

Using Memetic algorithm for Testing of Contract-based Software

Models

Anvar Bahrampour, Vahid Rafe

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 3815688349, Iran

a-bahrampour@phd.araku.ac.ir, v-rafe@araku.ac.ir

Abstract

Graph Transformation System (GTS) can formally specify the behavioral aspects of complex systems through
graph-based contracts. Test suite generation under normal conditions from GTS specifications is a task well-suited to
evolutionary algorithms such as Genetic and Particle Swarm Optimization (PSO) metaheuristics. However, testing
the vulnerabilities of a system under unexpected events such as invalid inputs is essential. Furthermore, the
mentioned global search algorithms tend to make big jumps in the system's state-space that are not concentrated on
particular test goals. In this paper, we extend the HGAPSO approach into a cost-aware Memetic Algorithm (MA)
by making small local changes through a proposed local search operator to optimize coverage score and testing
costs. Moreover, we test GTS specifications not only under normal events but also under unexpected situations.
So, three coverage-based testing strategies are investigated, including normal testing, robustness testing, and a
hybrid strategy. The effectiveness of the proposed test generation algorithm and the testing strategies are evaluated
through a type of mutation analysis at the model-level. Our experimental results show that 1) the hybrid testing
strategy outperforms normal and robustness testing strategies in terms of fault-detection capability, 2) the
robustness testing is the most cost-efficient strategy, and 3) the proposed MA with the hybrid testing strategy
outperforms the state-of-the-art global search algorithms.

Keywords: Robustness testing; Model testing; Graph transformation specification; Specification testing; Coverage criteria;

1. Introduction

The complexity of safety-critical systems is now growing, and assuring their functionalities is a challenge in

various aspects. Several approaches for testing and formal verification of such systems have already been

proposed in the literature [1, 2]. Specification testing concentrates on the behavioral accuracy of the System

Under Consideration (SUC), which attempts to reveal defects of the specified components [3]. Although

specification validation substantiates that the model meets its intended purposes, the specification may describe

only normal conditions and does not define the behavior of the system under unexpected situations such as invalid

inputs or inappropriate execution scenarios. A system that works correctly under normal conditions could not

necessarily handle unexpected situations [4, 5].

In complex systems, it is not feasible to cover all possible inputs (valid and invalid inputs) and conduct a

complete test of the specification [6]. In these systems, the state-space-explosion problem is a common challenge

in covering test goals, and there is a need for scalable approaches to handle this problem [7]. However,

evolutionary testing is a promising search-based approach to handle the test generation as an optimization

problem [8, 9]. Moreover, robustness testing is a well-known approach that evaluates “the degree to which a

system or a component can function correctly in the presence of invalid inputs or stressful environmental

conditions” [10]. In other words, a robust system does not crash despite exceptional or inappropriate function

calls. In formal modeling, if the specification considers all normal and abnormal conditions, robustness testing

acts as functional testing [4].

Design by contract is a software development methodology that represents the functionalities through

contracts [11, 12]. Graph Transformation System (GTS) is a formalism that could specify the behavioral aspects

of software components through well-defined graph transformation rules [13, 14]. In this formalism, the pre- and

post-condition of each transformation rule is defined through a visual graph representation as a mathematical tool

for model analysis and execution. In GTS, graph elements (nodes/edges) could have a set of attributes and

computational/conditional expressions to specify data processing components at different levels of abstraction

[15]. The flexibility of the GTS modeling framework causes growing attention to it as a visual specification tool

for simulating and reasoning behavior of software systems [16, 17].

In the literature, there are several Model Based Testing (MBT) approaches for GTS specifications [18-21].

Most of the proposed approaches use a type of data-dependency among transformation rules as coverage criteria

to guide the test generation process. Although there are types of data-conflicts among transformation rules, none

of the existing approaches cover them. With the best of our knowledge, all existing GTS testing approaches try

to evaluate the functionality of the system under normal conditions. In [21], the state space exploration capability

of a model checker and a set of global search algorithms such as Genetic Algorithm (GA)[22], Particle Swarm

Optimization (PSO)[23], and a Hybrid version of GA and PSO i.e. HGAPSO, have been utilized successfully to

handle the state space explosion problem in MBT. In this research, the test generation is defined as an

optimization problem that aims to maximize the coverage score of data-dependency test objectives. However,

the mentioned global search algorithms tend to make large changes in the system state-space that are not

concentrated on covering particular test goals and interactions.

In this paper, all possible types of data-centric relationships (data-dependencies/-conflicts) among GTS

transformation rules are investigated. A set of data-conflict relationships is proposed as coverage criteria to guide

the robustness testing of GTS specifications. In MBT, robustness testing aims to test what is the behavior of the

SUC in the presence of the pre-condition violation [24, 25]. In GTS, this means that the necessity of each

precondition's component or its completeness is evaluated for all transformation rules. Furthermore, we extend

the HGAPSO approach to cover both data-dependency and data-conflict relationships as coverage criteria within

three testing strategies i.e. normal testing, robustness testing, and normal with robustness testing as a hybrid

strategy. Moreover, we use a memetic algorithm which equips GA global search metaheuristic with a proposed

small local search operator to concentrate on particular test objectives. To make more effective integration of

local search with global search operators, and cover all experienced test goals over the whole search process a

restoring coverage technique is used. The goals of this optimization process are to maximizes coverage score and

minimize testing costs.

This testing approach was implemented in the GROOVE (GRaph-based Object-Oriented VErification)

toolset. This toolset is already used as a model checker for object-oriented systems specified through GTS

formalism [26]. It can generate the whole state-space of the SUC if there is enough memory. To evaluate the

efficiency of the test generation approach and the effectiveness of the introduced data-conflict coverage criteria,

a series of experiments have been conducted on five well-known case studies [19, 27, 28]. The effectiveness of

the generated tests is evaluated in terms of fault detection capability. To this aim, a type of mutation analysis is

used at the GTS specification level. The experimental results demonstrate that 1) the proposed hybrid testing

strategy outperforms the simple normal and robustness testing strategies in terms of the fault detection capability,

2) the costs of the robustness testing strategy is less than the others in terms of the number of rule applications

required per killed mutant, and 3) the proposed MA with the hybrid testing strategy outperforms the state-of-the-

art techniques. We summarized the main contributions of this research as follows:

1- A set of coverage criteria based on data-conflicts among transformation rules is proposed for robustness

testing of contract-based software models specified through GTS.

2- A local search operator is devised to improve test cases in the sense of covering new test objectives for

the first time.

3- A cost-aware MA as an integration of the proposed local search operator and Genetic global search

operators is proposed for test-suite generation based on robustness, normal, and hybrid testing strategies

from GTS specifications.

4- The effectiveness of data-dependency and data-conflict coverage criteria are investigated through a type

of mutation analysis in terms of fault detection capability at the specification level.

5- The performance of the proposed strategies is evaluated in terms of coverage score, fault detection

capability, and cost-effectiveness using well-known case studies, and it is compared with the state-of-the-

art.

The rest of this paper is organized as follows. Section 2 represents the basic concepts of modeling with GTS

formalism and presents a brief review of the HGAPSO approach for testing GTS specifications. Section 3 surveys

state-of-the-art. Section 4 investigates all possible data-relationships among transformation rules and describes

the proposed data-conflicts between rules as coverage criteria for robustness testing. Then, the search-based test

generation algorithm is described in detail. The evaluations of the test generation approach at the model level and

the experimental results are presented in Section 5. Section 6 concludes the paper and suggests some future

works.

2. Backgrounds

In this Section, we describe some preliminaries such as the basic concepts of GTS formalism and a brief review

of the HGAPSO approach for testing using GTS specifications.

2.1. Graph transformation system

Graph is a powerful mathematical tool for modeling complex systems. GTS is a graph-based formalism that is

capable of simulating systems in both structural and behavioral aspects. The main features of the GTS formalism

are introduced in [14, 16, 21, 29, 30]. In GTS, the behavior of the SUC is specified through production rules,

while the configuration of the system is represented by a state graph. The initial state of the SUC is described by

a host graph. Graph elements (nodes/edges) in state graphs or production rules may have data-attributes of various

data types and store any possible value. A sequence of GTS rule transitions is mapped to a sequence of method

calls in the corresponding implementation of the SUC. The following definitions represent the required

background of the GTS formally.

Definition 1 (Graph, Graph Morphism). G = (N, E, src, trg) is a graph where N and E are finite sets of nodes and

edges, respectively. src: E → N and trg: E → N are functions that define the source and target of an

edge, respectively. Graph morphism f: G → H is defined as a mapping of the graph G to the graph

H where f = (fN, fE), fN: NG → NH, and fE: EG → EH such that fN ◦ srcG = srcH ◦ fE and fN ◦ trgG

= trgH ◦ fE.

Definition 2 (Production Rule). A production rule is defined as P: L →
𝑁

R, where L is the Left-Hand Side (LHS), R

is the Right-Hand Side (RHS), and N is a Negative Application Condition (NAC). L and N define

the pre-condition of the production rule, and R describes its post-condition.

The LHS, RHS, and NAC are attributed-graphs. A rule application includes finding a match for the LHS in

the current state graph by graph morphism and replace with the RHS when there are no occurrences of NAC

elements. In other words, all graph elements matched by LHS\RHS are deleted, and an image of RHS\LHS

(referred to as Creators) is added to the instance graph. In the context of the GTS, we refer to LHS\RHS ∩

RHS\LHS as Updaters, and (LHS\RHS)\Updaters as Erasers. The elements that exist in both LHS and RHS

without any difference are called Readers, while Creators are elements that exist only in RHS. Several matches

(morphisms) of a rule are differentiated through their parameters, which are defined in rule signature P(x) where

P is the name of the production rule, and x is a set of input/output parameters. In this research, production rules

are referred to as software contracts that describe the behavior of the SUC.

Definition 3 (Graph Transformation System GTS). GTS is a triple (TG, HG, R) where TG=(TN,TE, src, trg) is

an attributed type graph, in which, TN is a set of Node types and TE is a set of Edge types and src,trg:

E → N are functions that define the source and target of an edge type, respectively, HG is an instance

of TG called host graph, and R is a finite set of production rules.

The system configuration transforms from the current state to the next one by a transformation step. A

transformation step is defined as a rule application p with the match m in the GTS. It is represented by G ⇒
𝑝.𝑚

H.

The state-space of the SUC can be generated through the applications of various GTS rules repeatedly. In GTS,

the state-space of the SUC is represented by a transition system. A transition system is a directed graph where

the nodes represent the states, and the edges represent the transitions. Each path of the state-space could be

utilized as a test case (sequence of method invocations).

Definition 4 (Transition System TS). A Transition System TS = (S, Act, →, I) where:

1) S is a set of states.

2) Act is a set of actions.

3) → is a transition relation that is a subset of S×Act×S.

4) I is the set of initial states (the subset of S).

In the rest of the paper, we use a Hotel Management System (HMS) represented in [21] with the same

functionality but a bit different GTS specification (to make well descriptive) to explain our contributions. In the

HMS, a hotel initially has several Rooms and registered Guests. Every guest can book any vacant room, and

his/her bill will be maintained automatically. Before the guest leaving the room, the bill should be paid, and the

guest could check out. Figure 1 shows a simple state graph (initial state) of the HMS in the GROOVE toolset. In

this state graph, each node has several attributes that define the states of the corresponding objects. The

production rules of the HMS are illustrated in Figure 2, including BookRoom, CheckOut, ClearBill, UpdateBill,

and OccupyRoom. In the GROOVE toolset, Readers are shown by a solid black line, Erasers are blue dashed or

double-bordered lines elements, Creators are represented by green solid lines, and the NAC elements are

indicated by red double-bordered/dashed lines.

Figure 2.f represents a simple path of the state-space of the HMS in which a sequence of production rules has

been applied to the initial state represented in Figure 1. In this scenario, at first, room "1" is booked by "Daniel

Castro", then it is occupied, and a bill "1023" is created. After the bill is updated and cleared by the corresponding

rule applications, the guest was successfully checked out.

Figure 1. A simple state graph for HMS in the GROOVE toolset

2.2. Test generation from GTS specification (The HGAPSO approach)

In HGAPSO [21], to cope with the state-space explosion problem in test-suite generation for complex systems

using model checkers, the test generation task is defined as an optimization problem, and a hybrid search-based

approach is proposed. This approach uses a type of data-dependency as coverage criteria to guide the search

process. In this section, we provide a brief review of the HGAPSO approach.

2.2.1. Problem representation

In the HGAPSO, a chromosome of the search process is a test suite, which is defined as a set of test cases. A test

case t in GTS specification is defined as a tuple t = (P, O, S0), where P is a sequence of transformation steps

<P1(x1), P2(x2), …, Pn(xn)>. Pi(xi) denotes a rule signature in GTS specification, O is a test path <S0, S1, S2, …,

Sn> in the state-space, such that Si-1 is the source state of the rule transition Pi and Si represents the target state of

the transformation step (1 ≤ i ≤ n). S0 is a start state or host graph. Since the state graph Si includes the post-

condition of the transformation step Pi(xi), O = <S1, S2, …, Sn> is the test oracle at the model level for test

sequence P. For example in Figure 2.f, P=<BookRoom(1,"Daniel Castro"), OccupyRoom(1,"Daniel Castro",1023),

UpdateBill(1023,20000), ClearBill(1023), Checkout(1,"Daniel Castro",1023) > is a test sequence, and the test oracle is

O=<S1, S2, S3, S4, S3, S4, S5>. The length of the test case t is defined as the number of its transformation steps.

Hence, the length of the test suite T is defined as the sum of the lengths of its test cases i.e. 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) =
∑ 𝑙𝑒𝑛𝑔𝑡ℎ(t)

𝑡𝜖𝑇 .

A chromosome is created initially through a random walk into the state-space of the SUC. Figure 3.a shows a

test suite, which consists of two test cases. Test Case 1 has a length of 5, and this is 7 for Test Case 2. Hence the

length of the test suite is 12. Figure 3.b shows the encoded representation of the mentioned chromosome. Each

value in the encoded test case shows the number of an outgoing transition of the source state.

2.2.2. Coverage criteria

In GTS, rules interact with each other through a type of data sharing. For example, according to Figure 2.a, the

application of the rule BookRoom assigns a guest to a vacant room by creating an edge labeled "bookingInfo" from

the room to the guest, which could be read later by the production rule OccupyRoom. In other words, the

application of the rule OccupyRoom depends on the successful use of BookRoom to the system state. For another

example, the application of CheckOut depends on successfully applied the OccupyRoom to provide needed

objects such as a node Bill and an edge Occupied. This type of rule-dependency, where one rule creates/updates

an entity (i.e. creates node/edge or update an attribute of a node), and another rule uses (i.e. read/delete) it, is

referred to as data-dependency in GTS. This notion is defined formally in Definition 5.

(a) BookRoom(int RoomNo, String Name) (b) CheckOut(int RoomNo, String Name, int BillNo)

(c) ClearBill(int BillNo) (d) UpdateBill(int BillNo, int Amount)

(e) OccupyRoom(int RoomNo, String Name, int Bill_Cntr) (f) Simple execution path

Figure 2. Production rules of the HMS example in the GROOVE toolset

Test Suite

Test Case 1 BookRoom (1, "Daniel Castro"),

OccupyRoom (1, "Daniel Castro", 1023),

UpdateBill (1023, 20000),

ClearBill (1023),

Checkout(1, "Daniel Castro", 1023)

Test Case 2 BookRoom (1, "Daniel Castro"),

BookRoom (4, "Andre Baresel")

OccupyRoom (4, "Andre Baresel", 1023),

BookRoom (3, "Daniel Castro"),

UpdateBill (1023, 20000),

ClearBill (1023),

Checkout(4, "Andre Baresel", 1023)

(a) A test suite, which includes two test cases

{[1,6,5,3,1], [1,3,7,4,4,1,4]}

(b) Chromosome representation

Figure 3. Chromosome encoding.

Table 1. Data dependency relationships extracted from the HMS.

Relation type Dependent rules Entity of the relation

Create _ Read (cr) (BookRoom, OccupyRoom)

(OccupyRoom, UpdateBill), (OccupyRoom,

ClearBill)

bookingInfo

Bill, BillNo

Create _ Delete

(cd)

(BookRoom, Checkout)

(OccupyRoom, Checkout)

(ClearBill, Checkout)

bookingInfo

Bill, billDetails,

Occupied, guestInfo,

maintains, BillNo

Paid, UnPaid

Create _ Update

(cu)

(UpdateBill, UpdateBill), (UpdateBill, ClearBill)

(OccupyRoom, UpdateBill)

(OccupyRoom, OccupyRoom)

(OccupyRoom, ClearBill), (ClearBill, ClearBill)

(ClearBill, UpdateBill)

UnPaid

Bill_Cntr, Rooming

Paid, UnPaid

UnPaid

Definition 5 (Rule-Dependency). Given two production rules p1 and p2, we say p2 is dependent on p1 if there are

transformation steps ti = (G ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖) and tj = (𝐺𝑖 ⇒
𝑝𝑗.𝑚𝑗

𝐺𝑗) such that ti enables tj.

In [31], various types of data-dependencies are introduced as coverage criteria for testing visual contracts. A

data-dependency relationship is referred to as enabler relation which means that the first rule of the relationship

enables the second one. The relationships Create_Read, Create_Delete, Create_Update, Update_Read, and

Update_Update have been introduced as asymmetric rule dependencies. The rule Rj can read from Ri, if

Readersj∩Creatorsi is not empty, and there may be a Create-Read relation between rules Rj and Ri through the

element type e ϵ Readersj∩Creatorsi. If Erasersj∩Creatorsi is not empty, the rule Rj can delete an element e from

Ri, and there may exist a Create-Delete relation between the two rules. Create-Update is another relationship that

would happen between two transformation rules, where the nonempty set Updatersj∩Creatorsi suggests that Rj

may update an element, which created by Ri.

In the execution of Figure 2.f, the application of BookRoom(1, "Daniel Castro") leads to the creation of an

edge labeled with "bookingInfo" among the room "Room 1" and the guest "Daniel Castro" of the host graph.

This edge is needed for applying the next step, say OccupyRoom(1, "Daniel Castro", 1023). This step prevents

reapplying BookRoom(1, "Daniel Castro") through the NAC elements of the rule BookRoom. The node Bill and

its related edges are created as well as an edge "occupied" among the room "Room 1" and the guest element

"Daniel Castro" by applying OccupyRoom(1, "Daniel Castro", 1023). The created elements in this stage are used

in the subsequent steps of the execution path. However, it is apparent that there are types of data-dependencies

(enabling subsequent steps) and data-conflicts (disabling some rule applications) among GTS production rules.

In the case of data-dependencies, a rule creates/updates an entity in which another rule uses it, and in the case of

data-conflict, a rule creates/deletes an entity which forbidden/used in another rule.

The HGAPSO approach uses these rule-dependency relationships, in which the first step defines an object (or

objects) and the second one uses it (them) in its pre-condition, as an estimation of def-use relationship in code-

based testing [19, 21]. In this approach, Update_Read, and Update_Update relationships are considered as

Create_Read and Create_Update respectively. The HGAPSO uses these rule-dependencies as coverage criteria

to guide the search process in the state-space of the SUC. Table 1 shows all the data-dependencies of the above

types for the HMS. The HGAPSO search algorithm is aimed to achieve a high rule-dependency coverage score

concerning the selected coverage criterion. Relation 1 states how fitness is measured for rule-dependency

coverage criteria.

1) 𝐹𝐷𝑒𝑝 = |⋃ 𝐷𝑎𝑡𝑎_𝑅𝑎𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑇)𝑇∈𝐶ℎ | 𝑤ℎ𝑒𝑟𝑒 Data_Relation ∈ { Create_Read, Create_Delete,

Create_Update }

In GTS, all operations that could be applied to the elements of the production rules are

{create, read, update, delete, forbid}. In other words, in a production rule, an element (node, edge, and attribute)

could be created, updated, read, or deleted by rule application or forbidden to applying the rule. Hence, according

to these operations, the set of all possible data dependency/conflict types among production rules is defined as a

subset of {c, r, u, d, f}×{ c, r, u, d, f }.

Some types of rule dependencies and conflicts have been proposed as coverage criteria for MBT using visual

contracts in [31], but as we will discuss in the next section, it is not a complete relation set for GTS. In the

literature, rule-dependency relationships are used as an estimation of def-use in code-based testing. Based on this

notion, data-centric rule-dependency relationships proposed in [31] have been used successfully for MBT in [18,

19, 21, 31], but with the best of our knowledge, there is no research work generates test suite based on data-

conflict relationships.

3. Related Works

MBT is one of the increasingly popular testing approaches which uses the formal or semi-formal specification of

the SUT. Model-based robustness testing utilizes pre-condition violation of the functional specification of the

software components under test [24, 25]. There are several approaches for validation and verification of formal

specifications, including formal verification, specification testing, specification simulation, and specification

animation [32]. Formal specification testing techniques utilize mathematical representation of the component's

functionality and theoretical analysis to generate effective test cases [33]. In [34], several specification testing

approaches have been addressed using a finite state machine (FSM) and labeled transition system formalisms.

A type of mutation testing for extended time automata specifications has been proposed in [35], which uses

symbolic execution over the model. In [36], an approach for functional testing of B specifications is proposed.

This approach uses operation coverage in which a finite coverage graph is generated so that each operation tested

at least once. A robustness specification testing approach was proposed in [4] that uses model-based and mutation

testing. In this research, the pre-conditions of the events are mutated to test invalid ones. Louzaoui and

Benlhachmi [37] proposed a robustness testing approach for object-oriented models based on invalid input data

that violate precondition of the function under test.

In the literature, there are several search-based software testing (SBST) techniques [38, 39]. Fraser and Arcuri

[40] proposed a whole test suite generation approach that uses a genetic algorithm for the optimization of both

branch coverage and length of the resultant test. Nardo et al. [7] proposed a search-based robustness testing

approach using data-model and mutation data to generate a robustness test suite at the system-level. In this

research, a multi-objective evolutionary algorithm has been used with both model-based and code-based coverage

criteria. Fraser et al. [41] proposed an approach based on the integration of global and local search algorithms to

allow the individuals of a population in the global search algorithm for local improvement through a local search.

In this research, a set of local search operators are devised to efficiently optimize primitive values, such as

integers and doubles, characters that appear in strings, and arrays of primitive values in code-based testing.

Several MBT approaches have been proposed for systems specified with GTS at various levels and

architectures [42]. Heckel and Mariani [43] proposed an approach for model-based integration testing of GTS

specifications. Heckel et al. [31] introduced a set of data-dependencies and data-conflicts among production rules

of the GTS specification as coverage criteria for testing purposes. Dynamic evaluation of the proposed data-

dependency coverage criteria in AGG toolset has been introduced by Khan et al. [18]. Runge et al. [19] introduced

a model-based test generation approach based on static analysis of rule-dependencies of GTS specifications.

Kalaee et. al. [21] proposed a search-based test generation approach (HGAPSO) based on static analysis of data-

dependencies among GTS rules. With the best of our knowledge, the robustness testing of GTS specification is

not researched in the literature.

4. The proposed Testing Approach

As mentioned in the previous section, GTS formalism has been used in the literature to specify software behaviors

by production rules as visual contracts. Furthermore, several data-dependencies among production rules of the

GTS specifications are used as coverage criteria to guide the test generation process [18, 19, 21, 31]. In this

section, we will propose an approach to generate robustness tests, that uses three different types of data-conflict

among production rules to guide the search algorithm as well as a hybrid testing strategy that uses both data-

dependencies and data-conflicts as coverage criteria. Furthermore, to optimize the test suite concerning both

coverage level and test size, we will propose amemetic algorithmto generate a whole test suite from GTS

specification.

4.1. Robustness testing

The purpose of test cases in normal testing approaches is to evaluate whether the target state of each

transformation step is achieved when its precondition satisfied. As aforementioned, the other aspect of testing is

to test what is the behavior of the SUC in the presence of the precondition violation. Indeed, in this type of model

testing, the necessity of each precondition's component (or precondition completeness) is investigated. With this

aim, we define the robustness testing of GTS specifications as the following definition.

Definition 6 (Robustness Test Case). A robustness test case RTC= (P, IS S0, E) where:

1) P is a normal sequence of transformation steps <P0(x0), P1(x1), …, Pn(xn)> where Pi(xi)

represents the signature of the applied rule Pi with parameter set xi (0 ≤ i ≤ n);

2) IS is a sequence of sets of invalid transformation steps <IS0, IS1, …, ISn> such that ISi= <

Pi0(xi0), Pi1(xi1), …, Pim(xim)> where Pij(xij) represents the signature of an invalid transformation

step (the list of the actual parameters that violates the precondition of the transformation step)

in the ith step of the sequence P.

3) S0 ϵ I is a start state;

4) E = <S1, S2, …, Sn> is an execution path of the corresponding TS in which Si (1 ≤ i ≤ n) is a

target state of the transformation step Pi-1(xi-1).

This definition does not state the test oracles for invalid steps. It is trivial because these steps should be failed.

In other words, the successful application of any steps of the ISi means that there is a fault in the SUC. Figure 4.a

represents a robustness test case for the HMS. This test case consists of a normal path (green steps) that should

be applied successfully on the start graph, and a set (possibly empty set) of invalid transformation steps (red

ones) in each step of the normal path. Figure 4.b illustrates the corresponding test script along with P and IS

sequences. In each step of the normal sequence, although there are probably infinite invalid transformation steps

to be included in the corresponding IS set, most of them could not reveal any fault of the SUC. Moreover, most

of them detect the same set of fault types. Therefore, in the following section, we will introduce a set of data-

centric coverage criteria to effectively guide the robustness test generation process.

4.2. The proposed data-centric coverage criteria

As mentioned in section 2.2, all possible data-centric relation types among transformation steps of the test

sequence are included in {c, r, u, d, f}×{ c, r, u, d, f }. According to this Cartesian multiplication, Table 2 shows

all possible combinations of GTS operations. Some of these combinations are meaningless and do not imply any

logical dependency/conflict relationship among their transformation steps. For example, the relationships {rc, rr,

ru, rd, rf} in which a data item was read by the former step, while the same data item was created, read, updated,

deleted, or forbidden by the later transformation step, imply no meaningful dependency/conflict relationship. The

relationships {cr, cu, cd, cf}, in which the source transformation step creates an object (data item) while the target

one uses it (read, update, delete, or forbid the created object), relate valid data-relationships.

(a) A simple robustness test case

BookRoom(4,"Andre Baresel") {}

BookRoom(1,"Harmen Sthamer") {BookRoom(4,"Andre Baresel")}

OccupyRoom(4,"Andre Baresel",1023) {}

OccupyRoom(3,"Harmen Sthamer",1024){OccupyRoom(2,"Joachim Wegener",1023),

 OccupyRoom(4,"Andre Baresel",1023)}

ClearBill(1023) {}

P=[BookRoom(4,"Andre Baresel"),BookRoom(1,"Harmen Sthamer"),

 OccupyRoom(4,"Andre Baresel",1023),OccupyRoom(3,"Harmen Sthamer",1024),

 ClearBill(1023)]

IS=[{}, {BookRoom(4,"Andre Baresel")}, {}, {OccupyRoom(2,"Joachim

 Wegener",1023), OccupyRoom(4,"Andre Baresel",1023)}]

(b) A simple robustness test script, P, and IS sequences

Figure 4. A sample of robustness test case, and its test script.

0S

1S

BookRoom(4,"Andre Baresel")

2S

4S

5S

BookRoom(4,"Andre Baresel")

OccupyRoom(4,"Andre Baresel",1023)

OccupyRoom(3,"Harmen Sthamer",1024)

ClearBill(1023)

S6

BookRoom(4,"Andre Baresel")

8S 7S

OccupyRoom(2,"Joachim Wegener",1023) OccupyRoom(4,"Andre Baresel",1023)

3S

The highlighted combinations in Table 2 are valid dependency/conflict relationships. Therefore, all potential

dependencies are {cr, cd, cu, ur, ud, uu, df}. Some other possible relationships such as cf, uf, uu, dr,

du, and dd are categorized as rule-conflicts because the first transformation step in each of these relationships

disables the second one. Other relationships in the above Cartesian multiplication, e.g. cc, uc, fc, and ff, imply no

dependency or conflict between the corresponding transformation steps.

It is worth noting that in GTS, an update operation is realized by reading its value, deleting it, and then creating

a new one with probably a new value. Therefore, in the rest of the paper, we use cr for both cr and ur, cd for

both cd and ud, and cu for both cu and uu. In other words, since an attribute is updated by a transformation step,

it has behaved as a created new one. Furthermore, in data-conflict combinations, dr stands for both dr and du.

Moreover, the data-conflict relationship uu could be recognized as a dd along with a cc. With these

considerations, all possible data dependency/conflict relations, also known as enabler/disabler relations, are:

2) Dependencies = {cr, cd, cu, df}.

3) conflicts = {dr, dd, cf}.

We formally define data-dependency and data-conflict relationships as the following definitions:

Table 2. all possible combinations relationships among production rules {c, r, u, d, f}x{ c, r, u, d, f }.

Combination Description Data-Dependency Data-Conflict

Cc Create_ Create - -

Cr Create_ Read √ -

Cu Create_ Update √ -

Cd Create_ Delete √ -

Cf Create_ Forbid - √

Rc Read_ Create - -

Rr Read_ Read - -

Ru Read_ Update - -

Rd Read_ Delete - -

Rf Read_ Forbid - -

Uc Update _Create - -

Ur Update _Read √ -

Uu Update _ Update √ -

Ud Update _ Delete √ -

Uf Update _ Forbid - √

Dc Delete_ Create - -

Dr Delete_ Read - √

Du Delete_ Update - √

Dd Delete_ Delete - √

Df Delete_ Forbid √

Fc Forbid _Create -

Fr Forbid_ Read -

Fu Forbid_ Update -

Fd Forbid_ Delete -

Ff Forbid_ Forbid -

Definition 7: (Data-dependency). Given two production rules pi and pj, i<j, we say that pj is dependent on pi if

there is a sequence of transformation steps t=(𝐺0 ⇒
𝑝1.𝑚1

𝐺1 … ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖 … ⇒
𝑝𝑗−1.𝑚𝑗−1

𝐺𝑗−1 ⇒
𝑝𝑗.𝑚𝑗

𝐺𝑗)

from the start state such that:

 There exists an element (node, edge, or an attribute) e in 𝑚𝑗 𝑜𝑛 𝐺𝑗−1 created/updated by

ti=(𝐺𝑖−1 ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖) in sequence t.

or

 There exists an element e in 𝑁𝐴𝐶𝑗 where an exact image of it is deleted by

ti=(𝐺𝑖−1 ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖).

 The later defines df dependency, while the former comprises all other dependency types.

Definition 8: (Data-conflict). Given two production rules pi and pj, i<j, we say that pi disables pj if there is a

sequence of transformation steps t=(𝐺0 ⇒
𝑝1.𝑚1

𝐺1 … ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖 … ⇒
𝑝𝑗−1.𝑚𝑗−1

𝐺𝑗−1 ⇒
𝑝𝑗.𝑚𝑗

𝐺𝑗) from the

start state such that:

 There exists an element (node, edge, or an attribute) e 𝑜𝑛 𝐺𝑗−1 created/updated by

ti=(𝐺𝑖−1 ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖) in sequence t, which is forbidden in mj and prevents applying tj.

or

 There exist an element (node, edge, or an attribute) e in mj 𝑜𝑛 𝐺𝑗−1 deleted by

ti=(𝐺𝑖−1 ⇒
𝑝𝑖.𝑚𝑖

𝐺𝑖) in sequence t, which is deleted/read in tj and prevents applying tj.

 The former defines cf conflicts while the later defines dr/dd conflicts.

Table 3. Data dependency relations in HMS extracted by definitions 9 and 10.

Relation type Dependent rules Entity of the relation

Create _ Read

(cr)

(BookRoom, OccupyRoom)

(OccupyRoom, UpdateBill), (OccupyRoom, ClearBill)

bookingInfo

Bill, BillNo

Create _ Delete

(cd)

(BookRoom, Checkout)

(OccupyRoom, Checkout)

(ClearBill, Checkout)

bookingInfo

Bill, billDetails,

Occupied, guestInfo,

maintains, BillNo

Paid, UnPaid

Create _ Update

(cu)

(UpdateBill, UpdateBill), (UpdateBill, ClearBill)

(OccupyRoom, UpdateBill)

(OccupyRoom, OccupyRoom)

(OccupyRoom, ClearBill), (ClearBill, ClearBill)

(ClearBill, UpdateBill)

UnPaid

Bill_Cntr, Rooming

Paid, UnPaid

UnPaid

Delete_forbidden

(dn)

(Checkout, BookRoom)

(Checkout,OccupyRoom)

bookingInfo, Occupied

BillNo, billDetails,

Paid, UnPaid, Occupied

Delete_Read

(dr)

(Checkout, UpdateBill), (Checkout,ClearBill) Bill, BillNo

Delete_Delete

(dd)

(Checkout, Checkout)

(Checkout, UpdateBill), (Checkout, Checkout)

(Checkout, ClearBill)

(OccupyRoom, OccupyRoom)

Bill, BillNo, Paid,

billDetails, UnPaid,

bookingInfo, Occupied,

guestInfo, maintains

UnPaid

Paid, UnPaid

Bill_Cntr, Rooming

Create_forbidden

(cf)

(BookRoom, BookRoom) bookingInfo

As related earlier, in GTS specifications, the functionalities of the SUC (methods of an object or a service

interface) are modeled as GTS production rules. In this paper, the interoperability of production rules in feasible

scenarios (or infeasible in robustness testing) is exercised as well as in integration testing of the software

components. In the literature, the rule-dependency relationships {cr, cu, cd} are used as def-use relationship in

MBT [18, 19, 21, 31]. In this research, in addition to dependency relationships, we use data conflict relationships

to guide the robustness test generation process.

Table 3 listed all feasible data-dependencies and data-conflicts of the HMS according to dependency/conflict

types of relation 1/2. For example, the first row states that OccupyRoom reads an edge bookingInfo from

BookRoom. However, as described in Definition 9, we use data-dependency/-conflict relations as coverage

criteria for normal/robustness testing of GTS specifications.

Definition 9: (Data-flow/-conflict coverage). a test suite for data-flow/-conflict coverage criteria is a set of test

cases where each of the feasible data dependency/conflict relations among transformation rules of

the model including {cr, cd, cu, df}/{dr, dd, cf} is covered by at least one test case.

4.3. Extended fitness function

In practice, all types of the mentioned data-dependencies and data-conflicts can be used separately as a coverage

criterion to guide the test generation process. In this research, the data-dependencies are used in normal testing,

while robustness strategy uses the data-conflicts as coverage criteria. Relation 4 and Relation 5 calculate the

coverage score of a test suite in normal testing and robustness testing, respectively. As Relation 6 shows, the

union of all experienced data-dependencies and data-conflicts is used to calculate the coverage score in the hybrid

testing strategy. The proposed MA tries to optimize both the coverage level and the test size. The coverage level

is the primary goal in each testing strategy, and the length of the chromosome is the secondary objective of the

search algorithm. Relation 7 calculates the length of a chromosome as a summation of the size of normal test

paths. In these relations, Ch stands for chromosome, and T indicates a test case.

4) 𝐹𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = |⋃ 𝐷𝑎𝑡𝑎_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑇)𝑇∈𝐶ℎ | 𝑤ℎ𝑒𝑟𝑒 𝐷𝑎𝑡𝑎_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 ∈ {𝑐𝑟. 𝑐𝑢. 𝑐𝑑. 𝑑𝑓}

5) 𝐹𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = |⋃ 𝐷𝑎𝑡𝑎_𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑇)𝑇∈𝐶ℎ | 𝑤ℎ𝑒𝑟𝑒 𝐷𝑎𝑡𝑎_𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ∈ {𝑑𝑟. 𝑑𝑑. 𝑐𝑓}

6) 𝐹𝐻𝑦𝑏𝑟𝑖𝑑𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 𝐹𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑖𝑛𝑔 + 𝐹𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑖𝑛𝑔

7) 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶ℎ) = ∑ (𝐿𝑇)
𝑇 𝜖 𝐶ℎ

Algorithm 1. Calculate the Fitness, Exercised Data Dependencies and Conflicts within a test suite

Input: TestSuite

Output: Fitness, Exercised Data Dependencies {cr, cd, cu, df}

 Exercised Data Conflicts {dr, dd, cf}

1: cr, cd, cu, df, dr, dd, cf ← {}

2: ForEach TestCase tc ϵ TestSuite

3: cr, cd, cu, df ← compute_dataDependencies(tc) // alg 2.

4: dr, dd, cf ← compute_dataConflicts(tc) // alg 4.

5: cr ← cr ∪ tc.cr

6: cd← cd ∪ tc.cd

7: cu← cu ∪ tc.cu

8: df← df ∪ tc.df

9: d𝑟 ←dr ∪ tc.dr

10: dd ← dd ∪ tc.dd

11: cf ← cf ∪ tc.cf

12: Fitness=| cr |+| cd |+| cu |+| df |+| dr |+| dd |+| cf |

Algorithm 1 shows how the fitness of a test suite is calculated. The data-dependencies of each test case are

extracted by Algorithm 2. In this algorithm, to keep track of the data-flow in the normal execution path of the

test case, we will record the creator rule of created and updated elements of each transformation step as a feature

of an element. The union of detected data-dependencies from test cases of a test suite forms the set of the

experienced data-flow of the test suite.

Algorithm 2 shows how each read/created/updated element of a transformation step bear its creator rule. So,

it is very simple to detect cr, cd, and cu relations. But, the detection of df relations is a bit complex. As shown in

Algorithm 3, we should check for each transition t, how the elements deleted in the previous transitions enable

transition t through the provision of its forbidden elements.

Algorithm 2. Computation of the Exercised Data Dependencies of a test case

Input: TestCase

Output: Exercised Data Dependencies cr, cd, cu, and df

1: cr, cd, cu, df ← {}

2: CurrentPos=0;

3: CurrentState=StartState;

4: While 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠 < |𝑛𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑃𝑎𝑡ℎ| do

5: Transition t ← Apply(𝑛𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑃𝑎𝑡ℎ [𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠]);

6: Rule R1 ← t.AppliedRule

7: ForEach Element e ϵ t.Preserved

8: IF e.CreatorRule <> null

9: Rule R ← e.CreatorRule

10: cr ← cr ∪ {(R, R1, e)}

11: ForEach Element e ϵ t.Deleted

12: IF e.CreatorRule <> null

13: Rule R ← e.CreatorRule

14: cd← cd ∪ {(R, R1, e)}

15: ForEach Element e ϵ t.Updated

16: IF e.CreatorRule <> null

17: Rule R ← e.CreatorRule

18: c𝑢 ← cu ∪ {(R, R1, e)}

19:

20: IF R1.NACs<>null

21: df ← df ∪ Compute_DeleteNAC(TestCase, t) // Alg. 6.

22: ForEach Element e ϵ t.Created

23: e.CreatorRule ← R1

24: CurrentState ←t.TargetState

Algorithm 3. Computation of the exercised data-dependency Delete_Forbid of a test case

 Input: TestCase , current transition t

 Output: Exercised Data Dependencies df

1. df ← {}

2. ForEach previous Transition tp ϵ TestCase

3. deleted ← tp.Deleted elements which are images of t.NACs

4. IF deleted<>null

5. StateGraph ← t.sourceStateGraph ∪ deleted

6. IF reDo t from StateGraph faild

7. ForEach Element e ϵ deleted

8. Rule R1 ← tp.AppliedRule

9. Rule R2 ← t.AppliedRule

10. df ← df ∪ {(R1, R2, e)}

As aforementioned, the robustness components of a test case will be generated by finding a proper set of

invalid transformation steps in each step of the normal test path. It is trivial that there are infinite invalid

transitions in each state. Hence, we use the data-conflict relations among production rules to select a small subset

of invalid transition for robustness testing. The purpose of the data-conflict component of the fitness function is

to exercise each data-conflict relation among production rules at least once to promote the effectiveness of the

output test suite. On the other hand, to optimize the cost of robustness testing, it should be avoided to experience

data-conflicts redundantly.

Figure 5. Detection of robustness transformation steps.

Figure 5 shows a simple robustness test case for the running example. As this figure showed, in order to find

invalid steps, we use the conflicts that happen by each normal transformation step of the test case. For example,

in S2 there are four enable transitions (ET) i.e. ET2={ OccupyRoom(4,"Daniel Castro",1023),

OccupyRoom(1,"Daniel Castro",1023), OccupyRoom(2, "Joachim Wegener",1023), OccupyRoom(3,"Harmen

sthamer",1023)}, while some of them i.e. DT3={ OccupyRoom(4,"Daniel Castro",1023),

OccupyRoom(3,"Harmen sthamer",1023), OccupyRoom(2, "Joachim Wegener",1023)} are disabled (DT) in S3

ET5:

ClearBill(1023), ClearBill(1024),

Checkout(1,"Daniel Castro",1024),

OccupyRoom(2,"Joachim Wegener",1025),

OccupyRoom(3,"Harmen sthamer",1025),

UpdateBill(1023,20000),

UpdateBill(1024,20000)

0S

1S

BookRoom(4,"Daniel Castro")

2S

4S

5S

BookRoom(1,"Daniel Castro")

OccupyRoom(4,"Daniel Castro",1023)

OccupyRoom(1,"Daniel Castro",1024)

ClearBill(1024)

S7

BookRoom(4,"Daniel Castro")

8S

OccupyRoom(4,"Daniel Castro",1023) 3S

6S

9S

9S 9S
ClearBill(1024)

Checkout(1,"Daniel Castro",1024)

Checkout(1,"Daniel Castro",1024) UpdateBill(1024,20000)

ET6:

BookRoom(1,"Andre Baresel"),

BookRoom(1,"Daniel Castro"),

BookRoom(1,"Joachim Wegener"),

BookRoom(1,"Harmen sthamer"),

OccupyRoom(2,"Joachim Wegener",1025),

OccupyRoom(3,"Harmen sthamer",1025),

ClearBill(1023),UpdateBill(1024,20000)

ET2, Enabled transitions in S2:
OccupyRoom(4,"Daniel Castro",1023),

OccupyRoom(1,"Daniel Castro",1023),

OccupyRoom(2,"Joachim Wegener",1023),

OccupyRoom(3,"Harmen sthamer",1023)

ET3:

ClearBill(1023),

UpdateBill(1023,20000),

OccupyRoom(1,"Daniel Castro",1024),

OccupyRoom(2,"Joachim Wegener",1024),

OccupyRoom(3,"Harmen sthamer",1024)

DT3 = ET2\ET3

OccupyRoom(4,"Daniel Castro",1023),

OccupyRoom(3,"Harmen sthamer",1023),
OccupyRoom(2,"Joachim Wegener",1023)

DS6 = ET5\ET6

ClearBill(1024),

Checkout(1,"Daniel Castro",1024),

UpdateBill(1024,20000)

by firing the transformation step OccupyRoom(4,"Daniel Castro",1023). Therefore, disabled transitions could be

used as robustness components of the test case, but it is possible that some of the disabled steps do not cover new

data-conflict relationship and could not reveal more faults in the model. For example, in state S3 the invalid

transition OccupyRoom(4,"Daniel Castro",1023) covers all data-conflicts covered by the other two invalid steps

in DT3. Hence, the only invalid step OccupyRoom(4,"Daniel Castro",1023) in S3 is used as robustness

transformation step, but in S6 all of the three invalid steps in DT6 are needed as robustness components of the test

case because each of them experiences data-conflict relations that do not cover by others in DT6 or by all previous

invalid steps of the test case.

Algorithm 4 investigates that what transformation steps are disabled (invalid steps) by firing each transformation

step of the normal test path. Moreover, it shows what is the source of each invalid step in terms of the data-

conflicts. In this algorithm, also the robustness component of the test case was generated by the detection of

effective invalid steps for the normal test path.

Algorithm 4. Computation of the Exercised Data-conflicts of a test case

Input: TestCase

Output: Exercised Data Conflicts dr, dd, and cf

1: dr, dd, cf ← {}

2: CurrentPos=0;

3: CurrentState=StartState;

4: MatchResults previousMatches ← {}

5: While 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠 < |𝑛𝑜𝑟𝑚𝑎𝑙𝑇𝑒𝑠𝑡𝑃𝑎𝑡ℎ| do

6: Transition t ← Apply(normalTestPath [𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠]);

7: Rule R ← t.AppliedRule

8: Matches curMatches ← {CurrentState.getMatches()};

9: Matches disabledMatches= previousMatches\ curMatches;

10: ForEach Match M ϵ disabledMatches

11: appliedDeleteSet ← t.getRemovedElements();

12: appliedCreateSet ← t.getCreatedElements();

13: disabledDeleteSet ← M.getRemoedElements();

14: disabledReadSet ← M.getReadElements();

15: disabledForbidSet ← M.getForbiddenElements();

16: Rule R1 ← M.AppliedRule

17: ForEach Element e ϵ (appliedDeleteSet ∩ disabledReadSet)

18: IF !dr.contains(<R,R1,e>)

19: dr ← dr ∪ {<R,R1,e>};

20: IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ← IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ∪ M.getTransformationStep();

21: // IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] is a set of invalid transformation steps in the step

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠 of normal testsequence

22: ForEach Element e ϵ (appliedDeleteSet ∩ disabledDeleteSet)

23: IF !dd.contains(<R,R1,e>)

24: dd ← dd ∪ {<R,R1,e>};

25: IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ← IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ∪ M.getTransformationStep();

26: ForEach Element e ϵ (appliedCreateSet ∩ disabledForbidSet)

27: IF !cf.contains(<R,R1,e>)

28: cf ← cf ∪ {<R,R1,e>};

29: IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ← IS[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠] ∪ M.getTransformationStep();

30: CurrentState ←t.TargetState

4.4. Proposed memetic algorithm

In evolutionary algorithms, it is possible, individuals improve with any local refinements[44]. In the local search

algorithms, the search process concentrates on neighbors of a candidate solution to find a better solution. While

the global search algorithms make large changes in individuals to overcome local optima and find more globally

optimal solutions. In this section, we present the proposed local search refinements as well as an integration of

local and global search algorithms for test suite generation from GTS specification.

4.4.1. Restore covered test objectives

In search-based testing, usually, the fitness function shows the overall coverage score of a test suite. However,

fitness does not indicate that what test goals and rules are covered. Hence it may be happening that a test suite

with lower fitness score cover test goals that are not covered by a test suite with better fitness. To overcome this

problem, we use an external archive of test cases to restore ones that cover new test goals for the first time. When

we find a test suite with high coverage score but it does not cover some of the previously determined test goals,

it could be enhanced by adding related test cases.

4.4.2. Local search improvement

The aim of the local search is making small changes in the test suite to concentrate on covering particular test goals

and interactions. With this aim we define the local search at the test case level. When a test case is selected for

local search, in each step of the test case we search for a better substitution among enabled transitions. As stated in

the previous section, we keep track of the all covered test goals, so we could simply determine which test goals are

not covered so far. Hence, in each step, a transition that covers new test goal or uncovered rule is a candidate for

substitution. We us a greedy approach showed in Algorithm 5 for doing local search. Since fitness computation for

each available transition in each step of a test case is a time consuming task, this is done for enabled/disabled

transitions by the previous transformation step (Line 4). Substitution for each transformation step could be done if

there is a better (valid) transition (Lines 5 to 10).

Algorithm 5. Local search on an individual(Test Suite) //a greedy algorithm

Input: Test-Suite T, uncovered RuleSet UR, covered rule_dependencies CRD

Output: An improved Test_Suite

1: ForEach Test_Case Tc of T do

2: curState ← S0

3: While there is a Transformation_Step t of Tc DO

4: t' ← select a transition in curState w.r.t covering a new rule (not in UR), covering

new test goal (not in CRD), or cover new rule of UR.

5: IF t' is valid

6: Apply t', and change t with t' in Tc

7: Else IF t is valid

8: Apply t

9: Else

10: Select an available transition t'' randomly, apply t'', and change t with t'' in Tc

11: IF Tc improved

12: ADD Tc to external archive

13: Return T

4.4.3. Test-suite generation

In this section, we extend a regular genetic algorithm by equipping it with the proposed local search operator before

applying the regular global search operators. Algorithm 6 illustrates the proposed MA. The algorithm initially

applied to a random population of chromosomes. Each chromosome represents a set of possible test paths of the

SUT in the corresponding state-space. A chromosome initially generated through the application of a random

feasible sequence of transformation steps on the start graph of the SUC. The local search operator is applied to a

portion of the population with a predefined probability (Lines 5 to 8). Since in the proposed approach, test goals

determined through the search process and minimal test length could not be predicted, the population evolves

through the search operators until the search budget is used up (Lines 3 to 26). Line 13 and Lines 15 to 21 apply

the global search operators i.e. crossover and mutation respectively. In our search-based test generation algorithm,

the fitness score is the dominant goal of the optimization process, where the length of the test suite is the secondary

goal. This means that we use a single objective genetic algorithm, but in the selection of chromosomes (test suites)

for the next generation, the lengths of chromosomes are considered to rank chromosomes (chromosomes with the

same fitness value are ranked by their lengths (Line 23). The length of a chromosome is the sum of the lengths of

all the included test paths, which is calculated by relation 7 in section 4.3. At the end of the search process, the best

chromosome (a chromosome with the maximum fitness and minimum test length) is introduced as a best-searched

test suite.

Algorithm 6. Generation of the Test Suite with MA

Input: A GTS model of the SUC

 maxIterations, popSize, CrossOverRate, MutationRate, LocalSearchRate,

 maxTestSuiteLength, maxTestSequenceLength, elitSize, ImprovementRate

Output: A set of Test Paths as a Test Suite

1: Population ←Generate initial random population (test cases of length maxTestSequenceLength)

2: BestIndividual ← the best chromosome of the Population w.r.t fitness and test length

3: For iteration ← 1 to maxIterations do

 // Local Search

4: IF probability <LocalSearchRate
5: LocalSearchPopulation ← Select Individuals for local search by ImprovementRate

6: For each Individual of LocalSearchPopulation do

7: newIndividual ← Do local search on Individual by Algorithm 5.

8: Population ← Population ∪ {newIndividual}\{Individual}

// Global Search Genetic Algorithm

9: newPopulation ← elite(Best Individuals)

10: While |newPopulation | < 𝑝𝑜𝑝𝑆𝑖𝑧𝑠𝑒 do

11: Par1,Par2 ←select two chromosomes of Population by Tournament selection

 // CrossOver

12: IF probability <CrossOverRate
13: Ch1, Ch2 ← CrossOver(Par1,Par2)

14: else

15: Ch1, Ch2 ← Par1,Par2

// Mutation

16: For each step of test-cases in Ch1 do

17: IF probability < MutationRate

18: Change the step by a random available transition, insert new step, or delete

current step with the same probability.

19: For each step of test-cases in Ch2 do

20: IF probability < MutationRate

21: Change the step by a random available transition, insert new step, or delete

current step with the same probability.

22: Calculate fitness and length of Ch1 and Ch2

23: I1,I2 ← Rank {Child1, Child2, Parent1, Parent2 } According to their fitness and length,

 then return two individuals by Tournament selection

24: newPopulation ← newPopulation ∪ { I1,I2 }

25: Population ← newPopulation

26: Update(BestIndividual)

27: Return BestIndividual

4.4.4. Crossover

In the proposed evolutionary test generation process, two distinct crossover operators are designed, namely the test

suite level and test case level crossover.

Test suite level crossover: In the test suite level crossover, two chromosomes (P1, P2) as parents are recombined,

and two offspring (child1, child2) are generated. Figure 6 shows how test suite level crossover applied to a couple

of chromosomes. In this operator, a cross point c1 and c2 are assumed as random integer values in the range of 1 to

the number of test cases of P1 (|P1|) and P2 (|P1|) respectively. The combination of the first c1 -1 test cases of P1 and

the last |P2|- c2 test cases of P2 composes the child1, and the combination of the first c2 -1 test cases of P2 and the

last |P1|- c1 test cases of P1 creates the child2. As showed in Figure 6, the resultant children may have different size

with respect to the parents. Hence, the size of individuals may be changed through the search process.

Test case level crossover: In the test case level crossover, two test cases, i.e. parent1 and parent2, are recombined

to construct two new children, say child1 and child2. In the test case level crossover, the cross point p is a random

number in [1 .. min(length(parent1), length(parent1))], and the combination of the first p -1 transformation steps of

parent1 and the last length(parent2)- p steps of parent2 composes the child1, and the combination of the first p -1

transformation steps of parent2 and the last length(P1)- p steps of parent1 creates the child2. In this operator, the

generated test cases (i.e. offspring) may be invalid test cases through the precondition violation of transformation

steps that comes after the cross point, hence they are repaired by random transformation steps in fitness calculation.

Figure 6. Test-suite-level Crossover.

5. Experiments

In this paper, a robustness testing and a hybrid strategy based on the existing normal data-flow and the proposed

data-conflicts are introduced for software models specified through graph transformation system. Furthermore, to

search in a large state-space of complex systems, a memetic algorithm is used. In this section, we evaluate the fault

detection capability and cost-effectiveness of the proposed MA and the proposed testing strategies. Specifically,

we need to address the following research questions:

Q1. What are the fault detection capabilities of the proposed testing strategies?

Q2. What are the testing costs of the proposed testing strategies?

Q3. Does local search improve the coverage score and testing costs of the output tests?

Q4. How does the test generation algorithm converge?

Q5. How does the proposed approach improve the fault detection capability w.r.t the state-of-the-art?

Q6. To what extent the proposed approach affects the testing cost w.r.t the state-of-the-art?

In this section, to assess the fault detection capability of the proposed testing strategies, a type of mutation

analysis is used. This type of analysis is described in the next subsection. Then the effectiveness, and performance

of the proposed approach will be evaluated. Subsection 5.2 describes the case studies and parameter settings used

in our evaluation. Then, the performance of the proposed testing strategies (Q1 and Q2) are evaluated in subsection

5.3, while the performance of the MA (Q3 and Q4) is evaluated in subsection 5.4. improvements achieved by the

proposed approach concerning Q5 and Q6 are described in subsection 5.5.

5.1. Fault detection assessment

One of the well-known techniques for assessment of the fault detection capability of testing approaches is the

mutation analysis technique [45]. In our evaluation process, mutation analysis should be done at the model-level

for GTS specifications. A faulty version of the specification is called a mutant. A mutant that contains only a simple

fault is the first-order mutant, while higher-order mutant contains more faults [46]. When a test case T reveals

differences between a mutant M and the original behavior, we say that test case T can kill the mutant M. In other

words, the execution of T over M differs from that the application over the original model. A test suite that kills

first-order mutants, it is likely to kill higher-order ones [46, 47]. Hence, first-order mutation analysis could evaluate

TC1 TC3 TC4 TC2

Parent1

TC1 TC2 TC3 TC4 TC5

Parent2

TC1 TC2 TC5

Child1

CrossOver

TC1 TC2 TC3 TC4

Child2

TC3 TC4

the test generation approach as well as needed. It is worth noting that all mutants should be syntactically correct

specification according to the type graph, but semantically different from the original specification.

The production rules as the main components of GTS specification, and the start graph (host graph) construct a

formal specification of the SUC. Hence, production rules are the best component of the specification for fault

injection to generate mutants. In this section, we introduce a set of mutation operators based on common mistakes

that could occur in GTS specifications to alter production rules in mutants.

As mentioned in section 2, a production rule contains elements that operate as Creator/Reader/Eraser/Forbidden.

Change the role of an element of the production rule, and remove/insert an element from/to the rule are the main

sources of the fault injection to the production rule. In the GTS context, a mutant is generated by creating a copy

of the original model, followed by inserting a simple fault to one of the rules. Table 4 illustrates all the possible

types of mutation operators. For example, the first row of the table indicates that we can delete a creator C from a

production rule (Creator Deletion Operator CDR), and replace a creator C by a reader/eraser/forbidden component

of the same element type (Creator Operator Replacement COR). Moreover, in a production rule, attributes of nodes

updated through arithmetic/ logical/relational/string operators. Another type of fault that alters the production rules

includes an operator replacement in the mentioned expressions, such as the MuJava operator replacement [48].

Table 5 lists all the possible operators used in GTS. This type of mutant is generated by an operator replacement

with the same operator type and an expression omission/insertion from/into the production rules.

Table 4. All the possible types of faults based on the roles of the elements in a production rule.

Mutations Operators

Delete (CDO) or convert to { Reader, Eraser, Forbidden} (COR) Creator C

Delete (RDO) or convert to { Creator, Eraser, Forbidden} (ROR) Reader R

Delete (EDO) or convert to { Creator, Reader, Forbidden} (EOR) Eraser E

Delete (FDO) or convert to { Creator, Reader, Eraser} (FOR) Forbidden F

Table 5. Proposed mutation operators for GTS specification.

Type Mutation

operator

Description

Node- and Edge-Based

Mutation

RDO Reader Deletion Operator

CDO Creator Deletion Operator

EDO Eraser Deletion Operator

FDO Forbidden Deletion Operator

Reader Mutation ReR Reader operator Replacement

Creator Mutation COR Creator Operator Replacement

 Eraser Mutation EOR Eraser Operator Replacement

Forbidden Mutation FOR Forbidden Operator Replacement

Arithmetic Mutation AOR Arithmetic Operator Replacement{add, sub, mul, div, mod, min,

max, let/test }

Relational Mutation ROR Relational Operator Replacement { lt, le, gt, ge, eq, neg, toString }

Logical Mutation LOR Logical Operator Replacement {and, or, not, eq, true, false, let/test,

exists/forallx }

String Mutation SOR String Operator Replacement { concat, lt, le, gt, ge, eq, let/test }

According to the above discussion, for each element (Reader, Creator, Eraser, and Forbidden) of a production

rule, there are two possible operations to inject a fault in a production rule include deletion and replacement. Table

4 lists the used mutation operators for mutant generation from the original GTS specification of the SUC. In our

experiments, we create mutants for each target system by applying mutation operators to the elements of the

production rules by an automatic mutant generator developed in the GROOVE toolset. Each mutant is generated

through the application of a mutation operator to one element of a production rule of the model (first-order

mutation). The application of a mutation operator on a rule of the GTS specification should generate syntactically

correct mutants. Hence, mutants with syntactic errors would be removed automatically by the mutant generator.

Since each operator changes exactly an element of a production rule and each element of the rule mutated by an

operator only once, the resultant mutant differs from the original and other mutants. Therefore, the mutant generator

does not generate equivalent mutants.

Figure 7. Some of the mutants of the running example.

Table 6. Rules and mutants of the case studies.

Case study Number of rules Number of mutants

Hotel Management Service (HMS) 7 123

Dining Philosophers (DPs) 6 142

Online Shopping System (OSS) 20 395

Bug Tracker System (BTS) 34 432

Travel Agency System (TAS) 43 609

Total 110 1701

Table 7. Parameter setting of the test generation algorithm.

Value Parameter

100 maxIterations

30 popSize

6 maxTestSuiteLength

100 maxTestCaseLength

2

0.7

elitSize

CrossOverRate

0.05 MutationRate

0.4 LocalSearchRate
0.2 ImprovementRate
0.8 W (PSO)
0.2 C1, C2 (PSO)
0.2 MaxVelocity (PSO)

For example, Figure 7 shows several generated mutants for our running example based on the production

rule BookRoom. Figure 7.a shows the original specification of the rule. Figure 7.b is the result of the application of

the COR operator on the original production rule in which the new operator is replaced by the del operator from

the bookingInfo edge. Figure 7.c shows a mutant that is generated through the application of the FOR operator on

the forbidden bookingInfo edge and corresponding Guest Node in which the operator not is replaced

(a) BookRoom(int: par0, String Name)

(b) COR (Creator Operator Replacement)

(c) FOR (Forbidden Operator Replacement)

(d) ReR(Reader operator Replacement)

by new (creator operator). In Figure 7.d, the Reader element Guest is converted to the creator element through the

application of the ReR operator.

In the proposed mutation analysis, a mutant is weakly killed by a test case if the path from the execution of the

mutant differs from the resulting sequence of the original model. Weakly checking of mutants is a costly task,

because it needs to a comparison of every state of the execution path in both mutant application and original

specification application. On the other hand, when a mutant lead to a different final state, it is said strongly killed.

However, the efforts required to evaluate strongly includes a comparison of the final states in the mutant application

and the original model. In practice, the evaluation of the mutants is very costly and error-prone, particularly in the

case of detecting defects that do not change the final state/output. Therefore, it is preferable to design test cases

that kill mutants strongly. The proposed process of mutation analysis for each case study include:

1- specify the SUC through the graph transformation system.

2- Generate all possible mutants of the system by the application of the mutant generator.

3- Generate a test suite based on the strategy under evaluation through the proposed evolutionary approach.

4- Execute test cases against each mutant and check whether the mutant is killed based on each killed strategy

or not.

5.2. Case studies and experimental settings

Five well-known case studies are used for the evaluation of the proposed testing strategies. The first case study is

the running example, Hotel Management Service (HMS) [19], which described in section 2.2. The second case

study is a Dining Philosophers (DPs) problem [49]. In this problem, several philosophers sit around a table and do

their philosophical work. When each philosopher goes hungry, he/she eats from the food located on the table.

Besides the food, there is a fork between every two philosophers. Each philosopher should take two forks, namely

the left and right ones, to eat food. At first, all philosophers are in the thinking state, and after a moment, some of

the philosophers may get hungry. Each hungry philosopher tries to eat using his/her forks. The right fork is taken

after taking the left one. When the right fork is busy (it has been taken by another philosopher), the left fork is

released, and the corresponding philosopher remains in the hungry state. After a while, he/she tries again.

After eating enough food, the philosopher releases both forks and goes to the thinking state. The other case studies

are Online Shopping System (OSS), described in [27], Bug Tracker System (BTS), described in [19], and Travel

Agency System (TAS), presented in [28]. Table 6 lists the main metrics on these case studies.

Although the first and the second case studies are rather small, they are illustrative enough to indicate the

differences of our proposed test generation strategies. Moreover, they have very large state spaces when applied to

the big start graphs. A state-space-explosion problem occurs in DPs when we define the host graph with about 20

or more philosophers. This configuration can evaluate the performance of the proposed test generation algorithm.

Furthermore, OSS, BTS, and TAS have large state-spaces and the state-space-explosion problem occurs in them.

They are also well-known case studies in the literature for evaluating graph GTS-based test generation algorithms

[21].

Search-based algorithms have several parameters that affect the performance of the algorithm. Table 7 listed the

general parameters in our test generation algorithm. For many of these parameters there are common settings in the

literature, or there are best practices based on the past experiences. In this research we use the common settings for

standard global search operators such as CrossOverRate, and MutationRate in Genetic, or all parameters of the

PSO algorithm. Other parameters such as size of the population and number of generations are set based on the

past experience [21]. Moreover, based on the past experience we limit the length of test cases to 100 transformation

steps, and 6 test cases are allowed to be in a test suite.

There are two new parameters in the local search component of the proposed algorithm i.e. LocalSearchRate,

and ImprovementRate, in which appropriate setting could balance between exploration and exploitation.

Generally, high rate selection for local search parameters leads to better coverage, but in our investigation, we gain

the best coverage score by LocalSearchRate=0.4 and ImprovementRate=0.2, while higher settings do not lead

to better coverage. It is worth noting, that since in local search we just search in enabled/disabled transitions for

each transformation step, it does not very time consuming task. However, more tuning investigations and time

analysis could lead to find better settings, but this task is computational expensive. Hence, in this research we

preferred to focus on showing that the proposed coverage criteria, based on data-conflicts (and related testing

strategies i.e. robustness and hybrid testing), are capable to reveal some faults in GTS specifications that could not

be determined by the existing normal testing. Moreover, we focus on illustrating that the proposed local search

component could lead to better coverage score. Therefore, we postpone more tuning investigations to the future

work.

5.3. Performance of the proposed testing strategies

In this section, we explain our findings from the experiments concerning Q1 and Q2 research questions. The

research question Q1 evaluates the effectiveness of the proposed testing strategies (robustness and hybrid testing)

and compares them with the existing normal testing. The cost of each testing strategy is the subject of research

question Q2.

Table 8. Comparison of an average and standard deviation of coverage score/fault-detection-capability of the

proposed testing strategies versus existing normal testing strategy.

Case study Normal testing Robustness testing Hybrid testing

HMS

Coverage 30.8 ± 0.1 26.7 ± 0.5 57.8 ± 0.4

#Weakly killed 92.2 ± 2.8 98.6 ± 1.6 104.2 ± 2.6

#Strongly killed 74.3 ± 1.2 76.2 ± 2.5 80.7 ± 1.2

DPs

Coverage 18 ± 0 11 ± 0 28.5 ± 0.4

#Weakly killed 113.2 ± 0.97 130.5 ± 0.9 130.6 ± 0.8

#Strongly killed 110.2 ± 1.3 109.9± 1.3 110.6 ±0.9

OSS

Coverage 218.6 ± 1.3 104.2 ± 2.5 316.1 ± 4.7

#Weakly killed 348.4 ± 0.7 359.2 ± 6.2 368.7 ± 9.6

#Strongly killed 338.3 ± 2.5 341.9 ± 6.2 345.8 ± 7.3

BTS

Coverage 266.4 ±8.2 195.3 ± 8.9 465.2 ± 9.4

#Weakly killed 351.2 ± 13.1 321.2 ± 11.9 385.3 ± 12.1

#Strongly killed 333.9 ± 9.2 295.9 ± 12.5 344.1 ± 6.2

TAS

Coverage 459.4 ±8.2 287.3 ± 8.9 737.4 ± 12.2

#Weakly killed 491.4 ± 16.4 443.2 ± 17.4 543.4 ± 22.5

#Strongly killed 462.3 ± 19.3 395.6 ± 15.7 508.8 ± 18.4

Table 9. Comparison of the average and standard deviation of test-size, transformation-steps needed per killed
mutant of the proposed testing strategies versus the normal testing strategy in both weakly and strongly fault

detection methods.

Case study Metric Normal testing Robustness testing Hybrid testing

HMS

Test size 33.4 ± 9 29.5 ± 8.7 36.4 ± 9.6

TS/WKM 0.36 0.30 0.35

TS/SKM 0.45 0.39 0.45

DPs

Test size 80.0 ± 4.9 56.2 ± 13.2 107.2 ± 14.9

TS/WKM 0.73 0.51 0.97

TS/SKM 0.71 0.43 0.81

OSS

Test size 158.8 ± 6.6 115.1 ± 11.4 193.8 ± 15.8

TS/WKM 0.46 0.32 0.53

TS/SKM 0.47 0.34 0.56

BTS

Test size 275.2 ± 14.4 173.4 ± 16.7 292.3 ± 15.6

TS/WKM 0.78 0.54 0.76

TS/SKM 0.82 0.59 0.85

TAS

Test size 225.1 ± 13.8 167.5 ± 12.3 262.5 ± 19.7

TS/WKM 0.46 0.38 0.48

TS/SKM 0.49 0.42 0.52

Q1. What are the fault detection capabilities of the proposed testing strategies?

Table 8 shows the fault detection capability of three testing strategies. The first column of the table represents

the case study under the experiment. The second column states the metrics evaluated in the next columns. The

Coverage row describes to what extent each testing strategy covers the data-dependencies/conflicts between the

transformation rules. In each experiment, we evaluate the fault detection capability against the introduced types of

fault detection strategy, i.e. the weak- and the strong fault detection strategies. The other columns (numerical

columns) of the table show the mean and the standard deviations of the mentioned evaluation criteria for 10 times

of test suite generation, execution, and evaluations.

As stated in the coverage row of Table 8, the hybrid testing strategy covers more data-relations (dependencies

and conflicts) than the other testing strategies in all case studies. Hence, it is obvious that the mentioned strategy

capable of detecting more faults than the others. This is illustrated in the table by highlighted cells in comparison

with other cells in the same row for both fault detection methods (weakly and strongly killing methods). Another

observation is that the robustness testing strategy could detect more faults than normal testing for DPs and OSS

case studies, while this is not valid for the other cases. Although the fault detection capability of the normal testing

and the robustness testing have no significant difference in HMS, the notable point is that they could not detect the

same set of faults. In other words, robustness testing identifies some faults that could not be detected by normal

testing and vice versa. This is supported by using both strategies in the hybrid testing, as showed by the results that

the hybrid testing identifies faults that have been detected either by robustness testing or normal testing.

Q2. What are the testing costs of the proposed testing strategies?

Table 9 shows a comparison between the proposed strategies based on the average and standard deviation of

the test-size and testing costs, in both fault detection methods (weakly and strongly), in terms of the number of

transformation steps required per killed mutant. For example, in the DPs case study, the row labeled by "TS/WKM"

states that to weakly kill a mutant, in the normal testing strategy, on average 0.36 transformation steps are needed.

As the highlighted cells show, the robustness testing strategy is less costly than the other strategies for all case

studies in both weakly and strongly fault detection methods. As mentioned in section 4, a robustness test case

includes a normal test sequence along with invalid transitions. So, the normal component of the test case covers

some data-dependencies. Therefore, covering data-conflicts through the robustness test cases subsume some of the

data-dependencies. Hence, the robustness test cases can detect faults related to some of the data-dependencies other

than data-conflicts.

Figure 8 and Figure 9 show the cost-effectiveness of each testing strategy in both weakly and strongly fault

detection methods for each case study and an average of them. As these figures illustrate, the robustness testing

strategy is the most cost-effective strategy in all case studies and on the average cost of all case studies.

Figure 8. Cost of each testing strategy in weakly fault detection method for each case study and an average of them.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

HMS DPs OSS BTS TAS Average

Normal testing

Robustness testing

Normal & Robustness

Figure 9. Cost of each testing strategy in strongly fault detection method for each case study and an average of them.

5.4. Performance of the proposed memetic algorithm

In the previous section, we have seen that the robustness testing based on data-conflict relationships identifies some

faults that could not be detected by normal testing and vice versa. Moreover, the hybrid testing identifies faults that

have been detected either by robustness testing or normal testing. So, in this section we evaluate the proposed test

generation algorithm i.e. MA, based on the hybrid testing strategy to show the effectiveness of the proposed local

search refinements and it cost-effectiveness (Q3). With this aim, we compare MA with three search-based

algorithms that have been used in testing based on GTS specifications, including GA, PSO, and HGAPSO.

Statistical difference is evaluated with a two-tailed Mann–Whitney–Wilcoxon U-test, while improvements of MA

is measured with the Vargha–Delaney (𝐴̂12) effect size at 0.05 significant level. Moreover, we focus on the

convergence of MA (Q4). As the coverage score is the primary objective in the proposed MA, most of the

evaluations are performed based on this metric.

Q3. Does local search improve the coverage score and testing costs of the output tests?

Table 10 shows a comparison between MA and selected search algorithms i.e. GA, PSO, and HGAPSO based

on average and standard deviation of coverage score, length of the output tests, and the number of Transformation

Steps needed per a Covered Test Objective (TS/CTO) as cost of covering a test goal. This experiment is done based

on the hybrid testing strategy for all selected algorithms for 10 times of test suite generation, execution, and

evaluations.

As stated in the coverage row of Table 10, MA covers more data-relations (dependencies and conflicts) than

the other testing strategies in all case studies except DPs case study, which has no significant difference with

HGAPSO algorithm. This is also true for the third row (TS/CTG) of each case study, which shows the cost-

effectiveness of search algorithms in terms of the number of transformation steps required to cover a test objective.

Results in Table 11 answer Q3 by clearly showing, with high statistical confidence, that the MA outperforms

the selected algorithms in many, case studies. In this table, Effect sizes with statistically significant difference at

0.05 level are shown in bold. There are no significant differences between MA, GA, and HGAPSO for small case

studies i.e. HMS and DPs, that have small state space. But, there are a significant difference between the proposed

MA and the other search algorithms (MA; other) for large case studies.

Q4. How does the test generation algorithm converge?

To answer the research question Q4, we conduct experiments in which the convergence of MA is investigated.

In these experiments, the test generation algorithm was applied on large instances of the case studies (e.g. DPs (30)

with 30 philosophers) that have very large state-space. As HMS is a small system, it is not considered in this

evaluation. Figure 10 shows how MA converges in the selected instances based on the average coverage score.

Each curve depicts the convergence of a case study with the average coverage of 10 experiments, which is carried

out based on the hybrid testing strategies.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

HMS DPs OSS BTS TAS Average

Normal testing

Robustness testing

Normal & Robustness

Table 11. Comparison of the effect size (𝐴̂12) of the average coverage between the proposed MA and the other
search algorithms (MA; other). Effect sizes with statistically significant difference at 0.05 level are shown in bold.

Algorithm HMS DPs OSS BTS TAS

GA 0.52 0.55 0.85 0.91 0.82

PSO 0.97 0.89 1 1 1

HGAPSO 0.51 0.49 0.63 0.73 0.71

5.5. Comparison with the state-of-the-art

As aforementioned, VCT [19] and HGAPSO (data-flow) [21] are the most related works to the proposed testing

approach. In this section, we do a comparison between the proposed testing strategies and these related works,

based on the coverage score and the cost of testing, with respect to Q5 and Q6 research questions.

Q5. How does the proposed approach improve the fault detection capability w.r.t the state-of-the-art?

Q6. To what extent the proposed approach affects the testing cost w.r.t the state-of-the-art?

Table 13, with the same structure as Table 8, reports the new experiments to show how the proposed approach

improves the fault detection capability of the GTS specification testing with respect to the mentioned related works.

It is notable that, in this table, the coverage score shows the covered rule-dependencies/-conflicts instead of data-

dependencies/-conflicts. This is because the available implementations of the related works measure the rule-

dependencies. If the application of rule A depends on the application of B, the application of A may need several

data elements created, updated, or deleted by B. So, usually there are several data-relationships per rule-

dependency/conflict. In testing, each of the shared data between production rules could be a source of a fault.

Therefore, it is reasonable to investigate all data-relations, and this is considered in the proposed approach.

According to the mutants killed by each detection method, the hybrid strategy has a significant difference with the

related works for all case studies. Hence, this strategy outperforms related works (Q5). This is expected because,

according to the coverage score, the hybrid strategy covers more data-relationships than related works. In other

words, the faults related to the uncovered data-dependencies/-conflicts could not be detected by the VCT/HGAPSO

approach.

Table 10. Comparison of an average and standard deviation of coverage score, length of the output tests, and
the number of Transformation Steps needed per a Covered Test Objective (TS/CTO) of MA versus other search-
based algorithms.

Case study Metric GA PSO HGAPSO MA

HMS

Coverage 57.1 ± 1.1 51.9 ± 2.8 57.6 ± 0.2 57.8 ± 0.4

Test size 38.2 ± 10.4 46.9 ± 10.8 39.2 ± 12.3 36.4 ± 9.6

TS/CTO 0.67 0.9 0.68 0.63

DPs

Coverage 28.2 ± 0.8 25.2 ± 1.3 28.6 ± 0.5 28.5 ± 0.4

Test size 112.1 ± 18.3 110.1 ± 17.8 101.8 ± 11.2 107.2 ± 14.9

TS/CTO 3.97 4.37 3.56 3.76

OSS

Coverage 298.1 ± 8.2 264.1 ± 14.2 301.8 ± 6.8 316.1 ± 4.7

Test size 211.6 ± 17.3 163.7 ± 25.8 203.5 ± 19.2 193.8 ± 15.8

TS/CTO 0.71 0.62 0.67 0.61

BTS

Coverage 431.6 ± 19.3 395.2 ± 22.1 446.7 ± 12.9 465.2 ± 9.4

Test size 324.9 ± 32.1 274.8 ± 17.3 312.1 ± 21.7 292.3 ± 15.6

TS/CTO 0.75 0.69 0.69 0.63

TAS

Coverage 696.9 ± 21.5 642.5 ± 39.4 721.2 ± 15.3 737.4 ± 12.2

Test size 288.7 ± 33.1 247.6 ± 30.5 269.8 ± 23.2 262.5 ± 19.7

TS/CTO 0.41 0.38 0.37 0.36

Figure 10. Convergence of the test generation algorithm in the case studies introduced, based on the first

objective (fitness).

Table 13. Comparison of average and standard deviation of coverage score/fault-detection capability of the

proposed testing strategies versus related works. Coverage metric is calculated as the number of the covered rule-
dependencies/-conflicts

Case study VCT HGAPSO

(data-flow)

Robustness

testing

Hybrid testing

HMS

Coverage 13 8 ± 0 11.6 ± 0.5 28.4 ± 0.6

#Weakly killed 71 69.2 ± 4.8 98.6 ± 1.6 104.2 ± 2.6

#Strongly killed 67 55.4 ± 5.2 76.2 ± 2.5 80.7 ± 1.2

DPS

Coverage 5 2 ± 0 10 ± 0 27.5 ± 0.4

#Weakly killed 91 84.7 ± 7.5 130.5 ± 0.9 130.6 ± 0.8

#Strongly killed 89 79.7 ± 6.5 109.9± 1.3 110.6 ±0.9

OSS

Coverage 36 46.8 ± 0.4 32.1 ± 1.5 106.1 ± 2.7

#Weakly killed 295 312.7 ± 5.2 359.2 ± 6.2 368.7 ± 9.6

#Strongly killed 283 297.6 ± 6.8 341.9 ± 6.2 345.8 ± 7.3

BTS

Coverage 32 84.6 ± 1.3 62.3 ± 1.9 163.2 ± 2.4

#Weakly killed 247 325.6 ± 8.7 321.2 ± 11.9 385.3 ± 12.1

#Strongly killed 223 309.5 ± 7.2 295.9 ± 12.5 344.1 ± 6.2

TAS

Coverage 39 85.4 ±0.5 71.3 ± 2.9 196.4 ± 2.1

#Weakly killed 309 451.5 ± 11.1 443.2 ± 17.4 543.4 ± 22.5

#Strongly killed 276 402.6 ± 7.8 395.6 ± 15.7 508.8 ± 18.4

(a) DPs

(b) OSS

(c) BTS

(d) TAS

Table 14. Comparison of average and standard deviation of coverage-level, test-size, fault-detection-capability/
transformation-step of the proposed testing strategies versus existing normal testing strategy in both weakly and

strongly mutant kill methods.

Case study Metric VCT HGAPSO

(data-flow)

Robustness testing Hybrid testing

HMS

Test size 51 33.4 ± 9 29.5 ± 8.7 36.4 ± 9.6

TS/WKM 0.72 0.48 0.30 0.35

TS/SKM 0.76 0.6 0.39 0.45

DPs

Test size 64 102.0 ± 14.9 56.2 ± 13.2 107.2 ± 14.9

TS/WKM 0.7 1.2 0.51 0.97

TS/SKM 0.76 1.3 0.43 0.81

OSS

Test size 59 86.2 ± 10.6 115.1 ± 11.4 193.8 ± 15.8

TS/WKM 0.2 0.27 0.32 0.53

TS/SKM 0.21 0.29 0.34 0.56

BTS

Test size 117 178.6 ± 19.9 173.4 ± 16.7 292.3 ± 15.6

TS/WKM 0.47 0.55 0.54 0.76

TS/SKM 0.52 0.59 0.59 0.85

TAS

Test size 109 161.1 ± 11.2 167.5 ± 12.3 262.5 ± 19.7

TS/WKM 0.29 0.36 0.38 0.48

TS/SKM 0.32 0.4 0.42 0.52

Table 14 shows the comparison of the cost of fault detection in the proposed strategies and the related works.

The cost is measured as the number of transformation steps required per killed mutant. The comparison of the cost

in the proposed hybrid testing with the VCT/HGAPSO shows that the proposed strategy is costlier than others for

all case studies. Indeed, to cover some of the data-dependencies/-conflicts, some rules should be applied repeatedly,

which leads to lengthy test cases. In other words, not all faults have the same cost to detect. On the other hand, the

robustness strategy is less costly than other strategies in some case studies. This is again expected because covering

conflict is far simpler than covering all data-dependencies. However, VCT has the least cost in three case study,

but it covers a small subset of data-dependencies, and detect far less faults the proposed strategies (Q6).

6. Conclusion and future works

Model testing is performed to obtain some level of confidence in the validity of the model against its intended

purposes and ensure the quality of models. Model testing approaches try to reveal the faults of the model under

test. Robustness testing is a well-known approach in the software testing context, which evaluates vulnerabilities

of a system under unexpected events. In this paper, a set of data-conflict coverage criteria in the context of GTS

specification is introduced to guide the robustness test generation process. Furthermore, a robustness test generation

approach is introduced to testing software models specified through GTS formalism. Then, we have investigated

the combination of the existing normal testing based on data-dependencies and robustness testing as a hybrid testing

strategy. The hybrid strategy could cover both data-dependencies and data-conflicts among production rules.

Moreover, a search-based testing process MA is proposed for all strategies based on some local search refinements

and global search genetic algorithm to maximize the coverage score in each strategy and minimize the length of

the output test.

The effectiveness of the proposed testing strategies and the introduced search-based test generation process

(MA) are evaluated through a type of mutation analysis at the model-level. Our experiments based on five well-

known case studies show that the hybrid testing strategy outperforms the existing normal testing approach and the

proposed robustness testing in terms of fault-detection capability, while the robustness testing is more cost-efficient

than others. Moreover, the proposed hybrid evolutionary testing outperforms the most related works in terms of

fault detection capability.

There are several directions for improvement in future works. For example, there are general enhancements in the

literature for the adaptive parameter setting of search algorithms [50, 51], which could be used in the proposed test

generation algorithm for the achievement of better coverage. Furthermore, approximate approaches [52-54] are

able to generate near optimal solutions more accurately.

References

1. Hutchison, C., et al. Robustness testing of autonomy software. in Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice. 2018. ACM.
2. Mattiello-Francisco, F., et al., InRob: An approach for testing interoperability and robustness of real-time embedded software.

Journal of Systems and Software, 2012. 85(1): p. 3-15.

3. Balci, O., Verification, validation, and testing. Handbook of simulation, 1998. 10: p. 335-393.
4. Savary, A., et al. Model-based robustness testing in Event-B using mutation. in SEFM 2015 Collocated Workshops. 2015.

Springer.

5. Strug, J., Mutation testing approach to negative testing. Journal of Engineering, 2016. 2016.
6. Rafe, V., M. Rahmani, and K. Rashidi, A survey on coping with the state space explosion problem in model checking. International

Research Journal of Applied and Basic Sciences, 2013. 4(6): p. 1379-1384.

7. Di Nardo, D., et al. Evolutionary Robustness Testing of Data Processing Systems Using Models and Data Mutation (T). in 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2015. IEEE.

8. Vos, T.E., et al., Evolutionary functional black-box testing in an industrial setting. Software Quality Journal, 2013. 21(2): p. 259-

288.

9. Ferrer, J., et al., Search based algorithms for test sequence generation in functional testing. Information and Software Technology,

2015. 58: p. 419-432.

10. Committee, I.S.C., IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos. CA:
IEEE Computer Society, 1990. 169.

11. Araujo, W., L.C. Briand, and Y. Labiche, On the effectiveness of contracts as test oracles in the detection and diagnosis of

functional faults in concurrent object-oriented software. IEEE Transactions on Software Engineering, 2014. 40(10): p. 971-992.
12. Meyer, B., Object-oriented software construction. Vol. 2. 1988: Prentice hall New York.

13. Ehrig, H. and K. Ehrig, Overview of formal concepts for model transformations based on typed attributed graph transformation.

Electronic Notes in Theoretical Computer Science, 2006. 152: p. 3-22.
14. Heckel, R., Graph transformation in a nutshell. Electronic notes in theoretical computer science, 2006. 148(1): p. 187-198.

15. Taentzer, G. AGG: A graph transformation environment for modeling and validation of software. in International Workshop on

Applications of Graph Transformations with Industrial Relevance. 2003. Springer.
16. König, B., et al., A tutorial on graph transformation, in Graph Transformation, Specifications, and Nets. 2018, Springer. p. 83-

104.
17. Machado, R., L. Ribeiro, and R. Heckel, Rule-based transformation of graph rewriting rules: towards higher-order graph

grammars. Theoretical Computer Science, 2015. 594: p. 1-23.

18. Khan, T.A., O. Runge, and R. Heckel. Testing against visual contracts: Model-based coverage. in International Conference on
Graph Transformation. 2012. Springer.

19. Runge, O., T.A. Khan, and R. Heckel, Test case generation using visual contracts. Electronic Communications of the EASST,

2013. 58.

20. de Bruijn, V., Model-Based Testing with Graph Grammars. 2013.

21. Kalaee, A. and V. Rafe, Model-based Test Suite Generation for Graph Transformation System Using Model Simulation and

Search-based Techniques. Information and Software Technology, 2018.
22. Haupt, R.L. and S. Ellen Haupt, Practical genetic algorithms. 2004.

23. Eberhart, R. and J. Kennedy. Particle swarm optimization. in Proceedings of the IEEE international conference on neural

networks. 1995. Citeseer.
24. Dias Neto, A.C., et al. A survey on model-based testing approaches: a systematic review. in Proceedings of the 1st ACM

international workshop on Empirical assessment of software engineering languages and technologies: held in conjunction with the

22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007. 2007. ACM.
25. Jonsson, M.B.B., J.-P.K.M. Leucker, and A. Pretschner, Model-based testing of reactive systems. 2005, Berlin, Germany,

Springer.

26. Rensink, A. The GROOVE simulator: A tool for state space generation. in International Workshop on Applications of Graph
Transformations with Industrial Relevance. 2003. Springer.

27. Engels, G., B. Güldali, and M. Lohmann. Towards model-driven unit testing. in International Conference on Model Driven

Engineering Languages and Systems. 2006. Springer.
28. Rafe, V., Scenario-driven analysis of systems specified through graph transformations. Journal of Visual Languages &

Computing, 2013. 24(2): p. 136-145.

29. Ehrig, H., G. Rozenberg, and H.-J. rg Kreowski, Handbook of graph grammars and computing by graph transformation. Vol. 3.
1999: world Scientific.

30. Ehrig, H., U. Prange, and G. Taentzer. Fundamental theory for typed attributed graph transformation. in International conference

on graph transformation. 2004. Springer.

31. Heckel, R., T.A. Khan, and R. Machado, Towards test coverage criteria for visual contracts. Electronic Communications of the

EASST, 2011. 41.

32. Liu, S. Validating formal specifications using testing-based specification animation. in Proceedings of the 4th FME Workshop on
Formal Methods in Software Engineering. 2016. ACM.

33. Böhmer, K. and S. Rinderle-Ma, A systematic literature review on process model testing: Approaches, challenges, and research

directions. arXiv preprint arXiv:1509.04076, 2015.
34. Anand, S., et al., An orchestrated survey of methodologies for automated software test case generation. Journal of Systems and

Software, 2013. 86(8): p. 1978-2001.

35. Aichernig, B.K., F. Lorber, and D. Nickovic, Model-based mutation testing with timed automata. Graz University of Technology,
Graz, 2013.

36. Satpathy, M., et al. Automatic testing from formal specifications. in International Conference on Tests and Proofs. 2007. Springer.

37. Louzaoui, K. and K. Benlhachmi, A Robustness Testing Approach for an Object Oriented Model. JCP, 2017. 12(4): p. 335-353.

38. Harman, M., Y. Jia, and Y. Zhang. Achievements, open problems and challenges for search based software testing. in 2015 IEEE

8th International Conference on Software Testing, Verification and Validation (ICST). 2015. IEEE.
39. Khari, M. and P. Kumar, An extensive evaluation of search-based software testing: a review. Soft Computing, 2017: p. 1-14.

40. Fraser, G. and A. Arcuri, Whole test suite generation. IEEE Transactions on Software Engineering, 2013. 39(2): p. 276-291.

41. Fraser, G., A. Arcuri, and P. McMinn, A memetic algorithm for whole test suite generation. Journal of Systems and Software,
2015. 103: p. 311-327.

42. Gönczy, L., R. Heckel, and D. Varró, Model-based testing of service infrastructure components, in Testing of software and

communicating systems. 2007, Springer. p. 155-170.
43. Heckel, R. and L. Mariani. Component Integration Testing by Graph Transformations. in International Conference on Computer

Science, Software Engineering, Information Technology, e-Business, and Applications, Cairo. 2004. Citeseer.

44. Whitley, D., V.S. Gordon, and K. Mathias. Lamarckian evolution, the Baldwin effect and function optimization. in International
Conference on Parallel Problem Solving from Nature. 1994. Springer.

45. Grechanik, M. and G. Devanla. Mutation integration testing. in Software Quality, Reliability and Security (QRS), 2016 IEEE

International Conference on. 2016. IEEE.
46. Offutt, A.J., Investigations of the software testing coupling effect. ACM Transactions on Software Engineering and Methodology

(TOSEM), 1992. 1(1): p. 5-20.

47. Belli, F., et al., Model-based mutation testing—approach and case studies. Science of Computer Programming, 2016. 120: p. 25-
48.

48. Ma, Y.-S., J. Offutt, and Y.-R. Kwon. MuJava: a mutation system for Java. in Proceedings of the 28th international conference on

Software engineering. 2006. ACM.
49. Schmidt, A. and D. Varró. CheckVML: A tool for model checking visual modeling languages. in International Conference on the

Unified Modeling Language. 2003. Springer.

50. Lobo, F., C.F. Lima, and Z. Michalewicz, Parameter setting in evolutionary algorithms. Vol. 54. 2007: Springer Science &
Business Media.

51. Lobo, F.G. and C.F. Lima, Adaptive population sizing schemes in genetic algorithms, in Parameter setting in evolutionary

algorithms. 2007, Springer. p. 185-204.
52. Arqub, O.A., Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations.

Neural Computing and Applications, 2017. 28(7): p. 1591-1610.
53. Arqub, O.A., et al., Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft

Computing, 2016. 20(8): p. 3283-3302.

54. Arqub, O.A., et al., Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value
problems. Soft Computing, 2017. 21(23): p. 7191-7206.

