation was that children were using the glove to

wipe their face, mouth or nose and occasionally the textile may require washing.

Both issues were resolved by providing the families with a second glove textile de-

signed to house the sensors which was perforated to allow the skin to breathe, had

open ended fingers and could be used while the other glove was being washed. All

sensors were easily removable and instructions of how to do that were included in

the care guide, distributed to parents at the beginning of the study.

When training new signs, the smiley face was received positively by the children

and it motivated them to keep signing in order to achieve better gesture sample

recordings. A new dialogue of “perfect” signs was witnessed between the participants

and their teachers.

For the few children who were not committed to signing, and/or resisted to

learn the school’s standard library of sign language, this new method of training

encouraged them to practice their signing skills to get more smiley faces. Teachers

reported participants were voluntarily recording more gesture samples and staying

for longer training sessions, even during break time. This eventually led to sev-

eral participants becoming more consistent with their signing, and achieving better

classification results, which was reflected on their evaluation forms. Teachers also

reported an improvement in communication and a higher level of independence.

Classification accuracy reached 99% using the upgraded software and the new

training method (Table 5.3). However, gesture data revealed that the classifier was

now being trained using gesture samples that were too similar, and fewer samples

were being recorded.

It was hypothesised that the small number of training samples each user provided

did not su�ciently reflect the bounds of the actual distribution of signs performed in

the real world. This was observed during classification when the glove mistranslated

signs that were performed outside of the very small training distribution, but that

might well have had a closer correct match, had a larger, more representative, set

of training samples been recorded. This was particularly the case with the younger

signers who were less consistent with their signing, and so would be less likely to

attempt classification with more outlying samples.

A possible solution was to increase the amount of training data, with the hypoth-
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Participant Personalised

Classifier

General Classifier

Participant 1 100.00% 87.88%

Participant 2 100.00% 95.24%

Participant 3 100.00% 89.74%

Participant 4 100.00% 82.05%

Participant 5 94.74% 52.60%

Participant 6 100.00% 96.97%

Participant 7 94.74% 89.47%

Participant 8 100.00% 97.22%

Participant 9 100.00% 77.78%

Participant 10 100.00% 85.71%

Table 5.3: Classification accuracy data for the personalised and general classifiers

esis that adding more data would make the training distribution more accurately

reflect the ideal classification space. To test that theory, participants were encour-

aged to record additional gesture samples at home. This was easily achievable given

most participants were familiar with the glove prototypes, at this stage of the study,

and could operate it independently.

A new analysis was performed to evaluate the classifiers performance, accuracy

rates recorded were between 95-99%. Participants younger in age, less consistent in

signing and with fewer samples generally reported lower rates.

The results of the sessions with the participants, in terms of the translation

accuracy that they experienced have been summarised in the plot in Figure 5.19.

For comparison, an identical classifier with the aggregate of all of the partic-

ipants’ data was also trained, excluding the user whose data was being classified

in each instance. This acted as a general, non-personalised classifier, representing

a pre-trained solution that would require and allow no individual customisation or

training.

All participants achieved lower accuracy results using this generalised classifier,

although some had more success than others. As expected, and based on the previous

evaluation of phase 2, those who had relatively poor accuracy results using their

own personally trained classifier, also tended to have worse results when using the
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Figure 5.19: Comparison of personalized and general classifier accuracy between

thirty and forty test signs were performed by each participant, with the number

dependent on when the child wished to stop. 8 out of 10 participants had 100%

accuracy of sign classification when their recorded sample data was trained with

their own personally trained classifier. The remaining 2 participants had a 95%

accuracy level.
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generalised one.

5.4.4 The Final System Results

Software accuracy and classification

The system accuracy output was registered between 95% and 99% for a gesture

library size of fifty words. 80% of participants trained three samples per gestures

and 20% of them trained more. There are a number of factors that a↵ected the

results, the primary one being the number of training samples recorded for each

sign. This was closely followed in impact by the participant’s consistency of signing

and unsurprisingly, the age of the child. The more consistent the child was with their

signing, the higher the accuracy of the classification. Both of these two factors were

significantly a↵ected by the age of the child, as younger participants tended to be

less willing to record larger numbers of training samples, and were also substantially

less consistent due to their lesser experience using sign language. The children with

the lowest accuracy levels tended to also be those of the youngest age. This was

believed to be due to both a lower-than-average proficiency and consistency in sign

language, as well as the fact that some were distracted by the technology during the

training session.

Participant’s social and performance

Parents and teachers documented an overall improvement in behaviour for the ten

participants who used the glove to communicate over the course of this study. High-

est rating was for increased independence and self-confidence. Academic perfor-

mance was di�cult to measure in the short period of evaluation that remained after

training.

5.5 Discussion

In the initial study proposal, three phases were defined (section 5.3, study evalu-

ation phases). The primary phase was for participant’s selection, glove allocation,

introductory meetings and glove’s handover. This was set to be followed by the

“active” phase where the participants would keep the gloves and use them, for a

duration of three months, to communicate in classrooms and at home. Evaluation
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methods were arranged to report on the full system for that period (Section 5.3.4;

Study Evaluation Methods). The final phase was for implementing feedback and

refining the system followed by the delivery of the prototypes to participants.

There were multiple factors that did not allow the active phase of the study to

go as planned. The main one being that most students were unable to operate the

glove independently to train the gestures and therefore required the help of their

teachers and parents.

During introductory meetings, a full demonstration of the system was performed

to support the carers of the participants with the training task. As such, parents

and teachers were expected to help the students with building gesture libraries in

preparation for using them at school and at home during the active phase of the

study. Arriving at the first school, it was discovered that the parents delegated

gesture training to teachers, who in turn waited for the researcher’s observation

visits to complete this task. The same case was encountered with the remaining

schools. Therefore, the first evaluation period of the study was no longer an obser-

vation/evaluation phase but rather became a timetable for gesture training sessions

scheduled as one-to-one meetings with the participants, their teachers and the re-

searcher. Given that there were fifteen students across six schools, the three-week

period of evaluation for the active study phase was dedicated to setting up the gloves

and building a gesture library for each participant.

An average of five signs were trained by most participants during their first

session. The remainder of the gesture library was trained in school with the teachers

over the following weeks. Some children got tired during training sessions or found

it hard to stay focused on the training task for a long period. For those, the plan

was to train one gesture per day, making the sessions shorter and more focused,

slowly building their gesture libraries. While a group of them were happy to use the

glove with a small library of about twenty gestures, others did not wish to perform

the task of training the glove, and therefore were not able to continue with their

participation in the study. In addition, children who missed the primary training

session and the rescheduled session, were no longer considered for the study due

to di�culties in accommodation between the teachers’, parents’ and researcher’s

schedules. This resulted in the withdrawal of five participants in total. The ten

participants, who attended all sessions and were fully committed to the outlined

tasks, remained in the study.
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Given that the study structure had to be revisited, where the first evaluation

phase was spent training rather than evaluating the system, evaluation forms were

not applicable to be completed by parents or teachers as the gloves were not being

used for daily communication yet. Instead, only the researcher’s documentation of

training sessions and the data collected from the glove boards were used to evaluate

the performance of the glove prototypes for evaluation phase 1. Still, data collected

was valuable in resolving early usability issues, discussed in detail in results Section

5.4, under Phase 1 Iteration and Evaluation.

Another issue that greatly a↵ected the progress and timeline of the active phase

of the study was internet connection. The decision to disable internet connection was

made in compliance with school regulations, and the terms of the ethical approval

in place for this study; both of which didn’t allow the devices to connect to external

networks, to prevent access to the participants’ data stored on the devices.

At some point during the study, specifically during the second evaluation phase,

when classification was being scrutinised, it was found that results produced thus

far were not encouraging enough to move forward with the study. At that point, an

average of 60% accuracy was reported by the initial 5 participants who completed

the training tasks. The lowest being 31.58% and the highest achieved 81.05% (see

Table 5.2). When compared with the prototype used in the previous chapter (see

Section 4.2) where classification accuracy reached 99% (see Section 4.2.4), these

results were disappointing and triggered a discussion about reconsidering using a

cloud based system for classification. After three weeks of testing, a halt was called

to using this version of the glove and the process was started to get permissions

to use the software of the previous prototype which produced much better results

but required internet connection to access the cloud server. Connecting to the

cloud based system would massively improve classification, help in resolving system

challenges remotely with minimal disruption to usage of the gloves, and also enable

defining new gesture labels.

As a result, study sessions were stopped, the gloves were collected, and partici-

pants’ families and teachers were informed that the study would be restarted after

relevant permissions were granted and the system was updated. This caused further

delays to the timeline of the study.

Although permission to connect to an external network was never received, the

study moved forward using the software updates implemented in the interval between
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evaluation phases 2 and 3 (Section 5.4, under Phase 2 Iteration and Evaluation).

During that time, extensive software analysis was executed to enhance classification.

Gesture training samples were plotted to examine emerging patterns, identify indi-

vidual di↵erences and compare between participants using the same sign language

library.

Figure 5.20: Line plots 0 to 4 correspond to flex sensors, with sensors 5 and 6

for the accelerometer. The plot for the same gesture performed by four di↵erent

participants.

Figure 5.20 shows the plotting of the same gesture being performed by four

di↵erent participants. Lines 0 to 4 reflect the five flex sensors, and lines 5 and 6

reflect accelerometer angles. The analysed gesture data shows individual di↵erences

across participants. A general classification curve can be perceived without being

identical across samples. There is a clear variance in the timing of performing the

gesture. However, a pattern is detected and classification was possible in this case.

In comparison, gesture data was analysed to show personal variance when record-

ing four samples by the same participant. Figure 5.21 is a graph of hand gesture

sensor data for “Good Morning” being signed by one participant. Overall the sign

shape and orientation are similar but a closer look reveals variation in speed and

duration between samples.

In general, personal variance observed in multiple gesture samples recorded by
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Figure 5.21: Sensor plotting for four gesture samples for “Good Morning” by the

same user

one participant was minimal when compared to individual di↵erences for the same

signed when performed by di↵erent participants. This analysis further validates

the final results of this study (Section 5.4, Final System Results) which documents

that a personal classifier almost always achieved higher accuracy rates. This is

especially the case with older participants who were experienced signers and were

more consistent with gesture sample recordings (see Figure 5.22).

Figure 5.22: Sensor plotting for two examples of the gesture for “Thank You” by

the same user who is the oldest in the testing group

Figure 5.22 shows multiple sign samples from the same user reflecting relatively

minor di↵erences, which in turn enables the classifier to produce a match with a

high level of accuracy of 100% (see Table 5.3).
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Further gesture data analysis was performed to evaluate how the classifier es-

tablished matches between signs that were similar in position but di↵ered only in in

orientation or duration.

Figure 5.23: Sensor plotting for similar gestures, “Please” on the left and “Thank

You” on the right, di↵ering largely only in duration

The signs “Please” and “Thank you” utilize the same hand shape, and di↵er

largely solely in duration (Figure 5.23). The classifier was successful in distinguishing

the di↵erence between the two signs in all cases, though the confidence provided by

the classifier in such cases was lower than the average.

Figure 5.24: Sensor plotting for similar gestures, “Please” on the left and “Stop”

on the right, di↵ering only in orientation

The signs “Please” and “Stop” utilize the same hand shape and motion, with

only a di↵erence in rotation about a vertical axis (Figure 5.24). In this case, the

classifier was not able to reliably distinguish the di↵erence between those two signs.

There are sensors readily available in the market that can identify some of such

di↵erences (such as a magnetometer), however, no such sensors were used in the

prototype designed for this study.
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5.6 Conclusion

This study concludes the data collection, analysis and evaluation sections of this

research (Chapters 4 and 5). Three iterative studies were conducted to develop

and evaluate a wearable system which can recognise then translate hand gestures

to text and speech. The aim was to produce a fully customisable system which can

be controlled by the users to serve their individual needs. Over the course of this

research, the software was continuously being upgraded to recognise custom hand

gestures accurately based on testing with users who have di↵erent motor abilities.

The final system presented (Section 5.4) allows each user to record their own gestures

based on the sign language they master. A personal classifier is trained to build a

sign library for each user. Users were able to define labels and display them as texts

or images. Speech output was set to be in a voice and language selected by the user.

This study concludes that the proposed design of a stand-alone data glove can

operate o✏ine to train personal classifiers for the purpose of recognising custom dy-

namic hand gestures using DTW. A number of challenges were presented throughout

the study, which occasionally altered the original structure, timeline or progression

of the study. Nevertheless, su�cient data was collected and a full analysis was

performed. The collected data shows that personal classifiers universally produced

more accurate results than general classifiers due to individual di↵erences in hand

movements and motor abilities, with a confidence of 99.97% (a z-score of 3.42).

Recognising custom hand gestures widens the application of this technology to

extend beyond the sign language community to include individuals who do not use

a standard library of sign language due to their personal disabilities and physical

limitations of hand movement, such as those seen in stroke victims and in those with

other neural disorders.

The plan is to develop this prototype further in a number of ways, the principle

one being the ability to sign continuously with the speech output occurring during,

rather than after the sentence has been completed. This would allow users to chain

signs together in quick succession to combine individual phrases into full sentences.

We also intend to adapt the glove for connection to a smart device in order to provide

further customisation.
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5.6.1 Hardware and Design

Based on the hours of training carried out with the children, it was very clear that

a less bulky, but still wearable solution would make usage substantially easier. The

plan therefore is to look for ways to minimise the on-body embedded device. Adding

a Bluetooth Low Energy (BLE) chip to the flexible glove hand PCB is proposed in

order to send gesture data to smart devices for wider applications, and provide

further personalisation options as detailed below.

5.6.2 Software

In order to give users more control, an app would need to be developed for use on

such smart devices. The app would enable users to save their gesture data under a

label of their choice, allowing them to build and edit a personal library of signs and

could support the ability for the user to modify the language and age of the voice

produced by the speech synthesizer.

As described above, the classifier currently waits until the end of the sign before

being applied to the entire duration of it. Instead, there is a plan to carry out

classification continuously on a sliding window over the incoming data. Previous

researchers results (Luzhnica et al. 2016) show great promise and could be applied

to the current glove users’ custom libraries of hand gestures, while still allowing

them to train personalized classifiers. To improve accuracy, this could be combined

with a Bayesian model to predict future words based on those already signed. Signs

could also be separated into sub-libraries to reduce the number of possible matches.



Chapter 6

Discussion

6.1 Introduction

The system proposed by this research was developed with the intended users’ needs

in mind at all times, as the aim was for the final technology and the system encom-

passing it, to be e↵ective in solving the problem of the lack of ability to communicate

independently faced by users with di↵erent abilities, and eventually to be commer-

cialised.

Throughout this research, interaction design methodologies were applied to col-

lect data through a series of usability studies. Initially, a pilot study was conducted

(Section 4.1) to establish the nature of those needs, and to outline the system design

and software architecture of future prototypes for this research. A set of three itera-

tive case studies were then carried out to further develop the initial prototype and to

implement the conclusions drawn from the feedback of the user’s therapists and the

researcher’s observation (thus forming the build-measure-learn cycle, as described

in Section 3.1.2). After the prototypes had undergone these rounds of incremen-

tal refinement, a descriptive, more in-depth, user focused longitudinal case study

was then carried out to evaluate the performance and design of the system over an

extended period of time through usability testing.

6.2 Case Studies

In the pilot study, a vocabulary of ten Makaton signs was selected by the researcher

and pre-programmed manually into a wireless, standalone data glove prototype.

152
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This prototype had no external connectivity, and all processing was done on the

device. Recognition of the signs was performed only on a static basis (measuring

the configuration, position and orientation of the hand in a fixed position), rather

than on a dynamic basis (measuring both the absolute values of these factors as well

as their change over time, constituting the movement of the hand as it performs the

sign). This data was hard coded in the form of ranges of acceptable sensor values

calculated by the researcher for each sign, against which incoming sensor data could

be matched.

This study served to validate the initial concept and demonstrated the potential

of the system, albeit with refinement.

It was recognised that the primary cause of misclassifications of the trained signs,

were due to the di↵erence in the performance of the sign between the researcher, that

had pre-programmed sensor values for each sign into the glove, and the participants

when they were testing the glove.

The standardisation of software and hardware features and the provision of pre-

programmed gesture libraries, which was the system used for the pilot study (due the

relative ease of implementing such a system), decreased gesture recognition accuracy

and prevented the testing of the technology at a larger scale, and also limited user

cases to users of the Makaton sign language only. This demonstrated that in order for

the research to progress further, the system required further development to provide

su�cient, more advanced customisation features to accommodate user’s individual

needs.

It was therefore concluded that the primary goal for the iterative case studies

should be to design and evaluate the performance of a mechanism for training a

personalised gesture classifier, in a more realistic environment, with the classifier

trained by each user for their own individual hand signs, and when restricted as a

result of their own personal abilities and limitations.

The first prototype of such a system developed was tested by 18 study partici-

pants, where it was primarily the participants’ first time using any form of assistive

technology, and where many were not familiar with any standardised sign language.

While still wireless, this prototype connected to servers hosted in IBM’s cloud to

perform the gesture classification, with output provided through a laptop screen.

In these testing sessions, all correctly performed signs were recognised accurately,

given a library of five signs trained by each user individually.
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In the second round of testing, with the prototype updated to fix usability issues,

and to provide feedback to the user showing the recognised sign on a small screen on

the glove, seven participants, who were all proficient users of sign language, again

showed accuracy levels of 100%, with each training a minimum of five signs (and in

some cases more), but with tests including full sentences, rather than just individual

words, and “shortcut” signs for otherwise time-consuming phrases.

In the third and final round of cyclic prototyping, the same sign classifier was

used, however, the glove design was improved to be smaller, lighter and more wear-

able, as well as to provide better user interaction with improvements to the interface

on the attached screen. Each participant trained a larger number of samples for each

gesture, which helped to disregard noise in the sensor data and made it easier for the

classifier to identify patterns in the signs. However, as many users had disabilities

that a↵ected their motor abilities or range of hand or finger movement, accuracy

rates were substantially a↵ected.

For the final, longitudinal study, a new prototype was created, which was up-

graded to perform classification entirely o✏ine. This new version also featured

multiple di↵erent size options for adult and child users, as well as improved bat-

tery life, more refined and resilient hardware, and with a flexible PCB connected

to the sensors that could be removed to allow the glove textile to be washed. This

glove could be trained and used with the on-device screen and buttons, requiring

no connection to the internet or to a laptop. The classifier was also updated in

response to recommendations from the previous study, and was enhanced to better

recognised variations in signing and consistency, and to add structure and feedback

when training addition gesture samples.

This final study took part in collaboration with Essex County Council, and en-

gaged six Special Education Needs schools, over a period of six months, during which

three evaluation periods were performed. The data from this study validated the

proposed design of an o✏ine, stand alone data glove, and demonstrated a material

improvement in sign recognition accuracy using personalised classifiers, rather than

generalised classifiers, with a confidence interval of 99.97%.

Personalised gesture recognition, together with testing with real users, ultimately

proved to be highly challenging, especially for the studies involving younger partic-

ipants. The required ethical approvals were far more comprehensive, access to ex-

ternal networks and the internet was limited and evaluation sessions took far longer
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to carry out.

However, the insight gained from testing this form of technology with sign lan-

guage users in public environments, as opposed to with research assistants in the

sterility of a lab, far outweighed the burdens of undertaking the studies in a less

artificial way.

Furthermore, restricting internet access, although was considered a major ob-

struction at the time, necessitated extensive revisions to the system to enable it to

operate o✏ine. This resulted in a novel approach to gesture recognition and classifi-

cation, which was never achieved before, and constituted a substantial contribution

to the research findings.

6.3 Customisation

After multiple rounds of development and testing, it was identified that the high

level of gesture customisation was the most vital feature that had been developed

for the data glove, to serve its intended purpose of communication in the real world.

The system was enhanced and the software was upgraded to recognise individual

signs, allowing users to be able to build their own gesture libraries; a restriction that

was universal amongst previous similar technologies.

It comes as no surprise then, that the key factor which significantly impacted

the results of this research, was the extent of this technology’s ability to adhere to

individual users’ personal needs. This was only achieved to a great degree in the final

iteration of the development of the technology and only properly observed during

the last cycle of evaluation. Evidence of improvement in social behaviour and a more

confident approach to communication was documented when participants used the

enhanced technology for the last phase of the study.

In schools, students with learning disabilities and those on the Autism spectrum

used the improved glove for three months, during which, an increase in independence

and reduced incidents of challenging behaviour were reported by their teachers and

parents (Section 5.4).

These results achieved did not come without challenges, however, and while some

were easily solvable, others greatly restricted the progress of the research.
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6.4 Limitations

The case studies for this research were set in public environments and engaged partic-

ipants from highly vulnerable groups. As such, many restrictions were encountered

that limited the scope, duration and data collection that was originally planned. In

this section, limitations are discussed in detail, highlighting the nature and extent

of the impact that each one had on the progress and results of this research.

6.4.1 Case study user groups

Testing with vulnerable groups, such as people with disabilities and young chil-

dren, proved to be highly challenging. This was largely due to the higher levels of

protection set in place when working with such groups, as well as the di�culty in

communicating directly with the participants.

Feedback was primarily gained through the participants’ caregivers rather than

from the participants themselves. This resulted in longer sessions, as more people

were involved in each feedback cycle, and fewer participants completing the study,

due to their teachers’ or parents’ busy schedules. This issue was more noticeable

with younger participants as they tended to get tired mid-session and sometimes

grew impatient and could not commit to the study tasks in the allotted time. In

addition, participants with severe physical disabilities had limited movement, so

they were not able to test the full limits of the glove prototypes. Some required

extended sessions while others were eliminated because of the lack of consistency in

training samples. Ultimately, these issues a↵ected the amount of reliable data being

collected, with the volume of recorded data being ultimately reduced by a third, in

some cases, as seen in the longitudinal study (Section 5.5).

6.4.2 Case study locations and regulations

Conducting the case studies in public environments, like exhibitions and schools,

required compliance with multiple governing bodies’ regulations. Initial approvals

required extensive documentation and took substantial time to be granted. This

included the University of London ethical clearance and Essex County Council’s

Information Governance (IG) approval. This is in addition to adherence to the UK’s
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General Data Protection Regulation (GDPR)1, that became compulsory by law in

May 2018, a few months prior to the start of the final case study with the schools

in the UK. Some of the regulations enforced insurance policies for the participants

(public liability insurance), certification for hardware safety (battery testing and risk

assessments), and dictated restrictions in the handling of participants’ data. Clearly

specifying what data was being communicated to the cloud, how it was processed

and where it was stored (inside or outside the UK) was essential in securing study

approvals.

Complying with multiple regulatory bodies became evidently restrictive when

updates to the system being tested were required during iteration cycles for features

that were not included in the original proposal, or any of the consent forms. By way

of example, during the longitudinal study (Section 5.4 - Phase 2), it was found that

connecting to a cloud based system would help substantially in improving classifi-

cation and allow access to the system remotely for diagnostics without interrupting

the progress of the study. As the initial ethical clearance did not grant permission

to connecting to any external network, an appeal was submitted to all relevant gov-

erning parties justifying the need to connect the gloves to the internet, stating that

in compliance with the initial approval terms, it was di�cult to achieve the desired

results. As each of the governing bodies had a di↵erent protocol to granting such

permissions, it was di�cult to accommodate the process within the limited time

frame of the study. This resulted in further extensive delays, partially waiting for

the permissions, but primarily because the majority of the development time was

spent upgrading the system to perform better o✏ine even though the final deployed

system would have access to cloud based servers and processing.

6.4.3 Case study prototype’s access to the internet

Connecting the glove prototypes to the internet, or in some cases managing without

a connection, was an issue throughout the di↵erent case studies of this research.

Earlier prototype versions, which were a proof of concept, had a very limited vo-

cabulary to be able to work o✏ine. To improve that, the prototypes that followed

relied on a cloud based system but struggled to access a stable and/or secure inter-

net connection using the public networks provided at exhibitions, where the study

1Information Comissioners O�ce - https://ico.org.uk/

https://ico.org.uk/
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took place. Finally, the last glove prototype was not granted permission to connect

to an external network, to restrict any access to participant’s data, so it was not

possible to make any system updates remotely and the study was constantly being

interrupted to collect the prototypes for development during iteration cycles. This

was in addition to limiting the features the system could o↵er to participants during

the study, such as defining new gestures and enhancing classification output. These

connection issues resulted in the slowing of the research progress and in reduced

data collection periods, which ultimately had an impact on the final results.

6.5 Commercial Alignment of Research and De-

velopment

The longitudinal case study (Chapter 5), which was conducted in collaboration with

Essex County Council, served as a validation for the technology of the proposed

data glove to translate user-specific custom hand gestures to text and speech. The

results were su�ciently encouraging to warrant progression into the development

of a minimal viable product that subsequently underwent more rigorous market

testing.

Due to the wide network of schools that we worked with during this research, and

the shortage of assistive technology in the market, additional schools and families

signed up to test the new glove.

Keeping the research academically relevant within the field of knowledge, while

still aligning the technological development with the di↵ering priorities of a com-

mercial product, all while complying with industry regulations, was an additional,

but necessary challenge, to ensure that the technology could ultimately be commer-

cialised and made available to the people that can benefit from using it.
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Conclusion

7.1 Introduction

As discussed in the literature review (Section 2.6), no prior research in developing

data gloves to translate sign language had ever engaged real users or was conducted

outside of a controlled lab environment.

Additionally, and due to the nature of some disabilities, there was no single

technology system that was available to be used for communication, which was

deemed suitable for the vast range of user conditions.

To quote one of the parents of a participating student in one of this research case

studies:

“[My child] has severe hearing loss, but due to [their] learning disabili-

ties, [they have] been unable to completely grasp sign language and fit

in with other children that are deaf, but do not have other learning dis-

abilities. This has kept [them] in a situation where it is very di�cult,

if not impossible, to make new friends and interact socially. [They do],

however, have an aptitude for technology, and would take the technol-

ogy very seriously. We hope that [they] will be able to communicate

with others. We are especially keen for [them] to embrace technology to

achieve this.”

- A participating student’s parent

The user of the technology developed in this research was placed at the centre of

the design iteration cycle. Therefore, testing was conducted with users who use sign

159



CHAPTER 7. CONCLUSION 160

language for daily communication, and in their natural environments. This was a

necessary approach for a credible evaluation of the proposed system’s performance.

This research was a fundamental part of a programme to develop and produce

an a↵ordable hardware technology solution to provide machine translation services

from custom hand gestures to written languages, and then by extension to spoken

languages in the form of audio output.

To achieved that, a series of action research cycles were conducted to develop

a fully customisable on-body translation system to recognise hand gestures and

outputs speech (Chapters 4 and 5).

The primary purpose is to facilitate daily communications between individuals

with speech disabilities and the general public.

The results of this research demonstrate that using technology for communication

can be achieved using a stand-alone data glove, which is fully customisable, operates

o✏ine and with high accuracy. Furthermore, using this technology e↵ectively can

have a positive impact on behaviour, by substantially increasing self-confidence and

independence (Section 5.4).

7.2 Research Contribution

The main contribution of this research is the development of a fully customisable and

stand-alone wearable device, that employs machine learning techniques to recognise

individual hand gestures and translate them into text, images and speech.

The purpose of this system is to be used as an assistive technology tool to enable

independent communication for individuals who are unable to communicate via

vocal speech.

The data glove could also be used to teach sign language. In one of the user

cases (Section 5.4 - Evaluation Phase 3) it was found that the glove was used as

an educational tool to teach some children sign language. It was reported that

younger children who were not yet proficient in signing found that training the

glove prototypes to build a gesture library for the study helped them become more

consistent, as well as to learn new signs.

Furthermore, this technology can have a positive impact on behaviour by pro-

moting independent living. As the results show, (Section 5.4) students who used

the data glove in school over a period of three months showed greater independence
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and improved self-confidence when communicating.

The specifications of the system created through this research are as follows:

• An on-body gesture recognition system that works o✏ine with a classification

accuracy rate of 99%.

• The system is embedded in a wearable device with a simple user interface,

designed for users to operate it.

• The system can recognise and translate custom hand gestures by training a

personal classifier for each user, relying on a small training sample size of one

to three recordings. This was accomplished by utilising a KNN classifier, using

Dynamic Time Warping for temporal invariance.

• The system’s visual output can be set to text phrases or images, appearing on

a small screen embedded in the wearable device.

• The system’s audio output can be spoken in a male, female or child voice,

in a language chosen by the user, through a small speaker embedded in the

wearable device.

• The system has a clear route to commercialisation and would be relatively

simple to manufacture in a cost-e↵ective manner (Section 9.3).

• The wearable system costs are within the bounds recommended by public

sector and private non-profit organisations to provide it through grant schemes,

to people who need it for daily communication in school, at work and for

independent living.

7.3 Summary

This research aims to contribute meaningfully to improve the daily communication

experience for people who are non-verbal, by developing a technology innovation

that promotes independent living, and making it accessible to the user groups that

could benefit from using it.

Multiple prototypes of a data glove were developed and tested during this re-

search. A final system was designed implementing the results of three iterative design
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cycles. A fully customisable wearable device was produced which addresses di↵erent

user needs and o↵ers a mean of direct communication with non-verbal individuals.

A path to commercialisation was identified (Section 9.3) to make this technology

available to the people who need it. Integration with current providers of technology

for disability schemes were considered (Section:9.4), to extend the same experience

witnessed during the case studies to more children and adults.

This technology can help users with speech disabilities to perform better in their

respective roles, promoting their inclusion in their communities, in education, at

work or simply when they are out socialising.

I discuss collaborations, government schemes and regulations, and commerciali-

sation in detail under Research Impact (Chapter 9).

As of now, 100 units of the data gloves were manufactured. 30 of them assigned

to students across the six schools for Special Educational Needs (SEN) who collabo-

rated with us to conduct the research studies. Some were sent to the United States,

South Africa and Saudi Arabia. The technology has been reported to being used by

students, business professionals, performers, and speech therapists1.

1A video demonstration of the BrightSign glove is accessible at the following URL - https:

//resources.brightsignglove.com/brightsign demo

https://resources.brightsignglove.com/brightsign_demo
https://resources.brightsignglove.com/brightsign_demo


Chapter 8

Future Work

8.1 Further Research

In the conclusion of the final case study chapter (Section 5.6), the plan to take

this research further was focused on upgrading the system to classify continuously,

reducing the hardware and pairing with a smartphone application.

There are multiple features that could be combined with continuous classification

in order to further enhance usability and accuracy.

Creating sub-libraries for recorded gestures, for example, can speed up recogni-

tion as it reduces the match-finding process to be limited within the specific library

the user is signing from. Sub-libraries could also increase the accuracy of predic-

tion models if employed, as predictions could only be selected from the smaller,

setting-specific vocabulary of the library.

As it takes longer to form sentences with signs as opposed to spoken words

(Bellugi and Fischer 1972), an objective is to try to match the signing speed to the

speech output speed, and to achieve that concurrently, in order to create a smooth

interactive conversation experience for signers using data gloves to communicate.

To create this seamless social interaction, the data glove system could be inte-

grated with existing technology, generally used by the majority of people in order

to add more features.

For example, the microphone of a smart device compatible with the data glove

could serve to provide two-way communication by connecting to transcription ser-

vices which can transcribe the verbal side of the conversation. The speech could be

converted to text for the hearing-impaired person to read on the wearable device.
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This is an area of research that has already been implemented successfully in the

commercial world1.

Furthermore, if the compatible device has a camera, it could be used to recognise

facial expressions and detect body language used in conjunction with signing for

comprehensive translation of sign language. This is an active research topic with

several advances in recent years (P lawiak Pawe land Sośnicki et al. 2016).

Finally, as sign language has a di↵erent structure to spoken language, connect-

ing to a cloud service could allow the implementation of software that could help in

structuring grammatically accurate sentences derived from the signed words. This

would help the person receiving the speech since they are costumed to communicat-

ing in full sentences.

With regard to redesigning the hardware and developing an accompanying ap-

plication, both upgrades were implemented in the commercial version of the data

glove, mentioned in more detail under commercialisation (Section 9.3).

8.2 Further Technology Applications

Based on engagement in the field and taking part in various assistive technology

events, it has become evident that there are many di↵erent applications for the data

glove which was developed during the iterative studies of this research. Some of

these applications are directly relevant to the communities it was designed for, to

translate sign language to text and speech. Other applications include fields that

could benefit from advancements in sensor based gesture recognition, such as in the

gaming, live performance and defence sectors.

8.2.1 Data glove applications for sign language translation

Of the various groups that will benefit from the data glove and related technol-

ogy developed during this research, the foremost will be the hearing impaired and

non-verbal communities, who currently use some form of sign language as their pri-

mary form of communication. This new technology can help them with their daily

communication at work, at school and at home, without the intrusion of an inter-

preter. Having the ability to build a personal gesture library means that the glove

1Hepian Vox - https://www.hepian.co.uk/

https://www.hepian.co.uk/
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can be used to translate from any form of sign language, including bespoke libraries

created by those with di↵erent motor abilities. With over 30 speech languages to

choose from, the glove can be used to communicate within multi-lingual families

and in any country.

The user scenario that was employed as the test case for the iterative development

cycles of this research was in integrated classrooms, enabling children with various

non-verbal disabilities to interact with their peers directly.

Professionals with speech disabilities and hearing impairments could conduct

meetings, give talks and speeches, or go on business trips without the necessity

and burden of having to hire a personal translator or interpreter and align their

schedules, as well as paying for that interpreter’s time, expenses and travel.

Further, those with many physical or motor disabilities, such as stroke survivors,

who lost the ability to talk at a later stage in life, and who are not already familiar

with a formal sign language can teach the glove their own customised hand gestures,

and build personal libraries of sign language according to the limitations of their

specific, individual motor abilities and physical range of movement.

Accessibility units at airports, hospitals, police stations and shopping centres,

can utilise the glove to communicate with visitors who are only able to communicate

using sign language and don’t have a companion, rather than wait for hours for an

interpreter. It can also be used in situations when privacy is required, such as when

a non-verbal individual is with a doctor in a clinic, or when participating in an

investigation, or reporting a crime at a police station.

The glove can help companies to become fully inclusive, by providing it to their

deaf employees or those who have speech disabilities, to enable them to assume

more interaction-driven roles, including communicating directly with customers, as

opposed to being constrained to desk jobs, as they often are, due to their limited

speech abilities. There are multiple schemes in place to provide assistive technology

to employees who need it, discussed in detail under research impact (Section 9).

The elderly community who use assisted living technology for smarter homes

can benefit from the data glove as well, as hearing loss often becomes increasingly

profound when people get older. Combining the data glove with their existing

technology can be useful for greater communication both in and out of the users’

homes. For example, the glove could be used to trigger speech interactive technology,
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such as the Amazon Alexa2, to make calls, operate personal digital devices, and

smart home controllers including door security cameras and thermostats.

8.2.2 Data glove applications in other fields

Data gloves are no longer limited for use in human computer interaction or exclu-

sively for sign language applications. While some gloves are designed for interact-

ing with a computer for gaming, animation, motion capture and movie production

(Premaratne et al. 2010), other applications may include defence, entertainment and

healthcare industries. The defence industry is currently considering advancements

in sensor based gesture recognition for military applications. The technology devel-

oped in this research can be embedded in the wearable devices they use in the field

or for simulation and training.

Similarly, the entertainment industry has recently moved toward providing a

fully immersive experience by employing virtual reality (VR) and augmented real-

ity (AR) monitors. That experience can be enhanced by pairing the units with a

data glove for greater interaction with hands and gestures. Possible applications

include interacting with gaming consoles, immersive theatre, drama and music per-

formances.

The developed data glove may also have healthcare applications to communicate

feedback on the range of hand movement, possibly for physiotherapy.

8.3 Route to Commercialisation

Initially, and despite the primary goal of this research being the solution of a real

problem, it was never originally intended for the technology that was developed to

be commercialised or to evolve into a marketable product. However, every user that

the technology was tested with inquired about the possibility of them acquiring

a glove of their own; despite the fact that it was, at that point, not a saleable

product. Many study participants expressed an interest to be involved in further

development rounds of the technology, and all registered for pre-order units once

able to. As a result, at some point during the latter stages of user testing, the

technological development began to pivot from a prototyping focus, to one of mass

2https://www.amazon.co.uk/alexa/dp/B06Y5ZW72J

https://www.amazon.co.uk/alexa/dp/B06Y5ZW72J
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manufacturability.

Simultaneously, my role transitioned from one primarily of academic research,

into one of entrepreneurship - driven by the fact that I was addressing a genuine,

real-world need, and had always maintained the focus on the role of the user at the

centre of all research and development.

As the glove developed from a prototype into a marketable product, I partici-

pated in many programmes through which I received extensive business support and

mentorship. After applying for a number of small grants and competitions (many

of which were successful), I founded a start-up to develop and manufacture assis-

tive technology devices, with the goal of making such technologies accessible to all

those who need them to experience a more independent lifestyle. A full list of pub-

lic participation and support for this research is disclosed under research industry

placement and public engagement (Chapter 10).



Chapter 9

Research Impact

Over the course of this research, I have worked closely with a network of schools

across the UK to adopt a scheme similar to the successful pilot implemented with

Essex County Council (Chapter 5), where data gloves are issued to the students who

need communication technology to help them integrate in mainstream classrooms

with students of di↵erent abilities.

To take that further, I am currently working with assistive technology platforms

and medical insurance companies in the UK to regulate the data glove developed

in this research and provide it to the people who need it as an employment and/or

disability benefit.

There are o�cial government schemes existing today, mentioned in detail below,

that provide communication technology free of charge to registered users on their

database. By complying with their regulations, the plan is for the data glove to

become included to be supplied as a part of these programmes.

This research was placed in a unique position to have a community impact. In

this section, I discuss this impact from a social and economic perspective. I also

present the commercial route the technology progressed into, means of integration

into current regulation schemes, and ways of documenting this contribution to the

field of knowledge.

9.1 Social impact

Assistive technology in general, and the data glove developed for this research in

particular, can significantly alter social norms and improve quality of life by enabling

people with sensory disabilities, who are either isolated or usually reliant on others
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to communicate, to live more independent and socially active lives by enabling

them to have two-way conversations and supporting them in their education and

employment.

This data glove can promote new methods of communication for people who are

non-verbal. Most parents participating in our studies cited “[promoting] communi-

cation independence” and “[enhancing] social interaction” as their primary reason

for adoption communication technology for their children. They also highlighted the

customisation feature provided by this glove as the main reason they would choose

the data glove developed during this research over other available technologies.

The longitudinal case study (Chapter 5) to test the data glove was sponsored by

the local council as a first step towards a programme o↵ering students with disability

an opportunity to join their peers of di↵erent abilities in mainstream classrooms.

Furthermore, when used in the workplace, the data glove can provide speech

impaired employees with job placements they would otherwise not be able to hold

due to communication requirements.

In the settings mentioned above, the data glove can be used to prevent discrimi-

nation in schools and the workplace, where usually children and adults face di↵erent

challenges due to their conditions.

9.2 Economic Impact

Technological communication aids for people with speech impairments often come

with high price tags, and can be very di�cult for individual users to evaluate without

assistance from experts.

As such, the cost of the end product was a substantial consideration when under-

taking the iterative design cycles for this research to ensure that users would be able

to access it a↵ordably, and that it would be included in existing schemes and grants

which can provide the technology to them at either a reduced or no cost. In the UK,

a number of these schemes exist (Section 9.4), including, for example, grants paid

for by local government, to provide assistive technologies to those in education for

free. However, those schemes have limits on the per-user price of the technologies

that they can provide. Many employers also have schemes to allow their employees

to choose their own technology, though again, with some restrictions.

The alternative way for those with sensory disabilities to access education and
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employment through such schemes is by matching them with a sign language inter-

preter for the duration of the course or for specific tasks on the job.

Presently, there is a huge shortage in the number of interpreters available, with

only one interpreter for every hundred and fifty sign language users, meaning that

many of those that need them, are unable to access them when necessary (British

Deaf Association 2020). Even when they are available, due to the high demand

but severely restricted supply, the cost of an interpreter can be very high, and must

be paid on an hourly or daily basis, meaning that the use of an interpreter is a

constant financial burden. In the workplace, this burden falls upon the employer,

as per the Equality Act 20101, meaning that hiring employees that require such

services regularly to carry out their work can swiftly become very expensive. The

adoption of a piece of technology such as that developed in this research, would

help to cater for the excess demand for interpreters, as the technology could be used

for communication in many day to day situations, when an interpreter would not

otherwise be available.

Furthermore, due to the fact that the only major cost is a single up front pur-

chase, it can also act to reduce the financial outlay incurred by the employer. The

additional independence that employees can then gain will also be reflected in their

productivity, in turn, directly impacting the employer’s bottom line. This increased

e�ciency, spread across many companies would provide a boost to the economy,

and would reduce the currently high levels of unemployment that many of society’s

most isolated and disadvantaged individuals presently su↵er from.

For self-employed individuals, the continual necessity to pay for such an inter-

preter could easily make their business unsustainable or would force their prices to

increase, thus making them less competitive. Being able to utilise a technology such

as this would remove that burden, allowing them to operate without the additional

overhead.

As for individuals who do not fit into a specific scheme, there are non-profit

platforms created to evaluate assistive technologies and then advise individuals based

on their specific requirements. These platforms reduce the cost of accessing such

products, by buying them in bulk at a reduced price and o↵ering them through

instalments, with only a fraction of the cost required upfront to obtain and start

using the technology.

1http://www.legislation.gov.uk/ukpga/2010/15/contents

http://www.legislation.gov.uk/ukpga/2010/15/contents
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9.3 Commercialisation

I joined a network which supports academics and students whose research has indus-

try implementations and potential to have a viable business model (Section: 10.1)

and founded a technology start-up in 2017, now trading as BrightSign2, to develop

custom assistive technology innovations.

I closed the first round of funding soon after and started manufacturing the

BrightSign Glove, based on the technology developed during this research. Pre-

orders were launched in 2019 and were fulfilled early 2020. Today, there are over

100 gloves being used in the UK, US and the Middle East by adults and children to

help them communicate independently.

Based on the feedback gained from the users and to make the glove hardware

lighter, an accompanying smartphone application was developed to further customise

the features o↵ered by the system. The application enables each user to have full

control over how to use the glove and choose the language and voice of the speech

from a range of 30 languages in 180 voices. Individual libraries of gestures are

generated by each user with the option to create sub-libraries for easier access in

di↵erent settings, in school, work or for socialising.

BrightSign was invited to participate in a number of assistive technology exhibi-

tions and trade shows, listed under Chapter 10. Positioned amongst other technolo-

gies for communication, the BrightSign Glove attracted considerable attention, since

it can be customised to individual needs, an important feature to have in technology

designed for people with di↵erent abilities.

Collaborations with di↵erent platforms to include BrightSign were initiated,

starting with CENMAC3 and London Grid for Learning4, o�cial providers of assis-

tive technology in education in London, who placed a group order of gloves to make

available to their network of schools.

A series of meetings are scheduled with schools across the UK to implement a

scheme where BrightSign Gloves are introduced in integrated classrooms for students

of di↵erent abilities, following on the successful pilot conducted with the 6 initial

schools in Essex (Chapter 5).

Other programmes to provide BrightSign Glove to people who need it are avail-

2https://www.brightsignglove.com/
3CENMAC - http://cenmac.com
4London Grid for Learning - https://www.lgfl.net/

https://www.brightsignglove.com/
http://cenmac.com
https://www.lgfl.net/
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BrightSign BrightSign

Product Brochure

Translate from any sign...

One of the biggest problems with existing solu-
tions for those with hearing and speech disabilities 
is the fact that they all assume that everyone is 
the same. They are wrong. With over 100 different 
formal sign languages being used in the world, 
and thousands more individual variations and sign 
systems, it simply isn’t good enough to support 
one or two languages and call it done. BrightSign 
allows you to teach it ANY sign language library 
that you can think of, even one that you have made 
up yourself.

...to any language!

Why should a signer be limited to any one tradi-
tional spoken language for their communication? 

You’re right - they shouldn’t. BrightSign lets users 
use more than 30 different languages to translate 

their signs to in real time while signing, even if they 
don’t know the language themselves. With both 

spoken and text output, we even allow languages 
with different alphabets, like Arabic or Mandarin.

About

Sign

Translate

Speak

Reply

Features

Current technology to allow people with hearing or speech disabilities to 
communicate just isn’t good enough and doesn’t fit many of their needs. 

That’s why we have put so much time and effort into making BrightSign as 
customisable and flexible as possible.

There are over 100 commonly 
used sign languages in the world, 

and thousands more personal 
variations. We support any sign 
language - even your own one!

Why stick to only speaking in one 
language? BrightSign has real-time 

translation and speaks over 30 
languages, so you can speak with 

anyone from anywhere.

It isn’t enough to just translate signs 
into speech - our voice recognition 
technology lets you read or see the 
other side of the conversation too, 

in any language you choose.

With over 180 voice choices, as 
well as options for different speeds 
and tone you can make BrightSign 
sound exactly as you want; wheth-

er male, female, young or old.

Pricing

Order now online at:
www.brightsignglove.com

You can place orders on our site below. If you are interested in placing a 
large order, please get in touch with us at contact@brightsignglove.com 

regarding bulk discounts.

£ 945
per glove:

Train Any Sign
30+ Languages Supported

180+ Voice Options
Companion Mobile App

48h Email Support
Launch Day Shipping

www.brightsignglove.com
contact@brightsignglove.com

+44 7522 717909

Figure 9.1: Product brochure for the BrightSign Glove
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able and discussed in detail under Regulation (Section 9.4).

9.4 Regulation

The data glove developed during this research is commercially classified under “As-

sistive Technology for Communication”. Assistive technologies are “products that

empower disabled people to become more independent” (Together for Short Lives

2020). Individuals with speech impairment in the UK who register for “reasonable

adjustment” are entitled to have assistive technology provided to them by law under

the Equality Act 2010.

Due to the high cost of communication aids and to comply with the Equality

Act and prevent discrimination, there are multiple schemes in the UK that provide

assistive technology through di↵erent routes. That includes government schemes,

charities and assistive technology platforms. O�cial claims are usually submitted

under education, employment or independent living benefits.

Notable government schemes include The Access to Work Programme5, financing

equipment for employees with disability, The Disabled Students’ Allowance (DSA)6,

sponsoring technology to support students with disabilities in higher education, and

The National Health Service (NHS)7, authorising and issuing assistive technologies

to disabled people throughout the UK, usually via referrals by a health professional.

There are also multiple charities that o↵er individuals with disability free access

to assistive technology to use at home, in education and at work. AbilityNet8

extends that service to include the families, carers and employers’ of such groups.

The Aidis Trust9 and Disabled Living10 o↵er additional support by providing advice

and training for the type of assistive technology that best matches the needs of each

user case. That includes impartial information for disabled adults, children and

older people as well as the professionals who support them. The Disabled Living

Foundation11 focuses on using assistive technology for independent living by acting

as a useful reference for a wide range of assistive technology suppliers and sources

5Access to Work - https://www.gov.uk/access-to-work/overview
6Disabled Student’s Allowance - www.yourdsa.com
7National Health Service - www.nhs.uk
8AbilityNet - www.abilitynet.org.uk
9The Aidis Trust - www.aidis.org

10Disabled Living - www.disabledliving.co.uk
11Disabled Living Foundation - www.dlf.org.uk

https://www.gov.uk/access-to-work/overview
www.yourdsa.com
www.nhs.uk
www.abilitynet.org.uk
www.aidis.org
www.disabledliving.co.uk
www.dlf.org.uk
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of funding.

As for commercial providers of assistive technology, there are platforms that sup-

ply digital catalogues and o↵er industry specific communication technology through

a subscription model.

In education, CENMAC is one of the main providers of assistive technology

to help students with disabilities access the curriculum. They work in the Greater

London area and have eight local authorities subscribed to their service. As for online

learning resources, London Grid for Learning (LGFL) is a technology community

of schools and local authorities in London. They have a digital inclusive resource

library for students with learning disabilities.

For companies and employers, the British Healthcare Trade Association (BHTA)12

is a network of suppliers of assistive technologies, with memberships of over 500 com-

panies making or selling assistive technology products that help people live more

independently. The equivalent online service of accessible resources, is Inclusive

Technology13, a leading supplier providing accessible communication technology,

specifically for people with sensory and learning impairments.

Finally, there are assistive technology websites that provide advice and informa-

tion about hardware and software inclusive equipment, disability support schemes,

and funding sources.

Of those I mention, Independent Living14 and Living Made Easy15, both of which

host online catalogues with a full range of communication aids to support the daily

living and independence of people with sensory impairments.

9.5 Field of Knowledge

This research is submitted in fulfilment of the degree of Doctor of Philosophy in Arts

& Computational Technology at Goldsmiths, University of London. The thesis will

be published in 2024. Main contributions to the field of knowledge are summarised

in Section 7.2.

Some of the work demonstrated in this research generated a patent titled: “Method

and system for gesture recognition”, granted by the United Kingdom Intellectual

12British Healthcare Trade Association - http://bhta.com
13Inclusive Technology - www.inclusive.co.uk
14Independent Living - www.independentliving.co.uk
15Living Made Easy - www.livingmadeeasy.org.uk

http://bhta.com
www.inclusive.co.uk
www.independentliving.co.uk
www.livingmadeeasy.org.uk
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Property O�ce (UKPTO) on the 16th November 2021, with patent No. GB2590502

(Appendix F.1).



Chapter 10

Research Industry Placement and

Public Engagement

This is a practice-based research degree, therefore, it took place within the industry.

The data glove developed during this research was showcased in multiple local and

international exhibitions, where much of the data collection occurred. In this section,

I list the support received to complete this research, the grants awarded to recognise

it and the technology conferences and events it was presented at.

10.1 Funding and support received

I received support from the deK Growth Programme1, which is a collaboration be-

tween Lewisham Council, Goldsmiths University of London and London Southbank

University, and is co-funded by the European Regional Development Fund (ERDF)2.

The programme provided me with 12 mentorship sessions delivered by industry ex-

perts to build my knowledge in key areas relevant to my research and matched me

with academic leaders who guided me in ways to take my project further.

Simulation for Digital Health3, hosted by London Southbank University and

funded by ERDF, o↵ered multiple workshops to help me innovate, develop and

deliver the final wearable designed solution of the data glove, which was used for

the first preliminary case study.

1deK London - https://www.deklondon.com
2European Regional Development Fund - https://ec.europa.eu/regional policy/en/funding/

erdf/
3Simulation for Digital Health - https://www.simdh.com
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I joined Central Research Laboratory hardware accelerator 4 for six months, also

funded by ERDF. With them, I further developed the data glove from a simple

prototype to a minimal viable product, which was used for the longitudinal case

study in Chapter 5.

I applied for and was awarded Goldsmith’s Innovation Award to help finance the

development of the second glove prototype, which was used for the case studies in

Chapter 4.

Essex County Council funded the longitudinal case study in Chapter 5; with the

grant including the manufacturing of 15 data gloves.

Imperial College London provided me with work space in their Innovation Hub

for one year, as part of the Scalable Business Awards5, with access to a prototyping

lab and individual coaching sessions. It was there that I formed strong networking

links with fellow academics turned entrepreneurs, and eventually based my start-up

o�ce after securing funding.

10.2 Conferences

I was invited to participate in conferences, relevant to this research area, to present

the ongoing research of the system developed during the PhD degree and share

primary results.

In 2016, I presented early findings of the gesture recognition system at the Wear-

able Technology conference in London and Facets, an interdisciplinary interactive

art un-conference in New York.

In 2017, I presented an improved system with machine learning applications to

recognise custom hand gestures at CENMAC Assistive Technology for Communica-

tion conference in London and No Barriers Summit in Lake Tahoe.

In 2018, I presented the final on-body gesture recognition system at Cambridge

Rare Disease Network RAREfest in Cambridge, International Technology Enabled

Care conference in Birmingham, North West ADASS Assistive Technology confer-

ence in Manchester and Forbes 30 Under 30 Summit for young entrepreneurs in

Amsterdam.
4Central Research Laboratory - https://www.centralresearchlaboratory.com/
5Scalable Business Awards - https://www.imperial.ac.uk/news/186606/

inspired-start-ups-support-worth-combined-250000/

https://www.centralresearchlaboratory.com/
https://www.imperial.ac.uk/news/186606/inspired-start-ups-support-worth-combined-250000/
https://www.imperial.ac.uk/news/186606/inspired-start-ups-support-worth-combined-250000/
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In 2019, I presented the commercial product, the BrightSign Glove, which is the

data glove progression of this research, at the International Accessibility conference

in Dubai, and MIT Minds and Tech conference in Toulouse, France.

10.3 Exhibitions

I participated in the following exhibitions, to showcase the technology developed

during this research as well as to collect data from di↵erent user groups in atten-

dance.

I conducted the controlled iterative case study presented in chapter 4 by partici-

pating in CENMAC Assistive Technology for Communication Exhibition in London

in 2017/18, and No Barriers Summit’s Innovation Village, Lake Tahoe in 2017.

I also collected a wider range of usability data from public attendances during

my participation at TechCrunch Disrupt in Berlin, GITEX in Dubai, Festival of

Digital Disruption (FoDD) in Reading, TechDay in London, TechXLR8 in London,

Viva Technology in Paris, Accessibility Expo in Dubai, Braun Tech for Good in

Frankfurt and AXA Health Tech in London.

10.4 Awards

The research received multiple awards specifically in the areas of artificial intelli-

gence, wearable technology, healthcare innovation and technology with social im-

pact. Some awards o↵ered monetary grants which helped in funding the research

and developing the hardware for the prototypes, while others provided valuable

partnerships and access to research and market networks.

Innovation and Entrepreneurship Award for Saudi Students in the UK, London

2015.

IBM Global Hackathon in Artificial Intelligence for Social Care Grand Prize,

Seoul 2016, providing a cash award.

The Wearable Technology Show Innovation Award, London 2016, providing ex-

hibition space and a presentation opportunity at the parallel conference. Wareable

Technology Save the Day Award, recognising technology that is life-changing, Lon-

don 2017.

Arab Deaf Women Conference for Assistive Technology, Kuwait 2017.
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Santander Universities Innovation Award, London 2018, providing a cash award

and a paid internship placement for 10 weeks at BrightSign.

AXA Health Tech Award, recognising innovations which improves health and

wellbeing by helping people live happier lives, London 2018, providing regulation

support and access to network.

Booking.com Tech Playmaker of the year Award & Social Impact Award, London

2018, providing cash award, media coverage and access to network.

Viva Technology Innovation Award, Paris 2018.

Saudi Youth Award in Technology Community Impact, Dammam 2018, provid-

ing a cash award.

Mayor of London Entrepreneurship Award, London 2019, providing one year

membership at The O�ce Group, a dedicated mentor from the industry and coaching

sessions.

Saudi Ministry of Communications Award for Assistive Technology, Riyadh,

2019, providing a cash award.

MIT Centre for Collective Intelligence, Minds & Tech Award, recognising innova-

tion using artificial intelligence to solve problems or bring value to society, Toulouse,

France 2019.

The Not Impossible Award, recognising technology for the sake of humanity,

USA 2020.

Entrepreneurship World Cup, global competition recognising leaders who are

pursuing groundbreaking research that could change the world, 2020.

10.5 Media

The research was recognised in a number of reputable and in many cases high profile

media outlets, including the BBC, Forbes, The Guardian and the Financial Times,

as well as some international news organisations. The glove prototype was featured

on the BBC One Show and The Discovery Channel.

10.6 Networks and memberships

Valuable networks and partnerships resulted from working with the industry to

conduct this research. I have established collaborations with CENMAC, providers of
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assistive technology for education, London Grid for Learning, providers of accessible

resources for students with learning di�culties, AXA, providers of health insurance

with coverage for assistive technology and IBM, who granted me lifetime access to

their text to speech and translation engines.

I am a member of Women of Wearables6, a network of women in tech who develop

wearables that serve the community and create a di↵erence.

I was also invited by the iDiscover Programme7 to take the role of a STEM

(Science, Technology, Engineering and Math) ambassador, where I get to share the

data glove technology and the innovation behind it with elementary school students

all over London, to widen the access of these fields of knowledge.

6Women of Wearables https://www.womenofwearables.com
7iDiscover https://www.inspire-ebp.org.uk/wp-content/uploads/2018/10/iDiscover-flyer-2018.

pdf

https://www.womenofwearables.com
https://www.inspire-ebp.org.uk/wp-content/uploads/2018/10/iDiscover-flyer-2018.pdf
https://www.inspire-ebp.org.uk/wp-content/uploads/2018/10/iDiscover-flyer-2018.pdf


Chapter 11

Summary

In this research, I document the process of designing a sensor-based wearable com-

puting system for custom hand gesture recognition using machine learning.

I have presented examples of how this task was achieved in prior research and

demonstrate how a single user or a small group of users with specific needs are able

to test a proposed system with the results in turn applied to inform the development

for a larger user group (Section: 3.3).

I began by developing an initial data glove system wired with flex sensors and a

gyroscope to record gesture data collected from hand positions and movements.

I implemented interaction design research methods to conduct a series of design

iterations (using the build-measure-learn system, as in Section 3.1.2) to develop a

number of incrementally improving prototypes of this system. Starting with prelim-

inary case studies (Chapter 4), rapidly prototyping various isolated system features,

I then conducted a longitudinal case study that evaluated the system features and

performance in-depth when used over a period of six months (Chapter 5).

During these studies, I tested the data glove with adults and children who use

hand gestures for their everyday communications. I used the testing sessions to

evaluate the performance of the data glove prototypes when used in public spaces, in

school and at home and collected detailed feedback from the care givers of the users,

the teachers and therapists in attendance, and through observation. Throughout,

the system was always evaluated against the fundamental requirements that it must

be Assistive, Accessible, Adaptive and A↵ordable (as detailed in Section 3.1).

I combined the findings of each study with recorded gesture data, and imple-

mented further system analyses including failure analysis, individual di↵erence anal-
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ysis and time profiling. This allowed me to use the results to update the system for

each of the subsequent testing cycles.

In total, the system was tested by 40 participants, with the youngest being 5

years old. In aggregate, the participants used five di↵erent sign language libraries

as well as several non standard ones. The conditions that a↵ected them included

full or partial hearing impairment, multiple di↵erent learning disabilities, cerebral

palsy, visual impairment, neurological and physical disabilities, and sometimes a

combination of multiple of the above.

The final system achieved 99.97% in recognising and accurately classifying cus-

tom hand gestures within a gesture library of 100 words using a K-Nearest Neigh-

bours classifier, with Dynamic Time Warping used as a distance measure.

A text to speech API was integrated to translate the recognised hand gestures

to speech. For further personalisation, the system also o↵ered di↵erent voices and

languages for the speech output.

The final data glove prototype developed through this research is able to operate

as a wireless and stand alone wearable device, which can translate hand gestures to

speech o✏ine. The hardware circuitry is entirely embedded within the design of the

glove which also features a small screen to allow the user to interact with it, and a

speaker to output the words corresponding to the recognised gestures.

This data glove has been designed to be used as a communication tool to enable

non-verbal users to interact independently with their peers and be more included

within their communities.

The results of this research were ultimately used to inform the production of a

commercial version of the data glove, trading as BrightSign, which is currently used

in special educational needs schools, by students and teachers, as well as by speech

disabled professionals in multiple countries (Chapter 10).
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B.1 Essex County Council Research Grant Agree-

ment (Abridged)

 

                               DATED      13 JUNE 2018                                        

------------ 

 

 

GRANT AGREEMENT 

 
 

between 
 

ESSEX COUNTY COUNCIL 

 
and 

 
 

BRIGHTSIGN TECHNOLOGY LIMITED  
Company Number 11017734 
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15 

Schedule 1 The Project 

The purpose of the pilot is to determine if students with Learning Disabilities and/or 
Autism Spectrum Disorder use BrightSign will increase their independence and / or 
reduce incidents of challenging behaviour. 
 
The project is to fund a pilot of 14 BrightSign gloves for use in Essex schools by 
students with Learning Disabilities and/or Autism Spectrum Disorder for a period of 6 
weeks. 
 
The Recipient will: 

• Work with each pilot user to implement the glove 
• Act on feedback from pilot users to make improvements to the functionality of 

the hardware and/or software/code of BrightSign in order to better suit the 
pilot user during the pilot 

• Provide technical support to the individuals and the schools involved in the 
pilot for the duration of the pilot 

• Provide a copy of the findings of the pilot to the Funder 
• Publish the conclusion of the pilot study in Academic Journals 
• Include the pilot study outline and results in PhD thesis.  
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C.1 Assistive Technology for Education Usability

Study

 
 

Assistive Technology for Education Usability Study  
BrightSign Technology & Essex County Council 

 
 
 
 
Background: 
 
BrightSign is a data glove wired with multiple sensors and equipped with machine learning software. BrightSign 
translates custom sign language hand gestures to text and speech in real-time. It is designed to enable sign 
language users to interact directly with the public who do not speak sign language.  
 
Over the past three years, I have developed multiple prototypes of BrightSign glove. Two pilot studies have been 
conducted on early prototypes using interactive design research methodology. The outcome of each study fed 
back into the design loop to improve software, hardware and the design of the glove. The study outlined here is 
the final study of the research. The results will set the framework for the mass producible version of the glove in 
preparation for commercialisation.  
 
This usability study will be conducted in collaboration with Essex Council and four local special schools appointed 
by the council.    
 
Usability Study Outline: 
 
The study is a longitudinal study during which the participants will keep the prototypes for 3 months and use them 
for daily communication. It is designed to document whether the glove enables children who use sign language 
as their primary language to communicate with the public without the presence of an interpreter.   
 

Participants:  
Children ages 4 to 18 who are non-verbal and can use assistive technology.  
 
The glove supports two forms of sign language which is used by two groups: 

• Deaf or hard of hearing who use BSL 
• Non-verbal disability who use Makaton  

 
The glove can also be trained for custom signs and/or hand gestures. 

 
Duration of study: 3 months  

 
Location of study: The glove is to be used for daily communication in real-life situation and in the 
participants’ natural environments. School, park, outings and at home with their families.  

 
Data Collection:  

• Software data collection stored locally on the glove’s SD card 
• Feedback from participants  
• Feedback from care givers, family members and teacher  
• Observation and video documentation  

 
 

Timeline:  
 

April - May  >>>  Setting up study outline   
 

- Set up study outline with the local council 
- Identify collaborative schools  
- Ethics Clearance and DBS checks  

 
June  >>>   

 
- Recruit study participants:  

• Age, Size, Interests   
• Sign language library used  

- Submit gloves parts order (can take up to10 weeks to arrive) 
- Finalise permission documents and clearance forms with all parties involved 
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July  >>> Textiles / Software  
 

- Design custom glove textiles to match participants’ interests 
- Update gloves software to accommodate schools’ requests for customization    

 
 
August  >>> Product Manufacturing 
 

- Gloves manufacturing (Takes 3 weeks) 
 
 
September  >>> Usability study launch  

 
- Initial meetings with parents and teachers on school premises  
- Train study participants, family members and teachers 
- Leave gloves with participants/schools  
  

 
October to December  >>>  Study active  

 
- Set up a schedule for regular visits and data collection 
- School visits up to twice a week and based on special requests  
- Interview teachers and families once midway through the study (November)  

 
 
January  >>> Study data collection and analysis  
 

- Document feedback from teachers, parents and participants  
- Families to keep the gloves and get access to support  

 
 

March >>> Study write up for publication  
 
 
	
	

	
Point	of	contacts:	
 
BrightSign	Technology		
Hadeel	Ayoub		
Hayou001@gold.ac.uk	
	
Essex	County	Council		
Benjamin	Poulton	
Benjamin.poulton@essex.gov.uk	
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D.1 School Consent Forms

SCHOOL CONSENT FORM  
 
 
Project Title: BrightSign Technology Usability Study  
Research Investigator: Hadeel Ayoub Email: hayou001@gold.ac.uk  
Project Supervisor: Mick Grierson Email: m.grierson@gold.ac.uk  
Department of Computing, Goldsmiths, University of London 

 
 
Please tick the box for each statement and complete the details below. 
 

□ I confirm that I have the authority to give permission for my school to take 
part.  

□  I agree that the research project named above has been explained to me to 
my satisfaction and I agree for the students in my school to take part.  

□ I am happy with the contact hours that the researcher has proposed and I 
confirm this will not adversely affect the students’ school study. 

 

□  I understand that the students’ and the school’s participation is voluntary and 
that we are free to withdraw at any time without giving a reason and without  
penalty. 

□  I understand that information about my school may be used in a published 
academic paper and that confidentiality and anonymity will be maintained. 

□  I agree to provide the use of a suitable location in which to conduct study 
meetings.  

□  I agree to allow the lead researcher to visit the school for data collection and 
observation during school hours in accordance with a pre-approved visits 
schedule.  

□  I acknowledge that only children with parental/guardian consent will be 
allowed to take part in the study. 

□  I understand that I am free to discuss any questions or comments I might 
have with the points of contacts provided to me on the information sheet.  

 

Name:...............................................                            Signed:............................................... 
 
 
 
School:................................................                          Date:.................................................... 
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D.2 Parent Consent Forms

PARENT CONSENT FORM 

 

Project Title: BrightSign Technology Usability Study  
Research Investigator: Hadeel Ayoub Email: hayou001@gold.ac.uk  
Project Supervisor: Mick Grierson Email: m.grierson@gold.ac.uk  
Department of Computing, Goldsmiths, University of London 
 

 

Circle As Applicable 

1. Have you read the information sheet about this study? � YES / NO 

2. Have you had an opportunity to ask questions and discuss this 
study? �  YES / NO 

3. Have you received satisfactory answers to all your questions? �  YES / NO 

4. Have you received enough information about this study? �  YES / NO 

5. Do you understand that you are free to withdraw your child from 
this study at any time and without giving a reason for withdrawing?  

YES / NO 

6. Do you agree for your child to take part in this study?  YES / NO 

7. I understand that the information collected from this study may 
form part of a scientific publication and I will be sent a copy. 
Confidentiality and anonymity will be maintained, and it will not be 
possible to identify me or my child from any publications. 

YES / NO 

8. I agree to be contacted throughout the duration of the study by the 
lead researcher for data collection and follow up meetings.�  

YES / NO 

9. I understand that I will have to return the glove if I leave the study 
before it is concluded. �  

YES / NO 

10. I understand that it is my responsibility to follow the technology 
safety guidelines outlined in the user manual received with the 
glove  

YES / NO 

11. I understand that the glove should be used under adult 
supervision at all times.  

YES / NO 

        

I, _____________________the parent and/or legal guardian of ___________________     

 

consent to the processing of our personal information for the purposes of this study only 

PRINT	NAME	HERE	 PRINT	CHILD’S	NAME	HERE	
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and that it will not be used for any other purpose. I understand that such information will 
be treated as strictly confidential and handled in accordance with the provisions of the 
Data Protection Act 1998 and the GDPR regulations.  

If you have any concerns about your role in the project, please contact the Chair of the 
University’s Research Ethics and Integrity Sub-Committee, Professor Simon McVeigh, 
via the REISC Secretary on (0)20 7717 3338 / email reisc@gold.ac.uk 

Signed_____________________________ Date___________________________ 
Name of Parent/Legal Guardian ___________________________________________ 
Name of Investigator_____________________________________________________ 
Signature of Investigator__________________________________________________  
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E.1 Parents Entry Survey

BrightSign	Usability	Study	

Entry	Survey	–	Parents	

	

	

Please	Answer	these	questions	about	your	child	who	will	be	taking	part	in	this	study:	 	

	

Name:	

Age:	

Gender:		

Age	started	signing:		

Sign	language	library:			BSL			-			Makaton				-			Signalong			-		Other	…………………..	

Level	of	signing:	Beginner				-					Intermediate					-								Advanced		

Study	Group:			1			-				2				-				3		

		

Has	your	child	been	part	of	previous	studies	for	assistive	technology?		

o Yes	

o No	

	

Has	your	child	ever	used	assistive	technology	for	communication	?	

o Yes:	an	app	on	tablet		

o Yes:	other…………………………………………………………………………………	

o No	

	

Who	covers,	or	would	cover,	the	cost	of	assistive	technology	for	your	child:	

o Health	insurance	

o Government	aid	

o The	school	(Education	aid)	

o Device	loan	from	accessibility	platform	(CENMAC,	LGFL,	etc)	

o Yourself	

	

How	does	your	child	communicate	in	public	?	

o Family,	friend	translate		

o Sign	language		

o Smart	device		

o Other:……………….		
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What	is	the	primary	reason	you	registered	your	child	in	this	study	?	

o Improve	signing	skills	

o Promote	communication	independence		

o Enhance	social	interaction		

o Support	assistive	technology	development		

o Other:	

	

Please	rate	the	study	evaluation	criteria	in	the	order	of	importance	to	your	child:	

o Technology	Development		

o Social	Behaviour	

o Education	Support		

o Early	adopter	of	BrightSign	

	

Which	of	the	following	supplementary	features	of	BrightSign	can	be	beneficial	to	your	

child?	Tick	all	that	applies	elaborating	on	why	you	would	use	it	

	 	

o Customising	sign	language	(Training	for	personal	versions	of	sign	language)	

……………………………………………………………………………………………………………………	

o Customising	speech	voice	(Child,	a	friend,	family	member..	.etc)	

……………………………………………………………………………………………………………………	

o Translating	speech	to	other	languages	(French,	Indian	..etc)		

……………………………………………………………………………………………………………………	

o Personalized	textile	design	(favourite	character,	colour	..etc)	

……………………………………………………………………………………………………………………	

	

Would	you	like	to	keep	BrightSign	when	the	study	is	concluded?	

o Yes	

o No	

Please	write	in	your	own	words	what	do	you	hope	your	child	will	gain	from	this	study?	

	

	

	

	

	

	

Thank	you	for	completing	BrightSign	entry	survey	J	
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E.2 Participants Profiles (Teachers)

BrightSign	Usability	Study	
	

Participants	Profiles	
Teachers		

	
School	 	

Teacher	 	

Class/Age	 	

Sign	Language	 	

Names	of	study	
participants	in	
your	class	

	

Study	Group	 	

Top	3	group	
songs	in	class:		

	

	

	

Most	used	phrases	in	class	by	students:	
1.	

2.	

3.	

4.	

5.	

6.	

7.	

8.	

9.	

10.	

11.	

12.	

13.	

14.	

15.	

16.	

17.	

18.	

19.	

20.	
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F.1 GB2590502 - Method and system for gesture

recognition

IPOGOV UK Links :

Application Number GB1919046.1

Application Source Form 1

Publication Number GB2590502

Status Granted

Filing Date 20 December 2019

Publication Date 30 June 2021

Grant Date Grant of Patent (Notification under Section 18(4)):
16 November 2021

Application Title Method and system for gesture recognition

Grant Title Method and system for gesture recognition

Compliance Date
(Section 20 Date )

20 June 2024

Address for Service MARKS & CLERK LLP
15 Fetter Lane
London
EC4A 1BW
United Kingdom
[ADP Number 09973496001]

Applicant / Proprietor BRIGHTSIGN TECHNOLOGY LIMITED
2104 Distillery Tower
1 Mill Lane
London
SE8 4HP 
United Kingdom
[ADP Number 12616447001]

Inventors HADEEL DIAAELDIN AYOUB, BRIGHTSIGN TECHNOLOGY LIMITED
2104 Distillery Tower
1 Mill Lane
London
SE8 4HP 
United Kingdom
[ADP Number 12616454001]

EDWARD RICHARD HILL
Oakham House
Tong Road
Brenchley
Tonbridge
TN12 7HT
United Kingdom
[ADP Number 12616462001]

 - Online Patent Information and Document Inspection Service

New Search  View on Espacenet

GB2590502 - Method and system for gesture recognition

Case Details
Select the aspect of the case you
wish to view:

Case Details

Documents

Forms Filed

Case Notes

Classifications

Citations

Field of Search

Select case view

Disclaimer Accessibility Statement Cookies Privacy Crown Copyright
Intellectual Property Office is an operating name of the Patent Office
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G.1 Videos

These links provide access to example video documentation for each of the case

studies’ glove prototype testing sessions, as well as a demonstration of the final

commercial system:

• Pilot Study: Jeddah Autism Centre, Saudi Arabia, 2016 (Section 4.1)

https://resources.brightsignglove.com/pilot study

• Iterative Case Study A: IBM AI Hackathon, South Korea, 2016 (Section 4.2.4)

https://resources.brightsignglove.com/ibm study

• Iterative Case Study B: No Barriers Summit, USA, 2017 (Section 4.2.4)

https://resources.brightsignglove.com/no barriers study

• Iterative Case Study C: CENMAC Conference, UK, 2018 (Section 4.2.4)

https://resources.brightsignglove.com/cenmac study

• Longitudinal Case Study: SEN School, UK, 2019 (Chapter 5)

https://resources.brightsignglove.com/essex study

• BrightSign Glove Promo Video, 2020 (Section 9.3)

https://resources.brightsignglove.com/brightsign demo

G.2 Participants Profiles and Surveys

This link provides access to participants’ profiles and entry surveys filled out by

parents and teachers for the 11 participants who took part in the longitudinal case

study (Chapter 5):

https://resources.brightsignglove.com/study surveys

https://resources.brightsignglove.com/pilot_study
https://resources.brightsignglove.com/ibm_study
https://resources.brightsignglove.com/no_barriers_study
https://resources.brightsignglove.com/cenmac_study
https://resources.brightsignglove.com/essex_study
https://resources.brightsignglove.com/brightsign_demo
https://resources.brightsignglove.com/study_surveys
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