
Rafe, Vahid; Mohammady, Somayeh and Cuevas, Erik. 2022. Using Bayesian optimization algo-
rithm for model-based integration testing. Soft Computing, 26(7), pp. 3503-3525. ISSN 1432-7643
[Article]

https://research.gold.ac.uk/id/eprint/33413/

The version presented here may differ from the published, performed or presented work. Please
go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Goldsmiths, University of London via the following email address:
gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For
more information, please contact the GRO team: gro@gold.ac.uk



Using Bayesian Optimization Algorithm for Model based Integration Testing 

 
Somayeh Mohammady1, Vahid Rafe1, Erik Cuevas2  

1Department of Computer Engineering, Faculty of Engineering, Arak University, Arak38156-8-8349, Iran 
2Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución, 1500, Guadalajara, Jal, 

México 

 

s.mohammadi6888@gmail.com, v-rafe@araku.ac.ir, e.cuevas@guadala.ac.mx 

 
 

Abstract 

Model based testing is an automated process in which executable test cases are derived from 

behavioral models of a system. Model checking is another verification approach in which all 

reachable states of a system are generated. In the literature, there are different approaches which 

suggest using model checkers for model based test case generation. Since all possible states and paths 

are generated by the model checker, selecting different paths in the state space as test cases based on 

some coverage criteria seems a promising solution. However, all these approaches suffer from two 

main challenges. The first challenge is the state space explosion problem which prevents the model 

checker to generate all the states. The second one is generating redundant test cases (paths). Recently, 

methods using meta-heuristic and evolutionary approaches have been proposed to cope with these two 

problems. Therefore, exploring a portion of the state space to detect the test objectives using an 

optimization approach can be a proper way to manage the state space explosion and generates the 

optimal test suites with the least redundancy. In this paper, an approach is proposed using Bayesian 

optimization algorithm (BOA) to generate test cases for service oriented systems specified through 

graph transformation. In the proposed approach, test suite is a set of paths on the state space that 

starting from an initial state and leading to the states in which all the test objectives is satisfied. In this 

research, we have implemented BOA with three different structures in GROOVE, an open source 

toolset for designing and model checking graph transformation. Experimental results show that our 

solution generates better results in terms of coverage, memory usage and speed in different case 

studies in comparison with the existing approaches. 

 

Keywords: Model-based Testing, graph transformation, Bayesian optimization algorithm, integration 

testing, Data flow. 

 

1. Introduction 

Software testing is a validation process which should reveal system bugs, errors and shortcomings. 

However, this process is an expensive, time-consuming and error-prone task [1]. Usually, 30-50% of 

software developing efforts is spent to testing [2]. Hence, finding a proper method for software testing 

is an important task. 

Model based testing (MBT) [3] is a black box technique in which executable test cases are derived 

from behavioral models of a system. Test model is extracted from intended behaviors of a system. 

MBT is a well-known technique to generate [4] test cases due to easy change, reuse and shared 

models. 

During the past years, in order to improve the MBT, various techniques such as symbolic execution 

[5], Deductive theorem proving [6], Random testing [7], search-based technique [8, 9], constraint 

solving [10], AI planning [11] and model checking [12, 13] have been proposed. In addition, recently, 

a method using randomized algorithms has been proposed to generate the test from systems specified 

through graph transformation by the underlying model checker [57].  

Model checking [14] is an automatic technique to detect system errors that allow automatic generation 

of test cases (TC) from models by exploring the state space. State space is a set of all reachable states 

of a system which describes the behavior of that system. A state is a set of variables and their current 

values in a specific status of execution. In model checking-based test case generation technique 

(MCT), a model of a system and a test objective as a trap/reachability property is provided to the 



model checker. Model checker detects a counterexample/witness to violate/satisfy the property. A 

counterexample/witnesses is a path starting from an initial state ending in a state that the property is 

refused/verified. These paths can be used as TCs [15]. However, checking the test objectives in the 

form of properties suffers from the state space explosion and test case redundancy. State space 

explosion is the problem in which all reachable states cannot be explored due to resource limitations 

[14]. Recently, in order to deal with the state space explosion, methods using meta-heuristic and 

evolutionary algorithms such as Genetic Algorithm (GA) [16], Practical Swarm Optimization (PSO) 

[17], Ant Colony Optimization [18] and Bayesian Networks [19] have been proposed. The other 

problem is that the most of generated counterexample/witnesses is redundant. 

Estimation of distribution algorithms (EDAs) [20] are evolutionary algorithms that uses probabilistic 

model of promising solutions to generate new individual instead of biological evolution (i.e. crossover 

and mutation). This model is learned from the promising solutions through machine learning and then 

the learned model is sampled to generate offspring. BOA one of the EDAs that performs the 

optimization process by Bayesian Network (BN). BN [22] is a probabilistic model that indicates 

random variables and their conditional dependencies via a directed acyclic graph. 

In the literature, selecting an appropriate test model is important. One of the proper languages to 

specify software systems is graph transformation system (GTS). GTS is a formal notation to model 

behaviors of systems with complex structures that is widely used in software development cycle [23]. 

In this paper, to improve the model based test case generation approaches in terms of test quality, 

coverage, convergence speed and time, an approach is proposed using BOA to perform integration 

testing. To do so, the system should be specified through GTS. Hence, we propose a solution that 

BOA is applied to the challenges of model checking-based test case generation approaches. In GTS, a 

function of system is expressed by a rule and all reachable interactions between rules are expanded 

through graph transformation. Therefore, TCs are paths on the state space that starting from an initial 

state and leading to the state in which at least one def-use test objectives is satisfied. These paths are 

executable sequence of functions that produce interactions between system unites. In this paper, the 

GROOVE toolset [24] is used to implement our approach which is an open source tool. In order to 

manage the state space explosion and redundant TCs generation problem, BOA is employed for 

partially exploring the state space graph in which the all def-use test objectives are satisfied. To 

evaluate the efficiency of the proposed approach, we compare the obtained results on three different 

case studies with the other techniques. 

The rest of the paper is organized as follows: Section 2 explains the main concepts of the proposed 

approach such as GTS, MBT, data flow coverage and BOA. The related works are surveyed in section 

3. In section 4, we discuss the proposed approach in details. Experimental results are presented in 

section 5. Finally, we conclude the paper in Section 6. 

 

2. Background 

In this section, we briefly survey the basic concepts of the proposed approach. 

 

2.1. Graph Transformation system 

Graph transformation system [25] is a formal language to model software systems with dynamic 

structures. A GTS is defined by GTS =  (TG, HG, R), where TG is a type graph, HG is a host graph 

and R is a set of transformation rules. TG is defined by TG= {TG𝑁, 𝑇𝐺𝐸 , 𝑆𝑟𝑐, 𝑇𝑟𝑔}, where TG𝑁 is a 

set of all node types and 𝑇𝐺𝐸 is a set of all edge types. 𝑆𝑟𝑐: 𝑇𝐺𝐸 → 𝑇𝐺𝑁 and 𝑇𝑟𝑔: 𝑇𝐺𝐸 → 𝑇𝐺𝑁 are 

two functions which determine, respectively, the source and destination node of an edge. The initial 

configuration of a system is specified through HG. 

R is defined by R = (LHS, RHS, NAC). A graph transformation rule manipulates a host graph. Thus, 

graph transformation (GT) is performed through applying these rules repeatedly to the host graph. 

LHS (left hand side) and RHS (right hand side) are two graphs that represent, respectively, pre-

conditions and post-conditions of a rule and overlap somewhat with HG. NAC (Negative Application 

https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Directed_acyclic_graph


Condition) is an extension of LHS that is used to check the absence of a structure, and of course it can 

be null. 

To apply a rule, LHS must match HG, that is, LHS structure must be found in HG. If so, then RHS 

structure replaces LHS on the current HG. Usually, several rules may match the HG; by applying all 

applicable rules repeatedly to the HG, the state space is created. A state space is a digraph in which 

nodes are a set of all reachable states of a system and edges represent transformations between them. 

The difference between LHS and RHS elements determines the result of applying a GT rule. These 

differences are divided into three sets of elements, as defined below: 

R_D = {Nd, Ed} with Nd=LHSN-RHSN and Ed=LHSE-RHSE 

R_P ={Np, Ep}with Np=LHSN∩RHSN and Ep=LHSE∩RHSE 

R_C = {Nc, Ec} with Nc=RHSN-LHSN and Ec=RHSE-LHSE 

where R_D is a set of deleted elements (nodes/edges), R_P is a set of preserved elements and R_C is a 

set of created elements. As mentioned earlier, the HG structure specifies the applicable rules. On the 

other hand, by applying a rule; elements are removed/added from/to the HG. So, the currently applied 

rules can affect the applicable rules on next states. This is due to the dependencies between rules. 

Suppose that r1 and r2 are two rules and 𝐿𝐻𝑆𝑟1
 is a set of all edges and nodes of 𝐿𝐻𝑆𝑟1

and 𝑁𝐴𝐶𝑟1
. If 

𝐿𝐻𝑆𝑟1
∩  𝑅_𝐷𝑟2

≠ ∅ or 𝐿𝐻𝑆𝑟1
∩ 𝑅_𝐶𝑟2

≠ ∅, then rule r1 depends on r2. 

There are several tools for modeling the systems by GTS such as GROOVE, AGG [26], VIATRAL2 

[27], and NuSMV [28]. GROOVE is an open-source toolset for designing and model checking graph 

transformation systems. In GROOVE, the LHS, RHS and NAC of a rule are designed as a single 

graph. In a rule graph new: /del: label is used to specify the added/removed elements to/from the HG 

and not: is used to define NAC. NAC elements are marked with red dotted lines, and added and 

removed elements are specified by green solid lines and blue dashed lines, respectively. 

In this paper, the GROOVE editor and simulator is used to model a system and explore the model's 

state space. As an example, consider an online railway ticket reservation system in which the user is 

able to register, search travels, book and cancel the e-ticket. The functions signatures for this system 

are given in pseudocode1. This system is modeled in the GROOVE toolset. The type graph and start 

graph of the model are illustrated in fig.1 and fig.2, respectively. Fig. 3 shows the booking rule; that 

is, a seat is reserved for the passenger (RHS) if no ticket is issued for it (NAC). 

Pseudocode1. Railway ticket reservation system 

Public interface  

{ 

Public Void Register (string Name, string Password, string Email address); 

Public Void Login (string Name, string Password); 

Private String Ticket availability checking (date Time & Date, string Port, string Destination, integer Number); 

Public String Book a ticket (string Name, string Phone Number, string Credit Card Identity); 

Public Void Cancel a ticket (string Serial); 

Public Boolean Payment (string Serial, money Amount); 

} 

 



  
Fig2. The start graph for the railway ticket reservation system Fig1. The type graph for the railway ticket reservation system 

 
Fig3. The e-ticket booking rule 

 

 

2.2. Bayesian Optimization Algorithm 

Bayesian optimization algorithm is one of the EDAs which captures the partial solutions of promising 

solutions by a probabilistic model. In BOA, a Bayesian network is learned from the promising 

solutions and then valuable structures are reused in the offspring through sampling. BN is a 

probabilistic model that represents conditional dependencies among random variables via a directed 

acyclic graph. A BN is defined by structure and parameters. 

Structure: BN structure is a directed acyclic graph in which the nodes are random variables and edges 

are conditional dependencies between them. Suppose that x and y are two nodes in BN. If there is an 

edge from x to y, then x is the parent of y. BN structure can be fixed or constructed through structure 

learning. 

Parameters: parameters are the conditional distribution of variables according to the different values 

of their parents that are represented by conditional probability tables. A BN defines the joint 

probability distribution of n random variables [29]; the equation for this distribution is given below: 

𝑝(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑝(𝑋𝑖|

𝑛

𝑖=1

𝑝𝑎𝑟𝑒𝑛𝑡(𝑋𝑖))                                                     (1) 

where xi is a random variable and p (xi | parent (xi)) is the conditional probability distribution of xi 

according to its parents. BOA starts with an initial population of random solutions; then, in different 

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph


iterations, BN is learned from the fittest individuals, and offspring are sampled from this built BN. In 

the sampling procedure non-significant individuals are replaced by promising offspring. Algorithm 1 

shows the BOA procedure. 

 

Algorithm1. The Bayesian Optimization Algorithm 

BEGIN 

Generate initial population randomly; 

Calculate the fitness of individuals;  

While (termination criteria is not satisfied) 

1. Select N fittest individual; 

2. Learn a Bayesian Network;  

3. Sample M new candidate from built network;  

4. Incorporate new individuals into population;   

5. Calculate the fitness of individuals; 

      End while 

END 

 

2.3. Model Based Testing 

In the literature of modeling, it is noted that abstract description of a system, regardless of 

implementation details, can be helpful to accurately analyze it. At present, models have a wide range 

of applications such as Model-driven engineering, Model-driven architecture, software system 

documentation, software testing, etc. In software testing, models are used for description, 

documentation, TC generation, test execution, and oracles. MBT [3] is a well-known technique in 

which the testing process is based on a model that describes the intended behavior of the system under 

test (SUT). The test model is extracted from SUT specifications and test cases are derived from it; 

then, SUT is considered as a black box and executed by suggested test cases. In order to validate the 

software system, TCs outputs are compared with the expected outputs. The TC generation process is a 

critical activity. MBT simplifies this by automating the TC generation with respect to a coverage 

criterion. 

Correctness, unambiguousness, completeness, verifiability, and modifiability are some of the 

properties appointed to enhance the quality of the system requirements, that the nature of MBT can be 

helpful to achieve them. To drive a test model of SUT, MBT requires precise and detailed inference of 

system requirements, which makes the specified requirements more reliable. Also, expressing a 

system in the form of formal structures eliminates any ambiguity about the requirements. Test models 

have clear views of the systems, through which, some of shortcomings or incompatibilities can be 

detected. On the other hand, modifying the test model while changing the system covers the 

maintenance and modifiability properties [30]. 

However, test model construction is an error-prone task. That is, the quality of TCs depends on test 

models, and false design during the modeling leads to the generation of inapplicable TCs. In addition, 

the automatic generation of TCs with inadequate coverage criteria leads to an infinite number of TCs, 

called test case explosion. 

 

2.4. Data Flow coverage criteria in graph transformation system 

A data flow [1] is a path from a point that a variable is defined (Def) to another point that the variable 

is referenced (Use). In order to identify the wrong definition of variables, data flow coverage criteria 

focus on the relations between the variables definitions and their uses. In a GTS, a system operation is 

expressed through a rule; and, as mentioned above, there are dependencies between these rules. This 

is due to the data flows between GT rules which can be dynamically extracted. A data flow in a GTS 

consists of two rules, r1 and r2; the rule r1adds an object (Def) to HG, which is used by the rule r2 

(use). Suppose that r1 and r2 are two GT rules and 𝐷𝑒𝑝𝑟2
= 𝐿𝐻𝑆𝑟2

∪  𝑅_𝐷𝑟2
, if 𝐷𝑒𝑝𝑟2

∩ 𝑅_𝐶𝑟1
≠ ∅ ,, 



so r1 and r2 are Def and Use rules, respectively. Therefore, (r1, r2) is a Def_Use pair that must be 

covered by a TC. 

Data flow coverage criteria in GTS are defined by extracting a Dependency Graph (DG) from SUT 

and studying the types of dependencies between the rules. A DG is defined by DG = {G, OP, op, lab}, 

where G is a digraph, OP is a set of system rules, op is a function that maps the system rules to the 

DG nodes and lab is an edge labeling function that contains labels = {create, read, delete, update}. 

Suppose that n1 and n2 are two DG nodes denoting rule r1 and r2, respectively. According to this, 

labeling an edge is as follows: 

 If  𝑅_𝐶𝑟1
∩ 𝑅_𝐷𝑟2

≠ ∅ then there is an edge from n1 to n2 with label <create, delete>. 

 If 𝑅_𝐶𝑟2
∩  𝐿𝐻𝑆𝑟2

≠ ∅ then there is an edge from n1 to n2with label <create, read>. 

 If r2 updates the value of an attribute of 𝑅_𝐶𝑟1
then there is an edge from n1 to n2 with label 

<create, update>. 

Accordingly, Create_Delete, Create_Read and Create_Update criteria are defined [31]. These criteria 

are described in Table 1. 

 

Table1. Data flow criteria in GTS 

Data flow criterion Purpose 

Create_Read(C_R) Test all (C_R) rules; where r1 adds an element to HG, that is an element of LHS𝑟2
. 

Create_Delete (C_D) Test all (C_D) rules; where r1adds an element to HG, that is deleted by applying r2. 

Create_Update (C_U) Test all (C_U) rules; where r1adds an element to HG, that is updated after applying r2. 

Dependencies Test all Def_Use rules. 

 

3. Related works 

Models are basic artifacts in MBT. These models can be either formal or informal. The Unified 

Modeling Language (UML) is a well-known modeling language intended to provide diagrams for 

describing the behavior of software systems. To generate test cases from UML diagrams, there are 

many approaches such as test case generation using use case diagram [32], collaboration diagram 

[33], UML state chart [34], and UML sequence diagram [35] are some examples. Also, the 

collaboration diagram has been used to determine the adequacy of test suites [36]. In [37, 38], the 

authors present a method using UML models for regression testing. Test case generation from data 

flow graphs [39] and finite state machines [40] are other approaches. 

There are some other approaches trying to employ formal models. GTS is a formal language to model 

systems that is widely used in model checking based testing. In Model Checking based test generation 

technique (MCT), a model of the system and a test objective as a trap/reachability property is 

provided to the model checker. The model checker detects a counterexample/witnesses to 

violate/satisfy the property. This idea has been performed by GROOVE [41]. The most important 

weakness in MCT is state space explosion and test case explosion. In [42], the authors present a 

method using Visual Contracts (VC) to generate TCs. VCL is a graphical notation of system 

operations in the form of pre-conditions and post-conditions. In VCL, an operation is specified 

through a pair of graphs that depicts the state of the system before and after the execution of an 

operation. The proposed approach also has introduced several data flow coverage criteria based on 

dependencies and conflict relations between GT rules. Each TC indicates a random sequence of 

applicable rules starting from an initial state. If a rule sequence is executable, it is considered as a 

final TC. The proposed method is implemented in the AGG tool, a tool for modeling and analyzing 

the systems defined by GT. In [43], VCs are transformed to java modeling language to generate test 

cases. This approach uses pre-conditions for test data generation and post-conditions for test oracles. 

The recent work related to our proposed approach is search based testing [57]. In this work, a search 

based method using several heuristics like Genetic Algorithm (GA), Particle Swarm Optimization 



(PSO), Bat Algorithm (BA), Gravitational Search Algorithm (GSA), and a hybrid algorithm using GA 

and PSO (HGAPSO) is proposed to generate test of models specified through GTS. The approach is 

implemented in the GROOVE. Experimental results show that this test generation method has 

significantly better coverage than MCT and model-based testing using visual contracts.  

During the past years, in order to achieve the optimal test suite, meta-heuristic and evolutionary 

algorithms such as genetic algorithms, greedy algorithms, and estimation of distribution have been 

employed. In [44], a GA-based approach is proposed to generate test cases for a web application. In 

this gray-box method, transition relations are extracted from the RDG graph (Request Dependence 

Graph). In each generation of GA, different user sessions are mixed to cover more transition relations. 

Experimental results confirm that the solution can generate a high coverage test with a small size. In 

[45], the authors proposed a GA-based method to generate test cases for object-oriented systems using 

the activity diagram. In the proposed method, an activity diagram of a system is converted to an 

activity graph, then weights are assigned to all edges according to the number of visited nodes from 

the initial node. Each chromosome is a unique path between the desired source node and destination 

node. High weighted chromosomes are considered as TCs. Also, in [2], the same authors proposed a 

technique which employs other evolutionary and greedy heuristic algorithms such as Greedy, Struggle 

GA, Steady-state GA, evolutionary programming, and evolutionary strategies. Experimental results 

show that these meta-heuristics are more efficient in terms of test suite size and coverage. In [46], the 

authors proposed an automatic test generation approach using an evolutionary algorithm. The aim of 

this approach is the automatic generation of test data for structural tests. 

In [47], the authors proposed two new approaches using Scatter search and a hybrid algorithm using 

scatter search and EDAs for branch coverage. This approach is the first application of a hybrid 

algorithm using EDAs to generate test cases. The proposed method uses of re-search technique to 

fulfill the coverage, that is, initially the EDA is used to cover the branches, and when EDA 

computational limit is reached, SS is employed to cover the uncovered test objectives. To compare the 

performance of the proposed method, several EDAs are implemented. Experimental results confirm 

that these algorithms and their collaboration are very promising to achieve full coverage. Moreover, 

the authors in [48] proposed an EDA based testing approach which generates test data for unit testing. 

This approach is proposed for branch coverage criteria. The initial population is a set of sequences of 

function calls with a specific length. High coverage sequences are selected to sample the names of the 

functions. 

In the literature, various methods have been proposed to employ the Bayesian network in the testing 

process. In [49], the authors present a BN based strategy for regression testing. In [50], a BN is used 

for GUI testing. In this approach, BN is constructed using the prior knowledge of testers and then 

values are updated using the results of test cases. Also, BN has been used as a prediction tool to 

predict defects, failures, compatibilities, reliabilities, and qualities in the software development 

process. Approaches like predicting software defects by hierarchical Bayesian model [51], activity-

based BN to predict software quality [52], reliability prediction [53], and failure prediction [54] are 

some examples. 

 

4. The proposed approach 

In this section, an automatic approach based on BOA is proposed to generate an Integration test from 

the system specified through GTS. Integration testing [1] is a functional testing in which the 

interactions between the developed units are tested to reveal the errors that may occur in the 

integrated units. In GTS, a system unit is expressed by a rule, and all reachable interactions between 

rules are expanded through graph transformation. As previously mentioned, Def_Use relations 

between GT rules are detectable; hence test suite is a set of paths on the state space graph starting 

from the initial state and leading to the states where the all def-use test objectives are satisfied. There 



are some hierarchical dependencies among Def_Use rules; it means that, in a Def_Use pair, the Def 

rule is a Use rule of another Def_Use pair or a Use/Def rule belongs to several Def/Use rules. 

Moreover, there are other unknown dependencies; so that, the applied rules to the current state 

determine the next applicable rules. BOA is able to capture these dependencies through learning a 

BN. Thus, by learning a BN from the fittest TCs, BOA can select a more promising rule from the 

matching rules to apply to the current state. In our approach, the structure of the built BN is a fixed 

chain and only the parameters are learned. 

The architecture of the proposed approach is illustrated in Fig. 4. As seen in this figure, first all the 

test objectives (Def_Use rules) are extracted from an abstract model and the initial population is 

randomly generated. TCs are explored in the state space to determine their coverage. After computing 

the coverage values, a set of promising TCs is selected to learn the BN parameters using the 

maximum likelihood hypothesis [55]. In the sampling step, offspring are sampled from the built BN 

and replaced with the ineffective solutions. These steps are iterated until the termination criteria, 

achieving 100% coverage or reaching the time limit of 30 minutes, are met. The final step is the test 

suite minimization process. The rest of this section explains the process in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig4.The architecture of the proposed test case generator 

 

GT Rules 

 

Coveragecriterion 

Test objectives 

Cover at least one 

test objective? 

Rule pairs 

Explore state space 

 

Coverage procedure 

 

Sample new Test case  

Learn BN 

Test cases 

BOA procedure 

 

Naïve_BN 

Tp_BN 

Chain_BN 

Main procedure 

Initialization 

Random test cases 

Test Suit 

Test cases 

Test suite minimization 

Termination criteria 

satisfied? 

True 

False 

 Incorporate test cases 

Test case 

Test case 

Yes 



 

 

 

 

 

 

Fig5.The candidate solution "1302" in the state space graph 

 

Fig6.The test case of the candidate solution "1302" 

4.1. Test Case: In our approach, a TC is an executable sequence of system functions with the current 

values of their variables. Actually, a TC (also called candidate solution) is a finite path on the state 

space graph, which has a predetermined length and starts from the initial state. As mentioned earlier, 

the nodes in the state space graph are reachable states, and the outgoing transitions are applied rules. 

So, a candidate solution encodes a TC with a string of numbers which determine the outgoing 

transitions indexes. For example, assume that the online railway ticket reservation system has four 

transformation rules including r0 (reservation), r1 (cancel), r2 (bill payment), and r3 (login); and let 

"1302" be a candidate solution in this system. Fig. 5 illustrates a portion of the state space and the 

solution "1302" marked with the red colored edges. This TC is shown in Fig. 6. 

 

4.2. Def_Use rules Coverage: A Def_Use pair is covered by a TC if there is at least one definition-

clear path between Def and Use variables. A definition-clear path [1] is a path between Def and Use 

variables in which the Def variable is not redefined. Accordingly, a definition-clear path between Def 

and Use rules is defined as follows: 

Definition-clear path between rules: suppose that r1 and r2 are Def and Use rules, respectively, 𝜋 =<

s5r1s7r8s1r5 … … . s1r3s9r2 > is a path between r1 and r2, and DU_element = ((𝐿𝐻𝑆𝑟2
∪  𝑅_𝐷𝑟2) ∩

 𝑅_𝐶𝑟1) is Def_Use elements. Therefore, 𝜋 is a definition-clear path between r1 and r2 if the applied 

rules from r1 to r2 do not make 𝐷𝑈_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = ∅. To determine the Def_Use rules, a pseudocode is 

given in Algorithm 2. 

Algorithm2.  The process of determining Def_Use rules  

BEGINE 

Input: rules; 

Output: Def_Use rules; 

(C_R) _set: a set of Create_Read rules; 

(C_D) _set: a set of Create_Delete rules; 

(C_U) _set: a set of Create_Update rules; 

 

For all rules do 

1. extract the Produced_set (added nodes and edges by rule); 

2. extract the Updated_set (updated nodes and edges by rule); 

3. extract the Consume_set (removed nodes and edges by rule); 

4. extract the Preserved_set (nodes and edges in the precondition); 

End for  

 

For all  𝑃2
𝑟𝑢𝑙𝑒𝑠 do 

1. if  (first rule Produced_set ∩ second rule Preserved_set ≠ ∅)  

0R 

1R 

2R 

0R 

 

S0: start 

S1: open 

S3: open 

S0: open 

S2: open 

Reservation (Jan, 3569751, 125698@q) 

Bill payment (12145810, 100$) 

Cancel (1259684753) 

Reservation (Sam, 11258412, 145987Y&) 



 Add rule pair into (C_R) _set; 

2. if  (first rule Produced_set ∩ second rule Consume _set ≠ ∅)  

                 Add rule pair into (C_D) _set; 

3. if  (first rule Produced_set ∩ second rule Updated_set ≠ ∅)  

          Add rule pair into (C_U) _set; 

End for  

END 

 

 

4.3. Fitness function: to confirm the coverage of the test objectives, the all applied Def_Use rules in a 

TC path must be achieved. Therefore, the encoded solution is explored in the state space, and a 

sequence of rule calls is extracted. Then, all Definition-clear paths between these pairs are identified. 

The pseudocode for determining the TC coverage is shown in Algorithm 3. Our fitness function, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑇𝑆), is the number of uncovered test objectives for a given test suite which should be 

minimized. The fitness function is defined using the following equation (2), where TS is the given test 

suite, n is the number of TCs, test_obj is a set of all the test objectives, and covered_obj is a set of 

covered Def_Use rules by the TCi. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑇𝑆) = {𝑡𝑒𝑠𝑡_𝑂𝑏𝑗} − ∑ {𝐶𝑜𝑣𝑒𝑟𝑑_𝑂𝑏𝑗  𝑜𝑓 𝑇𝐶𝑖}
𝑛
𝑖=1                   (2) 

Algorithm3. The fitness function 

BEGINE 

Input: test case, M: a specified model; 

Output: test case coverage; 

Test_obj: a set of Def_Use rules; 

TC_path: explored TC path in the state space; 

Covered_obj: a list of covered Def_Use rules for given TC; 

Test suite: a set of test cases; 

Let a D_U_path be a path that starts with a Def rule and ends with a Use rule; 

 

 While (there is a D_U_path in the TC_path) 

If (criteria== Create_Read) 

       If (𝑅_𝐶𝑑𝑒𝑓 ∩ 𝐿𝐻𝑆𝑢𝑠𝑒 ≠ ∅) 

             Add Def_Use rule in covered_obj; 

Return; 

If (criteria == Create_Delete) 

       If (𝑅_𝐶𝑑𝑒𝑓 ∩ 𝑅_𝐷𝑢𝑠𝑒 ≠ ∅) 

             Add Def_Use rule in covered_obj; 

Return; 

If (criteria == Create_Update) 

       If (𝑅_𝐶𝑑𝑒𝑓 ∩ 𝑅_𝑈𝑢𝑠𝑒 ≠ ∅) 

             Add Def_Use rule in covered_obj; 

Return; 

End while 

If (covered_obj≠ ∅) 

       Add test case in test suite; 

      Test_obj= Test_obj - covered_obj; 

End if 

END 

 

4.4. Learning: After computing the coverage, promising TCs are selected to learn a BN. To select 

promising solutions, the truncation selection [56] is utilized. In our approach, the BN structure is a 

fixed chain and only the parameters are learned [19]. So, the three different structures are used for the 

BN, as follows: 

nBOA: In nBOA, BN structure is a two-node chain that preserves the applied rules over the previous 

and current states. The parameters of nBOA are represented by two probability distribution tables. 



The first table determines the probability distribution p (X0= ri) and the second one determines the 

conditional probability distribution p (X1= rj|X0= ri). 

tpBOA: In tpBOA, BN structure is an n-node chain where n is the candidate solution length, and two 

predecessor nodes of each node are its parents. In this chain, Xk is the corresponding node to the genek 

that preserves the applied rules over the statek. The parameters of tpBOA are represented by n 

probability distribution tables. The first table determines the probability distribution p (X0= ri), the 

second one determines conditional probability distribution p (X1= rj|X0= ri), and the others determine 

conditional probability distribution p (Xk= rj|Xk-1= ri, Xk-2= rl). 

cBOA: The BN structure in cBOA is an n-node chain similar to tpBOA, and the predecessor node of 

each node is its parent. The parameters of cBOA are represented by n probability distribution tables. 

The first table determines probability p (X0= ri), and the others determine conditional probability p 

(Xk= rj|Xk-1= ri). 

The pseudocode for parameter learning in the cBOA is shown in Algorithm 4. As can be seen in this 

algorithm, first all the applied rules to the explored promising solutions are preserved as the default 

values of the corresponding node. Afterward, for each state corresponding to that node, the relative 

frequency of each item is computed. 

Algorithm 4. The learning process in the cBOA 

BEGINE 

Input: promising solutions; 

Output: BN; 

Let Slo_path be a set of explored path of solutions in the state space; 

 

While (solution_ length>0)  

       Get new nodei (); 

       While (Slo_path≠∅) 

              Add applied rules to the Slo_path (statei) as the nodei items; 

        End while 

End while 

 While (there is a node) 

       If (nodei is the first node) 

            Get initial node (); 

                  While (Slo_path≠∅) 

                         Get the frequency of each item in the Slo_path (state0); 

                         Item probability= item frequency / the number of selected solutions;  

                  End while 

          Else 

            Get nodei (); 

            Get nodei-1(); 

            While (there is an item in nodei-1) 

                   While (there is an item in nodei) 

                          While (Slo_path≠∅) 

                                 Get the frequency of (itemi-1, itemi) in the Slo_path (statei-1, statei); 

                                 (itemi-1, itemi) probability= frequency of (itemi-1, itemi) / frequency of itemi-1 

                                 in the Slo_path (statei-1); 

                          End while 

                    End while 

             End while 

     End if 

End while             

END 

 

 

4.5. Sampling: In this step, offspring are sampled from the built BN and replaced with the worthless 

solutions. That is, the state space graph is explored from the initial state for a maximum length (or 

until a null state is reached), and in each move, a rule that has the most frequency compared with the 

other applicable rules is applied to the current state. This heuristic leads to the detection of the most 



promising states. The pseudocode for sampling the new solutions in the cBOA is shown in Algorithm 

5. According to this algorithm, first all the applicable rules to the current state are obtained. Then, 

considering the parent value, a matched rule which maximizes the p (X1= r |X0= previous rule name) 

value is selected. 
 

Algorithm 5. The sampling process in the cBOA 

BEGINE 

Input: population; 

Output: new population; 

Let Slo_index be solution count replaced by sampling;   

Let individual be offspring; 

Let max_level be max length of test case; 

Let current rules be a set of all applicable rules to the current state; 

    While (Slo_index< count of the population) 

        Clear individual; 

        Gene_index=0; 

        Current state = initial state; 

        Current rule name=null; 

        Previous rule name=null; 

                    While (current state! = null && Gene_index< max_level) 

  Current rules= current state. Get matches (); 

                      If (current rules is empty) 

                         Return; 

                      End if 

                     If (previous rule name is null)  

Best rule= rule r of current rules by which the value of p(X0 = r) is maximized; 

                    Else 

Best rule = rule r of current rules by which the value of p (X1= r |X0= previous rule name) is 

maximized; 

                     End if 

Individual. Add (the index of Best rule transition); 

Apply Best rule over the current state; 

Do next (); 

Gene_ index++; 

Previous rule name = current state rule name; 

        End while 

Population. Add (Individual); 

End while 

END 

 

4.6. Test reduction: The presence of redundant test cases in the generated test suite may occur due to 

the overlapping of TCs. That is, there exists a subset of TCs which covers all covered test objectives 

of TS. This is a contradictory event to the effectiveness of a test suite in terms of resources and time. 

As a result, the redundant TCs should be eliminated which leads to the test case reduction (also called 

test suite minimization). In this paper, the test suite minimization process is employed to achieve an 

effective test suite. Our minimization process is done in two steps, redundant TC elimination and TC 

length reduction. These steps are described by the following definitions: 

Redundant TC elimination: suppose that 𝑡s is a test suite, tc_coveredobj is the covered objectives of a 

TC with the highest coverage, and tc'_coveredobj is the covered objectives of another TC. Therefore, 

if tc′_coveredobj − tc_coveredobj = ∅ then tc' is redundant. 

TC length reduction: suppose that tc is a TC, π =< s5r1s7r8s1r5 … … . s1r3s9r2 > is the explored 

path of tc, and tc_coveredobj is the covered objectives of tc. In order to reduce the length of tc, 𝜋 is 

shortened to a path from the initial state to the state where all Def_Use rules of tc_coveredobj are 

visited; the remainder is ignored. 

 

 

 



5. Evaluation  

The BOA-based test generation technique is implemented by java in the GROOVE toolset, and to 

evaluate its efficiency, it is compared with the search-based testing [57]. As mentioned in the previous 

sections, our proposed approach explores the state space of the model and checks the selected paths to 

cover the test objectives. Since, one of the state-of-the-art approaches is the model checking based 

testing (MCT) [58], the proposed method is compared with this approach. These approaches already 

are implemented in the GROOVE toolset. To make the comparison fair enough, the same fitness 

function that is reported for these approaches is considered. To show that the results of the BOA 

based approach are significantly different from the others, the results are evaluated by the Wilcoxon 

signed-rank test. Wilcoxon signed-rank test [63] is a non-parametric statistical hypothesis test used to 

compare two related samples. In this test, if the sig. is less than 0.05, it can be concluded that there is 

a significant difference between the two related samples.  

Table 2 shows the initial parameters along with their values to execute the BOA-based approach. The 

learning and sampling rate determines the percentage of selected promising solutions to learn BN and 

sample candidate solutions in each iteration, respectively. The maximum length of test case is L = 50. 

The time limit is set to 30 minutes and results are computed as an average of 10 independent runs of 

each approach. The experiments were run on a PC with an Intel® Core ™ 2 Duo 2 GHz CPU and 2 

GB Memory. 

 
Table 2. The initial parameters for executing the BOA 

Approach Parameters Value 

BOA 

Learning rate 0.4 

Sampling rate 0.5 

Population size 20 

 

5.1. Case studies 

To evaluate the efficiency, the obtained results on three case studies are compared. These case studies 

are the models of the online shopping system [59], the bug tracker system [60], and the travel agency 

system [61]. These systems are modeled through graph transformation using the GROOVE toolset.  

Online shopping system (OSS): An online shopping system is a system for purchasing the products 

electronically over the internet. This system allows a customer to directly view products and select 

goods, submit an order to the seller, and pay a bill using a credit card.  

Travel agency system (TAS): A Travel agency system (TAS) is the process of selling services to the 

customers. This system provides services related to airlines, hotels, railways, tours, and timetables.  

Bug tracking system (BTS): A bug tracking system (BTS) is a software application which tracks the 

history of software bugs in the software development lifecycle. 

Table 3 shows the specifications of the selected case studies including the number of rules and the 

number of test objectives for each criterion. We refer to the Create-Read, Create-Delete, Create-

Update, and dependencies as C1, C2, C3, and C4, respectively. 

 

Table 3. Specifications of the selected case studies  

Case study Rules# Test objectives# 

  Create_Read 

C1 

Create_Delete 

C2 

Create_Update 

C3 

Dependencies 

C4 

Online shopping system 19 28 7 12 47 

Bug tracker system 32 73 13 5 91 

Travel agency system 43 66 10 10 86 

 

 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Electronically
https://en.wikipedia.org/wiki/Service_(economics)


5.2. Experimental results 

Table 4 shows the results of the BOA-based test generation approach in the OSS, BTS, and TAS. In 

this table, the first column is the used BOA, the second column is the selected criterion, and the others 

are dedicated to the median, mean and standard deviation of the achieved coverage in the case studies. 

To show that the BOA-based approach is more efficient than the others, it is compared to the Random 

Testing (RT). Random Testing is a technique that uses Random Search to select test cases. To study 

the effectiveness of the proposed approach, the Random Search from [62] is used. The best results are 

shown in bold. 

Figure 7 shows the achieved coverage in the dependencies criterion for the OSS, TAS, and BTS. 

According to the reported results in Table 4, cBOA is able to completely cover the test objectives for 

the OSS, TAS, and BTS. tpBOA obtains 100% coverage in the Create_Update criterion for the OSS 

and BTS, and in all criteria for TAS. nBOA obtains 100% coverage in the Create_Update and 

Create_Read criterion for TAS, and in Create_Update criterion for BTS. Also, RT obtains 100% 

coverage in the Create_Update criterion for BTS. For the TAS case study, the other results can be 

sorted as follows: tpBOA (100%), nBOA (75%), and RT (69%). For the OSS case study, tpBOA 

(94%) is the second, RT (85%) is the third, and nBOA (70%) is the last. Also, for the BTS case study, 

other results is as follows: tpBOA (92%), nBOA (91%), and RT (75%). 

Table 4 demonstrates that the cBOA is better than the RT and two others in terms of coverage. 

Therefore, to show that the cBOA outperforms the others, the achieved average coverage is evaluated 

by the Wilcoxon signed-rank test. The results of this test are given in Table 5. The ineffective or equal 

cases are shown in bold. As can be seen in this table, the sig. is less than 0.05 in the 25 cases, and in 

the remaining ones, it equals 1; and there is no statistical difference between the cBOA and others in 

terms of coverage. So, it can be concluded that the average coverage of the cBOA is significantly 

different from the others. It is obvious that in all case studies, cBOA generates better results than RT. 

In other words, cBOA improves the coverage of RT per case study as follows: OSS (15%), BTS 

(25%), and TAS (31%).  

    Table 6 shows the running results of the cBOA such as the average coverage and test suite size in 

the Dependencies criterion for the large models of OSS, TAS, and BTS. For these large models, we 

performed Wilcoxon signed-rank test on the results of the cBOA against RT. The results are shown in 

Table 7. As can be seen, the sig for the coverage is less than 0.05 in all cases. Also, the cBOA 

generates better results than RT in every case. 

 

Table 4. Comparison of the coverage achieved by the BOA-based approach and RT 

Approach Criterion 
Case I: OSS  Case II: BTS  Case III: TAS 

Median Mean Deviation  Median Mean Deviation  Median Mean Deviation 

cBOA 

C1 100 100 0  100 100 0  100 100 0 

C2 100 100 0  100 100 0  100 100 0 

C3 100 100 0  100 100 0  100 100 0 

C4 100 100 0  100 100 0  100 100 0 

             

tpBOA 

C1 96 95.4 1.2649  93 94.8 3.7058  100 100 0 

C2 77 77 0  92 94.4 3.8643  100 100 0 

C3 100 100 0  100 100 0  100 100 0 

C4 94 92.8 1.9321  92 92.5 1.7159  100 100 0 

             

nBOA 

C1 72 73.4 14.9383  93 94.4 2.9514  100 100 0 

C2 55 54 24.0159  84 85 7.0047  60 70 14.1421 

C3 70.5 75.3 11.4119  100 100 0  100 100 0 

C4 70 66.4 9.0823  91 89 4.7714  75 76 8.7787 

             

RT 

C1 85 86.3 8.6545  78.5 80.5 8.6827  91 92 7.7316 

C2 77 73.9 5.6853  78 73.5 14.9759  86.5 85.7 9.5574 

C3 92 85.2 30.0178  100 100 0  87.5 85.7 14.4918 

C4 85 83.5 9.2286  75 75.5 12.6037  69 67.3 2.5841 

 



Table 5. The results of the Wilcoxon signed-rank test 

(Z: z-score is the signed number of standard deviations by which the value of an observation is above the mean value of what is being 

observed or measured. a Based on negative ranks.) 

Approach Criterion 

Case I: OSS  Case II: BTS  Case III: TAS 

z 
Asymp. Sig.  

(2-tailed) 
 z 

Asymp. Sig. 
 (2-tailed) 

 z 
Asymp. Sig. 
 (2-tailed) 

cBOA- tpBOA  

C1 a2.972- 0.003  a2.530- 0.011  a0.000 1.000 

C2 a3.162- 0.002  a2.646- 0.008  a0.000 1.000 

C3 a0.000 1.000  a0.000 1.000  a0.000 1.000 

C4 a2.919- 0.004  a2.844- 0.004  a0.000 1.000 

          

cBOA - nBOA  

C1 a2.810- 0.005  a2.828- 0.005  a0.000 1.000 

C2 a2.836- 0.005  a2.754- 0.006  a2.762- 0.006 

C3 a2.850- 0.004  a0.000 1.000  a0.000 1.000 

C4 a2.840- 0.005  a2.820- 0.005  a2.803- 0.005 

          

cBOA - RT 

C1 a2.818- 0.005  a2.805- 0.005  a2.207- 0.027 

C2 a2.913- 0.004  a2.807- 0.005  a102.8- 0.005 

C3 a2.214- 0.027  a0.000 1.000  a2012.- 0.028 

C4 a2.814- 0.005  a2.809- 0.005  a712.8- 0.004 

 
Table 6. Running details of the cBOA approach in the selected case studies 

Case study Host# 
Coverage  Test case#  Test suite length 

Median Mean Deviation  Median Mean Deviation  Median Mean Deviation 

OSS 

5 90 90.4 3.5024  5 4.8 1.0328  124 125.9 24.3011 

10 86 86 3.6515  5 4.8 1.1353  122 115.4 26.6091 

20 68 65.4 11.3940  5 4.9 0.7379  119 114.8 15.2447 

25 66 67.5 6.4507  5 5.4 0.5164  121 123.7 11.4120 
             

BTS 

5 91 87.7 5.4171  7.5 7.8 1.3984  298.5 308.3 54.2198 

7 87.5 86.5 5.6618  8.5 8.9 1.1005  366.5 367.4 53.1961 

10 81.5 80.6 3.5653  9 8.9 1.1972  353 350 46.0156 

15 78 77.8 1.9322  9.5 9.9 1.9692  354 375.3 73.2424 
             

TAS 

4 100 99.2 1.9322  7 6.6 0.6992  277.5 265.7 26.7542 

9 90.5 88.9 5.5066  7.5 8 1.3333  296 313.7 53.6926 

12 86 86.4 5.0596  10 10 0.6667  391 386.6 23.3057 

20 73 71.9 4.6774  9.5 9.4 0.9661  350 353.5 31.1956 

 

Table 7. Comparison of running results of the cBOA approach against RT for generating test suite 

Case study Host# 

Coverage Test suite length 

cBOA 

(Median) 

RS 

(Median) 
z 

Asymp. Sig. 

(2-tailed) 
 cBOA 

(Median) 

RS 

(Median) 
z 

Asymp. Sig. 

(2-tailed) 

 OSS 

5 90 82 -2.347a 0.019  124 304 -2.803a 0.005 

10 86 80 -2.148a 0.032  122 298.5 -2.807a 0.005 

20 68 60 -2.431a 0.015  119 317 -2.805a 0.005 

25 67 58 -2.040 a 0.041  121 263.5 -2.803a 0.005 

           

BTS 

5 91 70 -2.666a 0.008  298.5 722 -2.805a 0.005 

7 87.5 68.5 -2.499a 0.012  366.5 796 -2.803a 0.005 

10 81.5 71 -2.524 a 0.012  353 826 -2.805a 0.005 

15 78 69 -2.809a 0.005  354 867.5 -2.803a 0.005 

           

 TAS 

4 100 67 -2.803 a 0.005  277.5 679.5 -2.805a 0.005 

9 90.5 67 -2.805 a 0.005  296 781 -2.803a 0.005 

12 86 68 -2.701a 0.007  391 709.5 -2.803a 0.005 

20 73 65 -2.809a 0.005  350 805.5 -2.803a 0.005 

 
 



 
Figure 7. The coverage achieved by the BOA-based approach and RT 

 

Tables 8, 9, and 10 display the average test suite size of the RT and BOA-based approaches. In these 

tables, the first column is the selected approach, and the second one is the coverage criterion. The 

third, fourth, and fifth columns provide the number of test cases, test case length, and test suite size, 

respectively. According to Table 4, the cBOA is the best proposed approach, because it is able to 

completely cover the test objectives for the case studies OSS, TAS, and BTS. Therefore, to find a 

significant difference between the cBOA against RT and two others for the cases in which there is not 

a considerable difference in coverage (based on Table 5, the sig. equals 1.000 and z equals 0.000a), 

the running results of the test suite size are evaluated by Wilcoxon signed-rank test. The outcomes of 

this test are given in Table 11. The ineffective or equal cases are shown in bold. According to Table 

11, it can be concluded that there is no significant difference between the cBOA and others in terms of 

test suite size. The results are reported by the box-plot in Figure 8. The BOA-based approach 

generates test suites with a smaller size than RT, in accordance with tables 8 to 10 (the same method 

is exploited to minimize the RT test suite). 

 
 

Table 8. Comparison of the size of the generated test suite by the BOA-based and RT approaches for the OSS case 

study 

Approach Criterion 
Test case#  Test case length  Test suite length 

Median Mean Deviation  Median Mean Deviation  Median Mean Deviation 

 
cBOA 

C1 3 3.1 0.5676  25 25 0  75 77.5 14.1912 

C2 2 2.4 0.5164  23 22.6 2.1705  50 54 11.4988 

C3 2 1.8 0.6325  30 29.9 0.3162  60 53.7 18.3548 

C4 3 3 0.6667  25 25 0  75 75 16.6667 

             

 
tpBOA 

C1 3 2.9 0.5676  25 25 0  75 72.5 14.1912 

C2 2 2.4 0.5164  23 22.75 1.3794  49 54.4 11.0172 

C3 2 1.7 0.4830  29.75 29.25 1.0341  58 49.7 14.1739 

C4 3 3.1 0.8756  25 25 0  75 77.5 21.8899 

             

nBOA 

C1 2.5 2.3 0.8233  25 24.7 0.9487  62.5 57.2 21.1229 

C2 2 1.8 0.6325  23.5 23.1 1.9692  45 41.7 15.5995 

C3 1 1.2 0.4216  29 28.9 0.8756  29 34.7 12.3112 

C4 2 2.1 0.7397  25 25 0  50 52.5 18.4466 

             

RT 

C1 8 8 1.2472  21.8 21.4 1.9406  169.5 167.6 20.3208 

C2 4 3.7 0.4830  18.3 18.7 1.9381  69.5 68.5 5.8737 

C3 5.5 5.6 1.2649  27.2 26.9 1.8848  144 149.1 29.4711 

C4 7 7.5 1.2693  20.7 20.9 1.2429  143.5 156.7 28.7211 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

OSS BTS TAS
av

er
ag

e 
co

v
er

ag
e 

%

cBOA

tpBOA

nBOA

RT



Table 9. Comparison of the size of the generated test suite by the BOA-based and RT approaches for the BTS case 

study 

Approach Criterion 
Test case#  Test case length  Test suite length 

Median Mean Deviation  Median Mean Deviation  Median Mean Deviation 

 

cBOA 

C1 4 5 1.6330  50 50 0  200 250 81.6497 

C2 4.5 4.4 0.9661  41 39.2 5.8080  166 169 35.5084 

C3 3 3.2 0.6325  11.5 11.4 1.6465  36 36 6.5490 

C4 6 5.8 0.4216  40 40 0  240 232 16.8655 

             

 

tpBOA 

C1 4 3.9 0.8756  50 50 0  200 195 43.7798 

C2 4 3.8 0.6325  41.25 41.34 1.5890  161 157.05 27.1364 

C3 3 3.3 0.4830  11 11 1.7638  34.5 35.8 4.8944 

C4 7 6.4 1.2649  40 40 0  280 256 50.5964 
             

nBOA 

C1 4 3.8 0.4216  50 50 0  200 190 21.0819 

C2 4 3.9 0.3162  41 41.3 1.8288  164 161.1 15.2494 

C3 3 2.7 0.4830  12.5 12.2 0.9189  33 32.7 5.1218 

C4 5.5 5.7 1.0593  40 40 0  220 228 42.3740 
             

RT 

C1 11 10.8 2.4404  42 41.6 3.4774  457.5 450.4 93.7517 

C2 7.5 7.4 0.6992  35.1 34.7 3.8846  253.5 255.9 31.0821 

C3 4 4.2 0.6325  10 9.7 1.8949  39.5 40.4 9.3714 

C4 13 14.2 1.9322  34.1 33.5 2.1834  452.5 473.5 65.5680 

 

 

Table 10. Comparison of the size of the generated test suite by the BOA-based and RT approaches for the TAS case 

study 

Approach Criterion 
Test case#  Test case length  Test suite length 

Median Mean Deviation  Median Mean Deviation  Median Mean Deviation 

 

cBOA 

C1 6 5.6 1.3499  40 40 0  240 224 53.9959 

C2 3 2.9 0.7379  27 26.3 1.9465  79.5 75.9 18.5200 

C3 4 3.7 0.8233  27.5 27.3 1.9465  110 100.7 22.4700 

C4 6 5.9 0.7379  40 40 0  240 236 29.5146 

             

 

tpBOA 

C1 6 5.5 0.7071  40 40 0  240 220 28.2843 

C2 3 2.9 0.5676  26 26.73 1.9195  78 77.29 14.5693 

C3 3 3 0.6667  27.45 26.98 1.8091  79.95 80.81 17.1942 

C4 6 5.9 1.1005  40 40 0  240 236 44.0202 
             

nBOA 

C1 6 5.6 0.8433  40 40 0  240 224 33.7310 

C2 2 2.1 0.5676  27 25.6 3.1693  54 54.3 18.0373 

C3 3.5 3.4 0.6992  27.5 27.4 1.4298  94 93.6 21.7419 

C4 3 2.9 0.8756  40 40 0  120 116 35.0238 

             

RT 

C1 12 11.9 2.2336  30 29.7 2.5382  352.5 351.3 58.6308 

C2 5 5.4 0.5164  20.4 20.5 1.8667  111.5 110.6 14.8189 

C3 8 7.8 1.0328  21.8 21.9 2.0339  168 170.4 24.8202 

C4 14 14.3 1.5670  25.4 24.9 3.1282  342 359 66.0858 

 

Table 11. The results of the Wilcoxon signed-rank test 

(Z: z-score is the signed number of standard deviations by which the value of an observation is above the mean value of what is being 

observed or measured. a Based on negative ranks.) 

Case study Criterion Approach  
 Test suite length 

 z Asymp. Sig. (2-tailed) 

OSS C3 tpBOA  -0.658a 0.511 
      

BTS 

C3 tpBOA  -0.422a 0.673 

C3 nBOA  -0.611a 0.541 

C3 RT  -0.918a 0.359 
      

TAS 

C1 tpBOA  -0.345a 0.730 

C2 tpBOA  -0.459a 0.646 

C3 tpBOA  -1.383a 0.066 

C4 tpBOA  0.000a 1.000 

C1 nBOA  0.000a 1.000 

C3 nBOA  -1.067a 0.286 

 



OSS-C3 

 

BTS-C3 

 
  

TAS-C1 

 

TAS-C3 

 
  

TAS-C2 

 
C2 

TAS-C4 

 
C4 

Figure 8. The box plots of the average test suite size for the cases with the same coverage 

 

 

5.3. Comparison with other testing techniques 

In this section, to evaluate the efficiency of the BOA-based approach, it is compared with the Model 

checking- based test generation and search-based testing in terms of the achieved coverage. 

5.3.1. Model checking-based test generation approach (MCT): In the MCT technique, a model of the 

system and a set of test objectives as trap/reachability properties is provided to the model checker. 

The model checker detects a counterexample/witness path to violate/satisfy the property. A 

counterexample/witness is a path from the initial state to a state that the property is refused/verified. 

These paths can be used as TCs. 

In [58], the authors proposed an automatic test case generation approach for data flow testing using 

model checking. In this approach, test objectives are extracted from the program source code. To 

compare our approach with the MCT, the MCT is implemented in the GROOVE to make the 

comparison fair enough. In this implemented MCT, test objectives are extracted dynamically from the 

model and they are expressed as a set of trap properties. For every test objective that is not covered, 

equivalent trap property is provided to the model checker, and the state space is verified for it. If the 

given property is satisfied, the model checker generates a counterexample. Afterward, this 

counterexample is added to the test suite if it is a def-clear path. On the other hand, if the property is 

not satisfied or state space explosion occurs, the current test objective is marked as untestable. The 

strategy to search counterexample is the Breadth-first Search (BFS). This process is repeated until the 

termination criteria such as the satisfaction of the properties, state space explosion, or reaching the 

time limit of 30 minutes occurs. 

Table 12 reports the results of comparing the cBOA with MCT for the host graphs of different sizes. 

The coverage criterion is C4, and the other execution settings are the same as the cBOA. As shown in 



this table, in all cases, MCT fails to generate the test suite due to the running out of memory. The 

results confirm that the proposed method is more scalable than MCT because as the state space is 

getting larger, MCT fails to explore it due to the exponential memory usage. 

 

Table 12. Comparison of the coverage achieved by the cBOA and MCT 

Case study Host# 
 Test generation strategies 

 MCT  cBOA 

   Median Mean Deviation 

OSS 

1  Out of memory  100 100 0 

5  Out of memory  90 90.4 3.5024 

10  Out of memory  86 86 3.6515 

20  Out of memory  68 65.4 11.3940 

25  Out of memory  66 67.5 6.4507 
        

BTS 

1  Out of memory  100 100 0 

5  Out of memory  91 87.7 5.4171 

7  Out of memory  87.5 86.5 5.6618 

10  Out of memory  81.5 80.6 3.5653 

15  Out of memory  78 77.8 1.9322 
        

TAS 

1  Out of memory  100 100 0 

4  Out of memory  100 99.2 1.9322 

9  Out of memory  90.5 88.9 5.5066 

12  Out of memory  86 86.4 5.0596 

20  Out of memory  73 71.9 4.6774 

 

5.3.2. Search-based testing: The recent work related to our proposed approach is the search-based 

testing [57]. In this work, a search-based method is proposed for integration testing of systems 

specified through GTS. To meet the challenges of the MCT approach, the proposed method employs 

several heuristics like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm 

(BA), Gravitational Search Algorithm (GSA), and a hybrid algorithm using GA and PSO (HGAPSO) 

to generate TCs using the GROOVE toolset. Table 13 shows the initial parameters along with their 

values to execute the search algorithms. It should be noted that these values are suitable value for 

these parameters which are reported in [57]. In this work, test objectives are extracted dynamically 

from the model, and each TC is a path within the state space. In different generations, if a path is a 

def-clear path, the sequence is added to the test suite. Experimental results show that this test 

generation method has significantly higher coverage than MCT and model-based testing using visual 

contracts. The results confirm that the hybrid algorithm is faster and more scalable than the others. 

Table 14 compares the achieved coverage of the proposed approach and search-based testing for the 

three case studies. Time is considered 30 minutes and the coverage criterion is C4. According to the 

reported results, the cBOA is able to completely cover the test objectives in the case studies OSS, 

TAS, and BTS. GA and HGAPSO achieve full coverage in the OSS case study. As shown in Table 

14, in other cases, the cBOA has better coverage than others. So, it can be concluded that if a fewer 

test budget is set, the cBOA achieves better results. 

 

 

 

 

 

 

 

 

 

 

 



Table 13. The initial parameters for executing search-based testing 

Algorithm parameter value 

 Population size 30 

Maximum of iteration 100 

 Maximum length of test 50 

 Maximum number of test 15 

Genetic Algorithm (GA) Mutation rate 0.01 

 Cross over rate 0.6 

Particle Swarm Optimization (PSO) W 0.8 

C, C ’ 0.2 

Maximum velocity 0.2 

Bat Algorithm (BA) Min frequency 0 

Max frequency 100 

Loudness 25 

Plus rate 0.5 

Gravitational Search Algorithm (GSA) G0 100 

Alpha 2 

 

Table 14. Comparison of coverage achieved by the cBOA and the search-based testing 

Approach 
Case I: OSS  Case II: BTS  Case III: TAS 

Median Mean Variance  Median Mean Variance  Median Mean Variance 

cBOA 100 100 0  100 100 0  100 100 0 

HGAPSO 100 100 0  85.71 87.68 33.75  98.25 96.5 21.65 

GA 100 100 0  84.61 85.15 30.89  100 98.25 10 

PSO 91.48 91.9 9.85  81.31 82.081 17.7  84.3 84.99 20.85 

BA 93.61 93.39 6.49  77.47 77.87 23.22  85.46 85.11 23.38 

GSA 91.48 92.33 11.28  77.47 78.56 16.97  87.2 87.2 9.01 

 

    Here, for the cases in which no significant difference is found in coverage, a comparison of the 

convergence speed between the search algorithms and cBOA is presented. The time limit is set to 30 

minutes and the coverage criterion is C4. According to Figure 9, the convergence speed for the GA is 

better than HGAPSO and cBOA; there is not much difference between them. However, if a fewer test 

budget (time) were set, cBOA would reach to better coverage. 

 
Figure 9. Comparison of the convergence speed  

 

6. Conclusion and future works 

The model checking-based test generation approach is a proper technique to automatically generate 

the executable test cases from the models by exploring the state space. However, the limitation of this 

technique in exploring paths to satisfy a set of test objectives is the state space and test case explosion. 

Recently, methods have been proposed using meta-heuristic and evolutionary approaches to manage 

the state space explosion. Consequently, a portion of the model state space can be explored by the 

model checker tools to achieve the test objectives.  

In this paper, a novel approach is proposed using the Bayesian optimization algorithm and model 

checker to automatically generate the test cases for the systems specified through graph 

0

20

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

av
er

ag
e 

fi
tn

es
s

time

cBOA

GA

HGAPSO



transformation. The BOA-based test generation technique is implemented by java programming 

language in the GROOVE toolset, and to evaluate its efficiency, it is compared with the search-based 

testing, random testing, and model checking based testing. In this approach, the structure of the built 

BN is a fixed chain and only the parameters are learned. 

The experiments show that the cBOA structure outperforms the other two suggested structures in 

terms of coverage and convergences speed. The advantages of the cBOA over the other methods can 

be listed as follows:  

 if a fewer test budget is set, the cBOA achieves better results than the others. 

 it is faster than search-based testing. 

 it obtains better results than random testing in terms of coverage and test suite size. 

 it obtains better results than search-based testing in terms of coverage. 

 it obtains better results than the others in complex systems. 

 it explores a fewer number of states than the model checking-based test generation approach 

 

    The proposed approach has a limitation. In a complex system maintaining the conditional 

probability tables requires more memory space. 

    In this paper, we have assumed that the structure of learning network is fixed. In the literature, there 

are algorithms can be used to searching for a good Network. As a future research, searching over the 

networks can be considered in order to maximize the value of a scoring metric.  

 

References 

[1] P. Ammann and J. Offutt, "introduction to software testing", Cambridge university press, New York, ISBN-

13 978-0-511-39330-3, 2008. 

[2] V.M Sumalatha and G.S.V.P Raju, "Model Based Test Case Optimization of UML Activity Diagram using 

Evolutionary Algorithms", International Journal of Computer Science and Mobile Application, Vol.2, Issue.11, 

2014, pp.131- 142.  

[3] M. Utting, B. Legerad, F. Bouquet, E. Fourneret, F. Peureux and A. Vernotte, "Recent Advances in Model-

Based Testing," in Advances in Computers, Vol. 101, A. Memon, Ed., Elsevier, 2016, pp. 53-120. 

[4] M. Utting, A. Pretschner and B. Legeard, "A taxonomy of model-based testing approaches", Software 

Testing, Verification and Reliability, 2011, published online in Wiley Online Library (wileyonlinelibrary.com). 

DOI: 10.1002/stvr.456. 

[5] S. Colin, B. Legeard, F. Peureux, "Preamble computation in automated test case generation using constraint 

logic programming", Journal of Software Testing, Verification and Reliability, Vol.14, Issue.3, 2004, pp. 213–

235. 

[6] J. Dick and A. Faivre, " Automating the generation and sequencing of test cases from model-based 

specifications", Proceedings of the 1st International Symposium of Formal Methods Europe, Odense, Denmark, 

vol. 670, 1993, pp. 268–284. 

[7] S. Shamshiri, J. Rojas, G. Fraser and P. McMinn, "Random or Genetic Algorithm Search for Object-

Oriented Test Suite Generation?", in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary 

Computation, New York, NY, USA, 2015. 

[8] P. McMinn," Search-based software test data generation: A survey", Journal of Software Testing, 

Verification and Reliability, vol.14, Issue. 2, 2004, pp. 105–156.   

[9] S. Ali, M. Iqbal, A. Arcuri and L. Briand, "A search-based OCL constraint solver for model-based test data 

generation," in Proceedings of International Conference on Quality Software, Madrid, 2011. 

[10] D. Clarke, T. Jéron, V. Rusu, E. Zinovieva, "A symbolic test generation tool. Tools and Algorithms for the 

Construction and Analysis of Systems (TACAS’02)", Lecture Notes Computer Science, vol. 2280, Springer: 

Berlin,2002, pp. 470–475. 

[11] M. Schnelte and B. Güldali, "Test Case Generation for Visual Contracts Using AI Planning”, conformance 

Informatik 2010: Service Science – Neue Perspektiven für die Informatik, Beiträge der 40. Jahrestagung der 

Gesellschaft für Informatik e.V. (GI), Band 2, 27.09. 2010, Leipzig. 



[12] S. Mohalik, A. Gadkari, A. Yeolekar, K. Shashidhar and S. Ramesh, "Automatic test case generation from 

Simulink/State flow models using model checking," Journal of Software Testing, Verification & Reliability, vol. 

24, no. 2, 2014, pp. 155–180.  

[13] A. Offutt, S. Liu, A. Abdurazik and P. Ammann, "Generating test data from state-based specifications", 

Journal of Software Testing, Verification and Reliability, vol.13, Issue.1, 2003, pp. 25-53. 

[14] C. Baier, J.P Katoen, "Principles of Model Checking", The MIT Press, Cambridge, ISBN-978-0-262-

02649-9, 2008. 

[15] H. Hong, I. Lee, O Sokolsky and H. Ural, " A temporal logic based theory of test coverage and generation", 

Proceedings of the TACAS’02, 2002, pp. 327–341. 

[16] R. Yousefian, V. Rafe and M Rahmani, " A heuristic solution for model checking graph transformation 

systems”, Applied Soft Computing, Vol.24, Issue. C, 2014, pp. 169-180. 

[17] V. Rafe, M. Moradi, R. Yousefian, A. Nikanjam, " A meta-heuristic approach for automated refutation of 

complex software systems specified through graph transformations", Applied Soft Computing, Vol. 33, 2015, 

pp. 136–149. 

[18] G. Francesca, A. Santone, G. Vaglini and M.L. Villani, "Ant colony optimization for deadlock detection in 

concurrent systems", Journal of Computer Software and Applications Conference (COMPSAC). IEEE, 2011, 

pp. 108–117. 

[19] E. Pira, V. Rafe, A. Nikanjam," Deadlock detection in complex software systems specified through graph 

transformation using Bayesian optimization algorithm”, The Journal of Systems and Software, No.131, 2017, 

pp.181-200. 

[20] M. Pelikan, "Probabilistic Model-Building Genetic Algorithms", Hierarchical Bayesian Optimization 

Algorithm, Studies in Fuzziness and Soft Computing, 170, Springer Berlin Heidelberg, 2005, pp. 13–30. 

[21] Pelikan, Martin, David E. Goldberg, and Erick Cantú-Paz, "BOA: The Bayesian optimization algorithm." 

Proceedings of the genetic and evolutionary computation conference GECCO-99. Vol. 1. 1999. 

[22] J. Pearl, "Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference", 2014. Morgan 

Kaufmann. 

[23] R. Heckel, "Graph transformation in a Nutshell", Electr. Notes Theor. Comput.Sci. (ENTCS), vol. 148, 

issue. 1, 2006, pp. 187–198. 

[24] H. Kastenberg and A Rensink, "Model Checking Dynamic States in GROOVE", International SPIN 

Workshop on Model Checking of Software, Springer, Berlin Heidelberg, 2006, pg. 299–305. 

[25] H. Ehrig, G. Engels, F. Presicce and G. Rozenberg, "Graph Transformations," in Second International 

Conference on Graph Transformation, Rome, Italy, 2004. 

[26] G. Taentzer, 'AGG: a graph transformation environment for modeling and validation of software", In: 

International Workshop on Applications of Graph Transformations with Industrial Relevance. Springer, Berlin 

Heidelberg, 2003, pp. 446–453. 

[27] D. Varro and A. Balogh, "The model transformation language of the VIATRA2framework", Sci. Comput. 

Program, Vol. 68, Issue. 3, 2007, pp. 214–234. 

[28] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, "NUSMV: A New Symbolic Model Verifier", In 

CAV ’99: Proceedings of the 11th International Conference on Computer Aided Verification, London, 

UK,1999, pp. 495–499. 

[29] P. Larranaga, J.A. Lozano, "Estimation of Distribution Algorithms: A New Tool for Evolutionary 

Computation", Springer Science & Business Media, 2001. 

[30] M. Mlynarski, "Model-Based Testing: Achievements and Future Challenges", University of Paderborn, s-

lab – Software Quality Lab, Paderborn, Berlin, Germany. 

[31] R. Heckel, T. Ahmed Khan and R. Machado, "Towards Test Coverage Criteria for Visual Contracts," in 

Proceedings of the Tenth International Workshop on Graph Transformation and Visual Modeling Techniques, 

Berlin, 2011. 

[32] M. Badri, L. Badri and M. Naha, "A use case driven testing process: towards a formal approach based on 

UML collaboration diagrams", Proceedings of the 3rd International Workshop on Formal Approaches to Testing 

of Software FATES 2003, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, pp. 223–

235. 



[33] S. Ali, L.C. Briand, M.J Rehman, H. Asghar, M. Zohaib Z. Iqbal and A. Nadeem, "A state-based approach 

to integration testing based on UML models", Information and Software Technology, vol.49, 2007, pp.1087–

1106. 

[34] M.E. Vieira, M.S. Dias and D.J. Richardson, "Object-oriented specification-based testing using UML state-

chart diagrams", in: Proceedings of the Workshop on Automated Program Analysis, Testing, and Verification 

(at ICSE’2000), June 2000. 

[35] N. Khurana, R.S Chillar, " test Case Generation and Optimization using UML Models and Genetic 

Algorithm", Procedia Computer Science, vol. 57, 2015, pp. 996 – 1004. 

[36] A. Abdurazik and J. Offutt, "Using UML collaboration diagrams for static checking and test generation", 

in: Proceedings of the Third International Conference on the Unified Modeling Language (UML’00), York, UK, 

October 2000, pp. 383–395. 

[37] S. Gnesi, D. Latella and M. Massink, "Formal test-case generation for UML state charts", Proceedings of 

the 9th IEEE International Conference on Engineering Complex Computer Systems (ICECCS’04), 2004, pp. 

75–84. 

[38] A.S.M. Sajeev and B. Wibowo, " UML modeling for regression testing of component based systems", 

Electronic Notes Theoretical Computer Science, vol. 82, issue.6, 2003, pp. 1–9. 

[39] L. Gallagher and J. Offutt, "Integration Testing of Object-oriented Components Using FSMS: Theory and 

Experimental Details", GMU Technical Report ISE-TR-04-04, July 2004. 

[40] L. Gallagher, J. Offutt and A. Cincotta, "Integration testing of object-oriented components using finite state 

machines", software testing, verification and reliability, Test. Verif. Reliab. Vol. 16, 2006, pp. 215–266. 

[41] L. Gönczy, R. Heckel and D. Varró, " Model-Based Testing of Service Infrastructure Components", In 

Testing of Software and Communicating Systems, 19th IFIPTC6/WG6.1 International Conference, TestCom 

2007, 7th International Workshop, FATES 2007, Tallinn, Estonia, June 26-29, 2007, Proceedings. Lecture 

Notes in Computer Science 4581, pp. 155–170.  

[42] O. Runge, T. Ahmed Khan and R. Heckel, "Test Case Generation Using Visual Contracts", Electronic 

Communications of the EASST, Vol.58, 2013, Proceedings of the 12th International Workshop on Graph 

Transformation and Visual Modeling Techniques (GTVMT 2013). 

[43] B. Güldali, M. Mlynarski, A. Wübbeke and G. Engels, " Model-Based System Testing Using Visual 

Contracts", In 35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2009, 

Patras, Greece, August 27-29, 2009, Proceedings. Pp. 121–124. IEEE Computer Society, 2009. 

[44] X. Peng and L. Lu," A New Approach for Session-based Test Case Generation by GA", IEEE 3rd 

International Conference on Communication Software and Networks, 2011. 

[45] V.M. Sumalatha and G.S.V.P. Raju, "An Model Based Test Case Generation Technique Using Genetic 

Algorithms", The International Journal of Computer Science & Applications (TIJCSA), Vol. 1, No. 9, 2012, 

pp.46-57. 

[46] J Wegener, A Baresel, “Evolutionary test environment for automatic structural testing”, Information and 

Software Technology, Vol.43, Issue.14, 2001, pp.841-854. 

[47] R. Sagarna, J.A. Lozano," Scatter Search in software testing, comparison and collaboration with Estimation 

of Distribution Algorithms", European Journal of Operational Research, Vol. 169, 2006, pp. 392–412. 

[48] R. Sagarna, A. Arcuri and X. Yao, "Estimation of Distribution Algorithms for Testing Object Oriented 

Software", IEEE Congress on Evolutionary Computation,2007. 

[49] Z. Fang and H. Sun. "A software regression testing strategy based on Bayesian network", International 

Conference on Computational Intelligence and Software Engineering (CiSE), IEEE, 2010. 

[50] Z. Yang, Z. Yu, and C. Bai, “The approach of graphical user interface testing guided by Bayesian model”, 

Lecture Notes in Electrical Engineering 2014, pp.385–393. 

[51] A.S. Andreou and S.P. Chatzis, "software defect prediction using doubly stochastic Poisson processes 

driven by stochastic belief networks", The Journal of Systems and Software, Vol.122,2016, pp. 72-82. 

[52] S. Wagner, " A Bayesian network approach to assess and predict software quality using activity-based 

quality models", Information and Software Technology, vol. 52, 2010, pp. 1230–1241. 

[53] C.G Bai, "Bayesian network based software reliability prediction with an operational profile", The Journal 

of Systems and Software, vol.77, 2005, pp. 103–112. 

https://ieeexplore.ieee.org/xpl/conhome/5993482/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5993482/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4424445/proceeding
https://www.researchgate.net/journal/1876-1100_Lecture_Notes_in_Electrical_Engineering


[54] C.G. Bai, Q.P. Hu, M. Xie and S.H. Ng, "Software failure prediction based on a Markov Bayesian network 

mode", The Journal of Systems and Software, vol. 74, 2005, pp. 275–282. 

[55] A. Nikanjam, A. Rahmani, "Exploiting bivariate dependencies to speedup structure learning in Bayesian 

optimization algorithm", J. Comput. Sci. Tech. vol. 27, no. 5, 2012, pp. 1077–1090. 

[56] K. Jebari, M. Madiafi," Selection Methods for Genetic Algorithms", International Journal of Emerging 

Sciences, vol. 3, no. 4, 2013, pp. 333-344. 

[57] A. Kalaee, V. Rafe, “Model-based test suite generation for graph transformation system using model 

simulation and search-based techniques”, Information and Software Technology, vol.108, 2019, pp.1-29. 

[58] S. Ting, K. Wu, M. Weikai, P. Geguang, H. Jifeng, C. Yuting, S. Zhendong, “A survey on data-flow 

testing”, ACM Comput. Surv. vol. 50 (1) (2017) 1–35. 

[59] G. Engels, B. G¨uldali, M. Lohmann, “Towards model-driven unit testing”, International Conference on 

Models in Software Engineering Berlin, Heidelberg, 2006. 

[60] O. Runge, T. Khan, R. Heckel, “Test case generation using visual contracts”, in: Proceedings of the 12th 

International Workshop on Graph Transformation and Visual Modeling Techniques (ECEASST), 2013. 

[61] V. Rafe, “Scenario-driven analysis of systems specified through graph transformations”, J. Visual Lang. 

Comput., vol. 24 (2) (2013) 136–145. 

[62] A. Arcuri, L. Briand, “A practical guide for using statistical tests to assess randomized algorithms in 

software engineering”, in: Proceedings of the 33rd International Conference on Software Engineering, New 

York, NY, USA, 2011. 

[63] Wilcoxon. F, “Individual comparisons by ranking methods”, Biom. Bull. Vol. 1 (6), 1945, pp. 80–83. 


