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Abstract. Machine learning models that aim to predict dementia onset usually 
follow the classification methodology ignoring the time until an event happens. 
This study presents an alternative, using survival analysis within the context of 
machine learning techniques. Two survival method extensions based on machine 
learning algorithms of Random Forest and Elastic Net are applied to train, 
optimise, and validate predictive models based on the English Longitudinal Study 
of Ageing – ELSA cohort. The two survival machine learning models are 
compared with the conventional statistical Cox proportional hazard model, 
proving their superior predictive capability and stability on the ELSA data, as 
demonstrated by computationally intensive procedures such as nested cross-
validation and Monte Carlo validation. This study is the first to apply survival 
machine learning to the ELSA data, and demonstrates in this case the superiority 
of AI based predictive modelling approaches over the widely employed Cox 
statistical approach in survival analysis. Implications, methodological 
considerations, and future research directions are discussed. 
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1 Introduction 

Dementia, of which approximately two-thirds constitute Alzheimer's Disease (AD) 
cases [1], is associated with a progressive decline of brain functioning, leading to a 
significant loss of autonomy, reduced quality of life and a shortened life expectancy 
[2]. Accumulated evidence indicates that individuals who have dementia have an excess 
mortality [3] and a shorter life expectancy [4] than individuals without this disease [5]. 
In England, dementia is now reported as being the leading cause of death for women, 
having overtaken cancer and cardiovascular disease [6].  

The development of prognostic prediction models, built on combined effects of 
thoroughly validated predictors, using Machine Learning tools, can be used to forecast 
the probability of dementia developing within an individual. It is hoped that the 
availability of such prediction models will facilitate more rapid identification of 
individuals who are at a higher risk of dementia before the full illness onset [10]. This, 
in turn, would reduce time to treatment initiation, subsequently minimising the social 
and functional disability and thereby improving the quality of life for many people 
affected by these disorders. Identifying individuals at risk of developing dementia 
would allow the recruiting of patients at high risk for future clinical trials, thereby 
catalysing the assessment of new treatment or prevention programmes. Furthermore, 
identifying modifiable risk factors would allow the development of new prevention 
programmes. For example, there are already some indications that being physically 
active, staying mentally and socially active, and controlling high blood pressure can 
potentially deter onset of dementia in the general population [7].  

2 Literature review 

To date, several papers have been published which seek to predict, in a binomial or 
multinomial classification setting, the probability that any one individual may develop 
dementia, using neuropsychological test scores, cerebrospinal fluid biomarkers, genetic 
information, neuroimaging, and demographics data within a fixed period of time. For a 
recent review, see [8]. These include several studies using the longitudinal Alzheimer's 
Disease Neuroimaging Initiative (ADNI) study. For example [9] compared several 
Machine Learning techniques to explore variables found in the ADNI dataset and their 
suitability as indicator of dementia onset. Although a good performance was 
demonstrated across all examined algorithms, the best model was Gradient Boosting 
Machine, with an internally validated area under the curve (AUC) of 0.87. On the other 
hand, [11] achieved a discriminative accuracy of 0.91 when using ADNI data and 
support vector machines (SVM) to predict dementia onset. [10] proposed an efficient 
prediction modelling approach to the risk of dementia based mainly on the Gradient 
Boosting Machines method, using a large dataset from CPRD (Clinical Practice 
Research Datalink) repository with data from primary care practices across UK [27], 
and achieving an AUC performance of 0.83.  

Although the ADNI and similar longitudinal studies have as their strength a rich and 
varied data, the overreliance of the predictive community on these data sources has led 
to disappointing results when attempting to validate these models on external datasets. 
The problem is further compounded by the handling of the temporal aspect of the 
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longitudinal studies. Studies that have stuck to the classification-based methodology 
have dealt with the temporal aspect by including time (defined as discrete time intervals 
since the start of the study) as a predictor in the model, rather than the outcome of 
interest [9]. However, by not attempting to predict these temporal aspects, we lose the 
opportunity to gain clinically relevant information on the expected time to a dementia 
diagnosis. A common problem of longitudinal studies is drop-out over time where only 
partial information on a person’s survival time is available (Censoring). Furthermore, 
the standard classification approach is susceptible to instability and inaccuracy when 
dealing with imbalanced data. Because most subjects do not go on to develop the 
disease (in this case, dementia), imbalance in the classification outcome must be 
addressed, usually with under-sampling, over-sampling, or bootstrapping. Such 
approaches add further complications to a model and the interpretability of its 
predictions. 

A possible solution is one that has in general been less explored so far within the 
realm of machine learning. This solution is the use of survival methodology as a tool 
for accounting for and predicting the temporal dynamics of receiving a diagnosis of 
dementia. In other words, one would seek to utilise the well-established survival 
techniques found in Cox Proportional Hazards or similar and build upon these 
frequentist approaches using modified Machine Learning tools [1]. Such an approach 
would preserve the potential information contained within a temporal outcome, and 
associated dichotomy of dementia versus no dementia whilst also strengthening the 
predictive power of the existing frequentist approach by overlaying modified machine 
learning techniques. Furthermore, it can provide an opportunity to introduce high 
dimensional data of the type likely to be found when predicting using clinical data. The 
standard Cox model struggles when confronted with such data, and thus it would be of 
significant benefit to clinical research if the two approaches could be combined. Finally, 
survival methods can provide a way to account for censored data whereby subjects are 
dropping out during the study or are surviving beyond study length. Thus, it can create 
models which are more robust than standard classification models. 

Despite the scarcity of survival modelling papers in relation to dementia prediction, 
recent examples have shown promise in attempting to outperform the classic Cox 
proportional hazard model, using survival machine learning and survival deep learning 
on clinical datasets [12-14]. A pertinent study within the current field of interest is [15] 
whose authors sought to look at survival machine learning performance when applied 
to datasets designed for dementia investigation. They found that all machine learning 
models outperformed the standard Cox Proportional Hazard model. This study, along 
with those mentioned above, provides support for survival machine learning as a 
predictive tool for clinical temporal problems. 

3 Methodology 

This paper builds upon [16] which looked at the English Longitudinal Study of 
Aging (ELSA) and used an accelerated failure time (AFT) survival modelling approach 
to predicting the time to a subject's likely diagnosis with all-cause dementia. This work 
found strong evidence that certain features related to socioeconomic markers and 
genetics play a key role in predicting time to dementia diagnosis. 
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3.1 Problem definition  

In this work we propose an approach to predicting the time to a dementia diagnosis, 
based on survival machine learning techniques such as Survival Random Forests and 
Survival Elastic Net, and on a conventional statistical method such as Cox Proportional 
Hazard model. In order to obtain insight into the predictions, we created and assessed 
variable importance rankings derived from our best model in this study, which could 
ideally provide actionable advice for prevention. 
 
3.2 Data description 

Data was drawn from the English Longitudinal Study of Ageing (ELSA) study, 
which is a nationally representative sample of the English population aged ≥50 years 
[17]. The ELSA study started in 2002 (wave 1), with participants recruited from an 
annual cross-sectional survey of households who were then followed up every two 
years until 2016. Comparisons of ELSA with the national census showed that the 
baseline sample was representative of the non-institutionalised general population aged 
50 and above in the United Kingdom. Ethical approval for each of the ELSA waves (1-
8) was granted by the National Research Ethics Service (London Multicenter Research 
Ethics Committee). All participants gave informed consent. In total, the dataset 
contained 7556 participants, 45% of which were male.   

3.3 Ascertainment of dementia cases 

To ascertain dementia cases, we used methods with validated utility in population-
based cohorts [18-20]. Dementia diagnosis was ascertained at each wave using self-
report participant's physician diagnosis of dementia or AD. For those ELSA 
participants who were unable to respond to the main interview themselves, the 
Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) was 
administered with a score above the threshold of 3.386 indicating the presence of 
dementia [21-22]; the selected threshold demonstrated both excellent specificity (0.84) 
and sensitivity (0.82) for detection of all-cause (undifferentiated) dementia [23]. 
Overall, 83.5% of dementia cases were identified from reports of physician-diagnosed 
dementia or AD and 16.5% were identified based on the IQCODE score. 

3.4 Predictors   

N = 197 predictor variables related to participants' general health, comorbid health 
conditions, mental health, cognitive domains, life satisfaction, mobility, physical 
activity, social-economic status, and social relationships were considered for the model 
development. The gene APOEe4, a predictor with a well-established link to 
Alzheimer's risk, was also included as a predictor. For further details see [17]. 

3.5 Data pre-processing 

The process of model development, evaluation and validation was carried out 
according to methodological guidelines outlined by [24]; results were reported 
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according to the Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) guidelines [25]. Boolean variables were 
created, indicating the location of missing data for each predictor. All synonyms for 
missing values were standardised, and duplicate variables were removed. Variables 
with missingness at 51% or greater of the total rows for that predictor were removed. 
The cut-off of 51% allowed to include the APOEe4 (a predictor with a well-established 
link to Alzheimer's risk), which had 50.8% missingness. The remaining predictors had 
a mean percentage missingness of 1.27%, with a range of 0-50.8%. Missing values were 
imputed using K-nearest neighbour with K = 5. The data was centered and scaled as 
part of this process. 

We used two versions of the dataset on which we developed our models. The first 
data version excluded variable scfru which was based on a questionnaire regarding diet 
and particularly on evaluating a score based on fruit consumption, and the second 
version included this variable. Variable scrfu was among the variables that showed 
predictive capability, but also did its NA indicator which in certain cases as dementia 
may be related to the limited capacity of certain patients to respond to the questionnaire. 
For this reason, on one hand, we wanted to see the impact of including or excluding 
scfru in/from our predictive models, and on another hand we compared our models 
mainly using the performances on the dataset without scfru. 

3.6 Model development 

A simple Cox Proportional Hazard Model (hereafter denoted simply by Cox) was 
constructed, which served as the baseline for comparison with two survival machine 
learning models: 

1. Cox Penalised Regression using Elastic Net (hereafter denoted simply by ElasticNet) 
[15], which is similar to the base Cox Proportional Hazard Model but with Elastic 
Net regularisation, allows the model to shrink the coefficients of less important 
variables, and even to make them equal to 0, depending on the shrinkage strength 
and the proportion of the Lasso component in this model. This helps improving 
prediction accuracy and model interpretability. The main hyperparameters of the 
model that were tuned were alpha, which controls the proportion between the L1 
(Lasso) and L2 (Ridge) regularisations, and lambda, which controls the strength of 
the shrinkage. In our tuning grid, the values for alpha varied between 0 
(corresponding to Ridge regularisation) and 1 (corresponding to Lasso 
regularisation), with a step of 0.05, while the values for lambda varied between 0.05 
and 0.3, with a step of 0.05.   

2. Survival Random Forest (hereafter denoted simply by RF) [15], is based on the 
Random Forests algorithm which produces a model formed of an ensemble of trees, 
each of which learnt on a bootstrap copy of the training set and in the node of which 
a random sample of predictors of fixed size mtry, compete to be selected, with their 
best split point in order to maximise the survival difference between subsequent 
nodes [11]. RF has been chosen in this study for its flexibility to capture non-linear 
patterns in data. Apart from the hyperparameter mtry explained above, we used also 
a hyperparameter called min.node.size implementing a pre-pruning criteria for the 
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trees in the RF model to have a minimum number of instances in the terminal nodes. 
In the tuning grid, the values of mtry varied between 10 and the half of the number 
of columns in the dataset, with a step of 3, while the values for min.node.size in the 
grid were 1, 10, and 20.  RF comprised 500 trees which is the default value. The 
number of trees promotes model convergence (large is better), and in general is not 
a hyperparameter to tune. 

 
Model tuning was performed using 5-fold cross-validation on the training data 

set, as part of a nested cross-validation procedure explained below. 

3.7 Model optimisation and evaluation with nested cross-validation and 
Monte Carlo validation 

A Nested Cross-Validation (NCV) procedure was implemented to tune and evaluate 
our models with precise estimates of the models’ performance. NCV consisted of an 
outer 3-fold CV, and an inner 5-fold CV.  

In order to reliably assess the models’ stability, we conducted a Monte Carlo 
validation procedure (MC), consisting of 90 experiments per model. In each 
experiment, the dataset was randomly split in 2 thirds for the training data on which the 
models were tuned with a 5-fold CV, and 1 third for the testing set on which the models 
were evaluated.  

To ensure representativeness of training and test samples in both procedures, NCV 
and MC, the data splitting was stratified based on the dementia cases variable. 

3.8 Performance metric 

We used the concordance index, called also Harrell’s C-index [26] and simply 
denoted cindex here, to assess and compare the prediction performance of the different 
models. C-index is a generalisation of the ROC AUC metric, and intuitively gives the 
probability that a predicted risk for dementia is higher for patients with a shorter time 
to event. More precisely: 

 
cindex= C/ (C+D)  
 

where C represents the number of concordant pairs of patients, and D represents the 
number of discordant pairs of patients [26]; cindex is a number between 0 and 1, where 
0.5 signifies a random prediction, and 1 indicates that larger times to event concord 
perfectly with smaller predicted risks. 

3.9 Software and hardware 

The data analysis was conducted using the R language. The stratified data splitting, 
the KNN imputation and data normalisation via centring and scaling were performed 
using the Caret R package. The Cox, ElasticNet, and RF survival models were all 
trained and tuned and evaluated under the umbrella of the MLR3 R package. The 
hardware consisted of 3 servers running Linux, with Intel 10 cores, AMD Ryzen 16 
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cores and AMD Ryzen 12 cores, and with 128GB, 128GB and 64GB of RAM, 
respectively, which were used in our analyses including the computationally intensive 
tasks for tuning the models, and NCV and MC validation procedures for assessing the 
models’ performances and their stability.  

4 Results 

4.1 Internal validation using nested cross-validation 

The nested cross-validation cindex performance for train, inner cross-validation, and 
test or outer cross-validation, for each type of model are detailed below. 

Table 1. Nested cross-validation results, based on the data without and with scfru variable 

Survival 
Model 

Outer-CV  
(test) cindex 

Train cindex Inner-CV 
cindex 

Cox  
+scfru 

0.776 
0.791 

0.814 
0.828 

 NA (not tuned) 

ElasticNet 
+ scfru 

0.843 
0.861 

0.855 
0.873 

0.840 
0.861 

RF 
+scfru 

0.851 
0.867 

0.972 
0.955 

0.848 
0.864 

 
The best performing model in terms of the nested cross-validation was Survival 
Random Forest, followed by Survival Elastic Net, followed by Cox PH model. Hence 
both machine learning models, RF and ElasticNet, outperformed the conventional 
statistical model Cox on the test set. 
 
4.2 Monte Carlo validation  
 
The results for the Monte Carlo validation are outlined in Table 2 and Figure 1 below. 

Table 2: Monte Carlo validation results (90 experiments) for Cox, Survival Elastic Net and 
Survival Random Forest based on the data without and with scfru variable. 

Survival 
Model 

Test cindex 
mean(SD) 

Train cindex 
mean(SD) 

CV cindex 
mean(SD) 

Cox  
+scfru 

0.761(0.03) 
0.778(0.034) 

0.793(0.032) 
0.807(0.036) 

 NA (not tuned) 

ElasticNet 
+ scfru 

0.842(0.011) 
0.862(0.01) 

0.856(0.004) 
0.873(0.004) 

0.841(0.005) 
0.861(0.005) 

RF 
+scfru 

0.849(0.009) 
0.866(0.009) 

0.966(0.01) 
0.962(0.009) 

0.850(0.005) 
0.866(0.005) 
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Fig. 1. Boxplots for the Monte Carlo derived cindex performances for Cox, Survival Elastic Net 
and Survival Random Forest. On top: results on dataset without scfru variable, and on bottom: 
results with scfru variable. 

The results in the Monte Carlo validation reveal the following aspects: (a) the machine 
learning survival models based on Random Forests and Elastic Net demonstrate clearly 
better mean cindex on the test sets than the conventional statistical model Cox; (b) the 
results are close to and confirm the estimated performances obtained in the nested 
cross-validation in Table 1; (c) the standard deviations (provided in brackets in Table 
2) for cindex performances on the test sets for Survival Random Forest and Survival 
Elastic Net are small, and about 3 times smaller than the standard deviations for Cox, 
which means that the machine learning models are very stable, and by far more stable 
than the conventional statistical model. This interpretation is confirmed also visually 
by the boxplots in Fig. 1.  
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4.3 Feature importance 

The variable importance computed by Survival Random Forest is provided below. 
Age was by far the most important variable for the model when predicting time to 
dementia diagnosis. The other variables in top 20 as importance regard processing 
speed, self-reported number of hours sleep subjects got in a night, sleep measures 
(heslpa, heslpd, heslpb, heslpe, heslpf, and headlco), APOEe4, the aggregate measure 
of memory, and executive functioning. The model also highlighted the role of wealth, 
social isolation (dhnch, scscc, loneliness_w2, ffamily_w2, and r1retemp) in predicting 
time to dementia diagnosis. 

  

Fig. 2. Variable importance for Survival Random Forest (RF) model: on left for dataset without 
scfru, and on right for data with the scfru variable. 

5 Discussion 

To our knowledge, this paper is the first attempt to develop, evaluate and validate a 
prediction model for estimating an individual risk of dementia onset in the ELSA 
dataset using survival machine learning. Our results showed that the machine learning 
models herein were able to outperform the classic Cox model, with the best performing 
machine learning technique being the Survival Random Forest followed closely by 
Survival Elastic Net, as per test results in the nested cross-validation included in Table 
1, and test results in the Monte Carlo validation included in Table 2, and Figure 1. 
Monte Carlo clearly demonstrates the high stability of the survival machine learning 
models as illustrated by the same Table 2 and Figure 1. The Survival Random Forest 
model achieved a mean cindex for the test dataset of 0.849 and a standard deviation of 
0.009 in 90 Monte Carlo iterations. Survival Elastic Net achieved a mean cindex for the 
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test dataset of 0.842 and a standard deviation of 0.011. Both machine learning models 
outperformed and were more stable than the Cox model which achieved a mean cindex 
of 0.761 and a standard deviation of 0.03 (about 3 times larger than the machine 
learning models) in the Monte Carlo validation. This study indicates strong evidence of 
machine learning’s utility in the field of survival prediction. As mentioned previously, 
the addition of machine learning paradigms to the classic frequentist survival 
approaches allows for more variables to be explored than would be possible in a 
standard Cox proportional hazard model. Moreover, as this study demonstrates, the best 
survival model based on Random Forests not only improved the predictive accuracy 
and stability but also provided a useful mechanism to infer the variables’ importance, 
which concords with clinical interpretations of the role of the variables in dementia 
onset.  

In this study, we used two versions of the dataset on which we developed our models. 
The first data version excluded variable scfru which was based on a questionnaire 
regarding diet and particularly on evaluating a score based on fruit consumption, and 
the second version included this variable. The comparisons between the models on the 
results without or with the scfru variable, lead to the same conclusions in terms of the 
ranking we established for these methods. Moreover, there is a slight performance 
increase for all the models on the dataset with the scfru variable, which is the reason 
why we included these results here. This variable made it in top 20 most important 
variables, but also did its NA indicator, which in certain cases as dementia, may be 
related to the limited capacity of certain patients to respond to the questionnaire. For 
this reason, we compared the three models we developed mainly using the 
performances on the dataset without scfru.  

Although this paper presents examples of good predictive survival machine learning 
modelling, there are some limitations to this work. Firstly, the data contained predictors 
with a high percentage of missing values. Although every effort was taken to account 
for missingness and preserve the pattern of missingness before imputation was 
performed, a complete dataset may provide results that differ from this work especially 
if missingness is related to the outcome (not missing at random). Even though dementia 
and AD were ascertained using a combined algorithm based on a physician made 
diagnosis and a higher score on the informant reports (IQCODE), it is still reliant on a 
self-reported diagnosis reported by either the participants themselves or their carers and 
render more severe cases. Thus, we cannot exclude a possibility that some participants 
within the “dementia-free” group may have been the preclinical stages of dementia and 
who, if followed for long enough, might eventually develop dementia. Further, the 
ELSA dataset is a centre-based data collection study and, although extensive and varied 
data collection was carried out to try and account for confounding variables, it is 
possible that other predictors, unmeasured by the data collection procedure, could have 
an impact on model performance. It is therefore imperative that future work validate 
these models on different datasets such that the results can be well substantiated. 
Finally, the ELSA data uses English subjects, who were chosen because they were 
deemed representative of the United Kingdom at large. Therefore, these results cannot 
be generalised to populations in other countries. Once again, work must be done to 
ensure that these results are substantiated by data from subjects in differing datasets. 
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6 Conclusion 

This paper represents a first attempt at applying survival machine learning 
techniques to the ELSA dataset. The intention of this work was to build and validate 
models which demonstrated good predictive ability on this dataset, specifically in 
relation to the time to dementia onset. Future work should seek to validate the findings 
here on other datasets that share similar predictors and outcomes. If the results are 
substantiated, this could prove to be a new and fruitful approach to clinical prediction 
modelling of dementia. Another future work will investigate the applicability of an 
adapted version of the survival machine learning approach we developed here, to the 
prediction of dementia risk using routine primary care records such as CPRD [27], by 
extending the machine learning based framework we introduced in [10].  
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