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ABSTRACT

The common method for testing metaheuristic optimisation al-
gorithms is to benchmark against problem test suites. However,
existing benchmark problems limit the ability to analyse algorithm
performance due to their inherent complexity. This paper proposes
a novel benchmark, BTB, whose member functions have known
geometric properties and critical point topologies. A given func-
tion in the benchmark is a realisation of a specified barrier tree in
which funnel and basin geometries, and values and locations of all
critical points are predetermined. We investigate the behaviour of
two metaheuristics, PSO and DE, on the simplest manifestations
of the framework, ONECONE and TWOCONES, and relate algo-
rithm performance to a downhill walker reference algorithm. We
study success rate, defined as the probability of optimal basin at-
tainment, and inter-basin mobility. We find that local PSO is the
slowest optimiser on the unimodal ONECONE but surpasses global
PSO in all TWOCONES problems instances below 70 dimensions.
DE is the best optimiser when basin difference depths are large but
performance degrades as the differences become smaller. LPSO is
the superior algorithm in the more difficult case where basins have
similar depth. DE consistently finds the optimum basin when the
basins have equal size and a large depth difference in all dimensions
below 100D; the performance of LPSO falls away abruptly beyond
70D.
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1 INTRODUCTION

Evolutionary algorithms (EAs) are being developed and exploited
to solve real-world problems [28],[7] [26] where an optimal solu-
tion is required. Evaluation tools and parameters are required to
measure the effectiveness of these algorithms [6]. However, cur-
rent approaches for the analysis of the performances of EAs are
very complex [10], [31]. The performance of an EA is expected to
strongly depends on the nature of the problem. The performance
evaluation of an EA on all possible even within a restricted class
is too expensive to be considered practical. Numerous artificial
benchmark functions such as the IEEE Congress on Evolutionary
Computation (CEC) problem suites have been designed and widely
applied [20], [12] for EA evaluation.

The Particle Swarm Optimisation (PSO) is one of the most known
population optimsers. PSO has been widely applied and evaluated
on many CEC problem functions, but theoretical results are sparse
without structured and principled matching of the problem to algo-
rithm apart from general advice (e.g. apply PSO with local commu-
nication to a multi-modal problem).

This paper aims to understand the workings of an algorithm
by employing a benchmark generator (BG) whose test function
instances have known geometry. The BG can implement any barrier
tree (e.g. any combination of funnels and basins). The behaviour
of three algorithms on the simplest BG functions - unimodal and
bimodal problems - are reported in this work.

The proposed BG possesses several advantages. The problem
can be controlled for systematic and principled problem-algorithm
investigation and algorithm behaviour can be related to geometric
properties and to barrier tree complexity. The values and locations
of all critical points are known and the BG can generate a huge
variety of problems.

The remainder of this paper is organised as follows. Background
work is described in Section 2. Next, in Section 3, the barrier tree
benchmark (BTB) is defined. Section 4 details experiment setup
and section 5 presents results for particle swarm optimisation algo-
rithms with local and global communication networks (L/GPSO)
and DE on ONECONE and TWOCONES BTB instances. The paper
concludes with an overview of the main empirical findings.

2 BACKGROUND

Benchmark problems for real-world applications such as the trav-
elling salesman problems, and the knapsack problems among oth-
ers [4], have been used to evaluate EAs. However, the high costs
associated with these benchmarks limit their use for a more com-
prehensive analysis [21]. Consequently, benchmarks with artificial
problem suites have been proposed and widely adopted.
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The CEC problem suites have provided a series of standard
benchmark functions and their variants are convenient in terms of
comparison and implementation [12]. A set of twenty-five single-
objective optimisation test functions was assembled for a compe-
tition at the 2005 Congress on Computational Intelligence. This
benchmark consists of five unimodal functions, seven basic multi-
modal functions, two multimodal complex functions, and eleven
hybrid functions, which were weighted sums of ten basic test prob-
lems [25].

This test suite became the standard for comparing algorithms,
and in subsequent years possible improvements were identified,
resulting in a new benchmark suite being developed for CEC 2013
[15]. This collection of twenty-eight functions expanded on the 2005
composite functions and added new test problems. It includes five
unimodal functions, fifteen basic multimodal functions, and eight
composition functions, and has become the more recent default
standard for testing and comparing optimization algorithms.

Another set of benchmark problems was designed at the BBOB
competition [11]. Generators of random problems were introduced
for improving existing benchmarks. A polynomial test problem
generator (NGLI) with known basins and saddle points has been
proposed [17]. It allowed the control of the difficulty levels and
the modality, but there was a strong relation between the dimen-
sionality and modality of the NGLI. A max set of Gaussians (MSG)
controlling the number of basins has also been put forward [10]. A
general framework for generating test functions with controllable
properties, in which the structures of the Gaussian functions were
modified also been proposed [16].

A modified Gaussian fitness landscape generator to compare
the performances of optimisation algorithms [14] and a nonsepara-
ble test problem generator (N-Peaks) of different geometries with
randomly distributed basins [29] have also been considered.

Benchmarking on these problem suites may result in overfitting
and customisation of the algorithms, limiting their performance
generalisation to other problems [18]. Also, the complexity of these
benchmarks may limit the understanding of the strengths and weak-
nesses of these algorithms [21]. Thus, a simple and fully known
benchmark generator is needed to understand the behaviour of the
optimisation algorithms.

There have been a handfull of studies of PSO performance in
multi-funnel environments [27] [9], [22]. The general view is that
PSO struggles in multi-funnel scenarios. Relative attractor distance
and heights has been found to be more pertinent to PSO perfor-
mance [30] than modality. These studies are sporadic but suggestive:
we propose that a systematic study of barrier tree complexity and
function geometry and topography is required. This paper seeks to
outline how such a process might proceed.

Despite numerous studies trying to optimise the benchmark func-
tions, to the best of our knowledge, no research has been conducted
to achieve a comprehensive understanding of the relationship be-
tween optimiser performance and geometric quantities such as
basin size, landscape topography and barrier tree complexity.
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3 A BARRIER TREE BENCHMARK

A barrier tree is a hierarchical representation of a fitness landscape:
leaves correspond to local minimum values and internal nodes rep-
resent saddles [24]. The representation obscures geometric features
(positions of critical points and shape and extent of basins and
funnels) in favour of a topological description. Figure 1 depicts a
barrier tree with two minima of function values d; 2 and a saddle
of value dj3.

Figure 1: A bimodal barrier tree depicting a function with
two minima of values d;,d; and a saddle of value di3. The
horizontal axis represents the entire search space.

A barrier tree can be fleshed out by providing optimum and
saddle locations, and by specifying basin and funnel extent and
shape i.e. by providing an aligning spatial description. Extent can
be specified by an arbitrary subdivision of the search space into
disjoint regions and shape by assigning unimodal functions to
regions such that function minimum and saddle values correspond
to the desired barrier tree. A point x would then be evaluated by first
identifying the containing region and then applying the associated
region function. A benchmark (BTB) would consist of realisations
of a collection of barrier trees.

The intuitive notion of a basin, as a region surrounding an at-
tracting point, and a funnel, as a region surrounding two or more
basins, can be tightened by considering downhill walks. A downhill
walk, also know as an adaptive walk, is a terminating succession of
points of finite separation and decreasing fitness. The basin of an
attractor or optimum can then be defined as a region 8 such that all
downhill walks starting in 8 terminate at x. A funnel ¥ is a region
in which all downhill walks starting in F enter two or more basins.
(We avoid an ambiguity in funnel/basin definition for landscapes
with neutral subregions such as plateau and non-isolated attractors
by considering landscapes without neutral regions.)

The construction of a barrier tree test function (BTF) from a
barrier tree is arbitrary but subject to the requirement that the
ordering of saddle values and basin depths is preserved. Consider a
barrier tree representing two basins 812 of depths dj 2 touching
at a saddle with value dj3. The basins are surrounded by a funnel
F12; the entire space (the search space) is X = 81 U B2 U Fqa.
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Unimodal functions fj 2 with optima x1,2 and optimal values d »
are associated with basins 8 2. Unimodal fi2 with optimum x2
and optimal value d;2 provides funnel topography. The requirement
X1 # x2 # x12 and, from the barrier tree, the condition dy 2 < djz,
ensure the correct basin-funnel relationships fi(81), f2(8B2) < di2
and f(F12) = dia.

A BTF is instantiated by defining regions, choosing critical points
and picking unimodal functions. For example, “TWOCONES’, a
bimodal BTF corresponding to Fig. 1 can be constructed as follows.
Choose D-dimensional balls By 2(x1,2, r1,2) of radii r1 2 and centres
x1,2 and place the D-balls, touching at xy2, in a search space X.
The basins are the regions 812 = By 2 \ x12 and the funnel ¥ is
the region ¥ = X \ 81 U B,. (The saddle x2 is not strictly in
either basin because a downbhill walk starting at x12 can proceed
into either basin i.e. x;2 € ¥.) Cone functions f; = m;|x — x;| + d,
i = 1,2,12, of gradients m; > 0, depths d; and centres x; are assigned
to basins B 2 and ¥ such that x; 2 € él,z (centres in ball interiors),
x3 = x12 (funnel centred on the saddle). m,2 are chosen so that
f(éLz < f3(xs)); m3 is arbitrary (but positive). Fig. 2 depicts a 2D
TWOCONES BTF.

A saddle surface S = 9B1 U 9B; can be defined as the level set
f(S) = f(x12). A point x is evaluated:

fiz(x) ifxe 31,2 (basin interior),
f(x) =4dr2 if x € S (basin boundary or saddle),
fiz(x) ifx € F (funnel).

The simplest barrier tree function is any unimodal function
placed in a search space i.e. a single basin and no funnels. For
example, choosing cones again, provides a ‘ONECONE’ function
and an entire barrier tree benchmark ‘MANYCONES’ can be con-
structed by furnishing a barrier tree collection with cones. The
cone construction is not, however necessary, and region functions
can be unimodal functions of arbitrary difficulty, for example high-
conditioned ellipsoids.

More complex BTFs can be built in a similar way by a hierarchical
structuring of basins and funnels. These constructions would not
yield smooth functions (in the above example there is a cliff edge at
081 U 08B,): the benchmark is intended for non gradient optimisers,
that is, algorithms that rely solely on function value and do not
require smoothness.

The advantage of the barrier tree banchmark is that all geometric
(basin and saddle optimum locations and funnel and basin shapes,
areas and volumes) and topological properties (numbers and values
of optimums and saddles) are known. A principled investigation
of the relationship between algorithm performance and function
property (geometric and topological) can then be pursued.

The BTB suggests several metrics of function difficulty e.g. rela-
tive volume and surface of the optimal basin, number of funnels and
barrier height. A metric that differentiates functions of differing
topographies but with identical barrier tree configurations can be
motivated with the notion of a downhill ‘slider’ (DHS). The down-
hill walker, as previously defined, proceeds by a succession of N
steps x;, t = {1,2...N} such that f(x(t + 1) < f(x;). In the limit
[xt41 —x¢| = 0, N — oo such that walk length L = 2{‘;1 |x241 — X¢|
remains finite and non-zero, the walk outlines a continuous path in
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X. Suppose that an idealised continuous path following downhill
slider is launched from any point in X. The probability that the
DHS will arrive at the global optimum will be related to the surface
area of the optimal basin.

In the TWOCONES example, suppose the DHS starts at an ar-
bitrary point in # and that the saddle is at the centre of X. The
DHS will move down the funnel, eventually meeting the level set S.
The slider will now, depending on its location on S, proceed into a
basin and will find one of two optima x; 2. If r; = r2, the probability
of the slider reaching the boundary of basin 1 or basin 2, when
averaged over all slider initialisations, will be %

The probability that the DHS will optimise a general BTF can
be calculated by multiplying probabilities e.g. in a two funnel sce-
nario, by multiplying the probability of finding the optimal funnel
by the probability of finding the optimal basin within that fun-
nel. This probability is calculable for BTFs built from dual cones
and funnels as described above; otherwise a downhill walker DHS
implementation can serve as a reference algorithm.

The BTB as described is not unambiguous because a given bar-
rier tree within a search space of given dimension can be realised
in many ways: the relative positions of the basin optima, the basin
sizes, the shapes of the unimodal region functions and the form
of the saddle surfaces are arbitrary. Algorithm performance, how-
ever, is not expected to depend only on the barrier tree (in which
only the depths and topological relationships of the the basins are
specified). For example, BTB instances with high conditioned basin
functions and saddle surfaces might prove more challenging than
more symmetric instances derived from the same barrier tree. Spe-
cific realisations of the BTB must be defined in any exhaustive study
of algorithm performance. Here, we propose, for ease of implemen-
tation, a conical BTB with conical basin shapes and spherical saddle
surfaces and we demonstrate comparative algorithm behaviour for
BTB instances with varying basin size.

Cones plst

Figure 2: A contour map of the 2D TWOCONES function. A
figure of eight saddle contour separates the two basins. The
rightmost minimum is deeper; funnel contours are spheri-
cal surfaces of increasing value away from the basins.
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4 METHODS

A series of ONECONE and TWOCONES experiments was per-
formed with three population algorithms in order to test the feasi-
bility of the BTB approach. The optimisers, local and global particle
swarm optimisation (L/GPSO) and differential evolution were cho-
sen for their popularity and similarity.

A standard PSO [13, 19, 23] with update rule

0i(t+1) = wo;(t) + cug o (ni(t +1) — x;(t))
+ cug o (pi(t+1) —x;(t))
xi(t+1) = x;(t) +0;(t + 1) (1)

was chosen. Here, x;, v;, p; are particle position, velocity and histor-
ical best position of particle i, u1,2 ~ U(0, 1) are uniform random
variables in [0, 1] and o is the Hadamard (entry-wise) product,
n; is the historical best position of the best neighbour in i’s social
network (an arbitrary choice is made in the case of a tie). The neigh-
bourhood is fully connected in GPSO i.e. n; = g, the swarm’s best
ever position. LPSO neighbourhoods are localised: we ran exper-
iments with the ring neighbourhood in which each particle has
access to two other particles.

The DE/best/1 version DE variant was chosen because of its
competitive and robust performance [5]. A trial update for particle
i at x; is found according to

ifu~U(0,1) <CRord==r

Ya = 9a + F(xjq — xq)
else

Yd = Xiq (2

where g is the best particle, j, k are random particle indices such
thati # j # kand r = U({1,2,...D}) is a random component. y
replaces x if f(y) < f(x;).

The search space for all experiments was X = [—100,100]P.
Each function instance of ONECONE has a single cone of unit gra-
dient and depth -10. The cone centre, different for each ONECONE
instance, is chosen from the uniform distribution on a hypersphere
centred on OP and of radius 10.

TWOCONES is as specified in Sec. 3. x1; was a uniform random
point on the hypersphere of radius r1 centred on xj2; x2, the global
optimum, was positioned diametrically opposite to x; such that
the basins touched at a random point (x12) at a distance 2(r; + r2)
from OP. Each xy, x2, x12, 71, 2, fi, f2 configuration corresponds to
a TWOCONES instance.

Mean results and standard errors in mean (SEMS) were gathered
in 100 runs on 30 function instances for a variety of basin sizes,
depths and dimensions and results. Each run for a random algorithm
initialisation was terminated at 150000 evaluations.

Population positions were initialised in X (ONECONE) and in
F (TWOCONES); PSO particles were initialised with zero velocity.
Potentially outflying particles during runs were allowed to move
but were not evaluated.

4.1 Parameter settings.

G/LPSO parameters N, w and ¢ were tuned for 30 initialisations of
30 instances of the ry = ry = 1, d; = —1.0,d2 = —10.0 TWOCONES
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problem. Success probabilities and 95% confidence limits were col-
lected for N € [10,200], w € [0,1.0) and ¢ = {w+ % w+0.75, w+1}.
The ranges of w and ¢ correspond to theoretical convergence limits
[1]. Recommended w, ¢ values (0.729844 and 1.49618 respectively
[2,8]) and N = 100 were found to be in the optimal parameter range,
as determined by the confidence limits, for LPSO and were close
to optimal for GPSO. These values were chosen for the following
PSO experiments in order to provide comparisons with results in
the literature.

DE parameters N € [10,200], F € [0.1,5] and CR € [0, 1.0] were
tuned in a similar set of training runs. A range of optimal settings
for success probability was discovered: N = 50, F = 0.8 and CR =0
was found to be optimal when mean error was considered and these
settings were used for the experiments reported below.

5 RESULTS

5.1 ONECONE

ONECONE is a unimodal, symmetric, function, identical to the
square root of Sphere with error, f(x) — f(x1) equal to the distance
between x and the optimum, x;. The error € of the optimiser best
position, and, for the population optimisers, diversity, defined as
the mean particle separation from the population centroid, was
recorded at steps of 1000 evals for each run on a single function
instance and averaged over runs and instances.

5.1.1 LPSO, GPSO, DE. Figs. 3 and 4 shows mean error and diver-
sity in 30 and 80D.

LPSO error LPSO diversity

GPSO error

e= e= GPSO diversity e DE error DE diversity

log10(error/diversity)
- a

100
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000
100000
105000
110000
115000
120000
125000
130000
135000
140000
145000
150000

evals

Figure 3: 30D ONECONE convergence and diversity plots for
the three population optimisers.

DE and GPSO have the fastest convergence rates in 30D but
GPSO is the clear fastest optimiser in 80D. Population diversity
scales with optimum separation in each case except for GPSO in
30D; in 80D, GPSO diversity remains high for a greater part of the
optimisation indicating that a small subswarm is likely responsible
for the convergence. LPSO is, as expected, the slowest optimiser of
this unimodal problem, [2]. The local information sharing network
favours diversity - as indicated on the plots - but diversity does not
enhance unimodal performance.
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Figure 4: 80D ONECONE convergence and diversity plots for
the three population optimisers.

The exponential error convergence e(t) = €(0)10  in agree-

ment with earlier findings [3]. Linear regression fits are given in
Table 1. Since €e(t) is identical to the distance r to the cone tip,
the swarms converge as r = r(O)lO’M where r is the distance
of the population best position to the optimum. The regression
analysis was taken between t = 1000 (to allow the swarm set-
tle) and either ¢ = 150000 or the first eval such that the mean
error dropped below 1le — 14 (hitting the limit of FP arithmetic) i.e.
teng = min ({t : f(t) < le — 14}, 150000).

5.1.2 DHW. A simple realisation of a downbhill walker is given in
Algorithm 1. Points are picked from the uniform distribution on a
hypersphere centred on the current position x of the walker and
of radius equal to the current step length until a position is found
that is not worse than x. The step length is reduced after a preset
number by multiplication by a scale factor in (0, 1). This DHW im-
plementation was trialled on ONECONE with initial step_length =
10, tries = 10 and scale_factor = 0.9.

Algorithm 1 DHW implementation

attempts < 0
do

attempts++

if attempts > tries then

step_length = = scale_factor

end if

y « random_point_on_hypersphere(x, step_length)
while f(y) > f(x)

X<y

Figure 5 reports DHW convergence and Table 1 shows regression
analysis over the straight part of the convergence leading to conver-
gence at < le — 14 (30D) and < 1le — 13 (80D); the latter termination
condition was chosen because no improvement below an error of
le — 14 was found. Furthermore, 11 runs in the total of 3000 did not
converge in 80D. These failures were removed from the analysis. A
comparison of the decay rate A and the end points of the figures
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show that the DHW converges much faster then either population
optimiser. The DHW realisation was not tuned (the stated values
of initial step_length, tries and scale_factor remained at the first
guesses) and possibly faster and guaranteed 80D convergence could
be achieved with careful parameter selection.

259 My —— 30D
80D

0.0
—2.5
—5.0 1

=7.51

logl0(error)

—10.0 1

—12.5

0 5000 10000 15000 20000 25000 30000 35000
evals

Figure 5: 30D and 80D DHW ONECONE convergence plots.
Bars depict standard error in mean.

5.2 TWOCONES

5.2.1 Varying depth and radius. Experiments were conducted in
30D for varying configurations. Basin 1 was held fixed at r; =
1.0,d; = —1.0 and the saddle value was set to di2 = 0.0 whilst the
radii of basin 2 was varied between 0.1 and 10. Three cone 2 depths
were investigated.

Figs 6-8 shows algorithm success probability, where success is
gauged by optimisation of the optimal basin. The geometric basin
surface area measure is included in these plots for comparative
purposes.

Success probability as a function of radius of cone2 f2=-10
1.2000

1.0000 S P S S
0.8000 A~ > p

0.6000 ! > o

0.4000

Success probability

0.2000 b

0.0000 -
01 02 05 06 07 08 09 1 11 12 13 14 15 2 10

— - -LPSO  0.0000 0.0053 0.6443 0.8373 0.9407 0.9803 0.9947 0.9977 09993 09997 1.0000 1.0000 1.0000 1.0000 1.0000
GPSO  0.0000 0.0010 0.0903 0.1670 02350 0.3230 0.4123 0.5107 0.5727 0.6457 0.6847 0.7493 0.7863 0.9207 1.0000
DE 0.0000 0.0390 0.8193 0.9306 0.9730 0.9920 0.9963 0.9990 0.9993 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000

— = DHW 00550 0.1326 03166 03540 03916 0.4260 0.4536 0.4963 05150 05560 0.5690 0.6053 0.6300 0.6950 0.9443
Arearule 1E-29 5.4E-21 1.9E-09 3.7E-07 3.2E-05 0.001550.04498 0.5  0.9407 0.99497 0.9995 099994 0.99999 1 1

r2

Figure 6: TWOCONES success probabilites, 30D, optimal
cone depth d; = —10.
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Table 1: One Cone, m = 1. Linear regression coefficients for fit to log,, €(¢) = log;, €(0) — At. * converged trials only

D Algo A log;, €(0) r final regr. eval
30 LPSO -4.33e-05 2.08 -1.00 150000
GPSO -1.32e-04 1.90 -1.00 124000
DE -1.22e-04 2.00 -0.995 150000
DHW -2.49¢-03 N/A -1.00 8700
80 LPSO -7.20e-06 2.60 -1.00 150000
GPSO -5.21e-05 1.61 -0.997 150000
DE -4.62e-05 2.82 -1.00 150000
DHW  -9.30e — 04* N/A —0.998"  32000*

Figure 7: TWOCONES success probabilites, 30D, optimal
cone depth d = 5.
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Figure 8: TWOCONES success probabilites, 30D, optimal
cone depths d» = —1.1.

DE is the best algorithm for the larger cone depths but LPSO has
a higher probability of finding the optimal cone in the more difficult
case when the optimal and sub-optimal cone depths are similar: the

superiority of LPSO over DE and GPSO can be attributed to a local
communication mechanism which promotes exploration at the cost
of slower convergence, as is evident from the ONECONE results.
No algorithm can optimise very small optimal basins (r; = 0.1).
All population algorithms perform better than a solitary downhill
walker when the optimal basin is larger than the sub-optimal basin;
otherwise, GPSO always underperforms a walker. The p = 0.5 result
at equi-sized basins suggests that GPSO optimises whichever basin
it first happens upon - this suggestion is further explored in the
mobility experiments reported below. The similarity of the LPSO
and GPSO plots for varying radii at the three depths indicate that
the behaviour of these algorithms is linked to problem geometry,
but does not depend strongly on the relative catchment areas, as
indicated by comparison with the surface area metric. The almost
linear relationship to basin radius for GPSO (all depths) shows that
this optimiser is sensitive to the spatial extent of the optimal basin
and not its area or volume. It seems a kind of line search is taking
place, but not, due to the weak area dependence, a progressive line
search in which the swarm rolls, like a walker, downhill. The scaling
of success with basin linear size suggests that the population is
converging on the basins from several sides so that individuals
are traversing the critical region. The populations are effectively
engaged in line searches that span the basins; this picture would
explain the linear dependence on the radius of the optimal basin.

5.2.2 Varying dimension. Fig. 9 illustrates the success probability
of choosing the optimal cone as a function of the dimension for
dimensions ranging from 5 to 100. LPSO and DE almost always find
the optimal cone for D < 50 but the performance of DE, in terms
of success probability alone, does not diminish over the range of
tested dimensions. GPSO performance falls to a 50% success rate
at 20D. LPSO struggles to find the cones above 70D, and in most
cases is stuck in the funnel.

Fig. 10 shows diversity and error for a single LPSO run in 90D.
Swarm diversity remains high throughout the run. The final error
of 26 shows that at termination the swarm has not left the funnel.
The swarm will see the funnel as a unimodal problem at these scales
and we know that LPSO converges very slowly in higher dimension
(single cone results, Fig. 3, 4).

DE and GPSO move more quickly in the funnel, perceived as
unimodal, and performance is steady in the range D = 30 — 100;
the algorithms are not able, however, to distinguish the two cones.
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Performance does improve in lower dimensions, though they can
only successfully optimise TWOCONES in 5D.

LPSO’s high diversity strategy fails in higher dimensions: the
swarm possibly requires more particles to cope with the larger
volume, scaling as 2000 , of the search space.

Success probability as a function of dimension
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Figure 9: Success probability as a function of dimension. r; =
ro =1,dy = —1,dy = —10.
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Figure 10: Error and diversity plot for a single LPSO run in
90D.r1 =ry =1,d; = —-1,dy = -10

5.2.3  Mobility. Mobility is the ability of an algorithm to jump
between basins [2]. The relative mobility of one algorithm with
another can be gauged by the number of jumps between cones.
Figures 11 - 12 illustrate swarm mobility behaviours for rep-
resentative outcomes (convergence to cone 1 or cone 2), for 30D
equal-sized basins with the global optimum at the centre of cone 2.
Fig. 11 shows LPSO mobility examples when the algorithm found
cone 2 (plot (a)) and a rare instance when the algorithm was fooled
and settled in cone 1 (plot (b)). Plot (a): funnel particles start to
depopulate at around 50000 evals when the swarm finds the region
containing the cones. There is a steady rise in occupancy of cone
1 and cone 2, and then a small migration of particles form cone
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Figure 11: Number of LPSO particles in the funnel and cones
for two representative runs, 30D, r; = r; = 1,d; = —1,dy = —10.
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Figure 12: Number of GPSO particles in the funnel and cones
for two representative runs, 30D, r; =ry = 1,d; = —1,dp = —10.

1 to cone 2 at 66000 evals. The occupancy of cone 1 decreases
from this point to the end of the run whilst cone 2 slowly popu-
lates, with a final occupancy of 80%. Despite the convergence, some
particles ( 15%) remain in the funnel. Plot (b), an example of an
unsuccessful optimisation shows the opposite behaviour although
the lesser occupancy does not peak. These plots are evidence of
swarm mobility and of population diversity since all three regions
(funnel and cones) remain occupied throughout the run.
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Table 2: DHW cone attainment probabilities, TWOCONES.
(Standard Error in Mean.)

D funnel prob (SEM) cone 1 prob (SEM) cone 2 prob (SEM)

30 0.0 (0.0)
80 0.002 (8.84e-04)

0.503 (9.41e-03)
0.483 (8.57e-03)

0.497 (9.41e-03)
0.515 (8.67e-03)

In contradistinction to LPSO mobility, Fig. 12 depicts represen-
tative GPSO behaviour for the two equally probable cases of opti-
misation of cone 1 or cone 2. The swarm settles entirely in either
cone 1 or cone 2; no particles remain in the funnel. The selection
of the optimal/suboptimal cone occurs earlier in the run at around
12000 evals and funnel depopulation is swift. The GPSO swarm has
a smaller diversity LPSO, optimises faster, but makes more mistakes.
The rapid depopulation of the funnel to 100% occupancy of either
cone is evidence of negligible mobility.

GPSO, by virtue of its global communication strategy, is a fast
unimodal optimisers in 30D (Sec. 5.1.1) but is not mobile. LPSO,
with its local communication network, is more mobile - a property
that wins out on this 30D bimodal problem.

5.2.4 DHW. The DHW algorithm of Sec. 5.1.2 was trialled on
TWOCONES, r1 =rp =1,d; = -1.0,dy = —10,f12 = 01in 30 and
80D in order to confirm its potential as a possible implementation
of the downhill slider whose probability of attaining either basin is
0.5 in any dimension.

Table 2 shows end probabilities averaged over 30 function in-
stances of 100 runs. The agreement with theory is excellent in 30D
and good in 80D (one 80D run in 500 does not attain either cone
but remains stuck in the funnel). DHW, with its zero mobility and
fast unimodal convergence (Fig. 5) is intended as a reference non-
population algorithm. The results show that GPSO cannot beat this
reference for a simple bimodal 30D problem of equal basin size.

6 CONCLUSIONS

This paper proposes a novel barrier tree benchmark in order to
systematically investigate optimiser performance on test cases of
known landscape geometry and barrier tree complexity.

Three population algorithms, local and global PSO (L/GPSO) and
differential evolution (DE), chosen because of their similarity, popu-
larity and generic nature, were tested on the simplest benchmark in-
stances, symmetric unimodal ONECONE and bimodal TWOCONES,
as a demonstration of the feasibility of such a research agenda.

A reference non-population optimisation algorithm is proposed.
This downhill walker retains the metaheuristic characteristic of
gradient independence and sets a standard that any optimiser that
seeks to exploit a collective search should surely beat. In certain
cases the behaviour of an idealised walker of infinitesimal stepsize,
the downhill slider, can be calculated; otherwise an implementation
is necessary. A downhill walker algorithm was tested and was found
to match theoretical expectations in a limited set of trials.

Empirical analysis of ONECONE focuses on speed of conver-
gence and diversity evolution; the probability of attaining the opti-
mum basin was employed as the chief TWOCONES measure. All
algorithms converge exponentially on a single optimum; GPSO is
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faster than DE and LPSO, with its local communication strategy, is
the slowest unimodal optimiser.

An examination of TWOCONES algorithm performance as a
function of optimal basin size shows the clear dominance of LPSO
over GPSO and a small superiority of DE for large basin depths
whereas LPSO dominates DE for the ore difficult case when the
basin depths are similar. GPSO in all cases and DE for near-equal
basin depths fail to beat the downhill walker reference when the
optimal basin is smaller than the sub-optimal basin. The success
probability of GPSO is only 0.5 when the basins have equal size -
a disturbing finding given the simplicity of the problem and the
popularity of this form of the PSO algorithm. A mobility check
shows that GPSO individuals do not basin-hop, an observation
attributable to the lower diversity of its populations. The linear
nature of GPSO success probability against optimal basis radius
suggests that the population does not approach the basins from one
side, as the downbhill walker does, but perform line searches that
traverse the basins, hence resulting in a linear, rather than area,
dependence.

No attempt has been made to investigate state-of-the-art im-
plementations and the results may also not generalise to other
basin shapes, for example to ellipsoidal topographies of arbitrary
conditioning.

The work presented here is offered as an alternative to competi-
tions which pit one algorithm against the other in pursuit of the
smallest error within an arbitrary and unstructured set of bench-
mark functions. We propose that a principled and sequential study
of algorithm behaviour on problems of known geometric structure
will better advance our understanding of metaheuristic optimisers.
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