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A B S T R A C T   

Commercial camera traps are usually triggered by a Passive Infra-Red (PIR) motion sensor necessitating a delay 
between triggering and the image being captured. This often seriously limits the ability to record images of small 
and fast moving animals. It also results in many “empty” images, e.g., owing to moving foliage against a 
background of different temperature. In this paper we detail a new triggering mechanism based solely on the 
camera sensor. This is intended for use by citizen scientists and for deployment on an affordable, compact, low- 
power Raspberry Pi computer (RPi). Our system introduces a video frame filtering pipeline consisting of 
movement and image-based processing. This makes use of Machine Learning (ML) feasible on a live camera 
stream on an RPi. We describe our free and open-source software implementation of the system; introduce a 
suitable ecology efficiency measure that mediates between specificity and recall; provide ground-truth for a 
video clip collection from camera traps; and evaluate the effectiveness of our system thoroughly. Overall, our 
video camera trap turns out to be robust and effective.   

1. Introduction 

In the world of camera trapping for biodiversity monitoring one of 
the greatest problems is the large quantity of data that is generated. 
Many of the captured images do not even contain any animals, and so 
significant time needs to be spent on simply removing empty images. 
Large advances have been made in this regard, especially with the 
introduction of Machine Learning (ML) into this field (Tabak et al., 
2019; Wei et al., 2020; Xi et al., 2021). The standard approach is one of 
retroactively removing empty images. We propose a solution where 
instead our camera trap system does not capture empty images in the 
first place. Some advantages of our approach include reducing: (i) 
bandwidth requirements if live data is sent; (ii) storage requirements 
when saving data to disk; and (iii) assessment time at later stages of 
analysis. We provide the open-source code for the camera trap, docu-
mentation with a setup guide, video evaluation corpus, and our evalu-
ation library at https://dynaikon.com/trap. The DIY setup consists of 
downloading our software to an RPi with camera; the full setup takes 

under an hour. 

1.1. Aims and objectives 

The main aim is to develop a camera trap that captures video clips or 
images when an animal has entered the camera’s Field of View (FoV) 
without relying on a Passive Infra-Red (PIR) sensor. We achieve this by 
introducing Artificial Intelligence (AI) to the camera trap. The issues 
with PIR sensors are caused by the FoV of the sensor and camera not 
perfectly overlapping, delays in responding to a motion signal, and 
physical limitations of PIR sensors relating to animal speed/size and 
background movement. The desired outcomes are to:  

1. significantly reduce the number of empty images captured;  
2. facilitate animal detection and identification;  
3. provide an affordable system for researchers and citizen scientists. 

Our DynAIkonTrap project has two strands: hardware and software. 
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The hardware strand is concerned with designing an inexpensive plat-
form with an RPi computer at the centre that has wireless connectivity to 
enable automated upload of observations to user-chosen platforms such 
as the European Open Science Cloud (EOSC) or national citzen obser-
vatories such as iSpot,1 and providing a power supply that harvests 
energy (Proppe et al., 2020) rather than relying on mains electricity (a.k. 
a. utility power). The platform is also to be capable of taking environ-
mental readings to give context to the visual observations. 

Our open-source software is focused on determining the best camera- 
based triggering techniques for this application by introducing AI into 
the camera trap. 

1.2. Scope and structure 

The scope of this paper encompasses the methods under the software 
strand of this project, as this is where novel ideas are explored. Our 
approach lends itself to producing video clips and/or still images of 
animal observations. We therefore use the words image and (video) 
frame interchangeably throughout this article. 

Section 2 first provides an overview of recent camera trap systems. 
Based on that background, we then give the main design goals for our 
proposed smart camera trap system (Section 2.2). Section 3 presents the 
architecture of our system, while Sections 4 and 5 detail our movement 
detection method through motion vectors and our animal detection 
filter using AI. The overall system is evaluated in different configura-
tions in Section 6. 

2. Towards smart camera traps 

2.1. Background 

Traditional camera traps use PIR sensors as a motion-based trigger; 
these respond to changes in infrared radiation due to a body of heat 
moving in front of a background with a different temperature. Findlay 
et al., 2020 suggest these sensors can fail to trigger due to the distance of 
an animal from the sensor, or even short-term changes in the animal’s 
skin temperature due to wetness. They also mention the well-known 
negative impact of animal speed on detection-probability (Glen et al., 
2013; McIntyre et al., 2020). Cameras with a lower trigger delay 
somewhat reduce this effect (Robley et al., 2010). Driessen et al. (2017) 
compared four camera traps using triggers and visits (by the same ani-
mal) as metrics, following Meek et al.’s (2014a) recommendations. They 
concluded that detection zones have a higher influence on performance 
than trigger speed. 

In the past, using a white camera flash has been seen to interfere with 
animals (Glen et al., 2013), often startling them. Some recent research 
by Taggart et al. (2020) did not find this to be the case for the specific 
case of feral cats when using infrared camera flashes. It is, however, 
generally thought that camera traps can influence animal behaviour 
(Meek et al., 2016), with some species being attracted and others 
repelled by their presence. This is not just limited to visual effects of the 
traps: there are audible aspects owing to electronic components in the 
traps (Meek et al., 2014b). One possible cause for noise is the piezo-
electric effect in multilayer ceramic capacitors when mounted on a 
circuit board (Ko et al., 2014). 

Camera traps used to generate the well known Snapshot Serengeti 
(Swanson et al., 2015) dataset were triggered around 1.2 million times, 
with 76% of these being empty. It was reported that poor quality night- 
time images prompted a switch from DLC Covert II cameras (with 
infrared flash), to Scoutguard SG565 cameras (with white flashes). An 
evaluation of six camera trap models by Weingarth et al. (2013) covered 
a range of tests including image quality, trigger speed, ease of use, and 
more. They describe a robust test setup carried out under laboratory 

conditions. Results indicate the achievable camera coverage is often 
lower than the range specified by the manufacturer. All six tested 
cameras had an actual range of either 7 m or 8 m, despite manufacturer 
claims of up to 18 m for one model. The underlying point behind their 
conclusions is that it is difficult to make a general recommendation for a 
particular trap. The decision of which camera to choose depends on 
various factors, such as image quality, the necessary range, or the 
available shelter from direct sunlight, as well as budget. 

Many of the issues identified thus far have been shown to lead to 
incorrect estimates of populations and visitation frequency. Jumeau 
et al. (2017) found that 43% of mammals were missed, whilst Urbanek 
et al. (2019) found traps missed, depending on species, between 14% 
(bears) to 92% (squirrels) of triggers. This has been attributed to the use 
of PIR sensors as their performance is largely dependent on ambient 
temperature, wind, and size of the animals. 

Other triggering mechanisms have been tried as alternatives to PIR. 
Microwave-based sensors do not perform as well as PIR (Glen et al., 
2013). Light-gates have been used effectively for small animals by 
Hobbs and Brehme (2017), although their approach cannot easily be 
scaled up for larger animals. Manufacturers of commercially available 
camera traps therefore usually still opt for triggering based on PIR 
sensors. 

Another more recent trend in designing camera traps is to use flexible 
low-power, low-cost, fully programmable platforms. The most versatile 
hardware allows connecting different camera types in terms of focal 
length or infrared sensitivity. It is also very easy to include code for 
automated upload to citizen observatories, cloud storage or similar for a 
seamless workflow. The Raspberry Pi (RPi) series is the current most 
popular inexpensive and flexible set of hardware platforms, with an 
established wide reach in Education and Science in general, with many 
applications in Biology in particular (Jolles, 2021). 

The WiseEye system is based on a RPi 2B with compatible periph-
erals (Nazir et al., 2017). It introduces the concept of “confirmatory 
sensing”, in which the PIR triggering is confirmed through two other 
modalities (radar and pixel change using background subtraction) to 
reduce the occurrence of false positives images. The code base is open 
source. 

PICT (plant–insect interactions camera trap) is a do-it-yourself sys-
tem based on a RPi Zero designed to continuously film small animal 
activity at close range (Droissart et al., 2021). Lower energy consump-
tion is improved by separating the recording from the (offline) analysis 
steps. 

Klemens et al. (2021) use an RPi always turned on, with an infrared 
camera combined with a traditional external motion detection method 
to avoid latency issues of PIR-based systems. They tested their system 
only in the specific scenario of detecting flying squirrels at night, with a 
fixed background that is needed by their motion detection software. 

Recently, Artificial Intelligence (AI) has been brought to some 
commercial camera traps, such as the Trail-Guard by Resolve, although 
literature around effectiveness for this is lacking. The use of AI “at the 
edge” may be able to overcome some of the issues of traditional camera 
traps, such as a large number of empty images being kept for analysis 
and later discarded. More specifically, machine learning, especially 
based on deep learning techniques, is being explored by the research 
community to reduce as much as possible the amount of useless data 
being collected. For example, Schindler and Steinhage (2021) use a 
combination of Mask R-CNN with Flow-Guided Feature Aggregation 
(Zhu et al., 2017) to optimize instance segmentation of animal species in 
video clips. Their study is applied to data obtained by camera traps with 
PIR, capturing at dusk and night, in Bavaria, four classes of animals 
(deer, boar, fox and hare). A recent review by Petso et al. (2022) further 
confirms that machine learning is being explored in various ways in 
camera trap systems for research purposes. 

1 https://www.ispotnature.org/ 
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2.2. Smart camera trap hardware 

While it is conceivable that a simple camera permanently records 
video for later analysis by a powerful computer elsewhere, there are 
severe practical limitations in terms of storage capacity or bandwidth: a 
typical video stream of 10 Mbit/s fills one Terabyte of storage in 10 days 
requiring the storage card of the camera be frequently retrieved. Alter-
natively, transmitting a 10 Mbit/s data stream to a processing server 
requires a correspondingly fast internet. Both are unrealistic for 
deployment of a camera trap at remote places. A far better option is to 
process the video stream on the camera trap itself, especially if all 
necessary energy for the computation and recording is harvested from 
the environment. Hence, no frequent visits to the camera trap site would 
be necessary. 

The move towards a smart camera trap requires a programmable 
hardware, where the camera trap itself can make decisions when to 
record to disk and which clips should be kept. Possible hardware ranges 
from microprocessor boards to full-fledged low-power computers com-
plete with an operating system, a range of programming languages and 
hardware headers to interface with an external camera lens and other 
sensors. Modern smartphones can be turned into rudimentary camera 
traps by installing an appropriate application, such as “Photo-Trap Trail 
Camera” or “Motion Detector Pro”. 

The most versatile hardware for a smart camera trap is a low-power 
computer that allows connecting different camera types in terms of focal 
length or infrared sensitivity. This type of hardware also makes it very 
easy to include code for automated upload to citizen observatories, 
cloud storage or similar for a seamless workflow. Our choice fell on the 
Raspberry Pi, which is inexpensive, has a wide community of users and 
lends itself well to the implementation of a Computer Vision and Deep 
Neural Network pipeline as detailed in Section 3. 

Invariably, camera trap projects also benefit from environmental 
sensor data that are recorded together with the observations. Our pro-
posed smart camera trap can interact with an optional sensor board that 
records temperature, humidity, air pressure, brightness, altitude, GPS 
position, time, and, derived from this, orientation and height of the sun 
above horizon. The latter is useful if observations are meant to be 
restricted to certain times (dawn and dusk, night or day). The granu-
larity of the location recording can be set by the user, which can aid in 
the protection of rare observed species or for privacy concerns, such as 
when deploying in a garden. The optional sensor board interacts with 
the host system via a USB connection and has been published as open 
hardware2; it can be built by the user at moderate cost or be ordered for 
larger citizen science projects from a PCB house. Again, the choice of an 
RPi makes it easy to interact with such a sensor board. 

While software for the RPi can be fairly easily ported to other 
computing platforms, our current implementation depends on the 
availability of a reasonably modern multi-process operating system, 
the Python programming language with thread support and the open 
source ffmpeg library to process video streams. The only other 
dependency is the PiCamera library, which provides a Python interface 
to the RPi camera module. 

3. Solution/system architecture 

We propose a camera trap that is always turned on, ready to record 
video, and detect an event in real time. The needed computational re-
sources for live image analysis, both in terms of software and hardware, 
have recently become available on low-power devices. 

Fig. 1 summarises the software design of our system. The majority of 
work belongs to the Filter class in the diagram, which includes filters to 
determine whether or not a camera frame contains an animal. The 
optional data stream of DynAIkon’s sensor board gets merged at source 

with interesting images to enrich the observations. The code is designed 
to be very modular, enabling easy changes to particular aspects, for 
example modifying the Output to save to disk in a different format. 
Modularity also permits the configuration of different filters for different 
use cases. This is particularly relevant for the detection of desired, 
prevalent or studied animal classes. Modularity also allows adaptation 
to any platform’s computing power, making this a somewhat future- 
proof design. 

The Filter class incorporates a sequence of filters that ultimately lead 
to a stream of animal images: first a fast movement detector selects 
potential animal images, which are then analysed by a slower ML-based 
animal detector. Together with a buffer, this setup allows the real-time 
analysis of incoming camera frames and reduces the time needed for 
computation. Both filters run concurrently, which means that near- 
instant movement detection can always operate, while the slower ani-
mal detector’s buffer is allowed to fill up. Sections 4 and 5 detail the 
inner workings of these two filters. 

Fig. 1. Data flow through the system; boxes with a black outline indicate 
software classes/containers, whilst grey boxes represent the hardware depicted 
in Fig. 2. 

Fig. 2. RPi, camera, and DynAIkon’s sensor board.  

2 https://gitlab.dynaikon.com/dynaikontrap/urSense 
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Within the Camera class, frames are constructed to include both 
H.264 motion vectors (Section 4) and image data for that frame. The 
time of capture or timestamp is also associated with the frame. This al-
lows sensor data to be matched with the correct camera frame, as the 
sensor data is captured asynchronously. This Camera class can also be 
replaced by a module, such as our vid2frames3 library, which can pass in 
image and motion frames from pre-recorded videos. This makes our 
pipeline flexible and usable for the retrospective analysis of videos on 
non-RPi hardware. 

The remainder of the paper frames detection as a filtering task, 
where the camera trap acts as an animal filter on a stream of images. It is 
possible that some users will not actually want every image of an animal 
from a video stream of one observation. In such cases, some additional 
software would be required to reduce the throughput. The simplest so-
lution would be to send every nth animal image, whilst a more elaborate 
option is to send the highest-confidence animal image or the one with 
the lowest motion blur. 

4. Movement detection 

This section explores existing methods for movement and foreground 
detection, contrasts this to our novel method, and details our 
implementation. 

4.1. Related work 

Movement detection often deploys background subtraction methods, 
particularly when the camera position is static. The two most prominent 
background subtraction methods are MOG2 (mixture of Gaussians, 
Zivkovic, 2004) and KNN (k nearest neighbours, Zivkovic and van der 
Heijden, 2006). A comparison of the two methods by Trnovszký et al. 
(2017) demonstrated a slightly better accuracy of KNN over MOG2, 
although MOG2 performed faster. MOG2’s faster execution makes it 
more suited to real-time applications like our designed camera trap. 

Many approaches compute pixel-wise differences between successive 
frames. Small naturally occurring differences between frames will result 
in noise even in the absence of movement. This noise is often removed by 
applying morphological opening and closing transformations. One 
example is the Zilong application (Wei et al., 2020), which uses a 
combination of detection of colour-change and edges. The edge detec-
tion is added to improve the system when dealing with foggy images, 
while colour-change detection is the central feature. The method is 
based on a three stage process of applying a mean shift operation to the 
input images, taking the absolute difference of two consecutive mean- 
shifted images, and thresholding the result to generate a black and 
white mask. A simple count of the number of white pixels is used to 
declare an animal detection if the sum exceeds a threshold value. 

Whilst ML approaches exist that could theoretically be used for this 
task, these models are currently too slow to be used in practice: the 
purpose of having a multi-filter pipeline is to reduce the set of images 
that need to be inspected by a ML model. 

4.2. Detection methods 

Video encoding standards such as H.264 commonly reduce temporal 
redundancy of the video stream by using motion vectors that encode 
how pixel patches, of sizes between 4 × 4 to 16 × 16 px, move from one 
frame to the next, thus reducing the need to send full frames all the time. 
These motion vectors can be extracted from the video stream without 
fully decoding it, are computed in hardware and therefore can be uti-
lised without further overhead. To the best of our knowledge, utilising 
these motion vectors in this way has not been integrated into camera 
trap products until now, nor discussed in the literature. Section 4.2.3 

details how we set this up for our camera trap. First, however, we report 
on the simpler “difference of images” and on background subtraction. 

4.2.1. Difference between images 
Each frame is consecutively read in and, pixel for pixel, the absolute 

brightness difference between them is recorded (in contrast to Zilong 
which considers colour differences). A binary threshold is applied to the 
result, generating a black and white mask, and the number of white 
pixels counted. If the sum exceeds a second threshold, an animal 
detection is declared, otherwise the image is declared empty. This works 
when there is no change in background pixels and only the foreground 
(an animal) is in motion. It is worth noting that a moving animal will 
likely only cause a difference around its outline if the body of the animal 
has a consistent colour or homogeneous texture. The method quickly 
breaks down when there are slight variations in the background from 
one frame to the next, such as due to leaves in the wind. We note that the 
difference of two images does not express the speed at which a change 
happened, nor does it express a direction of movement. Both of these are 
detectable using our motion vector method discussed in Section 4.2.3. 

4.2.2. Background subtraction 
We explored MOG2 as a representative algorithm of the background 

subtraction class. The subtractor takes an image and returns a mask 
image in black and white, the latter indicating foreground. If this mask is 
applied to the current image, the foreground remains, whilst the back-
ground is masked off. As further images are passed in, the subtractor 
learns the background, meaning the system is able to adjust to changes 
in the background over time. The generated mask can appear noisy due 
to large differences of particular pixels in two consecutive images. This 
will occur as each frame can contain different noise. Applying consec-
utive opening and closing morphological operations helps in lessening 
this effect, as shown in Fig. 3. 

After these operations, one is left with a mask indicating the potential 
animal location in the image. The next step is to determine whether 
there is a sufficient number of white pixels in the image. This issue can 
be complicated by dynamic backgrounds and large changes in lighting. 
These can lead to erroneous foreground detections in various patches 
throughout the mask. We initially tried to overcome this through the use 
of contour generation functions, whereby a list of regions in the black 
and white mask can be found. Each region’s area is determined, with an 
animal detection being declared once a region of sufficient area has been 
found. If no such regions are found, the image is declared as empty. 

A simpler approach is to count the number of white pixels present in 
the mask. The image is then declared to contain or not contain an animal 
based on this sum exceeding a predefined threshold. The required 
addition operations are much faster than the calculation of contours in 
the alternative approach. 

4.2.3. H.264 motion analysis 
An approach that was not seen in the literature is using the motion 

frames from the H.264 camera video stream. This encoded video stream 
is often used to transmit or store videos efficiently as the differences 
between frames are used in addition to full image frames. This combi-
nation means fewer full image frames need to be sent, reducing band-
width requirements. The processing to generate the motion frames takes 
place in the camera’s hardware and so has no additional overhead. 
Therefore this method is faster from the outset. It also uses less memory 
as past vectors do not need to be considered and the vector represen-
tation for a frame is also much smaller than the frame itself. 

The third-party PiCamera library we use in our Python imple-
mentation offers a simple way of interacting with the camera module. 
One feature offered is the use of multiple camera ports, each with its own 
data stream. By setting one stream to provide the motion frames and 
another to provide the decoded JPEG frames, a similar result to using a 
custom decoder is achieved. The benefit of utilising two streams is that 
the complexity of decoding has been wrapped in a library, which is 3 https://gitlab.dynaikon.com/dynaikontrap/vid2frames 

M. Riechmann et al.                                                                                                                                                                                                                            

https://gitlab.dynaikon.com/dynaikontrap/vid2frames


Ecological Informatics 69 (2022) 101657

5

assumed to be efficient. We have written code for synchronising these 
two streams, to ensure any detected movement leads to the correct 
image frame being passed on through the pipeline. Below we detail 
various criteria that could be used in the triggering process based on 
motion vectors. 

4.2.3.1. Sum of Vectors (SoV). Here, the motion vectors are simply 
added and the magnitude of the result is taken. As the method results in 
a single value, only one threshold for motion detection needs to be 
applied. Appropriate thresholds can be determined by considering pixel 
size, animal size, distance, and focal length of the camera as discussed in 
Section 4.3. Fig. 4 visualises this approach. 

A benefit of this approach is that noise or randomness in the move-
ment vectors would be expected to cancel out, which is a simple, implicit 
method of checking the correlation of vectors: random movement of 
vegetation and other background objects will not lead to the camera 
being triggered. Note that it is possible, though unlikely, that two ani-
mals moving towards each other see their respective movement 
cancelled out. 

4.2.3.2. Count of Thresholded Magnitudes (CoTM). This counts how 
many movement vectors have a magnitude above a threshold that is 
designed to eliminate random, small movements. A further threshold is 
applied to the count to determine whether or not movement is detected. 
A benefit of this approach is that many areas of small movement can be 
easily removed. However, this comes at the cost of determining a second 
threshold. 

4.2.3.3. Sum of Thresholded Vectors (SoTV). Similarly to CoTM, noisy, 
small movement vectors are filtered out, but the remaining vectors are 
added up and the magnitude of the sum is compared against a threshold 
for movement. 

A comparison of these methods found the SoV approach to be the 
most effective, which is the one used in our presented results. 

4.3. Defining thresholds 

Each movement detector requires some form of threshold to be set. 
We utilise the particular attributes of the deployed lens; note that this 
makes evaluation of our method on externally obtained video sequences 
from undocumented lenses harder as these parameters need to be esti-
mated. The fundamental optical equation is 

s
d
=

pu
f
, (1)  

where s is the real size of the subject, d is its distance from the camera, p 
is the number of pixels and u is the unit size of one pixel,4 the product pu 
is the size of the subject on the camera sensor, and f is the focal length of 
the lens. This allows for a conversion between real size s and number of 
pixels p. 

As an example, an animal with a visible area of 1 m by 0.5 m at a 
distance of 1 m from the camera with focal length of 3.6 mm results in 
pixel dimensions of 635 px by 317 px, a total of 2 ⋅ 105 pixels. The 
threshold of a background subtractor as in Section 4.2.2 for the number 
of white pixels would need to be set below that value to enable 
detection. 

The motion vectors in Section 4.2.3 are projections onto the camera 
sensor plane. To determine the motion thresholds for average motion 
vectors, Eq. (1) can be modified to use the speed v = Δs/Δt of the subject, 
where Δs is the real size of the displacement and Δt is the time between 
capturing frames. Substituting Δs for s into (1) gives 

v
d
=

Δp
Δt

⋅
u
f

, (2)  

where Δp is now the average motion vector in pixels. Eq. (2) can be used 
to determine the lowest detectable speed: with Δt = 1

25 s and Δp = 1 we 
get v/d ≈ 0.039 s− 1. An animal that is 1 m away from the camera would 
need to move at least with 39 mm/s ≈ 0.14 km/h for detection to be 
possible. Trigger thresholds can be set higher than this. 

Our SoV approach does not use an average speed threshold as 
defined above, but instead a hybrid of this and the expected animal area. 
As such, a large subject moving slower than the threshold could still be 
treated as motion. 

4.4. Smoothing 

We compute motion characteristics independently for each frame, 
which can lead to relatively large frame-to-frame deviations or spurious 
vectors, see Fig. 5. Clearly, consecutive frames are not independent; we 

Fig. 3. The MOG2 method and morphological operations applied to a still image from a video in the WCS dataset.  

Fig. 4. Our SoV approach for determining motion on a video from the WCS 
dataset. The raw non-zero motion vectors are white, while their sum is illus-
trated as the large red vector. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

4 For our RPi camera u = 1.4μm; however, if a 640 × 480 video is recorded 
(scaled down by 4) then u = 5.6μm. 
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deploy an Infinite Impulse Response (IIR) filter, primarily for its low 
delay.5 The IIR needs to be configured as a low-pass filter with little or 
no passband ripple and have a fast roll-off. These criteria are met by the 
Chebyshev type 2 filter (Smith, 2002, Chapter 20). Based on experi-
mentation, we chose a filter order of three and a stop-band attenuation 
of − 35 dB. We set the cut-off frequency from the user requirement for 
the expected animal speed from which we estimate, with the help of Eq. 
(2), the expected duration of an animal sequence crossing the frame: the 
cut-off frequency is set to the reciprocal value of the duration. 

We apply the IIR smoothing to the raw movement vector compo-
nents, and then proceed with the Boolean threshold that triggers the 
movement detection. Fig. 5 illustrates how thresholding the smoothed 
SoV output helps avoid false positive triggers. 

4.5. Timings 

Table 1 shows the execution time per frame for each of our methods. 
It supports our choice of using motion vectors over other methods. In our 
architecture, each frame of the video needs checking for motion, and any 
processing time over 40 ms limits the frame rate to below 25 fps. Neither 
a difference method, including the more evolved Zilong variation, nor a 
background subtraction method, can be used on an RPi for this reason. 

5. Animal detection 

In the proposed system, animal detection is set as the second and 
final filter on incoming frames. As the preceding movement-based filter 
has already been applied, the stream being passed to the animal detector 
is at a lower frame rate than that of the camera module. Thus, the animal 
detector is afforded more time to analyse each frame making the use of 
ML possible at this stage. 

5.1. Background 

Even if preceded by a motion filter, ML-based animal detection re-
mains a time-critical process, such that any chosen model must be 
optimised for efficiency. 

A good starting point is to look at image classifiers. These are systems 
that are given an image and predict what the image is of, giving a 
confidence for each prediction. A popular such architecture is the 
MobileNet (Howard et al., 2017) family. The newest iteration, 

MobileNetv3 (Howard et al., 2019), is purported to run on Google Pixel- 
3 mobile phone CPUs at up to 11.7 ms per image. These classifiers are 
often able to run very quickly and work well for subjects that take up 
most of the image. When subjects are smaller and not the focus of an 
image, classifiers tend to perform worse. This makes them inappropriate 
for our use-case as there may well be many scenes with small animals at 
the edge of the image frame. 

Object detectors are more suited to these situations, especially when 
the image contains many potentially interesting objects. In recent years 
there have been many advances in this field, although most approaches 
still assume vast computational resources. A promising architecture is 
YOLOv4 (Bochkovskiy et al., 2020). It is a single-stage object detector 
with relatively low computational requirements, whilst achieving 
competitive performance when compared to the state of the art. A more 
recent addition to the world of efficient object detectors is EfficientDet 
(Tan et al., 2020). One of this architecture’s unique points is its scal-
ability, allowing the same architecture to be used in high-power and 
low-power computing applications. 

Another ML architecture of interest is Context R-CNN (Beery et al., 
2020), which bases object detection predictions for a given frame on 
other historic frames. This is achieved by using a curated memory bank 
of frames for a given camera trap, allowing periodic activities, such as 
animals using the same path every day, to improve detection perfor-
mance on a frame-by-frame basis. The technique is very well suited to 
the camera trapping domain. The architecture relies on any two-stage 
neural network-based detector architecture; they use a Faster R-CNN 
(Ren et al., 2015) model as a basis. 

Irrespective of the model choice, it needs to be trained using camera 
trap data. It makes sense to train the model with images of species it is 
likely to encounter once deployed and as such a final choice of training 
data is reliant on the use-case. However, two popular datasets are 
Snapshot Serengeti and WCS Camera Traps,6 both of which provide 
bounding box information for a subset of the dataset. We have chosen 
the latter for its diversity in species and geographical locations 
represented. 

5.2. Selected detection method 

5.2.1. Architecture 
We have chosen YOLOv4 as the detection method. This model ar-

chitecture has a number of variants (Wang et al., 2021). We opted for the 
lighter variant, a.k.a. “YOLOv4‑tiny”, in the pipeline for its significant 
speed advantage, which, experimentally, we found to be a factor of 
approximately 7.7. The remainder of this paper will refer to 
YOLOv4‑tiny simply as YOLOv4. This architecture requires input images 
of size 416 by 416 pixels, and so input camera frames are scaled down 
(squashed) before being processed. The modular design of the system 
allows for any other model architecture to be used, and benefit from 
future progress in the state of the art. 

Image frames are passed to the model frame-by-frame for inferenc-
ing. The model then returns a list of predictions, each giving the di-
mensions of a bounding box and a confidence that an animal has been 
detected in the box. These predictions are then iterated through with an 

Fig. 5. Example of IIR smoothing of SoV motion filtering.  

Table 1 
Typical computation time per frame on an RPi.  

Method Time 

Difference 55.9 ms 
MOG2 256 ms 
Motion vector 0.378 ms 
Smoothed motion vector 0.397 ms  

5 Referring to execution time – there is a phase shift of a few frames present. 

6 WCS Camera Traps dataset published by LILA BC at http://lila.science/data 
sets/wcscameratraps 
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animal detection being declared if the maximum box confidence exceeds 
a preset threshold. On the RPi the inference takes around 1 s. Note that 
an input frame may contain many animals, in which case multiple de-
tections would be predicted. 

5.2.2. Training 
The official, MS-COCO pre-trained, version of this architecture has 

then been further trained, a technique known as transfer-learning, 
using the WCS dataset and its recommended data split, giving a cred-
ible mean average precision mAP50 score of 0.75. The mAP metric, used 
to evaluate the PASCAL VOC challenge dataset (Everingham et al., 
2010), takes the mean over all considered species of their respective, 
species-specific average precision as defined below. The subscript 50 
refers to the requirement that the area of the intersection of ground 
truth bounding box and predicted bounding box needs to be at least 
50% of the area of the union of both for an otherwise true species 
identification to be considered correct. The network does not output a 
binary value for species identification but instead a belief b ∈ [0,1] 
that a particular species has been identified. Thresholding these 
numbers at different values of t generates a precision-recall relationship 
r ↤ p(r) = max{t|Rt≥r}Pt per species. The average precision is defined as 
the species-specific average over r of p(r). Here, precision Pt is the 
proportion of correctly predicted images for the considered species 
amongst the predicted species images (those with b ≥ t), while recall Rt 
is the proportion of species images that were correctly predicted. The 
WCS dataset contains species-specific annotations. During training we 
replace all species names with a single class of animal making training 
simpler. Training was undertaken using Darknet7 as per default values, 
yielding configuration and weight files for deployment on the RPi. 

5.3. Continuity and extrapolation 

YOLOv4’s output is discontinuous in time as animal predictions are 
not made for every frame in a motion event where an animal is present. 
In addition, the confidence level corresponding to an animal is incon-
sistent within a motion event and can be affected by many factors, 
including motion blur, lighting quality, and concealment. An approach 
is therefore needed to even-out gaps in predictions of animal presence. 
We have devised an algorithm that not only removes unlikely gaps in 
animal predictions, but also reduces the number of times the animal 
detector needs to be run. This algorithm looks both forwards and 
backwards in time, within a motion sequence, to extrapolate animal 
predictions efficiently and effectively. 

5.3.1. Motion queue 
To facilitate looking forward in time as well as backwards, the frames 

need to be buffered in some way. A motion queue has been devised for 
this purpose to act as an intermediary between the motion and animal 
filtering stages. Frames allowed to pass by the motion filter are placed on 
the motion queue: they are appended to a sequence of motion, which 
ends once a frame with insufficient motion is found. To prevent exces-
sive delay in subsequent stages of the filtering pipeline, such motion 
sequences are capped to a maximum length that can be defined by the 
user. Each complete sequence of motion is then passed to the animal 
detector in accordance with the algorithm described next. 

5.3.2. Algorithm 
The goal here is to close gaps in time in the animal predictions made 

by YOLOv4. As will be discussed later, the algorithm yields an important 
secondary benefit in the form of improved speed performance. The 
underlying base assumption is that an animal is unlikely to be present in 
a given keyframe but not present in the preceding and succeeding 

frames. In this context a keyframe is representative of any animal that 
exists in the motion sequence. It is assumed that a prediction by the 
object detection model, with a confidence above a preset threshold, can 
be regarded as the truth. As such the positive detection must be due to a 
number of frames that are on either side of the keyframe. The number of 
frames to which this assumption may be applied can be calculated in a 
similar fashion to the methodology explained in Section 4.4. This pro-
cess is referred to as extrapolation as it converts a single isolated pre-
diction to a sequence of predictions. As the keyframe’s actual position 
within the animal event may not be centred, it is possible that this 
extrapolation needs to be applied entirely to frames on a single side of 
the keyframe, and therefore we extrapolate in both directions. 

Applying the above method, one quickly realises that there are 
multiple opportunities for improving efficiency. Firstly, if a frame has 
been labelled with the extrapolation process it does not need to be 
checked explicitly. Take an example situation where a motion sequence 
contains nine frames and extrapolation is performed one frame either 
side of a keyframe. This has been visualised in Fig. 6. The example shows 
that a best case occurs when only the frames at t1, t4, and t7 are passed to 
the animal detector, so only three frames are analysed rather than nine. 
The animal detector processing time is therefore reduced by a factor of 
three in this example. 

The above example indicates that one should prioritise in which 
order to analyse frames. This simple exercise is confounded slightly by 
the previously mentioned sporadic nature of animal detections. The 
example assumes the frames at t1, t4, and t7 are all able to produce an-
imal predictions by the animal detector, but this is not a safe assumption 
to make. Instead, another heuristic is needed to assign a priority to each 
frame in the sequence. A simple approach consists of using the motion 
score from the motion filter to indicate priority. The intuition here is that 
when the highest amount of motion is detected, the largest portion of the 
animal should be in view. Subsequently, the animal detector is assumed 
to have the best chance of predicting an animal. 

Summarising, consecutive frames returned by the motion filtering 
step are put into a motion queue – a queue of motion sequences. Each 
motion sequence is separately analysed. Frames with highest magnitude 
are evaluated by the animal detection filter first and if positive, neigh-
bouring frames8 are declared interesting frames, which is the extrapo-
lation. Once all frames in a motion sequence have been analysed, the 
interesting frames are returned from the motion queue in time order. 
These frames are later concatenated to form a compact video of the 
observation. 

6. Results 

6.1. Effectiveness measure 

The task for the camera trap can be regarded as a filtering exercise, 
where the camera removes empty images and allows animal images to 
pass through. 

We have two particular, but differing, use cases in mind. First is the 
case where there is a low bandwidth, low storage space or high cost of 
transmitting data, e.g., via satellite link. In this situation the user will 
want a focus to be placed on only transmitting animal images. Second is 
the case of a biodiversity study that may require every possible sighting 
of an animal to be logged and so the priority shifts to not missing any-
thing potentially of interest. The ideal metric has a parameter that can 
shift focus from one use case to the other. 

One widely used metric is the Fβ-score which is derived from van 
Rijsbergen’s (1979) Information Retrieval effectiveness measure, which 
in turn uses the weighted harmonic mean of precision (the proportion of 
kept frames that contain animals) and recall (the proportion of animal 

7 Darknet is the framework under which YOLOv4 is built. Code for this is at 
https://github.com/AlexeyAB/darknet, accessed 2020-11-26. 

8 The number of neighbouring frames declared as interesting is derived from 
user settings. 
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frames that were kept); the parameter β mediates between precision (β 
= 0) and recall (β → ∞) while β = 1 gives equal weight to both. 

While recall fits the second use case spot on, precision is not perfect 
for the first use case: it does not consider how well empty frames are 
being recognised as such.9 We use specificity instead: the proportion of 
correctly recognised empty frames with respect to all empty frames. In 
other disciplines, specificity is also known as true negative rate, while 
recall is known as true positive rate. We thus introduce an ecology 
effectiveness measure: 

Eα =

(
α
S
+

1 − α
R

)− 1

∈ (0, 1] (3)  

as the weighted harmonic mean between specificity S and recall R with 
α ∈ [0,1] and S, R ∈ (0,1]. Eα reduces to R for α = 0 and to S for α = 1 
while E0.5 considers specificity and recall with equal weight. In the case 
when S or R are zero, the definition of Eα should be extended to yield 
zero. As with most performance metrics, higher means better. To the 
best of our knowledge this measure is new and representative of the 
ecology use cases in our application. 

Another measure that is sometimes used for classification is the 
Matthews Correlation Coefficient (MCC), which is the geometric mean 
between informedness (defined as S + R − 1) and markedness (Powers 
and Ailab, 2011). Although the informedness aspect captures some of 
our objectives, MCC is a single number that does not allow us to mediate 
between our two use cases. 

6.2. Benchmarking setup 

There are two ways in which the metric can be applied to test the 
system. Firstly, as a comparison with existing camera traps. Secondly, to 
evaluate the pipeline with respect to the underlying neural network. As 
there is no dataset available that contains full videos with corresponding 
PIR sensor information, such data would need to be manually produced. 
This was done at a small scale to inform development, but it was not 
feasible to scale this up for a robust test set. We instead focus on 
benchmarking different system configurations compared to existing ML 
approaches. 

6.2.1. Data 
The GBIF database10 contains over 2300 videos of animals, although 

many of these are not suitable for our purpose. We have curated a subset 
of 330 videos that are shot with static cameras. These videos are 
therefore good representations of the style of input this pipeline is ex-
pected to receive. Every frame from each of these videos has been 
manually annotated, indicating whether or not it contains an animal. We 
have provided the training (30) and validation (300) split as used to tune 
parameters and evaluate the system, respectively. It is important to note 
that camera-related parameters have not been annotated or used in 
testing the DynAIkonTrap. For these tests we have assumed the focal 
length for all cameras to be the same as that of the RPi camera module – 

this is unlikely to be true. It is therefore likely that users can expect 
improved performance if they have better knowledge of the camera 
hardware used and the deployment scenario. 

6.2.2. Test bench 
Each video from our dataset is split into image and motion vector 

frames using our vid2frames library. When testing the DynAIkonTrap 
pipeline the camera input can be replaced by a class that feeds the 
prepared frames into the pipeline. Any model that is run as a comparison 
can be fed the image frames with the motion being discarded. This 
means all models receive identical input data. 

Each model will then indicate if it has detected an animal in a frame, 
allowing recall, specificity and the effectiveness measure Eα to be 
determined from the ground truth. These numbers are computed on the 
full set of validation videos, treating them as one concatenated video. As 
some videos will contain no animals and others an animal in every 
frame, it is not useful to determine Eα on a video-by-video level. In 
addition to this, the test bench keeps track of how many times the un-
derlying ML model – the limiting factor with respect to processing speed 
– was run. 

6.3. Results 

The curated set of videos has been passed through a variety of con-
figurations of the DynAIkonTrap pipeline, as well as the underlying 
YOLOv4 model itself. These configurations with their effectiveness 
measures of E0.5 and average Eα are summarised in Table 2. It is clear 
that using any of these approaches results in significant speed im-
provements, in the form of fewer YOLOv4 runs. YOLOv4 takes close to 
1.2 s inference time per frame on an RPi. In comparison, the movement 
analysis takes less than 0.4 ms per frame making the YOLOv4 model the 
major bottleneck. The reduction in the number of model runs therefore 
leads to significantly improved processing speed of the video data set. 

Using Table 2 it is possible to determine the rate at which frames can 
be processed and therefore the maximum number of frames each 
configuration can process in a day. The processing frame rates have been 
calculated assuming the animal detector alone (Table 2: B) runs at 0.83 
fps 

( 1
1.2 s

)
, and other delays are ignored. The duration per day is the 

number of frames that the animal detector can process in a day con-
verted to a time, assuming data is recorded at 20 fps. More can be 
recorded per day, but it would have to be processed the next day. 

As a major application of this system is low-power devices, it is useful 
to determine which pipeline configuration is the most power-efficient. 
The power consumption can be split into the following components: 
system idle (2.20 W) – when our software is not running; motion 
filtering (additional 1.55 W) – the pipeline idle state; and animal filter 
(additional 2.50 W) – due to the animal detection model running,11 

which adds up to 6.25 W. The only component of power consumption we 
have control over with the different pipeline configurations is the 
number of animal filter runs. To indicate how this maps to a real-world 
deployment we have determined an average power consumption for the 
dataset. To do this, the animal detector power consumption is multiplied 
by the proportion of dataset frames that are run through the animal 
detection model. Note that the peak power consumption will be the 

Fig. 6. Visualisation of a sequence of frames being declared to contain animals, using our algorithm. A represents a keyframe with an actual animal detection and a is 
a frame where animal presence has been inferred from a neighbouring keyframe. The animal detector needs only to be run three times to declare all frames in the 
motion sequence – from t0 through to t8 – as animals. 

9 In fact, Information Retrieval has no interest in being able to spot irrelevant 
documents (which correspond to empty frames here): virtually every of the 
billions of documents in a collection is irrelevant given a query. Information 
Retrieval metrics therefore normally do not consider true negatives.  
10 https://www.gbif.org/ 11 Power values given for RPi 4B 
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same across all configurations, the average can come down as fewer 
animal detector runs are needed (Table 2: C, D, E), and the best power- 
performance is achieved when there are fewer animal frames. The power 
consumption due to the animal detector can therefore drop to 0 W so 
only the idle power consumption of 3.75 W (2.20 W+1.55 W) remains, 
at which point the focus shifts to reducing the hardware power con-
sumption. We have successfully managed to port the DynAIkonTrap 
concept to an RPi Zero in efforts towards addressing this. 

The derived results are summarised in Table 3 and attribute further 
meaning to the reduction in animal detector runs from Table 2. Using 
the configuration with all three stages therefore has significant positive 
implications on both the processing capacity and power usage of the 
system. 

Fig. 7 plots each method’s resulting Eα over the full α ∈ [0,1] range to 
indicate the trade-off between recall (α = 0, lhs) and specificity (α = 1, 
rhs). The shape of the motion only approach (Table 2: A) is slightly 
undesirable in that it has a fairly low recall. An ideal motion filter would 
have a very high recall, with a potentially lower specificity, to match the 
level of intelligence of the filter. It is undesirable to filter too excessively 
at this stage as only a proxy for animal presence (motion) is used. As 
mentioned, the low performance here may be related to the test setup, 
where exact parameters of the hardware used to generate the videos 
were not known, thereby not allowing a properly tuned system. 

By adding the motion queue to the animal filter (C) the performance 
becomes almost constant with respect to α. The results demonstrate that 
the configuration is able to counteract our main criticism of YOLOv4 for 
analysing videos: regarding every frame as temporally isolated. By 
applying the animal prediction extrapolation (Section 5.3) we are 
therefore able to improve recall without greatly sacrificing specificity. 

Combining only the motion filter and animal filter (D) leads to poor 
performance, unless the user is exceptionally focused on not outputting 
empty frames. 

Using all stages in combination (E) yields a plot similar in shape to 
the animal-only approach (B), but shifted down. Most likely this is due to 
the motion filtering stage’s lower performance. The configuration, 
however, brings a reduction in the number of model runs by 84.3%, 
which has associated benefits in power efficiency and processing 
capacity. 

Multiple multi-day deployments of various versions of the software 
on RPis have also demonstrated the full architecture (including hard-
ware) to produce expected output such as Fig. 8. The software is under 
continuous improvement to enhance and bring innovation to the system, 

such as adding a human detector to enable privacy protection. 

7. Discussion 

We have presented an innovative solution to many problems with 
traditional camera traps. This thought-to-be novel architecture moves 
away from the tradition of using motion sensors in camera traps and 
demonstrates the success of a camera-only system. 

We introduced a camera trap system that operates solely on camera 
video, with no additional sensors used to trigger the capturing process. 
The use of ML for near-real-time animal detection on low-power devices 
is made possible by our fast movement detection mechanism. As part of 
the evaluation, we have contributed an annotated data set for video 
camera trap evaluation. We have also devised a novel effectiveness 
measure for camera traps in the ecology domain (Eq. (3)). The resulting 
DynAIkonTrap is highly configurable, allowing users to tune the system 
to experimental requirements. As the pipeline is completely imple-
mented in software – there is no initial hardware PIR trigger – it is 
possible to completely reconfigure the camera trap remotely without 
altering any hardware. Finally, we have demonstrated that the system 
works through an evaluation on pre-recorded videos. 

7.1. Ideas for the future 

7.1.1. Long-distance 
A concept not explored in this paper is long-distance camera trap-

ping. This would consist of using a telephoto lens. Traditional camera 
traps are not able to perform long-distance recording as the PIR sensor 
would need to be too sensitive to be a useful trigger. This is not a limit for 
our camera trap system as it relies on what is visible by the actual 
camera. As such, it can record over any distance that can be seen with a 
camera lens. It would be valuable to explore this concept as it may prove 
to be useful for camera trapping in locations that are difficult to access, 
but observable from a distance. 

Table 2 
Results of different trap configurations on the validation subset of the corpus; note that (B) is a baseline for comparison against Machine-Learning only.  

DynAIkonTrap Configuration Motion filter Motion queue Animal filter E0.5 Eα Model runs (% saving) 

(A) Motion only ✓ ✘ ✘ 0.485 0.488 – 
(B) Animal only (YOLOv4) ✘ ✘ ✓ 0.611 0.640 99,727 (±0%) 
(C) Motion queue + animal ✘ ✘ ✓ 0.731 0.731 46,184 (− 53.7%) 
(D) Motion + animal ✓ ✘ ✓ 0.400 0.459 43,116 (− 56.8%) 
(E) Motion + motion queue + animal ✓ ✓ ✓ 0.481 0.515 15,824 (¡84.1%)  

Table 3 
Characteristics for each configuration, derived from Table 2. Processing rate – 
rate at which frames are processed; Duration per day – average duration of animal 
presence that can be analysed per day; Average animal detector power – average 
power usage over the dataset due to the animal filter, based on a real-world 2.5 
W power usage for the animal filtering stage on an rpi 4B. Column headings 
correspond to rows in Table 2. *As there is no pre-filtering for (B), the 0.83 fps 
rate means 1 h’ worth of frames can only be processed with frames spaced at 1 
frame every 1.2 s.   

(B)* (C) (D) (E) 

Processing rate/fps 0.83 1.80 1.93 5.24 
Duration per day/h 1.00 2.16 2.31 6.29 
Average animal detector power/W 2.50 1.16 1.08 0.40  

Fig. 7. Plots of Eα over full α range for different methods.  
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7.1.2. Using time in the neural network 
The animal detection model used in this project ultimately performs 

frame-wise inference, meaning temporal information is not used in the 
ML model. It would be worth exploring possible methods for improving 
animal detection performance by using temporal information in the 
neural network. As motion vectors are extracted and used elsewhere in 
the pipeline, it would be easy to feed these into the neural network, 
making this an attractive approach as work is only needed on the ML 
model. A slightly more complex solution could be to pass multiple 
consecutive frames to the neural network as an alternative, or in addi-
tion to motion vectors. Efficient implementations of Context R-CNN 
(Beery et al., 2020) mentioned in Section 5.1 could also be of interest for 
this purpose. 

7.1.3. Bespoke neural networks for species sets 
While we selected a suitable neural network for species identifica-

tion, we spent little research so far to train this network to sets of user- 
selected or prevalent species in the region where the camera trap is 
deployed. Training for a bespoke set of species is both possible and 
desirable. Further research is needed to identify and automate a process 
that, given a set of species of interest, outputs a robust and reliable 
neural network model with suitable weights. 

7.1.4. Low power neural networks in hardware 
It is desirable to reduce the power consumption of the DynAIkonTrap 

to make deployment in remote locations easier and less expensive. An 
implementation by Si et al. (2020) of a Multilayer Perceptron model on 
an Field Programmable Gate Array (FPGA) was shown to run in a similar 
time frame to a software-based approach, but at a clock speed lower by a 
factor of 144. The authors portray this as the ability to achieve a lower 
power consumption or improve performance by a factor of 144. Results 
published by Intel (2016) indicate a Convolutional Neural Network can 
be run on an FPGA with twice the efficiency of a software/CPU 
implementation. 

It is clear that hardware implementations of neural networks offer 
improved power efficiency over software-based alternatives and their 
use has the potential to reduce the overall system’s power consumption. 
As this idea makes use of programmable hardware, any neural network 
implementation is not permanent and so the customisability of the 
system is not sacrificed. It may also be worthwhile investigating the 
potential efficiency gains of using FPGAs in the motion filtering stage. 
Ultimately, it could be possible to implement the majority of the system 
with FPGAs, so a much lower power processor could be used for 
remaining tasks such as networking and human interaction. 

8. Conclusion 

The DynAIkonTrap project demonstrates improved performance of a 
camera-only RPi system over the traditional PIR sensor-based alterna-
tive. In doing so, a novel video filtering pipeline has been introduced 
that facilitates the running of an animal detection ML model on a live 
video stream. The minimum configuration of the DynAIkonTrap can be 

very compact and costs less than the identified commercially available 
camera traps, making it affordable for citizen scientists. The open- 
source, modular, and hackable nature of this project provides a great 
opportunity for further work and improvements to the system. 
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