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Abstract 1
This thesis explores the liminal space where personal computational

art and design practices and mass-manufacturing technologies intersect.

It focuses on what it could look and feel like to be a computationally-

augmented, creative practitioner working with 3D printing in a more

programmatic, interactive way. The major research contribution is the

introduction of a future-looking practice of Interactive 3D Printing (I3DP).
I3DP is articulated using the Cognitive Dimensions of Notations in terms

of associated user activities and design trade-offs. Another contribution

is the design, development, and analysis of a working I3DP system called

LivePrinter. LivePrinter is evaluated through a series of qualitiative user

studies and a personal computational art practice, including livecoding

performances and 3D form-making.
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“. . . art is a province in which one finds all the problems of form (e.g. proportion
and balance) but also spiritual problems (e.g. of philosophy, of religion, of
sociology, of economy)”

— Josef Albers

2.1 Interactive 3D Printing

There is a liminal space at the threshold of robotic and human labour,

where personal practice and mass-manufacturing technology intersect.

Computer-numerically-controlled (CNC) machines that apply digital

control to physical fabrication, such as 3D printers, are now ubiquitous

in community maker spaces, educational settings, and some small offices

and homes. These machines have captured people’s imaginations with

new possibilities of bespoke, small-scale manufacturing, or “personal

fabrication” (Baudisch and Mueller, 2017). 3D printing is so integrated

into some people’s practices that it is part of their identities as creative

professionals, product designers, computational designers, artist activists,

lab technicians, and social-media “vloggers”.

This thesis explores this new sense of identity by asking a question that is

both pragmatic and speculative in nature: “What would it look and feel

like to combine interactive programming and augmented manufacturing

into an artistic practice?” In particular, it focuses on the experience of

current and future artists and designers working in the relatively new

territories of the computationally-augmented creative arts. What if they

could work with 3D printing in a more programmatic and yet direct,

interactive, and immediate way?

This main question provides a “lens” through which to view an abductive

research process, heavily driven by intuition but guided by empirical

experiments and reflective practice. Looking through that lens into

the near future, we see the beginnings of programmatic dialogue with

“intelligent” machines for personal fabrication, those descendants of

modern-day digital plotters, laser cutters, and 3D printers.

Looking closer, we zoom in on an individual artistic practice embedded

in a like-minded community, revealing a previously unseen ontology

of performance and computational manufacturing. This new practice

is built around this thesis’s author, Evan Raskob, sometimes A.K.A.

pixelpusher, BITPRINT, or BITLIP when making art or performing live

music. Evan is at once a teacher of computational art and design; an

audio-visual performer; digital artist working with image and sculpture;

and also a researcher. His attempts to make use of new techniques of

interactive 3D printing in his work are integral to this thesis.
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Four questions were used to further guide the project’s research activities

towards more concrete outcomes:

1. Can interactive programming for 3D printers help participants
understand how the process of manufacturing using 3D printers
relates to their discipline, so they can start to experiment usefully

with it (or not)?

2. Can interactive programming for 3D printers allow users to
create physical forms using novel functions that take into account
physical properties like speed and temperature, instead of the

usual method of beginning with 3D modelling and automating

fabrication?

3. How can the combination of visual aesthetics and musical con-
cepts lead to knowledge about new digital manufacturing tool-
paths, and vice versa? (e.g. exploring how 3D printing toolpaths

can be influenced by concerns other than optimising for speed and

strength)

4. How can a livecoding environment be useful for 3D printing?

Inherent in those questions is the possibility of a new system for 3D fab-

rication that transcends the current limitations and arbitrary constraints

of current 3D printing software. Why not combine livecoding with 3D

printing? What new and useful possibilities for creative fabrication arise

when livecoding is combined with computational manufacturing?

2.2 Contributions

A number of concrete research contributions are built on top of this rather

broad foundation. Firstly, we introduce a new practice of Interactive 3D
Printing (I3DP). Drawing on various first-hand experiences and studies

of interactive programming and livecoding, I3DP is articulated as a few

“typical” user activities for interactively programming 3D printers. This

design blueprint is introduced, discussed and evaluated using a system

derived from theories of cognition and computer interaction called the

Cognitive Dimensions of Notations (the CDNs) (T. R. G. Green and Petre,

1996) in Chapter 5 (Designing for Interactive 3D Printing).

A second major contribution is the design, development, and analysis

of a working I3DP system called LivePrinter. The details of LivePrinter’s

development process contain new techniques for designing and develop-

ing interactive programming environments designed to work specifically

with 3D printers. The specific implementation details of the LivePrinter

system, such as the software development process and accompanying

hardware integration, and their relationship to individual CDNs, is

discussed in Chapter 6 (Implementing an I3DP system: LivePrinter).

LivePrinter is then evaluated through a series of qualitative user studies.

Building on the theoretical cognitive trade-offs discussed in Chapter 5

(Designing for Interactive 3D Printing), we held individual interviews

with prospective users to determine some conceptual boundaries for a

real I3DP system, and later ran a series of user workshops to evaluate
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the experience of learning and using it. These user interviews and user

studies are discussed in detail in Chapter 7 (User Studies and Analysis).

These two contributions help establish a new field of computationally-

augmented fabrication, but despite the time and effort put into them,

they are just a beginning. The second part of the initial research question,

of what people might actually do with I3DP, forms the rest of the thesis.

This is explored through a personal computational art practice, including

livecoding performances and 3D form-making.

Towards that end, we introduce new techniques for interactively fabricat-

ing a variety of shapes and patterns, including the use of space-filling

curves such as the Hilbert Curve (Hilbert, 1891). These techniques may

have some use as precursors to new metamaterials with interesting

mechanical properties. They may also lead to more sustainable 3D prints

that use less material and energy in their construction. Some artefacts

resulting from these experiments found their way into public exhibitions,

such as at the London Design Festival in 2019.

We also demonstrate how such curves can be useful in musical livecoding

performances through reflections on live performances where 3D printers

were controlled by interactive programming. These performances, and

artefacts derived from the computational sculpting experiment, are

informed by the practice of generative art, which uses computational

processes to compose works of art in part or even whole, and livecoding,

which is related in its use of programmatic constructs to create experiences

for live audiences, usually in the form of ephemeral software programs

that exist mainly in the for the duration of performances. The artistic

and design outcomes can be found in Chapter 8 (Filling space, filling

time), and videos of some early live performances where a 3D printer

is interactively controlled by code in LivePrinter to make sound and

sculpture can be seen in Section A.1 (Selected Performances).

Taken together, these outcomes paint a picture of a new form of practice

based around writing computer code to creatively control computation

fabrication machines. They show how we can use practitioner-led design

research to begin influencing the direction of innovation in personal

manufacturing technology.

The rest of the research process, along with its theoretical underpinnings

are discussed in more detail in the next chapter, Chapter 4 (Methods).

2.3 Key influences and inspirations

This thesis was particularly inspired by the “Six Challenges for Personal

Fabrication” described by Baudisch and Mueller (2017), especially the two

challenges of improving the interactivity and user experience of personal

fabrication, and increasing practitioners’ material- and machine-specific

knowledge. In terms of interactivity, the project was influenced by the

technique of interactive programming, where programmers continually

add code a running computer program to see its effects in real-time.

This technique has been adopted by a community of self-proclaimed

livecoders, who have elevated the public display of programming to a

form of performance art.
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Figure 2.1: Poster for Ezra Teboul’s “Multi-

channel Motor Music” performance using

3D printers. Used with permission of the

author (Ezra Teboul).

This study, as well as the livecoding community, have been deeply

influenced by contemporary artists and artistic movements that have

their more recent roots in Minimalism and Conceptualism. The influence of

these movements on this study can be seen in the practice of I3DP, which

shifts the focus from the physicality of hands-on making to a descriptive

and textual forms of making that use code and digital fabrication.

This echoes the evolution of Conceptualism, which followed on from

Minimalism. Minimalism’s original emphasis on material structure in-

spired Conceptualist artists to rebel against to and focus instead on text,

words and linguistic structure. As Sol LeWitt, a Minimalist artist who

later became an influential Conceptualist, famously pronounced in his

1967 Paragraphs on Conceptual Art, “the idea becomes the machine that

makes the art” (Lewitt, 1967).

2.4 The influence of Generative and
Audiovisual Art

The Generative art movement built further on these fertile ideas by focusing

on the aesthetic arising from the use of repetitive, algorithmic techniques

for constructing images and forms. The ideals of the movement, and

techniques associated with practitioners of it such as cellular automata and

space-filling curves, has been an inspiration for many of the sculptural

forms created during this study.

The term generative art roughly dates back to the mid-20th-century, around

when the term generative aesthetic was first used by German philosopher

of science Max Bense in 1954 to describe (then) new experiments in

computer-rendered art (Dohm and Hoffmann, 2008, p. 31). This practice

often placed minimalist forms inside a flurry of repetitive structures, and

was enabled by machines and computer rendering, as can be seen in

the pioneering works of Georg Nees and Vera Molnar and more recent

practitioners like Tyler Hobbes and Jared Tarbell.

Generative artists often borrow technical approaches from (or inspired

by) physics and mathematics in the creation of many of their works,

as seen in works such as Herbert W. Franke and Andres Hübner’s

Pendulum Oscillogram. This places them within a long tradition of using

mathematics and science as a muse for art-making (Bak, 2019). It also
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1: https://github.com/tidalcycles/

sounds-repetition

makes generative art an interesting technique for helping people to

visualise and understand scientific and mathematical ideas by abstracting

them and thus focusing on them removed from their messy, real-world

context.

Importantly, the movement began as a rebuke to photojournalism. It

challenged the idea that the purpose of photography was to be some-

how more honest and truthful than other forms of art. The trust that

photojournalists had in their machines, i.e. their cameras, to faithfully

capture their realities was directly challenged by the non-representational

photographs of early practitioners of the Generative Aesthetic like Gottfried

Jäger, Herbert W. Franke, Andres Hübner, and Hein Gravenhorst. Their

use of mechanical algorithms and chemical processes (later run on early

computers and plotters) were intended to produce their alternate abstract

realities, or “aesthetic states.”

From its pre-digital beginnings, Generative Art has continued to co-

evolve along with computational tools. As a practice, it is closely tied

to tools for computational fabrication, as they are programmable and

mechanically-inexhaustible platforms for repetitive form-making. Many

artists co-evolve their own tools, like digital plotters and even robot arms

with bespoke software for human-like graffiti drawing (D. Berio, Calinon,

and Fol Leymarie, 2016; Daniel Berio, 2020).

Many works of both Generative Art and Livecoding can also be considered

to belong to the genre of Audiovisual Art, which is more explicitly focused

on the audience or participant’s experience of the work than the implicit

“aesthetic states” represented in generative imagery or animations. This

related artistic tradition comes from a more mixed background of fine

artists and audiovisual performers, including John Whitney Sr., Vibeke

Sorenson, and Ryoji Ikeda. There is certainly a porous border between

these genres, but it is helpful to review Grierson (2018, p. 15)’s observations

on Audiovisual Art as similarly incorporating technological innovation

and employing abstraction as a method for focusing on non-narrative

experience. According to Grierson (2018, p. 15), Audiovisual artists:

▶ Focus on “audiovisual experience over the musical or visual, for the

purposes of specifically and directly modulating attention through

multisensory stimulation”

▶ Use “abstraction to focus the work on these experiential qualities,

as opposed to other qualities such as story, characters, context”

▶ Develop and apply “new technological approaches to more effec-

tively explore these principles in practice”

2.5 The influence of machine art

Another important point of reference for this project was the long tradition

of “machine-as-art” and machinic art. Both of these genres focus on the

machines making the art as a work in their own right, instead of simply

as a means to an end. This is especially important when looking at 3D

printers are both platforms for manufacturing but also performative

objects in their own right that are interesting to look at, listen to, and to

play with.

https://github.com/tidalcycles/sounds-repetition
https://github.com/tidalcycles/sounds-repetition
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In some artists’ views, the “haphazard” mark of the artist could be

replaced by the “rational” one of the machine, turning art into a process

rather than an individual striving. In the words of Marcel Duchamp

(1955), “The mechanical aspect of it influenced me then, or at least that

was also the point of departure of a new technique. I couldn’t go into the

haphazard drawing or the paintings, the splashing of the paint. I wanted

to go back to a completely dry drawing, a dry conception of art. . . And

the mechanical drawing was for me the best form for that dry conception

of art.” (Sweeny, 1973, p. 127)

Artists Jean Tinguely and Moholy-Nagy also both used machines as

works of art, in addition to using them for making art, exhibited in

their own aesthetic right. They also often used these works as critiques

of the perceived power of the artistic individual and the unrepeatable

expression of their individuality. Some of their contemporaries thought

that the then-dominant idea of the “heroic artist” struggling to create a

masterwork was elitist, and mass-manufacturing and machines could be

a means for ushering in a new era of democracy by enabling the public

to participate in that mysterious and mystical process of making artistic

objects (Dohm and Hoffmann, 2008, p. 18).

For example, we can look at Jean Tinguely’s Méta-Matic drawing machines,

especially Méta-Matic No. 14. This work was operated by a hand-crank

attacked to a series of gears, springs and a pencil that scratched lines

across a blank page. The randomness of the drawing mechanism made

achieving precise strokes and forms difficult, not impossible. It also

removed the pressures of creative failure, because, once set in motion,

the machine was always playfully creating something.

Removing the precision of the art-making process made this device more

accessible to the general public as a means for making art. In a sense, this

can be viewed as an ironic take on the view of art as the “heroic struggle”

of the artistic individual. It also highlights the process of making the art,

rather than the uniqueness and value of the artefacts produced (Dohm

and Hoffmann, 2008).

The artist’s role in producing these works of machinic art are similar to a

computer programmer’s: they create the framework (the machine; the

program) and establish a context for the art (the gallery; the Internet) and

then leave it to run and produce some kind of “artistic” outputs. In the

process, they also implicate the “audience” in the creation of the work by

either having them directly take part, as with Tinguely, or to simply be

present during the act of creation.

For example, since the 1990s Andrea Bulloch has worked on a series

of machines that use motors, controlled or effected by sensors, to draw

lines on white gallery walls in front of the viewing public. Similarly to

Tinguely and Moholy-Nagy and their ironic take on the singularity of

authorship, she describes the way it works as questioning the artist as

the creator of something original (Dohm and Hoffmann, 2008; Bulloch,

1998). Yet she also engages the viewer in watching the work unfold,

deciding how, when and how long this viewing takes place: “. . .I’ve set

the whole thing up. I’ve decided how it works and looks and I leave only

a small part of the structure open-ended. . . I make the process of viewing

visible.”(Bulloch, 1998)
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This line of thought has much in common with this project’s goals of

demystifying the process of 3D printing by making the means of artistic

production visible but also creatively constrained. It also challenges the

idea of repetition as being in opposition to individual creative expression

and devoid of drama, a contrary view surely shared by Generative

and Audiovisual artists. The idea that machines are dry, rational, and

dehumanising in relation to the dramatic, emotional and individual

humans that they were set to replace must contend with Tinguely’s works,

especially the very public and dangerously self-destructing Homage to
New York (1960), which had plenty of dramatic presence.

2.6 Repetition, repeatability, error and creativity

What is truly interesting about machine art, and both Generative and

Audiovisual art, is that they force us to directly confront the difference

between “repetition” and “repeatability.” That is one of the concepts at

the heart of this project. Just because a machine repeats an action doesn’t

necessarily mean it will produce the same result; often, errors and defects

creep into the manufacturing process, and these can be leveraged in

creative ways.

Some artists explicitly embrace “errors” through techniques of non-
determinism, partially as a means to critique the illusion of complete

control that we assume digital machines have given us over the messiness

of the fabrication process. Roxy Paine’s Scumak 2, for example, was an

industrial-looking 3D printing machine, situated in an art gallery, that

slowly built turd-like piles of plastic over time (Goodman, 2014). The

mechanism for this work was a simple spout, continually releasing flows

of downwards-dripping molten material onto a moving conveyor belt.

The “sculptural” results are very hard to predict, owing to the complexity

of fluid dynamics; they vary greatly in diameter, height, and texture.

It shares many of the same mechanisms of 3D printers, but lacks their

precision and controllability.

Innovators in clay and architecture such as the team of Ronald Rael, Vir-

ginia San Fratello, Kent Wilson, Alex Schofield also embraced “controlled

error” by modifying GCode, the set of instructions that most 3D printers

use to create objects. Their forms are usually generated initially as nearly-

Platonic shapes, and then their fabrication code is manipulated to create

uneven and often accidental patterns in their ceramic vessels (Rael et al.,

2016). Whilst leveraging “error” was a creative way of investigating the

limitations of current ceramic fabrication technologies to create complex

textures, it was also a way of highlighting those same limitations and

how they affect artistic process in unexpected but ultimately recognisable

ways.

2.7 Manufacturing as performance art

As Tinguely surely would have appreciated, a digital/mechanical system

like I3DP can take on a dramatic, performative nature, and just watching

a 3D printer in action on its own can be a fascinating aesthetic experience.
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In performances with the printer, we were surprised how captivated

audiences were by its simple, repetitive and often music movements. The

aesthetic possibilities of performing with machines inspired us to think

of future manufacturing as a more shared, even public practice.

There also exist works art and manufacturing integrated together that

are more explicitly performative, and might act as a guide for future

works of performative manufacturing. Similarly, performative food preparation
can be found in open-plan kitchens in restaurants, especially ones where

the Japanese art of Yakiniku is practised. In Yakiniku (or in the West,

simply “Japanese Barbecue”), ingredients are cooked as a form of fiery

theatre in front of diners. In certain high-end shops, artisan chocolate-

and bread-making takes place in glass-enclosed food preparation spaces

adjacent to cafés and retail spaces.

Especially with food production, the art of making dishes is often a public

demonstration of skill exposing the craft of the artisan chefs. It could

be seen as an act of storytelling, linking the journey from raw material

(ingredients) to manufacturing methods (chocolate preparation, sushi

rolling, barbecue); making edibles in a narrative-driven demonstration of

skill that becomes part of the customer’s experience of the manufactured

object.

In industrial product manufacturing, where assembly lines are often

hidden inside vast factories, performance aesthetics are less of a considera-

tion. Performance in this technical sense refers to equipment effectiveness

and reliability in producing something. The worker is mainly there to

make objects to the greatest extent of their ability, consistently, not to

perform for others’ enjoyment. Yet, the assembly line is often referred

to as “a ballet” or “dance” and its actions are “choreographed” in the

sense that they are designed to be closely performed followed by human

workers.

Some artists have experimented with the concept of assembly line as

performance, as with 75 Watts*
. This performance design piece by Reyvi-

tal Cohen and Tuur Van Balen with Alexander Whitley re-appropriated

a production line factory in the epicentre of Made in China as a chore-

ographed performance making an object that had no use other than to be

“manufacturable.” Few, if any, other artists have gone so far as to make a

functional industrial manufacturing method into a creative experience,

either for the workers and craftspeople themselves, or for an outside

audience.

2.8 Augmentation as taking back control

So much of people’s lives are already dictated by algorithms – Facebook

feeds, Amazon purchases, AI-assisted cars, track-and-trace apps on our

devices monitoring deadly contagions, decisions about whom gets to

speak during video conference calls. People have been trusting in AI

and automation to manage the messiness of human society more than

they trust other people to do it. Some people trust AI so much more that

we now have companies made up of people pretending to be computer

*
https://www.cohenvanbalen.com/work/75-watt
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programs, a term coined as fauxtomation by Astra Taylor in her article

“The Automation Charade” (Taylor, 2018).

These general misunderstandings, that automation is either more efficient,

safer, or somehow better than human labour, present us with a false

choice. We can either choose to continue losing human jobs to automation,

or discard digital technology altogether and work Luddite-like in manual,

craft-centred, time- and labour-intensive disciplines. We may want to

reject machine labour, because it is arguable that full automation has

its dark sides, such as high energy costs, and a tendency to reduce

employment (Acemoglu and Restrepo, 2018) that puts more power in the

hands of already wealthy factory owners and threatens workers’ control

over the means of production. Yet, that doesn’t tell the whole story about

partial automation, or augmentation.

Acemoglu and Restrepo (2018) demonstrated that the process of augmen-
tation, where technological advances are integrated into human work to

make more complex tasks, has had the opposite effect on employment

as full automation. Computational augmentation can create new roles,

new ways of working. Instead of StyleGAN replacing artists, we might

soon see new disciplines of art that work specifically with them to cre-

ate new forms of images. As the techniques of “realistic” photography

were repurposed towards creating abstract Generative Art, so too can

robots and computational manufacturing devices be repurposed towards

unforeseen artistic ends.

With digital manufacturing, it becomes more clear what (Acemoglu and

Restrepo, 2018) meant when he proposed that the process of augmentation

was really a driver for increasing the complexity of human labour.

For example, the development of 3D printing created new roles for

people using new computer software to design 3D objects, replacing

the traditional draughts-person who used to sketch plans for objects on

paper. It also created new technical roles for 3D printer tooling, operating,

repairing, and for object post-processing that had no equivalent before.

2.9 Towards a future of human/computational
ecosystems

One way of resolving the conflict between humans and automation is

to more deeply embed humans in the process of making. This has been

the approach of this thesis, to avoid designing away the complexity of

human interaction in the name of false efficiencies of time. It is hoped

that projects like this will help to influence developers of future hu-

man/machine manufacturing systems purporting to be part of a holistic

“Integrated Computational Materials Engineering (ICME) paradigm”

bringing together process, structure, material properties, and structural

performance into a single design process (Jared et al., 2017).

The same conclusion about the usefulness of augmentation over automa-

tion was reached by the pioneering computational artist Ernest Edmonds.

In his process of creating complex visual forms, the computer was less

useful as automation device working on its own, and more useful as

an assistant that he could work alongside. Part of this new process of
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working alongside and communicating with digital “assistants” was to

create new “specifications” for works of art in computer code: “Though

the computer can replace man in the production of graphic images, its

function in the arts is seen as assisting in the specification of art systems

and in their subsequent real-time management” (Edmonds, 2018, p. 5).

In more general language, these “specifications” can be though of as user

interfaces, or user-facing forms of notation. These new forms of notation

both describe and specify the process of creating new works, acting as a

common language shared between people and the machines that assist

them. By looking at them as notation, we can use a framework like the

Cognitive Dimensions of Notations to discuss their designs and create

evaluative tools that we can test with potential users.

Currently, the state of human/machine manufacturing systems sits

somewhere near the junction of mass-manufacturing, artisanal craft, Do

It Yourself (DIY) design, and personal fabrication. Machines are not yet

intelligent enough to be creative partners, and may never be, but they

still present opportunities for collaboration and creative and technical

assistance that never existed before.

Before we embark on our journey towards a future of holistic, practitioner-

led computational fabrication, we must first reflect on the paths that

have led up to our current position. These interweaving paths map

out the complex interplay of industry with creative practices. Taken

together, they provide some possible routes for practitioner-led projects

to incorporate 3D printing processes into the aesthetics in their work

without compromising their core social and artistic values.



Literature review of interative
programming and computational

manufacturing 3
3.1 Introduction . . . . . . . . . . 13
3.2 Interactive programming and

real-time feedback . . . . . 14
3.3 Interactive programming ver-

sus livecoding . . . . . . . . 14
3.4 The practice of livecoding . 15
3.5 Livecoding and cybernetics 16
3.6 Comparing practices of live-

ness in programming . . . 18
3.7 Designing livecoding systems21

The Cognitive Dimensions of
Notations . . . . . . . . . . . 23

Abduction as theory genera-
tor . . . . . . . . . . . . . . . 26

Livecoding systems design as
research . . . . . . . . . . . . 26

Design patterns for livecod-
ing software systems . . . . 27

3.8 3D printing . . . . . . . . . . 29
An Example of Diffuse Inno-
vation . . . . . . . . . . . . . 32

Desktop FDM 3D printing . 33
The Process of 3D Printing . 34

3.9 Challenges and opportuni-
ties facing 3D printing . . . 36

Manual computational fabri-
cation . . . . . . . . . . . . . 39

CAD tools and lost informa-
tion . . . . . . . . . . . . . . . 40

Filling up space with plastic 41
Controlling 3D printing with
code . . . . . . . . . . . . . . 41

Programmatic tool paths . . 43
3D printing as sonic perfor-
mance . . . . . . . . . . . . . 45

3.10 Conclusions . . . . . . . . . . 46

3.1 Introduction

Computerised manufacturing and interactive forms of computer pro-

gramming have both existed since at least the 1960s. Semi-automated

manufacturing platforms run on software and can often be maintained

interactively, but few, if any, systems for live, improvisational control

of these systems exist. In industry, it looks unlikely that the situation

will change. Recent studies show that the current trend is towards fully-

automated computational manufacturing that replaces people rather

than computationally augmenting human workers and craftspeople (Ace-

moglu and Restrepo, 2018; Abraham and Kearney, 2018). The driving

forces behind this trend are complex and varied; it isn’t just a matter of

safety constraints or the limits of technological complexity but a blend

of social, governmental and historical forces such as national politics,

educational systems, historical precedents and even tax laws favouring

full automation (Acemoglu, Manera, and Restrepo, 2020), as discussed

in the Introduction.

An exploration of how this separation of computational design and com-

putational fabrication evolved into its current state would be a large task.

Instead, we will focus on some key areas of interest relative to a holistic

practice of augmented computational manufacturing, such as Interactive

3D Printing (I3DP). In such a system, practitioners would use interac-

tive programming techniques and livecoding practices manipulating

computer-numerical-controlled (CNC) machines like 3D printers “on the

fly.” In theory, this would allow them to experiment with complex forms

more quickly than with more traditional, manual ways of making and

open up new practices of artisan computer-augmented manufacturing

that include livecoding performances.

Such a system could adapt techniques and aesthetics from the artistic

practices of Generative Art and Audiovisual Art to the interactive fabri-

cation of 3D objects. It is not inconceivable to imagine this practice as a

blend of the current practice of livecoding and 3D printing, both occupying

interdisciplinary spaces marked by porous conceptual borders between

related areas of practice and research.

As we will discuss, livecoding is a practice that mainly uses the established

technique of interactive programming towards various performative ends,

sharing conceptual DNA with other disciplines that allow programmers

to change running programs without stopping and restarting them. The

evolution of interactive programming and its relationship to these other

disciplines will be explored, along with design strategies for creating

such systems.

The term “3D printing” itself refers to a wide range of industrial pro-

cesses from the expensive laser fusion processes that produce precision

aerospace parts to the cheaper but more error-prone, melted-plastic-

layering technique used in rapid desktop prototyping. We will attempt to
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describe the relevant types of 3D printing techniques, and the workings

of 3D printers associated with them. Then, we will look at the current

challenges facing 3D printing and how programmatic augmentation of

that process might offer up some new insights into potential solutions

for them.

3.2 Interactive programming and real-time
feedback

The use of programming languages for experimenting with making

multimedia art, such as sound and visuals, is commonly identified as

beginning soon after the transistor-based computer was first developed,

in the 1950s. From the beginning, rapid experimentation and timely

results were important to computer musicians and artists, who often

needed to create a series of variations on a theme and learn from their

attempts. Max Mathews, one of the first pioneers of music computing,

developed musical programming systems starting in the 1950s at Bell

Labs. Some of his work was fully textual and based on the syntax of the

C language, such as Csound (Mathews, 1963; Aaron and Alan Blackwell,

2013), but, starting around 1968, he was integrating textual programming

and physical controls with analogue sound generators (Mathews and

Moore, 1970) in order to get real-time feedback.

It was also during this early era that one of the most basic techniques

for interactive programming, the Read-Evaluate-Print-Loop (REPL), was

first developed. The traditional REPL supported an interactive workflow

where lines of code are entered, compiled, and then executed as soon as

possible, with results made visible (e.g. “printed”) on the screen. This

empowered a programmer to edit, extend, or otherwise change a running

program and experience the result almost immediately afterwards. It

has been a key part of interactive environments for variants of the LISP

programming language since their inception in the 1960s, with the Emacs
editor being a prime example (Tanimoto, 2013; McCarthy, 1981).

Technically speaking, the opposite of interactive programming can be

thought of as the so-called “edit, compile, link, run” (Tanimoto, 2013)

workflow. In this mode of development, a programmer writes code that

is parsed by a traditional compiler or interpreter into machine-specific

instructions. The previous code is thrown out before the start of this

process, leaving no record of historical changes. Each development cycle,

the resulting program is run anew as if it were the first time.

3.3 Interactive programming versus livecoding

If the term interactive programming can be thought of as referring to a

specific set of techniques for modifying running programs, the term

livecoding refers to something altogether less technical and more con-

ceptual in nature. As Roberts and Wakefield (2018) point out, there are

a number of definitions, of which they add that livecoding is simply

“when performers create time-based works by programming them while

these same works are being executed.” In our example, we expand this
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definition beyond the intentions of the performer to include the audience,

and describe the general process of a livecoding performance as:

a process of algorithmic communication between two or

more entities that is potentially perceivable to others, usually

between at least one performer and one or more livecoding
software systems running on a computer and broadcasted or

made available in some way to an audience.

In this description, the term algorithmic communication usually refers to

the sharing of computer code, but can also incorporate any symbolic

communication that is intended to be used as notation for a computational

process. The term livecoding software system is also broadly defined here as

any system that is intended to be used to receive algorithmic communication
and interpret that communication as a form of output that audiences can

experience.

The process of livecoding thus depends on the communication between

performer(s) and audience, making it fundamentally a subjective experi-

ence. This distinction of what constitutes livecoding is mainly based on

the personal intention of all the participants, and also on the experience of

the audience of this performance. Livecoding, like pornography, appears

to follow more of an “I know it when I see it” (Wikipedia, 2021) definition

that makes it hard to precisely pin down in concrete terms. It is this

tension between the precise technical language we usually use to refer to

computing and programming, versus the looseness of the more social

and conceptual term “livecoding” that is what makes it so interesting.

3.4 The practice of livecoding

The exhibition changing grammars at the University of Fine Arts of

Hamburg (HfbK), in 2004, has been described by Julien Rohrhuber

as a formative moment for today’s understanding of how the term

“live” modifies the traditional meaning of “coding” (McLean and Dean,

2018)(Alan Blackwell, McLean, et al., 2014, p. 147). To Rohrhuber, “liveness”

in coding meant:

1. programming as public thought

2. programming as a rewriting of running programs (Alan Blackwell,

McLean, et al., 2014, p. 147)

In the beginning, this mainly manifested as “laptop composers. . .building

their own custom software, tweaking or writing the programs themselves

as they perform” (N. Collins et al., 2003, p. 321). This was often seen

as a political act of extreme transparency in software development, a

response to the trend of hiding code and complexity from the end user.

Often this involved projecting the textual programs onto the performers,

or in the performance space – thus the motto of some livecoders became

“show us your screens!”

LiveCoding is, of course, not the only form of creative expression to

incorporate audience-facing or publicly available text. Both Sol LeWitt and

Jenny Holtzer used instructions and text extensively in their Conceptualist

periods of working. This was a shift from the art movement Minimalism’s
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emphasis on bare physicality to a focus on language and more cognitive

structures and effects (Hughes, 2006, p. 426).

This practice also references more ancient practices of “text-as-art”, seen

in traditional Islamic works and many contemporary works of illustrated

poetry, as well as the practice of concrete poetry. These practices expose the

underlying conceptual structure of a piece, such as LeWitt’s technique of

elevating the importance of the instructions for making a piece of work

to the level of the work itself as in his Wall Drawings (Kent, 2007; Lewitt,

1967). Similarly, the motto of “process not product” has been uttered

by many modern artists since LeWitt’s predecessor Marcel Duchamp

arrived on the scene in the early 20th century to question the primacy of

a finished work of art over the process that spawned it.

In this sense, livecoding follows a tradition of taking an inward-facing,

intellectual act that is usually hidden from public view (in this case

programming, versus Duchamp’s art-making) and turning it outwards

as a form of public performance (Alan Blackwell, McLean, et al., 2014). It

differs from Duchamp’s questioning of how the heroic role of the artist

is celebrated in the production of art, in that it acts to re-empower the

anonymous programmer, whose role is usually obscured from view and

whose name is often unknown in the commercial software production

process. In livecoding performances, the programmer is foregrounded

instead of their software; their work placed at centre stage instead of

hiding them and their code away to focus on a seamless, “transparent”

aesthetic experience. According to Wieser (2018):

In IT, the word transparency is used in an unexpected way:

it here describes the relation between ‘user-friendly’ graphical

user interface and the hidden program code. The program

is transparent if it is like a clear window, which is not to be

noticed, a notion which is as common as it is misleading. This

strange disappearance of the work of the programmers might

be an important reason for the widespread anxieties with

regard to programming. Of course, many people share strong

disinclinations against such strategies of disempowerment.

Livecoding is an interesting practice that is both intellectual and meta-

cognitive in nature but also fully bodied. It involves thinking of program-

matic, algorithmic systems of heuristics (e.g. computer processes) that

then control physical systems (e.g. audio generating hardware, projec-

tion devices, computerised 3D printing machinery, directing human

performers). Livecoding often involves an immediate physicality and

personal presence that borrows from theatre and other forms of live arts,

whether that is directly addressed or not by the performer. There is even

a livecoding language for live choreography of dancers (Sicchio, 2014;

Sicchio, 2016; Sicchio, 2019).

3.5 Livecoding and cybernetics

It is interesting to compare livecoding’s innate performative aspect with

the cybernetic vision, Cybernetics, is sometimes referred to as a science

of control and “steering” (Wiener, 1961; Rose, 1974; Ashby, 1956). The

cybernetic method of inquiry is “evolutionary, rather than causal or
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calculative” (Andrew Pickering, 2011). It is made up of processes of action

and performance that evolve over time (Andrew Pickering, 2011, p. 6).

Knowledge, in a cybernetic system, “is a part of performance rather

than an external controller of it”. It refuses the conceptual split between

“people” and “things”, instead focusing on the interaction between “black-

boxes”, those ultimately unknowable entities enmeshed in complex

systems that can only really be understood through experiencing them

(Andrew Pickering, 2011; Ashby, 1956). Thus, Andrew Pickering (2011)

states that “the stance of cybernetics was a concern with performance

as performance, not as a pale shadow of representation”. A cybernetic

system contains an internal ontology that evolves over time out of the

relationship between its entities as they perform with one another in a

“dance of agency” (Andrew Pickering, 2012; A. Pickering, 1995).

This interpretation of cybernetics as a system of non-deterministic pat-

terns evolving over time has been influential in some areas of art, science,

and music for a few decades now. There is a distinct lineage of cybernetics-

inspired works, including architect Christopher Alexander’s Notes on the

Synthesis of Form (Alexander, 1966) and Brian Eno’s evolving musical

ecosystems starting in the mid-1970s. In the world of computational art

and design, software-based L-Systems and cellular automata borrowed

ideas of simple rules playing out over time to create unpredictable,

iterative patterns. For example, Meinhardt (2009) showed how to algo-

rithmically generate seashells by modelling reaction-diffusion equations

in iterative passes. In the livecoding community, Leitão et al. (Leitão and

Martins, 2010) proposed a version of the LISP-like language Scheme for

livecoding generative architectural models, inspired by the livecoding en-

vironment Fluxus (Griffiths, 2019), and a livecoding performance group

at McMaster University has signalled its debt to cybernetics in its name,

the Cybernetic Orchestra (Ogborn, 2012).

According to Sorenson et al. (A. Sorensen, Swift, and Riddell, 2014),

meaning in livecoding has similarly cybernetic attributes: it is symbolic,

computational, but also simultaneously embodied and thus must be

physically experienced. They describe three basic principles inherent

to livecoding, which build on Rohrhuber’s notions of “public” and the

concept of modifying a “running” program:

▶ program-process semantics: the formal system that defines the

livecoding language

▶ the process-task semantics: the computational tasks performed by

the computer as a result of running code

▶ “cyber-physicality”: the physical “perturbations” in the world

caused by running the code, e.g. sound or visuals (A. Sorensen,

Swift, and Riddell, 2014)

That is, the difference between livecoding and non-performative coding

is in this interpretation of tokens (e.g. computer code) by both a computer

and also by a human audience, with the added layering of the physical

experience of that code when it is executed: “‘meaning’ can happen

through a semantic interpretation of tokens by a human interpreter or

through the mechanical transduction of formal tokens into the physical

environment” (A. Sorensen, Swift, and Riddell, 2014, p. 68). Code is

something to be interpreted by the audience, but also to be literally felt

through its audio/visual/mechanical effects in the physical world.
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In A. Sorensen, Swift, and Riddell (2014, p. 67)’s example, executing

the line of code “drums –> | s k |” in the livecoding system IXI Lang

(Thor Magnusson, 2011) might trigger a snare drum sound followed by a

silence and then a kick-drum sound followed by a silence. The meaning

of those tokens can potentially reveal itself as the code is executed and

the sound is heard by an audience. Of course, any internal translation of

tokens to significance and meaning by the audience members depends on

a basic understanding of text and exposure to certain textual conventions

that are very much dependent on context (Meyer, 1961, p. 60).

3.6 Comparing practices of liveness in
programming

There are plenty of reasons why people manipulate code live that have

little to do with performance, sound production or audiovisual art. For

example, live programming can help us understand the effects of code

during the software development process. As Tanimoto observed, we

might simply benefit from “minimizing the latency between a program-

ming action and seeing its effect on program execution” (Tanimoto, 2013,

p. 31). For example, artist Vera Molnar describer her “conversational

method” in a 1975 essay in Leonardo titled “Towards Aesthetic Guidelines

for Paintings with the Aid of a Computer” as an iterative process of

tweaking code and viewing the results on her computer monitor. This

form of interactive software development “dialogue” was essential to

her graphical form-finding process (Molnar, 1975).

According to Rein et al. (2019, p. 1), different motivations, program-

ming contexts and communities have spawned three main families of

related approaches to liveness in software development: livecoding, live

programming, and exploratory programming. These approaches are

commonly described as “programming environments and tools that can

provide the impression of changing a program while it is running”.

Compared to livecoding, which Rein et al. (2019, p. 2) describes somewhat

reductively in terms of its visible nature as “often concerned with the

creation of art through changing source code as a performance in front

of an audience”, live programming and exploratory programming can

be defined as follows:

Live programming. . .put[s] the very activity of programming

in its focus (Hancock, 2002; Tanimoto, 2013). Correspondingly,

the term seems to be used when describing programming

tools which provide immediate feedback on the dynamic

behavior of a program even while programming. The term ex-

ploratory programming often refers to a particular workflow

during programming whenever requirements are not fully

defined but are yet to be discovered (Sheil, 1983; Trenouth,

1991). It is supported by exploratory programming environ-

ments that incorporate changing a running system to make

exploration of unknown domains or of design alternatives

easier. (Rein et al., 2019, p. 2)



3.6 Comparing practices of liveness in programming 19

Figure 3.1: Relationships between common terms for modes of liveness in coding after Rein et al. (2019), A. C. Sorensen (2018), and Tanimoto

(2013)

Livecoding, live programming and exploratory programming papers

were categorised by their “intended outcomes” in Rein et al. (2019)’s

review. Interestingly, they found that live programming practitioners

more often had the intention of creating a computer program; exploratory

programming practitioners more often had the intention of modifying

or evolving a running system (such as a database or simulation); and

livecoding practitioners more often had the intention of “creating an ef-

fect” where the program itself is “only secondary and might be discarded

after the computation” (Rein et al., 2019, p. 19).

Yet, the “program” in livecoding is more than an abstract concept or

disposable piece of software. A program, in livecoding, unfolds over

the entire time of a performance and forms an essential part of that

performance’s experience. It might be better stated that livecoders who

are in the act of livecoding are often more interested in the experience of

their systems and programs than either writing programs for future use

or maintaining or evolving an ongoing system.

A. Sorensen and Gardner (2010) goes even further to define another type

of live programming of which livecoding is a part, called “cyber-physical
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programming.” In cyber-physical programming, the state of the physical

environment also becomes a meaningful component of the program’s

state as it is edited live (A. C. Sorensen, 2018).

In Alan Blackwell and Aaron (2015), livecoding and live programming

cross over in the development of Sonic Pi. Aaron’s practicing livecoding

often leads to him developing software artefacts in an iterative cycle of

performance–reflection development. Livecoding in Sonic Pi was used as

means of “sketching” and musical practice, leading Sam to reflect on the

performative limitations of the Sonic Pi system, leading him to further

development of Sonic Pi:

Often during a practice session [with Sonic Pi] Sam will be in

a musical position and have an idea of where he’d like to go,

but run into syntactic or semantic barriers in the language

that prevent him getting there easily. Or, he’ll find himself

writing boilerplate code again and again and therefore start

imagining a nicer way of automating the repeated task. Ideas

that would spring into his head he’d just jot down.

Occasionally, when there is no obvious solution to a problem,

he might allow himself to interrupt a practice session (if the

opportunity has sufficient merit) and then spend a bit of time

imagining he has already implemented the solution, so that

he can see if he could sketch the solution to the idea in Sonic

Pi. This sketching activity does not seem like development

work, but has far more the character of reflective craft – design

ideation that must be captured in the performance moment

(Alan Blackwell and Aaron, 2015, p. 8).

Surprisingly, Rein et al. (2019) found no overlap between livecoding

and exploratory programming. This is particularly interesting because

Sorensen (after Perera (2013)) describes live programming similarly to

Rein et al. (2019)’s exploratory programming, i.e. as a form of “compu-

tational unfolding” achieved through the live editing of source code

(i.e. modifying or evolving a running system) that has real-world effects
(A. C. Sorensen, 2018, p. 24). Sorensen, as both a livecoder and live pro-

grammer, is less concerned with creating a “software artefact” than with

producing “some physical effect, and through that effect some greater

comprehension of the physical world” (A. C. Sorensen, 2018, p. 25). The

focus is on the experience and process, rather than outputting a finished

program-as-artefect.

The term interactive programming is used similarly to exploratory program-

ming to refer a dialogue between a programmer and the changing state

of a system. An example is the Unix shell, where a user interrogates the

operating system of a running computer program in order to understand

and change it using “shell” commands. “Shells” are live interpreters,

often taking a line of dialogue from a user, performing an operation and

responding back in typical REPL fashion.

On Unix and related operating systems, shells such as zsh, bash, sh, tcsh
have their own syntax and control structures and are thus considered a

form of programming. They are also found in many software programs,

such as all major web browsers (Firefox, Edge, Chrome) where each has an
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interactively programmed Console for displaying web page status and

also manipulating and interrogating web elements and processes.

Clearly, the distinctiveness of the definitions of categories of liveness in

software development is relative to the communities that practice them.

Professional software developers work to develop finished software

artefacts. Engineers and designers use software to produce physical

artefacts and are often concerned with finding out where a structure

might collapse or otherwise fail. Livecoders perform live at concerts in

front of audiences, some called “Algoraves” as a somewhat earnest take

on algorithmic music and post-1990’s rave culture. They may share labels

for their live practice, but do not necessarily share the same context or

goals for their practice.

3.7 Designing livecoding systems

It is important to reinforce that, despite the definition from N. Collins et al.

(2003) that links livecoding to “laptop composers,” the current practice

of livecoding is not constrained to the genre of “laptop music.” More

generally, livecoding systems can be thought of as forms of performative

notation supporting interactive, public workflows that “[expose] the

functional abstractions. . .that form the underlying basis of aesthetic

. . .experiences” and allow them to be modified in a live setting (Aaron

and Alan Blackwell, 2013, p. 35).

One helpful tool for designing the notion of such systems if T. R. G. Green

and Petre (1996)’s Cognitive Dimensions of Notations Framework (CDNs).

The CDNs are meant as an evaluation tool for interactive systems and

their notation, and as a guide to designers of such systems. For example,

Hidden dependencies occur when parts of a system have a relationship

between them that isn’t visible to the user of, or participant in, that system

(T. R. G. Green and Petre, 1996; Alan Blackwell and Thomas Green, 2003;

A. F. Blackwell et al., 2001). This hints at the difficulty of designing a

livecoding system where symbols are stand-ins for actual computing

processes. A livecoding system designer must consider both the physical

and cognitive ergonomics of the graphical (or physical) interface and

of the livecoding language itself, or, as the CDNs might describe it, the

notation.

The difficulties of designing cognitive trade-offs between elements of live

notation exposes livecoding system design as a kind of wicked problem
(Rittel and Webber, 1973), where one of the main design complications

of trying to solve the problem of providing immediate control over a

time-sensitive physical performance that is also balanced with the slower,

meta-cognitive process of symbolic composition. Inevitably, there will be

parts of the system that are hidden, abbreviated or otherwise abstracted

away to increase the reaction time of the performer, but at the expense of

legibility and very likely capability. It is part software engineering, part

user experience design, and part experiment in audiovisual notation.

Ultimately, a successful system must be both usable as a live programming

system but also useful for creating interesting-enough live performances

that people will want to continue using it.
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1: https://penelope.hypotheses.org/

598

2: Human Patching (2007) was a livecod-

ing system for music performance using

a human-based network of program flow.

It assigned logical and computational op-

erations to people (e.g. count, increment,

match a number) using handwritten signs

hung around their necks and by physi-

cally connecting each person to one an-

other using bungee cords. The design was

loosely based on the visual patching envi-

ronments MaxMSP and Puredata.

Designers of livecoding systems have a difficult task ahead of them. They

need to learn specialist domain knowledge so that they can effectively

generate real-time audio, video or drive other physical outputs. They

must be aware of the visual aesthetics of the system and the syntax

of the chosen livecoding language, which are directly exposed to the

audience and form part of the performance. Their new livecoding system

might usefully interact with various other pieces of software, from time-

synchronisation systems like Ableton Sync to full livecoding ecosystems

that combine software synthesizers, sequencers, effects, and even other

livecoding systems using network protocols like OSC or websockets.

A further complication is that livecoding is often collaborative in nature,

and performances will likely encompass other computers, devices, and

groups of performers. In many performances audio and visual performers

communicate across networks of laptops, such as Algobabes, SLUB,

PowerBooks Unplugged, and the Sheffield Livecoding Ensemble, to

name a few. These remote systems and persons must somehow be

represented in the interface and possibly the language itself.

Designers have the opportunity to make their system accessible to a

range of other potential users. Care must be taken to make the installation

process easy enough for a diverse group of people to attempt. Basic usage

guides and tutorials must be written for others to learn the system. Since

this is social software, there needs to be channels of communication

where users can discuss problems, ask and answer questions and become

part of this new system’s community.

It is hard to define what a “successful” livecoding system might look like.

Some might consider it to be the one adopted by numerous performers,

others might be satisfied with a system used only once for a particularly

memorable performance and then never seen again. It is no wonder that

many of them are relatively unique in implementation: according to Rittel

and Webber (1973), “Every solution to a wicked problem is a ‘one shot

operation.”’

As with any wicked problem, a solution generally arrives before the

problem is fully formulated in an inductive process of experimentation.

That is, the “problem” or the gap in the livecoding ecosystem that the

livecoding practitioner was intuitively aiming to address by creating

their system might not be clearly understood until a working version of

their system demonstrates a “solution” in the form of a performance.

Framing these systems as wicked problems helps explain the uniqueness

of most livecoding systems. They vary widely in structure, livecoding

language, and general philosophy. No one design pattern describes how

they should be put together. Some livecoding systems use a variety of

non-textual symbols and tokens to represent computational actions, such

as Dave Griffiths’ music system for PS4 called Al Jazari (blocks), and

Kate Sicchio’s system for live choreography called Terpsicode (pictures

and annotations).

Another system, Dave Griffith’s augmented reality/physical livecoding

system called “Pattern Matrix”
1

used augmented reality and carved

wooden blocks that represent computational operations. There even

have existed livecoding systems that didn’t use digital computers like

Evan Raskob’s “Human Patching” (2007)
2

and many experimental pieces

https://penelope.hypotheses.org/598
https://penelope.hypotheses.org/598
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3: https://composerprogrammer.com/

music/livecodingforensemble.pdf
by Nick Collins

3
where people themselves (i.e.“wetware”) took on the

computational tasks normally reserved for software.

3.7.1 The Cognitive Dimensions of Notations

The Cognitive Dimensions of Notations (CDNs) (T. R. G. Green and

Petre, 1996; Alan Blackwell and Thomas Green, 2003; A. Blackwell, 2005)

were developed as a method, grounded in cognitive psychology, to help

designers and HCI practitioners articulate and discuss the cognitive

trade-offs inherent in the designs of notational systems. Such systems

typically rely on some sort of textual or pictorial visual notation as a user

interface, as with text- and flow-chat-based programming languages,

IDEs, and other interactive development environments. The framework

is not limited to text, icons, or screens – the dimensions are more

generally concerned with questions of what happens when information

is represented, whether interactive, static, or even physical forms.

The ultimate goal of the CDNs is not to be an exhaustive checklist of

potential usability issues but to help designers who are creating activity-

specific interactive systems to understand some basic dimensions of

usability, and to balance these dimensional effects against one another

whilst supporting the user’s main activities.

If this all sounds a bit vague, that is by design. The CDNs were designed

to be general enough to describe issues applicable to a broad range of

notational systems, but with enough detail to make those descriptions

useful to designers. In the words of T. R. G. Green and Petre (1996,

p. 132), “by introducing a defined vocabulary for such ideas [that have

previously gone unnamed in HCI discourse], the framework. . . makes it

easier to converse about cognitive artefacts without having to explain all

the concepts,” or in A. Blackwell (2005)’s later revision of the CDNs they

are a set of discussion tools that “improve the quality of the discussion”. In

both views, they provide a nearly-complete set of terms for discussing

known usability issues and trade-offs in notational systems for designers

to refer to across the entirety of the design process, from initial concept

to development to testing and final delivery.

The framework has often been applied to visual programming languages

(T. R. G. Green and Petre, 1996) but can be applied to word processors,

information tables, and even physical control panels (T. R. G. Green and

Petre, 1996; A. Blackwell, 2005). It has also been widely used in a number

of different research contexts: commercial products from Microsoft (A.

Blackwell, 2005), musical composition software (Bellingham, Holland,

and Mulholland, 2014) and music notation (A. Blackwell, 2005), UML

(Britton et al., 2002), programming library design (S. Clarke and Becker,

2003), machine learning systems (Bernardo et al., 2020), and previously

to discuss livecoding activities (Alan Blackwell, 2015), amongst others.

There are 14 current CDNs which have been revised and added to

since their introduction by Green (T. R. G. Green and Petre, 1996; A. F.

Blackwell et al., 2001; Alan Blackwell and Thomas Green, 2003). Each

individual CDN relates to some others in ways that makes a user’s

experience “easier”, “harder”, or maybe not at all, in plain language.

They are designed so that dimensions can be paired up and varied in

https://composerprogrammer.com/music/livecodingforensemble.pdf
https://composerprogrammer.com/music/livecodingforensemble.pdf
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A. Blackwell (2005) provides a helpful di-

agram of some possible relationships be-

tween some individual CDNs.

their relation to one another (inverse, direct, none) whilst looking at the

effects on others.

Importantly, they must be considered within the context of their notation-

editing and -interacting environment, and seen as part of specific activities

that users will be tasked with when working in that environment. Chang-

ing activities will likely change the balance of the desired traits, such as

designing for highly-structured user activities like spreadsheet editing

which rely on data entry, data modification and copying versus pro-

gramming environments that support more free-form exploration that

requires less structural constraints.

The CDNs can be particularly helpful when designing and implementing

a new notational system by giving the designer(s) a checklist of cognitive

variables that are relevant to interaction design. It also provides some

discussion of the trade-offs between these variables, since they are usually

interdependent on one another and can have complex relationships. The

CDNs have also been used at the end of design processes to evaluate the

finished design, sometimes in the form of user-facing questionnaires as

in Clarke (2010) and Bernardo et al. (2020, pp. 545–565).
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Table 3.1: The Cognitive Dimensions of Notations

Dimension Description

Abstraction Types

The spectrum of possible combinations and groupings

for elements in a system (T. R. G. Green and Petre, 1996,

p. 144) that makes up its notation, plus the mechanisms

provided for changing that notation (Alan Blackwell

and Thomas Green, 2003, p. 9).

Closeness of Mapping

The conceptual distance between a system’s notation

in the “program world” and its equivalent in the “prob-

lem world” (Mayer, 1987; Pennington, 1987)(T. R. G.

Green and Petre, 1996, p. 144). With textual program-

ming languages, this becomes a measure of differences

between programming language semantics, user’s men-

tal models, and the properties exposed by the “real

world” or “target system”.

Consistency

T. R. G. Green and Petre (1996, pp. 147–148) equate

this to guessability, or what a user can infer about

the notation once they know some of the functional

notation

Diffuseness / Terseness Verbosity / succinctness of language

Error-Proneness When syntax leads to unwanted consequences

Hard Mental Operations High demands on cognitive resources

Hidden Dependencies

Relationships between elements that are obscured or

invisible to the user. A classic example: spreadsheets

containing cells that perform calculations based on the

contents of other cells, a process which isn’t exposed

to the user without further actions on their part (A.

Blackwell, 2005).

Premature Commitment

Constraints on the order of doing things that often

force the user to stop and think ahead of their actions

Progressive Evaluation Work-to-date can be checked at any time

Provisionality Degree of commitment to actions or marks

Role Expressiveness The purpose of a component is readily inferred

Secondary Notation

Extra information in means other than formal syntax,

such as comments in code or user sketches on a paper

note pad

Viscosity

How much a system’s notation permits or resists the

user’s actions to change the system. Sometimes these

actions slow down change by making users repeat

them, called repetition viscosity, other times they may

force the user into a chain of actions of the same type,

with a knock-on viscosity.

Visibility, juxtaposibility

The degree of visibility of information about elements

in the notational system, presented to and accessible

by the user.
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3.7.2 Abduction as theory generator

Introducing new ideas into the scientific and academic body of knowl-

edge often requires an abductive approach, attributed originally to Charles

Peirce and further refined over the years by others (Dunne and Dougherty,

2016, p.170). Pierce called abduction “the process of forming an explana-

tory hypothesis. It is the only logical operation which introduces any new

ideas; for induction does nothing but determine a value, and deduction

merely involves the necessary consequences of a pure hypothesis” (Peirce,

1934, p. 171). It is a synthetic research process of where a researcher’s per-

ceptions are iteratively analysed by generating hypotheses about related

phenomena, hidden phenomena, or even new categories of phenomena

(Dunne and Dougherty, 2016; Fann, 1970).

Somewhat problematic was Pierce’s innate “tendency towards a positive

truth” (Peirce, 1934, p. 591). Rather than present abduction as an instinct,

it is more useful to consider the role of the researcher in the world and

how their “socially cultivated and cultivatable ways of seeing become

preconditions for abductive reasoning” Dunne and Dougherty (2016).

Bringing the rest of the world into the frame of the research process is

unfortunately inevitable, in the sense that the researcher is a product of

a specific time and place with a particular view on events. This brings

up questions of scientific authority and representation (Atkinson 1990;

Marcus and Fischer 1986) that must be interrogated inside the research

process.

Taking an abductive approach, many research projects rely on a mix of

qualitative collection methods and iterative theorising that Vaugn and

Timmerman call alternative casing. Alternative casing is a recursive process

of trying to fit the data to different theoretical frameworks, looking to see

if it has been fully accounted for or if there are misguided preconceptions,

different or incompatible circumstances Dunne and Dougherty (2016).

3.7.3 Livecoding systems design as research

The design process for a livecoding system can also be framed as a

form of artistic or designerly research. This traditional “craft practice” is

documented in Alan Blackwell and Aaron (2015, p. 1) in the development

of both Blackwell’s language Palimpsest and Aaron’s Sonic Pi. Neither

developer followed a conventional software engineering process nor

adhered to conventional HCI techniques. In Blackwell’s view their pro-

cesses much more resembled an extended form of practice-led research

that he likened to Fallman (2003)’s “pragmatic account” of design as “a

hermeneutic process of interpretation and creation of meaning” (Fallman,

2003).

In this mode of knowledge creation, practice-led craft research does not

aim to exhibit scientific falsifiability nor replicability. As Gaver (2012,

p. 940) argued, theory underspecifies design, making theories about

designs unfalsifiable. Instead, the role of the designer-academic is to

bring their critical and analytical tools to bear on the design process itself,

or as Alan Blackwell, McLean, et al. (2014) puts it:
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4: A “network” can encompass one or

more computers, meaning that a computer

can talk to itself over a network made of

just itself.

The key consideration is to maintain a critical technical prac-

tice in which technical activity is embedded within a recog-

nized and acknowledged tradition, and subjected to rigorous

reflection (Alan Blackwell and Aaron, 2015, p. 1).

This “technical activity” must produce some kind of artefacts to be

reflected upon. Consider Philip Agre’s concept of a critical technical
practice that arose from his research into AI (A. Blackwell, 2018; Agre, 1997).

Research questions, like those around AI, are often both philosophical

and practical but “true” AI research involves both or else it is more science
fiction than science, in A. Blackwell (2018)’s view.

The artefacts produced by this technical activity are meant to reveal

a “theory nexus”: the overlapping area between the choices made by

designers, the issues that they think are important, and their beliefs

about the right way to address those issues (Gaver, 2012; R. Collins,

1994, p. 944). Gaver (2012, p. 944) proposes that, instead of formalised

theories, we can map out the boundaries of these theory spaces through

a collection of “annotated portfolios” of designed artefacts that embody

both “pure” theories and the “messy” practical decisions arising from

functional constraints that designers need to contend with in order to

make something real. In this space, “artefacts do not address these issues

analytically, but represent the designer’s best judgement about how to

address the particular configuration of issues in question” (Gaver, 2012,

p. 944).

According to Gaver, the criteria for annotating these projects could range

from “the philosophical (what values should designs serve?) to the

functional (how should those values be achieved in interaction) to the

social (what will the people who use this be like?) to the aesthetic (what

form and appearance is appropriate for the context?)” (Gaver, 2012,

p. 944).

3.7.4 Design patterns for livecoding software systems

Livecoding systems are often combinations of two approaches to develop-

ing software applications: using pre-compiled libraries and frameworks

in an “intra-process” manner to provide domain-specific functionality

such as network protocols (OpenSoundControl or OSC)(Wright, 2005) or

audio out (Jack), or to incorporate other running applications that pro-

vide that functionality and communicate with them in an “inter-process”

manner. Intra-process applications share computing resources across

all their running processes whereas inter-process applications run with

separate resources that are inaccessible to each other.

Both A. C. Sorensen (2018, p. 48) with Extempore and McCartney (2002)

with SuperCollider started with approaches that tightly coupled their

livecoding languages (XTLang and SCLang, respectively) to intra-process,

high-performance, domain-specific code libraries. Both systems eventu-

ally evolved into more decoupled designs.

A common decoupled design pattern for a livecoding software system is

to use a collection of specialised programs communicating in an inter-

process manner over a computer network
4
. A livecoder writes code in

one program which then communicated with one or more using set
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5: An early example is Alex McLean and

Rodrigo Velasco’s 2015 composition s2hs2,

sharing OSC data between Tidal and Pro-

cessing at https://toplap.org/s2hs2/

Application Programming Interfaces (APIs). Sorensen (A. C. Sorensen,

2018) calls this “half-stack” livecoding, because typically the livecoder

is limited to editing only part of the computing environment at any

time. The livecoder can effect their environment up until the networked

communication is initiated, but no further. Through the API, they can

interact with but not change lower-level operations of the OS. In contrast,

a full-stack approach would allow them to construct their entire real-time

environment live during a performance.

The network of inter-process applications can be heterogeneous in its

composition of those applications. Some livecoding environments, like

ORCA, are for audiovisual performance but don’t themselves generate

sound. They are designed as exclusively a language interpreter that sends

another form of standardised data, in this case MIDI, to either a hardware

synthesizer or to other programs which generate the audio (Linvega, 2019).

A livecoding system can be a fractal-like construct where one livecoding

system communicates with another embedded livecoding system which

itself is a collection of subsystems, as with Sonic Pi and TidalCycles. Both

use SuperCollider internally, which itself is binary networked system

consisting of a language interpreter program loosely coupled with a

separate audio-generating server program. Other setups blend multiple

livecoding systems together, using TidalCycles to generate audio from

SuperCollider and also to generate visuals from Processing
5
.

These systems are often networked to other performers running the

same or different systems. Since these computer programs are processes

that communicate over networks, they don’t necessarily need to run

on the same computer or even in the same physical location. Some

performances take place across continents and time zones with different

local and remote audiences, as with the annual TOPLAP anniversary

streams mentioned previously (McLean, 2019).

There is a major benefit to an inter-process architecture, specifically

in the case of live performance. For reasons of reliability, a livecoding

system with more independent parts is less likely to fully fail at once,

helping a performer keep at least part of the performance going through

inevitable technical failures. Unstable, experimental parts can crash

and then potentially be safely re-booted without destroying the entire

performance.

Additionally, the design principle of “separation of concerns” can help

make development quicker and easier because off-the-shelf software

projects can be combined using common messaging protocols like OSC

and MIDI. This is especially useful as domain-specific, highly technical

systems like real-time audio generation can require specialist technical

knowledge, making them difficult and time-consuming to create for most

programmers.

One downside is that a separate protocol or API needs to be developed and

implemented for each inter-process communication, which may be more

work than simple incorporating a domain-specific library or framework.

Another downside is the complexity of the software ecosystem itself,

where it may be hard to for a performer to know what exactly is doing

what, if anything, and when, in a live setting.

https://toplap.org/s2hs2/
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There are other potential pitfalls as well. As the component software

systems evolve, they may change API or protocol and break the livecoding

system. Also, timing may be an issue as inter-process communication is

inherently slower than intra-process communication because it relies on

extra layers of message passing. For many performances, this won’t be

an issue, however, as the limitation of the user’s typing speed is more

likely to be the slowest part of the system.

3.8 3D printing: From industry niche to mass
consumer product

Believing the machine to be our modern medium of design, we
sought to come to terms with it (Gropius, 1965).
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Table 3.2: Common manufacturing processes

Technique Description Ex. Processes

Additive Deposit or solidify material in layers

light (SLA), lasers (SLS), Inkjet

3D printing, powder bed fu-

sion

Subtractive Cut, carve or scrape to remove material

CNC router, plasma cutter,

laser cutter, hand tools

Weaving

Combine threads of material in interleaving

patterns to create relatively flexible forms

Jacquard loom, knitting,

sewing machine

Welding

Strips or pieces of material are combined by

applying intense heat (or electric current) at

mechanical joins

arc welding, mig welding

Thermoforming

Heat is used to shape a material into a desired

form, usually with a mould

vacuum forming, thermoplas-

tic casting

Moulding/Casting

Material is shaped by pouring or injecting it

into a desired form

blow moulding, injection

moulding, lost-wax casting
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6: http://thingiverse.com

Computer controlled fabrication has been in use for decades. More

specifically, Computer Numerical Control (CNC) machines started being

put into use for ‘rapid prototyping’ in the 1960s. 3D printing (3DP)

technologies joined that field in the 1980s and 1990s with the invention

and then patenting of key technologies for rapidly combining plastics and

metals. Companies owning those patents, such as StrataSys, dominated

the field until 2009 when the original patents began expiring.

The technology behind the expired patents was simple enough to work

with that the DIY, hacker spaces, and maker community began to tinker

with it on their own terms. Their relatively inexpensive, often open source

3DP designs spread widely in the form of major commercial enterprises

like MakerBot (later sold to StrataSys) Prusa, and Ultimaker, to name a

few (Baudisch and Mueller, 2017; Hoskins, 2014).

It is important to note this “desktop” 3D printing is quite a different

industry than 3D printing for aerospace and other precision forms

of manufacturing. In industry, 3D printing often results in parts that

will be additional processed (further machined, finished up by skilled

technicians) before they are shipped to consumers. Outside industry, its

general unreliability, high cost per unit in terms of time and material, and

inability to achieve required precision and surface finishes in finished

models make it unattractive for manufacturing at scale on its own (Gao

et al., 2015).

This is evident in many of the mostly “decorative” uses of non-industry 3D

printing concentrating on appearance and feel (Baudisch and Mueller, 2017,

p. 200). Architects use it to make one-off models for client presentations.

Hobbyists, crafters or artists might use it for one-off uses like shelving,

doorstops, sculptures and bespoke toys. The majority of downloadable

models for 3D printing on the popular website Thingiverse
6

in 2017

could be classified as decorative, lacking any sort of functional behaviour

(Baudisch and Mueller, 2017, p. 203).

With respect to professional product design, 3D printing is also rarely

used to create finished products because if its cost. It instead has a niche in

the rapid prototyping and early-stage testing of designs as with “product

artist” Lionel Dean: “. . .it’s got to be right the first time and I’ve got to be

able to sell it. So I need to cheaply visualise it first.” In his case, “cheap”

was using a $15,000 Z Corp printer (Hoskins, 2014, p. 110).

Some product and industrial designers are satisfied with FDM printing

and have found a place for it within their practice, like Tim Rundle and

James Lamb, two designers with their own studio practices and clients

who also teach part-time on MA Design Products at the Royal College

of Art. They found the most value in FDM rapid prototyping was in

testing out designs in an intermediate stage: after creating prototypes

by hand using blue foam or other quick materials but before the costly

investment in one or more higher-quality SLS (selective laser sintering or

powder bed fusion) prototypes. Those SLS prototypes would normally

lead directly to the tooling and setup costs of mass manufacturing a final

product.

The process of 3D printing can also be used for professional research.

Product designers are used to designing parts and products around

http://thingiverse.com
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7: Based on conversations, some recorded,

both formal and informal, with Tim Run-

dle and James Lamb and other working

product designers and students from the

author’s time at the Royal College of Art

on the MA Design Products programme

from 2016-2018.

practical manufacturing constraints, so the similar constraints of design-

ing for FDM can help them learn more about the manufacturability of

their designs. James found it helpful that this process sometimes forced

him into creating more detailed and complex designs for the sake of

better fabrication, such as splitting a lever in half and printing each side

separately and then combining them. This helped him double check that

his initial CAD design was valid
7
.

3.8.1 An Example of Diffuse Innovation

The emergent ecosystem of open source 3D printing designs is particularly

interesting in that it is an example of a bottom-up or diffuse form of

innovation. Standardised parts, the expiry of key patents, open source

software and hardware designs, and a global supply chain made it

possible for tinkerers across the world to develop their own 3D printers.

At this point, there are hundreds of bespoke, unbranded parts one can

buy off eBay to either make their own printer or to modify their current

one.

Similarly, one can choose to build their DIY printer around a number of

mature, open source firmware projects like Marlin and bespoke controller

boards like RAMPS that form the computerised control centre for each

machine. The firmware is a computer program loaded onto a digital

controller board that controls the operation of the printer. Firmware

makes it straightforward to build a printer: simply assemble the right

parts (motors, controller board, chassis, heaters and hot ends), load a

firmware by connecting a standard computer and some other open source

software, customise a few options, and the printer is ready to be used

or modified and extended. Modified printers can produce moulds for

lost wax casting, fabricate sugary treats, form ceramic structures ready

for firing, and even print conductive parts and integrate electronics into

designs.

This market is an example of the innovative potential of amateurs, semi-

professionals and others working outside of industry. In Eric Von Hipple’s

words, it is the “free innovation” of the masses that has captured the global

imagination: a decentralised, international ecosystem centred around

small-batch and experimental manufacturing. (Hippel, 2016) As seen in

MakerBot’s acquisition by StrataSys and Ultimaker and others’ continued

support of open source projects like Marlin and printing software Cura,

these innovative non-professionals have a symbiotic relationship with

industry.

The recent experiments with customised, DIY (Do It Yourself) 3D printing

and CNC workflows by digital artists and the ceramics and pottery com-

munity illustrates both the future potential of bottom-up innovation, but

also the ways in which computational manufacturing is fundamentally

altering the practice of making art and crafts. As Wenger argued in

“Communities of Practice”, “the structure of practice is emergent, both

highly perturbable and highly resilient, always reconstituting itself in the

face of new events. . .In a world that is not predicable, improvisation and

innovation are more than desirable, they are essential.” (Wenger, 1999)

In ceramics, one example of this individual-led innovation is Jonathan

Keep, a potter and sculptor. Keep built his own clay 3D printer and used it
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to evolve a hybrid printing process that combined this automated system

with a manual assembly process informed by his deep knowledge of his

craft (Keep, 2020; Keep, 2014). He calls this process of “computerised coil

building” (Keep, 2014, p. 32) a new, fourth way of making ceramics beyond

traditional methods of hand-building, throwing, and moulding.

With all this diffuse innovation going on across many different disciplines,

the future potential of 3D printing as a method of artistic and designerly

working is unclear. Many people see it as a technology indistinguishable

from magic, fulfilling the RepRap Project’s dream of a machine capable

of producing practically anything of unlimited complexity, including a

copy of itself. (Various, 2019a) Baudisch and Mueller (2017) see it as the

start of a new revolution towards personal fabrication, where 3DP usage

scales from hundreds of thousands of users to hundreds of millions of

users. Giving consumers this ability and precise control over physical

matter itself would have the effect of “democratizing a whole range of

fields preoccupied with physical objects, from product design to interior

design, to carpentry, and to some areas of mechanical and structural

engineering.”

3.8.2 Desktop FDM 3D printing

The form of 3D printing that we are concerned with belongs to a family

of manufacturing processes called additive manufacturing (AM). A list of

common manufacturing processes can be seen in Table 3.2. (Thompson,

2007) The particular AM method used in desktop printers is referred to

in industry and the literature as Fused Deposition Modelling (FDM) or

sometimes Fused Filament Deposition (FFD) (Livesu et al., 2017; Hoskins,

2014; Gao et al., 2015), but here it will be referred to as FDM. FDM

is popular with DIY, home and for education because of its flexibility,

affordability, relative safety, and relative simplicity compared to other

computerised techniques. (Gao et al., 2015)

The FDM process has been described many times in the literature,

especially in CIRP publications as noted by Bourelli et al. (Bourell et al.,

2017). FDM works by melting a material (e.g. a thermoplastic, liquid

chocolate) or working with an already liquid material (e.g. clay or biogel)

and depositing it continuously along vector paths. The material is first

forced through an extruder component that has an extrusion nozzle of a

particular size (0.2 mm for the Ultimaker 2 series). It is important that

the material retains a high-viscosity during this entire process so that the

extruded forms retain their shape when deposited. It is also important

that the flow of material through the extruder remains constant so that

the deposited paths are consistent in shape and don’t have gaps or uneven

sections. (Bourell et al., 2017; Sung-Hoon et al., 2002; Livesu et al., 2017)

A print head typically contains the extruder, heater, temperature sensors

and cooling fans. The print head is attached to either a 2-axis mechanism

moving in perpendicular horizontal directions (commonly referred to as

the x-axis moving perpendicular to the printer front and the y-axis moving

towards and away from the printer front) or in a delta configuration with

3 motors arranged in a triangular formation controlling the printhead

which is suspended on 3 strings below. With some variations on the

gantry system, the printer bed may move towards or away from the user
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along the y-axis with the print head moving both up and down along

the z-axis and side-to-side along the x-axis. In all of these configurations,

the print head will deposit layers on a flat surface that moves up and

down (e.g. the z axis) called the printer bed or build plate. The bed is often

heated so the material sticks to it during the build process.

With thermoplastics, each layer of deposited material is bonded to previ-

ously deposited layers when it makes contact. This creates a ‘staircase

effect’ (Livesu et al., 2017) where the height of each ‘stair’ is related to

how far the extruder nozzle is above the previous layer when the molten

plastic is squirted out. The heat of the newly extruded material bonds

with the previous layer(s) because it is above the material’s melting point

temperature and is making either loose surface contact (sintering) or by

being pushed slightly into the previous layer (diffusion). (Sung-Hoon

et al., 2002)

3.8.3 The Process of 3D Printing

A 3D printer, for all its complexity, is normally a standalone device that

take a digital model as an input and eventually outputs a physical model,

if all goes according to plan. This is neither the true start of the design

process nor is it necessarily the end of the manufacturing process, as

there is often some post-production involved.

The overall process of 3D printing can be thought of as a series of phases,

starting with the creation of a digital design and following through a

series of processes until a finished object is produced. For an industrial

product, these phases are typically called conception, design, realisation
(Lutters et al., 2014). Here we break these phases into two parts, conception
– design and design – realisation which is called Process Planning (PP).

(Livesu et al., 2017)

3.8.3.1 From concept to design

Here we focus on how a concept (idea or sketch) is translated or trans-

formed into a digital design (e.g. a ‘model’) that can be 3D printed. One

conceptually straightforward way to turn a physical model into a digital

one is by scanning it using an optical technology like structured light or

lasers and using software to interpret the data as a 3D model. Baudisch

and Mueller argue that the 3D printing process can be understood as

fundamentally an ‘AD/DA’ or ‘analogue-to-digital then digital-analogue

converter’ technology similar to a photocopier for physical objects.

Using a general-purpose 3D scanner as an input, one could theoretically

create a digital model of an existing physical object and then make

multiple copies of that object using a 3D printer. The digital copy could

also be modified, after scanning, much the same way as video is captured

and then edited. As of now, the tools for scanning models and then

editing them are not widely available nor usable by most consumers, but

as Baudisch and Mueller note, the same could have been said for the

similar AD/DA technology of digital video capture and editing. They

propose a number of ways this could be advanced in the future (Baudisch

and Mueller, 2016).
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8: https://octoprint.org/

9: https://ultimaker.com/software/

ultimaker-cura

The future aside, using design software (CAD) is currently the main

way that models for 3D printing are created. For professionals, software

from AutoDesk and SolidWorks is often used because of their built-in

structural and mechanical engineering knowledge. They require specific

domain knowledge of physical and materials to operate properly. Other

tools exist for casual users, either online running in a web browser

(TinkerCAD) or free to download (AutoDesk Fusion360 and SketchUp) but

for non-professionals the lack of domain knowledge is a major barrier to

creating working designs. As Baudisch and Mueller note, “The majority

of 3D models found in the online database Thingiverse for example, are

decorative objects, i.e., objects that are desirable because of their shape

and appearance, but that exhibit no functional behaviour.”

3.8.3.2 From designed model to realisation

For the purposes of this review, we will focus on the design – realisation or

process planning phases of the FDM process, which are similar for other

forms of digital fabrication.

Typically, this process has 3 phases. Firstly, after a digital model is created

on the computer using CAD or some other software means, the model is

tessellated to turn it from an ideal mathematically-described model into a

finite mesh of triangular pieces that represent exposed surfaces. Secondly,

this mesh is rendered or sliced into a number of tool paths that describe the

actions the 3DP must take to physically build the model, such as print

head movements, temperature changes, and filament extrusions. These

tool paths represent a specific sequence of machine instructions and are

often rendered into a textual and human-readable format called GCode.
Finally, the GCode is executed step-by-step on the 3D printer to build

the object (Livesu et al., 2017). The software controlling the fabrication

process is often included in the 3D printer itself in the form of firmware,

like the popular, open-source Marlin (Various, 2019b).

Describing these phases in terms of the different pieces of software

involved:

1. First, digital models are exported from CAD software as triangular

mesh geometry, typically in the form of STL files (Wikipedia, 2019b;

Gao et al., 2015). They are often run through intermediate software

packages to check for holes in the mesh or other irregularities such

as MeshLab or MeshMixer.

2. Second, software packages such as the open source Cura are used

to load these geometry files and slice them into machine-specific

tool paths in a particular GCode flavour (a variant of standard

GCode that varies with printer model and firmware).

3. Third, this file is then either loaded directly into the 3D Printer itself

via a SD Card inserted into the printer and then printed via the

printer’s GUI, or streamed to the printer using a USB connection

to the host computer and a program like Octoprint
8

or Ultimaker’s

Cura
9

which monitors and controls the printing process.

As Baudisch and Mueller (and many others) have observed, in terms of

technical progress relative to mainstream computing, this process “lives

https://octoprint.org/
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/software/ultimaker-cura
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10: these later map to the design goals for

LivePrinter in Subsection 7.3.2 (Tasks and

goals)

roughly in the 1960s” in that it resembles the punch-card era when a

computer program had to be loaded and then run without much of a

chance for user intervention once the process is started. Once the GCode

has been loaded onto the printer, there is little the user can do to influence

the fabrication process other than to make sure that nothing unexpected

goes wrong during the hours-to-days-long process of fabricating the

object (Baudisch and Mueller, 2017).

Even in the previous slicing stage, there is often little chance for meaning-

ful user input. This prevents users from catching and solving problems

at early stages of the process, meaning that they have to go through

the entire process before they can fix even simple errors. For example,

many rudimentary problems that the slicing software can catch, such as

excessive overhangs or holes in the mesh, can’t be fixed without going

back to the beginning of the design–realisation process and re-working

the original CAD model for export.

Figure 3.2: Three main phases in process planning (as described by Livesu et al. (2017)) of 1) solid modelling of object geometry, leading to

2) tessellation (surface triangulation) and then to 3) slicing where machine tooling paths are determined, usually as a series of stacked

horizontal layers.

3.9 Challenges and opportunities facing 3D
printing

Baudisch and Mueller (2017) divided the main challenges to desktop

3DP into general themes organised around three levels of scale, from

hardware to users to society. This research project focuses on the second

set of challenges (numbers 2,3,4) in the yellow areas of Figure 3.3
10

:

2 Domain knowledge: the physical knowledge of materials, mechani-

cal and structural engineering
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Figure 3.3: The Six challenges for fabrica-

tion research, and their levels of specificity,

informed by (Baudisch and Mueller, 2017)

3 Visual feedback and interactivity: working interactively within the

(currently) long fabrication times of 3D printing

4 Machine-specific knowledge: understanding and controlling com-

puterised manufacturing systems, including tooling options

To briefly summarise these challenges (each of which is large enough

that Baudisch and Mueller (2017) give them entire chapters in their

book) we start with their concept of domain knowledge. This term can be

paraphrased as “what the software needs to know in order to help users

design an object that is structurally sound, including solving technical

problems” (emphasis added). The question of what it means for software

“to know” and how that manifests in a computational fabrication system

is illustrated in specific examples in the rest of their chapter, such as

the system’s ability to recognise common situations and offer potential

solutions, to offer libraries of interchangeable parts, and to incorporate

simulations of physical structures.

The challenge of visual feedback and interactivity centres around how to

help the user iteratively make aesthetic judgements about their work-

in-progress. The core of the issue is mainly about what form the soft-

ware/hardware interface takes, and how that form mediates the user’s

actions in the exploratory, trial-and-error process of making. Baudisch

and Mueller (2017) recognise that all of these new digital fabrication tech-

nologies fit in between the person and the physical material, adding new

capabilities but also creating an increasing distance between the maker

and their materials. This places extra physical and conceptual constraints

on the act of making, as well as increasing the overall complexity of the

process.

The feedback and interactivity in digital making processes can be com-

pared to the more traditional crafts, where a craftsperson has near-direct

contact with their raw materials. For example, a hand-held chiselling

tool works as a direct extension of the human hand, but harder and more

specialised for chipping away at a stone block. A person using a chisel has

immediate control over the tool and making process, to the point where

they can directly feel and hear the vibrations of the tool scraping the stone.
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Then there are 3D printers, where the designs stage often happens in the

computer, far removed from the printer that will eventually manufacture

the object in a semi-automated fashion, with little or no direct contact

from the designer. This process offers precision, repeatability, and new

aesthetic possibilities, but at a cost of added complexity, constraints

on what forms are possible, and an increased distance from the act of

making.

One of the practical challenges of feedback and interactivity is concerned

with how to bridge the conceptual gap between the user’s design and

the final fabricated object. These previews of the in-progress results of

the user’s design range from static images on a screen to fully interactive

previews that sometimes have tangible results. A preview might be

a static image showing a “snapshot” of the design as it might look

after manufacture, or a 3D model in itself with some digital tools for

interacting with its form and structure. When previews become less

virtual and more physical, they can incorporate the tangible interface

concepts of Shneiderman (1983)’s direct manipulation and Willis et al.

(2011)’s interactive fabrication where making operations are performed on

a physical form in real-time (or thereabouts), or continuously.

In the next challenge Baudisch and Mueller (2017) introduce the idea

of Machine-specific knowledge as “knowledge about and. . .specific to the

fabrication machine at hand”. The examples they give are mainly practical

examples, such as how software might automatically split larger models

into smaller ones so they fit properly into the build volume of a particular

3D printer, or how specific printing motions can be optimised to produce

better models, such as using slower tool movement speeds when needed

or printing at angles for sturdier parts.

The challenge area of Machine-specific knowledge is conceptually awkward

as a top-level challenge when the examples given by Baudisch and Mueller

(2017) clearly require the software to have some encoded understanding

of physical and mechanical systems, which is part of the other top-level

challenge of domain knowledge. For software to help a user to understand a

machine, which is quite literally a mechanical system, the software needs

to encode relevant physical models describing how the machine works.

Since we live in a physical world, any computational system for making

physical objects will need to encode some understanding of physics.

Drawing a boundary between the knowledge of materials and mechanics

in the world, and the inner workings of mechanical fabrication systems,

appears somewhat arbitrary. What is likely meant by this challenge is that

the workings of the machine are as important as a basic understanding

of the physics of the structures that it makes, but perhaps the underlying

challenge for both these areas might be better articulated as a question:

What levels of physical abstraction are useful for computational fabrica-

tion systems? Rigid objects? Soft bodies? Fluids? Or even at atomic and

subatomic levels, leading to quantum mechanics?

This remains an open question, but an imminently practical one for

the designers of these systems and for the practitioners working with

them. When a systems designer creates software and hardware that

hides away complexity or makes complex systems difficult to access and

change, they might be creating viscous constraints for others that they

wouldn’t appreciate in their own practice: “the same desirable flexibility in
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changing information structures should be offered to all users. . .designers

should be alert to the possibility they might be imposing a high level

of viscosity on users that they would not accept for themselves.” (Alan

Blackwell and Fincher, 2010) Perhaps the conclusion we can draw from

Mueller (2017)’s challenge is that 3D printing cannot be treated as a

black box, where designs go in and objects come out. Put another way,

designers and makers cannot ignore the physicality of the fabrication

machine they are using and just concern themselves with the objects that

come out.

3.9.1 Manual computational fabrication

For more manual, direct physical control over fabrication machines, there

have been some promising experiments in interactive fabrication. These

experiments represent a hybrid form of computational machine, blend-

ing physical and computational interfaces in the computer-controlled

production of physical objects (Willis et al., 2011). (Baudisch and Mueller,

2017, p. 230) go further differentiate the turn-taking or asynchronous

aspect of some forms of interactive fabrication with continuous interaction
defined as “systems that fabricate continuously while the user interacts

with the workpiece.” For both cases, their book collects a number of

promising experiments that blend the precision and embedded domain

knowledge of computerised tools with people’s creative intentions during

the real-time fabrication process.

Other studies, such as Mueller, Lopes, and Baudisch (2012), Peng et al.

(2018), and Li et al. (2017) have looked at Augmented Reality (AR) or

computer vision as interfaces for quickly creating on-the-fly tool paths

for machines. In Mueller, Lopes, and Baudisch (2012)’s constructable,
a laser pointer was used to “trace” cutting paths in materials for an

augmented laser cutter. The system followed the general area of where

the user specified a cut, but often substituting the judgement of the

system in place of the user’s wishes by making sure that edges lined up

and shapes were filled. The system helpfully compromised between the

user’s intentions and the structural integrity of the material, as well as

the safety of the cutting process.

In Peng et al. (2018)’s RoMA, a similar approach is taken using an AR

system to allow the user to specify and then pre-visualise 3D printing

operations on an actual physical model. This 3D visualisation, combined

with haptic controls, helps direct a robot arm to perform the desired

fabrication. Again, some control is given up by the user in exchange for

speed of modelling, structural integrity and safety.

For more manual, direct physical control over fabrication machines, there

have been some promising experiments in interactive fabrication. These

experiments represent a hybrid form of computational machine, blend-

ing physical and computational interfaces in the computer-controlled

production of physical objects (Willis et al., 2011). (Baudisch and Mueller,

2017, p. 230) go further differentiate the turn-taking or asynchronous

aspect of some forms of interactive fabrication with continuous interaction
defined as “systems that fabricate continuously while the user interacts

with the workpiece.” For both cases, their book collects a number of

promising experiments that blend the precision and embedded domain
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knowledge of computerised tools with people’s creative intentions during

the real-time fabrication process.

3.9.2 CAD tools and lost information

Current tools (e.g. CAD tools designed for 3D fabrication like Fusion360,

SolidWorks, Blender and Microsoft’s 3D Builder) trying to accommodate

Mueller (2017)’s interactivity and feedback and domain-specific knowledge
often bolt on many of the elements described above by Tompson et

al. (2016) to a classic CAD geometry-oriented workflow, like physics

and generators for different types of microstructures. Whilst it can

be helpful to have general knowledge of the physics of models using

Fixed Element Analysis (FEA) and some rudimentary understanding

of material properties, these packages are still a long way from being

holistic design tools that can manage a process from start to finish (Livesu

et al., 2017). A few software packages working in series are required to

get to a final result, as seen in

This has a lot to do with historical, pre-AM workflows. In the recent

past, industrial designers would create a product model (virtual or

physical) and then use Process Planning (PP) to develop its manufacturing

process. Products were often manufactured in multiple stages using

multiple techniques, such as Subtractive Manufacturing (SM) and other

traditional techniques that were “so complex that the experience of a

skilled manufacturer [was] unavoidable.” With AM, the manufacturing

process happens (mostly) in a single machine, and so the process planning
is mostly about build orientation and machine-specific settings (Livesu

et al., 2017; Edwards, J. Chen, and Warth, 2016).

Many contemporary professional CAD tools were originally designed for

this multi-stage, pre-AM workflow, where each software tool is a single

link in a software chain, designed for a specific stage of manufacturing,

meant to be utilised by specialised technicians. For reasons of basic

compatibility, these tools adhere to lowest-common-denominator data

sharing formats that allow only limited amounts of information to be

shared with other software packages, even with ones directly adjacent in

the workflow chain.

This can be seen in common file formats used in CAD like STL that

only retain geometric information about shape and say nothing about

tooling, materials, or texture (Wikipedia, 2019b; P. F. Jacobs, 1994). This is

beginning to change with formats like 3MF, but at the time of this writing

the interoperability of these formats between software and machines

is still limited (Wikipedia, 2019a). Again, this problem is recognised in

Mueller (2017)’s challenges, where the domain knowledge and machine-
specific knowledge of each design is lost when it is shared in lossy file

formats (like STL) between designers and makers. A software package

might run a complex FEA simulation on a part, but that information

almost never finds it way into the output file when it gets passed to

another software tool.
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3.9.3 Filling up space with plastic

Ordinarily the 3D printing process starts with a digital model created in

a Computer Aided Design (CAD) program that defines the geometry of

the object that is to be printed. This geometry mostly defines the outer

and inner surfaces of the object, leaving the process of describing how

the internals are to be manufactured to another piece of software called

the “slicer”. The slicer determines the layer-by-layer construction of the

object based on the properties of the model of printer to be used in that

construction process. The process of starting with a model, optimizing

the geometry, and preparing the machine instructions for manufacturing

is often referred to as “Process Planning” (Thompson, 2007; Livesu et al.,

2017) and has been previously discussed in Section 3.8.3 (The Process of

3D Printing).

The problem of how to efficiently generate 2D tool paths that fill up 3D

space in a structurally sound way whilst minimising time, material and

movement remains an open area of research (Jin, He, J.-Z. Fu, et al., 2014;

Jin, He, G. Fu, et al., 2017; Ding et al., 2016). Current software packages

offer a variety of filling patterns, from linear stripes to diamonds to

vector patterns. Recent research has also looked at the properties of the

Hilbert curve for filling spaces both rectangular and irregular (Ding et al.,

2016; Papacharalampopoulos, Bikas, and Stavropoulos, 2018), which is

discussed in some detail in a later section.

Filling patterns that take more time to move across a space will not only

waste machine and staffing time but also have higher energy costs. Tool

paths that can fill spaces in continuous lines are preferred as they result

in less extraneous movements of the print head as it jumps around from

the start of one filling movement to another. These extra moves are called

“travel moves” and can add quite a lot of time as the tool head raises

up from the end of one movement, retracts the hot filament to prevent

leakage during travel, moves to another area, lowers down again and

feeds the filament forward to prime it for the next drawing operation.

3.9.4 Controlling 3D printing with code

One solution for adding back in more detailed knowledge of material

physics and manufacturing might be to use a more descriptive format,

like computer code, to represent manufacturable objects. The logistics of

adopting such a format are not simple, as they would rely on competing

software and hardware manufacturers, amongst others, coming to a

public agreement. For now, this could be somewhat achieved through

adding textual interfaces to existing CAD software. Graphical interfaces

have been a useful way of interacting with software, but they have limited

screen space in which to represent complex processes with many options,

with the result being that parameters and processes inevitably get left off

the screen.

As a quick and easy way of giving advanced users control to extend

the software, textual interfaces like REPLs have already been added

to popular 3D printing rendering, slicing and monitoring software. In

combination with GUIs, they enable users to do more advanced tasks

like manipulating models programmatically and directly controlling 3D
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11: https://github.com/cncjs/cncjs

printers. REPLs allow users to customise many aspects of the software

program, including the GUI itself.

In the design – realisation phase of 3DP REPLs are used in both slicing and

print managing and monitoring software. Sometimes these functions are

combined, as with the REPL in the slicing and monitoring software Cura

which provides a way to interrogate the slicing process and send simple

GCode commands to the printer during its operation.

Figure 3.4: The CNCjs interface, from https://github.com/cncjs/cncjs

Similarly, the open source printer monitoring software Octoprint and

CNCjs
11

provide a REPL for tweaking parameters and sending simple

commands. This is of limited use in interactive programming because

of the size of the REPL area, and the lack of a functional text editor and

line-by-line execution, as evident in Figure 3.4.

Interestingly, there is little evidence on the online forums that REPLs are

used for anything in 3D printing except setting up prints using machine-

specific settings and tweaking prints-in-progress by using GCode to alter

settings not found in the GUI. Part of the reason for that could be the

design of the REPLs, which often only allow a user to type in a single line

of code at a time, thus preventing them from easily writing and running

programs, as seen in Figure 3.4 under the “Console” area in the bottom

left.

Code can also be used at the start of the design process, before a model

is manufactured or realised. During the concept/design stage of 3DP, code

is sometimes used to generate a range of models based on different

mechanical or physical procedures. In parametric and algorithmic 3D

modelling software packages, like Rhino/Grasshopper and Blender,

code allows the designer create, alter and add geometry to models with

precision and repetition, both of which are difficult to represent through

manual onscreen controls. For example, code allows model geometry

to be expressed precisely (specifying (x, y, z) vertex data as explicit

https://github.com/cncjs/cncjs
https://github.com/cncjs/cncj


3.9 Challenges and opportunities facing 3D printing 43

numbers like [2.0, 4.5, 0.0]) and is often combined with recursive and

iterative processes like procedures, loops and functions that can describe

a method for generating millions, even billions of data points in just a

few lines. Again, this is not yet a very portable way of working because it

requires designer-developers to work with multiple files across multiple

pieces of software, different versions of that software, and even across

multiple programming languages!

Code is also important in the relatively new field of metamaterials, which

are materials that deform in useful ways due to the complexities of their

structure. A variety of these mechanisms exist, such as simple “walking

machines” and one-part pliers and door handles (H.-T. Chen et al.,

2006). Their repeating structures are often generated programmatically,

meaning that they require software to design and generate the physical

geometry that will be used for 3D printing (Florĳn, Coulais, and Hecke,

2014). This means that all the information that parameterises the model’s

mechanism is lost when the CAD file is shared between users, unless

they also share the original software that generated it and all the relevant

files to recreate the model.

An example of this in practice is seen in Amorim, Nachtigall, and Alonso

(2019), where they experimented with algorithms and a series of software

processes for generating bespoke footwear. The team used a series of

software packages to design 3D printed metamaterials with different

mechanical properties (e.g. stiffness, softness) for use in the soles of the

footwear. The process was complex, and one of the key findings was

that current software packages are too limited to support designers of

metamaterials, even though the potential gains in sustainability and

customised material properties could be significant.

3.9.5 Programmatic tool paths

For many practitioners, computational fabrication (as the broader cat-

egory encompassing AM) has been understood as a holistic process

integrating materials knowledge, mechanics and software in ways that

are not easily untangled. Some of the main aspects of this process were

laid out by Tompson et al. (2016):

To receive the full benefits of AM, designers must learn to

think differently while focusing on creating robust indus-

trial solutions with added value. Design theories, processes,

methods, tools, and techniques (Lutters et al., 2014) must

be adapted or developed to address the inherent coupling

between material, geometry, and quality in these systems.

Specialized and application-specific tools must be developed

to support the design of cellular structures, metamaterials,

heterogeneous artifacts, biological scaffolds (e.g. (Podshiv-

alov et al., 2013)), and more. Finally, it must be acknowledged

that each build is a design artifact with its own requirements

and constraints, and its own features (e.g. support structures,

part layout, etc.) to be designed and optimized. Thus, DfAM

must extend beyond the product to the production system

and consider the entire value chain.
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In 3D printing, at the junction of “material, geometry, and quality” lies

the concept of the tool-path. The path that the print head takes during the

fabrication process determines much of the success of the final outcome.

In field of computationally fabricated ceramics, Jonathan Keep, a potter

and sculptor, built his own version of a clay 3D printer so that he could

experiment with his tool paths directly. He used his printer to evolve a

hybrid way of working with his machine; a printing process combining

an automated material deposition system with a more manual assembly

process, informed by his deep knowledge of his craft (Keep, 2020; Keep,

2014). He calls this process of “computerised coil building” (Keep, 2014,

p. 32) a new, fourth way of making ceramics beyond traditional methods

of hand-building, throwing, and moulding.

Keep’s reference to “coils” reveals the depth of his relationship between

the shape of the fabrication process and the ultimate form of his pieces.

As obvious as this might seem to any craftsperson used to working with

their hands, it should be just as obvious to computational designers

using 3D printers that rely on a single, moving tool head to build their

forms up line-by-line, and layer-by-layer. It is also another example of

an area of the fabrication process that could benefit from the integration

of code with geometry data, resulting in a computationally-augmented

manufacturing process.

The application of computer programming to the shape of the fabrication

process itself can be seen in the growing body of research into ways of

procedurally optimising the tool paths in 3D printing to help increase

part strength, lower printing speeds, and create different textures across

the surface of the finished objects. Continuous deposition, where the

tool head moves throughout the entire manufacturing process without

pausing or stopping, and the material flow is kept steady without any

retractions, is one such promising area of research. Zhao et al. (2016)

worked with spiral fills, showing that optimising the tool path could

decrease printing time and also increase the quality of the final print

in certain circumstances. Gupta, Krishnamoorthy, and Dreifus (2020)

created a framework for generating a single, continuous tool path to

fabricate a 3D model that doesn’t cross over itself. Papacharalampopoulos,

Bikas, and Stavropoulos (2018) and Bertoldi et al. (1998) looked at using

continuous curves (such as Hilbert curves) for path planning. These

are just a small selection of other published algorithms, each with their

real-world drawbacks depending on the specific methods chosen (Ding

et al., 2016).

Others go beyond optimising paths for manufacturing pre-rendered

objects. Programmatic paths can become an integral part of design,

allowing a designer to create forms that adapt to their surroundings. In

Pattinson et al. (2019), for example, an explicitly programmed tool path

results in flexible mesh materials with bespoke mechanical properties

and geometry. These materials shaped to conform to the soft tissue of

living bodies where they are designed to be implanted, creating new

kinds of “wearable” devices.
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MIDI (Musical Instrument Digital Inter-

face) is an industry standard music tech-

nology protocol for connecting musical

devices. The MIDI standard includes a

definition of note numbers mapped to

standard Western musical pitches that I

used in the design of LivePrinter. MIDI

is quite a commonly-supported standard,

and has been around in some form since

about 1983 (see https://www.midi.org/)

3.9.6 3D printing as sonic performance

Three motors drive the print head in x, y, z directions where x is side-to-

side, y is front to back, and z is up and down (often moving just the print

surface, or “bed”). Another motor feeds the plastic filament through the

head, also pulling it back at times to prevent unwanted material leakage

in a process referred to as “retraction”.

As these motors spin, they vibrate and make sound. People have used 3D

printers to make music, notably the Imperial March from Star Wars and,

less notably, Nickelback (Milkert, 2014). Also, performer and researcher

Ezra Teboul composed a series of works called “Music of the spheres”

consisting of 3D-objects-as-scores for a MakerBot 3D printer using his

knowledge of the sonic properties of 3D printed forms and musical

structures (Teboul, 2020).

Helpfully, a library for the Python language is available to convert MIDI

note numbers to motor frequencies (Westcott, 2015). The sounds of the

motors are relatively quiet but can be captured using contact microphones

attached directly to the printer motors and then amplified using audio

amplifiers, as was done during the experiments in this chapter.

This leads us to the possibility of livecoding performances using 3D

printers. As A. Sorensen, Swift, and Riddell (2014) pointed out, livecoding

has an inherent cyber-physicality in that it causes “physical perturbations

in the world” through executing computer code. These perturbations are

often experienced in the vibrant humming of speakers or the blinding

light of projection, but they can also have more direct effects in the

physical world.

Livecoding can be a means for directing the physical movements of

machines, such as robots and 3D printers. This change in media from

sound and screen to machine presents some unique challenges. For 3D

printing, one of the biggest challenges is how improvise when making

new forms out of extruded lines of plastic, without accidentally destroying

those forms in the process. This means moving the printing tool head

safely and without hitting previously constructed structures.

Also of concern is the structural soundness of the printed fill patterns.

Some have better shear strength, others better tensile strength. It is not

strictly necessary to fill up all the empty space inside a print if the

geometry of the fill can support the forces applied to the object from

outside. For example, diamond-shaped fill patterns result in diamond-

shaped air gaps inside the printed object, which is then covered with an

outside “wall” so that the outer surface is smooth and unbroken. In the

unique use case of 3D printing as audio/visual/sculptural performance,

the strength of the printed objects is not necessarily as important as other

aesthetic properties of the performance like sound and visual form.

https://www.midi.org/
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Figure 3.5: A well-worn piezo-electrical

disc is attached to the z-axis motor of a

3D printer, acting as a contact microphone

that picks up the sound of the motor vi-

brating as it is used in printing operations.

3.10 Conclusions

Clearly, there are many opportunities in the computational design process

and 3D printing in particular where code could be used to describe forms,

or families of forms, instead of using static geometry. As researchers have

shown, current software packages may have some support for using code

to generate forms, but they currently lack standardised support for using

code to directly control manufacturing processes (i.e. tool paths). This

limits our ability to experiment with material properties and adaptive

geometry, which has implications in the fields of metamaterials and

bioimplants, to name two areas that could directly benefit from more

programmatic manufacturing.

At the same time, the ways that users currently interact with the 3D

printing process also leaves much to be desired. New areas of research

like interactive fabrication and augmented reality fabrication have some

potential to get users directly involved with the entire fabrication pro-

cess, from start to finish. What remains under-explored is the role that

interactive programming can take in the interactive fabrication process.

Perhaps livecoding systems can be helpful points of reference in such

a practice-led research process. A number of useful examples of such

research-through-design models exist, like A. Blackwell (2018)’s “craft

practices,” along with a growing number of livecoding and interac-

tive programming systems that can be used as examples of technical

implementation patterns.
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4.1 About

This chapter explains the research methods used in this thesis and how

they relate to the nature of the research goals. It discusses how these

methods and their associated outcomes were influenced by the abductive

theories of Research-through-design, practice-led craft research and other

qualitative research methods. Finally, it lists the main research activities

and outcomes, and links them to key influences from the “design canon”

of livecoding and interactive programming projects.

4.2 Introduction

The initial work on the thesis began in 2015 with a series of experiments

exploring computationally-designed, semi-generative models optimised

for 3D printing. When these experiments hit up against the limited capa-

bilities of current 3D printing software and the difficulty of optimising

prints for FDM 3D printers, the project pivoted into trying to answer the

short question, “What would it look and feel like to combine livecoding

and augmented manufacturing into an artistic practice?”

The process of trying to answer this question was abductive, iterative,

and varied in approach. As with many practice-led research activities, it

is hard to separate the research outputs from research activities because

they are so intrinsically intertwined. The underlying development process

employed a mixture of empirical and reflective methods, whose activities

could be categorised as: unstructured interviews for background research;

structured interviews; user studies; reflective software development;

reflective production of physical artefacts for exhibitions; and reflective

production of live performances.

As part of the background research we conducted interviews with

a variety of practitioners who had some experience of 3D printing,

especially with interactive or computational fabrication. These interviews

helped us understand how others approach 3D printing in their practice,

and what they hope to get out of it. These interviews, along with other

user studies, are discussed in detail in Chapter 7 (User Studies and

Analysis).

Insights from the interviews, combined with reflective experience from

our own experiments, led to the development of a bespoke software and

hardware system for experimenting with an interactive programming

approach to computational manufacturing, ultimately called LivePrinter.
This system embodies a new, more general approach to interactive 3D

fabrication that we call Interactive 3D Printing (I3DP). The design of a

“typical” I3DP system is discussed in the context of various cognitive and

usability theories in Chapter 5 (Designing for Interactive 3D Printing).
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1: http://livecode.toplap.org/2018/

events/algorave/

2: See Subsection A.1.1 (Goldsmiths Algo-

rave 2019)

The specific design details and technical challenges inherent in imple-

menting the LivePrinter system can be found in Chapter 6 (Implementing

an I3DP system: LivePrinter). Later on, When self-testing proved that the

LivePrinter system was stable enough as a hardware and software system,

we ran a series of structured user workshops to test the usability of the

system and to explore the concept of livecoding 3D printing in general,

which are also recorded in Chapter 7 (User Studies and Analysis).

The data from the user studies and interviews were mainly evaluated

through a thematic analysis. The results of this evaluation, combined

with a reflection on the Cognitive Dimensions of Notations (CDNs) (T. R. G.

Green and Petre, 1996; Alan Blackwell and Thomas Green, 2003; A. F.

Blackwell et al., 2001), helped us analyse details of the design of the

interactive programming systems.

Whilst the user tests were underway, LivePrinter was being used for a

series of performances and as a vehicle for creating physical sculptures.

These activities, along with reflective examples from the researcher’s

practice are discussed in Chapter 8 (Filling space, filling time).

4.2.1 User studies undertaken

The key user research activities of each type that were undertaken during

the project were:

▶ 2017–8: Initial exploratory interviews with 3D printing end users

and practitioners

▶ 2019 Jan. 9–10, Goldsmiths: 4 workshop sessions on LivePrinter (2

per day), approx. 24 participants of mixed ages, technical literacy

and professional backgrounds

▶ 2019 Jan. 16, ICLC at MediaLab Prado, Madrid: workshop session

with about 8 livecoders attending the conference

▶ 2019 Feb. 19, Goldsmiths: workshop session with 6 MA/MFA

Computational Art students with experience of physical computing

▶ 2019 June 3, Brooklyn Research, Brooklyn: workshop session

with 7 participants with backgrounds in music production, art, or

hardware/software development

4.2.2 Exhibitions and presentations participated in

The key performances, exhibitions and other events from this thesis

were:

1. 2018, early experiments printing on materials; initial software

development for LivePrinter

2. 2018 Sept. 1, TOPLAP Moot Algorave, Sheffield, UK
1
: first public

performance

3. 2019 Feb. 15, Goldsmiths Algorave for TOPLAP’s 15th birthday
2
:

first full performance

4. 2019 May 5-6 Expressive ’19 Art exhibition at Eurographics 2019:

exhibition of generative sculptures created using LivePrinter

http://livecode.toplap.org/2018/events/algorave/
http://livecode.toplap.org/2018/events/algorave/


4.2 Introduction 49

3: http://www.emutelab.org/blog/

summerworkshop

5. 2019 Jul. 24–27, the Mimic/SEMA project’s machine learning Live-

coding retreat and performance in Brighton, UK
3
: minigrammar

syntax for Interactive 3D Printing developed

6. 2019 Aug. 10, LiveCodeNYC Algorave at Wonderland, Brooklyn,

NY: second full public performance

7. 2019 Sept. 19–22, London Design Festival Design Research for

Change (DR4C) Exhibition (Rodgers, 2020): exhibition of generative

artefacts, code, techniques

8. 2020 Jan., ICLC in Limerick, IR: poster presentation about LivePrinter

and using Hilbert curves for physical techno music performance

9. 2020 Apr. 28, CyberYachtVR Algorave in VR on Mozilla Hubs: third

public performance

10. 2020 May 8, Live-streamed performance for the Quarantine Stream
event: fourth public performance

One can get a sense of how these activities progressed by looking at a

timeline of the code development over the main period of the thesis,

2018-2019, seen in Figure 4.1.

http://www.emutelab.org/blog/summerworkshop
http://www.emutelab.org/blog/summerworkshop
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Figure 4.1: A timeline of key research and development events during the project. To view these changes in more detail, download the

project via GitHub and run: git log stat since 2019-01-01 until 2020-01-01

4.3 The research process

The shape of this research process could best be described as belonging

to the Research-through-design family of approaches. These processes can

often be described as wicked problems, where success is hard to define,

and the design process is inductive, iterative, and prototype-led, arriving

at a potential solution first before the problem can be fully understood

(Rittel and Webber, 1973). In the words of Koskinen et al. (2012, p.6) this

process is about the creation of “. . .vehicles for research about, for and

through [art &] design” (Matthews and Wensveen, 2015), sometimes
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called “constructive design research” or research that “imagines and

builds new things and describes and explains these constructions”.

In particular, the cybernetic model of design research Jonas, 2007; Jonas, 2015

was an important conceptual guide. It situates the designer–researcher

inside their community, creating artefacts and interventions for both

themselves and their community in an abductive, iterative fashion. There

is no boundary or hierarchy between researcher and “users” in the

community, which was appropriate in this situation because many of the

participants in this study were livecoders and researchers in their own

rights, or experts in their design practices, with important insights to

contribute.

Each experimental artefact and intervention was guided by the cybernetic
model’s (Jonas, 2015, p. 26) process of “internal or external perturbations

(called ideas, creativity, intuition, accidents, environmental changes,

etc.)” to create variations to aspects of the LivePrinter system (and it’s

associated outputs) leading to “stabilizations (negative feedback)” in

the evolution of different versions and outputs, or “amplifications and

evolutionary developments (positive feedback)” based on analysis of the

results.

The co-evolution of new computational tools for a design process, as

part of a design process, is also a form of research about design itself as

noted in Gaver (2012), Jonas (2007), and Jonas (2015). This part of the

process is evident in Chapter 5 (Designing for Interactive 3D Printing) on

I3DP systems design, and in Chapter 6 (Implementing an I3DP system:

LivePrinter) on the implementation of the LivePrinter system, which

have as much to say about the process of designing such systems as they

do about using them.

In terms of specific research outputs, Alan Blackwell and Aaron (2015)’s

notion of practice-led craft research was also a helpful guide. This pro-

cess, which is arguably a re-framing of design-as-research lists some key

components of the process that are more specific to creating interactive

programming systems for practice-led research, especially for livecod-

ing:

i) understanding of the design canon – a body of exemplars

that are recognised by our community of practice as having

classic status;

ii) critical insight derived from theoretical analysis and from

engagement with audiences and critics via performance,

experimentation, and field work;

iii) diligent exploration via “material” practice in the craft of

programming language implementation;

iv) reflective critical assessment of how this new work should

be interpreted in relation to those prior elements.

from Alan Blackwell and Aaron (2015, p. 3)

Mapping Alan Blackwell and Aaron (2015)’s framework to this thesis, the

understanding of the design canon can be found in the Chapter 3 (Literature

Review) and briefly below; the critical insight. . . can be seen in both

the engagement with users in Chapter 7 (User Studies and Analysis);
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the exploration of material practice in literal form in the material and

form studies in Chapter 8 (Filling space, filling time) and in software

implementation in Chapter 5 (Designing for Interactive 3D Printing) on

I3DP systems design, and in Chapter 6 (Implementing an I3DP system:

LivePrinter); finally, reflective critical assessment can be found throughout,

and particularly in the last chapter that reflects on this process and looks

towards the future.

4.3.1 A selection from the “canon of influences”

The LivePrinter project is part of a lineage of computational and program-

matic tools for creative human-computer expression and augmented

physical making. In more contemporary terms, it exists inside the open

source, livecoding community. Some major livecoding influences were:

1. Sonic Pi
*

(Aaron and Alan Blackwell, 2013): Livecoding music for

a wide audience using an all-in-one system and friendly syntax

2. TidalCycles
†

(and underlying Haskell): combining patterns of

movements and chaining together operations to (mainly) make

music

3. Livecodelab
‡
: Quick and playful audio/visual livecoding in the

web browser

4. ixilang: livecoding system with an abbreviated syntax, designed

to be fast with “a maximum 5-second wait before some sound is

heard” (Thor Magnusson, 2011)

Except for TidalCycles, which unfortunately relies on a large Haskell

language installation, the other two influences are fairly trivial to install

(in LiveCodeLab that means visiting a webpage) and start to use. All

of them derive their livecoding syntax from major programming or

scripting languages (Ruby, Haskell, or Typescript) but present a somewhat

simplified or bespoke syntax to the beginning livecoder that can still be

extended by experts.

Other influences were more about constructing visual images or 3D

forms:

1. Turtle graphics & Logo: for simple drawing and movement syntax

(Papert, 1980).

2. Processing
§
: providing basic graphic design tools in a program-

matic way using a simplified editor and syntax

3. OpenSCAD
¶
: programmatic solid 3D modelling

These were not livecoding tools per se, but still interactive enough in

nature so that programs were relatively easy to run and see the results.

Another influence was the Assembler language for its brevity and con-

ciseness of language and limiting of the basic operations available to

*
https://sonic-pi.net/

†
https://tidalcycles.org/index.php/Welcome

‡
https://livecodelab.net/

§
http://processing.org

¶
http://www.openscad.org/documentation.html
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programmers, all of which are close to the underlying mechanical model

of the computer, such as setting individual bits in registers. The other

software influences dealt in more higher-level abstractions, which would

hide some underlying complexity of 3D printing that LivePrinter sought

to expose.

Similarly, the concept of L-systems (Prusinkiewicz and Lindenmayer, 2012)

influenced some experiments in creating more concise and potentially

recursive descriptions of printer operations, as well as inspiring some

artistic explorations in form conducted with LivePrinter.

In 3D printing research, Mueller, Im, et al. (2014)’s WirePrint was influ-

ential in that it showed possible ways of making that could be explored

with bespoke software, outside the boundaries of the usual 3D printing

workflows of modelling, rendering and tool path generations. WirePrint’s

translation of solid forms into physical, 3D “wireframes” that could be

printed quickly on desktop 3D printers opened up new possibilities for

shapes and form-making, as well as in making existing form-making

more efficient in its use of material and printing time.

Finally, Ezra Teboul’s performances using 3D printers and composing

for 3D printers were influential in that they brought to the forefront the

musicality of this manufacturing system, and how that could become a

part of humanising its operation (Teboul, 2020, p. 106).

4.4 Reflecting on the design process

The ultimate goal of this process was to find novel relationships between

elements of interactive programming and livecoding practice (code syn-

tax, performance settings), 3D printing, and other creative practitioners

(product and textile designers) that might provide us with direction for

future research into augmented making. The evolution of this livecoding

computational manufacturing system was thus guided by an iterative

process of abductive analysis, trying in each development cycle to cultivate

surprising and “anomalous” empirical findings leading to the discovery

of novel theories about aspects of computational communication and

collaboration in manufacturing (Dunne and Dougherty, 2016).

Regardless of what we label it as, this iterative, practitioner-led, pattern

of interaction design is seen in a number of other livecoding projects

such as the aforementioned TidalCycles, Hydra and Sonic PI (Aaron and

Alan Blackwell, 2013; McLean and Dean, 2018). Programmer–artists who

are instigating these projects have the means for bottom-up innovation

of their own bespoke computational tools, and they are re-imagining

these tools as unpredictable and improvisational vehicles for constructive

design research in their practices. New livecoding practices are thus

invented, and take root in the community.

3D printing and other forms of CNC manufacturing are not simply new

ways of manufacturing – they are new ways of thinking and making,

with the potential to have profound effects on our environment and

society. They can fundamentally change the way that we design new

physical forms, use plastic material and transfer technical skill from

humans to machines and vice-versa. As a computational designer myself,
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my experience using this tool and the questions it raised for my own

practice and that of the community needed to be taken into account, as

do the artefacts and experience that arose from this practice.
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5.1 About

This chapter introduces a general type of text-based, interactive pro-

gramming system, or “notational system”, specifically for controlling

3D printers (but extendable to other CNC machines) in a new practice

called Interactive 3D Printing (I3DP). A “typical” I3DP system has been

abstracted from the design, implementation, and user testing of the

LivePrinter system, as described in the following two chapters. The dis-

cussion of the cognitive trade-offs inherent in designing a mainly textual,

interactive, real-time, 3D printing environment is supported by applying

some general theories of human cognition in relation to the Cognitive

Dimensions of Notations framework (the CDNs). Specifically, it identifies

key user activities that support both intuitive and deliberative modes

of thinking in interactive programming systems. These activities are

analysed using the CDNs to highlight trade-offs inherent in designing ap-

propriate notational systems that supports them. This discussion should

be relevant to anyone designing interactive programming systems, and

especially livecoding environments.

5.2 Introduction

Most popular 3D printing software packages present graphical interfaces

to users that let them do basic modification tasks like selecting and

loading 3D models, changing various numerical parameters, and loading

and saving presets, as well as visually monitoring printer properties

and print jobs. In addition, they sometimes have some basic textual

input, usually in the form of a Read-Evaluate-Print-Loop or “Console”,

as discussed in Subsection 3.9.4 (Controlling 3D printing with code).

Here we introduce the concept of an Interactive 3D Printing (I3DP)

system, where the emphasis on graphical vs. textual control of the

printing process is flipped. These systems can be thought of as a new

class of interactive programming environments, specifically for textually

interactively programming 3D printers.

As we have previously observed, designing interactive programming

(and especially livecoding) systems is a kind of wicked problem (Rittel and

Webber, 1973), a framing device introduced in Section 3.7 (Designing

livecoding systems). There are many possible software architectures for

interactive programming and livecoding systems, as well as a number

of trade-offs in how they can be visually or otherwise presented to a

user. In the next chapter, Chapter 6 (Implementing an I3DP system:

LivePrinter) we will discuss the specific software implementation details

for our working I3DP system, called LivePrinter. First, by abstracting

our design of an I3DP system to a “typical” one, we can focus more

on the cognitive trade-offs inherent in system’s notation rather than

implementation-specific details.
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Figure 5.1: A “typical” I3DP system, in this

case the LivePrinter system developed as

part of this thesis, interpreted as a nota-

tional system according to Alan Blackwell

and Thomas Green (2003) .

1: Examples of how web components

like the CodeMirror text editor could be

used in the GUI of an I3DP system like

LivePrinter can be as seen in Section 6.4

(The LivePrinter Graphical Interface), and

specifically Figure Figure 6.2 on page 72

for an overview.

2: Bootstrap can be found at https://

getbootstrap.org

5.3 I3DP systems as notational systems

An I3DP system can be thought of as a type of notational system. According

to Alan Blackwell and Thomas Green (2003, p. 7), there are four aspects

of a notational system (illustrated in Figure Figure 5.1):

1. Interaction language or notations

2. Notation-editing environment

3. Medium of interaction

4. Sub-devices (embedded systems, helpers, redefinitions)

In the case of our prototypical system, the interaction language(s) and
notation would be realised through:

1. A general programming language – an all-purpose language for

users to interact with the overall system, such as JavaScript

2. An Application Programming Interface or API – basic functionality

provided through a number of pre-defined textual abstractions

3. A minigrammar – a domain-specific syntax more specific to describ-

ing I3DP operations, built on top of the general. In LivePrinter, this

is called the minigrammar.

4. A Graphical User Interface or GUI – the user-facing GUI elements in

a web browser described
1

As a practical example, the notation-editing environment could be realised

as a web application viewable in a standard web browser containing

a text editor component and a variety of basic interactive controls and

informational displays. Most GUI elements could then be standard HTML

elements, with some additions from popular fast-prototyping libraries

like the Bootstrap framework.
2

This notation-editing environment could include a few sub-devices of

note, such as the web browser itself. It might be strange to think of the

browser as a sub-device, but the nature of web browsers is that they are

mostly obscured from the user’s view by whichever web application they

https://getbootstrap.org
https://getbootstrap.org
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3: See Subsection 7.4.8 (Task 8: Using

LivePrinter (freestyle drawing)) for exam-

ples of this.

are running, until the user decides to use the built-in Developer Tools

commonly found in major web browsers. These tools reveal that the web

application and even basic browser properties can be modified, to an

extent, by a REPL built into them.

Other helpful sub-devices would be pens and paper provided for users to

sketch out ideas in free-form and visual ways not possible in the textual

interface
3
. They could also function as way for users to collect and share

their designs and methods. Extra notation for quick sketching could

potentially make up for a lack of built-in 3D or even 2D visualisation

notations for system elements and properties. This was observed in the

user studies discussed in Subsection 7.4.10 (User’s perspective vs. method

naming), where a lack of built-in visualisations for print head position

and printing direction was a source of user frustration when using the

LivePrinter I3DP system.

Lastly, another sub-device for displaying notation would be the docu-

mentation. To get users involved in maintaining and extending this

documentation it could be written in a format like Markdown that af-

fords easy reading and editing, and hosted on a public git repository

such as GitHub or GitLab. Users could view the documentation in their

web browser and use git “pull requests” to directly submit changes, or

propose changes to it through GitHub’s “issues” system.

The secondary sub-device of the 3D printer provides some lesser means

of interaction, in the form of a basic GUI on the printer itself that is

often accessible via a rotary switch and button, and a power switch.

This secondary interaction allows users to perform a number of basic

functions and modify the properties of the printer during an operation,

such as changing the bed or head temperature.

The medium of interaction for the system would primarily be visual and on-

screen through interacting with the GUI, using the keyboard and mouse

for coding and manipulating GUI elements. The software that bridges the

user-facing GUI with the 3D printer would not be accessible to the user,

however. This software connection allows the devices to communicate

with the printer’s firmware, which cannot be directly modified by a user

during printing operations. This is because most 3D printers are designed

to connect to other devices via a built-in serial connection, often over USB,

which would then provide their own user-facing interface to printing

firmware functions. In practice, a standard web server with access to the

computer’s serial port can be used for this two-way interface between

the web app and the printer firmware. For example, in LivePrinter the

software interface between the I3DP system’s user-facing GUI and the

Marlin printer firmware was implemented as a web server running on a

separate computer, built on the Python library Tornado, with a physical

USB serial connection running directly to the printer.

Additionally, it is possible to make sounds using the printer in various

ways, both mechanically through the movement of the printer motors,

and digitally through the built-in electronic buzzer acting as a speaker.

These sounds give users audible feedback on the printer’s speed of

movement and the density of current operations simply by listening

to it. More explicit sounds, using the built-in electronic buzzer, can be

triggered via GCode. Importantly, both of these forms of audio notation
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4: The Cognitive Dimensions of Notations

are discussed and listed in Subsection 3.7.1

(The Cognitive Dimensions of Notations).

can be controlled using interactive programming, albeit in different

ways.

5.4 Aligning user understanding and notational
systems

Fundamental to a supporting high degree of the Cognitive Dimension

of role-expressiveness in I3DP is creating an alignment between the user’s

growing understanding of the 3D printing process, their knowledge of

interactive programming, and the system’s notation
4
. This brings up the

question of the frame of reference of the user when they try to interpret

the purpose and meaning of the system’s notation.

When tasked with learning a new machine or process, users form their

own analogies to help them explain its behaviour. These explanatory

models represent how users think the machine functions.

Users also rely on implicit or explicit conceptual models provided by

designers (Norman, 1983, p. 7). These models, also called implementation
models by Cooper et al. (2014, p. 16), are designed to “provide predictive

and explanatory power for understanding the operation” of the system.

As Cooper et al. (2014, p. 16) puts it, “. . .users of a user-friendly system

should be able to construct a viable mental model directly from the target

system”. In other words, these designer-provided models help teach

users how to use the system and guide them through its everyday use,

although Cooper et al. (2014, p. 16) note that in practice this is difficult to

achieve.

Cooper et al. (2014)’s use of the term mental model is more general and less

rigorous than Philip Nicholas Johnson-Laird (1983)’s definition which is

discussed later. Philip Nicholas Johnson-Laird (1983)’s definition relies

on set theory and logical proofs, whereas Cooper et al. (2014) usage of the

term acts as more of a shorthand for a collection of cognitive processes. In

particular, the Mental Models theory from Philip Nicholas Johnson-Laird

(1983) has three fundamental principles:

First, each mental model represents what is common to a

distinct set of possibilities. So, given an assertion, such as “It’s

raining or else it’s snowing”, you have two mental models

to represent each of the two possibilities (on the assumption

that both can’t be true). Second, mental models are iconic,

that is, their structure as far as possible corresponds to the

structure of what they represent. So, an assertion such as,

“All the artists are bakers”, has a model representing the

relation between the two sets of individuals. Third, mental

models based on descriptions represent what is true at the

expense of what is false. This principle of truth reduces the

load that models place on working memory, but it can lead

to predictable errors in reasoning (P. N. Johnson-Laird, 2013,

p. 1).

Understanding how a system works sometimes speeds up people’s

ability to learn that system and retain knowledge about its operation, so

providing coherent and useful model for users to internalise should help
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5: Kieras and Bovair (1984) use the term

device model instead of Norman (1983)’s

mental model to distance themselves from

the more specific term mental model from

Philip Nicholas Johnson-Laird (1983)’s

Model Theory of cognition. In Kieras and

Bovair (1984) the device model is really the

implementation model provided by the sys-

tem’s developers (or usability researchers)

and the user’s mental model is never

explicitly constructed, only their perfor-

mance is evaluated in terms of speed and

information retention.

them learn faster
5
(Ben-Ari and Yeshno, 2006; Kieras and Bovair, 1984). In

various studies, when users are provided with explicit conceptual models

of systems they rely less on trial and error and instead approach problem-

solving more strategically and conceptually (Ben-Ari and Yeshno, 2006;

Kieras and Bovair, 1984; Bhavnani, Reif, and John, 2001; Kirschner, John

Sweller, and R. E. Clark, 2006). Similarly, experts, who are thought to

have internal conceptual models based on their experience, are more

likely to solve problems through the recognition and interpretation of

patterns than by breaking information down into its constituent parts

(Winn, 2004; Kirschner, John Sweller, and R. E. Clark, 2006).

One possible explanation for the usefulness of models is Khemlani and

P. N. Johnson-Laird (2013)’s theory, grounded in Model Theory (Philip

Nicholas Johnson-Laird, 1983; Philip N. Johnson-Laird, 2004), that people

try to create a revised explanation for their situation when faced with

new and inconsistent facts because they mostly want to understand

why an inconsistency happened instead of looking for ways to reject it

outright. They found in their studies that individuals were quicker to

resolve inconsistent details when they had a causal explanation for the

situation than when presented with unconnected facts.

Implementation models appear to help move learners from random

and possibly irrelevant internal models towards the more coherent

and applicable models provided by the designers (Kieras and Bovair,

1984)(Ben-Ari and Yeshno, 2006, p. 1347). There is also evidence that

providing users with accurate implementation models helps them to

verbalise and communicate their intentions and usability issues. Accurate

conceptual models give learners the language needed to discuss their

design intentions with others, as opposed to giving more disconnected

statements of their experience during the design (e.g. what they tried

and what worked/didn’t work), much in the same way that the CDNs

help designers discuss their design decisions with one another using a

common set of discursive tools.

In an I3DP system, the user-facing notation can be thought of as providing

the main conceptual model of the system. Thus, as the systems notational

terminology becomes more aligned to the user’s understanding of the

target system’s terminology, or, in CDN terms, consistent, role-expressive,
and closely mapped to the I3DP device model, the easier it should be for

users to work with and talk about a system. We would expect them to

make less errors, or at least to quickly recover from them because they

can quickly form a plausible hypothesis of why the error occurred in the

first place. In the user studies that follow in Chapter 7 (User Studies and

Analysis), we used this observation to evaluate the effectiveness of the

implementation model that we provided in the system itself and in the

user workshops by analysing the ways that users articulated their design

process and looking at where errors occurred and why.

5.5 Intuition and deliberation as modes of
working

All the CDNs are relevant to designing the user’s activities on an I3DP

system, which incorporates a very rich range of user activities from
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graphical to textual to even physical manipulation. To focus the discussion,

it was particularly helpful to think of groups of CDNs in terms of the

speed and type of thinking that they best supported. Some activities, like

livecoding performances in front of audiences, required as much speed

as possible whilst still maintaining some visibility and intelligibility

of performances for non-experts in the audience. Others, like private

open-ended explorations of material properties, printer settings and

possible forms conducted by the main researcher alone, allowed the user

more time to reflect on alternative solutions to their design issues and to

even take time to extend the system itself, but still within reasonable time

periods and without creating too much confusing complexity in their

work. It would be safe to say that livecoding is a more intuitive process

that exists in the moment, whereas exploratory designing and making is

slower and more deliberative in nature.

There are major differences between, as Kahneman (2011) puts it, “fast

and slow thinking”, otherwise known as the cognitive process of intuition

and deliberation. Intuition is thought to rely on the quick retrieval of

previous knowledge stored in people’s long-term memory. It is a process

that happens at a sub-conscious level and is understood to be a faster

process than deliberation, or conscious thought. Deliberation relies on

working memory, which is capable of problem-solving but limited in

resources such as memory and processing bandwidth. Intuition is faster,

but its speed comes at a cost: it is based on previously-learned heuristics,

is slow to update, and has little to no access to conscious processes of

thought and working memory. As such, intuitive thought processes are

incapable of doing even simple arithmetic, such as counting (DeStefano

and LeFevre, 2004; J. Sweller, 2003; P. N. Johnson-Laird, 2013).

There are competing theories about the nature and extent of these internal

cognitive heuristics, but most cognitive scientists agree that there is some

sort of internalised “‘small-scale model’ of external reality” Craik (1952,

ch. 5) intrinsic to conscious beings, like humans (A. Clark, 2016; Philip

N. Johnson-Laird, 2004; Philip Nicholas Johnson-Laird, 1983). In many

predictive theories, these models are the ways that people internally

simulate the world around them on a kinematic and conceptual level so

they can act and make decisions (P. N. Johnson-Laird, 2013). Whatever the

true nature of these models, the working memory of intuition has been

found to be very limited, meaning that a person can cope with only one

model at a time (Philip Nicholas Johnson-Laird, 1983, ch. 6)(Khemlani

and P. N. Johnson-Laird, 2013).

Any attempt at switching models and looking at a situation “from different

points of view” requires a more deliberate of thinking. Deliberation is

a much more involved and slower cognitive process which is capable

of recursion, searching for and applying alternative models, and more

complex arithmetic including calculating probabilities (Kahneman, 2011).

As P. N. Johnson-Laird (2013) puts it, “the distinction between intuition

and deliberation is in computational power: intuitions are not recursive,

but deliberations can be.”
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Selected challenges for personal fabrication

Challenge 2: Domain knowledge: the physical knowledge of materials,

mechanical and structural engineering

Challenge 3: Visual feedback and interactivity: working interactively

within the (currently) long fabrication times of 3D printing

Challenge 4: Machine-specific knowledge: understanding and control-

ling computerised manufacturing systems, including tooling options

Figure 5.2: Selected challenges to focus on

in I3DP, from the six original challenges

for personal fabrication by Baudisch and

Mueller (2017).

6: See also Subsection 3.9 (Challenges and

opportunities facing 3D printing) for a

fuller discussion of the Six Challenges.

7: In our study, the higher-level machine

and material concepts were user tested in

Subsection 7.4.1 (Task 1: Context) and the

more granular details of material handling

and tooling was introduced in Subsection

7.4.5 (Task 5: Using LivePrinter (printing

a square)) and Subsection 7.4.6 (Task 6:

Using LivePrinter (retraction and material

flow)) and continued through the rest of

the study.

5.6 Determining user activities

What the user is meant to be doing with the system provides the context

for discussing the trade-offs between CDNs. Without them the question

of which trade-off is “best” is meaningless. The relationships between

pairs of CDNs only exist in terms of how they support these user activities
(A. Blackwell, 2005, p. 7).

For the most part, incrementation, modification, and searching are all activi-

ties that are historically well-supported by the CodeMirror text editor,

and so they were not specifically looked at in user tests, although they

certainly figure into the intended use cases for the system.

Some of these activities use intuitive modes of thinking, others delibera-

tive, and some are a back-and-forth mix of both. In any user session, a

person is likely to switch back and forth between different activities as

the task demands. Instead of looking at activities individually, we chose

to create “activity clusters” that encapsulated a small collection of related

activities into our intended use cases.

To further understand what user activities might be appropriate for

an I3DP system, we looked to a sub-set of the six challenges for personal
fabrication from Mueller, Im, et al. (2014). In particular, challenges 2, 3,

and 4 were key influences on the philosophy, design and evaluation of

such a system and the user workshops that are described in the following

two chapters
6
.

For Challenges 2 and 4: Domain and machine-specific knowledge, we expected

users to experiment and improve their understanding of how 3D printing

works at a materials and machine level using a conceptual model explicitly

defined by the notation as a guide, and in the process gain confidence in

the 3D printing process.
7

For Challenge 3: Visual feedback and interactivity, we looked at evaluating the

user experience of visual feedback and interactivity through observations

in workshops and higher-level discussions in some long-form interviews.

A major consideration was evaluating cognitive trade-offs in the speed

of programming the system versus the complexity and visibility of

understanding what it was doing at any point in time. This challenge

was complicated by the unavoidably long fabrication times for larger

objects, noted by Baudisch and Mueller (2016).

This subset of three of the Six Challenges form a major part of the

following activity clusters, keeping the focus on evaluating claims of

increased transparency, interactivity and more immediate results in

the livecoding 3D printing process, towards the goal of bringing more
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machine- and domain-specific knowledge into the 3D printing process

(see Figure Figure 5.3 on page 68).

5.6.1 Activity Cluster: Experimental I3DP

It was helpful to think of what users might do in a solo or small group

setting when they are investigating new forms, computational and artistic

techniques, and materials. We called this cluster Experimental I3DP, based

on it mainly incorporating the exploratory understanding activity in a

combination of intuitive and deliberative thinking combining the intu-

itive mode of “on-the-fly” coding inherent in interactive programming

with the more deliberate process of designing software beforehand. We

would also expect users to spend time with transcription and modification
activities when they are attempting to translate and modify algorithms

or mathematical expressions, as in from published research, into code,

and to a lesser extent all the other basic activities associated with text

editing.

5.6.2 Activity Cluster: Exploratory I3DP

With more of a focus on quickly and playfully sketching ideas, Exploratory
I3DP was thought of as supporting a mainly intuitive mode of working.

We imagined participants working in a “thinking-through-making” mode

(Schön, 1991) where the focus is on maintaining a “flow” of action, relying

on the quicker activities of incrementation, modification, and searching
for getting easy results without writing much code, and transcription
activities of copying, modifying or translating an algorithm from a similar

piece of code. Speed is still an issue to keep sessions short enough to

be achievable, but less than with performance or experimenting. It was

assumed to be a more forensic, reflective mode that placed visibility

highest and left time for reflection between movements.

5.6.3 Activity Cluster: LiveCoding 3DP

The intended livecoding 3DP activity should be the quickest and most

intuitive of the three. Users would be interactively programming in front

of audiences, combining the CDN activities of incrementation, modification,
and searching in the interests of speed and performative flow. Advanced

practitioners might incorporate an exploratory design component looking

towards new improvisations. Other secondary considerations for such

performative “Experiences of Interaction” are echoed in Alan Blackwell

(2015, p. 7).

Livecoding can be thought of as a practice that employs the technique of

interactive programming: a particular application with its own particular

patterns. These patterns of livecoding, including some typical activities

and relations to the CDNs can be seen in detail in Alan Blackwell (2015)

especially “Experiences of Creativity” ((Alan Blackwell, 2015, p. 8)) that

is concerned with extending the system, redefining it, looking at it from

different points of view, and “anything not forbidden is allowed” that
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8: Except in guided user workshops,

where safety constraints were followed,

such as limiting the position of the print

head to inside the printer volume!

lets the performer “revel in the glitch or crash, as a demonstration of

fallibility or fragility of the machine”.

To support the exploratory activities and the spirit of livecoding per-

formances, one of the key design principles for I3DP was that the user

should be able to do almost anything that they want, no matter how

dangerous
8

or unexpected, because of the focus on extending people’s

knowledge of 3D printing – specifically, the domain-knowledge and

machine-specific knowledge from the challenges above. This principle

is explicitly articulated in Koskinen et al. (2012, p. 6)’s definition of the

practice of constructive design research: “research that imagines and builds

new things and describes and explains these constructions”.

The first half of that definition, “research that imagines and builds new

things” maps to the exploratory design activity of livecoding 3D printing.

This activity focuses on unusual and untested 3D workflows, giving

users the creative freedom to try new and unexpected operations in

the pursuit of new forms, techniques, knowledge. Exploratory design

activities were part of the user workshops, where users were given some

basic techniques and then encouraged to use them for free-form sketching

and form-finding, often with unexpected and unintended results like

looping, stacked spirals and 2D line art.

The second half of the definition, research that “describes and explains

these constructions”, maps to the exploratory understanding activity with

more of a focus on taking apart existing examples, such as the “happy

accidents” or selected sketches that come out of exploratory design

sessions, trying to understand how they work. Our view is that this

activity is more methodical, reflective, considered, and precise than the

loose sketching typical to exploratory design. An example is the case

study on “airprinting” as discussed in Section 8.5 (Airprinting), where

this activity is applied to try and reverse-engineer a specific technique

and then extend it fort new situations.
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5.7 Mapping thinking modes to CDNs

Thinking in terms of general terms of intuition (faster, easy mental

observations) versus deliberation (slower but not too slow, leaving time

for comparisons and harder mental operations balanced with limiting

confusion) lets us create clusters of the CDNs which are most relevant to

each mode:

Intuition: viscosity, abstraction, premature commitment, consistency, dif-

fuseness, error proneness, visibility, hard mental operations, role-

expressiveness, secondary notation

Deliberation: abstraction, premature commitment, consistency, role-expressiveness,

secondary notation, visibility, hard mental operations, provisional-

ity, error-proneness, closeness of mapping, hidden dependencies

Each of these CDN clusters represents a complex, interdependent re-

lationship of trade-offs where increasing the degree of one CDN may

introduce changes in the others. To fully understanding how notation

supports each way of working we will need to pick through each of these

trade-offs and examine them in detail.

5.7.1 Design trade-offs in intuitive interactive
programming

5.7.1.1 Abstraction and viscosity

Since intuitive working is meant to be as quick as possible, it should

present the user with immediate options for getting started on complex

tasks. This means a high-enough level of abstraction to make elements

available for common tasks, implying an upper limit on the viscosity of

the system.

Text-based languages are helpful here, especially the JavaScript that our

system was ultimately built from, because they give the user a lot of

freedom to redefine most of the aspects of the environment and even

to write their own languages on top of it. JavaScript affords the user a

great deal of abstraction mechanisms for general tasks, such as adding

numbers and creating repetitive functions.

The trade-off is that defining new functions, terms and syntax for the

I3DP-specific notation often means knowing something about how the

functions are internally created and used, which calls for some deeper

investigation. Even the main developer needed to check the source

code files before extending our system’s functionality, meaning that the

viscosity of the system is pegged to the abstraction-level of most of the

functional syntax of the system.

Beyond just providing abstractions for use on their own, a system should

have some measure of composability (Roberts and Wakefield, 2018, p. 302)

– mechanisms for fluidly and flexibly combining abstractions. In visual

languages, this is usually achieved by virtual “patch cords” between

abstractions. In the Haskell-based TidalCycles, the $ operator arguably

works in this way, helping users chain together functional abstractions

into code sentences: d1 $ fast 2 $ sound "Bleep"
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5.7.1.2 Premature commitment, abstraction and viscosity

Because they are assumed to have little access to working memory, the

level of premature commitment should be low so that users can take

action as they think of it, without having to remember whether they are

following the proper sequence or not. The trade-off here is that one way

of mitigating premature commitment is to break up larger operations

into smaller ones (supporting problem decomposition), so that users have

more flexibility and can get more immediate feedback (e.g. the system

offers more provisionality). This puts pressure on the abstraction level

to be higher, to support more granular and user-customised operations.

In turn, this increases viscosity (both knock on and repetition) by having

users type more explicit notation to get results.

5.7.1.3 Hard mental operations, premature commitment, abstraction

Hard mental operations should be avoided at all costs because they will

switch the user into deliberative mode and carry a large cost in perfor-

mance speed. Since a high abstraction level forces users to plan ahead and

build their own abstractions before they can get started with basic opera-

tions, this puts pressure on the abstraction level to be lower, and thus

balances the pressure to decrease premature commitment somewhat.

5.7.1.4 Secondary notation

Secondary notation may be helpful here as a form of externalised memory,

where the user can leave comments explicitly telling them what they

need to do (e.g. “Run this code!” or “Click here and type this: XXXX”) or

helping them remember experimental parameters and desired ranges

for variables. Still, this must be kept to a minimum because too much

secondary notation carries a cost in reading and understanding, as the

diffuseness dimensions tells us.

5.7.1.5 Visibility

As discussed, visibility in the form of visual feedback for key elements

is crucially important for beginners and learners of an I3DP system. It

should be less so for experts who have a more developed mental model

of the system, and can intuitively understand what is going on, when, or

at least understand how to quickly query the system to find out.

Visibility comes at the expense of a considerable increase in the diffuseness
text and graphical notational elements, which is an issue for an already

information-dense, verbose text editor. Adding elements takes up pre-

cious screen space and increases the cognitive bandwidth for users to

find and focus on them, or to be able to recognise and yet ignore them

and focus on other elements.

More abstractions (e.g. more possible notational elements) can help in-

crease visibility by bringing more elements and concepts to the forefront,

which decreases viscosity by giving users more upfront choices of no-

tation to pick from without creating new abstractions, but as a side
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effect this forces users to choose from longer lists and to decide which

notational elements are appropriate before using them (e.g. a high level

of premature commitment).

Additionally, in a livecoding performance mode where the interface is

projected for an audience, the demands of the audience for maximum

visibility (and legibility) are at odds with the user/performer who must

concentrate on operating the system (Bruun, 2013; Roberts and Wakefield,

2018).

5.7.2 Design trade-offs in deliberate interactive
programming

5.7.2.1 Abstraction, viscosity

The abstraction and viscosity dimensions are slightly inverted from intuitive

working because the user has more time and working memory to reflect

and will likely work on build their own new tools. Still, this system

is designed for interactive fabrication, not as a general programming

language, so users need enough abstractions to begin working quickly

and to be “drawn in to play around” (Alan Blackwell and Fincher, 2010,

p. 7).

5.7.2.2 Hard mental operations and provisionality

Users are also more likely to encounter some hard mental operations in

their deliberative work – maybe they are working on a new 3D generative

algorithm and need to stop and calculate the angles between movements

or sketch out alternative forms in the middle of a working session. The

system needs to support this kind of stop—start workflow through

increased provisionality, letting users step through their code and pick up

where they left off.

5.7.2.3 Secondary notation

In this mode of working, it is more likely that the user will have other

sources of secondary notation at hand that would normally be disruptive

when working intuitively “in the moment”. They might refer to a sketch-

book to make drawings, or use another piece of software to create 3D

visualisations to test out an idea alongside working with the I3DP system.

This constant context-shifting from notation systems might be helpful

for working through hard mental operations, but it also might distract from

the main task at hand.

5.7.3 Design trade-offs in both modes of working

5.7.3.1 Consistency, role-expressiveness, error proneness

Consistency is important so that users can make good guesses at notational

elements without having to refer to the documentation mid-task. The

elements should be easily visible and use similar forms of verbs, nouns
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9: See Alan Blackwell and Fincher (2010,

p. 6)’s “Experiences of Meaning” for a

longer discussion of this topic.

10: This is also discussed more fully as it

relates to livecoding in Roberts and Wake-

field (2018, p. 303).

and adjectives in naming so that users don’t need to look up definitions

and search through documentation, and can avoid having to stop and

reflect on their purpose
9
.

Role-expressiveness fits alongside consistency in quick thinking and reduc-

ing error-proneness. It seems obvious that the quicker a user can recognise

what a notation refers to, the quicker they can use it. Importantly, C.

Hundhausen, Vatrapu, and Wingstrom (2003) found that, in a limited

experiment looking at graphical and textual (pseudocode) translation

sources, “the efficiency and accuracy of the translation task depend[ed]

on the goodness of the match between (a) the descriptive notation of the

algorithm, and (b) the target programming language.”
10

5.8 Trade-offs between textual and visual
programming

Why choose text as the primary for of notation for this interactive

programming environment? Text represents a trade-off in abstractions

level between allowing a fuller possibility of exploration and invention

that textual languages support (e.g. creating on-the-fly entities of any

conceivable type and redefining existing ones) with issues of speed

caused by premature commitment in defining/redefining symbols and

phrases, and a need to remember a number of symbols and syntax (i.e.

hard mental operations). Thus, there is a balance between the premature

commitment caused by the increased cognitive load of having to know

and choose from (or invent!) functions, function arguments, and their

syntax, rather than with visual programming where options appear

on-screen and are easily clicked and connected. Or, in some cases, forms

can be directly entered into the software by physical control or even

drawing onto 3D surfaces and having them rendered by software (J.

Jacobs et al., 2018; Peng et al., 2018; Willis et al., 2011).

Text also has a speed advantage over visual programming in that it is

self-descriptive to read and understand at a glance, and easier to edit

quickly. There is the potential of a lower-level understanding of what

is happening (i.e. at a mechanical process level) when using a lower

abstraction level with text that better represents the system at hand.

When a balanced in abstraction level is struck, it can lead to less overall

visual viscosity, as well as limiting knock on viscosity. It can also lead

to a decrease in repetition viscosity because multiple operations can

be aggregated and handled simultaneously, as opposed to graphical

controls that require individual representations on screen and individual

actions to control each one.

5.9 Conclusions

This chapter proposed three new “activity clusters”, Experimental I3DP,

Exploratory I3DP, and LiveCoding 3DP for helping designers articulate the

particular user experience of working with an I3DP system. They can be

seen as a response to some of the Six Challenges of Personal Fabrication
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for helping users of interactive fabrication systems, introduced by Baud-

isch and Mueller (2016). These activities exist on a cognitive spectrum

ranging from mainly deliberative (Experimental I3DP) to mainly intuitive

(Livecoding 3DP), with Exploratory I3DP somewhere in between, and

represent a number of cognitive trade-offs between speedy intuition and

longer deliberation in each unique mode of working.

Other researchers have developed related activities and design patterns

for the user experience of interactive programming, especially as with

Alan Blackwell and Fincher (2010)’s patterns and Construction activity, but

none so far have been specifically related to interactive fabrication and

live sculptural performance, each of which has a unique set of affordances,

constraints, and contexts of use.

Selected Challenges for
Personal Fabrication

Activities

Selected CDNs

Domain knowledge Visual feedback
and interactivity

Machine-specific
knowledge

Exploratory
design

Exploratory
Understanding

Secondary
notation

 not mucn,
for low
viscosity

Viscosity

very low
to enable

 quick operations

Premature commitment

not mucn,
for low
viscosity

Abstraction
gradient

tolerant
 enough

for flexibility
with pre-made
elements for
low viscosity

highly abstract
or tolerant,

with pre-made
abstractions

Hidden
dependencies

clear order of
operations

Visibility,
juxtaposability

high transparency
of operations

quick, in
the moment

reflective, precise,
considered

Closeness
of mapping Consistency

 notation is close to
3D printing domain

terms clear,
consistent

Figure 5.3: Mapping the selected Challenges of Personal Fabrication to design activites, with key trade-offs between the different CDNs that

enable each activity.
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6.1 About

This chapter details the design and implementation of LivePrinter, the

Interactive 3D Printing (I3DP) software and hardware system used as

a research vehicle for exploring the question of what a practice of live,

interactively programmed 3D printing might look like in the future.

To provide some context, we discuss some intended workflows and

how they compare to more “traditional” 3D printing methods. These

workflows frame an in-depth discussion of design decisions and software

development activities, illustrating the inner workings of 3D printing

hardware, firmware, and software, and describing in specific detail how

the LivePrinter system acts as a conceptual wrapper around them.

6.2 Introducing the LivePrinter System

From here on, we will refer to the part of LivePrinter that users engage

with when they are livecoding as the LivePrinter System. The LivePrinter
System was initially developed as a working implementation of an I3DP

system, to be used as a platform for general experimentation with new

printed forms and for user-testing. Later, the realm of what it should do

expanded somewhat after conversations and requests from 3D printer

music composers and performers such as Ezra Teboul as discussed

in Section 7.2 (Notes from Initial interviews). LivePrinter became an

audiovisual performance platform that could control the sound of the

printing through movement, using a hybrid syntax of musical and

fabrication-specific terminology.

The LivePrinter System, as seen in Fig. 6.1, has a graphical user interface

(GUI) running as a web application, written in JavaScript, HTML and

CSS, and with a back-end web server written in Python that interfaces

with a 3D printer via a hardware serial connection over USB. The backend

is relatively small at around 1500 lines of code, whereas the front-end is

a complex project at over 6000 lines of code across a number of files.

The front-end, running completely in a standard web browser, provides

a livecoding editor, graphical representation of some printer properties,

and some basic controls for managing the connection between the back-

end and printer. The back-end receives commands from the front-end

and forwards them to the printer (via a serial connection over USB),

then interprets the printer responses and forwards them to the front-

end. Communication between the front-end and back-end is completely

asynchronous and solely in the form of AJAX-based commands and

responses in the JSONRPC 2.0 format.
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Figure 6.1: An overview of the LivePrinter System, showing the main functional blocks provided by the system mapped to system services

(e.g. web browser, server, 3D printer)
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1: To an extent, this is already the case

with different fill patterns, but these are

usually hidden inside an object and thus

invisible after the manufacturing process.

They contribute little if anything to the fi-

nal aesthetic of the finished artefact. More

specifically, toolpaths can be influenced by

the musical properties of running motors

at tuned frequencies, which is explored in

the chapter on Hilbert curves and techno

music.

6.3 Design Goals

The design goals of the LivePrinter system came directly from the research

questions at the start of this thesis, introduced in Section 2.1 (Interactive

3D Printing). From the beginning, LivePrinter aimed to be a concrete

exploration of this open question of what computationally-augmented

personal manufacturing might look and feel like in the future. Over the

course of the project, these design goals for LivePrinter in particular

coalesced into:

1. Helping people understand how the process of manufacturing
using 3D printers relates to their discipline so they can start to

experiment usefully with it (or not)

2. To allow users to create physical forms using novel functions that
take into account physical properties like speed and temperature,

instead of the usual method of beginning with 3D modelling and

automating fabrication

3. To explore how visual aesthetics and to a lesser extent, musical
concepts can lead to knowledge about new digital manufac-
turing toolpaths and vice versa: how 3D printing toolpaths can

be influenced by concerns other than optimising for speed and

strength.
1

4. Effectively using livecoding for 3D printing by developing a

livecoding environment for 3D printing with a usable text editor

and conceptually-appropriate interface, syntax, and API

Many of these goals relate directly to the Six Challenges for personal

fabrication laid out in Baudisch and Mueller (2017) and discussed in

Subsection 3.9 (Challenges and opportunities facing 3D printing). Goal

2 refers to how users and further developers of the LivePrinter system

might explore and extend the embedded domain knowledge referenced

in challenge 2. Goals 3 and 4 are more complex and together reference

a mix of all three challenges of visual feedback and interactivity for an

iterative exploration of aesthetics coupled with a guided self-discovery

of the properties, processes and mechanical possibilities of the 3D printer

referenced in the challenges of both machine-specific knowledge domain
knowledge.

6.3.1 The Different Parts of LivePrinter

At the end of the project, LivePrinter could be described as a collection

of related parts:

▶ A fully-functional, freely available, open source, modular, web-

based editor for livecoding 3D printers written in JavaScript with a

web server in Python

▶ An API for livecoding printers establishing a basic set of metaphors

for printer functions and properties

▶ A “minigrammar” – a prototype programming language for pro-

grammatically describing 3D printing operations – secondary

contribution
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▶ Documentation aimed at users covering installation, 3D printer

history and mechanics, use cases and step-by-step guides to the

API and more advanced techniques

▶ Documentation aimed at future LivePrinter developers

▶ Records of experiments demonstrating novel uses and techniques

that livecoding printers makes possible (performances, artefacts

for installation, demonstration videos)

The technical system (essentially, the livecoding environment and sup-

porting software and hardware) established a practice-led research

vehicle for testing out ideas and integrating results and to reflect on at

key points in the process. The project’s documentation captured fun-

damental concepts of digital manufacturing and served as a dialogue

between the designer and users, especially during research sessions. It

also grounded the project in the history of augmented manufacturing in

general and 3D printing in specific. Finally, both the documentation and

experiments illustrated the possibilities of augmentation, both creative

and mundane.

6.4 The LivePrinter Graphical Interface

Figure 6.2: The main GUI of LivePrinter, realised in HTML and JavaScript. It incorporates an embedded, modified CodeMirror (http:
//codemirror.org) code editor with bespoke syntax highlighting.

Livecoding, or “on-the-fly” coding, is generally described as a practice

of alternating between writing, editing and running snippets of code

(often in a performative setting) versus coding that is written as a whole

program, and then run non-performatively (Wang, 2008; N. Collins et al.,

2003). LivePrinter’s graphical interface supports modes of livecoding

workflow such as line-by-line or partial-line editing and running of

code by providing the aforementioned text editor, based on the popular

http://codemirror.org
http://codemirror.org
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CodeMirror package. It also provides different ways of viewing the results

of running code through server- and client-side logging.

From Fig. 6.2:

1. Printer communications and general LivePrinter settings such as

live logging of command histories

2. History Code Editor: All code that has been executed is appended

to the bottom of this editor, providing a history of the session

3. GCode Editor: A history of all GCode that has been sent to the

server, usually compiled from code run in other editors

4. Code Editor: the main textual livecoding editor allowing line-by-

line editing and partial and asynchronous, whole- and partial-line

code compiling and running

5. Examples: This lists the example provided as a part of LivePrinter

to help novice users

6. Info: General informational messages and occasionally errors from

the front-end and server.

7. Errors: error messages received from the server

8. Commands: a real-time view of asynchronous communication be-

tween the front-end and back end, exposing the GCode commands

sent and their responses from the server

9. Visual feedback of key physical and virtual printer model properties,

for quick access

10. The main livecoding editor where users can edit and run code.

Any code run here is copied to the History Code Editor (2) and

compiled into GCode and appended to the GCode Editor (3).

6.5 3D Printing software: under the hood

If livecoding 3D printing was likened to storytelling, then the whole 3D

printing machine would be the context or situation in which the story

takes place, and the protagonist or main character that the narrative

follows over time would be the tool, or print head. The concept of a

precisely controlled fabrication tool using computational means is key

to the idea of “traditional” Computer Numerical Controlled (CNC)

fabrication. There might be other actuators attached to the system that

can be computer-controlled, like heaters, but the most common archetype

of CNC machines is that of a computer-controlled tool moving at speed,

cutting, extruding or otherwise shaping a material. Laser cutters, CNC

routers, and CNC vinyl and paper cutters are all common examples of

machines built around that general concept.

Every CNC machine has at least one tool, and in 3D printing this tool

usually takes the form of one or more printing heads
*
, each containing

one or more hot ends. This is the element that can be moved in x, y, z

(respectively left/right, back/front, up/down from the perspective of

*
There are add-ons for 3D printers that add pen plotting, cutters, and other tools as well.
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2: Named as such because of its derivation

from the open source firmware project

called Marlin: https://marlinfw.org

a user facing the printer) directions, heats up, and extrudes the melted

material out of one or more of its ends as the filament feeds into them.

The filament is driven by the rotation of a filament-pushing-and-pulling

motor in that is referred to moving in the e axis, with positive coordinates

refer to extruding, and negative to rewinding.

6.6 Modes of tool movement

The 3D printing tool has two main modes: moving or travelling, and

printing or extruding. A travel move is a tool operation that moves the

print head without using the filament motor, so no material is extruded or

rewound. Travel moves are mostly for moving the print head into a new

drawing or printing position, and are performed at relatively high speeds.

Likewise, a printing or extrusion operation uses the filament motor to

extrude or rewind material, and possibly moves the tool head along a

particular path at the same time.

These two modes are codified in the low-level instructions, or “Marlin-

flavoured GCode”
2

that the 3D printing firmware expects to receive.

GCode is internally translated by the firmware into physical movements

across three mechanical axes (x, y, z) and a filament motor axis (e).

These physical movements can be complex and involve acceleration or

deceleration control at a firmware level. Adding to this complexity, the

stepper motors in the printer are digitally controlled, and thus turn

precisely according to digital (on/off) pulses determined by the driver

controller microchips. Controller chips vary in the digital resolution of

their operations and so different chip models can affect the smoothness,

fidelity and even noise level of the printing process.

The printer normally expects to receive these commands from a file

loaded into its SD card slot, or streamed via a serial connection (e.g. USB)

to its main controlled board. An overview of how a livecoded instruction

cascades down through this system, finally causing a physical printer

movement, is shown in Figure 6.3.

6.6.1 Basic travel

The following are some typical use cases for travelling operations, derived

from user observations in guided workshops (see last chapter) and self-

reflection during this project:

1. moving the print head into position to start printing

2. moving out of the way after finishing a print, or during a series of

printing operations to see the current results

3. moving in order to make a sound

These can be consolidated into three more general operations:

1. moving the print head from the current position to a specific

location (x, y, z) in the print cavity

2. moving the print head a specific relative amount from the current

position in the x, y, z direction (e.g. 10 mm to the right, 2 mm up)

https://marlinfw.org
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3: Note: travel(distance)was added

after the user workshops to be more

conceptually-transparent, and is sim-

ply a syntactical shorthand for dist(

distance).go(0)

3. moving the print head a specific relative amount from the current

position and at a specific 2D angle, possibly also with an angle of

elevation (i.e. either upwards or downwards)

LivePrinter’s syntax for travelling comes from these three cases, with the

first one mapping to the function moveto() and the second to the function

move(), as demonstrated in the previous chapter. These travel moves

are often done at high speed, and have a higher maximum speed than

extrusion moves because the filament is more brittle and can’t be moved

as quickly without physically grinding off part of it. This is important to

note, because LivePrinter will automatically choose either the currently

set travel speed or slower printing speed based on the inferred printer

operation (see Figure 6.5).

The third case maps to the more complex chain of functions or a sort-

of method cascading using the LivePrinter minigrammar to specify the

direction and amount to move, with the function go() at the end or

travel()3
(see Subsection 7.4.5 (Task 5: Using LivePrinter (printing a

square)) for a discussion of user testing this, pre-minigrammar). Later

experiments with the LivePrinter minigrammar allowed users to write

briefer code sentences like # travelspeed 80 | turn 45 | travel 20 or

a more explicit but functionally-equivalent # travelspeed 80 | turn 45

| dist 20 | go. In this example, the travel speed is first set to 80 mm/s,

the virtual heading of the print head is rotated clockwise by 45 degrees,

and then moved at the travel speed by 20 mm.

Both move() and moveto() were general purpose functions, originally

designed to take Cartesian coordinates as arguments. move() was later

extended to take more cylindrical angle/direction relative coordinates in

response to positive participant feedback from user tests during the initial

development (see Subsection 7.4.4 (Task 4: Using LivePrinter (basics))).

However, in later, less-formal single-user tests conducted in summer

2021, some participants found the angle/direction arguments confusing

because they had a similar effect as the single-argument functions like

travel() but without the possibility of a single argument.

One important caveat of move() and moveto() is that they implicitly update

the current direction of travel used by travel() and draw() (discussed in

the next section). Thus, a relative 𝑥, 𝑦, 𝑧 movement of (12, 8, 16) sets the

current 2D movement direction to the 𝑥, 𝑦 portion of the unit vector:

12√
12

2+8
2+16

2

�̂� + 8√
12

2+8
2+16

2

�̂� + 16√
12

2+8
2+16

2

�̂�

or a horizontal heading of about 56.3◦ (i.e. from the back of the printer,

towards the front and the user).

6.6.2 travelling upwards and downwards

There is also the possibility of movement in the 𝑧 or upwards direction.

Two quick functions are provided for convenient movement predicated

on a common use cases of quickly moving the print head upwards at the

end of a printed 2D layer to start the next successive layer, or moving it

away at the end of a print, or moving the head down into position to start

a print. Following the naming conventions of the rest of the functions,

these are called:
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4: See the “liveprinter.ne” file,

written in the nearleyJS format

(https://nearley.js.org), at

https://github.com/pixelpusher/

liveprinter/tree/master/js/

language

1 // Move up or down by a vertical amount in millimeters

2 up(AMOUNT_IN_MM);

3 down(AMOUNT_IN_MM);

4

5 // Move to a specific location in the z direction.

6 // These two functions are synonyms for one another.

7 upto(HEIGHT_IN_MM);

8 downto(HEIGHT_IN_MM);

There is also a concept of moving at an angle. This upwards or downwards

angle of movement, as measured between the 𝑥 and 𝑧 axes, is called the

elevation in LivePrinter and set and returned using the elevation(angle)

or elev(angle) functions.

The elevation does not update when calling the move() and moveto() along

with the 2D heading because movements that continue in an upwards

direction were found to be uncommon in reflective and user testing,

where mainly users draw 2D layers, moving vertically upwards only

when those layers are complete.

Additionally, it was not clear how to integrate more advanced concepts of

full 3D spatial movement, with rotation, tumbling, and orientation into

this mixed 2D/3D frame-or-reference. This points to future opportunities

to develop conceptual systems for working more explicitly with 3D

coordinate systems and 3D printing movements, whilst still retaining a

layer-by-layer approach.

6.6.3 The minigrammar, asynchronous operations and
global printer state

As mentioned, in later versions of LivePrinter a “minigrammar” or

prototypical syntax designed for I3DP systems, was created using method

cascading. The minigrammar was inspired in part by the brevity and

clarity of the Tidal livecoding system, which was written in Haskell.

This minigrammar removed most of the punctuation and symbols and

hid the asynchronous syntax and functionality from the user so they

could concentrate on specifying shapes and operations. For example, in

the asynchronous version, await lp.angle(45).distΔ.go(1), under method

chaining, would have set the distance to move the print head toΔ and then

extruded from the current position and at an angle of 45 degrees over that

distance. Under “sort-of method cascading” by using the minigrammar

syntax, this sentence becomes the more declarative # turnto 45 |draw
Δ.

We called this minigrammar “a sort-of method cascading” because the

“|” operators acts as a form of syntactic sugar that uses a combination of

a grammar and regular expressions
4

to translate any code in between

them into JavaScript functions with arguments immediately following

them. In the minigrammar, these functions and arguments are often

specified using object key and value pairs, such as “functionName key:

value”. What is invisible to the user, in this case, is that a single JavaScript

object called “lp” represents the 3D printer in terms of its functionality

and its current state. Thus, the code # go 1 is nearly translated to the

JavaScript lp.go(1).

https://nearley.js.org
https://github.com/pixelpusher/liveprinter/tree/master/js/language
https://github.com/pixelpusher/liveprinter/tree/master/js/language
https://github.com/pixelpusher/liveprinter/tree/master/js/language
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We write “nearly,” because there is an additional complexity to this

system. User-facing printer operations are nearly all asynchronous in

nature, meaning that they are called in the client-side web browser,

which then triggers operations in the printer, over a network and serial

connection, and then waits for the result of that operation, which will

likely take a non-trivial amount of time to complete. For example, the

actual transpilation of the minigrammar statement:

1 # draw 30 | retract 4 | up 50

2

is the JavaScript:

1 await lp.draw(30); await lp.retract(4); await lp.up(50)

2

The minigrammar saves time and potential typos in typing out these

more verbose commands, and also hides some of this complexity from

less advanced users who might not grasp the nature of asynchronous

code. Without it, the user would need to have a deeper understanding of

what is involved in all the printing operations, and which are necessarily

asynchronous.

Also, by scheduling this asynchronous code in an asynchronous queuing

system, LivePrinter guarantees that operations will still complete in the

proper order without a need for worrying about handling Promises or

other asynchronous constructs manually. This does not prevent advanced

users from explicitly using asynchronous code in the editor and creating

their own bespoke asynchonous events and handlers, and as a further

benefit it guarantees that these functions and all successive lines of code

executed in the livecoding editor are executed in order, no matter what.

This being JavaScript, the “lp” global object is mutable and thus represents

a potential global namespace for persistent functions and variables,

especially ones that extend the printer object’s capabilities and might

later be incorporated into its code base. These variables are often described

as “polluting the global namespace” and are often frowned upon by

experienced programmers for creating a proliferation of non-hierarchical

or conceptually-organised variables and functions, but in livecoding,

where the focus is on rapid experimentation and brevity of code, they

can prove useful. Sometimes users might want to set a persistent variable

or define a new function that lasts more than one operation.

To support this, LivePrinter provides a global keyword for defining

more “traditional” global variables bound the called window object of

the web browser, and accessible simply by name. For example, the code

global foo = 10; transpiles to window.foo = 10, which isn’t much less

verbose, but importantly does not require foreknowledge of the unique

historical quirks that led to the window object being used as a global

variable namespace in JavaScript.

6.6.4 Basic extrusion

The following are some typical use cases for extrusion operations, also

called printing or drawing operations, derived from user observations
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5: Note: As with travel(), the function

draw(distance) was added after the

user workshops to be more conceptually

transparent, and is simply a syntactical

shorthand for dist(distance).go(1)
.

in guided workshops (see last chapter) and self-reflection during this

project:

1. Extruding filament to build up plastic forms on the print bed

(e.g. building up a form 2D layer-by-layer, or in a single extruded

blob), or in the air (like WirePrint)

2. Reversing (retracting) filament to prevent leakage or perform main-

tenance like changing the filament

3. Forwarding filament in the tube until it is inside the print head and

ready for further printing operations

These can be consolidated into four more general operations:

1. Extruding a line from the current position to a specific location

(x,y,z) in the print cavity

2. Extruding a line with the length of a specific amount from the

current position in the x,y,z direction (e.g. 10mm to the right, 2mm

up)

3. Extruding a line with the length of a specific amount from the

current position and at a specific 2D angle, possibly also with an

angle of elevation (i.e. either upwards or downwards)

4. Reversing the filament backwards into the tube and then changing

it, or cleaning the head. Then, forwarding it until it is primed in

the print head

The first operation maps to the function extrudeto(), with the suffix “to”

again used similarly to moveto() as a shorthand for the user’s intention to

move to a specific location in the print cavity. Likewise, the second opera-

tion maps to extrude(), which is exactly the same as the aforementioned

move() except that it extrudes plastic as it moves.

The third case again maps to the more complex chain of functions or a

sort-of method cascading using the LivePrinter minigrammar to specify

the direction and amount to extrude in, with the function go() at the

end or draw()5
Here, “draw” was chosen over “print” to emphasise the

humanness of the operation and build on the metaphor or drawing

or painting with plastic into space that worked well in user tests (see

Subsection 7.4.5.1 (Feedback and responses)).

Similar to the travel functions, the LivePrinter minigrammar allowed users

to write briefer code sentences like # drawspeed 12 | turn 45 | draw 20

or a more explicit but functionally-equivalent # drawspeed 12 | turn 45

| dist 20 | go 1. Here, it becomes more obvious that the argument to

the go() function tells the program whether to extrude ( if true) or not

(false), which can be shortened to 1 or 0 in JavaScript. In this example,

the printing (or “drawing”) speed is first set to 12 mm/s, the virtual

heading of the print head is rotated clockwise by 45 degrees, and then

the print head moves 20mm whilst extruding plastic.
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LivePrinter Software

Printer Firmware

Printer hardware

livecoding
editor

GCode generator

 interpreted
JavaScript

Marlin firmware

 GCode over
 serial

controller chips

actuators:
physical motors,

heaters,
 etc.

 electronic
 signals

Figure 6.3: A flow chart illustrating how

a LivePrinter JavaScript API function

(e.g. move(); draw(); retract();)

is translated into GCode, sent to Marlin

firmware, and then turned into physical

printer movements and actuation. Note

that this is illustrating only one direction of

this process, from user to printer hardware,

for clarity; the actual system has feedback

loops in each sub-system to keep track of

internal states and for error-handling.
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User facing
(visible)  Non-user facing

(hidden)

set internal
parameters

using functions
dist(d),turn(a), thick(t),

autoretraction(r), speed(s),
etc.

initiate
operation

using go()

perform
operation

implictly using
extrudeto()

update printer
properties

position,
retraction state

Figure 6.4: A simplified overview of how method chaining and cascading look to the user, with hidden (internal) methods exposed. These

are explained in more detail in other the diagrams in this chapter that explain the inner workings of the movement and printing functions.
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go( )

waiting
time set?
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calculate
relative
move
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extrusion
specified?
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extrusion
to 0
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angle or
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specified?
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no
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yes
(printing)
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(travelling)

Figure 6.5: LivePrinter provides four main printing operations move(), moveto(), extrude() and extrudeto(), of which the first three map to a

parameterised version of the fourth to consolidate the movement and extrusion logic into a single function. Another printing operation, go(),
is used during either method chaining or cascading and also maps to a version of extrudeto() for the same reason.
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Figure 6.6: Relative, absolute, materials-

handling and chained operations

Relative operation functions

1. move

2. extrude

3. up

4. down

Absolute operations

1. moveto

2. extrudeto

3. upto

4. downto

Chained operations (a subset)

1. travel

2. draw

3. drawdown

4. drawup

5. turn

6. turnto

7. thick

8. speed

9. elevation

Material handling operations

1. retract

2. unretract

Other operations

1. wait

6.7 A shared architecture

By now it might seem obvious that the various travel and extrusion

functions in LivePrinter have much in common, to the point where they

are often near-synonyms for each other. Part of the reason for this shared

architecture has much to do with the firmware of the printers them-

selves. Many CNC devices use the GCode command G0 for pure travel

movements and the command G1 for extrusion or other tool operations,

such as activating a cutting laser in a CNC laser cutter
†
. However, many

3D printers simply use the two commands interchangeably
‡
. That is

one reason why LivePrinter uses the common function extrudeto() to

turn every movement operation into a fully-formed G1 command, as

illustrated in Figure 6.5.

Another reason for the shared architecture was to consolidate similar

movement and avoid duplicating similar code across functions, which can

cause a maintenance problem when code in one function is updated and

not in others, as can happen with rapidly-developing experimental code.

This follows from the “don’t repeat yourself” principle of programming

from Hunt and Thomas (1999, pp. 320–978). Using this principle makes

it relatively easy to create new and different synonyms for functions to

try out with users with little development cost because difficult code that

handles complex use cases is already written.

Looking at the implementation of the core movement and extrusions

function in Figure 6.5, we see that in LivePrinter the go() function

consolidated all of the angle/elevation/distance calculations in the

relative movement functions move() and extrude() and then passed on the

absolute coordinates, extrusion length (if any), and any other parameters

like whether-or-not to use retraction to the extrudeto() function where

most of the movement logic and GCode generation is handled. This

leaves relatively little for the moveto() function to handle, other than

making sure that the amount of extrusion is set to 0 and then handing

off to extrudeto() as well.

From this diagram, we can see that there are 3 main cases that the system

takes into account to determine the type of operation:

1. extrusion is specified and set to 0 (travel)

2. extrusion is specified and not 0 (manual mode)

3. no extrusion is set (automatic printing mode)

In the first case, the extrusion coordinate (e) is set to the current filament

position, resulting in a pure travel move with no filament movement.

The retraction state stays the same – if the filament is retracted, it stay

retracted, and if it is not retracted it might drip from the print head and

create a string as it moves.

In the second case, the user wants to take explicit control of the filament’s

movement. This is an advanced operation, because usually the filament’s

new position is calculated by a combination of the LivePrinter software

and the Marlin firmware. This operation also doesn’t trigger a retraction

or unretraction, because the user is assumed to want complete control. It

†
See https://marlinfw.org/docs/gcode/G000-G001.html

‡
as is the case with the Ultimaker 2: https://github.com/Ultimaker/Ultimaker2Marlin
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does, however, override the internal retraction counter so that after the

operation the filament is not marked as retracted. That means that if the

filament was retracted slightly before this extrusion operation is initiated

then it moves from its retracted position and does not unretract first.

In the third, automatic mode, the user allows the system to control

the retraction handling and volume of filament extruded, based on

the intended layerheight specified by the thick property. If the printer is

retracted, it is unretracted before the operation begins, and it retracts

automatically at the end.

LivePrinter calculates the volume of an idealised cylinder of extruded

plastic in 𝑚𝑚3
using the distance of the movement, desired layer height

and layer width (usually the same):

𝑣 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡 = 𝑑𝑥𝑦𝑧 ∗ 2 ∗ 𝑙ℎ ∗ 𝜋

where 𝑣 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡 is the volume of the filament in 𝑚𝑚3
, 𝑑𝑥𝑦𝑧 is the distance

to travel in the 𝑥, 𝑦, 𝑧 direction, and 𝑙ℎ is the desired layer height (often

0.15mm) for each printed layer.

The Marlin firmware uses that result combined with its setting for the

filament’s radius to internally convert this number into a linear coordinate

for the filament motor:

𝑙 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡 =
𝑣 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡

2𝜋∗𝑟 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡

where 𝑙 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡 is the length of the filament to extrude, in mm, and

𝑟 𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡 is the radius of the filament (2.85mm for an Ultimaker model,

or often 1.75mm for other major types).

There is also a fourth case, which is a modification of the last automatic

filament-handling case but without automatic retraction handling. The

user can let the system automatically determine the amount of material

to extrude, again based on the intended layer height (or thickness), but

mostlywithout retraction handling.

This was one of the most complex use cases and was developed from

observations during the main user workshops, as discussed in detail in

Subsection 7.4.6 (Task 6: Using LivePrinter (retraction and material flow)).

The main usage scenario for this case is when a user intends to draw a

continuous series of lines that will make up a larger form, like a vertical

stack of squares that will make up an open-top cube. In this case, the user

wants manual control of when and where the retraction and unretraction

happen, which usually means an unretraction at the start of the operation

to prime the filament for drawing and then a retraction at the end to

prevent leakage onto the printed shape. The autoretract(true/false)

function is provided for easily turning the automatic retraction off before

or during a series of such operations. This is outlined in Figure 6.7.

6.7.1 Waiting

Another important mode of operation for 3D printers is simply to do

nothing for a specific amount of time. There are two key use cases for

this non-operation:

1. waiting for the extruded plastic to cool after a print move
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2. in a musical sense, waiting a few “beats” as part of a melody

LivePrinter provides a function aptly named wait(time) where time is the

number of milliseconds to wait for. This function was specially developed

as part of the musical livecoding performances with the system which

required pauses in between the musical “notes” played by changing the

printer travelling and drawing speeds so that movements made sounds

at roughly musical pitches. It also proved useful with experiments in

airprinting, where the printer draws lines of plastic in the air, supported

only by their own surface tension after cooling. Such operations start

with drawing a line on the printer bed, then drawing upwards at an

angle of elevation with a pause to let the filament cool and harden before

continuing downwards and completing the shape, as described in the

next section.
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begin with retraction
state uncertain; goal is to
draw a square with side
length 20mm starting

 at (x,y) of (20mm,30mm)
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unretract before
and after
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print 20mm line in
the current direction,
retraction disabled

3. don't want retraction
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disabled before
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Figure 6.7: Retraction use case for a 2D square
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6.8 Issues of hidden dependencies

Figure 6.8: The CDN term Closeness of
Mapping refers to the distance between the

notational system (e.g. “Programming lan-

guage semantics”) in this case mostly the

language syntax and to a lesser degree the

GUI display, and the user’s mental model,

both of which are informed by their inter-

actions with the exposed properties of an

underlying target system. The notational

system itself influences the software’s un-

derlying virtual model of the system, but

within the limitations of the frameworks

and data structures chosen to implement

that model. Because language and sym-

bolic representation is always imprecise,

to a degree, there will always be a differ-

ence between how the user understands

the problem world and how the system

describes the problem world to the user

through its notation.

Notational
system

Virtual model
(in software)

User's mental
model

closeness
of mapping

Target system
(physical properties)

In the CDNs, hidden dependencies are defined as “relationships between

elements that are obscured or invisible to the user.” With so much of the

3D printing process happening inside the printer, away from the screen,

it was difficult to establish and then maintain a relationship between

different screen-based and physical processes, as well as virtual-only

processes that were often happening asynchronously.

For example, the original version of LivePrinter used WebSockets for

realtime, persistent communications across the front end (HTML page)

and the threaded python web server in the backend which communicated

with the 3D printer via serial. This model proved difficult to work with,

because of python’s inherently single-threaded model and the difficulty

of matching printer commands from the web client to server responses

on the back end across websockets and serial.

Later versions, after the initial user testing, switched to a more conceptually-

transparent asynchronous model, using asynchronous channels on the

client side over asynchronous AJAX calls to the backend server which

were handled over an asynchronous serial connection to the printer. This

system was much quicker, because of the elimination of possible thread

race conditions, and easier to debug because of the lack of potential

thread memory collisions which sometimes were not caught by python

exceptions nor the logging system.

The result was a change to the underlying implementation of the

LivePrinter API that explicitly made most of the functions asynchronous

because they involved communicating with the printer. These often

involved print head movements, extrusions, and temperature changes.

Only a few operations remained instantaneous, mainly setting virtual

properties such as travel angle and speed, both of which are only finalised

when they are sent to the printer as part of a travel or print operation.

Whilst understanding this distinction was useful for developing the

system, it was cumbersome to livecoding it because of the added some
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difficult syntax needed to specify asynchronous functions, such as the

async keyword, and even more complex code structures necessary to

handle asynchronous results properly. The need for brevity and read-

ability led to the development of the LivePrinter minigrammar as both a

prototype language and a “syntactic sugar” for folding the verbosity and

complexity of asynchronous operations into simpler textual statements.

6.8.1 Hidden dependencies in retraction

In previous versions of LivePrinter used in the initial user workshops,

there was no autoretract. Successive versions experimented with a spec-

trum of completely automatic retraction to completely manual retraction,

each with their associated problems. It was clear from user observations

that completely automatic retraction caused problems when users wanted

to extrude filament without moving the print head because the printer

would unexpectedly retract at the end, leaving them with a shorter-

than-expected extrusion operation at the end. For completely manual

operations, users often were observed attempting to start drawing a new

form without first unretracting the filament, which meant repeating the

entire operation and manually checking the filament position and left

them frustrated and confused as to why nothing had happened. This

happened despite the retraction display area in the top “dashboard” of

the GUI.

Finally, semi-automatic operations that attempted to guess whether to

unretract before a printing operations and retract at the end unless

explicitly specified resulted in a number of logical errors in the code,

and general confusion with users concerning edge cases. At first it

seemed logical that the system should always unretract automatically

before a printing operation to prime the filament, but that created

hidden dependencies and exceptions to the general rule of retraction that

confused some participants. It was much simpler and more in line

with the transparent and user-empowered philosophy of the system

to give users the control over automatic retraction, or provide a full

manual mode so they could experiment as needed. There are certainly

compelling cases where complex manual retraction is useful, including

with “airprinting” as discussed in Section 8.5 (Airprinting) where some

trials used different retraction speeds and lengths within the same chain

of printer operations.

6.8.2 Automation and hidden dependencies

To give the user space to create unusual workflows, the system was

designed not to use any form of prediction or automation, at least not

initially, and to make the system transparent and its state as visible as

possible so that the user has a clear picture of what is going on at all

times. The system provided a basic code-based workflow for common 3D

printing operations with some basic attempts at “automatic” materials

handling, but at each state always allowing the user to override as many

aspects of the 3D printing process as possible as illustrated in Figure

6.4.
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For example, using a combination of functions and function parameters

users can specify the exact 𝑥, 𝑦, 𝑧, 𝑒 coordinates to move the print head

and filament to (as discussed); on a per-operation basis, whether to enable

retraction/unretraction, change the layer height (often called thickness),
and set the speed of the current printing or travel operation and for

all subsequent operations. These can either be specified as a chain of

functions in pure JavaScript, or a cascaded “sentence” of operations in

the LivePrinter minigrammar:

1 # drawspeed 12 | thick 0.2 | autoretract 0 | turnto 90 | dist 20

| go 1 0

2

3 # drawspeed 12 | thick 0.2 | autoretract 0 | turnto 90 |

unretract | draw 40 | retract

6.8.3 Push/pull user feedback

One possible way of mitigating problems associated with increasing

visibility is to have users actively request feedback in some form, possibly

as a textual output in an event log, as opposed to automatically displaying

it on some kind of heads-up-display or dashboard. Interestingly, Christo-

pher Hundhausen and Brown (2007) finds that users still make the same

amount of errors (e.g. less) when they get it automatically versus when

they request it, so the strategy for LivePrinter was to start with as few

on-screen displays of information as possible at the start, coupled with

mechanisms for quickly printing out feedback as per user request in the

form of textual logging functions. Over time, more elements were added,

but the optimal number and their onscreen configuration remains an

open question as of this writing.

6.9 Conclusions

This chapter detailed the implementation of the LivePrinter system as a

fully-functioning proof of concept for an I3DP system. Having reflected

on this process, there are a number of opportunities for improvement

and future research, including the difficulty of making the process of

material handling visible and understandable to users during printing;

describing printer movements in ways that are more consistent and clear

to users; working with asynchronous operations, especially when there

are many of them; and finding the right balance of providing on-screen

information and allowing users to focus on the act of making without

cognitively overloading them during a time-sensitive process.

It is highly likely that, in the future, this implementation will evolve

further; this is the nature of experimental work, and this was an early

experiment with a narrow focus on specifically using livecoding for 3D

printing at the exclusion of other forms of interaction. Still, we hope that

the current rationale and reflections on the inner workings of the system

will have some future value, as long as 3D printers continue to employ

the similar mechanisms, materials physics and modes of interaction.

They may even catalyse some necessary changes in the design of printers

themselves.
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Figure 6.9: All printing operations share a common function, extrudeto(), which is visualised here. This function decides which of the 3

main operations was intended (travel move; manual extrusion; automatic extrusion) and what parameters to use for that operation, how to

handle retraction and unretraction, along with calculating the amount of filament to use and performing basic checks that the operation is

within the printer’s specified limits of print volume and speed. Lastly, it is responsible for sending the GCode to the printer and bubbling

any errors up the chain of calling functions.
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Figure 6.10: The “retraction” process of LivePrinter, as implemented in the API function retract().
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Figure 6.11: The “unretraction” process of LivePrinter, as implemented in the API function unretract().
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7.1 Introduction

This chapter views the insights gained from the process of testing,

refining and reflecting on the LivePrinter system, starting with the initial

interviews that helped shape the early development of the LivePrinter

system. These interviews helped collect some other perspectives on 3D

printing practice, use, and future applications, to help give the LivePrinter

development some direction.

Then, a series of user study workshops examined the usability and

usefulness of the system. The workshops were built around a series of

tasks that mapped to project goals, and which are each discussed in detail

in the following sections, along with feedback from tests, reflections from

researchers, and evaluations of the results.

The full list of user study workshops covered in this chapter (and which

are also listed in Subsection 4.2.1 (User studies undertaken)) are:

▶ 2017–8: Initial exploratory interviews with 3D printing end users

and practitioners

▶ 2019 Jan. 9–10, Goldsmiths: 4 workshop sessions on LivePrinter (2

per day), approx. 24 participants of mixed ages, technical literacy

and professional backgrounds

▶ 2019 Jan. 16, ICLC at MediaLab Prado, Madrid: workshop session

with about 8 livecoders attending the conference

▶ 2019 Feb. 19, Goldsmiths: workshop session with 6 MA/MFA

Computational Art students with experience of physical computing

▶ 2019 June 3, Brooklyn Research, Brooklyn: workshop session

with 7 participants with backgrounds in music production, art, or

hardware/software development

Participants were self-selected by asking them to sign up for work-

shops based on the user descriptions from the LivePrinter GitHub

page (at https://github.com/pixelpusher/liveprinter) and also the

Eventbrite sign-up page in Section A.3 (User workshops and public

demonstrations)):

LivePrinter is an open source system for live, immediate

drawing and fabrication with 3D printers. It’s particularly

useful for:

▶ Textile artists who want to print onto fabrics and make

new shapes and textures; for artists who want to use a

printer like a 3D plotter and draw new forms

▶ Product and industrial designers who want to under-

stand more about how 3D printing works and fine-tune

their materials and tool paths

▶ Materials scientists who want to study 3D printing

materials in more controlled, repeatable ways Compu-

tational and computer artists, either looking for new

https://github.com/pixelpusher/liveprinter
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tools or making generative works Educators who teach

fabrication

▶ HackSpace and MakerSpace staff who need more tools

to fine-tune their machines

LivePrinter combines the design and 3D printing of objects

into a single, iterative process. Livecoding is used to control

manufacturing precisely and procedurally with real-time

flexibility. It brings improvisation and intuition to the act of

making new computational forms. The system extends digital

printing and CNC machining into the realm of performance

and also has potential in design and science pedagogy.

The current software toolchains of 3D printing place the

artist and designer at a difficult distance from the physical

process of making. There is little space for live improvisation

and experimentation, especially with key properties that

directly affect printing materials, like temperature and print

speeds.

In all, the results of the workshop were quite positive, although there

were certainly a number of issues that came up, and a few unfortunate

bugs identified during live sessions. The results of the feedback sheets

demonstrated that a majority of the participants completed all the tasks

and reported that they understood the intentions of the system and

enjoyed the process of learning about it:

▶ 262 individual pieces of task-specific feedback

▶ 129 pieces of written feedback

▶ 195 (74.4%) pieces of task-specific feedback rating the task 4 or 5

stars (on a scale of 0 to 5 where 5 was “liked this part”, 0 meant it

as not filled in, and 1 was “disliked”)

▶ 60 “positive” pieces of written feedback (for positive experiences

such as compliments, remarks about it being easy, clear, helpful

etc., excitement about using the system, and interest in using the

system in the future)

Taken together, this data helped gauge the effectiveness of the LivePrinter

System in blending the representational aspects of machine-manufacturing,

e.g. the precision control of tool position and distance over time, with per-

formative and reflective modes of working that rely more on exploratory,

iterative processes that vary speed, direction and time over a number of

experiments.

7.2 Notes from Initial interviews

The project was initially shaped by a series of loosely-structured inter-

views with selected digital manufacturing practitioners, taking place

before the core of the software was written. The interviews were casual

in nature, and provided some initial direction towards the goals of the

user experience for a new livecoding/3D printing system, specifically

what sort of form-making and exploration it should support and at what

level of expertise.
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Some interviews were recorded in their entirety, others were recorded

in written notes from the researchers and reviewed with interviewees

afterwards to make sure that they accurately reflected their thoughts.

Interviews were later transcribed using what Mayring (2014, p. 45) calls

the “selective” protocol to focus on the topics more relevant to any 3D

printing that used code as a medium of creative exploration, DIY 3D

printer construction, the act of 3D printing itself, and issues around users’

perception of the capabilities and purposes of 3D printing.

Notable interviewees were found in the principal researcher’s extended

networks. From Hangar, an arts organisation based in Barcelona, Spain

and other organisations nearby came: Belen Soto, Ali Yerdel, Patricio

Rivera from collective TMTMTM (The Machine That Makes The Machine);

technical staff at FabLab Barcelona; through the livecoding community

came Ezra Teboul, a researcher and performer sometimes using 3D

printers for musical compositions; through an alumni network for New

York University’s ITP programme came a developer at an open source

CNC wire-bending firm (who wishes to remain anonymous) that I will

call Beth, and David Lobser, digital artist; through colleagues at the Royal

College of Art came James Lamb and Tim Rundle, two independent

product designers teaching on the Royal College of Art’s MA Design

Products programme.

Mostly, these initial interviews helped illustrate the different levels of

expectation for people using 3D printing. Some, like Belen, expected to

be using 3D printing to quickly make complex objects, explore social or

artistic themes like feminism through making more personal objects not

for wider sale, repairing broken objects, or to generally gain independence

from large manufacturers. They were less concerned with the process of

making than the results.

The same could be said for Tim and James. They used 3D as part of

a more established design process to test out the manufacturability of

their prototypes in development. 3D printing could potentially save them

from making expensive mistakes in final mass-production, as well as

allowing them to experiment with the feasibility of form-making at an

earlier stage and at a lower cost. 3D printing was a helpful addition to

their usual development process and a step towards making finished,

industrial products, but not an end in itself.

Finally, experimental artists like Patricio and David, and also software

developer Beth, were more interested with the mechanics of the machine

and experimenting with the underlying code. Beth did this as part of

her job, writing software for a CNC wire-bending machine. Out of all

interviewees, Beth had the most detailed grasp on usability issues because

of her work designing user-facing interactive coding tools for creating

shapes with the CNC bender and running workshops with participants

of all ages.

Beth’s experience provided some helpful early direction when she dis-

cussed the difficulty of a user’s perspective when they attempted to take

manual control of a semi-automated manufacturing process. Specifically,

the way the wire-bender worked to twist wire back and forth across

small wheels was hard to describe in the text of code. Beth likened

the way of guiding the wire through the machine to “driving a car”, a

phrase she used with school-children in workshops. To her this was a
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potentially interesting avenue of further research, but, as an employee of

a commercial company, she had to focus not only on the control of the

machine but on making it create useful objects.

David, by comparison, had much more freedom to experiment with

process. His work as an animator and working artist freed his work

from having to be practical or useful in nature. His Vessels series was

an exploration of tools that created free-form shapes from G-Code,

the machine-level code that described shape-making for most CNC

machines. Interestingly, as an artist coming from the digital world he was

less concerned with shape and more concerned with the “texture” of his

physical works.

Patricio was the most knowledgeable of the group, due to his hours of

experience with electronics and building different types of 3D printers.

For Patricio, form-making was arguably as important as the process of

making. His experience as a software developer and generative artist gave

him the technical knowledge necessary to understand and even extend

the software that made 3D printers function. He built CNC machines

like 3D printers and using 3D printer parts to test a variety of ideas, like

using plastic syringes to “paint” on the canvas in a controlled way, and

making “light paintings” using precision 3D printing motors running

at very slow speeds to control lights and cameras with long-exposure

times.

It was clear from speaking to him that he was at least as excited about

the machines and how they worked than about the end results. Patricio

spoke in great detail about his machines and kept them in prominent

places in the open plan studio. Part of that could be the nature of artistic

process, where it takes a great many intermediate works to produce one

that the artist considers worthy.

Patricio was the only initial participant who was interested in using the

first version of the experimental LivePrinter software. This version had

numerous problems, but Patricio and the researcher were able to use it

on one of his self-built machines to print a diagonal line into the air, free

of support, as a proof-of-concept of what LivePrinter could do that other

3D printing systems could not.
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Figure 7.1: During the interview with Patri-

cio of TMTMTM in 2018, an experiment

introducing LivePrinter and testing if his

3D printer could print into the air with no

support.

The main takeaway of these interviews was that experienced users (Tim

and James; David; Beth; Patricio and Ali from TMTMTM) saw 3D printing

as a difficult and time-consuming process that was best reserved for

special applications such as free experimentation or when certain parts

were needed that otherwise couldn’t be manually made. The 3D printing

process was a useful process to go through when a person needed to

understand manufacturability and materiality. Otherwise, people were

attracted to the potential to make and share collections of new objects and

works of art (especially Belen) for intellectual and political purposes.

7.3 LivePrinter: Structured user studies

The LivePrinter technical system and documentation was being devel-

oped alongside these initial interviews, sometimes forming a point of

discussion in the interview (especially with Patricio’s). When it was

functional and stable enough to be tested with outside users, a series

of public user workshops was scheduled to test and evaluate the us-

ability, learnability and future utility of the system. Participants were

recruited from the populations of the creative industries, communities of

practitioners of creative technology, and students at both graduate and

undergraduate level. All workshops were open to registration from the

public as well, and a few people not falling into any of those categories

participated as well.

Workshops took place internationally, in London at Goldsmiths Uni-

versity’s maker space; as part of the International Conference for Live

Coding in MediaLab Prado in Madrid, Spain; and in New York City, USA,

at the Brooklyn Research organisation’s maker space. All sessions were

organised and led by the main researcher. Some sessions employed vol-

unteer helpers to give out materials and troubleshoot general computer

issues or programming difficulties.
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1: Conceptual models and their applica-

tion to user studies are introduced and

discussed in Section 5.4 (Aligning user

understanding and notational systems).

2: See the discussion in Subsection 7.6.1

(Problems with individual user types) be-

low.

3: See Section B.2 (Workshop tasks feed-

back sheet)

Their overall structure was based around providing potential users

with conceptual models of 3D printing in general, and our I3DP sys-

tem, LivePrinter, in particular, and then working through these models

in context-appropriate tasks during a 2–3 hour long session
1
. These

researcher-led, contextually-rich activities were interwoven with some

short, topical lectures and discussions with prospective users.

All the workshops followed the same basic plan: to give some context to

3D printing; introduce the LivePrinter system conceptually; install it to

understand its different parts; test it out by teaching participants some

basic operations; allow space for improvisation; reflect on the session at

the end. They took place in “makerspaces” outfitted with comparable

3D printers that were (mostly) compatible with the software. Participant

brought their own computers so they would leave with the software

installed and hopefully continue experimenting in the future.

Workshop activities were designed to generate rich qualitative feedback,

in the form of written feedback from participants, structured interviews,

and recorded video and audio, as well as quantitative feedback recorded

manually by participants on short, task-specific feedback forms during

the sessions. These would be later analysed using standard usability

metrics, and discursively using the Cognitive Dimensions of Notations

(CDNs).

7.3.1 Data collection and evaluation

In designing the workshops and evaluation framework, the CDNs were

used both as a design guide for workshop activities and also for struc-

turing interview questions and developing the observation schedules

for gathering usability-focused data during the workshop (as mentioned

in Section 4.3 (The research process)). The collection and evaluation

process was written into a LivePrinter User Research Plan which was

printed out and provided to all researchers prior to them taking part in

the workshops, and which can be found in Section B.1 (Workshop plan

for the researchers).

In order to triangulate the researchers’ first-hand experience of running

through the sessions with other forms of qualitative and quantitative data

from users, collected at regular points in the sessions, the Research Plan
outlined relevant CDNs for each workshop task and offered question

prompts to ask either participants or for the observer to reflect on

themselves both during and after the research activity.

Before the workshop, participants were provided with details of the work-

shop and instructions to install necessary software. They also received a

questionnaire to fill in about some personal details that would establish

their user type based on their experience with software development, 3D

printing, age, and relevant interests. This quantitative data was meant to

be stored off-line in a paper format, but in the end it was decided that it

wasn’t useful enough for establishing user types
2

and was destroyed.

In each workshop, another printed questionnaire was given to participants

to fill in as the workshop progressed
3
. This questionnaire was explicitly

linked to individual sections of the workshop plan and referenced specific

tasks. Each section and task could be rated with a simple 5-point Likert
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scale to roughly measure sentiment (from “disliked” to “liked this part”).

More importantly, space was given for comments on each task, which

most participants filled in and sometimes accompanied by additional

full pages of feedback.

At the end of the studies, in multiple passes, the section ratings, written

feedback, notes and self-reflections were entered into a database by the

main researcher and categorised by assigning multiple tags. Loosely,

this process of tagging (“coding”) qualitative data followed Mayring

(2014, pp. 62–64)’s general content-analytical step model of starting with

a combination of theory (the CDNs in this case), the research question,

and task-specific workshop goals as initial dimensions for naming tags

and revising them in an iterative way as problematic examples appeared.

Tag names were also assigned to help with the software development

process by highlighting problems, opportunities and mapping feedback

to specific parts of the LivePrinter system, as well as to associate feedback

with specific areas of the user studies and highlight the usability and

utility of the system.

At each revision point, tags were sorted into general themes of interest;

printer-specific activities; and software development areas. Then, feed-

back was sorted into clusters of the same or similar tags and tags within

each cluster were compared to make sure that the feedback within them

seemed related enough. If not, they were re-tagged according to how

well they matched other tag clusters. If some tags only existed alongside

others then they were marked as possibly redundant, and, unless they

had something unique to offer the analysis, they were removed.

An example of this was the tag “extrusion” which was felt to be too

broad to have anything original to contribute beyond the “movement”,

“retraction” and “difficulties” tags which covered more related issues in

ways that more closely mapped to the workshop tasks.

Some tags were not used often and were consolidated, like “variable nam-

ing” meaning “Syntax but more specifically about names of variables”,

which could be combined into the broader tag group for “syntax”. Simi-

larly, the initial tag “complex shapes”, which related to the L-systems-like

function and the observations about some participants making generative

shapes, was attached to too few of the feedback entries and was felt to be

too specific, overlapping with either the more general “syntax” tag when

it came to details of usage or the “improvisation” and “play” tags when

it came to participant intent.

CDN-specific tags were separately added in a later exercise following

a similar pattern of tagging, clustering, comparing clusters, and re-

tagging. Then, the original tags were revisited according to how they

related to the CDN clusters. The end result was a database of individual

pieces of qualitative data (observations, researcher reflections on sessions,

and snippets of user feedback from workshop worksheets) mapped to

multiple tags and also multiple CDNs. In the diagrams shown in Figure

7.19, Figure 7.20, Figure 7.21, and Figure 7.22, some key examples of

data are mapped to CDNs. In Table 7.1 (general tags), Table 7.2 (software

development tags), and Table 7.3 (3DP activity-centric tags), tags are

divided into categories along with key examples of data associated with

each of them.
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As with the content-analytical model, feedback was reviewed at multiple

points during the research process and new tags were created when

interesting aspects of that feedback that didn’t fit the current tagging

system were recorded. When issues from multiple feedback sources

appeared to be related, they were consolidated into the same general

tag or given a new one if the issues seemed both specific and unique to

them. Over time, tag names were consolidated as much as possible and

categories further refined for simplicity in analysis.

Semi-structured interviews were conducted after each workshop. These

were used to interrogate participants’ views about the potential current

and future usefulness of the system and gauge the desirability for

such a system across different user groups. Interviews were guided

by four CDNs that were pre-selected by the researchers. The results

of these interviews, along with the evidence of and reflection on the

physical artefacts created during my experiments, forms a collection

of perceptions, methods, and artefacts that begin to describe this new

field of live computational sculpting. As A. Blackwell (2005) caution, this

“filtering” of the CDNs by the designers themselves might lead to blind

spots in the user study where users weren’t given the chance to respond

to other potentially interesting CDNs, but there are a few responses to

this worry.

Sessions were recorded in audio and video and stored offline for privacy

concerns, and participants were assured that the data would be deleted

at the end of the study. Participants also signed a data protection and

usage agreement at the start of the workshop. After each test, the re-

searcher’s notes were recorded and reflected upon, and the software and

documentation were improved according to user feedback.

7.3.2 Tasks and goals

Each workshop was divided into a series of nine numbered Tasks. These

tasks were described in corresponding areas on the printed feedback

sheet provided to each participant at the start of the workshop. Tasks

followed the study’s goals outlined in Section 6.3 (Design Goals) and,

taken in order, formed a conceptual introduction to I3DP that would help

the participant establish their own mental model of how I3DP worked.

Thus, the workshop-specific goals for users were to get them to:

▶ Goal 1: understand the process of 3D printing and relation to

self-practice

▶ Goal 2: use interactive programming to make 3D forms using

physical properties like speed, temperature, material flow

▶ Goal 3: use interactive programming to make 3D forms using

geometric strategies other than optimising for speed and strength

▶ Goal 4: use livecoding for 3D basic 3D printing operations

Workshop tasks were mapped to these goals as follows:

▶ Task 1: Introduction talk about 3D printing — Goal 1

▶ Task 2: Introducing LivePrinter (overview) — Goals 1,2,3,4

▶ Task 3: Installing LivePrinter — Goal 4

▶ Task 4: Using LivePrinter (basics) — Goals 1,4

▶ Task 5: Using LivePrinter (printing a square) — Goals 3,4
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▶ Task 6: Using LivePrinter (retraction & material flow) — Goals 3,4

▶ Task 7: Using LivePrinter (height and layering) — Goals 3,4

▶ Task 8: Using LivePrinter (freestyle drawing) — Goals 3,4

▶ Task 9: Future Use — Goals 1,2,3,4

7.3.3 Supporting goals: installation

In order to successfully complete each task and achieve the study goals,

the underlying software and hardware needed to work properly, meaning

that they were both usable for the task and useful for completing it. To

begin, the user needed to install the software successfully in the first

place, so evaluating the success of the installation process was a key part

of the study.

One of the sub-goals was to determine if the current installation process,

where users simply copied all the code for the project and executed it on

their computers, was both simple and allowed for future development. It

was hypothesised that having the code in a single, editable place would

make its functionality more transparent to inexperienced programmers

who were unfamiliar with build tools and lacked a sophisticated devel-

opment setup, although experienced programmers might not appreciate

having to navigate a single file instead of being presented with a more

conventional and organised file and folder structure. This was contrary to

many software installation processes where the project code is distributed

without support libraries and organised into in multiple files, requiring

an extra “build” phase using command-line tools to make it usable.

7.3.4 Supporting goals: learning and conceptual models

One of the main goals of the workshop was to help users learn the system

by providing an explicit conceptual model (Norman, 1983) of interactive

3D printing mapped to specific conceptually-oriented tasks. This was

reflected in the section of the workshop detailed in Subsection 7.4.1

(Task 1: Context) and Subsection 7.4.2 (Task 2: Introducing LivePrinter),

which explained to participants where LivePrinter came from, in terms

of historical and contemporary 3D printing developments, and provided

a conceptual model of how FDM 3D printing worked that was meant to

map to LivePrinter’s terminology.

Alongside learning helpful conceptual models, the workshop tasks were

designed to help defamiliarise (Kilpinen, 2009) the “magical” process

of 3D printing. As Brooks (2017) pointed out in his essay on the “sins”

of predicting the future, “if something is magic it is hard to know the

limitations it has. . . anything one says about it is no longer falsifiable,

because it is magic.” To help participants think critically about the object

creation process they needed to learn the actual limitations (and less

explored opportunities) of 3D printing.

Defamiliarisation helped estrange both participants and researchers from

the often-familiar practices of programming and 3D printing, creating

a conceptual distance needed to gain a more objective view of these

practices. This was achieved through the strangeness of a project itself,

e.g. forcing participants into the act of making physical forms with
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code instead of by hand or 3D modelling. It was also achieved by re-

engaging with the process of 3D printing at different levels, such as

introducing them to simpler, alternate methods for fabricating objects

through historical examples. Later on, they actively experimented with

the minutia of the process by following step-by-step guides to fabricating

common 3D shapes, like cubes, as in Subsection 7.4.7 (Task 7: Using

LivePrinter (height and layering)).

7.3.5 Supporting goals: helpful documentation

Documentation, at minimum, needs to be clear, usable, and easy to find

when needed. As Gorski and Iacono (2016, p. 255) and Winter, Wagner,

and Deissenboeck (2007) note, the documentation of systems (especially

that of APIs) can be considered to be an inseparable part of that system.

Users were expected to encounter the documentation at a few different

levels: first, before using the system, when they were deciding whether to

try it out initially; second, as they tried out the system in an explorative,

playful, and learning mode to evaluate whether to continue using it;

thirdly, when they were using the system for a specific purpose or project

in a more structured, task-oriented and experimental way. That meant

that documentation served a number of roles ranging from promoting

the system to assisting users during use and providing prompts for

reflection afterwards.

It was decided to somewhat forgo the methodology of Minimalism
(Carroll, 1990), where documentation is short, task-specific, and focuses on

activities, but does not include conceptual material. The documentation

was still written to be brief as possible and focus on active learning

activities loosely grouped into tasks. Where it differed was that much

of the documentation was arranged according to a series of concepts

that provided both scaffolding and background to this new form of

3D printing, so as to better situate unfamiliar concepts and promote a

more reflective and strategic learning process that would hopefully avoid

“inefficient bricolage” (in Ben-Ari and Yeshno (2006, p. 1341)’s words).

The effectiveness of the documentation was integral to success of the user

testing workshops. The workshops were structured as journey through

key parts of the system led by a “quick start” document (described below),

and sign-posted by the integrated documentation (also described below),

starting with the origins of additive manufacturing and leading partici-

pants through a series of activities meant to help them understand how

3D plastic forms are physically constructed and conceptually described

in code.

7.3.5.1 The project website

The main GitHub website for the project, which contained the down-

loadable code necessary to run it, was the most verbose out of all the

documentation. It was expected to be the first point of contact for poten-

tial users who were well versed in software development, and possibly

the only point of contact for many of them. It described how to download

the software and get started; the aims of the project, including some
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4: https://github.com/pixelpusher/

liveprinter/blob/master/reference/

Quickstart.md

5: https://github.com/pixelpusher/

liveprinter/blob/master/

liveprinter/static/examples/

default.js

detailed diagrams; how to get in contact with the developer(s) and com-

munity; and referenced other related and relevant projects. Importantly,

it described how to download and install the software.

This documentation was referenced during workshops, especially the

installation tasks, and as a result was continually updated throughout

the project. Videos were added to illustrate the installation process and

general usage of the system, and a “Quickstart” document was later

created as a shortened version of the workshop activities
4
.

7.3.5.2 Workshops documentation

For workshops, users were provided with a PDF document containing

all the learning materials needed to get started (see Section C.1 (User

Workshops presentation)), which was also available to download online.

This document provided both a guided tour of the system and a reference

for the system’s terminology. Whenever possible, it pointed users towards

the documentation embedded in the LivePrinter interface itself.

All the documentation for the workshops followed a task-based approach,

linked to the data collection process. It was also meant to be accessible

by users who didn’t take part in the workshop but still wanted to try out

the system, or past participants who needed to use it as a reference.

7.3.5.3 Integrated documentation

One of the most important goals of the documentation was to help get

LivePrinter installed quickly, so people could start actively experimenting.

Once the system was installed, users were expected to dive straight

in and start actively learning by using it, as opposed to reading the

documentation first. This meant focusing on short and conceptually-

organised activities coupled with contextual explanations as with the

Quickstart above. Many of these were integrated into the system itself, in

the form of Examples (see section 5 of Fig. 6.2).

7.3.5.4 In-code documentation

Much time was spent during the project making sure that all code was

thoroughly commented. Comments, in a coding sense, are special lines of

text written for humans, not computer compilers, existing in situ inside

the source code alongside executable code. These comments formed a

major part of the integrated documentation, guiding users in midst of

their bricolage-style livecoding activities where they would be running

code line-by-line, surrounded by helpful code comments. Sometimes they

outlined explicitly conceptual activities and tasks, as with this selection

from the default.js example for getting started used in the workshop

tasks:
5

https://github.com/pixelpusher/liveprinter/blob/master/reference/Quickstart.md
https://github.com/pixelpusher/liveprinter/blob/master/reference/Quickstart.md
https://github.com/pixelpusher/liveprinter/blob/master/reference/Quickstart.md
https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/default.js
https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/default.js
https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/default.js
https://github.com/pixelpusher/liveprinter/blob/master/liveprinter/static/examples/default.js
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1 // ...
2 // Step 5: click printer settings tab, select serial port. Wait for
3 // connection messages and green dots to move up top.
4 //
5 // Step 6: click code tab to load editor
6 //
7 // Single lines of liveprinter code start with ’#’
8 // Blocks of liveprinter code start and end with ’##’ (more on this later)
9 // Run code by clicking on the line you want to run and hitting CTRL and ENTER keys,
10 // or SHIFT+ENTER.
11 // Or, highlight some code and hit CTRL+ENTER or SHIFT+ENTER.
12 //
13 // If there’s a problem with your code, it should pop up at the top of this editor.
14 // If it’s a problem with the system, you might have to open the JavaScript console
15 // for this web browser.
16

17 // Step 7: Home the axes so the printer knows where the print head is positioned.
18 // (Do this every time it loses power). Set print head temperature to 210 (for PLA) // and

turn on print head fan:
19 # start 210
20

21 // Step 7b.: turn on the print bed to 50C
22 # bed 50
23

24 // You can also set the print head temperature directly:
25 # temp 220
26

27 // same goes for fan (0-100%):
28 # fan 100
29

30 // Now check the display above - the numbers should have changed. Try:
31 # sync // get back current temperature and print head position from printer
32 // It should update very quickly!
33

34 // Step 8: click printer tab again and hit the button to start live temperature
35 // polling, or keep running sync until the temperature is hot enough (190+ for PLA).
36 // If the temperature is too cold, it will ignore your printing command and give
37 // you an error in the side info panel.
38

39 // Step 9: Get some feedback! The right panels show info and errors.
40 // Print out some info yourself:
41 loginfo("This is my info!");
42

43 // Print out an error:
44 logerror("ERROR! I caused this.");
45

46 // If things go wrong internally, they show up there.
47

48 // Click on the "history code editor" tab above - you should see all the code you ran, with
the time you ran it. This is useful for recording a session! You can also run code directly
from it, same as here.

49 //
50 // Next to it is a GCode editor that records all GCode from this session. You can At the

bottom right of this window pane is a "download" button that downloads all code editors to your
computer.

51

52 // Now your printer is ready to print! (When the target temperature of 210C is reached)
53

54 //
55 // MOVING (traveling)
56 //--------------------------------------------------------
57 // Try moving - you can do this whilst it warms up:
58

59

Figure 7.2: Excerpt from the LivePrinter Quickstart provided in the built-in Examples (part 1/2)
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60

61 //absolute move to x=20mm, y=20mm at speed 80mm/s:
62 # moveto x:20 y:20 speed:80
63

64

65 // you can also use the shorthand:
66 # mov2 x:20 y:20 speed:80
67

68 // relative move at 1/2 the speed - we should be at x,y (60,20) now.
69 # move x:40 speed:40
70

71 // you can move up and down too: try moving the print head down 10mm
72 // (meaning the bed moves up 10mm)
73 # mov z:-10
74

75 // lower the bed to 50mm less than the bottom:
76 # moveto z:lp.maxz-50 speed:40
77

78 // END
79

Figure 7.3: Excerpt from the LivePrinter Quickstart provided in the built-in Examples (part 2/2)
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6: https://jsdoc.app/

7.3.5.5 Generated documentation

There are automated systems for turning in-code documentation into

web pages. Before the workshops, LivePrinter used an open source

system called JSDoc
6

and a standard documentation template to make

the function references available to potential developers and workshop

users, but the results were not promising. Most users viewed it once and

then ignored it. Others found the formatting difficult to follow. The main

complaint was that this generated documentation was organised around

file structure and not typical usage. It might have been helpful for future

developers of LivePrinter looking to extend the system, but was less so

for people using it for activity-oriented livecoding.

7.3.6 Evaluating the usability of livecoding

One of the most important goals for the livecoding portion of the system

was to be both a usable and useful vehicle for supporting people’s live

material explorations. The usability studies for this part focused on the

GUI itself (as described in Fig. 6.2) and the combined learnability and

usefulness of the software API and associated language syntax, which

was developing throughout the project. The tags usability, usefulness,
programming, and to a lesser extent GUI were helpful for establishing

relevant feedback for this goal.

The GUI was evaluated in the workshops according to its role as both

interactive “dashboard” for the connected printer and software internals,

and also in its utility as a non-linear code editor supporting a range

of livecoding styles. It was evaluated implicitly whether it enabled the

user to successfully complete the workshop tasks, rather than explic-

itly through a specific, GUI-centric task (which might have taken the

form of “try and find the location of the print head in the after this

movement”). Effectiveness was determined from participant feedback,

post-workshop interviews, and in-situ observations by researchers look-

ing for problematic situations when users were unable to find necessary

information or showed signs of confusion, and positive situations where

they were engaged in the act of making. This holistic approach prioritised

understanding the quality of the time users spent learning interactive

programming and making objects and over testing the effectiveness of

specific notational elements.

Starting with the first version, all versions of LivePrinter included an API

that mostly described GCode functions, or combinations of functions,

and ultimately compiled to a series of GCode commands that were sent

to the printer. To evaluate the API, the workshop guided participants

through a “scaffolded” learning process with general goals that built

from simple to complex, such as moving at a specific speed through

to drawing a square. They were provided with example code to use

and documentation to reference during the study. The focus was on

whether enough functionality was provided to the users to support their

creative process, and whether it made sense to them. To further test

the context-specific abstraction levels, recognisability and learnability

of the notation, functionality was often implemented in different ways

(e.g. different terminology for “absolute” vs “relative” movements or

https://jsdoc.app/
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Again, these can all be found in the Ap-

pendix at the end of this document.

relational terms such as “up” vs. “down”). This is reviewed in Subsection

7.4.4 (Task 4: Using LivePrinter (basics)).

To evaluate the effectiveness of the code syntax, participants were given

different forms for constructing “code sentences,” roughly categorised as

compact vs. verbose notation for describing operations; method chaining;

and method cascading as described in Subsection 7.4.5 (Task 5: Using

LivePrinter (printing a square)).

7.4 User workshop results

The results of the user workshops are presented here, divided into an

explanation of each section (or task) of the workshop and followed by

a discussion of the user feedback and research notes relevant to that

section. The task explanations were taken from the LivePrinter Quickstart

document presented to the users during the workshop, and the feedback

and notes were taken from researcher notes, reflections, observations,

and notes taken from the various video and audio recordings of each

workshop, and the 31 filled-in, task-specific, user feedback sheets, that

were collected from all the workshops.

7.4.1 Task 1: Context

Each workshop began by with a short lecture overview of 3D printing to

provide context for LivePrinter. The lecture started with a brief history

of semi-automated manufacturing, then, in the second part (described in

the sext subsection) introduced a conceptual model of how 3D worked

from both mechanically (identifying key electronic parts, and discussing

plastic layering), and on a service level (the aforementioned Process
Planning: modelling, slicing, rendering to G-Code, printing, finishing).

The notes for this section and all future sessions were provided as a PDF

file for participants to take away with them, as well as projected on the

screen in the workshop space.

This task and next task on LivePrinter were a direct response to Baudisch

and Mueller (2017)’s Challenge 4 of “machine-specific knowledge”, or

understanding better how 3D printers work and are controlled, and what

sort of tooling options were available.

Participants mostly found the context section inspiring and helpful in cre-

ating their own basic conceptual model of 3D printing, at least “enough

to get up and running” as one participant wrote. Without a basic under-

standing of the mechanisms and applications of 3D printing, the “role

expressiveness” and “closeness of mapping” of the LivePrinter notation

and would be basing their actions on their non-expert interpretation of

technical terms like “retraction” and “extrusion” in the LivePrinter API.

“Enjoyed going back to ‘first principles’ of manufacture. Very interesting

contextualisation of what we’re about to do”.

Despite the relatively long length of this section at 30-odd minutes, par-

ticipants found it useful: “Informative & inspiring with visual examples

of how creative practitioners have approached 3D printing. Good pace to

presentation.” Some wanted to know even more about how 3D printers
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7: This quote has been edited slightly to

keep the anonymity of the participant.

were actually used in industry, and more in-depth details about how the

machines actually worked. Later sessions took this feedback into account

and skipped some historical examples in order to focus on contemporary

examples more relevant to current practice, and also to leave time to

cover specifics of printing that were better illustrated in the later, more

hands-on sections of the workshop.

7.4.2 Task 2: Introducing LivePrinter

Next, the LivePrinter system was introduced as a new way of making 3D

printed objects incrementally, including a brief overview of the hands-on,

experimental design philosophy it represented. This was necessary to set

up the expectation that participants would be experimenting with the

process of 3D printing and not as much with fully-formed products of it.

7.4.2.1 Feedback and Responses

There were numerous positive comments about how this section was

“clear” and “informative” and “good general background info, enough to

get up and running”. As one put it, “Good explanation on why it exists

and the goals for the project and how it differes [sic] from traditional

3D printing.” Participants were more critical about two distinct areas:

the workings of the specific 3D printers in the workshop, and how 3D

printers are used in industry.

A description of the mechanics of desktop FDM 3D printing came later,

so it would be concurrent with the activities that directly used those

mechanics, which may have been late for some participants. Also, FDM

printing in industry (large or small) wasn’t discussed in detail, which

may have been an oversight on the researcher’s part.

One unforeseen issue with this introduction was that some users with

no experience of either 3D printing or coding recorded that they didn’t

understand the difference between LivePrinter’s I3DP method and how

other 3D printers normally were used. They had never used software to

slice a 3D model and print it out, so they had nothing to compare this new

system to. Fortunately, as one participant put it, “when you introduce

3d printer at the beginning, [they were] not confident to understand the

theory and the connection between coding and 3d printer you showed

on the slide, [but felt better when we] started to practise on 3d printer

because it’s more obvious and visual.”
7

To give new users a sense of the

difference in these two approached, it might have been better to start this

section by slicing a model to a file and printing it, and then approaching

drawing a similar shape using LivePrinter.

7.4.3 Task 3: Installing LivePrinter

In this task LivePrinter was installed on the participants’ personal ma-

chines using either USB keys provided by the research staff or personal

internet downloads. During the sign-up process participants were di-

rected to pre-install some necessary software before the session, which

many did, and potentially to even install LivePrinter themselves, which
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very few did. This was the most difficult part of the workshops, despite

the step-by-step instructions and provision of installer software for differ-

ent computer setups. It required file copying and typing in installation

commands, and sometimes there were complex conflicts in software

versions (especially with Linux users and Python).

7.4.3.1 Feedback and Responses

This was the most problematic part of the workshop, as evidenced by the

volume of negative feedback comments. Out of a total of 17 comments

tagged “installation” a further 10 were also tagged “difficulties” and only

2 were tagged as “positive”. In the feedback, some participants preferred

textual instructions that they could cut and paste, others preferred video

instructions showing intermediate actions like opening software and

mouse movements and clicks. Video instructions were especially difficult

to provide for this experimental system, because of the time needed to

create them and update them: with every change to the system the entire

video had to be re-recorded, unlike text where small updates would

suffice.

After every workshop, the instructions were edited and expanded upon

and a video was recorded in response to that feedback. The installation

process seemed to either work easily for participants because they had

experience developing software and understood the basic programs, or

it was difficult because they had problems with “different software and

language” or were “unfamiliar with the interface for the initial set up”

(meaning the textual Terminal program).

Participants who understood the process (or had followed the instruc-

tions and done this before) either helped those who didn’t or found it

tedious when we waited for everyone to get their system working before

moving on to the next section. There was a large difference in knowledge

between participants with computational experience as opposed to more

traditional designers, educator, artists, and others. This pointed towards

the different user experiences of 3D printing, as a hybrid computation-

al/physical process, depending on those users’ backgrounds. As one

technically-experiences participant put it, “Very hands on - great! A little

boring when people became a bit tech challenged.”

7.4.4 Task 4: Using LivePrinter (basics)

For this task, participants started running the LivePrinter system on their

computer and executed some simple drawing operations. It introduced

the LivePrinter Graphical User Interface (GUI), communicating with the

3D printer, some basic syntax and functionality, and the specific order

in which the system should be started up. The starting order was very

important, both due to the experimental state of the software and the

actual physics of the 3D printer.
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Figure 7.4: Movement and drawing (ex-

trusion) functions in LivePrinter showing

the internal workings of the (1) relative

(specified vs. current position and head-

ing) and (2) exact (specified using absolute

position) movements. Function names are

inside the rounded boxes. These functions

result in immediate printer movements.

In section (3) is a listing of the functions

that affect the properties of movements

and printing but do not result in immedi-

ate movement. Note that temperature and

retraction functions are not listed here.

7.4.4.1 Connecting

First, the participants connected the LivePrinter system to the attached

3D printer via a serial connection. If this was not done, commands would

have no effect. This was a problem in early software versions because

it was unclear that the connection wasn’t established, whereas in later

versions a “connected” animation in the form of a line of scrolling dots

appeared at the top of the screen and the software actively prevented

commands from being executed when not connected to a printer.

Once connected, the printer needed to be started up in the correct

sequence, beginning with “homing” the print head to the origin position

in the top left of the printer cavity and moving the print bed to the printer

floor, then heating up both the print head and print bed in preparation

for printing. This sequence was consolidated into a single function, but

forgetting to run it would result in a misaligned printer head and cold

material that could not pass through the extruder, both fatal errors in the

printing process.

In terms of the CDNs, this “error-prone” sequencing was a major case of

“premature commitment” since it was up to the user to make sure that

the bed was constantly aligned and the head was the correct temperature.

Unfortunately, checking that the print bed was aligned would have

required additional hardware that the printers didn’t have installed.

Another problem was that querying the printer properties had to be done

in code, which was a high level of “viscosity” for retrieving information

that was helpful at any point in the printing process.

The viscosity was lowered by increasing the “visibility” of the printer

temperatures after the first workshop by adding elements to a “dashboard”

displaying printer properties in number-display elements at the bottom

of the interface. With this dashboard users could quickly scroll to see the

current x,y,z position of the head and the current print head and bed

temperature (as seen in the workshop presentation’s “Step 1” in Section

C.1 (User Workshops presentation)).
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Figure 7.5: The original GUI for LivePrinter at the start of the user workshops had a section at the bottom that displayed printer properties.

This was moved to the top as seen in Figure 6.2, based on workshop feedback where participants often did not scroll downwards and thus

did not see it.

Very quickly, it became apparent in the workshop that putting the

dashboard at the bottom was a mistake, because scrolling down in mid-

operation was also adding to the viscosity. Additionally, a user noted that

we should “signify current vs. target temps”, meaning we should show

the temperature of the head and bed in relation to what they were set at

in the firmware, which made sense given that the temperature changes

took significant amounts of time which was not visible to the users. This

led to the last GUI design in this study, seen in Figure 6.1.

7.4.4.2 Moving

Lines drawn in 3D space form the basis for most, if not all, 3D printed

shapes. In terms of printing movements, the standard 3D printer GCode

syntax provides two modes of movement, called absolute and relative.
Absolute movements moved the print head (or bed) to specified coor-

dinates, whereas relative movements moved the print head (or bed) by

a certain offset. Both specified movements in millimetres across one or

more axes: the x-axis (left–right); y-axis (forward–back, facing the user);

z-axis (up–down); and e axis (the filament forward–reverse feed) and at

a specified tool speed from the current position to the end. Internally, in

the Marlin 3D printer firmware this speed is split into individual motor

speeds across each of the x, y, z, and e axes to achieve the desired overall

tool speed over the entire movement. An illustration of this process is

included in Fig. 7.4.
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8: http://p5js.org

9: These functions are defined in

the printer API at https://github.

com/pixelpusher/liveprinter/blob/

master/js/liveprinter.printer.js

In this task, participants experimented with the two alternative ways

of “drawing” plastic lines. To first familiarise participants with printer

motions without the additional complexity of managing material flow

they were instructed to move the printer head without any plastic

extrusion in what is called a travel move.

They began by using absolute mode, e.g. moving the print head to and from

explicitly specified positions in x, y, z in the printer cavity using a function

with a verbose JavaScript Object-style argument containing one or more

of the movement properties as an argument as in {x, y, z, e, speed}.

They were instructed to use the lp.moveto() function as follows: lp.

moveto({x:20, y:30, z:10, speed:20})

In this example, looking at the printer from the front, the head moves 20

mm to the right, 30 mm towards the back, the space increases between

the head and bed by 10 mm, and this complete movement takes place at

a fixed speed of 20 mm/s across all axes.

Then, they moved the print head to and from positions relative to the

current position in x,y,z in the printer cavity using the lp.move() function:

lp.move({x:0, y:20, z:10, speed:20})

This verbose style of coding was meant to be more transparent than

simply listing parameters in an arbitrary order. For example, some APIs

like p5js
8

use bare lists of numbers to specify arguments, as in this

example for drawing parts of an image to the screen: image(imgName, 0,0,

20,40,50,60,70,80). The trade-off in verbosity was meant to help with

learning movement properties through repetition, minimise the need to

keep looking up function in the documentation, and also minimise error

due to misplaced arguments.

Participants continued experimenting with moving the print head vary-

ing distances and changing speeds, using different function arguments,

to get an intuitive sense of both the size of the printer cavity and the

range of speeds at which the printer head could move.

7.4.4.3 Extruding

Once they had some experience with movement, participants moved on

to drawing with plastic, or extruding. In this task, participants worked on

moving the printer head until it was positioned slightly above the printer

bed and experimented with drawing plastic lines.

For print head movements with plastic extrusion (sometimes called

“extrusion moves”), the API provided a function called lp.extrude() for

relative moves and lp.extrudeto() for absolute moves, with the same

style of JavaScript object passed in as the movement functions
9
. The

aforementioned e parameter in the function arguments {x, y, z, e,

speed} controlled the length of filament to extrude, which was useful for

manual retractions and priming the filament in the nozzle.

http://p5js.org
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
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7.4.4.4 The GUI

In the first two workshops, the GUI was located on bottom of the screen,

but was moved in subsequent workshops because it was hard to scroll

down to find it when the code editor was at a larger size, and people were

not inclined to scroll down to find it. Also, the buttons were made smaller

and streamlined to accommodate more screen space, and the colours

were adjusted to be higher-contrast to accommodate colour-sensitive

users.

Users also offered a few feature requests for the interface that were

later integrated, such as a “new file” option. Another issue was the top

breakout display of important printer properties, such as temperature

and head position. Users said that they were uncertain whether this was

a display or a way to quickly set properties, so in later workshops the

ability to quickly set properties through the top display was added. This

new “dashboard” was not explicitly tested with users, so as not to further

complicate the workshop schedule, but the researchers found it helpful to

be able to do things like set the target head and bed temperatures quickly

and immediately, without code, lowering the viscosity of these simple

actions at the expense of increased visibility of the printer parameters

over the interactive code editor.

7.4.4.5 Feedback and responses

This task was meant to be an introduction to the user activity of Ex-
perimental I3DP (see Subsection 5.6.1 (Activity Cluster: Experimental

I3DP)), a slower and more deliberative mode of working with I3DP since

users were new to the system and weren’t expected to have much if any

intuition about how it might work. They needed to first commit the basic

syntax and modes of working to memory before they could quickly recall

and combine them together “on-the-fly”. It relied heavily on transcription
and modification activities to get them working quickly and provide them

with future building blocks for more intuitive cut-and-paste coding.

Despite the initial complexity of this section, user feedback was very

positive. It was described as playful, “easy, simple”, “straightforward”,

and “very satisfying to use”, and “Delivered well, diagrams were easy to

follow, friendly interface. Built confidence around coding for someone

with very little experience in coding.” 21 out of 30 responses gave it 5/5

and 6 gave it 4/5.

The interactive code editor was quickly adopted by many participants, but

interestingly became a source of confusion for moderately experienced

coders. Some users found it jarring that they could execute individual

lines of code in a code editor when they were used to running an entire file

or project at a time, as with the creative coding environment Processing.

The verbosity (i.e. “diffuseness”) of the function arguments seemed

effective at preventing confusion for novices and advanced participants

alike, meaning that the “role expressiveness” of the notation was helpful

enough and the specificity of the parameters (e.g. {x:XX, y:YY, z:ZZ,

speed:SPEED}) helped with the “error-proneness” of having to specify so

many of them. The justification in the workshop documentation appeared

to satisfy some participants as to why this high level of diffuseness could
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be helpful, although it wasn’t without some grumbling: “quite like the

API, not biggest fan of having to input JSON for each move() command

but understand why used.”

Participants understood the movement functions conceptually, but were

unsure about units of distance: “I get the principle but not really sure

between number and position.” Some asked for visual references on

the printer itself. One wrote “Say where 0,0,0 is on printer” and during

discussion participants liked the idea of a printed grid on the printer bed

or inside the build cavity for reference. They we also unsure about the

starting point, and asked for clarification: “specify a universal origin |

zeroed out (bed down, head back left)”. Others seemed to develop an intu-

ition of the size of the space after some experimentation: “. . .not initially

straightforward but after some playing it was better understood.”

In response to this feedback, since the printers themselves couldn’t be

modified later workshops provided each participant with calipers, so

they could measure for themselves. This pointed towards a need for

“secondary notation” for deliberately planning shapes and paths without

using just the code provided.

While the code examples provided were generally a useful start for most

participants, others wanted some more contextual information about

available movement commands and their arguments: “if not already, add

‘movement commands’ slide info onto the webpage in a ‘quickguide’

kind of page”. In response, a list of movement commands was added in

future workshops as an appendix in the back on the documentation PDF

and participants readily referenced it during the more advanced tasks.

Some other feedback was entered in different task sections because

participants used the questionnaire sheet as a general repository for

feedback across the entire workshop. Under Task 2 were some comments

that appeared to be from Task 4, mostly from novice programmers who

seemed to have some difficulty with coding in general as asked the

researcher to “. . .introduce basic function before starting coding (for

task 4)”. Other participants noted how they worked alongside more

experienced participants who took the lead in coding, again highlighting

the different experience of computationally-literate participants.

7.4.5 Task 5: Using LivePrinter (printing a square)

The next concept introduced was how to connect plastic lines to form

continuous shapes. Participants were tasked with drawing a square

on the print bed by moving the print head using absolute coordinates

(i.e. a more deliberative Experimental I3DP), and then by using relative

coordinates (a more intuitive Exploratory I3DP). JavaScript’s for loops were

introduced as ways of automating shape construction, somewhat.

The task was deceptively simple, because a number of things could (and

did) go wrong at this point which highlighted the problems of “premature

commitment” and “hidden dependencies” and generally brittle “error-

proneness” of the whole process. Firstly, the head temperature needed

to be set high enough or the printer firmware would refuse to advance

the material and return a “cold extrusion prevented” error. To rectify
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Figure 7.6: Examples of single-layer rect-

angular and star shapes of different sizes

drawn by participants

this, participants needed to turn the printer off an on, and re-run the

LivePrinter server, which was not ideal.

Also, the printer bed needed to be perfectly flat at all points, within a

tolerance of around +/- 0.05 mm. If any of the 4 independent springs

controlling the bed height had loosened during regular operation, or if

someone had miscalibrated the printer previously, the extruded plastic

would not adhere properly to the bed. This was time-consuming to fix

properly because it required a researcher or lab technician to re-run the

calibration routine on the printer.

Thirdly, to make the shape cleanly participants needed to account for

material flow, before, during, and after the extrusion. That is, the material

needed to be extruded until it completely filled the print head (i.e.

unretracted), extruded a specific amount during the operation, and then

either pulled backwards by the filament motor (i.e. retracted) or left in the

head where it could be used for additional extrusions, or potentially drip

out onto the bed. This was expected, and led them into the next section,

Subsection 7.4.6 (Task 6: Using LivePrinter (retraction and material

flow)) which focused more on material handling. The invisibility of

the retraction process again was a problem here, despite the increased

visibility of the retraction amount in the top dashboard.

Also introduced during the session were the two different syntactic

methods for specifying multiple operations: using traditional loops and

discrete methods, or using method chaining. These were designed to

better highlight the more intuitive and improvisational modes of making,

Exploratory I3DP and Livecoding I3DP, versus the more deliberative

Experimental I3DP.

It was apparent from the start that writing lines of code with low

abstraction levels, like move and extrude, would quickly take up most of

the screen space in the interactive code editor. Unlike desktop Integrated

Development Environments (IDEs), livecoding performances often use

single files or buffers of code and favour less verbose syntax. This arguably

reduces cognitive load on both audience and performer. In LivePrinter,

a complex object described in single lines of code would be highly
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Figure 7.7: Task 5: code for printing a

square absolutely

Task 5: code for printing a square absolutely

1 // Heat up the printer to 200C
2 lp.temp(200);
3

4 // Prime the filament (extrude a bit to start)
5 lp.moveto({x:20, y:20, z:80, speed:80});
6 lp.extrude({e:10,speed:8});
7

8 // (repeat last step until we see filament! Then wipe it
off)

9 // Move the print head to the print surface
10

11 lp.moveto({x:20, y:20, z:0.2, speed:80});
12

13 //Draw lines:
14 lp.extrudeto({x:120, y:20, z:0.2, speed:30});
15 lp.extrudeto({x:120, y:120, z:0.2, speed:30});
16 lp.extrudeto({x:20, y:120, z:0.2, speed:30});
17 lp.extrudeto({x:20, y:20, z:0.2, speed:30});
18

19 //Finally, move the head up:
20 lp.up(60);
21

Figure 7.8: Task 5: code for printing a

square relatively

Task 5: code for printing a square relatively

1 lp.moveto({z:0.2}); // move to build height
2 for (let i=0; i<4; i++) {
3 lp.dist(40).go(1); // draw side
4 lp.turn(90).go(); //turn for next side
5 }
6 lp.up(40); // move up
7

10: https://en.wikipedia.org/wiki/

Method_chaining

11: https://en.wikipedia.org/wiki/

Method_cascading

operationally visible as to what was happening to an audience, and yet

would take up most of the screen space and quickly become unintelligible

as to its overall intentions.

To increase legibility and typing speed and decrease diffuseness by

limiting the number of redundant characters, punctuation and lines

of code that needed to be typed and reviewed, LivePrinter tested out

three different grammatical strategies for constructing highly abstract

“sentences” with code:

▶ An abbreviated, L-systems-like syntax (without recursion)

▶ Method chaining
10

— implemented in standard JavaScript

▶ Method cascading
11

— implemented in JavaScript as a syntactic

sugar using the special LivePrinter minigrammar syntax

Originally, LivePrinter used a method chaining design pattern inspired

by Turtle graphics (Papert, 1980). With method chaining in LivePrinter,

function return an instance to an object representing the 3D printer state

that can be modified using successive operations. For example, to move

to a certain position and draw a 30 mm horizontal line one could write:

moveto({x:20, y:30, z:0.15, speed:30}).extrude({x:30}).

https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_cascading
https://en.wikipedia.org/wiki/Method_cascading
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This approach opened up the possibility of atomising movement prop-

erties and chaining them together, instead of specifying them in one

JavaScript object eat time. Participants could set properties such as speed

and direction, similarly to Turtle’s first-person perspective syntax for

telling a drawing cursor called turtle to take on certain properties: TELL

TURTLE SETVELOCITY 20. For example, to set the speed outside a move()

function, one could write lp.speed(40).move({x:30mm}).

Issuing first-person commands let participants assume the viewpoint of

the print head, as if they were driving it directly rather than operating it

from the perspective of looking down at the machine from above. After

describing what the head should do, they then initiated the drawing

operation with the method go(). This design pattern resulted in functions

that were more noun-like. For example, lp.angle(90).speed(50).dist

(100).go(); set the movement angle to 90 degrees, the desired movement

speed to 50 mm/s, the desired distance to 100 mm, and then ordered the

print head to move as specified.

The L-system-inspired syntax was used in a special function called lp.

run() which allowed participants to quickly specify a number printing

operations in a single line like lp.run(‘E10M20R30E10L30E10U60‘) for an

extrusion of 10 mm, followed by a movement of 20 mm, followed by a

right-hand turn of 30
◦
, followed by an extrusion of 10 mm, followed by a

left turn of 30
◦
, followed by an extrusion of 10 mm, followed by moving

the print head up by 60 mm.

7.4.5.1 Feedback and responses

User feedback was overwhelmingly positive about this approach. They

found the chains of commends more legible: “there’s a whole set of

commands together, so it just goes this, this, this, this, all in one line.” At

the same time, they recognised there were limitations to what a person

could understand in a single line.

In particular, some beginners and other more experienced programmers

who were interested in generative graphics found the print head-relative

syntax intuitive and also useful. Participants who self-identified as gen-

erative artists and designers remarked during the sessions and following

discussion that it opened up possibilities for experimenting with 3D

printing that had not been previously available to them. Participants

also appreciated how quickly the abbreviated syntax could be typed (e.g.

it had a “low repetition viscosity”), remarking that it would be useful

during livecoding, where time (and low viscosity) is of the essence.

These chained function actually used more characters and thus took

longer to type than other methods, mostly because of the additional

punctuation and brackets. In CDN terms, they were very “diffuse” and

had a “high repetition viscosity” because of all the typing. Despite the

diffuseness and verbosity, or perhaps because of the way they formed

a “narrative” sentence describing the operations necessary to make an

object, participants, especially from a design background, preferred them

to the more concise line-by-line versions that used JavaScript object

arguments, or as one put it, “[I] preferred the ones chained up”, and

according to another “there’s a whole set of commands together so it just

goes this, this, this, this, all in one line.”



118 7 User Studies and Analysis

They did recognise that both approaches have benefits and drawbacks,

however: “you need both, anyway. for some stuff, you need it separately

to make it clearer”.

They likened the chained methods to viewing the printing process “from

a person’s frame of view. . .looking at the printer, not relative to the [print]

head.” Another reasoned that “If it is a metaphor for having a pen in

your hand, like an extension of your self, that’s why that sounds more

intuitive” and “I feel this is the 3D version of the pen I draw.” Some

responded positively to the analogy introduced during the workshop

that live 3D printing is akin to oil painting: “It is like sculpting. . .the

analogy of an oil painting is quite good. . .it felt like that, line-by-line.”

Figure 7.9: A stack of squares drawn by

a participant in Subsection 7.4.7 (Task 7:

Using LivePrinter (height and layering)).

Note the material pooling at the corners

due to pauses between printing opera-

tions.

7.4.6 Task 6: Using LivePrinter (retraction and material
flow)

This task was a modified version of the last square-drawing task, this time

drawing a “clean” square by handling material flow properly during live

printing using code. The importance of material handling was illustrated

in the last task by instructing participants to print shapes slowly using

the extrude() function, where it quickly became apparent that whenever

the print head paused, material would leak out and form plastic blobs on

the build surface. To solve this problem, users needed to perform what

is called a retraction. The term retraction is a mechanically-descriptive

term describing the act of reversing the filament feeder motor, so it pulls

back the filament and prevents leakage of the molten material from the

print head. It covers a complex action that has no visible cause because

it occurs hidden from the user’s view inside the print head, and a slow

effect because the melting of the material takes time to drip out of the

nozzle.
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The LivePrinter system helped users handle the potential complexity of

the material handling process in a few ways. By default, it automatically

retracted the filament at the end of movements and unretracting at the

beginning. It also provided an option to manually retract and unretract

using a retract: true/false argument to lp.extrude(), or to advance the ma-

terial explicitly using the e parameter. In early workshops, the complexity

of predicting when to use automatic retraction and the limitations of the

initial use cases quickly became clear and its inability to handle common

use cases was noted in the feedback. Retraction and material handling is

explained in full detail in the next chapter.

7.4.6.1 Feedback and responses

Participants were observed learning quite quickly about the mechanics

of retraction when the print head stopped moving and the “blobs” of

plastic formed from leaking material. An unexpected result was that

participants enjoyed “playing” with the blobs and creating lasso-like

loops of filament. This process is usually an undesired side effect of

suboptimal retraction settings in the 3D printing slicing software, and

usually users do not get the chance to see blobs being created in such

an obvious way because the printing action is so quick and often runs

unattended.

There were a number of cases where manual control mixed with automatic

retractions put the system into an unstable state. For example, advancing

the filament on its own using only the e parameter was useful to manually

move the filament backwards and so it could be easily changed without

stopping; unclogging the print head; or creating blob-like shapes.

Unfortunately, after a manual extrusion it was hard to predict whether or

not to automatically retract. Later designs built on the use cases identified

in the workshops to heuristically handle retraction, with the option of

turning it on and then off again globally as opposed to as an argument

in each function call.

Another major conceptual and metaphorical difficulty was, as one partic-

ipant put it, “lack of some knowledge about the machine (don’t know the

relationship among temperature/materials/shapes/coding)”. Material

handling, an invisible process that occurs inside the print head as molten

material is pushed out of the head and pulled backwards slightly on

retraction, was a difficult concept for most participants to understand.

Pulling the material back during a retraction operation might prevent

leakage, but how much and for how long based on how much retraction and

at what speed? The overly-descriptive mechanical metaphor fails to cover

the basic material handling use case, here.

This was compounded by the difficulty of designing a system that effec-

tively handled retraction automatically and also, manually. Additionally,

there was a software bug in early workshops and inherent flaws in the

retraction logic for certain uncommon use cases that were finally fixed in

May 2020, after most of the user workshops.
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Figure 7.10: An example of how layering

is used to create 3D shapes

7.4.7 Task 7: Using LivePrinter (height and layering)

After participants developed some proficiency with mostly 2D drawing

operations, this task introduced them to the layering technique necessary

to make 3D shapes illustrated in Figure 7.10. Users repeated the square-

drawing process from the last task, this time slowly incrementing the

height (z-axis) to draw a “stack” of squares, as illustrated in the code in

Figure 7.11 and Figure 7.12.

Figure 7.11: Task 7a: code for printing a

“stack” of squares

Task 7: code for printing a “stack” of squares

1 lp.lh(0.25); // set layer height
2

3 lp.moveto({z: lp.layerHeight}); // move to build height
4 // draw 5 layers of a square
5 for (let layers=0; layers < 5; layers++) {
6 lp.unretract();
7 for (let sides=0; sides<4; sides++) {
8 lp.dist(40).turn(90).go(1,false); // draw side
9 }

10 lp.retract();
11 lp.up(lp.layerHeight); // move up to next layer and

repeat!
12 }
13 lp.up(40); // move up
14

7.4.7.1 Feedback and responses

Participants continued to have problems with retraction in this task, as

with previous tasks but the larger problem was the potential for errors

in the two loops of code that printed the 2D square shape and then

incremented the height. If there were any errors in the 2D drawing code,

or, as was often the case, the participants added extra retractions, the

printing process would run slowly with no real way to interrupt it. Often

this required a complete restart of the system and the 3D printer itself,
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Task 7: code for printing a “twisty stack” of squares

1 lp.moveto({z:0.2}); // move to build height
2 // draw 5 layers of a square
3 for (let layers=0; layers < 5; layers++) {
4 lp.unretract();
5 for (let sides=0; sides<4; sides++) {
6 lp.dist(40).go(1); // draw side
7 lp.turn(90).go(); //turn for next side
8 }
9 lp.retract();
10 lp.up(lp.layerHeight); // move up to next layer and

repeat!
11 lp.turn(1); // rotate slowly for next layer
12 }
13 lp.up(40); // move up
14 Figure 7.12: Task 7b: code for printing a

“twisty stack” of squares

another problem of “premature commitment”, “progressive evaluation”,

and certainly “error-proneness”.

This was a culprit of the simplicity of the LivePrinter code evaluator

and scheduler which ran all code immediately, as fast as possible. The

feedback from self-testing and these user workshops was unequivocal

that users needed a way to stop operations in progress, but designing

such a feature was difficult to implement and required a major redesign

of the entire system architecture. This was not completed until May 2020,

well after the user workshops, for technical reasons that are outlined in

the next chapter.

Participants did grasp one of the fundamental issues in 3D printing,

which is how to get the material to stick to the bed during printing. As one

participant put it, “The first layer is very important!” This was affected

by the print bed calibration, layer height, printing speed, and material

temperature in complex ways which are difficult to determine using

traditional 3D printing software. This could be seen as successfully rising

to Baudisch and Mueller (2017)’s Challenges 2 and 4, around getting

people to better understand physical knowledge of materials, mechanics

and machine tooling.

Some experimented with different 3D shapes, like stars, and hexagons,

and attempts at cylinders. The limitations of the approach of stacking “2D”

shapes to create “3D” ones quickly became apparent. Partially, this was

due to the limited vocabulary of shape abstractions (of a sort) provided

by LivePrinter or supported by the participants prior knowledge of

geometry. For many, the geometry of shapes besides rectangles and

triangles was outside their ability, leading them to ask: “Can we have

more default shape [sp]? Can we stack this as well?”

LivePrinter provided experimental functions that could fill rectangular

areas with plastic (see Figure 7.13), as opposed to drawing single lines at

the layer thickness (i.e. the layerheight). These were not well documented

at the time, and the retraction bugs in the software prevented users from

exploring them properly during the sessions.

Then there was also the question of the thickness of the lines that formed

the outlines, or walls of the shapes. Some participants were unclear about
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Figure 7.13: Different experimental fills in

LivePrinter

how layer height was related to the size (diameter) of the printer nozzle,

which was much smaller (0.2 mm layer height vs. 0.46 mm nozzle size,

respectively). This was not discussed in detail in the workshop because

it is not a straightforward concept because it depends on the nozzle

diameter and the distance between the nozzle and print surface (either

the bed or the previous layer). It can also potentially be affected by the

printing speed and temperature of the material, and does not apply to

printing when the nozzle is in the air (Gary Hodgson and Moe, 2021;

Zuza, 2018). It could be a helpful topic for a follow-up workshop.

7.4.8 Task 8: Using LivePrinter (freestyle drawing)

This task was deliberately left open for individual or guided exploration.

Users were encouraged to do what they liked, and many continued trying

to create complex shapes like the aforementioned stars and polygons

and other types of ropes and blobs. It was hoped that users would by

now have enough of an intuitive understanding of the system to get

started with more the intuitive Exploratory I3DP activity here. Often, they

used pen and paper to sketch out shapes alongside their experimental

code, again showing the importance of having access to more tactile and

free-form “secondary notation”. One new feature introduced during

this task, in an optional lesson, was the ability to take Scalable Vector

Graphics (SVG) shapes and render them into LivePrinter code for use in

the live editor.

This was a slightly involved process that only worked on certain SVG files,

a few of which were included with the LivePrinter distribution. First,

a user loaded the webpage from the LivePrinter server, then selected

an SVG file and entered some information about its desired position

on the print bed and physical dimensions. The vector graphic was then

rendered as both GCode, which could be pasted into any 3D printing
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Figure 7.14: Examples of freestyle shape

experiments printed by participants

software, and LivePrinter code, which could be pasted into the web

interface, loaded properly into the system, and used to print copies of the

graphic as demonstrated in Figure 7.15. An example of an SVG designed

by the researcher to have non-overlapping shape paths appropriate for

3D printing, rendered into LivePrinter, and then printed on paper is

shown in Figure 7.16.

7.4.8.1 Feedback and responses

Participants reported that they enjoyed the SVG rendering feature, despite

the complexity of getting started: “Didn’t get round to freestyling - the

penguin was just too good :)”. They specifically asked for more “animals”

in the database to experiment with. This feature was aimed at beginners,

who self-reported as not knowing much about coding, to give them a

“quick win” enabling them to successfully print some more visually-

interesting objects at different scales and positions. It came at the end

of the workshop to make sure that everyone had a chance to achieve

something substantial and potentially take away a 3D printed memento,

beyond the simple line-drawing and knowledge about 3D printing

mechanisms.

Participants did appreciate that this part of the workshop gave them

quick results: “The example of the printed SVG was very exciting to see –

it gives a quick & clear idea of what LivePrinter” and “Exciting! Lots of

possibilities – both by directly coding and also nice to have the .svg option

to make it easy to draw complex shapes – smaller learning curve.”

Participants also experimented with printing on a variety of different

surfaces: “I can play this whole day! I would try to print on different

materials. My phone case, card, fabric, paper”. An example of such a

shape, an SVG penguin, was also provided in the workshop as shown in

Figure 7.17. This was encouraging, because one of the growing uses of 3D

printing is for directly printing on textiles to achieve different textures

and material properties, which is not specifically supported by current

software.
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Figure 7.15: Demonstrating the SVG-to-

LivePrinter renderer in LivePrinter

Figure 7.16: SVG created by Evan Raskob

and rendered to LivePrinter code, 3D

printed using the LivePrinter system.
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Figure 7.17: Participant’s print of an SVG

penguin on an access card

7.4.9 Task 9: Future Use

The last task was a discussion led by the main researcher about potential

future uses of LivePrinter. Perceived usefulness varied by participant

background, with self-identified generative artists appreciating potential

new ways to physically create generative shapes; textile artists recognising

new ways of experimenting with hybrid forms of 3D printing on fabric;

and product designers interested in new methods for combining 3D

printing and different surfaces.

Some participants were excited by the system, but asked for more specific

direction on how it could be used:

“want to experiment more. got me excited about 3D printing would love

a step-by-step instruction for the command line stuff.”

“Project has a lot of potential and future use. Maybe some more slides

about where this could be used.”

Participants who were versed in computational design appreciated the

possibilities of coding, but also of combining pre-designed tool paths

(e.g. the SVGs provided in the workshop):

“Exciting! Lots of possibilities - both by directly coding and also nice to

have the .svg option to make it easy to draw complex shapes - smaller

learning curve.”
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For others, the potential future use was less clear or even non-existent.

This was especially true of the self-identified beginners in the study: “No

clear direction for any future use yet”. One such participant, who started

the workshop thinking about buying a 3D printer for their home office,

was convinced that 3D printing was actually not something they wanted

to do because of its complexity and the limitations about what types of

objects it could make. Discouraging someone from buying an expensive

and environmentally costly object that they wouldn’t use or need could

be seen as a net positive. Not all people need to own 3D printers in the

future, or present.

7.4.10 User’s perspective vs. method naming

Throughout the tasks, the methods “up” and “down” were sometimes a

source of confusion for users of LivePrinter, often leading to movement

errors. They were originally added as shortcuts to moving the print head

more explicitly in the Z (upwards) direction because it was often the case

that users would print something and then need to move the head out of

the way, so they could see it.

In OpenGL, a graphics programming system, “up” is a function and a

vector that represents the upwards orientation of the camera’s view. In

LivePrinter, it is a descriptive verb with the subject of the 3D printer’s

print head: # up 20 literally means “move the print head upwards (away

from the print bed) by 20 mm.”

The problem of “up/down” shows a difficulty with 3D drawing tools

that have multiple moving parts. When controlling the printer live, on

many printer models it is the printer bed that moves, not the print head,

so up/down may appear to be controlling the bed. When the bed moves

down, the gap increases and so the “height” of the print head above the

bed increases.

This is also contrary to GCode and model files which use the Z axis to

refer to the distance between the print head and bed, from the reference

of the print head, because that is what is building the model. The head

prints the model, the bed accepts the model, in this metaphor. The height

of the model is 0 mm at the bed level (it’s “base”), and rises upwards

from there. This also refers to drawing “higher up” or increasing the

height of an object relative to its base. With object-relative CAD modelling

there are no tools involved, so this is not an issue – the object’s height is

simply the standard measurement of the object in the Z direction. This

illustrates the conceptual disconnect between the making process and

the modelling process with 3D fabrication.

Unfortunately, the 3D printing print head has no visible indication of

which direction it is “facing” according to LivePrinter, so the software

must inform the user as part of the livecoding editor. In practice, after

the first workshop this led to the moving of the LivePrinter GUI from

the bottom to the top of the screen for prominent viewing. Also added

was a readout of the current angle, position, retraction and speed.

These were helpful, but still users wanted more visual cues such as a

clearly marked “universal origin |zeroed out (bed down, head back

left).” Some ran into difficulties when the desired printer movements ran
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outside the printable area, resulting in truncated forms. One participant

suggested printing a ruler onto the print bed itself, which could be

achieved by placing a heat-resistant grid underneath the glass print bed,

on top of the heating element. Or, as others suggested, using a graphical

indicator in the GUI to represent orientation and movement.

Since the tool determines the frame of reference of the printer movements,

and not the object being printed, this also has implications when using

relative terms like “turn” and directions such as “left” and “right.”

Specifically, left and right relative to whom or what? This came up in

background interviews, where one interviewee likened their approach to

teaching interactive CNC commands to teaching someone how to drive a

car. The CNC tool head becomes a “car” that the user imagines “driving”

from the car’s frame of reference, not the user’s.

The benefit of the emphasis on “visibility” in LivePrinter’s interactive

system was clear, in this case. Users could immediately see the results of

the commands and quickly develop an intuitive feel for their meaning (i.e.

“role expressiveness”). As one user put it: “Down/up can be confusing,

as the bed is moving it feels that down/up should be relative to it, but it

makes more sense when you actually begin printing things with some

depth/height.”

7.5 Summary findings: issues for further
exploration

Table 7.1: This table lists the major general thematic tags for classifying user feedback.

These tags were either related to the themes built into the goals of the workshop tasks or

were added later during reviews of the recorded feedback sessions. Most quotations given

as examples here are taken from written feedback sheets, with others transcribed from

workshop recordings. Observations were recorded in both session notes and after viewing

video recordings of workshops.

tag description examples occurences

3d shapes

About creating taller, more 3D

shapes from 2D techniques in-

troduced during tasks

“Unclear about how to change shapes

from static 2Ds to 3D volumes. [Draw-

ing of straight sides box and curved

sided box]? Can we move from a

freestyle print to a 3D layering with

change”

4

background

knowledge

General feedback around the

need to understand the context

and workings of 3D printing

“Would be good to talk about 3D print-

ers in industry. Is it useful there? What

for?”

27

difficulties

A very general tag encompass-

ing all feedback where partici-

pants were confused or experi-

enced errors

“This part was a little technical for

my level. My partner helped me so it

worked fine”

49

documentation

Feedback about the accompa-

nying workshop guide and

LivePrinter API documentation

online

“Possible having a ‘manual’ of how to

draw our own drawings such as circles,

stars, arcs, curves etc.”

10

Continued on next page
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Table 7.1 – continued from previous page
tag description examples occurences

editing

Having to do with code editing

or the interactive code editor

Observation: There was confusion

with the interactive editor about run-

ning code line-by-line (e.g. highlight-

ing and executing blocks of code) ver-

sus running all the code at once (the

usual mental model of the code editor

for the participant).

2

future

Suggestions or observations

about future use of the system

Participants wanted to try printing on

different materials, such as on card-

board, metal, student ID badge

11

improvisation

Participants using the system to

create new forms not specified

in the workshops or experiment-

ing with new techniques

“adjusting layer height during 3D

printing is quite fun”; making a bird’s

nest by accident but enjoying making

odd forms “it should be in a museum”;

“Great fun. played with blobs”

7

learning

The learnability of the system:

problems or examples of good

practice

“Run into problems but help was there

and it was well explained. Trial didn’t

work as expected.”

8

mental

model

Feedback about participants’

understanding of the subject

Observation: a discussion about layer

height property versus the print head

nozzle size. Participant was trying to

understand why height was set to

0.2mm, and how that relates to the

nozzle. They were unclear about how

the filament stacks up to that size.

9

metaphor

About the metaphors used in

describing the operation of the

system

Observation: The term “chaining”

wasn’t understood for linking together

successive function calls, so “combin-

ing” was suggested; Q: Did it feel like

you were driving the head or being

the head? A: “More like driving a car.”

2

mistakes

Interesting accidents or mis-

takes by participants that lead to

insights or interesting findings

Observations: During the manual and

automatic retraction task, participants

extrude a stray blob of material be-

cause they didn’t retract after extrud-

ing, which they recognise and exclaim

“oh I got it”; Participants make a bird’s

nest by accident and keep on making

similar forms: “it should be in a mu-

seum”

2

perspective

About understanding the per-

spective of the movements, such

as whether the direction of

travel is specified from the per-

spective of the print head mov-

ing or the bed moving

Participant: “So up makes it go down?”

Observed confusion over whether the

up and down functions pertain to the

perspective of the bed or print head

3

play/fun

Examples of participants having

fun or playing with the system,

e.g. using it for non-traditional

or non-productive outcomes

Observation: participants print a large

plastic square, tweezer it off and play

with it in turns over the next minute,

then they take a silly picture using it

as a picture frame

8

positive

Feedback where the participant

expressed excitement or joy

about using the system or was

complimentary to researchers

and/or the system

“Look forward to playing more with

this! I enjoyed hacking the printer

make sound etc. Thanks!”

55

Continued on next page
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Table 7.1 – continued from previous page
tag description examples occurences

tools

The use of extra tools to support

participants

Researchers handed out callipers to

help make distances more visible and

tweezers to grasp small strings of

printed filament, and observed them

using them often during workshops

1

units

About the units of measure used

(distance, time, etc.)

Observation: participants were unsure

about whether movement units were

in mm/s (e.g. a velocity) or absolute

mm (e.g. a distance)

2

visualisations

Specific requests for making

properties or operations more

visible

“Maybe have a closed feedback loop

with camera so a livecoder can under-

stand better where the head is.”

4

syntax

About the syntax and terms

used in the API

“quite like the API, not biggest fan of

having to input JSON for each move()

command but understand why used”

8

Table 7.2: This table lists the major tags used for classifying user feedback that related to

developing the LivePrinter software. These tags were used to fix bugs, identify areas for

improvement, and keep track of changes to the software that resulted from participant

feedback or researcher observations. Most quotations given as examples here are taken from

written feedback sheets, with others transcribed from workshop recordings. Observations

were recorded in both session notes and after viewing video recordings of workshops.

tag description examples occurences

bugs

Specific problems with the soft-

ware

Observation: a participant was trying

to control retraction to seeing what

happens when they retract but don’t

unretract afterwards. A close look at

the print head shows the material isn’t

coming out because of a logical prob-

lem with the LivePrinter software.

14

changes

Suggestions or observations

that led to software improve-

ments

From the 1st workshop: “Would like

to control it [retraction] manually”

so added manual retraction options;

“New file option” led to clearing the

editor screen

9

connection is-

sues

Issues with communication be-

tween the server and printer or

GUI

Observation: One participant’s back-

end server loses connection with the

GUI and needs refreshing/restarting

2

feature

requests

Requests for extra features, op-

erations, or documentation

“Can we have more default shapes?” 12

gui

Having to do with graphical

controls in the interface

Observations about participants miss-

ing seeing the dashboard at the bottom

to set properties like speed, position

6

installation About the installation process

“Installation instructions were clear

and easy to follow, process was fast.”

20

vector shapes

Specifically about the use of the

SVG shape renderer

“add zigzag line to SVG shapes” 6
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Table 7.3: This table lists the tags used for classifying user feedback into common printing

activities. These tags highlighted essential 3D printing activites that could be better

supported by the software and/or documentation. Most quotations given as examples here

are taken from written feedback sheets, with others transcribed from workshop recordings.

Observations were recorded in both session notes and after viewing video recordings of

workshops.

tag description examples occurences

calibration

Issues arising from the need to

calibrate the printer bed and

axes first, such as levelling the

bed

“Only issue was calibration of the

printer [at the start] which made

things trickier.”

3

cleaning

About maintenance of the

printer bed during operation

Observation: participants discussed

the need to clean the bed in between

operations and keep it clean so the

plastic would stick properly: “Needing

to clean the bed!”

2

movement

General feedback about printer

movements

Usually combined with other feedback

such as “perspective” as in the observa-

tion about the up/down functions, par-

ticipants discussed whether it moves

“the world” (the bed) or the head

17

retraction

Specifically about the retraction

process

“Problem with plastic flow”; “More in

depth explanation of when to use not

use retraction?”

19

sound

Using the 3D printer to make

sound in some way

Observation: “I’ll play it!” After the

researcher demostrates livecoding mu-

sic, one participant gets very excited

and tries and we work out Mary had

a little lamb and other tunes over next

15 minutes

3
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Drawing from the difficulties identified in the discussion above and

from other workshop observations, there are a few interesting areas

of I3DP systems design that could benefit from further research and

development.

7.5.1 Context, understanding and use
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Figure 7.18: This stacked bar chart shows

all the occurences of non-CDN tags that

were associated with each CDN tag in the

research entries to give a broad picture

of how they related to themes, software

development, and areas of interest. For

example, entries tagged with the CDN

“closeness of mapping” were also often

tagged with “background knowledge”,

“positive”, and “difficulties”, underscoring

the importance of participants’ familiar-

ity with 3D with their understanding of

what the LivePrinter system was doing.

Similarly, the prevalence of “secondary

notation” across the tags hints that partic-

ipants often relied on the documentation,

sketching, and other methods beyond the

LivePrinter interface.

Even more so than with screen-based graphics, mechanical systems are

hard to abstract because of their complexity, especially with handling

molten material flows during time-sensitive operations. This was a key

point of Baudisch and Mueller (2017)’s Challenge 4 about “Machine-

specific knowledge”. Users of LivePrinter needed some background

knowledge of retraction, movement, and printer mechanics before starting.

During the workshop they asked for more contextual help and ready

access to background knowledge in the form of documentation. Once
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given that basic knowledge, or at least some terminology, they were able

to use the system to explore and come up enough of a mental model of

the workings of 3D printing to usefully experiment.

Also, the user workshops demonstrated that users wanted to be provided

with a broader context in which to situate this new practice of 3D printing.

They found that both historical and contemporary knowledge of digital

manufacturing was important to understand the difference between

I3DP and contemporary 3D printing. The workshops presented some

of this historical context, which participants reported as inspiring them,

and which we interpreted as being a useful conceptual scaffolding for

their work, but there were also requests for more specific contemporary

context that we couldn’t accommodate at the time.

Part of the problem was that this was the first series of workshops

in interactive 3D printing, ever. There were some possible directions

proposed in the call for participation of the workshops, but these were

mainly provocations. How does one provide examples of a practice that

doesn’t yet exist? The workshops could have focused more on future

applications of this new form of printing, as some initial interviews did.

Yet, given the difficulty of getting users to understand the mechanics

and physics of printing, they would lively have followed the same

unhelpful path of treating the printer as a “magic black box”. The

excitement generated by the more detailed understanding of 3D printing

as a process may be more helpful towards pushing the technology and

practice forward than reinforcing inaccurate and overly optimistic notions

of the possibilities of what 3D printing is able to print, and how quickly.
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Task 1: background of 3DP 

'the introduction to 3D printing was
well done I got a general idea

how it works'
'Good general background info,
enough to get up and running.'

'Would be good to talk about 3D
printers in industry. Is it useful

there? What for?'
'would like to know a bit more about
other innovations in 3D printing.'

CDN:closeness
of mapping

CDN:role
expressiveness

CDN:secondary
notation

Task 2: intro to LivePrinter 

'Relatively easy. The graphics are
inviting making the software enjoyable'

'Enjoyed going back to "first principles"
of manufacture. Very interesting contextualisation

of what we're about to do.'
'The example of the printed SVG was

very exciting to see - it gives
a quick & clear idea of what[sp?] LivePrinter'

'easy to understand how it builds'

'Good points of analysing the existing
3D printer and what's the
advantage of LivePrinter.'

users requested more examples and installation
videos: 'Would love to see more speculations on

what's possible with the technique.'
'some video might be cool. Would help show what

liveprinting is vs. regular 3D printing. '

CDN:abstraction
types

CDN:hard mental
operations

low: avoid
hard operations

CDN:visibility/
juxtaposibility

highly
visible

Task 3: installing LivePrinter

users requested a test plan; video;
users mentioned getting help from others;

'an [installer] would be great'

setting up the tooling; typing commands
in order; installing software; using

the code editor: 'Installation instructions
were clear and easy to follow,

process was fast.'; 'A couple of gaps in the
process as above, and took me a long time

to get set up so I got a bit lost'
Very hands on - great! A little boring when
people became a bit tech challenged.

'Had slight problems installing in terminal.'
'A little bit confusing because of
different software and language.'

different platforms (e.g. linux), different
dependencies: 'need instructions for linux

but worked it out.'

'too technical'; 'This part was a little technical
for my level My partner helped me

so it worked fine

CDN:hidden
dependencies

CDN:premature
commitment

context
dependent

Figure 7.19: This diagram maps the workshops tasks 1, 2 and 3 where participants were learning about 3D printing and installing

the system, to the CDNs identified in the feedback. A selection of typical or insightful feedback summaries and quotes are used as

specific evidence of that CDN. These activities focused on pre-usage fundamentals: (1) building the users’ “mental model” of how

3D printing worked which was useful in discussing how close the system mapped to that model through the CDN “closeness of

mapping”; (2) introducing terms that users would see in the interface’s notation like “retraction”, related to the CDNs “consistency”

(consistency in naming conventions leading to high levels of guessiblity) and “role expressiveness” (users understand what notion is for

through intuitive labels and contextual cues); (3) familiarising users with the documentation and support (which could be considered

“secondary notation”). Since these were initial tasks, the aim was to render basic I3DP activities visible to users, and to avoid “hard

mental operations” or difficult concepts that would slow them down.
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Task 4: LivePrinter basics

'easy and playful';

'A little daunting to fully understand
the axis and being new

 to code it takes some time...'

'Easy, simple but also modifyable[sp]
interface is nicely designed!'

'lack of some knowledge about
the machine (don't know
the relationship among

temperature/materials/shapes/coding)';

'I get the principle but not really
sure between number and position.'

CDN:closeness
of mapping

CDN:abstraction
types

CDN:hard mental
operationslow

high

CDN:role
expressiveness

CDN:visibility/
juxtaposibility

Figure 7.20: This diagram maps the 4th task where participants were using the system (excluding the background and setup tasks) to

the CDNs identified in the feedback. A selection of typical or insightful feedback summaries and quotes are used as specific evidence of

that CDN.
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Task 5: printing a square

'like the different approaches, relative vs absolute.'
'...useful in building familiarity & confidence'

'This is useful for clarifying how the co-ordinate system
is used for driving the printer.'

'Complications with filament.'
'Sometimes the filament didn't extrude'

'...it's fun when change numbers and print different shapes.'

'Code and comments area on the liveprinter editor is not as intuitive
to the beginner because it's not top-down/bottom up.
But it makes sense after working with it for awhile.'

CDN:closeness
of mapping

CDN:diffuseness/
tersenes

CDN:abstraction
types

CDN:consistency/
guessibility

CDN:error-proneness

CDN:premature
commitment

CDN:viscosity

Task 6: retraction and flow

'Would like to control it manually';
'Slightly more confusing as advanced concepts

being distilled to simple instructions.'

'This is very hard to get correct. Maybe some more in depth
config or docs to explain how retraction works,

 why its necessary and how to deal with it.';
'It seems the material flow is not as predictable as expected,

but that is common with materials.'

too high

CDN:hidden
dependencies

Figure 7.21: This diagram maps the workshop tasks 5 and 6 where participants were using the system (excluding the background and

setup tasks) to the CDNs identified in the feedback. A selection of typical or insightful feedback summaries and quotes are used as

specific evidence of that CDN.
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Task 7: height and layering

'Only issue was calibration of the printer which made things trickier.'
'The first layer is very important!'

'easy'; 'adjusting layer height during 3D printing is quite fun'
'Setting the height and building layers was easy,

I did not make any issues writing it.'

'Again, I think these concepts are subtle and advanced
so it's hard to convey them in a simple conceptual model.'

'Becoming easier to understand. getting more of an overall picture
and understanding the potential for the technology to work with

spontaneous and changing instructions.'

CDN:closeness
of mapping

CDN:abstraction
types

adequate

too high?

CDN:error-proneness

CDN:premature
commitment

CDN:role
expressiveness

high

CDN:viscosity

adequate

Task 8: freestyling

'Unclear about how to change shapes from static 2Ds to 3D volumes.
[Drawing of straight sides box and curved sided box]?'

'would have been nice to have more freedom and control
 on experimenting shape'

'Can we have more default shape? Can we stack this as well?'
'Exciting! Lots of possibilities - both by directly coding
and also nice to have the .svg option to make it easy to 

draw complex shapes - smaller learning curve.'

'This is all quite hard to do with absolute coords. With relative is easier,
especially like lp.run and the L-system but kept running off the printer.'

'Possible having a "manual" of how to draw our own drawings
such as circles, stars, arcs, curves etc.'

'maybe print ruler onto bed?'

'I would like to control the 3D printer in a easier way
like having a [picture of joystick] to play a video game'

CDN:hard mental
operations

CDN:secondary
notation

Figure 7.22: This diagram maps the workshop task 7 where participants were using the system (excluding the background and setup

tasks) to the CDNs identified in the feedback. A selection of typical or insightful feedback summaries and quotes are used as specific

evidence of that CDN.
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7.5.2 Appropriate visibility and abstraction levels for
physical processes

When asked if they understood what was going on inside the 3D printer

one participant responded: “I understand the layers of abstraction but

you do lose the idea of how it is working, especially with retraction which

is a very in-depth 3D printing thing. Things like that should be more

in-depth. It did. . .magic it away a little bit.”

There were outstanding questions about the abstraction level of the

names of some API methods used to direct the making actions of the

printer. API commands were designed to have an starting abstraction

level similar to the GCode which they would be compiled into, but with

more descriptive names. The low-level functions like “extrude” and

“draw” (synonyms mapped to GCode command “G1 X Y Z E SPEED”)

were clearly helpful in understanding how 3D printers work. They were

also too low-level for making more complex forms, as evidenced by

the users’ preferences for ready-made shapes like SVGs that they could

manipulate and combine. What these higher-level abstractions should

be like is an open question for future research, and will depend on the

context in which they are used. One could see 2D forms being useful for

printing on textiles, whereas 3D building blocks would be very useful

for sculpting and designing 3D objects on-the-fly.

In most 3D printers the print head lacks a visible indicator of its direction

of travel. They also often lack any indicator of position in the 3D printer

cavity. This was a recurring theme in the feedback, and during observa-

tions, as discussed above. Participants wanted a more visual indicator of

print head movement and position. They were given a textual read out

of the print head position at the top of their screens, and, with practice,

could learn generally where the print head was currently located to

and where they would like it to move to, but the lack of a more precise

indicator was observed to have slowed them down during the making

process and led to printing errors.

Where to put such a visualiser in the interface was a difficult question,

adding to the trade-offs in designing a user interface that fit comfortably

on the screen whilst rendering visible enough of the key printer properties

exposed by the LivePrinter API. The competition between the “dashboard”

element at the top of the screen, with the print head and temperature

properties made visible and modifiable, with the interactive code editor

and the event and information log on the right side of the interface led

to a few adjustments during the workshops. Participants’ attention was

divided between looking at the code editor and physical printer next

to them, which is why many of them suggested combining the two by

adding projected or other dynamic visual overlays on the printer.

7.5.3 Asynchronous dependencies

These issues of transparency and visibility were coupled with issues of

immediacy, which was apparent when users had trouble connecting to

the printer during the workshops and couldn’t determine whether their

actions were having any effect because of lag and lost messages.
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This problem stemmed from the “hidden dependencies” introduced by

the asynchronous nature of interactively programming a machine, which

involves writing code, queuing that code to be run in the correct sequence,

compiling it, sending it to a remote machine, receiving a response, and

displaying that response to the user. The proper implementation and

debugging of asynchronous interactive programming systems like this

one is a non-trivial exercise, and took up a large amount of development

time. It was an issue that extended beyond the user workshops, into later

live performances before being successfully reconciled towards the end

of this thesis.

7.5.4 The importance of easy installation

Despite having step-by-step instructions, many participants who were in-

experienced with software development had difficulty installing LivePrinter

and its dependencies (Python; optionally Visual Studio Code or Visual

Studio). The process was expected to be fairly trivial, asking them to run

an installer, copy some files, and then open a terminal prompt and type a

command, but many were observed to be hesitant and uncertain due to

the unfamiliarity of the terminal and terminology used, which is reflected

in the mapping of the first 3 installation and setup tasks to associated

CDNs in Figure 7.19. This experience, as a whole, speaks to a larger

issue where the interdependent tool chains and specific terminology of

software development acts as a bar to entry for people who want to use

experimental software.

More simplified installation tools are available, as users commented,

but the time costs of repeatedly packaging up new versions of software

and reworking the installation documentation in multiple formats is

not trivial for small development teams. This is an issue that will be

familiar to any maintainer of a small, community-focused software

project. Also, users asked for multi-modal installation documentation

such as video instructions, as they were less comfortable with the mixed

text-and-screenshot approach and wanted to step through the installation

in a more visual, self-guided way. Again, video is time-consuming to

record and edit, especialyl with experimental software that changes

week-by-week.

7.5.5 Sustainability, or not everyone needs a printer

One of the secondary goals of this project was to reduce the materials

usage and energy costs of 3D printing. What better way to do this than to

convince people that they don’t need 3D printing as part of their practice?

At least one of the participants in this study reached just such a conclusion,

which we count as a success. 3D printing has its benefits and drawbacks,

and practitioners should get a chance to understand the trade-offs between

them before incurring the personal and environmental costs of buying a

pre-manufactured printer, expending energy experimenting with it, and

then abandoning it when they find it too complex or inappropriate for

their work.
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7.5.6 Interactive programming is not always intuitive

It bears repeating here that not all participants understood the practical

technique of interactively programming by highlighting lines of code on

the screen and then hitting a key combination (or pressing a GUI button)

to compile and run them. This was surprising at first, but should have

been especially obvious to those who taught coding that the majority of

participants’ experiences with IDEs were with the 𝑤𝑟𝑖𝑡𝑒 → 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 →
𝑟𝑢𝑛 → debug archetype where the entire program is run at once, not

in pieces. Whilst they were able to learn this technique fairly quickly,

this still shows that the “role expressiveness” of interfaces depends on

experience.

This presents opportunities for revisiting the “line-by-line” execution

model of interactive programming, possibly by taking advantage of

the underlying system where blocks of code are sent to a queue for

asynchronous processing. Users seemed to want more control over how

that code is executed, specifically by making judgements about which

code to re-execute, or stop executing.

7.5.7 The missed opportunity of modification?

The case of the CDN activity called modification was an interesting one,

because it implied the possibility of changes to the notation and notational

editor itself. Self-modification of a sort is natively provided by most web

browsers, which run their own self-development tools that allow users

to reprogram most of the web interfaces in JavaScript or to extend them

via “extensions” or “plugins”. It was also supported in the design of the

LivePrinter API, which was itself written natively in JavaScript.

In the user testing workshops, users were made aware of this possibility,

but few used it to create their own forms of notation or to alter the

web-based notational environment. Since this study focused on the basic

use of LivePrinter and 3D printing in general, most of the workshops

focused on basic 3D printing terminology and techniques, but some

more experienced users were observed creating their own functions for

drawing different 2D polygons.

One user, with a background in livecoding, programming functional

languages, and creating livecoding tools, was interested in creating their

own extensions for the LivePrinter system itself and was pleasantly sur-

prised when it worked as they expected. These results were encouraging

and confirmed that some users would like to extend the system’s nota-

tion, but since they followed well-established techniques from writing

JavaScript they weren’t explored in more depth during the study aside

from assessing whether users might find them useful or not.

Interestingly, participants had the opportunity to propose changes to

the documentation via the “GitHub issues” system, or through a “push

request” to the open source code repository, or even via emailing the

researcher with proposed changes. Yet, in workshops with LivePrinter,

users preferred to discuss changes to the documentation directly with the

researchers and to have the researchers implement the changes, rather

than propose them using the online tools and methods.
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The reasons behind users’ hesitancy to modify the documentation and

notational system itself are unclear. Contributing modifications does re-

quire a certain level of skill, knowledge of process, and time commitment.

There also might be issues of ownership and authority. More studies are

needed here.

7.6 Summary findings: issues with user study
design

Beyond issues with the design of the system, we identified some potential

issues with the design and evaluation of user study itself.

7.6.1 Problems with individual user types

As Cooper et al. (2014) points out, user types or Media Usage Types (MUTs)

are often important for understanding the results of any user study. The

Mozilla Organisation has an excellent typology of their users that we

have used in our teaching, and that helped to inform our expectations

of potential participants in this study (Selman, 2013). Yet, we found it

difficult to build our own coherent user types that might be generalisable

to wider populations. Part of this can be attributed to the small samples

sizes, diverse group of participants, collaborative working, and limited

time in which we had to run the study (as opposed to the larger team

and timescale of Mozilla’s study).

As Brandtzaeg, Heim, and Karahasanović (2011, p. 952) explained, such

typologies cannot ever be truly comprehensive:

“. . .no real world–classification systems meets this require-

ment because mutual exclusivity may be impossible in prac-

tice. . .there probably will exist hybrid user types that are

combinations of the initial ideal types defined, because the

same users could be defined as different user types in terms

of various media platforms: A ‘sporadic SNS user’ might, for

example, also be an ‘instrumental user’ in ‘general media’. In

other words; the same users can have different user profile

types depending on the platform.”

Before each workshop, surveys were used to collect some user data about

participants’ level of skill with programming, their experience of 3D

printing, some background information about their age, occupation, and

experience with physical design. This data was not used in the final

analysis because discussions with participants highlighted that each

had unique combinations of professional and life experience, being of

different ages, and coming from the public, interaction design, product

design, art, computational art, computer science, and other unrelated

disciplines.

In workshops, we observed some of the more experienced programmers

creating algorithmic structures (like stars and stacks of 2D shapes), but

other participants of all skill levels were content to experiment with

the capabilities of the system, and still others only played with simple

forms or spent their time helping others. Participants in general often
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12: At https://www.cl.cam.ac.

uk/~afb21/CognitiveDimensions/

CDquestionnaire.pdf

collaborated with one another and helped each another, partly due to the

limited number of 3D printing machines available. These arrangements

speak to theories of knowledge as more of a social construction, like

socio-constructivism (Amineh and Asl, 2015; Glasersfeld, 1995), and raise

questions about the value of individual user types, especially in smaller

studies like this one.

7.6.2 Difficulties with user-facing CDNs

It was difficult to find a good solution to the problem of providing

fully-detailed CDN questionnaires for users to feed back on and discuss

during and after workshops. Having to provide a questionnaire or

discussion outline in a longer form, in multiple formats (as in Clarke

(2010, pp. 545–565) and Bernardo et al. (2020)), would take a non-trivial

amount of time for the researchers and users and would not be practical

in most workshops, which were already quite full of activities. In the

example CDNs questionnaire provided by Blackwell and Green
12

, the

list of CDNs is relatively long and verbose, which could bias it against

types of neurodiverse participants and more verbal and visual learners

who have trouble with the general terminology and long paragraphs.

Also, in our experience, at the end of a long user workshop users had

limited energy left for an in-depth discussion. We had difficulty getting

through even the more limited list of CDNs with shorter, more relevant

descriptions and specific discussion prompts.

The alternative of delaying the questionnaires by having a guided discus-

sion at a later session, or giving it to users to fill in after the workshop,

would create some distance from the actual tests that would change the

nature of the results. Adding a delay would rely on the selectiveness of

longer-term memory rather than prompting participants to reflect on

recent experience. Scaling the size of the research team and the apportion-

ing the CDNs across larger groups of users could be another solution, but

these are not often possible for small and lightly-funded research teams,

and contrary to the spirit of a universal and easily-applied discussion

tool.

In practice, during the guided reflection at the end of the workshops only

the CDN visibility was a useful discussion prompt. Participants found

the other CDNs hard to reflect on, likely because of the meta-cognitive

nature of questioning their own activities, whereas they could comment

directly on their personal experience of the visibility of elements, from

their own point of view. This is similar to Blandford and T. Green (1997)’s

findings with user workshops based around Ontological Sketch Models,
where participants’ findings on meta-cognitive constructs (relationships,

applied models) was highly variable, often inappropriate, and more

based on direct experience than applying a model to their experience

(Blandford and T. Green, 1997, p. 9).

Participants also had difficulty identifying bottlenecks and sources of

friction because they were still learning the system and lacked a frame of

reference for how quickly they could operate it in ideal conditions. It is

not even clear that users and system designers will agree on what are

actually bottlenecks in the system – after identifying the time-consuming

but necessary process of organising visual patching notation on the

https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
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13: See the interview prompts in Sub-

section B.1.5 (Interview & Questionnaire

Plans)

screen (“tidying up the layout of the code”) A. Blackwell (2005) relate

an anecdote from their research where a participant has gone so far

as to hire a member of staff just to that task, saving them time and

giving their customers a better end product. Clearly, A. Blackwell (2005)

consider this a bottleneck inherent to visual programming systems, but

it is not clear that the participant sees it as anything but part of the cost

of doing business and making his product better. Without another frame

of reference for the same task, who is to say what is a bottleneck versus

the typical way the system works?

Regardless, our research results showed that whilst users might lack the

specific terminology of the CDNs, they could articulate the concepts well

enough to be picked up on by the research term during more free-form

discussion, in response to open-ended prompts. This is self-evident in the

details of the analysis presented in the last chapter, and in the following

sessions. Even though the research team was instructed to focus on four

initial CDNs, which were also presented to users — Secondary notation,

Premature commitment, Viscosity, Visibility13
— our final analysis touched

on almost all of them.

7.7 Conclusion

As demonstrated in the user research workshops, a successful program-

ming tool consists of consistent metaphors, a functional editor to give

context to that code along with visual feedback on the effects of the

code and the state of the system, but also importantly some background

knowledge of the system and its usage as well as use cases for future

exploration. The results of the workshops demonstrated that LivePrinter

provided all of these, at a level that was appropriate enough for par-

ticipants to make real experiments with interactively-programmed 3D

forms.

This study further highlighted the hidden knowledge embedded in the

“usual” 3D printing process that was not readily explored nor normally

exposed to users. LivePrinter gave users direct experience of how material

flow and printing speed affects printing operations, and how layering

works. It also underscored the complexity for making shapes live, step-by-

step, and the need to provide new practitioners with more building-blocks

and frameworks to support that exploration, especially in 3D.

Most importantly, it showed that 3D printers are not magical devices nor

black-boxes that fabricate full-objects but logical extensions of previous

technologies and techniques that use materials and layering, like painting

and sculpting. This gives people the conceptual tools for understanding

how 3D printing can be used in more radical and unexpected ways, even

with a mixture of coding and manual material manipulation, as opposed

to the incremental improvements to the machines that we have witnessed

since the birth of the RepRap almost 20 years ago.
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In a musical performance, sounds fill up time, divided into notes.
In a 3D printing session, the sound of a printer’s movements

fills up time and space, divided into objects emerging from layers of
fused material.

Motors in action vibrate, making sounds; people watch: the act
of making is an act of performance.

8.1 Note

This chapter is written in the first-person form because it documents the

reflections of myself, Evan Raskob A.K.A. BITPRINT A.K.A. BITLIP, the

author of this thesis and simultaneously a practitioner of computational

art and design, educator, and software developer. Whilst I am part of

the livecoding and academic communities, whose influence in both

my identity and activities cannot be overstated, these works are part

of my individual creative practice and are examined mainly from a

self-reflective point of view.

8.2 About

*
This chapter reviews experiments with interactive 3D printing com-

bining visual aesthetics, physical structures, musical concepts, and live

performances. Reflecting on the experience of developing the supporting

software and planning and performing these experiments led to some

new insights about new computational techniques for interactive 3D

printing and livecoding, as well as more general thoughts on how to

improve the shared aesthetic experience between performer and audience

of long, interactive digital manufacturing workflows.

In particular, I was concerned with the question of what happens when

we borrow from livecoding’s philosophy of radical transparency and

take into account not only the products of an interactive fabrication

process, but also the aesthetic experience of the process itself, as it is

co-experienced simultaneously by performer and by audience alike?

Furthermore, what are some promising aesthetic possibilities for these

types of performances? And what computational techniques support

them, that we can use for simultaneously making both sound and form in

a live setting where time is of the essence and concentration is a limited

resource?

To fully explore these questions, I found it useful to re-think how

computationally-fabricated objects are experienced. They are not only

spatial objects, products of a computational process that can be measured

in millimetres, but also exist temporally in terms of the duration of the

*
A full listing of all experiments and research activities can be found in Section 4.2

(Introduction).
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Activity clusters for I3DP can be found

in: Subsection 5.6.2 (Activity Cluster: Ex-

ploratory I3DP) – quickly sketching ideas,

mainly intuitive; Subsection 5.6.1 (Activity

Cluster: Experimental I3DP) – relatively

quick but more reflective and deliberative,

focused on specific experiments; Subsec-

tion 5.6.3 (Activity Cluster: LiveCoding

3DP) – improvised performance focused

on intuitive improvisation, combined with

rote repetition of learned phrases and pre-

composed pieces.

movements that made them. These movements possess their own inher-

ent aesthetics of shape, sound, and feel, and represent new opportunities

for computational composition.

Movement is an integral part of the experience of live performances,

for performers and audiences alike. There is an undeniable beauty in

watching an orchestra of string instruments finishing a performance

on a long note, extended bows initially pointed anxiously like rows

of porcupine quills, then sinking cautiously as the tension of the note

resolves into a peaceful quiet. Similarly, in other performing art practices

such as dance, the emotional experience produced by the influence of

physical movements on an audience (and performers) is well recognised

and has been studied extensively (see (Camurri, Lagerlöf, and Volpe,

2003) for such an example).

In the Algorave and other live performances, the focus was on making

musical sounds exclusively using printer movements, whilst projecting

a live visual feed of these movements to the audience. The technical

challenges to creating a new system supporting this mode of working

were considerable, including the performance setup of camera and

microphones. Besides the core I3DP functionality in LivePrinter, the

live performances necessitated the further development of notation that

supported musical expression – scales, notes, and silent pauses.

The addition of musical performance also raised the question of how to

handle melodies consisting of continuous runs of musical notes whilst

also making continuous physical forms, without inadvertently destroying

those forms during the performance by stray printer movements. This

led to the development of algorithms for continuous curves, based on

Hilbert curves, and other generative, 2D, space-filling algorithms roughly

inspired by cellular automata such as Langton’s ant and the “light cycles”

game from the Disney film, Tron (1982). Then, experiments were extended

into 3D shapes to explore how LivePrinter and other I3DP systems could

streamline the experimentation process for developing new, complex

forms.

In the following sections I reflect on this re-thinking of the process and

products of I3DP as it was realised and evolved as I completed a series

of key outcomes – performances, exhibitions, and experiments. In the

process, I revisit my experience of participating in them, viewed through

the different lenses of the I3DP activity clusters established in Section 5.6

(Determining user activities): Exploratory I3DP, Experimental I3DP, and

Livecoding I3DP. I also discuss the computational tools and techniques that

were developed to support each one, which can be thought of as “building

blocks” for 2D and 3D form-making: functions for describing objects in

terms of sound and duration; repeating geometric fill patterns; space-

filling curves; and simple generative algorithms with low computational

complexity that can be interacted with in real-time.
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Figure 8.1: Making a sculpture for LDF

2019

8.3 Background

Before describing these experiments and their outcomes, it is important

to review some fundamental concepts and prior art of 3d-printing-as-

musical-score-and-performance. To understand how a 3D printer’s form-

making process can be intentionally used to make sounds and compose

music, we first need to understand how exactly 3D printers “fill up space”

to create freestanding, solid structures from molten plastic. It is also

helpful to explain in technical detail how exactly the LivePrinter system

supports this form of structural and musical expression, to define some

common operations and terms that will later on appear in reflections on

experiments. Finally, there are some mathematical concepts to introduce

around continuous curves that show promise for solving some challenges

of I3DP.

8.3.1 Note To Speed, Speed To Distance

To review, the 3D printer has 4 digitally-controlled motors. They move the

print head side-to-side (x), forward-backward (y), the print bed up-down

(z) and feed and retract filament (e). Often, they are the same model of

motor and have identical properties. When the motors spin, they emit

sound that can be mapped to notes in the equal temperament scale used

by MIDI synthesizers using some simple linear scaling in the following

JavaScript-like pseudocode:

1 // calculate the frequency of the note from

2 // MIDI note number:

3

4 frequency = Math.pow(2.0, (note - 69) / 12.0) frequency =

frequency * 440.0

5

6 // convert to motor speed in millimetres

7 // per second for GCode (see Table 1)

X axis Y axis Z axis

47.069852 47.069852 160.0

Table 8.1: Typical speed scale for x, y, z

axis values for the motors used in the Ul-

timaker 2 printers to convert their speed

into musical notes. From Westcott’s MIDI-

TO-CNC library (Westcott, 2015). Note that

no values were given for the filament feed-

ing (e-axis) motor.
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There is a caveat to this simple distance

function – 3D printer motors do not have

unlimited torque, and so they take a brief

but perceptible time to accelerate to full

speed. That means that, in practice, move-

ment durations are lengthened as the

movement speed increases. In our experi-

ments, this was perceptible around MIDI

notes 81 and above and caused synchroni-

sation issues when we tried to pair the

printer with other musical equipment.

The acceleration curve for movements de-

pends heavily on the mechanics of the

printer, the type of motor, the motor driver,

and any firmware-level acceleration set-

tings, so the exact amount of lag would

need to take all that into account.

8

9 speed = frequency / speed_scale_for_axis

In this example, speed_scale_for_axis is a simple fraction determined

experimentally.

Knowing the travel speed of each motor that produces a desired musical

note, along with the desired duration of that note, one can calculate

the distance of travel across each axis by using a simple movement

equation:

1 d = st

where 𝑑 is the distance in mm to be calculated, 𝑠 is a scalar representing

the speed of the print head in mm/s in the current direction of travel, and

𝑡 is the desired movement time in seconds. The first, called _midi2speed(

NOTE) or shortened to m2s, converts a MIDI note NOTE into a corresponding

motor speed in mm/s, for one axis. Then, a function called _time2dist(

TIME) or the shorter t2d can be used to convert that speed and a desired

duration of movement_ TIME into a movement distance. The following

pseudocode uses these two functions to move the print head making a

pitch of MIDI note C5 with a duration of 1 second (1000ms):

1 lp.m2s(72).t2d(1000).go()

In the minigrammar, this is more tersely written as:

1 # m2s 72 | t2d 1000 | go

These two functions evolved over time from a single function that

combined both operations:

1 lp.note(note=40, time=200, axes="x")

In the minigrammar:

1 # note 40 1000 | go // defaults to x axis

The flexibility of the 2-function version is a trade-off in verbosity and

increased viscosity that makes it more visible to the user that once the

printer speed is set it remains set for future operations, whereas with the

single function it is implied that the speed stays the same. For example,

drawing a square using two notes:

1 ## m2s 72

2 | t2d 1000 | turn 90 | go 1

3 | t2d 1000 | turn 90 | go 1

4 | m2s 74

5 | t2d 1000 | turn 90 | go 1

6 | t2d 1000 | turn 90 | go 1

7 ##

8.3.2 Space Filling Curves

One solution to the problem of crossing tool head movements is to use

algorithmic tool movement paths that can completely fill up spaces in

predictable ways without crossing paths. This concept of non-crossing

space-filling curves originated in around 1890 with G. Peano (Peano,

1890), but it was the mathematician David Hilbert who laid most of the



8.3 Background 147

Figure 8.2: The result of a 3D printing

performance using a Hilbert curve as a

form for musical structure

1: https://github.com/pixelpusher/
liveprinter/blob/test/liveprinter/
static/examples/hilbert.js.

mathematical foundations for a class of curves that we call the Hilbert

Curves (Hilbert, 1891; Sagan, 1994).

Hilbert curves have the property that they map a one-dimensional space

to a multidimensional space by passing through every point in that

space once and only once, in a single, continuous curve. We focus on

it here because of this non-crossing property, but also for its inherent

visual aesthetic and the purely 2-directional movements needed to

draw it, making it a useful pattern to begin experimenting with for live

performances (as illustrated in Figure Figure 8.3 on page 149).

Hilbert curves can be constructed using a recursive, infinitely-repeating

geometric process. Each iteration of this process produces a set of con-

nected points that fills up more of an n-dimensional space than the

previous iteration. This is easily be seen in a diagram of the first three

iterations of the process in a 2D space, as demonstrated by Sagan (1994).

Creating the curve in this manner is primarily a geometric operation

of recursive substitution at each stage and can be represented by a

Lindenmeyer System (L-system). This LivePrinter example by Raskob

(2020) uses a starting axiom of L and replacement rules of:

1 L: +RF-LFL-FR+

2

3 R: -LF+RFR+FL-

Note that L and R symbols are ignored in the rendering of the curve.

Finally, symbols are iterated in order and mapped to drawing functions

(here demonstrated in ECMAScript 6 (ES6)):

https://github.com/pixelpusher/liveprinter/blob/test/liveprinter/static/examples/hilbert.js
https://github.com/pixelpusher/liveprinter/blob/test/liveprinter/static/examples/hilbert.js
https://github.com/pixelpusher/liveprinter/blob/test/liveprinter/static/examples/hilbert.js
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1 ’F’: () => { await lp.dist(2).go(1, false) }

2

3 ’+’: () => { lp.turn(-90) }

4

5 ’-’: () => { lp.turn(90) }

There are also ways to directly calculate a mapped point in n-dimensional

space given an initial Hilbert index and a desired resolution. These are

less useful for describing tool paths because the information about how to

move from point to point, i.e. the rotations and directions of movements

encoded into the L-System string, are lost and must be re-calculated. The

fact that an L-System encodes a literal set of movement instructions for a

3D printer, without need for matrix multiplications or any other form of

interpolation, makes it attractive as a means for generating forms.

A major downside of this L-system implementation is that it is recursive

in nature and its representation grows exponentially with each iteration.

Another one that is specific to livecoding performance is that not every

iteration of the L-System produces a physical movement, only ones that

have an ‘F’. The iterations that result in only turn will not be picked up

on by the audience or performer because they don’t result in any printer

movements, unless they are otherwise visualised, so care must be taken

to either make them visible to the audience or to quickly skip through

them in favour of physical movements.

During this thesis, Hilbert curves were explored for their repetitive

properties. They were used in the Subsection 8.4.5 (London Design

Festival 2019) and for a poster submission at ICLC 2020. Some video

of “Hilbert curve techno” can be seen in Section A.2 (Experiments). It

was hoped that they would be useful in live performances, but at the

conclusion of this thesis such a system was still under development due to

the multistep complexity of coding them and the memory-intensiveness

of computing them in a web browser.

8.4 Key performances and early experiments

In this thesis, a number of key performances and early experiments

shaped the development of the LivePrinter system in particular, ultimately

leading to the concept of an I3DP system in general. Each of these

outcomes can be considered artefacts in their own right, but are also

clusters of practice-led activities that have led to new understanding about

this practice. They are interrelated in that, for example, performances

contain phases of composition and practicing that overlap with the

exploratory design phases of form-finding that led to the creation of

new artefacts for exhibition. In this spirit, these outcomes are presented

in a more-or-less chronological order, interspersed with links to theory,

technical details and findings, and previous user research, so the reader

can get a sense of the overall shape of the process of creative development

over the life of this project.
2
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Figure 8.3: Three examples of the Hilbert curve printed on a 3D printer. On the left is one iteration, on the far right is two iterations and on

the middle right is 3 iterations. The code for generating these can be found in the LivePrinter repository
1

2: A full list of performances and out-

comes can be found in Subsection 4.2.2 (Ex-

hibitions and presentations participated

in).

8.4.1 The first public performance

The first ever performance of livecoding 3D printing (LC3DP) took place

in the early evening on 1 Sep 2018, as part of the TOPLAP Moot pre-

Algorave performances a venue called DINA, in the city of Sheffield in

the north of the UK
3
. Based on previous informal observations, people

seemed to enjoy listening to the unintentional sounds of printers in action,

and so this performance was designed mostly to give the audience space

to listen to more considered 3D printer movements and to try out basic,

musical printer movements in a live setting.

This performance was meant to follow the established tradition of ma-

chine art, and was influenced by artists like Jean Tinguely who created

machines that set machinic processes in motion with the understanding

that something interesting would inevitably emerge from them over time.

They also were meant to demystifying the process of 3D printing for the

audience by slowing it down and focusing mainly on the movements

of the motors, linking this work to the Six Challenges of Baudisch and

Mueller (2017). Finally, the focus on "rationality" and minimalist expe-

rience, under the influence of Marcel Duchamp and Tinguely, led me

to focus on the machine-made quality of the sound and movement and

not try to duplicate anything "human" and "haphazard". It was much

more of a work of sound art than a rave-culture-adjacent piece of musical

performance, but it took place at the Algorave, nonetheless.

Sonically, the performance was partially influenced by composer Lamonte

Young’s experiments with long held notes and drones, which in turn

came from classical Indian music, and also by composers Terry Riley

and Steve Reich’s who often focused on the repetition of single notes

and phrases. The long, sustained notes made by unusually lengthy

printer movements would draw attention to the quality of the sound and

the novelty of the performance. The “pure” notes generated by motors
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3: http://livecode.toplap.org/2018/

events/algorave/

4: Source code for the main Printer

driver is at https://github.com/

pixelpusher/liveprinter/blob/

master/js/liveprinter.printer.js

moving in single-axis directions (e.g. in the x or y direction but not both

together) alternated with moving at slight angles, across multiple axes,

to produce discordant two-note combinations. The movement speeds

of the motors were tuned to major scales using the note() function,

as in lp.note(note=40, time=200, axes="x"). Even when the software

crashed (but continued moving the print head) the crowd was quiet and

attentive, but unfortunately a fire alarm ended the performance earlier

than intended.

The composition process for this performance was difficult and minimal,

because the LivePrinter software (discussed in Chapter 6 (Implementing

an I3DP system: LivePrinter)) was still so experimental and rapidly

changing. Crashes were frequent and a real problem for composing

reproducible work. Issues of asynchronous communication with the

printer would not be solved for over another year, and the software

could miss some erroneous responses from the sparsely-documented

Marlin printer firmware that would cause it to get stuck in a fatal loop.
4

This highlighted the difficulty of quickly sketching out concepts in an

Exploratory I3DP mode of working on an experimental system. A large

amount of work needed to be done to support a mode of working that was

intuitive and not broken with pauses due to system crashes, questions

about the consistency of syntax, or uncertain levels of abstraction, for

starters.

8.4.2 2D fills and Algospirals

In January 2019, after some experimentation with fill patterns that began

early on in the development of LivePrinter, I worked on creating printed

shapes that would be more complex than simple boxes and triangles

but also be easy to recognise by audiences. These forms would give

audiences some familiar point of reference in an otherwise obscure and

unusual performance and create a kind of abstract narrative journey as

they gradually emerged on the printer bed out of a nest of extruded

lines. For this reason, I chose the unofficial logo of Algoraves, sometimes

called “algospiral” or “triangle-spiral” or even“strangle” according to

Wikipedia
5
. This shape is often used on Algorave promotional media,

such as flyers and online graphics.

The first spirals I produced were composed of very thin lines. For my

upcoming performance, the audience would mainly see the printer

in action via a live camera feed because they would be standing in a

medium-sized room with mostly obscured views of the printer itself

A performance image from the Gold-

smiths Algorave follows in Figure 8.9.
.

The spiral needed to be bold and visible, but it was difficult to get its

lines thick enough to be clearly seen by a camera pointed at the printer.

Varying the thickness (also called “layer height”) parameter could only

increase the width of the printed lines by 0.1-0.2 mm at best.

To create wider forms, I experimented with two simple types of fill

patterns: a zigzag across the desired width of the fill with a set gap in

between strokes, as seen in Figure 8.8, and a similar zigzag across the

length of the fill, as see in Figure 8.7. Both forms used a new function

called drawFill(width, height, lineGap).

This method had some issues of overlapping with successive drawings

at the ends, but otherwise worked well enough at creating recognisable

http://livecode.toplap.org/2018/events/algorave/
http://livecode.toplap.org/2018/events/algorave/
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
https://github.com/pixelpusher/liveprinter/blob/master/js/liveprinter.printer.js
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Figure 8.4: Early experiment with rect-

angular 2D fills from 2018, with a stray

pentagon experiment.

5: https://en.wikipedia.org/wiki/

Algorave

shapes for the purposes of an experimental performance. The shorter

“zigs” across the width were useful for short, rhythmic sections, and the

longer strokes were more useful for series of durational drones.

8.4.2.1 Printing on different surfaces

The results were aesthetically pleasing, and became the basis for the

poster for the event, that I also designed. As a way of capturing the

image, I opted to print onto a piece of paper secured onto the printer

bed by strong earth magnets. The print was then digitally scanned in a

flat-bad scanner. This technique was similar to pen plotter art, but the

slightly molten and embossed plastic lines on the paper had their own

character.

This technique of printing on paper had originated in November 2018, and

led to further experiments printing directly onto paper and, eventually,

acrylic, in layers, which was used in further experiments for exhibitions.

It had also led to developing an SVG-format rendered for LivePrinter

https://en.wikipedia.org/wiki/Algorave
https://en.wikipedia.org/wiki/Algorave
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Figure 8.5: A selection of 2D toolpaths

used by LivePrinter for incrementally fill-

ing in flat spaces with plastic material.

The printed traces must end in predictable

ways and cannot overlap, or else they may

disrupt of break previously printed shapes.

These computational methods are needed

to build up volumetric forms, because

the material coming from the extruder is

quite thin (tenths of millimetres). These 2D

forms can be used in intermittent (stop/s-

tart) drawing operations to create combi-

nations of shapes, or just thicker 2D line

fills.

Figure 8.6: The code for an Algospiral, in

LivePrinter.

6: TOPLAP 15: https://toplap.org/

wearefifteen/, Goldsmiths’s event:

https://gold.ac.uk/calendar/?id=

12264

in order to streamline the experimentation process somewhat, which

in January 2019 became a well-received part of the user research work-

shops (described in Subsection 7.4.8 (Task 8: Using LivePrinter (freestyle

drawing))).

8.4.3 Second performance: the Goldsmiths Algorave

The second performance was a more polished affair, taking place in the

Sonics Immersive Media Labs (SIML) at Goldsmiths. The SIML is a special

space, a smaller variation on Recombinant Media Labs’ “Cinechamber”

with 360 degrees of floor to ceiling projection (6x 1080p projectors with

special short throw lenses) and a 12.2 sound system. This concert was

part of TOPLAP’s 15th world-wide birthday event, with about 168 live

performances streamed over a period of 84 hours
6
.

This performance was meant to be more musically-rich than the previous

one, in that it would contain more musical structures and rely less on

long, continuous drone notes. Mainly, this was an excuse to experiment

with LivePrinter’s growing ability to work with more common musical

structures like melodies, chords, and rhythms. One thing that became

clear quite quickly was the cognitive overload of having to constantly keep

https://toplap.org/wearefifteen/
https://toplap.org/wearefifteen/
https://gold.ac.uk/calendar/?id=12264
https://gold.ac.uk/calendar/?id=12264
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Figure 8.7: Fill pattern for the Algospiral

used in the event poster, from January

2019.

the system in motion making sounds whilst simultaneously worrying

about the physical state of the printer and printed material – the heat

of the print head and print bed, the movement of the print head and

whether it would hit an object or whether it was near the edge of the bed

or hitting the little metal clips holding the bed together.

In a musical livecoding performance, performers are often writing musical

phrases that repeat over time. They write code, execute it, and have some

time to sketch out new ideas before committing to new code. With live 3D

printing, the print bed is relatively small, so when a performer is using

higher-pitched notes the print head moves across it quickly and there is

little time to think and reflect and plan ahead to the next movements.

Whereas looping constructs like for and do. . .while could have been

useful, in practice their low abstraction level and verbosity added to the

cognitive overload of livecoding. This difficulty was mainly due to the

verbose syntax of JavaScript, especially when dealing with asynchronous

functions. Typing these out was physically involved, and required a

performer to keep track of many matching brackets types that, if missed

or misplaced in a transcription or modification action, could cause fatal

errors. Whilst the minigrammar helped somewhat, its relationship to

JavaScript as a part of it or an alternative to it was still unclear at this

stage of development.

Also, ideally, there would be no lag between printer operations so that

commands sent to the printer would be queued and run immediately,
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Figure 8.8: Fill pattern for tests of the Al-

gospiral, from January 2019.

using the printer movements themselves as the timing mechanism for

the piece. At this point in development, this was impossible due to

communications lags and error-handing issues with the system.

8.4.3.1 Tasks and scheduling

One interim solution to this was to add a task scheduler mechanism,

so a performer could write smaller print routines and execute them at

specific timed intervals, giving them time to plan their next move and

the audience something to experience whilst they did it. This was far

from ideal, because it introduced a lot of unpredictability into the system

when multiple tasks were running simultaneously, but it also led to some

interesting (if chaotic) sounds and shapes.

A useful innovation was a “Task dashboard” section in the main LivePrinter

interface where tasks appeared as pop-up notifications when they were

run, and could be easily cancelled by clicking an “x” in the top of their
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pop-up container. This increased the visual clutter of the interface some-

what, but also reduced the hard mental operation of having to imagine

what processes were running at any point in time, and also the constraint

on the order of operations where it could be difficult for a user/performer

to remember how to stop processes running.

In later experiments and performances, once timing issues were solved

and the system’s timing was demonstrably accurate when using only

the printer movements as a clock source, and the minigrammar and

other helpful abstractions were added to reduce cognitive overload and

verbosity, the composition and performance process became mostly

a process of using loops and repeated actions rather than tasks and

scheduling.

8.4.4 Expressive art 2019

I was asked to submit a piece for the 8th ACM/EG Expressive Symposium,

May 5-6, 2019, in Genoa, Italy. The symposium “explores the capacity

of computer graphics, animation, and computational media to be used

in artistic, aesthetic, and creative way”
7
. It included an exhibition of

Figure 8.9: A view of the Algorave at Goldsmiths with LivePrinter visual projections.

works to which I contributed some sculptures and the printed code from

livecoding sessions where I sketched them out.

This collection of my work, titled The CyberAnthill, brought together a

series of generative sculptures using a particular type of adapted cellular

automata. As the title alluded to, the cellular automata process was

somewhat inspired by Langton’s Ant and also the “Light Cycle” racers in

the cult 1980s science-fiction film Tron. Instead of the normal process of

printing exacting, predetermined 3D models, the 3D printer generated

its plastic forms by running unpredictable computer code that generated
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7: According to their website: http://

expressive.graphics/2019/

layered grids. This was a reference to automated manufacturing and

artificial intelligence, especially given its inclusion with other artworks

in the symposium and more general research, as part of Eurographics,

using AI and computer-generated imagery.

The idea was to physically embody Wolfram’s theory of “Computational

Equivalence,” which posits that the only way to understand the future

of complex, emergent systems like the universe itself is to run through

each computational stage of their existence, in sequential order, from

their beginning conditions. In other words, the only way to simulate

a complex system like the universe is on a computer with at least the

equivalent computational power of the universe. There are no shortcuts

to predicting the future (Wolfram, 2002; Andrew Pickering, 2011).

The work was also meant as a step towards a future where human-

assisted robots might create materials from layered mixes of different

microstructures, perhaps forming new metamaterials as discussed in

Chapter 3 (Literature Review). As I wrote, “for example, airy grids of 3D

printed ‘bubbles’ ranging from large to tiny could be used to create chairs

using the same material. This continuous form could alternate between

hard but light, both flexible and firm at different places as needed.

The humans would set the design requirements, and the computer

would manage the complexity of creating the finished product” (Raskob,

2020).

8.4.5 London Design Festival 2019

A further iteration on the Expressive ’19 artefacts and code was accepted

for exhibition as part of the London Design Festival’s “Design for Change”

(DR4C) showcase in 2019 shown at the London Design Festival (LDF),

Old Truman Brewery, London from Thursday 19 to Sunday 22, September

2019. The exhibition was curated and organised by Prof. Paul Rogers and

Dr. Francesco Mazzarella at Lancaster University, UK (Rodgers, 2020).

There were 11 artefacts displayed in total, along with the code used to

generate three of the automata-inspired fill patterns, as seen in Figure ??.

The largest artefacts were 80 mm square or 120 mm wide for the longer

rectangles, the rest were of varied dimensions ranging from 20-40 mm.

The curated projects in the exhibition “illustrate[d] wide-ranging social,

cultural and economic impacts and highlight the significant roles that

UK-based Design researchers play in some of the most complex and

challenging issues we face both in the UK and globally.”

This excerpt was taken from the text dis-

played on the wall in the centre of the

exhibition.

My description of the LivePrinter project focused on its potential to

engage people more actively and directly in the act of making with 3D

printers, and ultimately with digital manufacturing in general:

This project is about developing an open, interactively pro-

grammed 3D printing system for live computational making.

It explores the role of improvisation and intuition in design

and making new forms for automated manufacturing. Cur-

rent processes for 3D printing place the artist and designer

at a difficult distance from the physical process of making.

There is no space for live improvisation and experimentation,

http://expressive.graphics/2019/
http://expressive.graphics/2019/
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especially with key properties that directly affect printing

materials like temperature and print speeds. This new sys-

tem extends digital printing and CNC machining into the

realm of performance and also has potential in design and

science pedagogy and materials science. It also might spur

us to consider how we as humans might have a more active

part to play with automated manufacturing. LivePrinter has

already been used to create live musical performances with

3D printers and generative works of art. You can find out

more at https://github.com/liveprinter.

Many of the artefacts exhibited here were similar to or identical to the

ones from Expressive ’19, except for the more complex and multilayered

Hilbert-curve variations that can be seen in the top right of Figure

??, printed in bright yellow plastic. The accompanying exhibition text

highlighted the use of automata, generative techniques and Hilbert curves

as part of a live fabrication process:

LivePrinter is the start of an open, interactively programmed

3D printing system for live computational making. Auto-

mated manufacturing can be a collaborative process rather

than replace human craftspeople. These experiments were

all done with LivePrinter to show that new forms of improvi-

sation and intuition are possible with digital manufacturing.

One uses digital “agents” that are guided by the coder/maker

to create overlaying paths of plastic in grids of different sizes.

The other explores more manual ways of filling space, here

using livecoded Hilbert curves with different properties. Each

experiment was a combined automated and manual process

where the maker manipulated the material in the 3D printer

and interactively ran and edited the code over the making

session. The code for each session in recorded and displayed

here along with the artefacts.

On reflection, what interested me the most about the work was the sense

of depth conveyed by the multilayered pieces, especially those that used

different colours at different grid resolutions, as in the piece mounted

to black acrylic seen in Figure 8.1. This comes from a tension between

the positive space of the plastic and the literal negative space of the gaps

between them.

When I printed multiple layers in the same colour, at similar grid res-

olutions, the effect was lost as the layers converged towards a regular

rectilinear grid. This was mainly because each layer was so thin that it

was hard to see the semi-random gaps in between them that gave each

piece an individual texture. This layer thickness was severely limited,

determined by the physical width of the printer’s extruder nozzle to a

range of only about 0.1-0.3 mm, with the latter achievable only at slower

speeds and when printing directly on top of other layers.

The result was that I was more drawn to the smaller, finer details of

the Hilbert pieces and smaller red plastic automata grids more than

the larger and more sparse pieces. Yet, when I experimented with a

number of long, grid-like forms inspired by Agnes Martin’s regular

compositions, I felt they were converging towards something like her

https://github.com/liveprinter
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blend of near-Minimalism in form and Abstract Expressionism in intent

and execution.

Each printed piece was fragile. Their regularity was easily perturbed by

temperature variations and the inherent randomness of fluid dynamics;

plastic lines didn’t stick properly or shifted slightly during printing for

unknown reasons. This nicely complemented the bounded anarchy of

the automata-inspired algorithms, coupled with my aesthetic judgments

of when to stop and start them and modify them during operations,

including how many layers to use and at what resolution.

I am not sure if this was the right venue for such a meditative piece of

work, as they were meant to be small pieces of a larger future for people

to contemplate, small shards of computationally-fabricated objects that

would be commonplace in everyday life. Given more time, I would have

liked to experiment more with different colours and different ways of

mounting the artefacts to bring more attention to their negative space. I

would also have appreciated giving them more space, as exhibitions of

Agnes’s work usually do, to let people appreciate the minimal forms on

their own without the noise of adjacent pieces. Whether these early works

were subjectively good enough to merit such a spacious and luxurious

exhibition is another question.

8.4.6 ICLC 2020

For 3D printing and music-making, the durations of movements and

silences are of paramount importance to the musical aesthetics of the

piece. As with any movement that creates music, a performer must control

it precisely. Any gaps in movement or extraneous movements to position

the printing head become part of the performance, for better or worse.

A performer needs predictable tool paths at their disposal to improvise

with, much as a jazz musician riffs on different musical scales and motifs.

Continuous curves such as the Hilbert can be useful in that respect. As

Papacharalampopoulos, Bikas, and Stavropoulos (2018) observed, Hilbert

curves keep the print head moving throughout their length and thus

minimize or altogether remove any extra waiting between operations

and travel times needed to reposition the head after movements.

A printer following a Hilbert curve follows a predictable, regular path

and doesn’t need to stop extruding until the curve is finished. It is

guaranteed not to hit any other point in the curve as it moves, removing

a potential source of error. They fill up a rectangular space completely

without crossing themselves and can be run backwards once finished.

With dense Hilbert curves of higher orders, the number of movements

can be quite large which is helpful to a livecoding performer trying to

compose a dense melody live. They are especially useful when the printer

movements are quick, giving them more time to think as they type new

lines of code.

For example, a performer might wish to play a sequence of MIDI C5

notes (MIDI number 72) every beat, at a tempo of 120 beats-minute (or

0.5 seconds-per-beat) for a 12-beat segment. That means each beat the

print head would be moving at a speed of 11.1165 millimetres-per-second

for a distance of 5.5582 millimetres. A second-order Hilbert curve could

completely contain that movement because the curve is made of 15
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segments packed into a space that is 3 segments by 3 segments square,

or 16.6747 mm by 16.6747 mm which will take a total of 6 seconds to play

(12 notes at a duration of 0.5s per note). This whole curve fills up a little

over 13% of the total printer bed space at that level, leaving room for

about 8 repetitions of that motif before starting a new print layer.

Also, when the curve is oriented to the x/y axes of the print bed the

tool head will move at right angles when drawing the curve. This uses

only one motor at a time, playing distinct notes rather than chords. A

performer could take advantage of this fact by alternating motor speeds

with every segment of the curve, thus playing arpeggios. It is also possible

to make more complex chords using rotated Hilbert curves. Rotating

45 degrees with respect to the x/y axes of the bed engages two motors

simultaneously when moving, playing a two note chord consisting of

the same two notes. A movement at any other angle produces a more

complex tone that in practice can be difficult to control. In practice, it can

be hard to manage Hilbert curves because the L-Systems representation

of them grows exponentially with each iteration. This makes storing them

as strings a non-trivial task, especially in a live, real-time performance

setting.

Stepping through an entire curve in a performance is a dangerous task

because it encompasses hundreds or even thousands of steps. Some

language-specific techniques are needed, such as using ES6 generators

to write iterative Hilbert functions whose execution is not continuous

(Mozilla, 2019). Additionally, more research is needed into the properties

of other space-filling curves that have a number of segments that divide

up evenly into common musical time signatures, like 4 and 8 beat

segments. There are many other types of space filling curves that could

have beneficial musical properties, including diagonal segments that

represent chords.



160 8 Filling space, filling time

Figure 8.10: Printing a variation of the
CyberAnthill using two different genera-

tive algorithms realised in two different-

coloured materials, printed directly onto

a sculpted piece of glossy black acrylic.
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Figure 8.11: Another, smaller variation of

the CyberAnthill using different generative

algorithms in different layers, on top of

one another, realised in a single colour.
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Both the opportunity and conceptual con-

fusion inherent in these types of opera-

tions as was hinted at in the discussion

on travel movements in Subsection 6.6.2

(travelling upwards and downwards).

8: See the Literature Review chapter’s dis-

cussion referencing (Livesu et al., 2017)

9: https://intl.the3doodler.com/

8.5 A case study in “airprinting”

3D printers usually build layers out of 2D forms, but they are also capable

of directly fabricating 3D objects. . This functionality was particularly

difficult to implement because the use cases were not as clearly defined as

with the usual travel and extrusion operations. There simply aren’t many

examples of 3D printers extruding plastic into the air, unsupported, in

the current literature. Mainly, printers use stacks of 2D layers for building

up 3D shapes
8
, although there are commercial devices taking advantage

of “airprinting” that have been around for a few years, like the 3Doodler

pen
9

which let users draw free-form in space with melted plastic.

Two more key examples are WirePrint by Mueller, Im, et al. (2014) and

“augmented reality” interactive fabrication by Peng et al. (2018). Both

projects look at how we can reduce the time spent 3D printing by

drawing sparse structures into the air, similar to the 3D wireframes that

are commonly used for fast previews in 3D design software. WirePrint
in particular was an inspiration for a series of experiments looking

at whether their results could be approximated using the LivePrinter

system, on a non-modified 3D printer.

The WirePrint software was a standalone renderer that took in a 3D model

and output GCode for 3D printers. The main gist of the algorithm, as

described in Mueller, Im, et al. (2014), was to first slice the model into

horizontal slices, detect their contours, and then link together successive

vertical slices with a vertical zigzag pattern of alternating triangles with

their points spaced evenly between the layers. To make these zigzags,

the printer needed to “zig” or move upwards quickly into the air whilst

extruding plastic, then pause and retract the filament slightly to tighten

it and let it cool, before moving downwards to finish the “zag”.

The basic concept was straightforward, but the details of the imple-

mentation relied on the control of a number of independent variables

dictating printer speed, temperature, and optimal line segment lengths,

for example, leading to a very large number of experimental possibilities.

In addition, the study didn’t look at optimal variables for each of these

operations, or at least they weren’t specified in the text. This left a number

of questions unanswered, such as the optimal printing speed for each

segment of the zigzag shape (i.e. how fast should the initial lead-in

segment be, as opposed to the vertical and downwards ones?) What was

the optimal retraction speed and length? How long should the printer

pause at the top? What was the minimum possible vertical angle that

this form of printing could support?

Using standard 3D printing software that worked with a traditional

process planning workflow, e.g. from 3D model to 3D file to 2D layer

slicing, it would be difficult or even impossible to experiment directly

with these variables. A research would need to generate GCode directly

in a controlled, iterative, multistep process. With LivePrinter, each of

these variables could be controlled for explicitly in rendered GCode to

find optimal parameters, and with the results combined into a further

series of repeated experiments to find some candidates for optimal

combinations.

The initial reverse-engineering this part of the WirePrint algorithm, in-

cluding finding and patching bugs in the LivePrinter code and extending

https://intl.the3doodler.com/
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its capabilities to properly run coding loops took about 2 hours before

effective parameters and an algorithm was discovered that could print a

series of unsupported triangles reliably on the printer bed. In the later

user test of the LivePrinter minigrammar, finding the code to recreate this

basic shape took about 21 tries over a period of 25 minutes. This could

have been automated somewhat to use coded loops to cycle through the

possible parameter values, but manual control and intuition proved fast

enough for our purposes (see Figure 8.14 and Figure 8.15).
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Figure 8.13: Experimenting with printing

sparse forms in 3D space by making pyra-

midal shapes.

Figure 8.14: Airprinting with the mini-

grammar

1 ##
2 autoretract 0 | fan 0
3 unretract | turnto 0 | printspeed 15
4 draw 40 | fan 100 | elev 35 | printspeed 20 | drawup 3 | retract

12 | wait 1500
5 unretract | elev -35 | printspeed 18 | drawdown 3
6 printspeed 20 | draw 30 | retract 6 | fan 0
7 ##
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Figure 8.15: The results of reverse-

engineering the airprinting algorithm us-

ing the LivePrinter minigrammar.
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8.6 Conclusions

Normally, the speed at which the printer prints is determined by the

desired quality of the print balanced by the total time of manufacture.

Slower printing times generally lead to higher quality prints because the

print head can follow a more precise path and the layers have time to

cool properly before the next layer is applied on top (Matter, 2015).

When making music with printers, the relationship between form and

making time is subverted. Performance time and musical quality can

have as much weight as the quality of the finished object, whatever that

final output might be in such a live setting. Slower speeds that might

produce higher quality prints may be either inaudible or in the wrong

key or frequency for the piece being performed.

This leads a maker/performer to reframe manufacturing as a mainly

durational activity. Instead of describing objects in the usual way using

technical drawings or digital models specifying physical dimensions in

millimetres, one can consider objects using their durational dimensions

and specify them in terms of the speed, angle and duration of movement

used to manufacture them. This tightly integrates the making of the

object with the description of the object itself. It stands in opposition to

the process planning approach that separates out a design concept from

its fabrication processes.

In 3D printing livecoding performances, the performer choreographs

(or composes) the movements of the printer (speed, direction, duration)

and the properties of the printer itself (temperature, fan speed, filament

flow rate) by manipulating and writing code which is projected into the

performance space. Both the act of making, with its resulting physical

forms, and the sound of making are intrinsic to the performance. This

leads to a dual mode of composition when making music for printers,

where one can prioritise the aesthetics of the form by composing move-

ments in millimetres or the aesthetics of the sound by composing in

milliseconds of movement at specific speeds that correlate to musical

pitches (e.g. musical notes and scales).

This reframing of object-making as a mode of composition stands in sharp

contrast to the usual visual or shape-based software modelling techniques,

where object manipulation is primary and textually descriptive methods

of form-finding like code are secondary, if allowed at all. Another insight

into the difference between these two modes of creation comes from

T. Magnusson and Mendieta (2008)’s 2009 survey of “musical instrument

phenomenology”. The survey results were concerned with acoustic

physical instruments versus digital ones, but we can similarly compare

the act of physical making with the process of digital fabrication using

software. In the first case, the quality of the output relies mainly on the

physical dexterity of a craftsperson, the second on the usability of the

software.

To paraphrase T. Magnusson and Mendieta (2008), the music that one

creates using acoustic instruments (e.g. violin, piano) is immediately

limited by the skill of the performer and thus a matter of increasing

that physical skill (through practice) to expand the performer’s reper-

toire. With digital instruments (e.g. MaxMSP, SuperCollider, tidal) the

computer is already “skilful” at making sound and comes with many
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examples, modules and materials to choose from, so the performer builds

their repertoire through a process of selecting and refining, rather than

expanding. Similarly, physical makers start out producing simple forms

that gain complexity as their skills increase, whereas digital makers learn

to sort through complexity, choosing which elements to use and which

to discard or ignore, often resulting in a skilful simplicity of code and

form.

The practical result of using text (livecoding) for the act of making is

a trade-off where users lose direct physical control over the making

process but gain the ability to replicate objects with more complex forms,

to experiment with different visual (and acoustic) aesthetics and also

to embed intellectual ideas in the construction and form of shapes,

such as musical concepts. For example, LivePrinter allows makers to

embed musicality into the making process by providing a suite of such

functions for running the printer motors at musical frequencies for

specific durations, and repeating them. Alongside these functions are

others for converting distance travelled (at a certain musical speed) to

duration so that making operations can be specified in terms of both

precise dimensions and musical effect.

Some special types of space-filling algorithms that are composed of a

single, continuous line, called space-filling curves, can be used for this

particular type of performative 3D printing. These curves are drawn

in predictable ways that fill up space to build printed shapes without

crossovers that might damage the shape being built. These curves could be

a useful tool for expressing physical objects in mixed musical/sculptural

performances because of the ways in which they can completely fill up

spaces in repeating and predictable ways.

This potentially has applications outside sculptural performance, in

the realm of industrial 3D printing, where 2D and 3D space filling

patterns and techniques are current areas of research. Unfortunately for

the present, these curves can be complex to design leading to difficult

mental operations in live settings, and computing-resource-intensive to

run. Further study is needed to come up with methods for integrating

different fill patterns over time, across unpredictable and improvised

forms that arise during performance. These methods might also find

application in areas like metamaterials research, and other methods of 2D

fill patterns that save time, materials, and thus energy, as was discussed

in Subsection 3.9.4 (Controlling 3D printing with code).
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9.1 About

This chapter reflects on the current state of an ongoing Research-Through-

Design (RTD) process as experienced by the researcher, Evan Raskob,

through his practices as software developer, educator, and artist; a

process that was simultaneously philosophical, functional, social, and

aesthetic
*
. In the spirit of Gaver (2012), these recollections are loosely

centred around a “theory nexus” weaving together “pure” theory (such as

human cognition) by way of a grounded “technical activity” of developing

a functioning Interactive 3D Printing (I3DP) system that was used to

create learning experiences, experiments and artefacts – performances,

sculptures, techniques – embedded within the livecoding and also the

generative art and design communities.

In this spirit, these reflections are presented as a loose collection, ranging

from abstract questions about the metaphoric language of 3D printing to

the specific implementation details of the LivePrinter I3DP system that

formed the main research outcome of this thesis.

9.2 Why use code for 3D printing?

This thesis, through a reflective and iterative research-through-design-led

process, showed that interactive 3D printing can change how people

think about the process of 3D printing and how this process has led

to the development of new aesthetics, grounded in generative art, and

new understandings of how interactive programming systems can be

designed to support this new mode of working. The thesis began with

the inductive notion that it might be interesting to combine interactive

programming and 3D printing, so it makes sense that at its end we revisit

and reflect on why it was so interesting. Given what we now know, why

would anyone want to interactively use code for 3D printing, when there

are other means available?

Language has an established place in the design process. Schön (1991)

observed that experienced designers tend to use evocative words that

describe certain archetypes as part of their designerly process. For

example, the architect Richard MacCormac used the word “vessel” when

referring to his designs for a round inner worship space for the chapel at

Fitzwilliam College, Cambridge. “Vessel” as a metaphor for a physical

space evokes feelings of floating and disconnectedness, as in a ship

floating alone at sea.

These designerly metaphors can be much more than placeholders for

types of designs when discussing them with clients or describing them

*
These multifaceted aspects of the research process, essential components of works of both

art and design, are mentioned with nods towards Bill Gaver and especially his predecessor

Josef Albers, as discussed in the Introduction chapter.
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1: See also the earlier section on livecod-

ing systems design patterns in Subsection

3.7.4 (Design patterns for livecoding soft-

ware systems).

to audiences. In Schön (1991)’s thinking, the act of designing can be

thought of as a conversation involving a designer, their idea, potential

stakeholders, and physical making activities along with the materials

used in that process. Metaphors become intrinsic to that process.

In a more literal examination of “design as conversation” undertaken

in Lawson and Loke (1997)’s study of “conversational programming”,

these conversations swung between a detailed specificity and metaphoric

vagueness. Metaphors of space, like “vessel,” alternated with frames

of reference for specific drawing operations and movements, and the

details of how they were meant to contribute to the construction of 3D

volumetric forms. Computer programmers might find this jump between

archetypal language and implementation language familiar, as they shift

between metaphors for describing software archetypes to one another,

such as Gamma et al. (1995)’s classic “design patterns” of Factories and

Observers, and the more machine- and process-specific language of actual

computer programmes
1
.

As similar as programmers and designers might find these jumps in

language, their application of the language can be quite different in

context. Lawson and Loke (1997), coming from a design background, saw

the future potential for computer-aided-design as one of a conversation

resembling a structured version of the traditional art studio critique ses-

sion, where design concepts are presented and then discussed. A designer

would propose, and a software-agent would critique, and vice-versa.

This system described in Lawson and Loke (1997) would parse through

highly structured, textual statements from a user describing a design and

then provide appropriate “critical” responses by drawing implicit links

between that input and the design-related entries stored in its database.

The conversation was meant to unfold over time, in a performative way,

and could involve other designers and even autonomous software agents

as well.

With its structured syntax, REPL-like input, performative mode of op-

eration and immediate responses, Lawson and Loke (1997)’s system

resembles an interactive programming environment for design ideas, but

with a difference in approach. Rather than proposing software programs

for critique, computer programmers are more used to writing a program

that fairly-specifically tells a computer what to do, and then analysing

the results. New AI-infused systems such as GitHub’s Copilot
†

are begin-

ning to offer more conversational approaches as they offer up possible

code implementations as a form of “autocompletion” in response to the

user’s typing, but they are a far way off from having any kind of critical

conversation with their users.

AutoDesk, creator of most of the leading 3D CAD software, is also well

on their way towards combining concepts of machine intelligence and

generative design into a more conversational software package. They have

a major investment in machine learning and augmented intelligence (AI)

groups (AutoDesk, 2019) and an ongoing project called DreamCatcher

that would turn user’s “design constraints” into production-ready models.

The combination of cloud computing, big data and advances in machine

learning and AI like GPT-3 might soon move design software from point-

and-click model-building to a more live, conversational, curatorial process

† https://copilot.github.com/

https://copilot.github.com/
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As Magnusson notes, his definition of af-

fordances is open to interpretation and

carries with it a variety of competing defi-

nitions.

where the software makes suggestions based on physics, best-practice,

legal issues and commonly used aesthetics.

It is exciting to think of future performances based on new kinds of semi-

automated systems that enter the programmer into critical dialogues

between past code (via software agents trained on past data) and other

designers, programmers, and even audiences, but we need to be careful of

certain risks. Our act of future-gazing risks an incursion into the territory

of science fiction, where we suspend disbelief and assume everything is

possible, however unlikely. In order to stay in a state of critical, grounded

research, we must be clear about what sort of possibilities are likely

afforded by computational conversational design, even lesser forms such

as I3PD in general and our LivePrinter I3DP implementation in specific.

9.3 Reflecting on the constraints of I3DP
systems

One way of staying within the realm of actual possibility with science-

fiction-like technology is by framing discussions about the affordances
offered to users by such systems, and likewise the constraints embedded

in them that prevent certain operations or possibilities. According to

Thor Magnusson (2010, p.63)’s interpretation, one way of looking at

affordances is to see them as “potential applications derived from the

agent’s [user’s] embodied relationship with the object in the enactive

sense”.

With I3DP systems that use rich language as a means for interaction, the

number of affordances can be difficult to determine since the system opens

up all sorts of possibilities to the user. An examination of the creative

constraints that both livecoding and 3D printer mechanics imposed

on this particular method of 3D form-making was, in practice, more

useful when designing LivePrinter. This view follows on from Margaret

A. Boden, who looked at constraints as a way to map out and explore

the structural possibilities of a creative space. By using constraints as

boundaries for a conceptual space to be explored, we limit the creative

possibilities but also focus the inquiry and create paths (patterns) for

users to follow (Boden 1990, p. 95).

Looking back, the design of LivePrinter coalesced around three main

constraints. These constraints were quite straightforward, but with major

implications:

1. Forms must be described using code

2. The user is responsible for specifying tool paths and machine

properties (movement, speed, temperature)
‡

3. The machine does all the making
§

‡
Note that an advanced user could still write functions to handle these automatically for

certain forms, as is the case with more complex space filling operations like LivePrinter’s

rectangular space fill() command.

§
But still with the possibility of human manipulation during that process
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These were the only three absolute constraints that users needed adhere

to. Users could run code, start or stop the machine and choose different

materials to use in it. They could create physical forms computationally,

using different functions that take into account physical properties like

speed and temperature.

The constraint of forcing the user to think about tool paths and other

low-level implementation details was at odds with the mostly higher-

level abstractions of Lawson and Loke (1997)’s conversational system

of design. By bypassing the more familiar language of design in favour

of textual metaphors of manufacturing we in effect forced people to

think about them from strange and different points of view. Instead

of discussing fully-realised forms that could be manufactured, they

had to focus on describing the molten plastic lines that incrementally

build up such shapes under the pull of gravity and the influence of

complex fluid dynamics. Interactive programming became a method

of defamiliarisation for breaking down the “magic” idea of objects that

appear fully-realised from a printer, and reframing it as intentional,

detail-oriented, incremental making.

Using code in such a way had the effect of preventing users from directly

manipulating forms in favour of opening up a more intellectual and

thoughtful distance from the act of making and designing that was

both enabling and sometimes frustrating, as we saw. It was enabling

because using an I3DP system was seen to help these participants better

understand the basic mechanics of 3D printing. The workshops sparked

some productive conversations, and helped people reframe 3D printing

from a semi-magical, “black box” machine, to an understandable physical

and computational process consisting of some straightforward steps using

the simplified commands from the LivePrinter system.

When not feeling enabled, people signalled their frustration with the

complex process of making even simple shapes. Squares and simple

polygons took only a few lines of code, but when shapes were combined

and built on top of one another to create truly 3D forms, the large amount

of code required to make them began to approach an upper conceptual

limit of what most people could understand. In the workshops, one

solution was to include intermediate software to create more complex

forms and then export them as self-contained, “plug and play” objects that

users could directly integrate into their code. We introduced a workflow

using a popular visual vector graphics shape editor to design forms

that were converted directly into LivePrinter code (standard JavaScript)

which was mostly well-received. These 2D shape paths could be scaled,

rotated, stacked on top of one another, and printed on different materials

like fabric and paper (as described in Subsection 7.4.8 (Task 8: Using

LivePrinter (freestyle drawing)) and in the user feedback section of

Subsection 7.4.7 (Task 7: Using LivePrinter (height and layering))). As one

participant put it, these pre-rendered shapes provided “more recipes”

for users to quickly to make more complex forms and learn from them.

This points towards future avenues of research into how to describe

more complex forms by developing new syntactical abstractions, but

without sacrificing the clarity and precision of tool path programming

that the current syntax supports. These “recipes” for form-making

could take inspiration from the study of metamaterials, where repeated



9.4 Searching for a grounding metaphor of 3D “printing” 173

typologies of micro-forms are used in layered combinations that result

in different material properties, such as variable stiffness, floatation, and

even mechanical operations.

9.4 Searching for a grounding metaphor of 3D
“printing”

The search for a workable level of abstract, metaphoric language to

conceptually anchor the descriptions of forms and simple operations

formed an important part of the programming-language design process.

For example, take the name “3D printing,” a particular form of CNC

manufacturing referring to a family of layer-by-layer, semi-automated

fabrication processes. We call them “printing” because, ostensibly, it

extends the familiar metaphor of desktop paper printers that have often

been attached to personal computers.

Interestingly, in our study, a possibly more effective metaphor for the

process was found to be “painting,” as in “painting with plastic.” This

was recorded in early sketches of the system by the main researcher,

arose in discussions with participants in Subsection 7.4.5.1 (Feedback

and responses), and similarly came up earlier in initial interviews with

Patricio Rivera from collective TMTMTM (The Machine That Makes The

Machine) who more explicitly used 3D printing mechanics to paint with

more traditional materials like acrylic paint, or with light using cameras

and long exposure photography.

The fundamental importance of establishing this grounding metaphor is

hard to understate – it forms the root of all the naming conventions in an

I3DP system’s syntax and creates consistency across different workflows.

For example, the metaphor of 3D printing leads to function names such

as in print() and printspeed(), and likewise 3D drawing (inspired by the 3D
Doodler pen) led to draw() and drawspeed(). 3D Painting was left unexplored,

but given the response in the user workshops, could be a strong future

contender.

As it stands now, for better or worse, the LivePrinter system simply

supports all of these workflows by making these functions synonyms of

one another. This creates a number of competing abstractions and also

introduces the possibility of mixed metaphors in programs. Future studies

would do well to look at the effectiveness of each of these metaphoric

systems, and in what context. They are likely to vary according to the

background of the user, especially their previous experience with painting

or making and what physical or metaphorical systems of language they

are used to using to describe their process.

9.5 Problems and opportunities when
describing 3D movements

Finding a grounding metaphor for print head movements in 3D space

was also challenging, and could be a useful avenue for further research.

With the specific printer models we used, how could users visualise the
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3D movements of the printer, whilst looking at it? In 2D, we found that

using code to describe how to move the print head was straightforward

enough, but became confusing to participants when 3D movements

such as “up” and“down” and moving at angles were introduced (see

Subsection 7.4.10 (User’s perspective vs. method naming)).

Figure 9.1: Two types of printer move-

ments, showing one with a bed fixed in

the horizontal position that moves only

vertically with a vertically-fixed print head

that moves horizontally (left) and another

with a print head fixed in the horizontal

position that moves only vertically with

a vertically-fixed bed that moves horizon-

tally.

Some reasons for this difficulty were due to differing printer designs, such

as with printers that moved a print head horizontally using two motors

and utilised a third motor to raise and lower the bed, versus printers that

moved the bed horizontally whilst the print head only moved up and

down.

Other difficulties were caused by looking at movements from the per-

spective of the bed or the model on the print bed. With printers that used

fixed-position beds, users sometimes viewed movements commands as

relative to the model on the bed, and at other times as relative to the

print head itself. This was further confused by GCode convention, which

is that a greater Z value means more distance between the print head

and print bed, but with no set notion of which is fixed and which is

moving.

These difficulties became particularly pronounced when users tried to

direct 3D print head movements at arbitrary angles, as opposed to simply

up and down (i.e. purely vertically). LivePrinter initially avoided this

problem by taking inspiration from most slicer programs which divide

3D shapes up into 2D vector shapes oriented in the x–y (horizontal)

plane (illustrated in Figure 9.2). The main vertical movement functions

provided were up and down, although it was entirely possible to use the

more explicit modes of movement and extrusion, e.g. moveto({x, y, z})

and extrudeto({x, y, z}).
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The elev(angle) function virtually

“tilts” the direction of printing upwards

by a number of degrees (i.e. the angle
parameter) so that an elevation of 0 is fully

horizontal and an elevation of 90 is fully

vertical (upwards), with a corresponding

elevation of -90 in the downwards direc-

tion.

Figure 9.2: LivePrinter uses two types of

angles to describe movements, vertical “el-

evation” and horizontal rotations around

the z-axis, or “turns.”

Complications arose later on when the drawing functions evolved to

be chained =together to form “code sentences,” based on user feedback

and researcher self-reflection. For example, the draw function in the

code sentence # travel 15 | turn 20 | draw 45 | up 15 is explicitly 2D.

Compare this to the later experiments using “air printing,” discussed in

Section 8.5 (Airprinting) and illustrated in Figure 8.15. Looking in detail

at a subsection of commands, simplified here to focus on the drawing

movements:

1 ##

2 draw 40 | elev 35 | drawup 3

3 elev -35 | drawdown 3

4 ##

In the first part of this code, the print head is directed to move horizontally

for 40 mm (draw 40), then tilt the direction of travel upwards to a 35
◦

angle

(elev 35), then extrude material upwards at that angle for a distance of 3

mm ((drawup 3)). During the upwards movement of 35
◦

from z=0 to z=3

mm whilst extruding, the print head will have extruded a total length of

5.23 mm (
3

sin(35
◦) = 5.23) of material.

The syntax was helpful for airprinting experiments where researchers

were primarily interested in determining useful angles of elevation

and moving exact vertical distances so that shapes sat properly on the

printer bed, with less concern about horizontal dimensions for printed

forms. This approach has its drawbacks for more general usage, but

adding new functions for 3D vectors and rotations would have added

a lot of complexity to the system at a late stage of development. In the

already-completed user studies, movements in an upwards direction were
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uncommon, when more often users drew 2D layers and moved vertically

only when beginning a composition or when a layer was completed.

It also exacerbated the “hard mental problem” of visualising the direction

and distance of movements in 3D space, especially without other forms

of visualisation such as 3D renders, screens on the printer, or even

projections onto the printer space. Where and when to add pre- or

post-visualisations to printer movements could be an interesting area for

future research.

Additionally, it was not clear what frameworks to use when integrat-

ing more advanced concepts of 3D spatial movement and orientation.

Aeronautics provides some grounding metaphors that could be useful,

such as pitch and yaw, but these may not be as applicable to such a

mixed 2D/3D frame-of-reference as 3D printing where 2D layers are

prioritised over full 3D manoeuvrability. This points to future opportuni-

ties to develop conceptual systems for working more explicitly with 3D

coordinate systems and 3D printing movements, whilst still retaining a

layer-by-layer approach.

Such systems might also involve more sophisticated sensing and imaging

technologies than those that currently exist, such as heat-resistant micro-

cameras attached to moving print heads and highly-accurate measuring

sensors, mixed with other computer visualisation approaches that give

users the perspective of the printer and detailed knowledge of the

properties of already-constructed physical layers. Perhaps augmented or

virtual reality could be combined with such sensing to let future makers

feel that they are a part of the printer itself, building on the AR-enhanced

3D fabrication experiments of Peng et al. (2018).

9.6 Reflecting on different approaches to
composition

In addition to user activities of exploratory design and that are supported

by LivePrinter, it can be helpful to reframe the livecoding process in terms

of the users’ approach to “composition” (of objects, or music, or any

multimedia) to better understand the modes of working that LivePrinter

supports. One compositional approach has been described as “planner,”

referring to users who try to work out compositional details before a

livecoding or interactive programming session. The other approach refers

to an iterative process of trying out small changes to understand their

effect, and is often called either “bricolage” (McLean and Wiggins (2010)

following Turkle and Papert (1990) and Turkle and Papert (1991)) or

“tinkerer” (Ben-Ari and Yeshno, 2006, pp.1337–8).

We would expect more experienced users to gravitate towards a “planner”

or “whole composition” approach since it requires a deeper understand-

ing of how the system works and its patterns of use (e.g. an “internal

model”). As we discussed in Section 5.4 (Aligning user understanding

and notational systems), this approach is less “trial-and-error” and more

strategic and conceptual. By comparison, bricoleur composers and tin-

kerers incrementally build up a composition through just such a process

of trial-and-error. They often fashion little pieces of code by tweaking
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2: http://codemirror.org

3: http://nearley.org

parameters and syntax in a separate file and stitch them together during

the composition process (McLean and Wiggins, 2010).

The process of bricolage has been observed to be more common to

beginners and users with little previous understanding of the system

at hand. The original French meaning of word bricolage reinforces this

contrast between advanced and beginner or professional and amateur:

Catherine Letondal in Ben-Ari and Yeshno (2006, p.1337) translates it as

referring to “work by a competent amateur.” Similarly, calling someone a

“tinkerer” is often an insult referring to their unprofessional or uneducated

approach that belies their lack of systematic knowledge.

This does not mean that an advanced user won’t also tinker with their code.

Bricolage, like “auteurism,” can be an explicitly anti-strategic approach to

working in order to capture a spirit of amateurism or “beginner’s mind,”

but it does mean that a beginner or casual user is far less likely to have

enough of an inner model of the system, such as the domain-specific

vocabulary and syntax committed to memory, in order to compose away

from the system itself.

9.7 On designing for extensibility and
tweakability

The emphasis of this project was on experimentation, meaning that both

the system its syntax had to support forms of trial-and-error development.

In (Trevino, 2013, p.30) this is called “extensibility” and “tweakability”.

The term Extensibility relates to the system itself, representing the assump-

tion that users gaining an understanding of the low-level construction

of the system can then create extensions of it. These extensions might

be new applications of all or part of the system, or develop a more

flexible alignment between thought and individual programming style.

Tweakability relates especially to the degree of user-controlled flexibility

in the system’s output, allowing the programmer use the higher-level

means of development provided by the system to customise and control

the low-level manipulations of outputs.

The LivePrinter front-end is both highly extensible and tweakable be-

cause it is both written in JavaScript and also uses JavaScript as a means

of livecoding output. Even the minigrammar is ultimately compiled to

JavaScript, meaning that it can itself be extended and tweaked during a

live development or performance session. To support this, LivePrinter

provides an extensible code module for a CodeMirror-based
2

text edi-

tor liveprinter.editor.js, an extensible and tweakable abstraction of the

3D printer liveprinter.printer.js, an extensible communications layer

liveprinter.comms.js and also an extensible representation of the Graph-

ical User Interface (GUI) liveprinter.ui.js. Additionally, there is a means

for extending and tweaking the minigrammar via the Nearley
3

grammar

file language/lpgrammar.ne and language extensions to the text editor.

Tweaks to the running system are fairly straightforward, usually compris-

ing operations where parameter values such as speed, direction, shifts

or alterations in musical scales or even serial port connection speeds are

modified using minimal code. In practice, it is more difficult to extend

http://codemirror.org
http://nearley.org
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the system whilst it is in operation because it can only be done through

the LivePrinter text editor embedded in the web browser. These sorts

of extensions are ephemeral because they aren’t saved anywhere and

disappear once the system is shut down, unless users capture them

separately.

Extensions of this sort might be adding new 2D geometries to the library

of fill pattern functions, or new musical patterning functionality such

as functions for creating bespoke arpeggios. They are likely to be quick

to code and specific to the current task at hand. Often they are aimed at

solving a particular compositional or performance-specific problem, such

as Sam Aaron describes in (Alan Blackwell and Aaron, 2015). Sometimes

the line between “extension” and “tweak” becomes blurred in these

quicker sessions, once the “tweaks” have been saved and incorporated

into the project’s history.

Other extensions to the system, for example adding support for other

3D printer models or other fabrication machines, are expected to be

more thought-through, strategic and longer-term undertakings. They

may represent new ways of thinking through syntax, alternate ways of

handling repetition, iteration and loops, and other avenues for more

longer-term exploration. These modifications are better attempted in code

editors geared towards longer editing sessions and recording session

histories and alternative states (such as with git).

That doesn’t mean that this system shouldn’t support this type of exper-

imentation. Even if many of the users of LivePrinter aren’t “technical”

(meaning, versed in coding) and are more comfortable in the role of

product or fashion designer interested in exploring new ways of making,

that does not mean that they aren’t capable of some level of software

engineering. Alan F. Blackwell and Morrison (2010, p. 8) observes that

“end-user programmers, if working in a professional environment” (like

a fabrication lab) “are very likely to need software engineering facilities”

and failure to provide them could be taken as “a lack of respect” for their

professionalism.

Also, the interests of these users likely differ from the main developer’s:

contrast between the priorities of technical and non-technical

users has been a common theme in past work that has em-

phasised the importance of providing tools for end-users that

offer visible progress toward achieving the user’s own goals,

rather than teaching abstract principles with no clear rela-

tionship to user priorities (Alan F. Blackwell and Morrison,

2010, p. 6). (This)

These distinctions are important because they show how a livecoding

system supports a range of development strategies, from easy, quick

and live tweaks in the moment of performance to non-live, longer-term

strategic development of deeper ideas that extend the system into new

conceptual territories. It is important to look deeper at what sort of coding

behaviour the system expects of its range of intended users over the

entire lifecycle of use. Different design strategies bring trade-offs between

legibility (in typical usage of code) and portability (i.e. installation) that

bubble up quite quickly to the end users who work mainly with in-the-

moment tweaks and also to potential project collaborators or contributors
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5: http://browserify.org/

who delve into the depths of the code in search of possible ways to extend

it.

9.8 On ease of installation versus development

Until quite late in development, the emphasis on LivePrinter was on ease

of installation and portability over extending the system. Users “installed”

the software simply by downloading it and then running the main file in

a Python interpreter, meaning that only Python had to be installed. This

meant that most of the code for the system was in two text files, written

in JavaScript: one for the communications, GUI and text editor, and the

other a more encapsulated version of the 3D printer abstraction code.

It was hoped that by leaving the bulk of the code in two searchable files

that could simply be included in other projects they would be more

easily extensible as well as easier for novices to download and start

using straight away, without any sort of external file manipulation or

concatenation, interpretation or other build tooling installation. Whilst it

was true that the project was easier to download and run quickly, the

feedback from some other professional developers was that the large

files were intimidating to try and understand.

There was clearly a trade-off between dividing up the project code

into conceptual “chunks” (i.e. files and project directories) and the

dependencies and prior experience with build tools that this would

require of future developers with the legibility of the project as a whole.

In May 2020, after conversations with Guy John of Livecodelab
4
, the

project was reorganised into such conceptual chunks using a standard

JavaScript npm (Node Package Manager) build system called Browserify
5

and pre-built versions and instructions for building them from source

code were provided on the GitHub page. As of this writing, the line

count of the code and the amount of lines of code per file fell dramatically

(in the 1000s) but any other potential benefits of that transition were still

unclear.

9.9 Revisiting the start of the journey
“. . .a Black Box ontology is a performative image of the

world” where “a Black Box is something that does something,

that one does something to, and that does something back —

a partner in a dance of agency.” A. Pickering (1995)

The original research questions evolved out of the initial direction of this

research, which was focused on exploring the possibilities for visualising

data as computationally-generated, 3D printed forms. Very quickly it

became apparent that computational form-finding, a practice that has

produced some interesting results on screen, was a much less well-defined

enterprise when applied to a physical process like 3D printing. It was even

more difficult using desktop 3D printers, which are relatively inexpensive

compared to industrial methods but also produce less detailed objects

that generally require more labour-intensive manual post-processing and

finishing.

https://livecodelab.net/
http://browserify.org/
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Figure 9.3: 3D Benchy, an object designed

to stress-test 3D printers by requiring diffi-

cult printing operations. Image from Wiki-

media Commons, licensed under the Cre-

ative Commons Attribution-Share Alike

4.0 International licence.

6: https://www.thingiverse.com/

thing:763622

At that time, there were few, if any, peer-reviewed or trustworthy sources

for essential printing techniques and parameters needed to create complex

forms on desktop 3D printers. Academic research into optimal printing

settings certainly existed for more industrial methods like Selective Laser

Sintering (SLS) and ABS, (Kranz, Herzog, and Emmelmann (2015) and

Sung-Hoon et al. (2002) are two examples), but such studies were often

missing for the less expensive and more widely available consumer PLA

and FDM printers. It was hard to find good data on minimum features

sizes, maximum and minimum vertical slopes for curved surfaces, and

on how these were affected by different printing speeds and material

temperatures.

Perhaps this was due to the diversity of printer brands and rapid iteration

of models, but a larger part of the problem had to do with the difficulty of

sharing test results in standard ways. A major stumbling block was that

standard 3D printing file formats are mainly geometry-based and thus

lack the machine-specific knowledge needed to fabricate them. This is an

issue that Baudisch and Mueller (2017, p. 251) discussed in detail in their

book. In the absence of a standard format for sharing that knowledge,

most of it exists anecdotally on message boards and Internet forums.

Some special 3D-printable models do exist, like the “3D Benchy” boat
6

seen in Figure Fig. 9.3, but due to these file format limitations they contain

only basic geometry, lacking any helpful metadata for specific printer

settings, and are mainly designed to help operators “stress test” and tune

their 3D printer’s performance rather than allowing them to discover

different techniques for fabricating complex forms.

On reflection, it was entirely possible to use code as a means for creating

and specifying the design of printable objects for a range of people with

mixed technical backgrounds. LivePrinter workshops demonstrated that

coding objects directly can create new forms that are not limited by CAD

tool metaphors and take full advantage of 3D printers, like printing

sparse forms in the air.

They also raise questions about current object-centric metaphors for

describing how objects are fabricated, opening up the possibility of hybrid,

tool path- and object-related descriptions that blend the manufacturing

process with the desired manufactured object. New expressive languages

like the LivePrinter “minigrammar” will need to be further developed to

support ongoing practice and research, alongside 3D printer hardware

design to support these new metaphors.

https://www.thingiverse.com/thing:763622
https://www.thingiverse.com/thing:763622


As a reminder, a full listing of outcomes

and activities was introduced in Chapter

4 (Methods).

Conclusions 10
In the beginning, Interactive 3D Printing (I3DP) was seen as a means

of transcending the current limitations of software for controlling how

objects are fabricated on 3D printers, after a series of difficult experiments

trying to 3D print new computational forms. It was designed to fulfil a

need for higher-level, tool path-specific control of 3D printers, in addition

to the nearly machine-instruction level possible using only GCode.

By the end of the thesis, the research focus around I3DP had settled

into four main questions, influenced by Baudisch and Mueller (2017)’s

articulation of six challenges for Personal fabrication: Domain knowledge;

Visual feedback and interactivity; and Machine-specific knowledge. They

were also heavily influenced by my own art practice of livecoding and

my experience as a computational art teacher:

1. Can livecoding 3D printers help participants understand how
the process of manufacturing using 3D printers relates to their
discipline, so they can start to experiment usefully with it (or not)?

2. Can livecoding 3D printers allow users to create physical forms
using novel functions that take into account physical proper-
ties like speed and temperature, instead of the usual method of

beginning with 3D modelling and automating fabrication?

3. How can the combination of visual aesthetics and musical con-
cepts lead to knowledge about new digital manufacturing tool-
paths, and vice versa? (e.g. exploring how 3D printing toolpaths

can be influenced by concerns other than optimising for speed and

strength)

4. How can a livecoding environment be useful for 3D printing?

The search for answers to these four questions took me down a number

of avenues, leading to a number of outcomes that were performative,

sculptural, designerly, intellectual, and technical:

▶ an analysis of seven user interviews of experts across different

forms of 3D printing, art and design practice

▶ a framework for a system of interactive 3D printing (I3DP) (in

Chapter 5 (Designing for Interactive 3D Printing))

▶ a functioning software system implementing that framework, called

LivePrinter
▶ documentation for LivePrinter

▶ thirteen user workshops, with at least forty-one participants in total

▶ five public performances of livecoding 3D printing

▶ two exhibitions of sculptural work — The Design for Change

pavilion at the London Design Festival ’19; Expressive ’19

▶ novel experimental 3D printing techniques (see Chapter 8 (Filling

space, filling time)) such as using space-filling Hilbert curves for

performing sculptural techno; “airprinting” sparse 3D shapes on

unmodified desktop PLA 3D printers
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The development of the prototypical I3DP software system that forms

the core of this thesis, LivePrinter, began in earnest in June 2018, a few

years after the initial work had begun. During the initial direction of this

research, which was focused on exploring the possibilities for visualising

data as computationally-generated, 3D printed forms, it very quickly

became apparent that computational form-finding, a practice that has

produced some interesting results on screen, was a much less well-defined

enterprise when applied to a physical process like 3D printing. It was even

more difficult using desktop 3D printers, which are relatively inexpensive

compared to industrial methods but also produce less detailed objects

that generally require more labour-intensive manual post-processing and

finishing.

Developing an interactive programming environment for controlling 3D

printers was a relatively large technical undertaking that took over two

years to get to a functional state, and is still in progress as of this writing

in 2022. The design, testing, and development of this software helped

establish the idea of I3DP and showed that it was possible, potentially

useful, and could be used to create works of art and design.

During LivePrinter’s development, the research process was heavily

influenced by the interviews with other 3D printing and livecoding

practitioners. Then, when the LivePrinter technical system and documen-

tation was at a fairly complete stage, the user workshops were developed,

planned and run with potential users in the creative industries, other

practitioners of creative technology, and students at both graduate and

undergraduate level, as discussed in Chapter 7 (User Studies and Analy-

sis).

This technical system (essentially, the livecoding environment and sup-

porting software interface for 3D printing hardware) established a

practice-led research vehicle for testing out ideas, integrating results, start-

ing conversations with users and other software developers and to reflect

on at key points in the process. The project’s documentation captured

fundamental concepts of digital manufacturing and served as a dialogue

between the designer and users, especially during research sessions. It

also grounded the project in the history of augmented manufacturing in

general and 3D printing in specific. Finally, both the documentation and

experiments illustrated the possibilities of augmentation, both creative

and mundane.

The user studies showed that the LivePrinter I3DP system was successful

in showing participants how 3D printing could be integrated into their

practice, or not. Their experiences in successfully completing all the

workshop tasks showed that a livecoding environment was indeed

a useful archetype for interactive 3D printing, even if it was a new

and sometimes uncertain experience for some. This success of these

workshops, and future issues to explore based on our experience of

running them, were summarised in Section 7.5 (Summary findings:

issues for further exploration).

Both the production of artefacts and planning and delivery of live

performances were mainly self-reflective processes, although the artefacts

and impressions created by these processes opened up opportunities

for further dialogue with the community and beyond. Inversely, the

user studies were mainly an opportunity to collect data from others’
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1: https://github.com/pixelpusher/

liveprinter

experiences, but also involved a measure of self-reflection in their design

and in the analysis of results between sessions.

These artefacts, performances and their associated reflections document

the process of working within a new discipline of interactive augmented

manufacturing, and point towards some of the new techniques that will

need to be established to further support it. This thesis introduced the

concept of “filling space, filling time” in Chapter 8 (Filling space, filling

time) as fairly literal framing device for these challenges. During the

immediacy of a live performance it can be difficult to think in terms of

both time and 3D space when directing a machine along a complex path.

This presents opportunities for computational augmentation and more

standardised techniques that could correspond with the development of

metamaterials, 2D/3D building blocks like space-filling curves, simple

triangles, or sparse pyramidal forms.

The documentation from of all thesis activities is collected in hours of

video of observations of workshops, recordings of performances, au-

dio and video recordings of interviews, questionnaires from workshop

participants, reflections from self-practice journals before and after perfor-

mances, photographs of exhibitions and associated exhibition catalogues.

There are also tens of thousands of lines of code and pages of docu-

mentation for the LivePrinter system, as well as a public, open source

repository where it can be downloaded and modified
1
, correspondence

from participants and collaborators, and reflective journaling.

Finally, reflections on the outcomes help us understand how this new

work should be interpreted in terms of what came before. The results lay

out a rationale for I3DP and livecoding performances with 3D printers, as

well as a blueprint and some helpful scaffolding in the form of working

tools for practitioners looking to get started in these practices.

https://github.com/pixelpusher/liveprinter
https://github.com/pixelpusher/liveprinter
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This Appendix collections audiovisual records of some performances and events from throughout the thesis,

organised by event type and name.

A.1 Selected Performances

A.1.1 Goldsmiths Algorave 2019

Event poster and listing: https://gold.ac.uk/calendar/?id=12264

Video of the process of livecoding the Algospiral for the flyer for the Goldsmiths Algorave for TOPLAP 15:

http://content.flkr.com/liveprinter/printing%20algorave%20logo%20jan%202019.mp4

Performance video of the Goldsmiths Algorave for TOPLAP 15: https://www.youtube.com/watch?v=
_IRMDliYkgs&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=2

A.2 Experiments

A.2.1 Pathfinding automata

Running the path-finding automata algorithm use in the Expressive ’19 exhibition artefacts:

https://www.youtube.com/watch?v=0if6rfPExQU&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=

6

A.2.2 Hilbert curves techno experiment

Short demonstration of Hilbert curve techno livecoding for the ICLC 2020 conference. This video uses

unprocessed audio from contact microphones on the printer: http://content.flkr.com/liveprinter/

hilbert_experiments/2020-01-04-11.mp4

A.2.3 Various demonstrations

A “Demonstration video” of a range of LivePrinter experiments for public engagement, including airprint-

ing:

https://www.youtube.com/watch?v=POwENjC6qO4&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO

A.3 User workshops and public demonstrations

V&A Museum (London) flyer for the April 2016 demonstration of LivePrinter at the Digital Weekend: https://

vanda-production-assets.s3.amazonaws.com/2018/08/14/09/09/32/a9a2e652-bff4-4240-a66a-cb010f3961b9/

V&A%20MUSEUM%20BOOKLETvfinalnobleed.pdf

Eventbrite listing for 3D printing user study workshops at Goldsmiths (2019): https://www.eventbrite.co.

uk/e/liveprinter-3d-printing-research-workshop-tickets-53682186866?ref=estw#

Brooklyn Research event link:https://brooklynresearch.org/eventbrite-event/liveprinter-instant-3d-printing-and-plastic-painting-with-evan-raskob/

https://gold.ac.uk/calendar/?id=12264
http://content.flkr.com/liveprinter/printing%20algorave%20logo%20jan%202019.mp4
https://www.youtube.com/watch?v=_IRMDliYkgs&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=2
https://www.youtube.com/watch?v=_IRMDliYkgs&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=2
https://www.youtube.com/watch?v=0if6rfPExQU&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=6
https://www.youtube.com/watch?v=0if6rfPExQU&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO&index=6
http://content.flkr.com/liveprinter/hilbert_experiments/2020-01-04-11.mp4
http://content.flkr.com/liveprinter/hilbert_experiments/2020-01-04-11.mp4
https://www.youtube.com/watch?v=POwENjC6qO4&list=PLuA35183Y-6-GB69A7t3pcTRx6nrI7QxO
https://vanda-production-assets.s3.amazonaws.com/2018/08/14/09/09/32/a9a2e652-bff4-4240-a66a-cb010f3961b9/V&A%20MUSEUM%20BOOKLETvfinalnobleed.pdf
https://vanda-production-assets.s3.amazonaws.com/2018/08/14/09/09/32/a9a2e652-bff4-4240-a66a-cb010f3961b9/V&A%20MUSEUM%20BOOKLETvfinalnobleed.pdf
https://vanda-production-assets.s3.amazonaws.com/2018/08/14/09/09/32/a9a2e652-bff4-4240-a66a-cb010f3961b9/V&A%20MUSEUM%20BOOKLETvfinalnobleed.pdf
https://www.eventbrite.co.uk/e/liveprinter-3d-printing-research-workshop-tickets-53682186866?ref=estw#
https://www.eventbrite.co.uk/e/liveprinter-3d-printing-research-workshop-tickets-53682186866?ref=estw#
https://brooklynresearch.org/eventbrite-event/liveprinter-instant-3d-printing-and-plastic-painting-with-evan-raskob/
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A.4 Other materials

A.4.1 Quickstart demo video

A video aimed at getting users up and running quickly, now slightly out of date:

https://youtu.be/jdqrpgFGCgc

https://youtu.be/jdqrpgFGCgc




Appendix B B
B.1 Workshop plan for the researchers

The following workshop plan was solely used by the researchers as a

guide to running the workshop. It outlined the workshop structure, along

with preparation and setup tasks, included the structure for interviews

and observations and some basic theories for context. Note that personal

emails of researchers have been removed, otherwise it is included here

in its (rough) state.

User Workshop Plan (for researchers)
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B.1.1 Before the Workshop

▶ Download and install Visual Studio code and Python support (or python)

▶ Make coffee/tea and bring snacks

▶ Email everyone about workshop & prep

▶ Produce example materials

▶ Consent forms

▶ Questionnaire and extra paper & pens

▶ LOGGING FOR LIVEPRINTER -- G-CODE, results, JavaScript (save code when compiled

with timestamps) -- session ID

▶ Self-recording sheet for each task/feature (1-5 likert scale bad/good time + comment)

▶ Cog dims at end questionnaire

▶ Get occupation/background

B.1.2 Materials Needed

1. Metric ruler (small) for measuring moves and distances

2. Small red pointer lasers for triangulating and highlighting head position

3. Paper (to print on)

4. Blue tape (to print on)

5. Glue stick (to help prints stick)

6. Metal tweezers (for filament issues)

7. Exacto knives (to cut stray bits of filament)

8. Cameras & tripods for pictures/video

9. Microphones for sound recording, plus audio device

10. Notebooks & pens for sketching

B.1.3 Overview Blurb

I’m running some research workshops in early January for my PhD/research project with live 3D printing

called LivePrinter, and need some participants. LivePrinter is an open source system for live, immediate

drawing and fabrication with 3D printers. It’s particularly useful for:

▶ Textile artists who want to print onto fabrics and make new shapes and textures; for artists

who want to use a printer like a 3D plotter and draw new forms

▶ Product and industrial designers who want to understand more about how 3D printing

works and fine-tune their materials and tool paths

▶ Materials scientists who want to study 3D printing materials in more controlled, repeatable

ways

▶ Computational and computer artists, either looking for new tools or making generative

works

▶ Educators who teach fabrication

▶ HackSpace and MakerSpace staff who need more tools to fine-tune their machines

This workshop is a free introduction to the basics of 3D printing. It also introduces the new LivePrinter

system for directly drawing shapes, lines, and objects using code:

http://github.com/pixelpusher/liveprinter
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▶ How 3D printing uses digital motors and hot melted plastic to make precise and intricate

shapes, layer by layer

▶ How your 3D programs communicate with 3D printers and other CNC fabrication devices

using G-Code

▶ Hands-on introduction to using LivePrinter: setting it up

▶ Using LivePrinter to drawing shapes with plastic in different ways

▶ Turning vector drawings and art directly into 3D prints

▶ Printing on paper, fabric, and other materials

Tea/coffee/snacks will be included.

There will be 4 sessions, limited to 8 people each:

Wednesday 9th January, 10am-1pm

Wednesday 9th January, 2:30pm-5:30pm

Thursday 10th January, 10am-1pm

Thursday 10th January, 2:30pm-5:30pm

Sessions will be held in the new state-of-the-art Hatch Lab, the workshop at Hatcham House (the old church),

Goldsmiths University: https://www.gold.ac.uk/find-us/places/hatcham-house-hh/

Contact: e.raskob@gold.ac.uk

B.1.4 Hands-on workshop outline

1. What is 3D printing? Mechanisms, software, printers: 4 stepper motors (x,y,z,e) and a

microcontroller (Arduino or PI or another)

2. How are objects built from layers? Quick diagrams of plastic flow, calculations of filament

extrusion lengths and layer heights (to be picked up in the hands-on section)

Installing and setting up LivePrinter:

1. Download from github

2. Installing Visual Studio / VS Code and python

3. Connecting a 3D printer (or using the ‘dummy’ printer)

4. Running the LivePrinter server

Using LivePrinter (note: these steps are built-in to one of the examples so they can livecode these directly):

1. Turn on printer

2. level bed (on printer) — (note: can also probe via gcode)

3. start server

4. open http://localhost:8888

5. click printer settings tab

6. select serial port

7. click code tab

8. run lp.start(210) to set temperature and ready bed

9. click Printer tab and click button for start temp polling

https://www.gold.ac.uk/find-us/places/hatcham-house-hh/
mailto:e.raskob@gold.ac.uk
http://localhost:8888
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10. (wait for printer to warm up - watch temperature readout)

11. Try moves with no extrusion - absolute (centre of bed) and relative

12. when head is hot, move bed to low (z = 50 or so) and start extruding until material comes

out (using relative e values like 15 and low speeds like 5-10)

13. Remove excess filament

14. move head to z = layer height

15. extrude a line, absolute and then relative

16. Extrude a line and turn

17. These are the things you can do now:

a. Make a shape (square, etc.) ---- play with shapes (circle, square)

b. ----- stack them up (z)

c. Make a wall? Bracelet?

d. L-System -- snowflakes

e. Stamp / SVG paths

f. Printing on paper, fabric

18. Look at G-code readout to understand what’s happening

19. experiment drawing lines: thickness & speed

g. Change lp.layerHeight or use “thickness” parameter

h. Change speeds

20. Retraction settings for slow and fast drawing

i. Look at filament pooling - enable/disable retraction, change retraction length

21. Advanced: making your own functions (global and part of lp namespace)

22. *make a base for future shapes*

23. try extruding a line into space: x:10, z:20, speed:3, thickness:0.05 (close to nozzle width)

24. note the difference in filament between extruding in space and extruding a line on top of

another (one has to do with nozzle radius, other is a flattened smear based on nozzle height)

25. experiment with external fans for cooling

26. Try loops to make complex shapes

27. Discussion
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B.1.4.1 Factors to test in interview and observationally during the workshops

(using the cognitive dimensions framework from Thomas R.G. Green and Marian Petre):

1. Abstraction - types and availability of abstraction mechanisms

a. Names of functions - do they map to known concepts and physical reality?

b. Code constructs (syntax - as much as it ban be changed to make more “natural” sense)

2. Hidden dependencies - test if important links between entities are not visible

c. Is there anything unclear about the system startup and device selection? (probably) and

what is it?

d. Are there functions/menus/submenu items that aren’t readily visible or easy to find?

For example, selecting a serial port.

3. Premature commitment - constraints on the order of doing things

e. Does the user feel that the workflow makes logical sense to them? Can they follow it

step-by-step successfully or do steps get confused?

f. How do people feel about the livecoding concepts of chained functions vs. declarative

ones? Is one more intuitive to them, or more efficient?

4. Secondary notation - extra information in means other than formal syntax

g. Are there hacky function calls or other examples of the system rules being violated?

5. Viscosity - resistance to change

h. Can the user make what they want, without frustration? E.g. is the system flexible enough

to accomodate them without making major changes? Must other functions be added to

help enable that?

i. When properties are set, how hard are they to change? Or are they too easy? For example,

retraction settings and boundary modes.

6. Visibility - ability to view components easily

j. Is there any missing information that the user needs to complete their task? Anything

left unknown?

k. Do they feel like they understand what’s going on in the printer? Can they articulate

that?

B.1.5 Interview & Questionnaire Plans

B.1.5.1 Goals

Need to understand: is this system useful, desirable, usable (Sanders 2006)

Users: what people’s strategy is towards 3D printing: how do they approach it, what do they do (or not do)

with it. What is their understanding of it? (self-identity, beliefs, attitudes, motivations, behaviours)? These are

potentially influenced by factors like their background, working environment, education level, income, etc.

This helps create an MUT (media user typology)-informed list of “user types” to design and validate against

(for usefulness, for one). Need to keep this as simple as possible, but still be able to make conclusions.

Usability: how well does the software/hardware system currently support the user’s needs? (cognitive

dimensions framework below)
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B.1.5.2 Notes

Things to avoid:

▶ Having people guesstimate numbers without getting direct evidence, like "How many people

do you usually see in a week?"

▶ The “novelty effect” where you ask someone if they would like something new and shiny

and they of course say yes

▶ The social desire to please the observer (https://en.wikipedia.org/wiki/Social_desirability_

bias) neutrally or in 3rd person.

B.1.5.3 Questionnaire

Purposes: to establish a background level of ability for participants to test against usability; to collect personal

user data that would be tedious in interviews like (adapted from Brandtzæg 2011 as per notes below):

(1) Country: collect home country and country of residence for analysis

(2) Access: ask if they own a 3D printer, or get access through school, makerspace, etc.

(3) Gender: Numerous studies have found a large gender divide in the use of Internet (e.g.,

Hargittai, 2010, Dholakia, 2006, Bimber, 2000) and in technology adoption contexts in general

(e.g., Venkatesh et al., 2003).

(4) Age: A generational divide is identified between older and younger Internet users - see how

3D printing users fit this

(5) Household: will presence of children correlate with 3D printing access? Maybe not, but

worth a check.

Adding, based on their research:

(6) Employment status (student, self, fully, none, other)

(7) Disability

(8) Occupation - how do they self-identify?

ADAPT these to 3D printing

From Carillo 2017’s review of common user classification criteria:

1. Frequency of use: the rate at which the use of a system occurred over a particular period of

time in the past.

2. Computer Knowledge: the skill level or capability a user has regarding the use of technology

in general, or a specific computer system in particular.

3. Interface Knowledge: the user’s familiarity or acquaintance with the system’s interface and

analogous systems.

4. Motivation: the reason that triggers the use of the system.

5. Other: such as task domain knowledge, programming experience, technical knowledge,

ambition of mastering the system, or range of operations (i.e., task structures).

This will need to be anonymous and secure (collect emails separately - via Eventbrite workshop list)

https://en.wikipedia.org/wiki/Social_desirability_bias
https://en.wikipedia.org/wiki/Social_desirability_bias
https://doi.org/10.1016/j.ijhcs.2010.11.004
https://www.sciencedirect.com/science/article/pii/S0747563216308494
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B.1.5.4 Semi-structured interview: their practice

1. How do they self-identify? Their role(s): (self-articulated, like "designer" or "3D artist"). What

do you call what you do?

2. Ways, meaning, experience - where did you learn your role?

3. what is most important in your work: singularity, reproducibility, quality, provocation,

time/speed of making?

4. Skills: how do you do things for your work? Sketches, by hand, writing, coding, by machine...

5. Community: where do you do your work?

B.1.5.5 Structured Interview: Experience Coding

1. What kinds of coding have you done? When? What is your favourite language and why?

2. Is coding part of your usual practice? If yes, what do you use it for? Why?

3. What do you like about coding?

4. What bothers you about coding?

B.1.5.6 Semi-structured Interview: 3D printing Experience

1. What kinds of 3D printers have you worked with? When?

2. [prompt: optional] What is your favourite printer and why?

3. Is printing part of your usual practice? If yes, what do you use it for? (fabric printing,

sculpting, algorithmic imaging, product design, DIY)? Why?

4. [prompt: if not answered] What do you like about 3D printing?

5. [prompt: if not answered] What bothers /frustrates you about 3D printing? What is limiting

about it?

6. If part of their practice: What is your workflow, e.g. describe how you come up with a concept

(or acquire one) and then get to a finished object. Guided storytelling: (get them talk about a

specific situation where they 3D printed and what they did - perhaps diagram on paper)

7. [prompt: if above isn’t clear] How do you start printing? Is there special setup that you do?

8. What would you like to print but can’t? Why not? (drawing exercise below)

B.1.6 Other [Future] Research Workshop Ideas

B.1.6.1 Research probe - day in the life

Purpose: identifying missing workflow steps; identifying other unforeseen styles of making that could

possibly be integrated; understand users and behaviour; identify new/key collaborators

Method: Get people to document their process. Day in the life: take one day and have them take photos

of their setup, photos of prints and work in progress, photos of finished work. Textual descriptions too if

possible. Schedule follow-up interview (over phone, etc.) to have them describe what’s in the photos.

Analysis:



196 B Appendix B

▶ Environment: Where are they (categorise) and what are the key characteristics (obstacles,

lighting, space constraints, smells, etc.)

▶ Actors: whom is present?

▶ Actions/activities: what are the actors doing?

▶ Objects: what are the interesting objects in the space (printers, tech, tools, filament, workspaces,

storage racks, informational posters on the wall, etc.)

B.1.6.2 Workshop - free sketching shapes

Purpose: understanding the abstraction needed for coding: function names, methods; identifying missing

workflow steps; identifying other unforeseen styles of making that could possibly be integrated

Method: Tell them it can draw lines in space and ask them to describe them in words (like code). Have people

sketch algorithms based on possible printer movements (not hitting shapes?) Save sketches.

Generative (algorithmic) vs. specific (heuristic? concrete?) forms:

1. [if time allows:] Show pictures of generative/coded art like #plottertwitter and discuss

B.1.7 References

Sanders, E. (2006), “Design research in 2006”, Design Research Quarterly, Vol. I No. 1.

Dennett, D.C. (1995), Darwin’s Dangerous Idea. Evolution and the Meanings of Life, Penguin Books,

London.

Jonas, W. (2007) Research through DESIGN through research: A cybernetic model of designing design

foundations.
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B.2 Workshop tasks feedback sheet

This user-facing sheet was given to all workshop participants to record

their feedback during the workshop. Each section corresponds to a

workshop task, with an associated Likert scale for recording quick,

context-specific feedback.
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During the talk please rate each part here:

B.2.1 Task 1: Introduction talk about 3D printing

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.2 Task 2: Introducing LivePrinter (overview)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.3 Task 3: Installing LivePrinter

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?
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B.2.4 Task 4: Using LivePrinter (basics)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.5 Task 5: Using LivePrinter (printing a square)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.6 Task 6: Using LivePrinter (retraction & material flow)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.7 Task 7: Using LivePrinter (height and layering)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?
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B.2.8 Task 8: Using LivePrinter (freestyle drawing)

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?

B.2.9 Task 9: Future Use

How do you feel about this section?

Disliked this part Slightly disliked it Neither liked nor disliked Slightly liked Liked this part

Any Comments?



Appendix C C
C.1 User Workshops presentation

The following section contains the slides used in the user workshops that

introduced LivePrinter and gave it some historical and contemporary

context. This version is the second version, edited after the first day of

user workshops to include more context-specific API documentation and

to reduce the amount of background material at the start.



LivePrinter

An Open Source, Live, Cybernetic 3D Printing system

LivePrinter
Workshop
By Evan Raskob

Goldsmiths, University of London

e.raskob@gold.ac.uk

v.01

Project page: https://github.com/pixelpusher/liveprinter
Email list: http://pixelist.info/liveprinter-email-list/
Forum: https://talk.lurk.org/channel/liveprinter



Me:

• Lecturer at Goldsmiths (Physical & Creative 
Computing, MA, MFA, BSc)

• PhD student Goldsmiths (part-time)

• 12+ years teaching art, design, computing

• Practicing artist (mixed media; interactive)

• LiveCoding performer since 2007 (as BITLIP & 
BITPRINT and pixelpusher)

• http://pixelist.info // @evanraskob (twitter) // 
@evanraskob_art (Instragram)

Today:

• Brief overview of 3D printing (additive manufacturing)

• Introducing the LivePrinter project

• Hands-on demonstration and workshop of LivePrinter

• [break]

• Final questions & interviews for research



Types of Manufacturing

• Weaving

• Subtractive – carve or 
remove material
• CNC router

• Laser cutter

• Hand tools

• Moulding / casting

• Thermoforming

• Welding

• Additive manufacturing
• 3D printing

• Deposit material in layers

• Solidify material (light, lasers, 
powder)

Maps from layers

• Blanther’s countour map 
moulds made of layers (from 
http://www.wtec.org/loyola/rp/
03_01.htm ), Patent no. 
US000473901 

• Stacked wax plates cut out 
following the contours of 
topographic maps



• Sculpture by Solid Photography 
process (No longer in business) 
(Photos courtesy of SOHO Image 
Works) from Solid Freeform 
Fabrication: An Historical 
Perspective by Joseph J. Beaman 
http://sffsymposium.engr.utexas.edu
/Manuscripts/2001/2001-66-
Beaman.pdf

http://www.slate.com/features/drivingforces/ceramics/index.html

GCODE.clay by Ronald Rael, Virginia 
San Fratello, Kent Wilson, Alex Schofield



Voxel Chair :: Bartlett’s Design Computation Lab (DCL) -- part of 
University College London

Basic 3D Printing process:

Modeling
Tool path 
planning

Fabricating



• Adapt geometry to fabrication requirements. The (possibly 

tessellated) geometry must enclose a solid that the target printing 

technology can actually fabricate.
Geometry

• The model must be correctly oriented to fit the printing chamber, 

minimize surface roughness and printing time, reduce the need 

for support structures… 
Orientation 

• Depending on both the fabrication tool and the shape, additional 

geometry may be necessary to support overhanging parts and to 

keep the part from moving during printing

Support structures & 

infill

• The model must be converted to a set of planar slices whose 

distance might be either constant or adaptiveSlicing

• Each slice must be converted to either a sequence of movements 

of the fabrication tool (vector-based) or a grid of pixels that define 

the solid part of the slice (raster-based)
Machine instructions



Evidence of 
toolpaths 
(horizontal lines)

• Approximating a curved surface by a stack of layers
• Staircase effect reduces fidelity (a).
• Nearly horizontal surfaces introduce more error than nearly vertical ones
• Cusp height (b) and volumetric difference (c) are among the most widely

used proxies to estimate fidelity

(from From 3D Models to 3D Prints: an Overview of the Processing Pipeline, Livesu et al, EUROGRAPHICS 2017)



Task 2: LivePrinter is 
different…



Philosophy of design:

• A ‘hypercyclic’ design process model

• Shift in ‘machine’ design from adaptation of a system to its 
environment towards co-evolution of autonomous systems -
Morgan (1986, p. 245)

Modes of making: Today vs The Future

Planned: make EXACTLY this thing 
from initial instructions

• Inductive (hypothesis)
• Deliberate
• Representative
• Pre-planned
• Imperative

• ERROR: throw it out and 
start again

Live: BUILD UP an object based on 
a series of consecutive actions

• Abductive (intuition)
• Explorative 
• Improvisational
• Generative
• Functional 

• ERROR: recover/integrate



Two Circles

Task 3: Setting up to run LivePrinter

Web browser

• Javascript / 
HTML

Web server

• python

3D printer

• Serial (USB)
• Marlin Firmware



Setup 
overview:

Download code from github: 
https://github.com/pixelpusher/liveprinter

Run! Use VS Code, Visual Studio, or any python 
environment (command line or other)

Open web browser to http://localhost:8888 and 
start coding

Errors will appear in the command window, 
and in the JavaScript console (and the page 
itself)

Note!
• LivePrinter only supports Marlin-based 

printers, for now

• Marlin firmware: 
https://github.com/Ultimaker/Ultimaker2Marlin



Python setup – bare minimum

• Requires python 3.6+ (tested on 3.6 and 3.7)

• Install libraries
• pyserial (serial communication to printer)

• json-rpc (javascript remote procedure 

• tornado (web server)

• In command window, type: 
• pip3 install pyserial json-rpc tornado

• Or, if you downloaded them: pip3 install <local library file path>

Running the server (bare python)

• liveprinter/LivePrinterServer.py is the main web server

• Open terminal to livePrinter-master download folder (or just 
liveprinter if you cloned it directly)

• cd liveprinter

• Type python3 LivePrinterServer.py

• Open web browser, type in address: localhost:8888



Visual Studio 2017

• Only on Windows: open liveprinter.sln in the liveprinter
folder you downloaded (or create your own project using 
the Python template)

• Make sure the python environment matches yours (3.6, but 
you may have 3.7).  See next slide

Visual Studio 2017: 
Install python dependencies 
(make sure version matches!).



Then, push this to start the server!

In VS Code:

1. File  Open Folder 
browse to liveprinter folder

2. Click Extensions button on 
left panel, install python 
form Microsoft

3. Install linter, look for log to 
add to your path in 
environment variables 
(Windows) or path (OS X or 
Linux): C:\Users\YOUR 
NAME\AppData\Roaming\Pyt
hon\Python36\Scripts

4. Open LivePrinterServer.py 
and click “debug” from top 
menu!

5. In Terminal type 
“pip3 install tornado json-
rpc pyserial”



Finally, open a web 
browser to 

http://localhost:8888

You should see the 
web client! 

Let’s move!

Task 4: Using 
LivePrinter

(basic interface 
& movement)



Starting up:

• Get familiar with GUI

• Home axes

• Set temperature

• Practice moving

write code

Generate 
commands (GCode)

modify 
webpage / 

display 
information

Send 
commands to 
printer server

Receive results 
& info from 

printer server

Keep track of 
printer state (x,y,z,

speeds)

printer.js

liveprinter.js

printer model / 
printing API

GUI / communications 
handling

LivePrinterServer.py



1. Connect 
printer 
server

3. Live 
edit code

2. Open 
examples

4. See Gcode
commands 

sent to 
printer

Code 
errors:

Print head position, 
angle, current 

retraction, head 
temperature

Write code, highlight it, hit CTRL+ENTER or 
CMD+ENTER to compile and send

Ports found 
by server

Click here to choose a 
printer (attached to your 
computer). ‘dummy’ is a 

testing port
if you don’t have a printer. If 
a printer is attached, should 

see COMX (Win) or 
/dev/tty.usbserialXXXX (Mac)

Step 1: Connect to server and printer



Click to load 
examplesHighlight and 

run to heat 
head, home 

axes

Highlight and run to test 
movement (reference on next 

slide)

Movement commands

command description

lp.move({ x: , y: , z: }); Relative movement: “move by this amount”

lp.moveto({ x: , y: , z: }); Absolute movement: “move to this exact 
position”

lp.up( AMOUNT ) Move up immediately by AMOUNT as fast as 
possible (travel speed)

lp.down( AMOUNT ) Move down immediately by AMOUNT as fast 
as possible (travel speed)

lp.upto( HEIGHT ) Move bed up to this exact height immediately 
as fast as possible (travel speed)

lp.downto( HEIGHT ) Move bed down to this exact height 
immediately as fast as possible (travel speed)

Note: upto() and downto() have exactly the same result, but help you think about it differently



Movement Notation (all in mm)

• x: x position (horizontal L/R) from 0 (left) to 220 (right)

• y: y position (horizontal F/B) from 0 (front) to 220 (back)

• z: z position (vertical) from 0 (floor) to 205 (top)  Ultimaker
2+ is larger

• e: filament position (starts at 0 when axes are reset, can be 
negative to retract)

Task 5: Using 
LivePrinter
(printing a square)



4 Things to 
know at all 
times:

Tool temperature Tool speed

Filament position Tool position



Different materials have different properties at 
different temperatures:

These issues are due to material flow, which is 
managed by retraction



Extrusion (printing) commands

command description

lp.extrude({ x: , y: , z: , speed: , thickness: , retract}); Extrude plastic in a line using relative 
movement: “extrude while moving by this 
amount”

lp.extrudeto({ x: , y: , z: , speed: , thickness: , retract}); Absolute movement: “extrude while 
moving from current position to this exact 
position”

Let’s draw a square! (using absolute 
coords)
• Heat up the printer to 200C  lp.temp(200); 

• Prime the filament (extrude a bit to start)
• lp.moveto({x:20, y:20, z:80, speed:80});
• lp.extrude({e:10,speed:8});
• (repeat last step until we see filament! Then wipe it off)

• Move the print head to the print surface
• lp.moveto({x:20, y:20, z:0.2, speed:80});

• Draw lines:
• lp.extrudeto({x:120, y:20, z:0.2, speed:30});
• lp.extrudeto({x:120, y:120, z:0.2, speed:30});
• lp.extrudeto({x:20, y:120, z:0.2, speed:30}); 
• lp.extrudeto({x:20, y:20, z:0.2, speed:30});

• Finally, move the head up: lp.up(60);



Full function reference: https://pixelpusher.github.io/liveprinter/docs/Printer.html

function What it does

lp.dist( 80 ) Move the print head moves 80mm in the current 
direction (default is 0 degrees, from left to right)

lp.turnto( 90 ) Set the direction of movement in degrees (anti-
clockwise, to the left)

lp.turn(90) Queue a turn: turn 90 degrees anti-clockwise (to 
the left)

lp.speed(15) Set the print speed, in mm/s.  15-30mm is a 
good quality speed.

go(0 or 1) Actually execute the series of moves.  If 1, 
extrude while moving, or if 0 (default) just move

lh(0.25) or thick(0.25) Set the height of each extruded line (layer 
height or thickness - same thing)

ex: draw a “V”
lp.speed(15).lh(0.25).turnto(-45).dist(40).go(1).turn(90).dist(40).go(1);   

Using relative movements to draw (like turtle graphics):

Draw a square relatively:

lp.moveto({z:0.2}); // move to build height

for (let i=0; i<4; i++) {

lp.dist(40).go(1); // draw side

lp.turn(90).go(); //turn for next side

}

lp.up(40); // move up



Task 6: Using 
LivePrinter
(retraction & flow)

Draw a square relatively handling 
material:
lp.moveto({z:0.2}); // move to build height

lp.unretract(); // explicitly move material into print head

for (let i=0; i<4; i++) {

lp.dist(40).turn(90).go(1,false); // draw side w/no retraction

}

lp.retract(); // move material back up head to avoid dripping

lp.up(40); // move up



Task 8: Using 
LivePrinter
(height & layering)

Draw a stack of squares:

lp.lh(0.25);

lp.moveto({z: lp.layerHeight}); // move to build height

// draw 5 layers of a square 

for (let layers=0; layers < 5; layers++) {
lp.unretract();
for (let sides=0; sides<4; sides++) {

lp.dist(40).turn(90).go(1,false); // draw side
}
lp.retract();
lp.up(lp.layerHeight); // move up to next layer and repeat!

}

lp.up(40); // move up



Draw a twisty stack of squares:

lp.moveto({z: lp.layerHeight}); // move to build height

// draw 5 layers of a square 
for (let layers=0; layers < 5; layers++) {

for (let sides=0; sides<4; sides++) {
lp.dist(40).go(1); // draw side
lp.turn(90).go(); //turn for next side

}
lp.up(lp.layerHeight); // move up to next layer and repeat!
lp.turn(1); // rotate slowly for next layer

}

lp.up(40); // move up

Task 9: Using 
LivePrinter
(drawing freestyle)



Try drawing 
your own 
shapes:

Multiple 
squares

Stars

triangles

Draw repeating shapes using lp.run()

lp.moveto({z: lp.layerHeight}); // move to build height

// lp.run(`COMMANDS`):

// M(move),E(extrude),L(left turn),R(right turn)

// ex: lp.run(`E20R90`);

// Koch snowflake with side 10 and angle 60 degrees: FELERRELE 
//http://interactivepython.org/runestone/static/CS152f17/Strings/TurtlesandStrin
gsandLSystems.html

lp.run(`E10L60E10R60R60E10L60E10`);
lp.up(40); // move up



Draw repeating shapes using lp.run()

lp.moveto({z: lp.layerHeight}); // move to build height

// lp.run(`COMMANDS`):

// M(move),E(extrude),L(left turn),R(right turn)

// ex: lp.run(`E20R90`);

let d = 10;
let angle = 60;
lp.turnto(0); // horizontal 
// Koch snowflake with side 10 and angle 60 degrees: FELERRELE 
//http://interactivepython.org/runestone/static/CS152f17/Strings/TurtlesandStringsandLSyste
ms.html

lp.run(`E${d}L${angle}E${d}R${angle}R${angle}E${d}L${angle}E${d} `);

lp.up(40); // move up

Draw 
SVGs 

(vector art)

2. X and y scaling 
(mm)

Image 
preview

4. Copy/paste this code into the 
code editor, highlight it all, and 
compile (CTRL or CMD + ENTER)

Optional drawing 
code (explicit)

1. Go here



Draw repeating shapes using 
lp.printPaths:
//Using lp.printPaths you can render any paths (a list of lines)

lp.moveto({z: lp.layerHeight}); // move to build height

// only need width OR height if you want it to scale in 
proportion

// note: “shape” is whatever you named the shape!

lp.printPaths({paths:shape.paths, xMin:20, yMin:20, width:80});

lp.up(40); // move up

Task 9: Future Use



End evaluation (cognitive dimensions) 
pt 1
• Abstraction: 

• Names of functions - do they map to known concepts and physical 
reality?

• Which way of drawing did people prefer? (chained, relative 
functions vs. explicit ones)

• Secondary notation - extra information in means other than 
formal syntax
• Is there any information (about printer, state) that was missing?

End evaluation (cognitive dimensions) 
pt 2
• Premature commitment - constraints on the order of doing 
things
• Does the user feel that the workflow makes logical sense to them? 

Can they follow it step-by-step successfully or do steps get 
confused?

• Viscosity - resistance to change
• What was frustrating? Why?

• When properties are set, how hard are they to change? Or are they 
too easy? For example, retraction settings and boundary modes.



End evaluation (cognitive dimensions) 
pt 3
• Hidden dependencies - test if important links between 
entities are not visible
• Is there anything unclear about the system startup and device 

selection? (probably) and what is it?

• Are there functions/menus/submenu items that aren’t readily visible 
or easy to find? For example, selecting a serial port.

• Visibility - ability to view components easily
• Is there any missing information? Anything left unknown?

• Do people feel like they understand what’s going on with the 
printer? Discuss.

3D printing: 
“designed 

things”

“A designed thing, then, is either a living 
thing or a part of a living thing, or the 
artifact of a living thing, organized in any 
case in aid of this battle against disorder
(Dennett, 1995, p. 69).”



How might we use this? How might it 
be useful for you?
• Textile artists who want to print onto fabrics and make new 

shapes and textures; for artists who want to use a printer like a 
3D plotter and draw new forms
• Product and industrial designers who want to understand more 

about how 3D printing works and fine-tune their materials and 
tool paths
• Materials scientists who want to study 3D printing materials in 

more controlled, repeatable ways
• Computational and computer artists, either looking for new tools 

or making generative works
• Educators who teach fabrication
• HackSpace and MakerSpace staff who need more tools to fine-

tune their machines

Reference



Printer Environment

command description

lp.temp( 200 ) Set temperature of 1st printing head to 200 C

lp.bed( 50 ) Set temperature of printer bed to 50C

Printer properties

command description

lp.x, lp.y, lp.z, lp.e Current position of head (x,y), height of bed (z), 
length of filament that has been extruded since 
last homing command (e)

lp.cx, lp.cy, lp.cz Centre coordinates in x,y,z

lp.minx, lp.maxx, lp.miny, lp.maxy, lp.minz, 
lp.maxz

Min/max coordinates (e.g. printer physical 
dimensions)

lp.angle Current angle of movement, also set by turn() or 
turnto()



Exact Movement & Extrusion commands

command description

lp.move({ x: , y: , z: }); Relative movement: “move by this amount”

lp.moveto({ x: , y: , z: }); Absolute movement: “move to this exact 
position”

lp.up( AMOUNT ) Move up immediately by AMOUNT as fast as 
possible (travel speed)

lp.down( AMOUNT ) Move down immediately by AMOUNT as fast 
as possible (travel speed)

lp.upto( HEIGHT ) Move bed up to this exact height immediately 
as fast as possible (travel speed)

lp.downto( HEIGHT ) Move bed down to this exact height 
immediately as fast as possible (travel speed)

Note: upto() and downto() have exactly the same result, but help you think about it differently

Full function reference: https://pixelpusher.github.io/liveprinter/docs/Printer.html

function What it does

lp.dist( 80 ) Move the print head moves 80mm in the current 
direction (default is 0 degrees, from left to right)

lp.turnto( 90 ) Set the direction of movement in degrees (anti-
clockwise, to the left)

lp.turn(90) Queue a turn: turn 90 degrees anti-clockwise (to 
the left)

lp.speed(15) Set the print speed, in mm/s.  15-30mm is a 
good quality speed.

go(0 or 1) Actually execute the series of moves.  If 1, 
extrude while moving, or if 0 (default) just move

lh(0.25) or thick(0.25) Set the height of each extruded line (layer 
height or thickness - same thing)

ex: draw a “V”
lp.speed(15).lh(0.25).turnto(-45).dist(40).go(1).turn(90).dist(40).go(1);   

Using relative movements to draw (like turtle graphics):



Other printing functions

command description

lp.fill( w, h, gap ) Draw a filled rectangle, in the current direction, 
of width w (x), height h (y), and with a gap 
between fill lines of gap

lp.rect( w, h ) Draw a rectangle, in the current direction, of 
width w and height h

lp.wait( time ) Pause the printer for an amount of time (in ms)

lp.run( COMMANDS STRING ) Execute a series of commands in a string: 
M(move), E(extrude), L(left turn), R(right turn)

lp.fan( speed ) Speed of cooling fan (on the printer head) from 
0-100 %

lp.retract( length ) Reverse the filament by length (and set as the 
default retraction length for future operations)

lp.unretract( length ) Advance the filament by length (and set as the 
default retraction length for future operations)

For fun

command description

lp.printPaths({ paths = [[ ]], minY = 0, minX = 0, 
minZ = 0, width = 0, height = 0, useaspect = true, 
passes = 1, safeZ = 0 })

Used with SVG rendering. Print a list of paths, at 
the x,y and with dimensions specified.  Will 
auto-scale if given only a width or height (and 
useaspect is true, which is by default).  With 
“passes” you can print them multiple times to 
make higher lines.  Paths are like: 
p = [

[20,20],
[30,30],
[50,30]

];

lp.note( note, duration, axes ) Play MIDI note for a duration (ms) on 1 or more 
axes specified by “x” or “xy” or “xyz” etc.  
Example: Play MIDI note 41 for 400ms on the x 
& y axes:  lp.note(41, 400, "xy").go();
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