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Abstract
This paper aims to explore what different patterns of head nodding and hand movement coordination
mean in conversation by recording and analysing interpersonal coordination as it naturally occurs in
social interactions. Understanding the timing and at which frequencies such movement behaviours occur
can help us answer how and why we use these signals. Here we use high-resolution motion capture to
examine three different types of two-person conversation involving different types of information-sharing,
in order to explore the potential meaning and coordination of head nodding and hand motion signals. We
also test if the tendency to engage in fast or slow nodding behaviour is a �xed personality trait that
differs between individuals.

Our results show coordinated slow nodding only in a picture-description task, which implies that this
behaviour is not a universal signal of a�liation but is context driven. We also �nd robust fast nodding
behaviour in the two contexts where novel information is exchanged. For hand movement, we �nd hints
of low frequency coordination during one-way information sharing, but found no consistent signalling
during information recall. Finally, we show that nodding is consistently driven by context but is not a
useful measure of individual differences in social skills. We interpret these results in terms of theories of
nonverbal communication and consider how these methods will help advance automated analyses of
human conversation behaviours.

Main text
Interpersonal coordination refers to the temporal alignment of two or more individuals while they interact
with each other (Hoehl, Fairhurst, & Schirmer, 2020). Growing interest in the dynamics of real-world social
interactions (Redcay & Schilbach, 2019; Schilbach et al., 2013) has shown that interpersonal coordination
is present across various domains, such as bodily movements (Chartrand & Bargh, 1999; Hale, Ward,
Buccheri, Oliver, & Hamilton, 2020; Ramseyer & Tschacher, 2011), physiological signals (Feldman, Magori-
Cohen, Galili, Singer, & Louzoun, 2011; Konvalinka et al., 2011) or brain activity (Hirsch, Noah, Zhang,
Dravida, & Ono, 2018; Stephens, Silbert, & Hasson, 2010). Across all these domains it is widely agreed
that interpersonal coordination has positive effects on social interactions (Hoehl et al., 2020), by
facilitating communication (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 2012) and increasing
a�liation (Lakin, Jefferis, Cheng, & Chartrand, 2003). However, the speci�c patterns of interpersonal
coordination remain poorly understood. A reason for this could be that traditional methods to record and
analyse interpersonal coordination in dyadic social interactions fail to capture the full richness of
interaction dynamics.

Here, we examine the interpersonal coordination of head nods and hand movements, using advanced
methods (high-resolution automated motion capture and wavelet coherence analysis) and in three
different conversational contexts. Tracking conversation behaviour across different contexts will allow us
to test hypotheses about why people engage in particular patterns of nodding or hand movements, and
thus to interpret what these actions might mean. In addition, we can test if the behaviour of individual
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participants is consistent from one context to another, that is, do some people always engage in a lot of
nodding regardless of context while others rarely nod? If individual behaviour is consistent, this would
support the development of automated methods that could discriminate personality (Heerey, 2015) or
even diagnose psychiatric disorders from social behaviour patterns (Georgescu et al., 2019). Thus, this
paper aims to explore what nodding and hand movements mean in conversation and how this type of
data could be used for future research. We �rst review current knowledge about head nodding and hand
movement patterns in conversation and detail our experimental manipulations.

Head Nodding Behaviour

Many non-verbal signals during a conversation are centred around the head (e.g., eye-gaze, blinks, facial
expressions, and head movements), and listener’s attention is typically drawn to the speaker’s head and
face during conversation (Argyle & Cook, 1976). Head nodding is regarded as a distinct social signal that
is particularly sensitive to conversational demands and can convey several different meanings (Poggi,
Errico, & Vincze, 2010), from signalling attention and understanding (Hadar et al., 1983; Kendon, 2002), to
requests for information and passing turns (Duncan, 1972). Recent work from our lab has developed an
automated method which can identify and quantify two distinct types of nods – fast nods and
coordinated slow nods (Hale et al., 2020). From that work, we de�ne fast nods as vertical head
movements that are faster than 1.5 Hz, and slow nods as below 1.5 Hz. By examining how fast-nods and
slow-nods are used across different conversational contexts, we aim to understand the meaning of
nodding as a social signalling behaviour.

We consider three potential meanings of a head nod: backchannelling, mimicry and joint attention. First,
backchannelling is the information �ow in a conversation where the listener signals ‘back’ to the speaker.
Verbal backchannels include linguistic vocalizations such as ‘uh-uh’, whereas non-verbal backchannels
include facial expressions and head movements like nodding. For example, a listener may nod their head
to show that they are listening, or even to indicate that one is agreeing with what the speaker is saying
(Allwood & Cerrato, 2003; Duncan, 1972). Previous research (Hale et al. 2020) showed that a fast nods
are produced mainly when participants are listening and receiving new information, which suggests this
might be a backchannel. The present study will test if this is true across different information-exchange
contexts.

Second, nodding could be a type of mimicry. Mimicry arises when one person copies the gestures,
actions, or postures of another (Chartrand & Bargh, 1999). This mimicry typically occurs spontaneously
during interactions and is believed to act as a ‘social glue’ to facilitate bonding and a�liation between
people (Lakin et al., 2003). Previous work (Hale et al, 2020) identi�ed coordinated slow nodding with a
time-scale which matches previous reports of mimicry (Hömke, Holler, & Levinson, 2018). If this behaviour
is a form of mimicry linked to social a�liation, we would expect the behaviour to be present across many
different conversation contexts, regardless of the topic of conversation.

Third, nodding could represent a type of joint attention, which arises when two people gaze at the same
object at the same time, typically with one leading the gaze and the other following (Emery, 2000). In raw
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motion capture data, this gaze following pattern might look like a nodding action if both people are
looking downwards to an object in their hands, which was the case in Hale et al (2020). That is, it is
possible that the ‘nodding coordination’ in the previous study arose primarily because both participants
were jointly attending towards an object held in the hands. If this interpretation is correct, then
conversations in a different context without the picture should not show coordinated slow nodding
behaviour.

To summarise, we have described two types of head nodding behaviour – fast nods and coordinated
slow nods – and we consider three different social meanings that could be applied to these behaviours –
backchannelling, joint attention and mimicry. Changing context of a conversation provides a way to
distinguish the social meanings of the different nodding behaviours. Here, we create three different
conversation tasks, which allow us to manipulate information sharing and joint attention targets to
distinguish between these different interpretations of nodding behaviour. Before detailing these different
tasks, we will describe the hand movement behaviours which are the second focus of the present paper.

Hand Movement in Conversation

During conversation, co-speech hand movements are tightly linked to speech at the temporal and
semantic level (Kita & Özyürek, 2003; Loehr, 2007). For instance, beat gestures are rapid movements used
as temporal cues to emphasise relevant information (McNeill, 1992), whereas iconic gestures have high
semantic content and are used to describe an object or action to disambiguate complex sentences (Kelly,
Kravitz, & Hopkins, 2004; Kelly, Ward, Creigh, & Bartolotti, 2007). In fact, several studies show that co-
speech hand gestures facilitate attention capture, affect speech comprehension, and improve learning
and memory in both speakers and listeners (Cook, Mitchell, & Goldin-Meadow, 2008; Kendon, 1972;
Marstaller & Burianová, 2013; McNeill, 1992). Another type of (non-co-speech) hand movements are self-
grooming gestures. These are actions used to clean or maintain parts of the body (e.g. �xing the hair) in
order to give a positive impression to others and increase a�liation (Daly, Hogg, Sacks, Smith, & Zimring,
1983). Despite the critical role of hand gestures in conversation and social interactions, little is known
about their dynamics at the interpersonal level.

Single-participant studies have shown that individuals coordinate or imitate hand actions from a video-
clip or virtual characters (Genschow, Florack, & Wänke, 2013; Pan & Hamilton, 2015, Stel et al., 2010), but
to our knowledge only two previous studies have investigated hand gesture coordination in face-to-face
conversation. Holler and Wilkin (2011) used a referential communication task (Clark & Wilkes-Gibbs,
1986) where dyads were given two equal sets of cards depicting �gure-like stimuli, and were instructed to
discuss them with the aim of placing the cards on a table in the same order. They found that participants
imitated each other’s co-speech gestures during the conversation, and that such imitation played an
important role in establishing mutual shared understanding. In another study, Ramseyer and Tschacher
(2016) investigated the presence of hand movement imitation during conversation in the context of a
natural psychotherapy session. In a single-case analysis, they found that patient and therapist imitated
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each other’s hand movements, and that the levels of interpersonal coordination over the sessions were
positively associated with patient’s ratings of a�liation with the therapist.

Although these studies provide evidence of interpersonal coordination of hand gestures, they rely on slow
but precise coding of video recordings by trained observers. Here, we aimed to determine if hand
movement dynamics can be captured with high resolution motion capture and interpreted using the same
automated framework that we used for head nods. This is an exploratory analysis, which will test if there
is interpersonal coordination of hand movements that can be detected with motion capture and if this
coordination varies across conversational contexts.

Changing Conversational Contexts

In the study of both head nodding and hand movements, it is clear that examining behavior in a single
context is not enough to interpret the social meaning of a behavior or to provide a general analysis. Thus,
the present study placed participants in three different conversational contexts. First, we used a picture
description task which has previously been valuable in our lab and elsewhere (Chartrand & Bargh, 1999;
Hale et al., 2020; van Baaren et al., 2009). Here, one participant holds a picture of a complex scene and
must describe it to their partner, who listens and then can ask questions about this picture. Each trial lasts
only 90 seconds and is divided equally into monologue and dialogue phases. This task is highly
structured, with one person in the role of the ‘leader’ who holds the picture and who speaks most of the
time. The presence of the picture also provides a clear target for joint attention.

The second ‘video recall’ task was selected to create a conversation with common ground (i.e., shared
knowledge) that engages memory but did not involve the exchange of any new information. At two points
during the data collection session, participants watched a 3 min wordless children’s animation together.
Later, they were asked to recall the animation in detail, working together to describe as much as they
could. This tended to be a slow unstructured conversation where both participants discuss events which
they are familiar with.

The third ‘meal planning’ task was developed by Chovil (1991) and Tschacher et al. (2014) as a way to
encourage a fun and relaxed conversation between strangers. Participants were asked to spend 5 min
planning a meal using ingredients they both dislike. This conversation topic induces some general
exchange of information about food preferences together with joint planning of the meal. The exchanges
tend to be short and dynamic with laughter and overlaps in speaking.

Figure 1 provides an illustration of these three conversation tasks and a sample of the turn-taking
behavior in each one. Panel A illustrates the picture description task where one participant (here blue)
speaks for the majority of the time, providing information about the picture to their partner. Here, the
picture itself provides a joint attention target. Panel B illustrates the video discussion task, where
participants recall the short movie (i.e., share ‘common ground’) but do not exchange any new
information. Panel C illustrates the meal planning task where both participants share information and
often speak quickly with overlaps.
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Measuring Interpersonal Coordination

To understand the changes in movement behaviour across these different conversational contexts, it is
important to precisely measure and appropriately analyse the behaviour of our participants. Traditional
video-coding methods have high accuracy but are very time-consuming and hard to quantify (Holler &
Wilkin, 2011). Video-based analyses can quantify motion energy (Ramseyer & Tschacher, 2011, 2016),
but their resolution is limited because they quantify pixel changes on a �at image. Motion capture
technologies provide high resolution recordings of bodily movement in a 3D space (Feese, Arnrich,
Tröster, Meyer, & Jonas, 2011; Hale et al., 2020; Poppe, Zee, Heylen, & Taylor, 2013). The present study
uses this method to record head and hand position at a high sampling rate (120 Hz) while two
participants interact face-to-face. 

To analyse the data, we use wavelet coherence analyses (Fujiwara & Daibo, 2016; Issartel, Marin, Gaillot,
Bardainne, & Cadopi, 2006). This provides a measure of interpersonal correlation for each frequency
component and time-point in the interaction. Information on the frequency domain has been useful in
distinguishing different types of nodding behaviour. For instance, recent studies in our lab using wavelet
coherence analysis (Hale et al., 2020) have identi�ed fast and slow nods as distinct behaviours which are
visible in a wavelet analysis. The present study extends this to different contexts to test how context
changes nodding behaviour.

The Present Study

The present study combined a high-resolution motion capture system with wavelet coherence analysis to
investigate head and hand motion patterns of dyads as they engaged in three conversational tasks with
varying degrees of structure and common ground. The aim of the study was to address three major
questions.

Question 1: What do head-nodding signals mean? We hypothesis that, if fast-nods are a backchannel
that signals ‘information received’, they should be found in the contexts where the participants exchange
novel information (picture description and meal planning tasks) but not in the video discussion task. If
coherence in slow nodding re�ects a�liation it should be found across all contexts, but if it re�ects joint
attention it should be found only in the picture description task when an object (the picture) is available to
look at.

Question 2: Are individual levels of head nodding correlated across contexts? If head-nodding is a robust
individual signature with the potential to be a clinical marker, it should be consistent across contexts. For
example, an individual who nods a lot in the picture description task should also nod in the video
discussion task and this might correlate with personality measures. By testing for this pattern, we can
explore the potential of nodding measures as a way to quantify individual differences in social behaviour.

Question 3: What are the patterns of interpersonal coordination of hand movement across contexts? This
question is more exploratory, as there is little prior data on hand coordination, so we considered two
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aspects. First, can the wavelet coherence methods we used for nodding detect any robust pattern of hand
movement coordination, and if so, what frequencies are seen? And second, does hand movement
coordination change across contexts? Given the absence of previous studies on this topic, we did not
make any speci�c predictions for the patterns found in each conversational task. However, we
hypothesised that, if interpersonal coordination of hand gestures facilitates communication, dyads would
generally show more interpersonal coordination of hand gestures when the task was unstructured and
there was no common ground.

Methods
Participants 

62 participants were recruited from the UCL Psychology Subject Pool and the ICN Subject Database.  All
were �uent in English and the mean age was 24 years. All participants were recruited and tested in pairs
(31 dyads); they were all strangers prior to the study and no participant was included in more than one
pair. Six pairs were mixed gender, and 25 pairs were female-female. The participants did not have any
previous experience with the tasks and were unaware of the purpose of the experiment. Ethical approval
was given by the UCL Research Ethics committee, and all participants gave their written informed
consent. A monetary reimbursement was offered for participating in the study at a rate of £7.50/hour.

For head motion capture data, all participants were included in the �nal sample. For hand motion capture
data, 10 dyads were excluded because one or both members of the dyad had poor quality hand motion
data (see Section 2.5 on Data Analysis for details on data processing). Thus, the �nal valid sample for
hand data consisted of 42 participants (39 females, 3 males) assigned to 21 pairs (3 pairs were mixed
gender and 18 pairs were female-female).

 

Experimental Setup 

The testing room was divided in two spaces separated by a curtain – the participant space and the
experimenter space (Figure 2). In the participant space, the participants sat on small stools facing each
other and approximately 1m apart. The participant space was equipped with a motion capture system
(OptiTrack, NaturalPoint Inc., v.1.10), which consisted of eight cameras recording at a frequency of 120
Hz. This system tracks head and body movements by detecting the position of re�ective markers which
were placed on an upper body suit and cap (n=25 markers per person) worn by the participants.
Participants were equipped with lapel microphones to record their voices, as well as wearable eye-trackers
(Pupil Core, Pupil Labs GmbH., Germany) to record their eye movements (See Dobre et al., 2021 for some
of this data). To one side of the participant space, a projector screen played video stimuli, a speaker
played audio instructions and a webcam recorded the room.
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On the other side of the curtain, the experimenter space was equipped with three computers (A, B and C)
that run and coordinated the whole experiment. Computer A was the client computer and communicated
with computers B and C, which acted as servers.  B and C each captured data from the eyetracker, and in
addition B captured the Optitrak data and captured audio and video data. This setup allowed us to handle
the large amount of data recorded by the various sources in a synchronised manner, by generating
precise, machine-speci�c timestamps for each recording. We also inserted audio-visual synchronisation
gestures (i.e. 3 hand claps) into our experimental protocol to allow for post-hoc synchronisation of data
streams if needed.

Procedure 

Participants arrived at the lab and were shown all the equipment and informed of the procedures before
they signed the informed consent. They were asked to remove eye-makeup, bulky clothes and jewelry and
were randomly assigned roles as ‘Blue’ or ‘Yellow’. The roles enabled our data labelling but had no impact
on the tasks performed. Participants put on the motion capture suits, eye-trackers, and microphones and
sat down 1m from each other to begin the study. The experimental session began with calibration of the
motion capture and eyetracker systems and then a synchronization event where participants were asked
to clap their hands three times with each other. This synchronization event was repeated as needed (See
claps in Figure 3).

First, participants watched a 3 minutes animated video together (DipDap) (in preparation for the Video
Discussion task). Then they completed 8 trials of the Picture Description task, which was adapted from
earlier behavioral studies (Chartrand & Bargh, 1999). This task involves one-way information sharing, as
one participant (leader) holds a picture of a complex social scene and is asked to describe it to their
partner. The conversation is highly structured, with 45 seconds of monologue (only leader may speak)
followed by 45 seconds of dialogue (listener may ask questions about the picture), and participants took
turns in the role of leader. Audible cues signaled the start and end of each trial, as well as the transition
from monologue to dialogue. Next, they completed a Video Discussion task, where they were instructed to
recall the short video which they had watched together earlier. The cartoon (DipDap, Roberts 2011) is a
simple animation with no words where a character encounters a variety of interesting objects that may
transform into different things. In recalling the details of the video, participants had an unstructured
conversation to describe the video, but did not need to exchange any novel information. 

Next, they completed the Meal Planning task, based on Chovil (1991), and recently adapted by Tschacher
et al. (2014). In this task the participants have �ve minutes to come up with a menu together consisting
of an appetizer, main course, and dessert. However, they can only use ingredients that they both dislike,
which introduces a fun cooperative element to the conversation. Like the Video Discussion task, this is an
unstructured conversation, but with two-way information sharing or joint planning. Participants
completed a single �ve-minute trial of this task. At this point, a second calibration was performed and
then participants watched a second short animation of DipDap. Then they completed a further 8 trials of
the Picture Description task and 1 trial of the Video Discussion task. The Meal Planning task was not
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repeated because participants by the end of the �rst block were already familiar with each other’s meal
preferences.   

After �nishing all the tasks, the participants removed their equipment and were seated at separate desks,
where they completed four questionnaires measuring social anxiety traits (Liebowitz, 1987), alexithymia
traits (Bagby, Parker, & Taylor, 1994), autistic traits (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley,
2001), and a novel questionnaire on Experience of Gaze.  This is being trialed by our group to measure
the participants subjective experience of eye contact. It consists of 20 statements (e.g., “I need to think
about whether or not to make eye-contact”), with a forced choice on a �ve-point scale between “strongly
agree” to “strongly disagree”. Finally, participants were debriefed about the real purpose of the study and
were paid for their participation. A summary of the experimental procedure is shown in Figure 3.

Data Analysis 

The present paper focuses only on data from the Optitrak mocap system. This data was preprocessed in
Motive software (supplied by Optitrak) to match the markers to a skeleton model and linearly interpolate
over any time points with missing markers. In a minority of trials where Motive was unable to reliably
track data, the trial was excluded. This applied to 28/248 picture description trials; 5/62 video discussion
trials; and 3/31 meal planning trials. 

For head motion analysis, we follow Hale et al. (2020) and focus solely on the head pitch, or nod, data
(i.e., degrees of rotation in the y-plane). We carried out the following pipeline (Figure 4) using the Matlab
toolbox by Grinsted, Moore, and Jevrejeva (2004) to identify the wavelet power in the head pitch signals
and to calculate cross-wavelet coherence. For each participant, we take the raw head pitch signal (Fig4 A
and B) and calculated the wavelet transform for each trial to get the time-frequency representation of
each time-series (C, D). We used default parameters (Morlet wavelet, w = 6), and the head signal for each
participant was decomposed in 54 wavelets that ranged between frequencies of 0.1 Hz and 10 Hz, with a
wavelength difference of 0.185 seconds. In total there were 133 wavelet scales using the Morlet wavelet
(periods ranged from 0.1 – 19 Hz on the sampled data). Next, we calculated the cross-wavelet coherence
between each of the two wavelet transforms (E), which gives a measure of the time-frequency
coordination between their movements. To ensure that the analysis was free from edge effects, we
calculated the ‘cone of in�uence’ (COI) and zeroed any data outside it. We also applied cone-of-in�uence
zeroing around the monologue-to-dialogue transition in the Picture Description task, this helped to
minimize the in�uence of stimuli outside the dyad. We discarded data that was outside the 0.1 – 19 Hz
range. In the �nal step, we averaged the cross-wavelet coherence (R2) over the time-course of each trial to
obtain a measure of the frequency of coherence without regard to the speci�c time within the trial at
which it occurred (F).

To understand the patterns of head movement present in each task, it is helpful to compare the wavelet
coherence values from true pairs to coherence values from pseudo-pairs (Bernieri & Rosenthal, 1991;
Fujiwara & Diabo, 2016; Hale et al., 2020). We created pseudo-pairs by shu�ing data within dyad and
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within task.  For the video discussion task, this meant matching the discussion of Video 1 to Video 2 from
the same participants. For the picture description task, this meant shu�ing trials within the same
participants. For the meal planning task, the 5 min trial was divided in two 150sec chunks which were
swapped to create a pseudo-pair. This gives us a strong test where the pseudo trials have the same
general movement characteristics as our real trials, and any differences in the coherence levels between
them must be due to a genuine live social interaction and will not be attributed to any individual
differences between them.

We carried out wavelet analysis on the pseudo-data using the same pipeline as in the real trials. This
gave us a set of coherence values for each real and pseudo trial of each dyad. Separately for the real
dataset and the pseudo dataset, we averaged the coherence values across all trials for all dyads. We then
calculated a coherence difference for each dyad, representing the average coherence in real interactions
minus the average coherence in pseudo interactions, and performed t-tests on the coherence differences
at each frequency (90 tests, one for each wavelet scale). To correct for multiple comparisons, we used a
False Detection Rate (FDR) of 0.05 (Benjamin & Hochberg, 1995). By comparing real and pseudo trials in
this way, we can see if interpersonal coordination that occurs in real conversations is different from the
same people just speaking.

Analysis of Individual Differences. We aimed to test if the tendency to engage in fast or slow nodding
behaviour is a �xed personality trait that differs between people and is consistent across tasks. For each
participant, we calculated a ‘fast nod score’ as that person’s mean power in the 2.6–6.5 Hz range across
the complete dataset (Figure 5A). To avoid ‘double dipping’ in our analysis, this frequency range was
chosen directly from the �ndings of Hale et al. (2020). The ‘fast nod score’ measures how much a person
engages in fast nodding behaviour. Then, we correlated the fast-nod scores across tasks for each
participant, to test if some participants consistently show high levels of fast-nodding while others rarely
nod in any tasks.

 We also calculated a ‘slow nod coherence score’ from the mean dyadic coherence level in the 0.2–1.1 Hz
range (Figure 5B) – using frequencies reported by Hale et al. (2020). This gives a measure of how much
each dyad engages in coordinated slow nodding.  Again, this is a single value measure but this time
represented as an R2 coherence score (between 0 and 1) revealing how much each dyad engages in
mutual slow nods. We correlated this slow-nod coherence across dyads to test if some dyads
consistently engage more in coordinated slow nodding. Finally, we calculated if fast nod scores or slow
nod coherence scores were related to the subjective reports at the end of the experiment. For this analysis,
we used the same dyad slow-nod coherence score for each of the two individuals in the dyad.

Hand Motion Analysis. For the analysis of hand motions, we focus on the Y-axis (up/down) movements
recorded from each person’s right- and left-hand. We decided to focus on the Y axis because the video
recordings from the testing sessions revealed that participants mostly moved the hands along this axis,
and inclusion of the X and Z position would increase noise in the dataset.  For each time point, we
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calculated the absolute level of motion in the y-axis (either up or down) using  
where dy is the distance moved in that time window and dt is the duration of the time window (8.3 msec
for recordings at 120Hz). We then computed wavelet coherence for each combination of right- and left-
hand pairs across partners (i.e., right-right hands, left-left hands, right-left hands, left-right hands). As with
the head analysis, these coherence values were then averaged across the trial time-course, with values
outside the cone-of-in�uence excluded. We then averaged coherence values across trials of the same
task, and across the four combinations of hand pairs, because we did not have a hypotheses for speci�c
hand pairs. Overall, this resulted in a mean

coherence value for each wavelet, dyad, and task. For the pseudo interactions, we used the same
approach as we used with the head motion analysis, shu�ing data within dyad and within task.
Following the same pipeline used for real coherence values, we calculated a mean coherence value for
each wavelet, pseudo-dyad, and task. Finally, we compared real and pseudo coherence levels for each
task by performing t-tests for each wavelet component, and corrected for multiple comparisons with an
FDR of 0.05.

 

Results
Head Nodding Across Contexts  

We use wavelet coherence to quantify nodding behaviour in each of the three conversation tasks,
comparing data in real interactions to pseudo interactions to identify when fast and slow nodding occurs.
Figure 6- A, B and C show the mean and standard error of coherence (R2) for real (red) and pseudo (blue)
interactions. High coherence means a high degree of coordination, as it indicates that two people are
moving with the same frequency. To assess the difference in coherence between real and pseudo
interactions, we performed t-tests (90 tests) at each frequency and calculated the effect size. Figure 6- D,
E and F show the effect sizes (Cohen’s d) calculated from the average coherence in real interactions
minus the pseudo interactions. The dots indicate frequencies where there is a signi�cant difference of
coherence between real and pseudo interactions. Red dots represent points on the frequency range that
pass a p<0.05 FDR signi�cance threshold, while blue represent signi�cant differences that did not pass
this threshold. 

From the graphs in Figure 6 we can observe two distinct patterns of coherence across the range of
frequencies. These patterns are divided into two frequency ranges, above and below 1.5 Hz, as indicated
by the dashed vertical line (Figure 6D, E, F). In the low frequency range (<1.5 Hz) results show greater
coherence in the real compared to the pseudo interactions for the Picture Description Task. However, this
pattern was not observed in the Video Discussion and the Meal Planning Tasks. In the high frequency
range, there is less coherence in real compared to pseudo interactions in the Picture Description and Meal
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Planning Tasks but this did not reach signi�cant FDR corrected thresholds for the Video Discussion Task.
In addition to these plots which analyse each task separately, we also present a cross-task ANOVA
analysis in Appendix A.

Individual Differences   

We tested if the participants show a reliable pattern of fast or slow nodding by correlating their individual
(or dyadic) levels of fast and slow nodding across tasks (Figure 7). The results show that there is no
reliable positive relationship between fast nodding behavior in any one task paired with any other task.
There was also no reliable positive relationship between slow nodding coherence in any one task paired
with any other task. There was a signi�cant negative correlation, r=-0.43, p=.003, in slow nod coherence in
the Meal Planning and Picture Description Task, but it did not pass FDR correction. In addition, we also
tested if the tendency to nod is related to any of the personality traits measured in the questionnaires by
performing correlations of the measures with relevant frequency bands of the wavelet data (high and low
frequency nods) for each task separately. The questionnaires included the Liebowitz Social Anxiety Scale
(LSAS), the Toronto Alexithymia Scale (TAS), the Adult Autism Spectrum Quotient (AQ), and the
Experience of Gaze Questionnaire. The results show no correlations between the nodding measures and
the questionnaire scores that passed an FDR correction.

Hand Coordination Across Contexts  

Our analysis of hand movement matches the nodding analysis reported above, using wavelet coherence
patterns to explore hand motion in real interactions and pseudo-data (Figure 8). We found a trend
towards hand motion coordination primarily for the Meal Planning task in the low frequency range (0.13
– 1 Hz). The greater coherence across a wide range of frequencies in this task could re�ect greater social
engagement and more beat gestures. A small effect was seen in the Picture Description task at 0.13 Hz
and in the Meal Planning task at 8 Hz, but 8 Hz effects are unlikely to be psychologically relevant. It is
important to note that our sample size here was smaller than for the nodding analysis (n=21) and none
of the results reached our FDR corrected threshold, so they must be considered marginal.

Discussion
This study tracked how head nodding and hand movement behaviours change across different
conversational contexts to understand the social meaning of these behaviours. We aimed to discover
what head nodding signals mean, if they are robust indicators of individual differences and if hand
movements coordination can be quanti�ed in the same way. Results showed that head nodding patterns
differed between different contexts in line with our hypothesis. However, patterns of head nodding were
not consistent in individuals across contexts, and patterns of hand movement were not easy to recover.
We will discuss these results in relation to current studies of human social coordination.  Coherent Slow
Nodding Behaviour We �nd that participants show coherent patterns of slow nodding (0.2-1.1Hz range)
during the picture description task but not during the meal planning or video discussion task. The results
for the picture description task replicate the �ndings from Hale et al. (2020) using a higher resolution
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motion capture system. However, it is now clear that this pattern of behaviour does not generalise across
contexts. This argues against the idea that slow head nods could be a form of social mimicry that
facilitates bonding and a�liation between people (Lakin et al., 2003). Because if that were true, the
coherence of slow nods should have been similar across the different conversational contexts due to the
equal motivation to form social bonds during conversation. Instead, these results support the idea that
slow head nods are a product of gaze following, which arises in the speci�c context of the Picture
Description Task because here participants can alternate gaze between their partners face and the picture
(held in one participant’s lap) which requires up-down head movements. In contrast, the video discussion
and meal planning tasks do not have a distinct gaze target. A prediction arising from these �ndings is
that if participants were in a context where a shared gaze target was located beside them, rather than in
one person’s hands, then we would instead see coherence of ‘head shaking’ as they turn their heads
towards the target. The question of how gaze following relates to other types of mimicry and social
coordination remains open. One possibility would be to consider gaze-following to be a subset of a more
general rubric of ‘interpersonal coordination’ or interaction. For example, Hadley & Ward (2021) have
found an increase of low frequency overall head movement in triadic interactions when two people
listened to a third (i.e., joint attention). Indeed, some studies which score mimicry behaviour based on
video may not distinguish between gaze following and mimicry (Salazar-Kämpf et al., 2017). However, we
suggest that it can be useful to make this distinction, because the two actions could have different social
meanings. Gaze following is speci�c to the target of gaze (if an object is located on the left of A and on
the right of B, then gaze following implies that A looks leftwards and B looks rightwards), whereas
mimicry might be de�ned according to body-centred coordinates (I mimic a right-hand action with my
right hand) (Liepelt, von Cramon, & Brass, 2008). This illustrates the importance of considering the
physical and spatial context of actions carefully in any analysis of interpersonal coordination. Exploring
the Fast-Nodding Behaviour Fast nodding arises when a listener makes small rapid head movements
(2.6-6.5Hz) that do not match the movements of the speaker (Hale et al., 2020). Here, we �nd fast-
nodding behaviour is present in the Picture Description task and the Meal Planning task but does not
meet FDR correction in the Video Discussion task. Based on Hale et al. (2020), we suggested that fast
nodding might be a backchannel related to listening and receiving information, and predicted that it
should be present more often in the contexts where new information is exchanged. This prediction is
supported in the current data. The Picture Description Task is a one-way information sharing context
where the speaker is sharing new information to the listener about the picture. Similarly, the Meal
Planning Task is a two-way information sharing context in which both participants are unaware of the
other’s meal preferences, while also having to share their own preferences. In both tasks, the exchange of
new information seems to be linked to the presence of fast-nodding. In contrast, the Video Discussion
Task is about shared recall between members of a dyad with no new information sharing, and fast
nodding was not present here. It would be interesting in future to test if fast-nodding behaviour can
provide a marker of successful information transfer in a conversation, and might be linked to later
learning. Individual Differences in Nodding Behaviour If nonverbal behaviour can be robustly measured
and linked to individual differences in personality or sociocognitive processes, this would be valuable for
both research and clinical applications. Here, we took advantage of our data collection to test if the
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tendency to engage in fast or slow nodding behaviour is a �xed personality trait that differs between
individuals. First, we tested if participants show a reliable pattern of fast or slow nodding by correlating
these across tasks (Figure 7). That is, if a participant nods a lot in the Meal Planning Task, does that
person also nod a lot in the Video Discussion and Picture Description Tasks? Second, we tested if the
tendency to nod is related to any of the personality traits measured in questionnaires by correlating
individual scores on fast nodding and coherent slow nodding with the questionnaire measures. If reliable
individual differences in nodding behaviour could be identi�ed, this would motivate us to test in future
studies if the tendency to nod re�ects broader social skills. The four questionnaires included the
Liebowitz Social Anxiety Scale (LSAS), the Toronto Alexithymia Scale (TAS), the Adult Autism Spectrum
Quotient (AQ), and the Experience of Gaze Questionnaire. In general, we did not �nd any evidence for
reliable individual differences in nodding behaviour. Fast nodding behaviour in one task did not correlate
with fast nodding in another task, nor did it correlate with any questionnaire measures. Slow nodding
coherence in one task did not correlate with the same measure in a different task, and nor did it correlate
with any questionnaire measures. This means we can reject the idea that head nodding is linked to �xed
personality traits or provides a stable individual difference. Our study is limited in that each person only
appears in one dyad, so we are not able to quantify each person’s behaviour independent of their
interaction partner, as done by Salazar-Kämpf et al. (2017). However, at present there is no strong reason
to use fast or slow nodding behaviour as a measure of an individual’s social skills or as a clinical
assessment. This is relevant because studies are attempting to use automated analyses of interactive
behaviour to identify and even diagnose disorders of social interaction such as autism (Georgescu et al.,
2019). Coordination of Hand movements To our knowledge, only two previous studies have investigated
interpersonal coordination of hand gestures during conversation (Holler & Wilkin, 2011; Ramseyer &
Tschacher, 2016). These studies found that pairs of participants coordinate hand gestures during
conversation, based on video recordings. Here, we use high-resolution motion capture and wavelet
coherence analysis to determine if there are robust patterns of coordination in hand movement which
could be detected with simple automated methods. Comparison of real versus pseudo interactions
revealed that dyads showed weak coordination of low-frequency hand gestures (0.13 Hz to 1 Hz) during
the Meal Planning task, although this effect was absent for the Picture Description and Video Discussion
tasks. This implies that it is the combination of spontaneous forms of conversation plus the sharing of
novel information that incentivises the coordination of hand gestures. The Meal Planning task, which
was more dynamic with more overlaps, may have promoted more use of communicative gestures
(McNeill, 1992) or beat gestures (Bosker & Peeters, 2021). In contrast, one participant’s hands were
occupied with the picture during the Picture Description task, while the Video Discussion task involves
less information exchange. Note, however, that these results did not pass the correction for multiple
comparisons, which limits the extent of our interpretations. A further limitation of our analysis is that we
focus only on vertical hand movements, because these were the largest and clearest in our data, and we
cannot discriminate between different types of gestures (iconic vs. beat gestures). It is possible that hand
movements are much more complex and multidimensional than head movements, so a simple wavelet
analysis is unable to capture the richness of the data and a more detailed video coding approach would
be needed to understand hand motion coordination. However, it is promising that even with a small



Page 15/28

sample size, our automated analysis of the Meal Planning task was able to show some evidence of
coordination of hand movements, and future work could examine the types of gesture involved and what
they mean in more detail. Future Directions The present paper provides evidence that the social
coordination of head nods and hand gestures changes in different conversational contexts, and opens up
a large number of possible future directions. First, more detailed study will be needed to resolve some
limitations of the present work. For example, studies using a round-robin design (Salazar-Kämpf et al.,
2017), could provide more robust analyses of individual differences in nodding behaviour and what they
might mean. Second, the complex multimodal data collection setup in our lab requires a lot of equipment,
which reduces the naturalness of the conversations. Future studies could use video tracking in
conjunction with machine learning (i.e., OpenPose) (Cao, Simon, Wei, & Sheikh, 2017) or wearable motion
sensors (Ward & Pinti, 2019; Sun, Greaves, Orgs, Day, Hamilton & Ward, 2023) to track social coordination
in a less obtrusive fashion and in novel contexts outside of the lab. The insights gained from motion
capture studies of human social interaction can also contribute to the challenge of building realistic
virtual humans who are able to interact in meaningful ways (Aburumman, Gillies, Ward, & Hamilton,
2022). Now that methods for tracking the coordination of nodding and head movements are becoming
more established, it will also be possible to expand our understanding of how these signals relate to other
cognitive processes. For example, we suggest here that fast-nodding signals are a back channel related
to the exchange of information. It would be interesting to test if fast-nodding is related to successful
learning. It could also be interesting to test if the coherence of slow head movements is related to joint
attention in other contexts and with other potential gaze target locations. Finally, integrating the study of
behaviour across modalities remains a major challenge for researchers in this area. The present paper
examines head and hand movements, while another paper based on the same data (Dobre, Gillies, Falk,
Ward, Hamilton, & Pan, 2021) examines gaze and speech. Analyses which can integrate these diverse
signals will be very valuable in gaining a more rounded understanding of the richness of human social
interaction. Such analyses will likely require a detailed consideration of the social meaning behind
different behaviours (Hadley, Naylor, & Hamilton, 2022) and also integration with verbal behaviours
(Reece et al., 2023). Rapid advances in these areas provide a lot of promise for future studies of
nonverbal communication.

Conclusions
In the present paper, we report on patterns of fast nodding, slow nodding and hand movement
coordination in three different types of conversation between pairs of strangers. Our data suggest that
fast head nods are a signal of having received new information, while slow head nods may be
coordinated to direct gaze to a shared object. We also suggest that neither of these behaviours are linked
to stable personality traits, but rather they differ strongly with the type of conversation. We also �nd weak
evidence for slow coordination of hand movements in some contexts. Overall, these results advance our
understanding of how nonverbal coordination works, how it can be measured, and how these measures
could be used to answer a wide range of questions in the domain of human social interaction.
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Figure 1
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Conversational tasks. Panel (A) Picture Description; structured one-way information sharing holding an
object. Panel (B) Video Discussion; unstructured common ground with no new information sharing. Panel
(C) Meal Planning; unstructured two-way information sharing. Graphs (middle) show a sample of the
turn-taking structure for each task in this experiment, highlighting the order and how often blue and
yellow participants passed their turns.

Figure 2
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Experimental Setup and Data Capture. Equipment included motion tracking cameras (4x Optitrack Prime
13, and 4x 13W), a projector, speakers, wearable microphones connected to an audio mixer, eye- and face
trackers (Pupil Labs), and a curtain to separate the three computers running the experiment. Computer A
acted as the client computer, that communicated with the two computers B and C acting as servers
running the recording software; Bottom left: Pupil Player output; Bottom right: Optitrack Motive output.
Audacity was used to record the verbal components of the interaction.

Figure 3

Experimental session timeline. Two calibrations were performed to ensure the eyetrackers and motion
capture gave high-quality data (T-pose icon) and after each calibration, participants watched a short
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video together. Data was recorded in two recording-blocks during �ve task-blocks which occurred in a
�xed order as shown in the �gure. Each task-block began and ended with a synchronization event
(handclap icon). The Picture Description and Video Discussion tasks were completed twice, whereas the
Meal Planning Task completed only once.

Figure 4
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Cross-wavelet analysis pipeline. For each trial, the head pitch trajectories for both the Yellow and Blue
participants (A, B) are subject to a wavelet transform (C, D). Then, the cross-wavelet coherence is
calculated between the two participants (E). The magnitude of wavelet power and wavelet coherence is
represented by color, where blue is low power, and yellow is high power. The time is represented on the x-
axis (200s) and each frequency on the y-axis. The coherence value (R2) is then averaged over time and
over all trials to obtain the overall frequency of coherence in head pitch between the two participants (F).

Figure 5

Fast and slow head nodding scores. The fast nod score was selected from the high frequency band of
the individual wavelets (A). The slow nod coherence score was selected from the low frequency band of
the cross-wavelet coherence (B).
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Figure 6

Head nodding real vs pseudo coherence (A,B,C) and effect sizes (D,E,F) across the full frequency range
for the three tasks. p<0.05 signi�cance levels shown by blue dots, with FDR adjusted signi�cance
highlighted in red (D,E,F).
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Figure 7

Robustness of individual differences in head nodding behaviour. Red correlation scores indicate if the
correlation is signi�cantly (p<0.05) different from zero. The axis values for fast nods are the average
power in the 2.6 – 6.5 Hz frequency band.
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Figure 8

Hand coordination real vs pseudo coherence (A,B,C) and effect sizes (D,E,F) across the full frequency
range for the three tasks. p<0.05 uncorrected signi�cance levels shown by blue dots (D,E,F).
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Figure 9

ANOVA cross-wavelet coherence. Graphs A, B, and C show the mean and standard error of coherence (R2)
of each effect. Graphs D, E, and F show the effect sizes (partial eta-squared, ηp2). The dotted line
indicates frequencies where there is a signi�cant difference of coherence. Red dots represent points on
the frequency range that pass a p<0.05 FDR signi�cance threshold, whereas blue dots represent
signi�cant differences that did not pass this threshold.
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