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Abstract—Illegal, unreported and unregulated (IUU) fishing
undermines collective efforts to create a global model for sustain-
able fishing. Countering IUU fishing is an urgent priority given
world population growth and increasing dependence on ocean-
sourced food. This paper examines deep learning methods for the
classification of fishing vessels with the intent to determine illicit
fishing operations. This is achieved through supervised learning
with highly irregular time series data in the form of signals
from the automatic identification system (AIS). To deal with the
intermittent frequency of AIS signals, two separate approaches
have been followed: feature engineering with zero padding and
linear interpolation. Fundamentally, this work suggests there
exists a distinct relationship between vessel movement patterns
and method of fishing. Two neural network architectures: stacked
bidirectional GRUs and 1D CNNs with residual connection
blocks, are leveraged on each data pipeline to produce four
sets of results. The GRU with feature engineering achieves 95%
accuracy despite severe class imbalance in the large datasets.
The system can classify a vessel’s fishing method over 24 hours
in real-time to monitor behaviour in marine protected areas and
detect gear discrepancies, safeguarding fish stocks in the process.

Keywords—Deep learning, machine learning, data mining,
supervised learning, automatic identification system, time series
data, feature engineering, illegal fishing

I. INTRODUCTION

Global demand for protein as a source of sustenance is
increasing rapidly. The fishing industry is expanding to meet
this growing demand. With this expansion, illegal, unreported
and unregulated (IUU) fishing is catastrophically mitigating
attempts to create a global model for sustainable fishing [1].
Consequently, global food security is at an ever increasing
level of risk. Research suggests that IUU fishing accounts for
between 20% to 35% of wild caught seafood [2]. The resultant
economic loss and environmental damage [3], coupled with
the threat to global food security make the prevention of IUU
fishing a pressing environmental and economic matter.

This article is an examination of deep learning methods for
the classification of fishing vessels through supervised learning
with irregularly sampled, multivariate time series data, with the
intent to determine illicit fishing operations. The stochastic
nature of the data generated by the automatic identification
system (AIS) leads to the first of two critical problems to be

solved, processing irregularly sampled time series data. The
second, is proving there exists a distinct relationship between
the movement pattern of a vessel and it’s method of fishing.

Thus, the core of the proposed system is identifying patterns
in temporal geospatial AIS data. Ships that are engaged on
international voyages and have a gross tonnage of 300 or
more, as well as cargo ships not engaged on international
voyages and passenger ships of any size, with a gross tonnage
of 500 or more, are required to fit an AIS transponder [4].
The transponder broadcasts messages that contain the vessel’s
maritime mobile service identity (MMSI), GPS coordinates,
course and speed. These messages are received terrestrially
and by satellite. The data for this research project has been
provided by the Global Fishing Watch (GFW), an interna-
tional, independent non-profit organisation. AIS signals are
transmitted randomly within varying time intervals depending
on speed or course. The sampling frequency of the messages
is numerous and irregular. Due to the large volume of data
generated by the AIS, a clear path has emerged in the form
of deep learning for the task at hand, deep learning models
being most effective when trained on large quantities of data.

Fishing vessels are classified based on fishing method
according to six classes: drifting longlines, fixed gear, pole
and line, purse seines, trawlers and trollers. By categorising
vessels into one of the proposed classes based solely on
AIS data collected over a 24-hour period, the system can be
used to identify fishing behaviour with a finite quantity of
data. As a result, the technology can be leveraged in real-
time by fishing authorities to locate suspicious fishing activity
in maritime protected areas or locate discrepancies between
registered fishing geartype and the model’s observed geartype.

For the classification process to be successful, a deep learn-
ing model proven to be effective at learning from time series
data must be selected. This proposal has therefore leveraged
two neural network models against each other. The natural
choice for modelling time series data would be a recurrent
neural network (RNN) due to its ability to retain memory
within sequences. However, a standard RNN has not been
chosen due to the exploding/vanishing gradient problem. To
combat this, new gated RNN models have been developed such
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as gated recurrent units (GRU) and long short-term memory
(LSTM), the former of which has been selected as the first
model. The second chosen model is a convolutional neural
network (CNN) since recent research demonstrates they are
effective at modelling long sequence data [5].

Before deep learning models are trained, an important issue
must be addressed: how the nature of the irregularly sampled
time series data affects the learning process. Established meth-
ods for handling temporal data tend to deal only with regularly
sampled time series data. The proposed system using a CNN
or GRU would assume the data is uniformly sampled, causing
potentially erroneous results. The following techniques have
been explored for handling this problem: zero padding with
featurised time differences and linear interpolation.

Figure 1 illustrates the following experimental procedure:
the first layer is the data preprocessing module, with different
functionality depending on the branch i.e. padding with zeros
or linear interpolation. For the branch of data with padded
varying sequences, the time difference between observations is
featurised. The second layer shows the comparison of the CNN
against the GRU on both the interpolated and zero padded
data. The final layer is evaluation, a comparison of results
from each combination of diverging methods to identify the
strongest overall model.

Fig. 1: The proposed system.

At the evaluation stage, analysis is conducted on the devel-
oped models using universally accepted metrics to determine
effectiveness in a machine learning context. The construction
of a confusion matrix allows accuracy, precision, recall and
F1-score to be derived. By using these metrics, the most
suitable model can be chosen from the branching system.
Furthermore, the prevailing model can be compared with
existing benchmark performances by competing architectures
in the categories of fishing vessel classification and irregular
time series modelling.

II. RELATED WORK

A number of research papers use trajectory data to classify
the behaviour of vessels at sea. By identifying certain patterns
in the data, inferences can be made about potentially illicit
behaviour. Within the illegal fishing subset of research, several
papers are examined. Kim and Lee [6] propose a method
using AIS data collected rigorously over a year following
1380 fishing ships around Jeju island in South Korea. Their
system uses a one dimensional convolutional neural network
(1D CNN) based model incorporated with a fully connected
network that utilises environmental data to aid the classifica-
tion process. This technique is a novel, robust and seemingly
accurate system for the classification of fishing geartypes. Kim
and Lee [6] introduce two new evaluation metrics to measure
their success in the form of a day-wise performance index
(DPI) and trajectory window-wise performance metric (TPI).
By comparing results obtained from their model in comparison
with a support vector machine (SVM), a tried and testing
machine learning algorithm supported by Lahmiri [7], using
the TPI and DPI metrics, they produce average scores of 90.1%
vs 76.9% and 96.3% vs 81.4% respectively. However, lacking
from the research is the implementation of a universal met-
ric such as the previously mentioned classification accuracy,
precision, recall or F1-score. This would have provided more
context for determining the efficacy of their model.

Kalaiselvi et al. [8] use a similar approach, introducing
1D CNNs into their system for classifying the data collected
and labelled by the GFW. Their approach appears to be
less rigorous, lacking environmental data compared to the
model Kim and Lee use. However, considering Kalaiselvi
et al. [8] use data from the GFW, which was not available
at the time of Kim and Lee’s [6] work, their system may
represent a more global model of fishing vessel characteristics.
In addition, Kalaiselvi et al. [8] use universal performance
metrics: accuracy, precision, recall and F1-score. Producing
impressive average scores of 95%, 89.75%, 94.5% and 88.5%
respectively. Both Kalaiselvi et al. [8] and Kim and Lee’s [6]
papers are highly relevant.

Marzuki et al. [9] are referenced in both Kim and Lee
[6] and Kalaiselvi et al.’s [8] work. Marzuki et al. [9] were
early to adopt trajectory data for the task of classification
in order to identify fishing geartype and consequently infer
illicit behaviour from vessels. Marzuki et al. [9] use vessel
monitoring system (VMS) data, which Kim and Lee [6]
highlight has a problem: scarce signal frequency. This makes
accurate inductions based on movement patterns difficult. The
differences continue as Marzuki et al. [9] use SVMs as their
model for classification, a traditional machine learning tech-
nique. Mean correct classification rate is their chosen metric
for success, the same as previously mentioned classification
accuracy, presenting their highest score of 97.6% accuracy.

Sánchez Pedroche et al. [10] also employ an SVM model
as well as decision trees to determine fishing and non fishing
behaviour, but with a key difference: they utilise AIS data.
Sánchez Pedroche et al. [10] use a combination of accuracy
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and F1-score, exhibiting at their highest for decision trees
69.35% and 60.96% and for SVMs 75.3% and 72.62%.
Although the data used is different to Marzuki et al. [9], the
desired outcome of the paper is the same, to find patterns in
IUU fishing to aid the protection of global food security and
maritime biodiversity.

Kim and Lee [6] and Kalaiselvi et al. [8], as mentioned,
have both used 1D CNNs for their classification tasks within
the category of identifying IUU fishing. However Chen et al.
[11], although not specifically aiming to identify illicit fishing
behaviour, use 2D CNNs with AIS data for classification.
This is an example of the increased usage of CNNs across
fields, also supported by Villaruz [12] and Bunrit et al. [13].
Chen et al. [11] implement a novel approach that renders
images of trajectory patterns displayed by all vessels using
AIS transponders in order to classify static, normal navigation
or manoeuvring. By creating images of the movement patterns
through a process called ship movement image generation
and labelling, Chen et al. [11] are claiming to harness the
full ability of the CNN. This technique bypasses the issue of
irregularly sampled time sequences due to the fact that each
projection is taken from a set period of time, culminating in
one image that serves as a single training example for their
2D CNN. Chen et al. [11] use familiar performance metrics.
Accuracy is measured at 77.66%, precision at 92.55%, recall
at 61.96% and F1-score at 76.38%. The application of CNNs
for the task at hand is justified by promising results. This is
supported by Li et al. [5] in their research paper on modelling
long sequences with CNNs, proving they are competent and
time efficient, with classification accuracy of 84.4% and robust
performance across the board in the Long Range Arena [14].

A potential issue with Kim and Lee [6] and Kalaiselvi
et al.’s [8] approach is the use of linear interpolation for
regularising sample frequency in the AIS data. This creates
inaccuracies, as noise is introduced to the dataset in the form of
erroneous data points for the trajectory of the fishing vessels.
The same problem applies to Marzuki et al. [9] due to their use
of VMS trajectory data, the sparsity of the broadcast messages
results in low spatial resolution, while the irregularity requires
approximation, introducing noise. Therefore it is necessary
to examine the existing architectures for handling irregularly
sampled time series data. Weerakody et al. [15] conduct an in-
depth survey and analysis of the established and cutting edge
methods for handling irregular frequency time series data and
point out the imbalance between the volume of techniques for
dealing with regular vs. irregular time series data. Considering
the rising quantity of data sampled at irregular intervals, there
is growing incentive to develop the related technologies.

Weerakody et al. [15] continue to outline that RNNs are
innately built for modelling time series data and that they
have exclusive capacity for making sense of missing values
in the data by utilising, instead of ignoring, the complicated
temporal patterns that exist between the features and their
sequence in time. Within the extensive review, Weerakody et
al. [15] reinforce the standardised techniques for measuring
classification algorithms within machine learning; accuracy,

precision, recall and F1-score. This illustrates that despite
the nature of the input data being irregular, the performance
metrics are constant. In addition, the area under the receiver
operator curve (ROC AUC) is used to evaluate various gated
RNNs performance on irregularly sampled time series data,
producing impressive results for the GRU-D, a modification
of the mentioned GRU, with an AUC score of 0.8527.

Shukla and Marlin [16] propose a novel deep learning
approach for the task of supervised learning with irregular
multivariate and univariate time series data. They introduce
the multi-time attention network (mTAN), an encoder-decoder
framework that leverages the attention mechanism to perform
non-linear interpolation on the irregularly sampled observa-
tions for a number of machine learning applications. For clas-
sification, non-linearly interpolated, latent space embeddings
are generated through the encoder module (a combination of
multi-time attention blocks and a GRU), and are subsequently
propagated through a fully-connected network to extract a de-
cision. The proposal from Shukla and Marlin [16] is grounded
in theory and supported with promising results, i.e. an accuracy
of 94%. By interpolating the irregular time series data with
a non-linear and proven method, and subsequently making
predictions based on an architecture with an innate ability to
model time series data, proven by Weerakody et al. [15] in the
GRU, Shukla and Marlin [16] have presented a robust system
that shows great potential in the field of irregular time series
analysis.

The related research covers two broad topics: firstly, the
attempt to use machine learning to determine IUU fishing and
secondly the challenge of modelling irregular time series data.
This proposal aims to incorporate the latter with the former
in order to introduce a novel approach for classifying fishing
vessels and subsequently identifying IUU fishing activity.

III. DATA PREPROCESSING

The automatic identification system (AIS) was designed
for collision avoidance during voyages. For this reason, the
signal transmissions are frequent, providing high-resolution
multivariate data. Included in the signals is latitude and lon-
gitude, allowing vessel trajectories to be visualised, illustrated
in figure 2. Although distinct patterns can be identified in the
trajectories, the number of data points consisting of ambiguous
and mixed behaviour make pattern recognition difficult for the
human eye.

Due to the broadcast medium - very high frequency (VHF)
channels, the signals are potentially noisy as messages can
be delayed, lost or duplicated. This factor, coupled with
the large quantity of data points, makes neural networks a
suitable candidate for the task of pattern recognition. First
however, the data must be processed into an optimal form for
the models. The features of the data are MMSI, timestamp,
course, speed, latitude and longitude. As this is a supervised
learning classification task, the data must be labelled. This
process has been done in advance by the GFW. The data
is aggregated and cleaned, removing duplicates and features
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Trajectory plots using Q-GIS: Drifting longline (a), fixed gear (b), pole and line (c), purse seines (d), trawlers (e), trollers (f).

that have no inference value. From here, the data processing
pipeline diverges into two channels.

Linear interpolation is the backbone of the first pipeline,
as shown in equation 1, where x1 and y1 and x2 and y2
are the first coordinates and second coordinates respectively,
x is the point to perform the interpolation on and y is the
interpolated value. Initially, the data points must be resampled
into evenly spaced intervals. To proceed, a set of reference
time points for every 24-hour sequence must be introduced.
However, choosing an appropriate value for the data is not
straightforward due to the high variance in lengths. On one
hand, upsampling short sequences introduce noise in the form
of fabricated data points and on the other, downsampling the
longer sequences excludes valuable data. Using the calculated
min-max mean, the chosen sampling frequency is one event
per minute. When the reference time points are generated they
are merged with the original data, linearly interpolated and
resampled to the desired intervals.

y = y1 + (x− x1)

(
y2 − y1

x2 − x1

)
(1)

∆t = ti+1 − ti (2)

The second pipeline segments the data into 24-hour se-
quences, regardless of length. The network will assume the
sequences are spaced evenly, therefore the time difference
between each element in the sequence is transformed into
a feature, as shown in equation 2, where ∆t is the time
difference value, ti and ti+1 are two sequential timestamp
values. Finally, the sequences are zero padded to homogenise
the data structure. This uniform size is set to the maximum
sequence length in the dataset (2931). While this technique
creates a large quantity of meaningless data, it preserves
integrity, maintaining the AIS’s high-resolution.

The MMSI must be removed from the data to mitigate
any attempts at ‘cheating’ by the network. A simple marker
such as ID that corresponds uniquely and frequently with a
particular class, provides the network with shortcuts in the
learning process instead of learning the underlying patterns in
the causal features such as trajectory, speed and course. This
conflict between causation and correlation, present universally
in statistical analysis and machine learning, must be considered
a priori during feature selection.

IV. MODELS

A. Convolutional neural network
By using artificial neural networks (ANNs) for the task at

hand, it is acknowledged the objective is to find a function
that approximates the underlying distribution of the data with
accuracy [17]. Convolutional neural networks (CNNs) are a
subclass of feed forward ANNs with alternating convolution
and downsampling layers, trained by the backpropagation
learning algorithm. Although convolutional neural networks
were invented primarily for computer vision tasks, there has
been recent research into their ability to forecast time series
data [5]. Their structure is well suited to modelling temporal
data as the kernels convolve over the sequences, producing
feature maps that are subsequently downsampled to distil
significant patterns in the data. When leveraging CNNs on
time series data, a one-dimensional variation of the original
two-dimensional CNN is implemented. Instead of convolving
in multiple directions, the kernel passes over the sequence in
one direction only.

Each feature of the multivariate time series data is trans-
formed into an input channel. The one-dimensional kernels
convolve over all the input channels, combining the informa-
tion from all the independent variables into the feature maps,
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forward-propagating it through the network, while a loss func-
tion determines the error based on the desired outcome (the
dependent variable) and the network’s output. The gradient
of the error with respect to the parameters of the network is
calculated using partial derivatives and the chain rule in order
to adjust the parameters in the direction of steepest descent on
the multimodal error landscape: this is gradient descent via the
backpropagation algorithm [18].

As the depth of the CNN grows to learn progressively more
complex features, a familiar problem begins to emerge: the
vanishing gradient. The gradient of the error with respect
to the parameters being backpropagated through the network
becomes increasingly small in the layers closest to the input,
preventing learning from happening effectively as well as lead-
ing to numerical instability. Residual blocks were developed
to mitigate this problem for CNNs in 2015 [He]. The novel
idea was to include identity connections (also referred to as
skip connections) which reinject the input features into the
final layer of the residual block, before the ReLU activation.
1D CNNs with residual blocks have been implemented in this
system to achieve stable results with a network deep enough to
learn intricate patterns in the AIS data. Figure 3 illustrates the
architecture of a 1D CNN with residual blocks implemented in
this research. Equation 3 depicts the computations inside a 1D
CNN for input dimension (N,Cin, L) and output dimension
(N,Cout, Lout) where ⋆ is the sliding inner product operator,
N is the batch size, C is the number of channels and L denotes
the length of the input sequence.

out(Ni, Coutj ) = bias(Coutj ) +

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(Ni, k)

(3)

B. Gated recurrent unit network
As Weerakody et al. outlined, RNNs have an innate abil-

ity to model sequential data because they can incorporate
information from previous steps in the sequence to make
inferences [15]. However, they have been marred by the
vanishing gradient problem. RNNs are susceptible to this issue
because of the way they are trained using backpropagation
through time (BPTT). The network is unrolled so that each
time step is represented as a separate layer sharing the same
parameters. The depth of the network grows linearly with time
steps, which also leads to vanishing or exploding gradients.

rt = σ(Wir · xt + bir +Whr · h(t−1) + bhr)

zt = σ(Wiz · xt + biz +Whz · h(t−1) + bhz)

nt = tanh(Win · xt + bin + rt ∗ (Whn · h(t−1) + bhn))

ht = (1− zt) ∗ nt + zt ∗ h(t−1) (4)

Gated recurrent units address this problem by introducing
update and reset gates. The update gate regulates the in-
formation passed through the network, while the reset gate
determines how much should be excluded. By learning the
parameters of these gates, the network is able to carry in-
formation from the inputs through the deep layers of the

Fig. 3: 1D CNN architecture depicted showing residual blocks.

network, acting analogously to the skip connection in residual
blocks mentioned previously. Figure 4 displays the structure
of the stacked, bidirectional GRU implemented in this study.
Equation 4 illustrates the calculations at the core of the GRU.
Each layer computes the function for every element in the
input sequence where xi is the input at time t, ht denotes
the hidden state at time t, h(t−1) is the hidden state of the
previous time step (t− 1), rt is the reset gate, zt denotes the
update gate and nt is the candidate hidden state. σ denotes
the sigmoid function and ∗ denotes the element-wise product.

V. EVALUATION METHODOLOGY

Overall accuracy on it’s own is not sufficient for evaluation.
Firstly, it assumes that the class distribution present in the
data is representative of reality. Secondly, it fails to signify
performance on under represented classes effectively. By using
metrics such as precision, recall and F1-score (the weighted
average of precision and recall as outlined by Grandini et
al [19]) for individual classes, in conjunction with overall
accuracy, a more comprehensive evaluation can be conducted.
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Fig. 4: Stacked, bidirectional GRU with a classification network appended.

VI. RESULTS

The system shown in figure 1, is a comparison of the
two data pipelines and classification modules, i.e. the linearly
interpolated (pipeline 1) or zero padded (pipeline 2) data
serving as input for both the 1D CNN with residual blocks
and the stacked, bidirectional GRU. To prove statistical power,
the common-sense prediction (CSP) model accuracy must be
surpassed. The CSP amounts to predicting the most frequently
observed class (drifting longlines) for every example, resulting
in an overall accuracy of 56.63%. Early in the development
process a minimal model outperformed the CSP: as shown
in table I. The computational resources for all experiments
conducted constitute a single machine with an AMD Ryzen
5950X CPU paired with an NVIDIA RTX 3090 GPU enabled
for CUDA parallel computation.

Accuracy Precision Recall F1-score

All 57.93% None 0.17898 0.14518
Drifting longline – 0.58572 0.99422 0.73716
Fixed gear – 0.0 0.0 0.0
Pole and line – 0.0 0.0 0.0
Purse seines – 0.0 0.0 0.0
Trawlers – 0.42009 0.07965 0.13392
Trollers – 0.0 0.0 0.0

TABLE I: Results produced by the minimal model demonstrate a lack of
sufficient predictive power to learn the under-represented classes effectively.

Following the iterative deep learning workflow of training
and validation, a trial and error exploration of the hyper-
parameter space for each model was undertaken to produce
optimal results. After exhaustive search of the hyperparame-
ters, progress stalled. However, by implementing a technique
known as non-random initialisation, introduced by Reed and
Marks in Neural Smithing [20], the performance for both GRU

and CNN models (structures in tables II and III, hyperparam-
eters in tables IV and V) improved. Finally, using L1 norms
(Manhattan distance), low magnitude weights were pruned to
improve generalisation, thus enhancing performance on out-
of-sample data to produce the results in tables VI, VII, VIII
and IX. The non-random initialisation has a novel adjustment
proposed in this paper to utilise validation accuracy as the
defining metric as opposed to training loss in order to identify
the starting weights with high potential for further training.

Layer Name Parameters Dimensions

1 Input – 128, 5, 2931

2

1D convolution
Batch normalisation
Leaky ReLU
Max pooling

64, 5, 3
–
–
2, 2

128, 64, 2929
–
–
128, 64, 1464

3

Residual block(
1D convolution
Batch normalisation
1D convolution
Batch normalisation
Leaky ReLU)

–
64, 64, 3
–
64, 64, 3
–
–

–
128, 64, 1464
–
128, 64, 1464
–
–

4

Residual block(
1D convolution
Batch normalisation
1D convolution
Batch normalisation
Leaky ReLU)

–
64, 64, 3
–
64, 64, 3
–
–

–
128, 64, 1464
–
128, 64, 1464
–
–

5 Average pooling 64, 128 128, 64, 732

6 1D convolution
Batch normalisation

128, 64, 3
–

128, 128, 730
–

7 Flatten – 128, 46720

8

Classification block(
Fully connected 1 (ReLU)
Fully connected 2 (ReLU)
Fully connected 3 (ReLU))

–
128, 46720
64, 128
6, 64

–
128, 128
128, 64
128, 6

Total 6,064,966

TABLE II: 1D CNN with residual blocks structure (for zero padded pipeline),
the total number of trainable parameters significantly outnumber the GRU
model.

As illustrated by the results for zero padded data in tables
VI and VIII, the stacked, bidirectional GRU outperforms the
1D CNN with residual blocks in terms of overall accuracy
and individual class metrics. Given the data serving as input
for both models is indeed irregular, Weerakody et al.’s [15]
research on the suitability of gated recurrent neural networks
for modelling irregular time series data holds firm. Results
from the linearly interpolated data demonstrate again the
superiority of the GRU network as depicted in tables VII and
IX, but also show adverse affects on the performance of the
CNN, with accuracy down from 93.3% to 90.6%. The GRU
responded well to both data pipelines, although accuracy is
lower with 94% compared to 95.379%, the macro F1-score is
marginally higher for the linearly interpolated data at 0.92868
compared to 0.92457, show in tables VIII and IX.

As demonstrated by the experiments, the best model for the
task at hand is the stacked, bidirectional GRU, while the an-
swer for the prevailing data pipeline is not so straightforward.
There is a case to be made for utilising linear interpolation
when the class imbalance is severe due to the improved per-
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Layer Name Parameters Dimensions

1 Input – 64, 2931, 5

2
GRU stack 1 forward(
input - hidden
hidden - hidden)

–
192, 5
192, 64

64, 2931, 64
–
–

3
GRU stack 1 reverse(
input - hidden
hidden - hidden)

–
192, 5
192, 64

64, 2931, 64
–
–

4
GRU stack 2 forward(
input - hidden
hidden - hidden)

–
192, 128
192, 64

64, 2931, 64
–
–

5
GRU stack 1 reverse(
input - hidden
hidden - hidden)

–
192, 5
192, 64

64, 2931, 64
–
–

6

Classification block(
Fully connected 1 (ReLU)
Fully connected 2 (ReLU)
Fully connected 3 (ReLU))

–
128, 128
64, 128
6, 64

–
64, 128
64, 64
64, 6

Total 126,918

TABLE III: Stacked, bidirectional GRU structure (for zero padded pipeline),
although the total number of trainable parameters number less than the
competing CNN model, bidirectionality introduces additional computation to
training.

Hyperparameter Value

Learning rate 3e-04
Optimiser AdamW
Loss Cross entropy loss
Output channels convolution 64
Kernel size 3, 1
Pool size 2
Number of convolution layers 6
Fully connected layers 3
Dropout False
Batch size 128
Shuffled True
Sequence length 2931
Non-random weight initialisation True
L1-norm global unstructured weight pruning False
Epochs 35

TABLE IV: CNN hyperparameters, depicted is only one of many combinations
explored.

Hyperparameter Value

Learning rate 3e-04
Optimiser AdamW
Loss Cross entropy loss
Number of stacked recurrent units 2
Bidirectional True
Fully connected layers 3
Dropout 0.1
Batch size 64
Shuffled True
Sequence length 2931
Non-random weight initialisation True
L1-norm global unstructured weight pruning True
Epochs 68

TABLE V: GRU hyperparameters (zero padded data).

formance on under represented classes. However, the overall
accuracy is still superior for the zero padded data when paired
with the GRU. The decision to adopt linear interpolation or
zero padding with a time difference feature, depends on the
data distribution and the importance of classifying accurately
the under represented classes. In the case where smaller
classes are highly important, these experiments would suggest

Accuracy Precision Recall F1-score

All 93.302% 0.87731 0.87549 0.87608
Drifting longline – 0.97026 0.97094 0.9706
Fixed gear – 0.81932 0.85871 0.83855
Pole and line – 0.77558 0.80205 0.78859
Purse seines – 0.89934 0.8386 0.86791
Trawlers – 0.91952 0.92489 0.9222
Trollers – 0.87983 0.85774 0.86864

TABLE VI: CNN results on zero padded test data.

Accuracy Precision Recall F1-score

All 90.619% 0.8785 0.86836 0.87219
Drifting longline – 0.94921 0.96996 0.95947
Fixed gear – 0.81932 0.79946 0.80638
Pole and line – 0.91631 0.83571 0.87415
Purse seines – 0.876 0.77802 0.82411
Trawlers – 0.88632 0.9051 0.89561
Trollers – 0.82973 0.92192 0.8734

TABLE VII: CNN results on linearly interpolated test data.

Accuracy Precision Recall F1-score

All 95.379% 0.92317 0.92653 0.92457
Drifting longline – 0.97895 0.97796 0.97845
Fixed gear – 0.86385 0.92324 0.89256
Pole and line – 0.88621 0.87713 0.88165
Purse seines – 0.92177 0.87851 0.89962
Trawlers – 0.95384 0.94434 0.94906
Trollers – 0.93443 0.95798 0.94606

TABLE VIII: GRU with zero padded test data: highest overall accuracy.

Accuracy Precision Recall F1-score

All 94.01% 0.92945 0.9282 0.92868
Drifting longline – 0.97006 0.97204 0.97105
Fixed gear – 0.90009 0.86639 0.88292
Pole and line – 0.92829 0.90427 0.91612
Purse seines – 0.8652 0.89939 0.88196
Trawlers – 0.93673 0.93611 0.93642
Trollers – 0.97633 0.99099 0.98361

TABLE IX: GRU linearly interpolated test data results.

utilising linear interpolation. In cases where the more prevalent
classes carry equal or greater significance, the high-resolution
and time difference feature of the zero padded pipeline takes
on greater importance.

VII. CONCLUSION

Use of the vast quantity of high-resolution data generated
by the automatic identification system (AIS) can be a powerful
tool in the prevention of illegal, unreported and unregulated
(IUU) fishing. This paper has proposed a system for processing
the highly irregular and noisy time series data to extract
meaningful information in the form of fishing method identi-
fication. When leveraged in real-time, this system reveals key
information about potentially suspicious behaviour in marine
protected areas or falsely registered equipment.

By procuring results with strong statistical power, i.e. out-
performing the common-sense prediction model using a robust
and proven set of methodologies, the proposed system has
been successful. In addition, the contemporary results obtained
by Kalaiselvi et al. [8] of 0.885 macro F1-score have been
surpassed by the GRU with scores of 0.92868 and 0.92457
for linearly interpolated and padded data respectively. This is
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despite the proposed system including two smaller classes:
pole and line and trollers, introducing added class imbalance,
further complicating the task. The high degree of accuracy of
the experiments conducted in this study has provided substan-
tial evidence supporting the existence of a clear relationship
between vessel movement patterns and method of fishing.

Moving forward, the introduction of non-linear interpolation
will be the main focus through the implementation of the
multi-time attention network introduced by Shukla and Marlin
[16]. Additionally, traditional machine learning classification
algorithms such as random forests and support vector ma-
chines will be introduced for further comparison of results.
This future work remains novel and ambitious, with a strong
foundation of results to build upon.
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