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ABSTRACT The ubiquity and number of sensors on wearable devices makes

Detecting interpersonal synchrony in the wild through ubiquitous
wearable sensing invites promising new social insights as well as
the possibility of new interactions between humans-humans and
humans-agents. We present the Offset-Adjusted SImilarity Score
(OASIS), a real-time method of detecting similarity which we show
working on visual detection of Duchenne smile between a pair
of users. We conduct a user study survey (N = 27) to measure a
user-based interoperability score on smile similarity and compare
the user score with OASIS as well as the rolling window Pearson
correlation and the Dynamic Time Warping (DTW) method. Ulti-
mately, our results indicate that our algorithm has intrinsic qualities
comparable to the user score and measures well to the statistical
correlation methods. It takes the temporal offset between the input
signals into account with the added benefit of being an algorithm
which can be adapted to run in real-time will less computational
intensity than traditional time series correlation methods.
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1 INTRODUCTION

Interpersonal synchrony is a measure of nonverbal coordination
of gestures and physiological cues between two or more people
over time [9]. Synchrony is continually investigated topic that is
important metric that to looked into because it is a measurable
social indicator that can enable many collaborative applications
such as games [11] and social Virtual Reality (VR) [15] experiences.
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it promising to detect and study interpersonal synchrony in the
wild of both the device wearer and those surrounding them [28].
By using body-worn cameras, like that of an Augmented Reality
(AR) Head-Mounted Display (HMD), we can get information from
people in the surrounding area, e.g., from body and facial signals,
which can determine movement energy [26] and even extract heart
rate [23] as valuable indicators of synchrony. Such social indicators
can enable new applications, like tools to help people with autism
pick up social cues [22], or to improve the collaboration between
humans-humans or humans-robots [7] in industrial or business
scenarios involving virtual assistants [25]. We built a similarity
score based on facial data, specifically Duchenne smiles, to be used
to study high level synchrony and to be incorporated into future
applications that need such a social metric.

The nature of detecting synchrony in real-time in the wild is
challenging. There exist many statistical tools to help detect coordi-
nation in time series [8]. Commonly used tools to detect synchrony
are, e.g., Windowed Fourier Transform [18, Ch. 2], Granger Causal-
ity Analysis, Cross Wavelet coherence analysis [14], all of which
can detect synchrony but are typically performed as a post analy-
sis. We developed an algorithm, called Offset-Adjusted SImilarity
Score (OASIS), to run on Action Unit (AU) AU12_r and AU6_c ex-
tracted from video data through OpenFace [3], which comprises
the Duchenne smile [10]. Machine Learning (ML) approaches also
exist to detect similarity on unstructured data but they require
data for each modality of synchrony to train and are challenged
by their lack of explainability [1, 24]. We get the AU time series
signal from video data from each member in a pair as input to our
OASIS algorithm, which then detects the time, shape, and value
similarities of the smiles into a single similarity score. Our OASIS
algorithm requires no prior trained model and is inspired by the
Bag-of-Words (BoW) algorithm [21]. It uses the Symbolic Aggregate
approXimation (SAX) algorithm [20] to represent the time series in
a symbolic representation of “words” that we can ultimately use to
find the similarly between the shape of two signals and lends itself
to be human understandable. 1, shows an example of the similar-
ity score calculated by OASIS. We see how the original Duchenne
smile signals (labeled User 1 and User 2) are transformed into words,
which are used to calculate the OASIS (cf. Section 4).

We compare the OASIS to traditional coordination analysis meth-
ods such as point-wise correlations and dynamically time-warped
correlation methods as well as conduct an experiment to gather
a user-based interoperability score to see how the OASIS differs
from an “intuitive” similarity detection. Our score compares well
to both correlative methods and has the ability to be adapted to
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Figure 1: Offset-Adjusted SImilarity Score (OASIS) performed
on two time series signals of the Duchenne smile detected
by AU12_r and AU6_c.

run in real-time applications where performance is a big factor. An
additional benefit of the OASIS to traditional correlation methods
is that it has a noise cancellation smoothing effect for a less volatile
coordination metric due to the nature of the SAX representation
step, which our OASIS algorithm relies on. We also found when
comparing the OASIS to how humans rate smile similarity, it works
comparatively well and embodies an intuitive smile similarity like
that which humans would detect. Although, this comparison lead
us to find some false negatives which we must adapt the OASIS to
as well as follow up tests to compare our algorithm’s efficacy. We
can use this as a foundation to continue to build more modalities
of synchrony through wearable devices, into a singular score and
are now one step closer to quantifying a nonverbal communication
metric that can be used in applications for humans and computing
systems alike.

2 RELATED WORK

Many statistical methods to detect coordination in pair-wise inter-
actions exist, Cliff et. al created a taxonomy of such methods used in
various fields [8]. Some of the methods that are commonly used for
synchrony detection are windowed or take a more regional span of
time into account to find correlation between two time series. Win-
dowed methods take into account similarities in the signals based
on a certain offset starting from statistical tools such as a rolling
window Pearson correlation to more advanced, and computation-
ally intensive, like DTW [5]. Additionally, measuring a frequency
component is a common objective in synchrony detection where
Windowed Fourier [18, Ch. 2] or Cross-Wavelet Transforms [14]
are used. Cross-wavelet methods in particular operates over a wide
range of time scales. Further, to avoid edge effects they are typically
run over an entire time series in post-processing. This makes them
unsuited for real-time analysis.

We want a real-time measure on unstructured video data which
would require an online algorithm or a trained ML model. Autoen-
coders are an example of such an ML model that can work on
unstructured time series data but are typically used for anomaly
detection, see, e.g., [6]. When we train one autoencoder to predict
the signal of another person, it can be used to detect synchrony [2].
One drawback of using ML-based methods to detect synchrony on
time series data is their lack of interpretability [1, 24]. The BoW
algorithm [21] was introduced to compare the similarity between
long time series signals. This is done by transforming the time
series signal into a higher level representation allowing for fast
comparison. The similarity between time series signals is reduced to
comparing the frequency of interpretable “words” (short patterns)
in both signals. This allows one to compare signals on a structural
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level instead of comparing the shape of two time series data, e.g.,
using the Euclidean or the DTW distances, which is the inspiration
for the OASIS.

3 PROBLEM FORMULATION
3.1 Collected Survey Data

Our proposed algorithm works on a pair of face frontal video data
recordings or streams for unstructured conversations. Our OASIS
algorithm can work online and does not require us to first train
a model. All video streams are pre-processed (at 30 fps) through
OpenFace [3] to extract the facial AUs of which AU6_c and AU12_r
were used to create a single time series to represent the presence
of a Duchenne smile [10] for each user. This signal is subsequently
fed into our algorithm.

We developed our OASIS algorithm on an initial dataset, and
wanted to further produce an equally comparable test set for a
user-centric interoperability rating to additionaly evaluate OASIS
algorithm’s ability to detect smile synchrony to a human’s ability. To
collect an interoperability rating we hosted a survey with the three,
three minute long video segments of an unstructured conversation
over Zoom between the coauthors, answering five questions from
a questionnaire (quesitons 4, 12, 16, 29, and 34 respectively) which
tries to generate interpersonal closeness [4]. The order of the videos
presented were randomized and the participants task was to press
and hold a button, or their keyboard space bar, for the duration of
anytime they found a similar “type” of smile between the co-authors
in the video, which is the data we logged and used to determine if
participants detected smile similarity. The type of smile was defined
intuitively by asking the participants if the smile had similar “energy
in which their smile is matching, if they are both showing teeth,
and are both smiling with their eyes as well as their mouth”. Video
segments of high and low smile synchrony determined by the user
score were chosen and had no audio, pause, or playback option.
The survey experience lasted around 12 minutes to complete.

We ran the survey for two weeks, and had a total of 27 par-
ticipants (m = 15, f = 12, d = 0) which we recruited via snowball
sampling our immediate network of colleagues, friends, and family.
Participants had average age of 33.37 years old (std = 13.6 years),
17 of which had completed a bachelors or masters program. Partici-
pants mostly lived in Germany (n = 20) but we also had participation
from the US and Portugal (n = 2 respectively), Belgium, Russia, Ko-
rea (n = 1 respectively). Participants who completed at least one of
the three videos in the survey were counted but only five completed
the full user study. We think this was partly due to the fatiguing
nature of the task or unclear instruction that there was more videos
to label. Due to randomizing the order, the three videos had n=16,
n=16, n=17 fully completed responses respectively.

3.2 Symbolic Representations of Signals

The BoW (bag-of-patterns) algorithm [21] inspired our proposed
OASIS algorithm. To generate the “words” for the BoW, one first
applies the SAX algorithm [20] to each frame of a sliding window
which is passed over the whole time series signal. We use the idea
of a symbolic representation of the time series signal in a sliding
window to calculate the shape similarity between the two signals at
each frame. The SAX algorithm creates this symbolic representation
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by first applying Piecewise Aggregate Approximation (PAA) [19].
This replaces the value of sub-sequences in the time series signal
with their average value. The SAX algorithm then maps each av-
erage value to a symbolic value, e.g., “a”, “b”, or “c”. It was shown
in [20], that the distance between two symbolic representations
lower bounds the distance between the original time series signals.
This means that we can use the distance between the symbolic
words as a lower bound on the shape similarity of the time series
signals.

To calculate the symbolic representation of a time series signals,
we need to define the following parameters: windowLength (v),
defines how many frames each window contains; wordLength (),
defines how many symbols each window is mapped to (generally,
w/x € Zy4); and, numBins (@), defines the size of the alphabet or the
number of symbols used to represent the time series signal (e.g.,
a = |{*a” “b”, “c”}| = 3). An upper limit on the number of potential
words is aX.

4 THE OASIS ALGORITHM

Once we have a symbolic representation of our time series signals
(using the SAX algorithm, cf. Section 3.2), our OASIS algorithm cal-
culates the similarity score between the pair’s signals and combines
it into an overall score. Our OASIS algorithm requires a buffer of
length 2w — 1 frames to calculate the similarity between two signals.
The OASIS is calculated via the combination of shape similarity
(®), value similarity (¥), and temporal offset similarity coefficient
(0). These factors are multiplied to get

k=0-®-¥el01]. (1)

Algorithm 1 Offset-Adjusted SImilarity Score (OASIS)

1: Inputs: Words Wy, Wpys - --s Wp
2: Initialize: k <« 0

5 00— 390 1Sa |/, 6y — T2 1S5, 1/0
4: if min(0,, 0,) > 7 then

5: forA=0,...,0—-1do

signals Sg,, Sbys > Sb

w-1’ w-1

6: 0 — (2)

7: if ¥ > o then

8: return x

9: end if

10: D —(3),¥ « (5

11: K < max(k, o * ® = ¥)
12: end for

13: end if

14: return

Our OASIS algorithm is depicted in Figure 1. As inputs, we pass
the symbolic words (Wq,, Whys - - .,wail), as well as the raw time
series signals (Sq,, Shgs -+ - Sbw—l) at various offset values. First, we
check whether the signal energy is above a pre-defined threshold 7
in Line 4. Next, to calculate (1), we fix the signal ay and pass over
the w — 1 offset frames of the other signal b, (cf Line 5). The offset
coefficient (o) is calculated as

c=1-—, 2)
)
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with the current offset A = 0,...,© — 1. This captures the time
offset between the two signals, making our similarity score offset-
adjusted. If the similarity score is larger than the given offset, we
break the loop here since this is the most similar the two scores can
be (cf Line 7).

Next, we calculate shape similarity (®) as

¢:1—(%), (3)
X

where A, p, is the character distance between the two words. To
calculate this, we use the fixed word of the signal ap and compare
this to the current offset word of signal b). We then calculate the
distance between each symbol in the words to each other and
normalize the result, i.e.,

x-1 Wao- - Wb;L.
Agob, = Z Q1 4)
=0

where W, is the i-th symbol in the word a9 and Wba,— is the i-

th symbol in the offset word b,. The distance is calculated as the

absolute difference of the Unicode character representations of the

symbols. This is similar to template matching, see, e.g., [12].
Lastly, the value similarity (¥) is taken into account as

0ay — %I)

@

¥Y=1- ( (5)
where 0; = Z;f’zo ISi;|/w is the normalised square-root signal en-
ergy of the original time series signal S; (non-symbolic representa-
tion), with i = ag, b. This is inspired by previous work using the
energy of time series signals to define synchrony, see, e.g., [26]. Our
proposed algorithm calculates (2), (3), (5) foreach A =0,...,0 -1
offset words of signal by (cf. Lines 6, 10) unless the for-loop is
prematurely stopped (cf. Line 7).

The similarity score is simultaneously calculated where the roles
of signal a and signal b are reversed, i.e., the fixed word is by and we
loop over the buffered offset words of signal a). By multiplying (2),
(3), and (5) we have a working similarity score for a single modality.
Finally, we take an average of the two similarity scores where signal
a was the fixed word and where signal b was the fixed word. This is
the final similarity score for the current frame. An implementation
of the algorithm can be found here!.

5 RESULTS

Figure 2 (below) shows the comparison of the original signals to
the various similarity detection methods. All values in Figure 2
have been normalized between 0 and 1. The first row in Figure 2
shows the raw signal of the Duchenne smile of both users in dyad
1, i.e., the conversational pair in the first of the three videos. To
detect a Duchenne smile, we used OpenFace [3] to get the signal of
AU12_r if AU6_c was present. The second row shows a comparison
of a rolling window Pearson correlation (v = 8), followed by the
third row of DTW over the entire signal. We get the DTW score by
using the accelerated_dtw from the DTW python package [13]
with the Euclidean distance measure. We plot the diagonal of the
cost matrix inverted by subtracting by one and setting the values
to 0 if either of the time series are also 0. The fourth row is the

Uhttps://github.com/TUMFARSynchrony/synchrony-score
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Figure 2: A comparison of similarity detection methods
shown over the raw input signal of two users’ Duchenne
smiles (AU12_r when AU6_c was present). A rolling window
Pearson correlation, DTW, user interoperability score, and
the OASIS are shown.

user-based interoperability score, which was calculated by taking
the normalized sum across when each participant detected smile
similarity as outlined in 3.1. We take this to be a “ground truth”
when evaluating the other similarity methods. Lastly, the fifth row
is our OASIS algorithm run using @ = 3, v = 8, and y = 4 as input
parameters chosen through an initial optimization on the data we
used to develop our algorithm.

When comparing the placement of the user score to that of our
OASIS algorithm, we see peaks at similar times. Chronologically,
when comparing the OASIS around 90-95 seconds, the OASIS picks
up on the diminished strength of similarity detected as shown

by the user score, as compared to the other correlation methods.

Next, looking at around 125 seconds, we have a false negative
where the OASIS and the other correlative methods do not detect a
smile similarity whereas the user score does. This is because the
algorithms only works on Duchenne smile types. Looking at user
2’s raw signal, no Duchenne smile was detected since OpenFace lost
track of the eyes and therefore AU6_c. The user study participants
might have also more widely interpreted smile similarity than a
Duchenne smile, therefore having access to other signals that the
OASIS did not consider. This is further indicated by the higher than
0 average of user score until the next peak at 150 seconds. At 150

seconds, the OASIS shape matches the user score rather closely.

Lastly, at around 170 seconds, the users did not detect a smile

similarity although the correlation methods and the OASIS did.

Although the user score was detecting some similarity on average,
this may have been too fast of a peak for participants to react and
record to this strong instance of smile similarity. Finally, the OASIS
also shows a more defined peak at this region because of its highly
temporally adjusted factors.

Henneberg and Eghtebas, et al.

OASIS DTW Pearson User
Area between curves [17] | 22.29  25.81 23.93 N/A
Number of peaks 44 149 236 44

Table 1: The average area between the “ground truth” user

score and the OASIS, DTW, and Pearson, and the average

number of peaks.

To quantify the results observed in Figure 2, we calculate the
average area between the curves [17] and the average number of
peaks in the scores. We compare the area between our “ground
truth” user score to each of the other scores. As we see in the first
row of Table 1, the OASIS is the most similar to the user score with
an average area between curves of 22.29 (lower is better). Moreover,
in the second row of Table 1, we observe that the average number
of peaks for the OASIS is the same as the user score. The number
of peaks for the DTW and the Pearson scores are much larger
than the user score. The number of peaks was calculated using
the find_peaks function in SciPy signal processing toolbox [27].
This confirms the qualitative results we observe in Figure 2, i.e., the
Pearson and the DTW scores fluctuate more than the user score
and the OASIS.

6 DISCUSSION

From Section 5, we observe, both qualitatively and quantitatively,
that our proposed OASIS algorithm is most similar to a user study
score compared to two other measures of similarity. This could be
due to the fact that the OASIS not only looks at the shape similarity
between the users’ signals, but it also takes the offset and value
similarities into account. Moreover, since our OASIS algorithm
has relatively low time-complexity (compared with DTW), it can
be adapted to run real-time on wearable devices with comparable
results.

A challenging aspect of using ML-based algorithms to define
a synchrony score, e.g., using autoencoders [2], is their lack of
transparency [1, 24]. However, our proposed OASIS algorithm is
explainable by design since each part of the similarity score is
interpretable. Moreover, the SAX representation of words directly
indicates the shape of the underlying signal, making it directly
interpretable by a human user.

One limitation we have is relying on the model performance
of OpenFace for detecting facial AUs and markers whose false
negatives are inherited by the similarity detection algorithms. Al-
though, if these AUs are not detected, we argue that other similarity
score algorithms and ML models will also not be able to detect any
similarity. This issue can ultimately be counteracted by adding ad-
ditional input signals or modalities involved in social interaction,
e.g., other facial AUs, heart rate, body gestures, etc, to increase the
robustness of the score. A benefit of our algorithm is also that it
can be extended to work on more than one signal, such as signals
directly collected and calculated in real-time on wearable devices
(e.g., smart watches, HMDs, etc.) in the wild [16, 28]. An additional
next step to incorporate into our OASIS algorithm is to expand on
the different types of similarity we would like to detect. Adding
long, medium, and short term buffers of the input signals can allow
our OASIS algorithm to find similarities at different time scales.
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Moreover, the SAX representations of these signals can be extended
to accommodate different window lengths as well. Furthermore,
our OASIS algorithm can be more specifically adapted to detecting
synchrony, which is a subset of similarity detection that is predom-
inately time dependant. We can incorporate a dissimilarity factor
into the OASIS to define a true synchrony score through detecting
dissimilarities along with similarities.

7 CONCLUSION

We develop an offset-adjusted similarity score that works online
on two streamed time series signals. We compared our OASIS al-
gorithim to the rolling window Pearson correlation and the DTW
correlation methods, and conducted a survey to gather a user-based
interoperability score for smile similarity detection. Given the ben-
efits of having an online, explainable algorithm, it performs well
when compared to statistical correlations as well as the collected
user-based score. The OASIS can be used on low-power wearable de-
vices enabling the study of high level synchrony trends in the wild.
Lastly, this work is the seed to future work that ambitiously aims
to quantify social nonverbal interactions for the evaluation and
design of novel interactions in future ubiquitous AR/VR systems.
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