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USING MELODIC RECALL PARADIGM DATA, WE

describe an algorithmic approach to assessing melodic
learning across multiple attempts. In a first simulation
experiment, we reason for using similarity measures to
assess melodic recall performance over previously uti-
lized accuracy-based measures. In Experiment 2, with
up to six attempts per melody, 31 participants sang back
28 melodies (length 15–48 notes) presented either as
a piano sound or a vocal audio excerpt from real pop
songs. Our analysis aimed to predict the similarity
between the target melody and participants’ sung recalls
across successive attempts. Similarity was measured
with different algorithmic measures reflecting various
structural (e.g., tonality, intervallic) aspects of melodies
and overall similarity. However, previous melodic recall
research mentioned, but did not model, that the length
of the sung recalls tends to increase across attempts,
alongside overall performance. Consequently, we mod-
eled how the attempt length changes alongside similar-
ity to meet this omission in the literature. In a mediation
analysis, we find that a target melody’s length, but not
other melodic features, is the main predictor of similar-
ity via the attempt length. We conclude that sheer length
constraints appear to be the main factor when learning
melodies long enough to require several attempts to
recall. Analytical features of melodic structure may be
more important for shorter melodies, or with stimulus
sets that are structurally more diverse than those found
in the sample of pop songs used in this study.
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M OST PEOPLE WOULD NOT BE SURPRISED TO

hear their friend sing a familiar melody to
them, even if their friend was not a great

singer or a professional musician. Indeed, remembering
melodies is not just an explicitly taught skill useful to
professional musicians (Lehmann et al., 2007), but an
implicitly acquired ability that most of the general
population engage in effortlessly (Bigand & Poulin-
Charronnat, 2006; Bigand et al., 2005; Ettlinger et al.,
2011; Müllensiefen & Halpern, 2014; Schellenberg et al.,
2019; Tillmann et al., 2000). Consequently, for most
people in the general population, melodic memory
encoding and retrieval processes are a normal part of
life, even though, for many, such abilities are only
implicitly acquired and exercised, rather than formally
trained (Lehmann et al., 2007). In some basic respect,
remembering and recalling melodies could be viewed as
a general skill, in principle not dependent on formal
music training or expertise.

The purpose of this study is to model such melodic
memory and recall processes in a quantitative way, and
to understand how mental representations of melodies
develop over short periods of time, after repeated expo-
sure to the same melodic target stimulus. Specifically, we
advocate the melodic recall paradigm (Sloboda & Parker,
1985), and in doing so, like Okada and Slevc (2021) and
others (Buren et al., 2021; Hallam & Creech, 2010)
recently argued, emphasize the importance of musical
production tasks to gaining a comprehensive under-
standing of musical abilities. Furthermore, we take
modeling of the melodic recall paradigm forward in two
main respects. First, we reason for and employ algorith-
mic similarity metrics to score melodic recall data, not-
ing some limitations of previous approaches, and
suggest similarity metrics better help us understand
melodic recall processes. Second, while Sloboda and
Parker (1985) noted that participants gradually attempt
to sing more notes across each consecutive attempt at
recalling the same melody, they did not formally model
such changes across attempts. We contend that not for-
mally modeling the change in attempt length is a funda-
mental omission in previous melodic recall studies (e.g.,
Ogawa et al., 1995; Sloboda & Parker, 1985; Zielinska &
Miklaszewski, 1992). In particular, we suggest that mod-
eling the change in attempt length in parallel to the
change in overall performance (as measured by melodic
similarity metrics) offers at least three main advantages
for melodic recall research. First, it points to the
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potential application of models and ideas from already
well-established theories of produced mental represen-
tations in nonmusical domains (nonmusical serial
recall; Anderson, 1972). Second, it reminds us that
there are general constraints on human memory
(Christiansen & Chater, 2016; Cowan, 2010; Miller,
1956; Oberauer & Cowan, 2007), and that not all vari-
ance in melodic recall behavior may be explained in
musicological terms, perhaps suggesting that domain-
general memory mechanisms should not be overlooked.
Lastly, it enables key insights into how the encoding of
melodic information works, which may otherwise be
lost in statistical inference that does not consider
domain-general memory faculties (see Silas et al.,
2022, for a related discussion).

In summary, the work we document here suggests
that concepts related to general working memory con-
straints (e.g., nonmusical serial recall, item length) are
important in explaining melodic recall, potentially more
so than any other musicological considerations (e.g.,
interval representations, tonality), at least when the
length of the melodies certainly requires multiple
attempts to sing back all the notes (e.g., length 15–48
notes), or with pop melodies which are relatively simple
to sing. In other words: the ‘‘melodic recall’’ of relatively
simple pop melodies appears to be closely related to
‘‘recall’’ in other memory domains.

Music and Working Memory

The construct of working memory is now well-
developed in psychology, with the most popular model
being Baddeley and Hitch (1974)’s multi-component
model, subsequently updated in Baddeley (2000).
Working memory refers to the ability to transform and
manipulate information in short-term memory. In gen-
eral, it is thought to comprise components for manip-
ulating phonic and visual stimuli separately. Music
scholars have long recognized the important role of
working memory in musical behaviors, particularly
those involving aural skills (Chenette, 2021; Cornelius
& Brown, 2020; Gates, 2021; Karpinski, 2000). Indeed,
those with formal music training have widely been
documented to have better general working memory
capacities (Talamini et al., 2016, 2017), but note, it is
not clear that musical training causally influences gen-
eral working memory (Silas et al., 2022).

It has been argued by some (e.g., Berz, 1995) that
general working memory models do not explain work-
ing memory for musical stimuli well. Other authors
such as Ericsson and Kintsch (1995) contend that the
development of expertise in specialized domains, such

as formal music training and chess, cultivates domain-
specific forms of working memory, which they refer to
as ‘‘long-term working memory,’’ whereby (musical)
abilities are subserved by relatively specialized systems,
quite distinct from general working memory. In our
own previous research, we have documented the possi-
ble scenarios that might explain the links between
domain-general and domain-specific (music) working
memory faculties: they may be relatively (statistically)
disparate, but nonetheless, rely on each other, poten-
tially bidirectionally (Silas et al., 2022). The implications
of this are that, perhaps by definition, musical abilities
are subserved by both domain-general (potentially to do
more with inherited characteristics) and domain-
specific (potentially more to do with training) faculties.
In other words, someone with a very good general
working memory might be able to demonstrate a similar
level of musical (e.g., sung recall) performance to some-
one who has had more music training. The former’s
general faculties may help them monitor their perfor-
mance as well as someone who has carved out music-
specific templates to aid the same task. The underlying
processes may be different, but the observable pheno-
type similar. Framed in terms of our study: if music
conforms to a style that people in the general population
are familiar with, do musical features (often better
remembered by expert musicians) tend to matter? With
relatively simplistic, familiar musical styles, is perfor-
mance really mainly mediated by music-specific pro-
cesses, or could it be more domain-general processes
that turn out to be important? If melodies are long
enough to require multiple attempts to sing in full, are
musical features beyond length clearly important, com-
pared to the length of a melody alone?

In the nonmusical literature on verbal recall exists
some relevant nonmusical analogues to the observations
that Sloboda and Parker (1985) made, that the attempt
length increases across attempts (Anderson, 1972; Chi-
khaoui et al., 2009). The so-called list length effect is the
finding that recognition performance is superior for
items that are part of a short list than for items that
were part of a long list (Kinnell & Dennis, 2012). Typ-
ically, the literature on verbal memory has used lists of
unrelated words as stimuli and asks the participant to
recall as many items as they can from memory. Over
multiple attempts, Murdock (1960) specifically found
that the shape of the learning curve across attempts can
be described as an exponential curve with an asymptote
equal to the number of items in a target list. However,
word lists have different properties to melodies, which
presuppose serial recall (i.e., a note order) and embody
important structural features within interval and
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rhythmic patterns. It is not clear if the unique properties
of musical stimuli mean that melodic recall processes
are underpinned by fundamentally different processes
to their nonmusical analogues. Next, we discuss previ-
ous approaches to studying melodic memory.

Melodic Recognition Paradigm

Traditionally, melodic memory has been investigated
frequently using different variants of the melodic recog-
nition paradigm (Idson & Massaro, 1978). In this para-
digm, the listener hears a melody in a training phase
and then a second melody in a test phase. The second
can be identical, similar in some musical sense, or com-
pletely different from the first (e.g., Dowling & Fujitani,
1971). The participants’ task is to tell whether the two
melodies are identical or not. The rationale of this par-
adigm is that undetected differences between two mel-
odies reflect differences in musical dimensions that are
not retained in memory or are forgotten easily. Differ-
ences that participants do detect are supposed to hap-
pen in a musical dimension that is represented in
memory (for a good and compact description of the
paradigm see e.g., Idson and Massaro, 1978, p. 554).
In many such studies, melodies used as stimuli were
composed and/or manipulated by the experimenters
to show the desired differences in the specific musical
dimensions. Such studies show, for example, that, at
least under certain conditions, contour representations
of melodies are more easily retained in memory than
interval representations (Dowling, 1978; Dowling et al.,
1995; Edworthy, 1985; Massaro et al., 1980), shorter
sequences are recognized better than longer ones
(Edworthy, 1985; Long, 1977), and after short retention
intervals, contour is retained better, but after long reten-
tion interval memory performance for tonality and
intervallic information is superior (Dewitt & Crowder,
1986; Dowling, 1991; Dowling & Bartlett, 1981).

There are two main disadvantages of the melodic
recognition paradigm for the study of melodic memory:
First, participant responses are limited to a binary deci-
sion (i.e., ‘‘identical’’ vs. ‘‘not identical’’), possibly with
a confidence judgement on an ordered scale. This
response format discards a lot of information that may
be relevant in analyzing the actual memory representa-
tions, which are presumably much richer than such
a binary decision can reflect. Second, the experimental
melodies and their according variants are, in most cases,
artificially constructed to fulfill the constraints of the
experimental design. This often results in the usage of
pitch sequences that are stylistically unfamiliar to par-
ticipants and may be rarely encountered in actual

human melodic processing. If realistic musical material
is used, differences between the to-be-compared
excerpts introduced by the experimenter can often
appear obvious or artificial. Subtle differences and nat-
urally occurring nuances between the memory repre-
sentation and the original may thus remain
undiscovered (e.g., Kauffman & Carlsen, 1989).

Recent developments to the related experimental
approach of melodic discrimination testing via explan-
atory item response theory (Harrison et al., 2017;
Harrison et al., 2016) and usage of large-scale musical
corpora (e.g., Baker, 2021; Pfleiderer et al., 2017) have
bolstered and improved some of these aspects of the
melodic recognition paradigm. However, the so-called
melodic recall paradigm, employed in this study, offers
a different kind of insight into the different musical
dimensions retained in memory.

Melodic Recall Paradigm

There have been a few studies employing the melodic
recall paradigm to investigate memory for melodies,
with Sloboda and Parker (1985) probably being the
most well-known. Sloboda and Parker (1985) played the
30-note instrumental melody of a folk song to partici-
pants and asked them to sing back whatever they
remembered from the melody. As participants found
it very difficult to sing back much of this relatively
simple and comparatively short folk tune, they could
hear the melody up to six times, with a chance to sing
back the melody again after each hearing. As a result,
a sung recall for every trial attempt and every partici-
pant was obtained. With a manual but quasi-
algorithmic analysis technique, Sloboda and Parker
(1985) showed that the (phrase, metric, harmonic)
structure of the heard melody was learned rather early
in attempts while intervallic and rhythmic details stayed
quite inaccurate until later attempts. We note the oper-
ationalization and assumption of this approach, which
we follow here: improvements in sung recall are taken as
evidence of learning a melody. In other words, to
improve on singing back a melody, it is necessary that
the melody has been remembered (i.e., learned) better
on each consecutive attempt. We use the term ‘‘learn-
ing’’ throughout the manuscript, specifically referring to
the task at hand, which is sung recall, as distinct from
other tasks (e.g., aural dictation; Chenette, 2021) but do
not intend to suggest that the melody is necessarily
learned beyond the task of singing.

Sloboda and Parker (1985) observed that the sung
recalls got considerably longer over the six repetitions,
but the ratio between the number of correctly recalled
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notes and the overall number of sung notes stayed
approximately constant. Among the 48 trials of the
eight participants they tested, they observed not a single
rendition without error. In their discussion, they con-
cluded that, in accordance with the notion of generative
grammars for melodies, melodic structure seems to be
a feature that is preferably abstracted in memory, while
details such as exact pitches and durations are rather
improvised within the constraints of the melodic struc-
ture retained in memory. Sloboda and Parker’s (1985)
results were partially reconfirmed by Müllensiefen and
Wiggins (2011), who used Sloboda and Parker (1985)’s
original transcribed recall data but employed a compu-
tational approach to analyzing it. Their algorithmic
approach suggested some different interpretations of
the data. For instance, Sloboda and Parker (1985)
observed no increase in performance across attempts,
which is surprising, because it suggests that melodic
features are not incrementally extracted through
repeated exposure. However, Müllensiefen and Wiggins
(2011) presented evidence of learning: participants
seem to be able to recall the melody better across
repeated attempts, as indicated by increases in similarity
(not accuracy) between the sung recall and the target
melody. This suggests that accuracy alone may not be an
appropriate measure of melodic recall performance, as
we profile in Experiment 1 of this manuscript.

A few studies after Sloboda and Parker (1985) fol-
lowed the same experimental approach of using
a melodic recall paradigm, but differed in their use of
experimental materials (more melodies, tonal vs. modal
melodies; Oura & Hatano, 1988), participants (more
participants, participants with and without absolute
pitch or formal musical background; Ogawa et al.,
1995; Zielinska & Miklaszewski, 1992), and number of
trials per participant and melody (up to 10). The error
rates over trials that Zielinska and Miklaszewski (1992)
obtained suggest that participants can reach a level of
almost error-free recalls if they are given enough trials,
and that there is a particular point where the relative
errors in the sung recalls start to diminish more notice-
ably. The position of this point seems to depend primar-
ily on the amount of music training of the participants.
With music students possessing absolute pitch, the
point is already at the second trial, whereas music stu-
dents without absolute pitch needed four repetitions
before overall error rates decrease. The fact that there
is a particular point where participants’ error rates sig-
nificantly start decreasing does not necessarily speak
against Sloboda’s and Parker’s claim that melodic struc-
ture is acquired first. Zielinska and Miklaszewski
(1992), as well as Oura and Hatano (1988), also

discovered that their participants first memorized the
structure by segmenting the melodic stream into
ordered phrases and improvising on details. This was
especially true for the formally trained participants,
while music novices tended to commit rather ‘‘unmu-
sical’’ errors, such as modulations to different tonalities
or errors on phrase contours, as Oura and Hatano
(1988) note. For a more thorough review of general
memory paradigms and their adaptation for melodic
memory research, we refer the reader to Müllensiefen
and Wiggins (2011).

Methodological Issues with Melodic
Recall Research

Despite the possibility of giving interesting insights into
the mechanisms of memory for melodies, the melodic
recall paradigm as applied by the cited studies has some
inherent problems. First, previous cited studies using the
melodic recall paradigm relied on a hand-made compar-
ison analysis between target melody and sung recalls.
Consequently, the number of recalls to be analyzed was
limited. For example, Sloboda and Parker (1985) ana-
lyzed 48 renditions from their participants, while Oura
and Hatano had 320, and Zielnska and Miklaszewski
(1992) had 310 renditions to base their analyses on. For
going beyond this level of analysis, the computer suggests
itself as an aid (i.e., algorithmic analysis). The computer-
based analysis used in the present study allows us to cope
with around 2,250 sung recalls. In turn, this higher num-
ber of melodic objects allows the deployment of techni-
ques from statistical modeling that require many data
points to be used effectively. Second, previous methods
to assess the quality of a sung recall involved accuracy-
based measures, which alone are inadequate for mean-
ingfully assessing melodic recall behavior. Third, while
Sloboda and Parker (1985) noted that sung recalls got
longer (though not necessarily better) over subsequent
trials, they did not model this effect. This methodological
omission leads to a theoretical one: it neglects to observe
the domain-general aspects of sung recall, which do not
differ from normal recall.

The Present Study: Methodological Advances
for Melodic Recall Research

To meet the above described shortcomings of previous
melodic recall research, we make two general method-
ological advances: 1) to employ an algorithmic analysis
of melodic recall data, and specifically, use similarity
metrics; and 2) to model the change in attempt length
across attempts in addition to changes in melodic
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similarity, which allows comparisons to general mem-
ory faculties.

To that end, we conducted two experiments. Experi-
ment 1 is a simulation study where we describe and
compare similarity-based metrics to accuracy-based
approaches close to those previously taken. Formally,
we show how similarity metrics converge and diverge
with previous measures for different simulated condi-
tions. This highlights the different properties of
similarity-based metrics and how they can be used
effectively for melodic recall data. In Experiment 2, we
present an experiment using melodic recall data col-
lected from human participants. Here, we focus on
another important point that has been overlooked in
melodic recall research: the lack of a statistical model
to support how the length of sung recalls changes across
consecutive attempts and how this changes alongside
overall performance, as measured by melodic similarity.

Experiment 1: Similarity Measures as a
Methodological Advance for Scoring

Melodic Recall Data

As highlighted by Sturm (2013)’s paper title, ‘‘classifica-
tion accuracy is not enough’’ when it comes to assessing
musical information. As argued there, this is because
basic (i.e., note-by-note) accuracy measures do not
meaningfully represent musical structures, such as
interval patterns, which involve certain note orders.
Hence, such measures of accuracy are also inadequate
for scoring sung recall data. For those unfamiliar with
the foundations of accuracy assessment (derived in
musical context), see Appendix listing #1 for online
supplement source material.

Sloboda and Parker (1985) attempted to improve on
simple accuracy measures by considering note order in
the measure they scored melodic recall data with. They
recognized that, in melodic recall data, the target melody
and sung recall may differ in many improvised notes, but
that on other levels of human melodic understanding, the
sung rendition might be ‘‘highly related to the original in
many respects’’ (Sloboda & Parker, 1985, p. 159). Sloboda
and Parker’s (1985) method of scoring their data was
only partly able to address this limitation. They
attempted to embody important structural information
(interval patterns, or as they called it ‘‘contour’’) into the
scoring of pitch data, and additionally, assessed other
important (e.g., rhythmic, harmonic) domains separately.
However, while their method, and similar methods taken
after them (e.g., Koh, 2002; Ogawa et al., 1995), were
construed from reasonable musicological considerations,
they lack a precise, computational foundation. Second,

various domains (pitch, rhythmic, harmonic) were
assessed separately, but not combined into a single aggre-
gate measure which weights the domains according to
their relevance in human cognition. Third, such compar-
isons were not tested for their ecological validity (i.e.,
compared with or based upon human perceptual judge-
ments). Recognizing limitations of their approach at the
time, Sloboda and Parker (1985) noted ‘‘there is no the-
ory of melodic identity.’’

MELODIC SIMILARITY

To address this issue, we introduce the notion of
a melodic similarity metric for scoring melodic recall
data. In the scientific area that has been termed Music
Information Retrieval (Downie, 2003), and that has seen
a large boost in recent years, several approaches to sim-
ilarity measurement for melodies and other musical
objects have been developed (e.g., Müllensiefen &
Frieler, 2004a; Pearce & Müllensiefen, 2017; Typke
et al., 2007; Yuan et al., 2020). The similarity measures
employed in this study are favored because they proved
their effectiveness and ecological validity (or rather
comparability) with the notion of melodic similarity
of musically experienced participants in separate studies
(Müllensiefen & Frieler, 2004b, 2007; Müllensiefen &
Pendzich, 2009). Therefore, while there still might not
be an undisputed theory of melodic identity, as Sloboda
and Parker claimed in 1985, this study will use some
algorithms that at least came quite close in emulating
musically experienced participants’ similarity judge-
ments. However, while measures of similarity have been
validated in the context of human perceptual judge-
ments (e.g., to predict court case outcomes), we are not
aware that they have been profiled in the context of sung
recall, as we intend to do here.

Methodological Background
Having obtained numerical representations of both
sung recalls and the target melodies, the similarities
between a target melody and sung recall of that melody,
for each attempt of each participant, can be calculated
using the algorithmic similarity measures described in
Müllensiefen and Frieler (2004b). The similarity mea-
sures employed here comply with the two main points
already raised by Sloboda and Parker (1985) in their
discussion of their methodology of melodic compari-
son: in most cases—that is especially true for the earlier
trials—participants only recall a smaller part of the orig-
inal melody, which may not even start with the begin-
ning of the original. Thus, a similarity measure (or
algorithm) must be chosen that automatically looks for
the best alignment of the (short) melodic sequence of

Learning and Recalling Melodies 81



the sung recall with the original melodic sequence.
Sloboda and Parker (1985) manually attempted a form
of alignment, making it a cumbersome task, but addi-
tionally, their method is not precisely described. To
advance on this point, we detail precise computational
approaches to alignment.

An algorithm for the optimal alignment of two sym-
bol sequences that has been widely used in domains
such as text retrieval or bio-computing, as well as music
information retrieval, is the so-called Edit Distance or
Levenshtein distance (e.g., Mongeau & Sankoff, 1990).
The Edit Distance is the minimum number of opera-
tions it takes to transform one symbol string into
another: the possible operations being insertion, dele-
tion, and substitution. The actual calculation of the Edit
Distance is carried out using dynamic programming
and is not explained here. For a general reference
regarding the algorithm see, for example, Gusfield
(1997). In this case, the maximal Edit Distance of two
strings is equal to the length of the longer string. To
convert the Edit Distance into a similarity measure with
a range of values 0; 1½ � we use the following:

s s; tð Þ ¼ 1� de s; tð Þ
max sj j; tj jð Þ (1)

where sj j and tj j denote the element counts of strings s
and t respectively, and de s; tð Þ stands for the Edit Dis-
tance between strings s and t.

Just like the manual scoring techniques employed by
Sloboda and Parker (1985), the edit distance calculates
the similarity between two symbolic sequences by tak-
ing the number of edits (i.e., additions, deletions, or
substitutions) that are necessary to transform one of the
sequences into the other and dividing this figure by the
number of symbols in the longer sequence. It thus could
be argued that Sloboda and Parker intuitively used a ver-
sion of the edit distance, evaluating the similarity
between the recalls of their participants on the original
melody, keeping the order of notes in mind.

However, importantly, instead of applying the edit
distance to raw pitch values, here the edit distance is
computed on various symbolic representations of
musical dimensions (i.e., relative pitch sequences—
intervals—as opposed to single pitches; rhythm
sequences; and sequences of implied harmonies; Mül-
lensiefen and Frieler, 2004b). Specifically, we employ the
opti3 measure of melodic similarity (Müllensiefen &
Frieler, 2004b) as our main dependent variable. opti3
is a hybrid measure derived from the weighted sum of
three individual measures which represent different
aspects of melodic similarity. The similarity in interval
content is captured by the ngrukkon measure is based

on the Ukkonen Measure that measures the difference of
the occurrence frequencies of interval trigrams (t) con-
tained within the target melody (fs tð Þ) and the compar-
ison melody (fs tð Þ) (see Uitdenbogerd (2002). Formally:

u s; tð Þ ¼
X

t2sn[tn

fs tð Þ � ft tð Þj j (2)

As the Ukkonen Measure is a distance measure in
its original definition, we normalize by the maximum
possible number of n-grams and subtract the result
from 1:

s s; tð Þ ¼ 1� u s; tð Þ
sj j þ tj j � 2 n� 1ð Þ (3)

Note that the Ukkonen measure is not based on the
edit distance but still takes order of notes into account at
a local level by comparing trigrams of pitch intervals.

Harmonic similarity is measured by the harmcore
measure. This measure is based on the chords implied
by a melodic sequence, taking pitches and durations
(i.e., segmentation) into account. Implied harmonies are
computed using the Krumhansl-Schmuckler algorithm
(Krumhansl, 1990) and the harmonic progression of the
two melodies are compared by computing the number
of operations necessary to transform one harmonic pro-
gression into the other sequence via the edit distance.
Finally, likewise, rhythmic similarity is computed by
first categorizing the durations of the notes of both
melodies (known as ‘‘fuzzification’’) and then applying
the edit distance to measure the distance between the
two sequences of categorized durations. The resulting
measure of rhythmic similarity is called rhythfuzz
(Müllensiefen & Frieler, 2004b). Note that rhythfuzz
does not take metric information into account and
works solely based on (relative) note durations. Simi-
larly, ngrukkon works with interval information and is
hence invariant to transposition.

Based on the perceptual data collected by Müllensiefen
and Frieler (2004b), the three individual measures are
weighted and combined to form a single aggregate mea-
sure of melodic similarity, opti3. Hence, opti3 is sensitive
to similarities and differences in three important aspects
of melodic perception (pitch intervals, harmony,
rhythm). We note that all three individual measures
(ngrukkon, harmcore, rhythfuzz) can take values between
0 (= no similarity) and 1 (= identity) and are length-
normalized by considering the number of elements of
the longer melody. opti3 then comprises (Müllensiefen
& Frieler, 2004b):

opti3 ¼ 0:505 � ngrukkonþ 0:417 � rhythfuzz

þ 0:24 � harmcore� 0:146
(4)
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where we here present the normalized weights, which
constrain the values to be [0,1].

Beyond the target or comparison melody lengths
being used to normalize the opti3 score, we note that
opti3 is dependent on the length of the two comparison
melodies further in only a ‘‘soft’’ sense, which is partic-
ularly relevant to Experiment 2 of this paper, where we
use the sung recall attempt length as an auxiliary depen-
dent variable. If one melody is shorter than the other, at
least some of the melodic identity is destroyed: neces-
sarily, the rhythmic (rhythfuzz) and intervallic (ngruk-
kon) components, but not necessarily the harmonic
(harmcore) component (if notes are missing, not all
intervals or rhythms can be reflected, but the implied
harmonies can be the same). It should be clear that opti3
captures far more (musical) information than melody
length(s) alone and/or accuracy-style measures. The
ecological validity of the aggregate similarity measure
has been established in several perceptual experiments
(Müllensiefen & Pendzich, 2009; Yuan et al., 2020). For
concise descriptions comparing the similarity measures,
see Appendix listing #2 for online supplement source
material. Moreover, to build an intuition on how simi-
larity measures may change over attempts, see Appen-
dix listing #3 for online supplement with notated
examples of development in sung recall performance
and a qualitative description of their change in
similarity.

In summary, similarity measures pay attention to
musical features that arise from the relationships
between pitch and rhythmic values and could be con-
sidered more ‘‘global’’ in nature. Conversely, accuracy
measures, which count notes or even intervals
(bigrams), do not respect the higher order emergent
properties of musical features. Consequently, aggregate
similarity measures have a greater ability to represent
perceptual properties relevant in human cognition and
represent a robust step towards computationally repre-
senting a notion of melodic identity. In this way, simi-
larity algorithms have been used to predict subjective
similarity judgements, for example, in musical plagia-
rism court cases, with excellent success (Müllensiefen &
Pendzich, 2009; Yuan et al., 2020). As an aid in devel-
oping an intuitive understanding of the different prop-
erties arising from scoring melodic recall data with
accuracy-style vs. similarity measures, see Appendix
listing #4 for online supplement source material for
simple example comparisons.

MOTIVATION

In Experiment 1, we suggest opti3 (Equation 4;
Müllensiefen & Frieler, 2004a; Müllensiefen & Frieler,

2004b) as a more appropriate measure of melodic recall
than previously taken approaches. Specifically, opti3
aims to address the limitations Sloboda and Parker
(1985) noted, by embodying notions of melodic identity
that are based on real human perceptual judgements.
We profile this measure against our own computational
implementation of the approach Sloboda and Parker
(1985) took, as well as a similar measure called percent
melodic identity (PMI; Savage et al., 2018). In doing so,
we explore how the measures converge and diverge in
a quantitative manner, when applied to assessing how
well a sung recall matches a target melody.

METHOD

The method taken here is to start with the stimulus set of
melodies that we use with real participants in Experiment
2. Starting with this set, we transform the melodies sys-
tematically in various ways so that they become less like
their originals. We then compare the transformed and
original melody versions on several accuracy and simi-
larity measures, and profile how the measures compare
as a function of the number of transformations.

Measures of Melodic Accuracy and Similarity
Our reimplementation of Sloboda and Parker’s measure
is a special case of the ‘‘recall’’ measure of accuracy (see
Appendix listing #5 for online supplement source mate-
rial), which counts the number of correct notes in the
sung recall, where ‘‘correct’’ means ‘‘contained in the
stimulus.’’ Note that this therefore does not penalize
participants for missing notes in the stimulus. However,
Sloboda and Parker took two additional steps: First,
they manually chose the best alignment of the usually
shorter sung recall with the usually longer full stimulus.
Second, after they aligned the two melodies, they com-
pared the notes between the target and the recall
sequentially, one-by-one, meaning that the order of
notes is embodied into the scoring. For this reason,
we refer to this measure as ‘‘aligned ordinal recall.’’
Formally, Sloboda and Parker’s aligned ordinal recall
(or ‘‘contour’’, as they called it) measure can be
expressed as:

AOR t; sð Þ ¼
Xij

1

a ti; sj
� �

(5)

where AOR is the aligned ordinal recall function and t
and s represent a subset of the target melody and sung
recall respectively, and a represents a scoring function to
check that aligned notes are equal according to:

a ¼ t; sð Þ 1; if t ¼ s
0; else

�
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where t or s represents the ith or jth note in from the
AOR function.

Subsequently, the best alignment step can be achieved
computationally by taking the maximum score of all
alignment possibilities calculated using Equation 5.
We note that here we do not re-implement Sloboda and
Parker’s assessment of other domains (e.g., rhythm),
which they did not combine into a single aggregate
measure.

The percent of melodic identity (PMI, Savage et al.,
2018) measure is calculated according to:

PMI ¼ 100 ID
L1þL2

2

 !
(6)

where ID is the number of aligned pitches that are
identical and L1 and L2 are the length of each sequence.
PMI uses its own specific form of automatic alignment:
the Needleman and Wunsch (1970) algorithm. This
requires automatic alignment penalties to be specified
for opening or extending gaps in the alignment. We use
the penalties suggested by Savage and Atkinson (2015)
and Savage et al. (2018): a gap opening penalty of 12 and
a gap extension penalty of 6.

MATERIALS

Fourteen pop songs were used as the basis for the exper-
imental material. Two different melodies were taken
from each song to form a stimulus set of 28 melodies
in total (9–21 seconds; length = 15–48 notes; see Appen-
dix listing #6 for online supplement source material).

Melodies were selected to represent a wide range of
Western popular music styles, ranging from easy listen-
ing ballads and Schlager via mainstream pop, rock, and
disco to blues, R’n’B, and hip hop. They were taken
from hit song collections covering repertoire form the
1960s to 2000, but overly popular or well-known songs
were avoided. The set of melodies was selected to pro-
vide a large range of stylistic features within the context
of Western popular music. This includes different
melodic and singing styles as well rhythms and meters
that are idiomatic for certain genre. This wide stylistic
breadth should allow for a better generalization across
Western popular music than a more homogeneous
stimulus set that exclude certain musical features
deliberately.

SIMULATION EXPERIMENTS

We conducted a series of eight simulation experiment
using the stimuli described above. In each experiment,
we manipulated each stimulus via transformations
either on the raw pitch classes, the duration values, or
both. Subsequently, all results were aggregated across
melodies. We describe each sub-experiment succinctly
in Table 1 above. For more detailed information, please
consult our experiment code and data (i.e., simulated
melodies).1

TABLE 1. Description of Experiments Simulating Human Errors on a Sung Recall Task

No. Name Description

1A Rhythmic jitter Duration values were jittered by various amounts (0, 0.01, 0.10, 1, 2, 5), using the jitter R function.
This corresponds to singing the rhythms but not pitches incorrectly.

1B Pitch insertions Various number of notes were randomly inserted, corresponding to cases where human
participants mistakenly add random notes to their sung recalls.

1C Pitch deletions Notes were randomly deleted, corresponding to cases where human participants mistakenly miss
notes in their sung recalls.

1D Pitch substitutions Notes were randomly substituted (at any location in the melody), corresponding to cases where
human participants sing some random notes wrong in their sung recalls.

1E Combined pitch
insertions, deletions,
and substitutions

The last three experiments combined, corresponding to human participants making various
random mistakes.

1F Combined pitch
insertions, deletions,
and substitutions
and rhythmic jitter

Rhythmic jitter and pitch transformations as described above (i.e., experiments 1A and 1E) were
transformed simultaneously, corresponding to singing pitches and rhythms wrong.

1G Length mismatch Notes were removed from the end of the target melody to create a length mismatch between target
and recall, corresponding to a participant not yet being able to sing an entire melody back.

1H Scramble Different sized chunks of the melody were scrambled, such that the same notes were in each chunk,
but the order of notes was changed randomly. This corresponds to human participants retaining
a gist of the melodic identity, but not a precise representation of its structure.

1 https://github.com/sebsilas/Melodic_Recall_Paper_2023 and https://
github.com/sebsilas/gensim
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DATA ANALYSIS

First, we assess the descriptive statistics for the variables
and compare the coefficient of variation (CV) between
our measures. The CV is not the same as the well-known
coefficient of determination (R2). Instead, the CV is the
standard deviation (SD) of a measure divided by its
mean. The CV is preferred over the SD for comparing
variance across measures because the CV is a dimension-
less number, and hence, facilitates comparison of the SD
across different datasets or measures, with different
means. By comparing the CV across measures, we can
assess whether some capture more variance than others.

Next, we inspect each sub-experiment results via
graphs, where the y-axis always represents the score
on each accuracy or similarity measure and the x-axis
represents a function of transformations. The specific
transformations are operationalized in Table 2. An ideal
property of a measure is that it should increase or
decrease monotonically in the context of the experiment
manipulations, so we inspect this in particular.

Finally, we formally model all experimental data simul-
taneously. The dependent variable is the accuracy or sim-
ilarity score; Measure (opti3, aligned ordinal recall, PMI,
etc.) and Experiment (1A-IH) are categorical predictors;
length of sung recall is a numeric predictor; and addi-
tionally the interactions between 1) Measure and length
of sung recall and 2) Measure and Experiment were
included as predictors. There were 24,426 observations.
To facilitate interpretation of the model parameters, sung
recall length was standardized before model fitting (note
the other parameters are already [0, 1]).

RESULTS

Table 2 presents descriptive statistics, ordered by des-
cending magnitude of the coefficient of variation. The
similarity measures, except for rhythfuzz, have higher
coefficients of variation compared to PMI and aligned
ordinal recall, suggesting that they capture more vari-
ance than accuracy measures, at least in the context of
our experiments. This is also suggested by the graphs in
Figure 1, whereby similarity measures tend to be more
affected than PMI and aligned ordinal recall as a func-
tion of the musical errors we simulated. The other
results shown in Figure 1 can be summarized as follows:
1A) adding jitter to duration values causes rhythfuzz to
degrade as well as harmcore (because it offsets the align-
ment of harmonic progressions), and consequently,
opti3. PMI and aligned ordinal recall are unaffected;
1B) note insertions cause all measures to degrade; 1C)
note deletions cause all measures to degrade; aligned

TABLE 2. Descriptive Statistics for All Simulation Experiment
Results, Ordered by the Coefficient of Variation

Measure Mean SD Coefficient of Variation

ngrukkon 0.29 0.30 1.05
harmcore 0.55 0.39 0.72
opti3 0.42 0.25 0.61
aligned_ordinal_recall 0.53 0.26 0.48
rhythfuzz 0.68 0.30 0.44
pmi 0.62 0.23 0.37

TABLE 3. Regression Model Regressing Score Onto Measure, Sung Recall Length and Experiment, Plus Interactions

Predictor b 95% CI t df p

Intercept 0.60 [0.57, 0.63] 41.57 24016 < .001
Measureharmcore �0.02 [-0.06, 0.03] �0.75 24016 .453
Measurengrukkon �0.28 [-0.32, -0.23] �12.58 24016 < .001
Measureopti3 �0.18 [-0.22, -0.14] �8.22 24016 < .001
Measurepmi �0.11 [-0.15, -0.07] �5.41 24016 < .001
Measurerhythfuzz �0.08 [-0.12, -0.04] �3.83 24016 < .001
Experimentflip out notes �0.09 [-0.13, -0.05] �4.33 24016 < .001
Experimentflip out notes and rhythm jitter �0.09 [-0.12, -0.06] �5.57 24016 < .001
Experimentinsertions �0.04 [-0.08, 0.00] �1.73 24016 .083
Experimentlength mismatch 0.42 [0.38, 0.46] 21.79 24016 < .001
Experimentrhythm jitter 0.44 [0.40, 0.49] 18.82 24016 < .001
Experimentscramble �0.23 [-0.26, -0.20] �13.19 24016 < .001
Experimentsubstitutions 0.12 [0.08, 0.15] 5.80 24016 < .001
Sung recall length �0.16 [-0.24, -0.09] �4.45 24016 < .001
Measureharmcore � Sung recall length 0.27 [0.17, 0.37] 5.14 24016 < .001
Measurengrukkon � Sung recall length 0.38 [0.28, 0.48] 7.16 24016 < .001
Measureopti3 � Sung recall length 0.33 [0.22, 0.43] 6.14 24016 < .001
Measurepmi � Sung recall length 0.51 [0.40, 0.61] 9.63 24016 < .001
Measurerhythfuzz � Sung recall length 0.38 [0.27, 0.48] 7.12 24016 < .001

Note: Interactions between Experiment and Measure are not displayed.
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ordinal recall has a strange property that arises out of
the interaction between the alignment process, the recall
measure of accuracy, and the ordinal note check,
whereby it degrades as the number of deletions
approaches half the stimuli lengths, but then increases
with further deletions. This nonmonotic property is
undesirable; 1D) note substitutions cause all measures
to degrade with different rates and function shapes,

except rhythfuzz, which stays constant; 1E) combined
pitch transformations (insertions, deletions, and substi-
tutions) cause all measures to degrade; 1F) combined
pitch transformations (insertions, deletions, and substi-
tutions) and rhythmic jitter cause all measures to
degrade; 1G) as the length of the recall increases
towards the length of the target melody, all measures
increase, except aligned ordinal recall which is always 1;

FIGURE 1. Simulation experiment results for accuracy vs. similarity measures.

86 Sebastian Silas & Daniel Müllensiefen



1 H) Scrambling the order of pitches does not affect
rhythfuzz. All other measures deteriorate as a function
of scrambling. See Appendix listing #7 for online sup-
plement source material for additional results using
basic accuracy and aligned accuracy measures scored
on the same data too.

Table 3 shows the general linear regression model
results. All measures tend to have lower scores than
aligned ordinal recall (the reference level in the regres-
sion model), as represented by all negative beta coeffi-
cients (b ¼ �0:28 to b ¼ �0:02). This corresponds to
our descriptive results, whereby the aligned ordinal
recall and PMI measures were less likely to be affected
by transformations (simulated human errors), so tend
to score more highly. The experiment/transformation
type differentially affects the scores, as represented by
nearly all significant p values (p < .001), suggesting that
different measures are more sensitive to some transfor-
mations than others. The transformation associated
with overall lowest scores was scrambling (Experiment
1 H; b ¼ �:23) and highest scores rhythmic transfor-
mations (Experiment 1A bRhythmicJitter ¼ 0:44), since
most transformations were in the pitch domain.
Aligned ordinal recall (the reference level in the regres-
sion model), has a negative relationship (b ¼ �:16)
with sung recall length (i.e., scores tend to be lower if
a recall is closer to its target in length), possibly repre-
senting that, as a sung recall length is longer, there is
more ‘‘room for error.’’ However, all other measures
have positive relationships with sung recall length and
a significant interaction with sung recall length. The
model had an R2 value of .44 (adjusted = .44).

DISCUSSION

Our simulation studies generally show that the mea-
sures we profiled produce similar assessments of musi-
cal behavior, such as sung recall (conversely, see for
online supplement source material, which shows that
simple accuracy and even aligned accuracy measures
produce quite different assessments of musical behavior,
and are hence completely inadequate). However, there
were some notable limitations of the aligned ordinal
recall measure. First, by itself, it is not sensitive to other
(e.g., rhythmic, harmonic) errors. Sloboda and Parker
(1985) did assess rhythm separately, but they did not
formally aggregate it with their aligned recall measure.
PMI is also not sensitive to rhythmic information. Sec-
ond, a peculiar and undesirable property arises because
of the use of alignment alongside an ordinal recall accu-
racy check for correctness, producing a nonmonotic
effect. This deficiency arises from their being no explicit
(or implicit) way for penalizing misses in the measure.

For this reason, also, third, the aligned ordinal recall
measure is not sensitive to notes being missed out at
the end of a recall, which is what happens when parti-
cipants cannot yet remember all notes in early trial
attempts. Instead, aligned ordinal recall has a negative
relationship with sung recall length, where all other
measures do not. This is a peculiar property, because
it suggests that participants can generally score higher
by missing notes from the end of their melody; again, an
issue with having no implicit way of penalizing for
missed notes. The other measures are preferred in this
regard because they suggest that, as one sings more
notes in the melody, and approaches its true length, they
score higher, which is what would be expected. It is not
clear if Sloboda and Parker (1985) were aware of this
limitation, which was only revealed through simulation.
Perhaps it contributes to their lack of an ability to find
improvement across trials, which was observed in later
melodic recall research (e.g., Koh, 2002).

The melodic similarity measures explicitly embody
important musical dimensions beyond pitch and inter-
vals alone and are aggregated together in opti3. opti3
and its weightings are based on human similarity judge-
ments (e.g., Müllensiefen & Frieler, 2007), giving them
ecological validity—a property that the other measures
do not have. Additionally, as demonstrated, melodic
similarity, as derived here, captures more variance as
a function of various simulated musical errors, which
is an additional useful property. This is because PMI and
aligned ordinal recall do not capture some forms of
musical errors, whereas these different domains are
measured simultaneously by opti3. Since someone can
be musically more or less accurate in different respects,
the measure may be both punitive or benevolent on
each dimension, but it respects the fact that musical
ability is multidimensional: one may sing a rhythm
wrong, but the notes right; harmonically the wrong
notes but the rhythms correct. For these reasons, we
proceed with Experiment 2 using opti3 as our main
dependent variable to measure overall melodic (sung)
recall performance.

Experiment 2: How Do We Learn Melodies?
A Melodic Similarity-based Perspective.

The aim of Experiment 2 is to employ the melodic recall
paradigm in an experiment with real participants, much
the way that aforementioned studies (e.g., Ogawa et al.,
1995; Sloboda & Parker, 1985) have used it. However,
this study takes steps ahead in comparison with previ-
ous studies using the melodic recall paradigm in at least
five basic aspects: 1) The number of different melodies
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presented: 14, still not large, but substantially larger to
previous research which used 1–2 melodies as targets; 2)
The overall number of overall sung recalls to be ana-
lyzed (around 2,250); 3) The usage of unambiguously
defined and thoroughly tested algorithms of melodic
similarity for various musical dimensions; 4) The mod-
eling of participant responses in statistical models that
allows an interpretation of memory mechanisms that
involve music-structural variables as well as variables
concerning the experimental design and participants’
musical background. To this end, we utilize mixed-
effect modeling to simultaneously account for the fixed
effects of melodic features in explaining participant
performance, while also considering participant and
item-level random effects, which should ensure that
potentially misleading and spurious statistical effects are
accounted for; 5) We formally model the change in
attempt length (i.e., number of notes recalled). This
latter point is based on the observation that Sloboda
and Parker (1985) made, that across each new attempt
at singing back the same melody, participants tend to
contribute more notes than in the previous attempt.

OPERATIONALIZING SIMILARITY VS. ATTEMPT LENGTH

Alongside the similarity measures described in Experi-
ment 1, Experiment 2 introduces the formal modeling
of the dependent variable attempt length. This repre-
sents the number of notes that a participant sings on
each trial attempt. Note that this was manipulated in
those conditions in Experiment 1 that affected the sung
recall length: Experiment 1B (insertions); Experiment
1C (deletions); Experiment 1G (length mismatch). The
latter is what specifically simulated the effect of missing
out notes from the end of a melody, much like has
already been observed in melodic recall, on earlier
attempts.

Overall, in Experiment 1, sung recall attempt length
was associated with lower scores across all similarity
measures and the PMI measure. Hence, the result is
intuitive: if you do not sing all notes in a melody, your
recall cannot be fully correct; all notes must be present
to have sung the melody perfectly. Note, however, the
aligned ordinal recall measure could still reach a perfect
score of 1, despite singing fewer notes than in the target
melody, so long as all the sung notes were in the
stimulus.

As observed by Sloboda and Parker (1985), partici-
pants may take several attempts at the same melody
before they manage to sing all the notes back: they
consecutively build up, adding new notes to each
attempt. This suggests that the sheer number of notes
recalled in an attempt is related to similarity, probably

causally (numbered of recalled notes => overall simi-
larity), like in Experiment 1G of our simulations, and
as we noted earlier: because with fewer notes, some of
the melodic identity is destroyed. However, as illus-
trated previously, it is not enough to simply recall the
correct number of notes to obtain high melodic simi-
larity: these notes must respect the melodic identity
too (i.e., they are necessary, but not sufficient). Hence,
attempt length is not intended to be a measure of over-
all performance, but simply a count of the number of
notes in each attempt, which is related to overall per-
formance. Overall performance is measured by opti3,
our melodic similarity variable. In Experiment 2, we
model changes in number of recalled notes via the
variable attempt length, alongside changes in overall
melodic similarity.

RESEARCH QUESTIONS

We seek to answer three general questions. First, what
makes melodies more easy or difficult to remember? To
answer this question, we aim to construct statistical
models of melody learning that consider: 1) relevant
experimental conditions (e.g., whether the melody was
presented as part of a full audio recording or as melody-
only MIDI version); 2) features of melodic structure
(e.g., melody length, tonality); and 3) individual differ-
ences (e.g., musical background). Second, we seek to
investigate the temporal aspects of learning and thus
answer the question, ‘‘how do we learn melodies’’? This
concerns the time course of learning over multiple
attempts and identifying the different aspects of learn-
ing (e.g., the types of errors made) that change across
multiple trial attempts for the same melody. Moreover,
focusing on temporal aspects allows us to investigate
how the representations of melodies build up in mem-
ory and hence predict the type of mistakes that people
make early and late in the learning process, and whether
the type of mistake differs by level of prior musical
experience. Finally, we ask ‘‘how does the attempt length
submitted change across subsequent attempts and relate
to musical features, individual differences, and changes
in overall similarity’’?

METHOD

Experiment 2 uses the experimental design employed by
Sloboda and Parker (1985), and subsequently used by
others Oura and Hatano (1988) in different variants.

Participants
Thirty-one adult participants (54.84% female) aged
21–38 (M = 26.43; SD = 4.43) from undergraduate
courses in psychology and musicology at the University
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of Hamburg, Germany, were recruited. Participants’
musical backgrounds (0–25 years of instrumental train-
ing; M = 7.91; SD = 7.44) were assessed by a detailed
questionnaire asking for their present and past musical
activities. To be able to focus on memory and not sing-
ing errors in our analysis, participants underwent
a screening phase. Participants were asked to sing three
popular melodies (e.g., Happy Birthday, the German
national anthem, etc.) of their choice that they believed
they could sing error-free. Before entering the transcrip-
tion and analysis of the test items, participants were
selected based on their rendition of these songs: their
intonation and rhythmic stability were judged by a pro-
fessional singer and choir director with a longtime expe-
rience of working with lay singers. The main criteria
that the choir director attended to was stable intonation
and timing, as well as the ability to produce clear notes.
The summary criterion was ‘‘would this person be able
to join your choir?’’ with the choir being an amateur
level choir with singers not having received any formal
singing instruction during their lifetime, and the choir
only rehearsing once a week and singing 1–2 concerts
per year with easy repertoire. No other technical tools
were used for assessment. Twenty-three participants
that showed a largely stable intonation and sense of
timing were selected on these grounds.

Materials
The stimuli used are the same as presented in Experi-
ment 1 (see Appendix listing #8 for online supplement
source material including a list of the test songs, as well
an example from each song as musical notation, distri-
bution of features, etc.). We additionally describe some
relevant features here, particularly those that are rele-
vant to a real human participants’ ability to learn them.
Melodies were between 9 and 21 seconds long (length =
15–48 notes). This extends beyond usual working mem-
ory limits and is also longer than what non-experts are
usually able to recall with a high degree of accuracy on
their first attempt, according to the literature (Oura &
Hatano, 1988; Zielinska & Miklaszewski, 1992). Fifteen
melodies were classified as major and 13 as minor by the
Krumhansl (1990) algorithm.

All songs had a hit-like quality and an easily singable
vocal melody, despite not being or having been overly
popular in Germany. Participants were always asked
whether they knew the songs, and none indicated that
they did. Hence, the melodies were unknown to them.
The songs were sampled from different popular music
styles as light pop, dance, ballad, rock, blues rock. Among
the interpreting artists were Neil Sedaka, Dan Fogelberg,
Richard Marx, Modern Talking, and Paul Anka. Because

all melodies came from popular Western music from the
last 60 years, they were all structured in phrases which
can potentially be used for memory chunking. The stim-
ulus melodies were often one stanza (line) from a verse or
chorus of a pop song and contained several melodic
phrases, often separated by longer notes or short rests.
Hence, the full verse or chorus melody of the song would
be longer than the excerpts used as stimuli. All melodies
were taken from vocal passages. Note that vocal melodies
are thought to be easier to learn than instrumental pas-
sages due to the mimetic hypothesis (Cox, 2001). The
singability of the melodies was piloted informally, but
no melodies were discarded.

All songs were used as song excerpts from the original
audio recording (audio melodies) and as a single-line
melody that was transcribed from the original recording
and rendered in a MIDI Grand Piano sound. Melodies
were transcribed from their tracks by a high-quality
professional transcription service.2 The transcriber’s
brief was to transcribe the melodies as accurately as
possible and notational choices were made to express
what they heard as the intended structure. Because met-
rical information is not considered in any of the simi-
larity measures, the notational choice of, for example,
9/8 vs. another 4/4 measure does not affect the results.
Likewise, none of the similarity measures take absolute
tempo or meter into account, and therefore, transcrip-
tions at half time or double time would not affect sim-
ilarity measurements.

The melodies were divided by random into two
groups, A and B. To prevent serial effects and an uncon-
trolled interaction between version and melody, half of
the participants listened to melodies from group A in
the MIDI rendition and to the audio melodies from
group B. The other half of the participants had group
B melodies as MIDI and group A melodies as audio.

Procedure
After having sung the three popular songs, participants
were told that they would listen to short melodies that
they had to sing back from memory immediately after-
wards. They had the chance to listen to every melody up
to six times and to sing them back every time again. After
each sung recall, they were asked to rate their own per-
formance on a 7-point scale for accuracy in comparison
with the original, while disregarding minor intonation or
other singing problems. They were asked to repeat lis-
tening and singing back each melody until the sung recall
was perfect in their opinion. In doing so, participants that
reached perfect recalls quickly were not forced to repeat

2 Notenservice Riggenbach https://www.notenservice.com/
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them identically, which kept motivation high across
trials. These data were not kept for analysis.

The specific instructions for the task were: ‘‘In the
following, you are going to hear a short melody that
you should sing back immediately. Your recall (singing)
is going to be recorded. Please also indicate afterwards
on a scale from 1 to 7 how certain you are that the sung
melody is identical to the original melody. 1 represents
‘‘very certain different’’ and 7 represents ‘‘very certain
identical.’’ Please indicate also how well you knew the
melody prior to this study and tell title and performer if
possible.’’ Consequently, participants did not have to
start the melody from the beginning.

Participants were first trained with two melodies,
where each could be repeated up to six times. After the
training phase, participants were tested with seven
single-line MIDI melodies in the first test block. Subse-
quently, they were played a real song excerpt (audio
melody) for training, which was followed by a test block
of seven audio melodies. Having concluded the second
test session, participants filled out the questionnaire on
their musical background and were then debriefed. Par-
ticipants were tested individually, listening to the mel-
odies on a pair of Beyerdynamic DTX800 headphones.
Their sung recalls were recorded directly to hard disk
using a Philips MD 650 microphone and Cool Edit Pro
1.2 as recording software device. The entire experimen-
tal session lasted about 75 minutes.

Audio Transcription
As a result of the test sessions, approximately 2,250
audio files were obtained. For computational analyses,
such audio must be transcribed to a symbolic format
such as MIDI. We used the same high-quality commer-
cial service described earlier for the transcription of the
sung recalls. To avoid any bias in the transcription pro-
cess, the human transcribers were not informed about
the aims and the details of the study, but a set of guide-
lines was provided to help with ambiguous cases (e.g.,
pitch bend, non-pitched sounds, rhythmic precision,
and implied metrical structure). The original melodies
were transcribed according to the same guidelines by
the same person. However, they were not given any
information about the original melodies at the time of
transcribing the sung recalls, in order not to introduce
any bias towards the target.

Data Transformation
After transcription, the MIDI files were converted to
a tabular text format using the conversion tool MEL-
CONV (Frieler, 2018), which builds on the freely avail-
able MIDIJDK library. After conversion, pitches were
represented as MIDI numbers and onset times and

durations were represented in MIDI beats and ticks as
well as milliseconds. Time signature information was
also read out from the MIDI files for later use.

DATA ANALYSIS

Dimension Reduction of Demographic Variables
The questionnaire (see Appendix listing #9 for online
supplement source material) about musical experience
produced a set of mixed type (i.e., continuous, dichot-
omous, and polytomous) variables. To aggregate the
data, we computed a pairwise correlation matrix using
the mixedCor function from the R package psych (v
2.2.5) using pairwise complete observations to handle
missing data (0.007% missing) and otherwise default
settings. This correlation matrix was then used as the
basis for factor analysis. A single-factor solution (see
Appendix listing #10 for online supplement source
material) was achieved using the cfa function from the
R package lavaan, version 0.6-9 (Rosseel, 2012). We
extracted scores using the regression method and took
this variable to represent ‘‘musical experience.’’ The
variables age, sex, and edulevel (level of education
achieved) from the questionnaire were also used as sin-
gle indicator variables in the subsequent analyses.

Main Analyses
Assessment of Change in Attempt Length and

Similarity Scores Across Repeated Attempts. To begin our
analyses, we inspected our descriptive empirical results.
First, we assessed the mean change in attempt length
across successive attempts. Next, we assessed the mean
change in similarity scores (opti3) across attempt, as
well as for the mean change in each of the individual
constituent similarity measures (ngrukkon, rhythfuzz,
harmcore; see Appendix listing #11 for online supple-
ment source material) across attempt.

Correspondence Between Attempt Length and Melodic
Similarity (opti3). Then, changes in the attempt length
and in melodic similarity (opti3) across attempt were
plotted alongside each other on the same graph for
comparison. For formal modeling of both attempt
length and opti3, we proceeded in a mixed effects frame-
work. We constructed two separate models with either
a) attempt length or b) opti3 as dependent variable.
Consequently, the two models assessed the development
of a) the attempt length sung across repeated attempts
and b) overall improvement in performance, as indi-
cated by melodic similarity. In our mixed effects models,
participant and melody item were always included as
random effects intercepts. Number of attempts and con-
dition (MIDI vs. audio) were always included as fixed
effects.
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Melodic Feature Modeling. Subsequently, we evalu-
ated a second set of models that additionally included
melodic features as predictors. The melodic feature pre-
dictors employed were taken from the FANTASTIC
toolbox (Müllensiefen, 2009) (see Appendix listing #12
for online supplement source material). A priori, we
chose i.entropy (to indicate the amount of ‘‘surprise’’
in intervallic information), d.entropy (to indicate the
amount of ‘‘surprise’’ in rhythmic information), tonal-
ness (to indicate the level of tonality), target melody
length (to indicate overall constraint on working mem-
ory) and step.cont.loc.var (to indicate the amount of
variation in contour) due to previous research indicat-
ing that they serve as good predictors of melodic mem-
ory (Dreyfus et al., 2016; Harrison et al., 2017;
Müllensiefen & Halpern, 2014; Silas, Müllensiefen, &
Kopiez, 2023). Additionally, to capture the re-
occurrence of melodic patterns and the overall self-
similarity of each melody (Deutsch, 1980), we compute
the mean information content of each sequence of
melodic pitches using the ppm R package (Harrison
et al., 2020). It is predicted that higher target melody
length, interval entropy, and duration entropy, step con-
tour variation, and mean information content will pre-
dict worse performance on the task, but higher
tonalness will predict higher performance on the task.
After iteratively eliminating predictors with a nonsignif-
icant main effect contribution, we tested the interaction
between significant feature predictors and attempt. Our
feature-based modeling approach is closely related to
Baker (2019)’s modeling (who also makes use of fea-
tures computed from the FANTASTIC (Müllensiefen,
2009) toolbox) of melodic encoding and recall processes
used in melodic dictation among musicians.

Individual Differences Modeling. Since Sloboda and
Parker (1985) dichotomized their participants into
‘‘non-musicians’’ and ‘‘musicians,’’ as a means of com-
parison with their data, we produced graphs of change
in dependent variables across attempt, and for illustra-
tive purposes, these were stratified into two groups: high
musical experience and low musical experience. These
groups were derived by taking the median value of the
musical experience variable and grouping into two bins
based on this. Those with a musical experience value
below or equal to the median were classified as being in
the lower musical experience group, whereas the rest,
the higher musical experience group. There were 12
participants in the former and 11 in the latter.

Subsequently, we extracted the random effects inter-
cepts for each participant from each of the two (attempt
length vs. overall similarity) models. We took these values
to represent a participant-level latent score reflecting a)

the attempt length they can hold in memory b) their
overall melodic recall ability on a given attempt. To eval-
uate whether musical experience is a good predictor of
individual differences in both attempt length and overall
melodic recall performance, we regressed these
participant-level intercepts onto the participant musical
experience scores derived earlier. The incremental mod-
eling approach described in the above steps broadly fol-
lows the suggestions of Long (2011).

Mediation Analysis. As a means of formally associat-
ing attempt length and opti3 with one another, as well as
to connect melodic features to opti3, we computed
a mediation analysis whereby melodic features acted
as predictors, attempt length acted as mediator, and
opti3 as dependent variable.

Correspondence Between Attempt Length and Melodic
Similarity (opti3): Revisited. Lastly, we revisited the asso-
ciation between attempt length and melodic similarity
by aiming to see if it is generally the beginning or end of
attempts that participants focus on improving. Since
participants build from an incomplete recall over mul-
tiple attempts, we predict that the beginning of the
attempt will be better than the later parts of the attempt,
because the notes will have been more likely to have
been sung in former trials, and hence, be better learned
than the later part of the recall.

RESULTS

Assessment of Change in Attempt Length Across Attempt
To visualize the change in attempt length submitted
across trials, Figure 2 graphs the mean attempt length,
as a function of attempt. As shown, the attempt length
increases across successive attempts. The effect is clearly
nonlinear, with a diminishing gain in attempt length
across attempts. Note that the average target melody
length is 25.39. Consequently, even after six attempts,
on average, participants are still not submitting close to
the number of notes in a target melody.3

In the formal mixed effects model, attempt length
was dependent variable (Model A1), the estimates of
the fixed effects coefficients were B = 3.53 (p < .001) for
log attempt and B = 5.18 for condition (p = .02). The
latter result suggests that hearing a melody as a full
audio excerpt is associated with five more notes being
recalled to an attempt on average. The marginal R2

value of the mixed effects model was 0.14 and the
conditional R2 value 0.65 (Nakagawa & Schielzeth,

3 As shown in the online supplemental material, however, some
participants are closer to approaching the average number of notes in
the target melodies by the sixth trial (e.g., VP24).
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2013).4 This suggests that the fixed effects (attempt
and condition), while significant, explain a relatively
small amount of variance compared to the random
effects (melody, and participant). Adding an interac-
tion term for the random effects interaction between
participant and melody considerably increases the
conditional R2 value (to 0.79) and the marginal R2

value slightly (to .143). This final model (Model
A1.2) is shown in Table 4.

Assessment of Similarity Scores Across Repeated Attempts
To visualize higher level changes in melodic recall per-
formance (indicated by similarity) across attempts,
Figure 3 graphs the mean score of each similarity mea-
sure (opti3, ngrukkon, harmcore and rhythfuzz) as
a function of attempt. A linear model (represented by
solid-colored lines) would suggest a general increase
across attempt for all variables, except harmcore, which
appears relatively stable across attempt (see Appendix
listing #13 for online supplement source material).
However, as seen with attempt length, while a linear
model predicts the data over the course of six trials
reasonably well, for the generally increasing variables,

(opti3, ngrukkon, and rhythfuzz) a nonlinear effect (i.e.,
with diminishing gains across attempt) seems to repre-
sent the data better.

An equivalent to model A1 was fitted using opti3
as dependent variable (Model B1). Both predictors were
significant in the model: log attempt, B = .07, p < .001;
condition, B = .10 (p = .01). The latter suggests that hear-
ing a melody in its full audio is associated with a .10
increase in similarity of recall to target melody, as indi-
cated by opti3. The model achieved a marginal R2 of .098
and a conditional R2 of .49, again suggesting that fixed
effects explain a relatively small amount of variance com-
pared to random effects (melody item and participant).
Adding the interaction term between melody item and
participant random effects again considerably increased
both the marginal R2 (to .101) and the conditional R2 (to
.71). See Table 5 for the final model (Model B1.2).

FIGURE 2. Development of average attempt length across attempt.

TABLE 4. Model A1.2: Mixed Effects Model Regressing Attempt
Length Onto Attempt and Condition

Term b̂ 95% CI t df p

Intercept 11.39 [8.15, 14.63] 6.89 32.26 < .001
ConditionS 5.30 [0.99, 9.60] 2.41 25.65 .023
Logattempt

numeric
3.71 [3.38, 4.03] 22.09 1,470.74 < .001

Note: The index ‘S’ refers to the ‘Sound’ condition.

4 Note, the marginal R2 represents the variance explained by the fixed
effects only; the conditional R2 represents all variance explained by the
model (fixed and random effects).
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FIGURE 3. Mean similarity values as a function of attempt.
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Correspondence Between Attempt Length and Melodic
Similarity (opti3)
The development of both overall similarity (opti3) and
the attempt length across attempt is broadly similar in
shape: increasing, with diminishing gains on each
attempt. To make this clear, we rescale the attempt
length variable to be in the range 0 to 1, like opti3 and
plot them alongside each other in Figure 4.

This convergence is interesting, and we hence suggest
that, in order obtain a comprehensive picture of the
cognitive processes involved in melodic recall, it is nec-
essary to model the attempt length alongside the overall
change in melodic recall performance (here indicated by
melodic similarity) across recall attempts. Conse-
quently, we proceed by modeling the two effects via two
sets of mixed effects models in parallel. We take forward
both models A1.2 and B2.2 (Tables 4 and 5), where 1)
condition and log attempt are always included as fixed

effects and 2) participant and melody item, plus the
interaction between participant and melody item, are
random effects, as the basis for the remaining analyses.

Note that, it is not only important to understand the
degree to which attempt length and opti3 converge, but
diverge, and hence, measure different constructs. The
bivariate linear Pearson’s correlation between the two is
r = .42 suggesting that, as expected, they are related to
a moderate degree, since as we noted earlier, opti3 is
dependent on the length of comparison targets in
a ‘‘soft’’ sense. However, since the correlation is only
moderate, it confirms empirically, and with human par-
ticipant data, that opti3 measures something beyond the
length of comparison targets (i.e., the harmonic, rhyth-
mic and intervallic information it is intended to
capture).

Melodic Feature Modeling
For modeling the memorability of melodies we added
target melody length, tonalness, i.entropy, step.cont.loc.-
var, d.entropy and mean_information_content as addi-
tional predictors to the mixed effect models described
before. With all predictors in, the marginal R2 increased
significantly from .14 to .46 when attempt length was
dependent variable and marginally from .10 to .16 when
opti3 was dependent variable. However, after removing
nonsignificant predictors, only target melody length was

TABLE 5. Model B1.2: Mixed Effects Model Regressing the Similarity
of Melodic Recalls (opti3) Onto Attempt and Condition

Term b̂ 95% CI t df p

Intercept 0.16 [0.10, 0.23] 5.00 37.76 < .001
ConditionS 0.10 [0.02, 0.18] 2.49 25.54 .019
Logattempt

numeric
0.07 [0.06, 0.08] 15.88 1,460.86 < .001

FIGURE 4. Development of mean no. recalled notes (red) and opti3 (blue).
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a significant predictor when attempt length was depen-
dent variable, and none were significant with opti3 as
dependent variable. In a model with attempt length as
dependent variable, and only target melody length as
fixed effect predictor alongside log attempt and condi-
tion, the marginal R2 was .44, suggesting that the other
melodic feature predictors really do not add much
explanatory power to the model. We also present vari-
ance inflation factors and partial R2 values for diagnos-
tics (see Appendix listing #14 for online supplement
source material). Altogether, the interpretation that the
nonsignificance of the other melodic features is due to
high collinearity can be ruled out, and it is evident that
target melody length substantially explains variance in
attempt length by itself. Note also, several melodic fea-
tures have as much variance as melody length, as indi-
cated by higher coefficient of variations, which facilitate
the comparison of the SD across measures (see Appen-
dix listing #15 for online supplement source material).
This also suggests that melodic features have sufficient
heterogeneity beyond melody length, which empirically
has less heterogeneity.

We tested the interaction between attempt and target
melody length in the model with attempt length as
dependent variable. The interaction term was statisti-
cally significant (B = 0.21, p < .001), suggesting that the

length of the melody differentially affects the attempt
length, depending on the attempt number. For this final
model (A2.2), the marginal R2 value was .45 and the
conditional R2 value .80.

Individual Differences Modeling
Individual Differences in Changes of Attempt Length

Across Attempt. Figure 5 presents changes in attempt
length across attempt, based on the median split on
musical experience described earlier. Broadly speaking,
the pattern of results in low and high musical experience
groups is similar, with a nonlinear increase in attempt
length across attempt for both groups. However, while
both groups submit a similar attempt length to the first
attempt on average, the higher musical experience
group tend to submit more notes to each subsequent
attempt (however, for an alternative by-participant
comparison see Appendix listing #16 for online supple-
ment source material). This is most notable in attempt
two, where there is a larger increase in notes for higher
musically experienced participants than for lower musi-
cally experienced participants. A linear model across all
trials does not seem to describe the data well, but is
useful for comparing the general slopes, which appear
to be approximately the same, though the higher musi-
cally experienced group’s slope appears steeper. This

FIGURE 5. Development of average attempt length across attempt, factored by level of musical experience.
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suggests that higher musically experienced participants
may be able to learn more quickly by extracting more
melody notes in memory on each successive attempt,
compared to lower musically experienced participants.
We do not model this artificial dichotomization of
musical experience formally.

Individual Differences in Similarity Changes Across
Attempt. The corresponding figure for similarity mea-
sures (opti3 et al.), Figure 6, suggests that the higher
musical experience group generally have better
melodic recall, as indicated by generally higher simi-
larity scores across trials (i.e., a larger intercept). The
slopes (i.e., rate of increase) across attempts appears to
be approximately similar, except for with the ngrukkon
measure, which suggests that, across successive
attempts, those with more musical experience improve
the interval similarity of their recalls more effectively
than participants with lower musical experience. The
difference in slopes is also notable for overall similarity
(opti3). For an alternative by-participant visualization,
see Appendix listing #16 for online supplement source
material.

To model and explain some of the random effects
variance attributable to participant, random effect inter-
cepts were extracted for each participant, from each of
the two most-developed models described earlier (A2.2,
B1.2). These were taken to represent two participant-
level latent melodic recall processes: one specifically to
do with abilities concerning the attempt length, and the
other with overall level of melodic recall (as indicated by
the opti3 measure of similarity). When regressing the
participant random intercepts from the attempt length
model onto musical experience, age, edulevel, and sex in
a general linear model, only musical experience was
a significant predictor. Removing the other variables
left a model with a moderate R2 value of .36 (adjusted
= .33), p < .01 and musical experience as the sole sig-
nificant predictor, B = 0.05, p < .01. A similar pattern
was seen for the model built with opti3 as dependent
variable: only musical experience was a significant pre-
dictor (B = 1.63, p < .01). This model had a small
R2 value of .24 (adjusted = .20).

Mediation Analysis
Earlier, when adding melodic features as fixed effects to
the base mixed effects models described above, we
found that only target length was a statistically signifi-
cant predictor of performance when attempt length was
dependent variable and none when opti3 was dependent
variable. However, as noted previously, there is a corre-
spondence between attempt length and overall similar-
ity across attempts (see Figure 4). Perhaps target length

could indeed predict overall performance (opti3) via an
effect on attempt length, a hypothesis that can be imple-
mented as a mediation model. We tested this hypothesis
using the mediate function from the R package mediation
(v 4.5.0). Target Length was treated as main fixed effects
predictor, opti3 was the dependent variable, and attempt
length was the mediator. The input to the function is two
nested multiple regression models which leave all signi-
ficant predictors, including interactions, from earlier
steps to make sure all already discovered effects are
simultaneously modeled and accounted for. These effects
were specified as covariates with respect to Target Length.
In our case, the two nested regression models are:

Fit Mediator.

AttemptLength ¼ Conditionþ TargetLength

þ log Attemptð Þ � TargetLengthð Þ
þ ParticipantByItem�log Attemptð Þ

(7)

where Condition, TargetLength and the interaction
between log Attemptð Þ and TargetLength are fixed
effects and log Attemptð Þ has a random slope for each
participant-item grouping, ParticipantByItem.

Fit Dependent Variable.

opti3 ¼ Conditionþ AttemptLengthþ TargetLength

þ log Attemptð Þ�TargetLengthð Þ
þ ParticipantByItem�log Attemptð Þ

(8)

where Condition, AttemptLength, TargetLength and the
interaction between log Attemptð Þ and TargetLength are
fixed effects and log Attemptð Þ has a random slope for
each participant-item grouping, ParticipantByItem.

Note that, because we found there is no direct rela-
tionship between the dependent variable (opti3) and the
independent variable (Target Length) a priori, our use of
mediation is known as inconsistent mediation (Hayes,
2009; MacKinnon et al., 2007). It was predicted that
Target Length will have a negative direct relationship
with opti3, since longer melodies should place more of
a strain on working memory and contribute to a worse
performance. See Figure 7 for a representation of the
mediation model.

In the mediation model results, the Average Direct
Effect B ¼ �0:005, p < .001 and the Average Causal
Mediation Effect B ¼ �0:003, p < .001 were statistically
significant (note that the Average Causal Mediation
Effect can be manually derived by multiplying the path
coefficients from Target Length to Attempt Length and
Attempt Length to opti3 (i.e., 0.32 * 0.01 = 0.003). Con-
sequently, the Total Effect B ¼ �0:001, p = .40 was not
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FIGURE 6. Similarity scores as a function of attempt, dichotomized on musical experience.
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statistically significant, since the direct and indirect
effects are two opposite effects working against each
other, producing a nonsignificant effect at the level of
the bivariate relationship between Target Length and
opti3 (known as inconsistent mediation; Hayes, 2009;
MacKinnon et al., 2007). This suggests that, overall,
longer melodies lead to longer attempt lengths (because
the target melody is longer, so requires more notes),
which in turn is associated with increases in the opti3
score, presumably because longer attempt lengths also
generally contain more improvements along the
domains of harmonic, rhythmic, and intervallic infor-
mation (reflecting learning from previous attempts).
However, longer target melody length contributes to
a melody item’s melodic complexity and difficulty (or
is a proxy for general complexity), and hence, the ability
for a given melody to be held in working memory,
explaining the negative direct relationship with opti3.

That the Average Causal Mediation Effect was statis-
tically significant in both models suggests that target
melody length can indeed be a predictor of overall per-
formance (as indicated by opti3), at least partly via its
influence on attempt length submitted to an attempt.
In order to test whether including attempt length as fixed
effect predictor was justified, we compared two versions
of the Dependent Variable Model (Eq. 8), with and with-
out attempt length as predictor: the model with attempt
length had a lower BIC value (-2274) and hence the
better fit than the one with (BIC ¼ -1947). See Table 6.

Modeling the Correspondence Between opti3 and
attempt length Revisited
Sloboda and Parker (1985) observed that the sung
recalls got considerably longer over six attempts, but
the ratio between the number of correctly recalled notes
and the overall number of sung notes stayed approxi-
mately constant over trials. Consequently, the number
of errors increased across attempts. This observation
suggests the following cognitive processes may be taking
place: 1) Participants add more new notes on each
attempt, since they have remembered some, but not all,
of the target melody from the previous attempt. 2) The
parts of the melody they have attempted to recall from
the previous attempt should be more likely to improve
on subsequent attempts. It seems most likely that parti-
cipants attempt to recall the beginning of the melody
first and gradually add more notes to the end: a kind of
primacy bias. However, it may also be that participants
exhibit a recency effect and (or) attempt to successfully
recall the end of the melody. Alternatively, perhaps there
is no bias at all, and participants just improvise a gist of
the whole melody or improve on different parts some-
what randomly. To investigate this question with our
data, Figure 8 visualizes changes in similarity as a func-
tion of the sung recall section (beginning, middle, and
end) and attempt number. All recalls were divided into
three equal sections. For all recalls to be divided into
three truly equal sections (i.e., not always leaving one
section unbalanced where equal division is not possible,

FIGURE 7. Mediation model results whereby Attempt Length acts as mediator between Target Melody Length and Melodic Similarity (opti3).

TABLE 6. Model Comparison With and Without Attempt Length as Fixed Effects Predictor

npar AIC BIC logLik Chisq Df Pr(>Chisq)

fit.dv.excl.attemptlength 9 �1996 �1947 1007
fit.dv.incl.attemptlength 10 �2274 �2220 1147 281 1 p < .001

Note: The two models compared correspond to the Fit Dependent Variable model given in Eq. 8. The two models differ only in the presence/absence of AttempLength as a fixed
effect in the model equation.
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which might produce a bias in our scoring), the sepa-
ration of the recall into three distinct sections is not
always contiguous, and hence, some of the same notes
may appear in two sections.

Figure 8 suggests the following patterns: 1) The over-
all similarity improves across all melody sections across

attempts. However, the beginning of the melody is
always better recalled, then the middle, then the end.
2) The same effect is seen specifically for interval pat-
terns (ngrukkon), with a more nuanced result too: the
recall of the beginning of the melody seems to exhibit
nonlinear, diminishing gains, across attempts, whereas

FIGURE 8. Changes in similarity as a function of attempt and sung recall section (beginning, middle, end).
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improvements in the middle and end of the melody
seem to be better represented by linear gains, and that
are similar (i.e., statistically indistinguishable), in terms
of their level of similarity. 3) Curiously, for rhythmic
similarity, the ordering is flipped for beginning and
middle, such that the rhythmic performance is always
better for the middle, rather than the end of the recall. 4)
There is a slight bias towards harmonic performance in
early attempt (1 and 2), but then there appears to be no
difference between level of similarity for melody section
for later attempts. For statistical models to support these
interpretations, see Appendix listing #17 for online sup-
plement source material.

Discussion

HOW DO WE LEARN TO RECALL MELODIES?

To understand how melodies are learned to be recalled
across multiple attempts, we studied how both the
attempt length and overall similarity change across the
time course of six attempts. Our data suggests that the
attempt length starts from an incomplete recall in
attempt number one, and in each subsequent attempt,
participants generally add more notes. The length of the
recall across attempts grows shaped like an exponential
curve, but which, on average, asymptotes at the number
of notes in the target melody, or less, with six attempts
potentially not being enough attempts to successfully
recall the full length of the target melody. These results
are similar to those presented in the nonmusical free
recall literature, where the learning curve approximates
an exponential curve with an asymptote equal to the
number of items in a target list (Anderson, 1972; Mur-
dock, 1960). The exact shape of this curve depends
primarily on the number of notes in the target melody
and the participant recalling the melody. Generally, sim-
ilarity between the target melody and the sung recall
increases across attempts too, suggesting incremental
learning of melodic identity across repetitions. This is
the case for overall composite melodic similarity (opti3)
and constituent parts of overall similarity: rhythmic
similarity (rhythfuzz) and note similarity (ngrukkon).
However, harmonic similarity (harmcore) does not
change across attempt. This has previously been inter-
preted as suggesting that tonality is extracted earlier in
attempts (Sloboda & Parker, 1985), whereas other fea-
tures leave more room for improvement. In their recalls,
participants tend to focus on improving the earlier part
of the target melody correctly, performing less well on
the later notes they have added more recently. However,
this is not the case for rhythm, where, curiously, the
middle of the melody is performed better than the

earlier or later parts. Perhaps this suggests that partici-
pants primarily focus on pitch/intervallic information,
then when they have recalled as many intervals as they
can on a given attempt, switch processes to retrieving
rhythmic information. In other words, perhaps
a domain-specific working memory load for intervallic
information has been reached, so participants switch to
a less-burdened rhythmic working memory capacity to
yield more overall gains. This would resonate with the
idea of domain-specific interference in working mem-
ory (Jarrold et al., 2011).

In general, we argue that the patterns in our data are
not sufficient to argue that certain musical features are
extracted earlier or more readily than others. This may
strike the reader as curious, since our data shows similar
patterns to those reported previously by Sloboda and
Parker (1985) (i.e., harmonic learning is stable relative
to other domains, such as rhythm and intervallic struc-
ture, which clearly increase across attempts). The dif-
ference is in our interpretation. We suggest that simply
because harmonic learning does not increase across
attempts it does not prove that harmony is extracted
earlier or more readily in memory; only that it does not
increase across attempts, for some reason currently
unknown. While the melodies used as stimuli may be
in different keys to each other, within each melody there
tends to only be a single key (i.e., there are no modula-
tions). However, melodies may visit different related
modalities within a single key (e.g., chord I going to its
dominant). In this sense, harmony and tonality are not
naturally structurally varied to the same degree as inter-
vals and rhythm. Since our approach was to use melo-
dies from real popular music songs, without artificial
manipulation, consequently, this simply implies that
because Western pop music generally contains melodies
in a single key, they naturally contain little tonal vari-
ance. Conversely, intervallic and rhythmic structures
naturally have more variance. Hence, without artificially
manipulating the harmonic structure of melodies to
contain more tonal variance (changing key/tonal cen-
ter), we can only comment on the statistical regularities
of melodies that arise in popular music, and their inci-
dental associations with memorability. To establish
whether tonality is extracted more easily than other
features, beyond its naturalistic variance, further
research would need to use melodies which more clearly
change key. Then, we suspect that we would observe
clear improvements across multiple attempts in the har-
monic domain too.

Instead of representations for musical features devel-
oping in memory separately, we suggest that represen-
tations for melodies may build up simultaneously across
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domains. Not only would this be more cognitively effi-
cient, but it would be in line with the tendency for
different melodic features to correlate with one another
(Baker, 2019). In other words, if different features cor-
relate with one another (e.g., phrase endings contain
both longer notes and more salient scale degrees, like
the tonic), the mind should implicitly extract such co-
occurring statistical regularities (Pearce, 2018). Whether
or not this interpretation is true, we highlight our find-
ing that improvement can be indicated across trials,
which is not in accordance with Sloboda and Parker
(1985), who only observed that attempts got longer, but
not better. That both attempt length and performance
increase across trials has been observed in other
research too (e.g., see Koh, 2002).

With respect to individual differences, first, in our
mixed effects model, we found an interaction between
the random effect of participant and the random effect
of melody. This suggests that certain melodies are more
readily remembered or learned by certain participants
than others. Broadly speaking, this could be because
some participants have previously implicitly learned
similar melodies to those they were tested with. Alter-
natively, perhaps some melodies contain features that
rely more on musical vs. nonmusical memory than
others: the former might benefit highly musically expe-
rienced participants, and the latter, those with very good
nonmusical memory, but not necessarily very good
music-specific memory. In this way, we also observed
how, generally, participants with higher musical experi-
ence seem to perform better and demonstrate steeper
learning slopes, suggesting that they learn melodies
more quickly on average. This is also indicated by musi-
cal experience being a significant predictor of both
attempt length and overall similarity. However, this is
not the case for all participants (see Appendix listing
#16 for online supplement source material): some par-
ticipants low on musical experience can still learn
quickly across trials, presumably because they can
nonetheless make large improvements over trials as
a function of other abilities, such as their general work-
ing memory. As explored in Silas et al. (2022), high
general working memory capacity may predispose
people towards music training, explaining the general
finding that musicians/those with more music training
tend to have higher general working memory abilities
(Talamini et al., 2017, 2016). Thus, at least some of the
variance which explains musicians’ superior musical
abilities is attributable to their already very good general
working memory.

In our data, and as Sloboda and Parker (1985) previ-
ously noted, it seemed that a dominant factor in

performance is the attempt length. This effect might
be more to do with the sheer need for rote repetitions
to remember a target for learning, rather than being
mainly about utilising musical structures. In this way,
each attempt is a new iteration adding more note events
to the long-term memory store for a particular melody.
While we would expect the extraction of musical fea-
tures to somewhat mitigate general capacity limits,
because structure helps memorability (Gobet, 2005;
Gobet et al., 2001; Müllensiefen & Halpern, 2014; Thal-
mann et al., 2019), perhaps it is not so surprising that
the sheer attempt length might be such an important
variable. With respect to general theories of working
memory capacity constraints, the lengths of the melo-
dies we used were relatively long (target melody length =
15–48, M = 25.39, SD = 8.67). Even though in the real
world melodies tend to be longer than this, our melodies
reflect good ecological validity (being taken from com-
mercial pop songs), and other melodic features are rel-
evant to memory, it still seems reasonable to suggest
that central capacity limits on working memory could
be broadly responsible for the producing the increasing
length of recall across attempts, as we and Sloboda and
Parker (1985) observed (Cowan, 2010; Miller, 1956;
Shiffrin & Nosofsky, 1994; Vergauwe et al., 2010). This
is at least the case for when melodies are long enough
(e.g., 15–48 notes) to require multiple attempts to sing
back in full. In other sung recall research with short
unknown melodies 3–15 notes in length (Silas, Müllen-
siefen, & Kopiez, 2023; Silas, Robinson, et al., 2023),
where it is conceivable to sing back a melody in one
attempt, we have been able to successfully connect
melodic features to melodic similarity (opti3) directly.
This suggests that, particularly with longer melodies,
general memory capacities are important to include in
modeling, beyond musical features and musical mem-
ory (Silas et al., 2022).

However, participants do recall more notes than
Miller (1956)’s 7 þ/- 2 rule would suggest. On the first
attempt in our melodic recall data, participants are
recalling nearly double this number of notes on average
(Figure 2). This suggests that musical structures may be
playing a role, but since the similarity is still low, parti-
cipants are improvising some extra notes in their
attempts, even though these extra notes are relatively
incorrect. Nonetheless, previous research has observed
a role for musical features in predicting memorability.
For example, Cuddy et al. (1981) showed that chromatic
melodies are harder to learn than diatonic ones and
Povel and Essens (1985) found that more complex
rhythms are harder to learn that simpler ones. Perhaps
if we used more complicated melodies, which do not
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come from pop songs, we would find that melodic fea-
tures beyond target melody length can be connected to
recall performance. As noted, we have been able to suc-
cessfully do this in other research (Silas, Müllensiefen,
et al., 2023), where the corpus of melodies used was
more varied in terms of their musical features, and
where we had a much larger item bank of melodies,
producing more variance. However, we used much
shorter melodies there, which we think is what mainly
contributes to the explanatory significance of melodic
features in that study (i.e., melodic features are impor-
tant if the melody is not too long to recall as to require
multiple attempts). Nonetheless, it is important to note
that perhaps the failure to connect melodic features to
performance in the present study represents something
idiosyncratic about the stimulus set.

WHAT MAKES MELODIES DIFFICULT TO REMEMBER?

Consequently, when including variables to indicate
melodic complexity as predictors in our mixed effects
model, we found that melodic features were not statis-
tically significant predictors of melodic recall perfor-
mance with opti3 as dependent variable. As noted,
however, the attempt length seemed to be a main factor
that might be dominating overall melodic recall
performance—and target melody length was a significant
predictor of attempt length. That our measure of simi-
larity, opti3, also increases across trials indicated that
similarity might increase predominantly as a function
of the attempt length (as indicated also by our simulation
experiment 1G). Taking this observation into account
and including attempt length as a mediator between
target melody length and opti3 as dependent variable,
connected target melody length to opti3, indicated by the
average indirect causal effect being statistically signifi-
cant. This suggested that the length of the target melody
predicts melodic recall performance via the attempt
length. Specifically, longer melodies tend to lead to more
notes being recalled (since they are longer and require
more notes); more notes being recalled tends to increase
overall similarity, but longer melodies are also more dif-
ficult to recall (hence the negative direct relationship
between target melody length and opti3).

Nonmusical models of serial recall predict similar
effects to those seen in our data. For example, as
Anderson (1972) notes, Murdock (1960) ‘‘concluded
that the free recall learning curve was exponential with
an asymptote equal to the number of words in the
list.’’ A similar asymptoting effect can be seen in our
data, although, lower than the average number of
notes in a target melody. This might suggest that,
while musical features could make melodies more or

less difficult to remember, perhaps the main difficulty
across multiple trial attempts is the sheer length of the
target melody itself, and the current working memory
load (Baddeley & Hitch, 1974), at least: 1) with the cur-
rent melody set of relatively simple pop melodies and 2)
when the length of melodies is long enough to require
multiple attempts to remember all the notes. However,
with shorter melodies, melodic features should matter
more than the overall length. Consequently, when study-
ing melodic recall, both musical features and the sheer
attempt length should be integratively modeled. In this
paper, we did this via mediation modeling. In further
research, more detailed relationships including other
variables (e.g., music training or general musical sophis-
tication, general working memory) should be explored,
using larger and more heterogenous samples of both
melodies and participants.

Lastly, the experimental factor condition (audio vs.
MIDI) was a significant predictor of performance. This
suggests that when a melody is learned from its full
audio, rather than symbolic representation, it is more
easily learned. Presumably, this is because acoustic fea-
tures help learning (Salakka et al., 2021), as well as other
cues like lyrics and the human voice, which may help
memory through the elicitation of verbal memory
and social psychological systems (Clayton, 2008;
Tarr et al., 2014).

SUMMARY AND CONCLUSIONS

Consequently, melodic representations build up over
multiple hearings (and sung recalls). On each attempt,
the main constraint appears to be the working memory
load (Baddeley, 2000; Baddeley & Hitch, 1974), limited
to a certain number of notes that can be recalled. Mel-
odies with less complex features may potentially help
the number of notes that can be recalled, but the main
feature that determines recall is the length of the target
melody, should it require multiple attempts to sing all
the notes back. On each attempt, more notes will be
recalled, and the attempt length will approach the num-
ber of notes in the target melody (similar to models of
nonmusical serial recall; Anderson, 1972), or a long-
term memory constraint dependent on the timespan
of learning, over the time course of several trials. But,
so long as the participant adds new notes and improves
on the earlier parts of their recall in subsequent
attempts, remembering better the melodic structure
they already tried to recall in previous attempts, and the
attempt length does not exceed those in the target mel-
ody, the overall similarity to the target melody will
increase across attempts. Formal musical experience
and training should aid memory and help to learn
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melodies quickly, presumably because of mental tem-
plates that help structure the melody and more effi-
ciently integrate it into memory (Chenette, 2021).
This may be similar to the notion of long-term working
memory (Ericsson & Kintsch, 1995). However, such
musical expertise may not be necessary, but rather, suf-
ficient: a very good general memory and little formal
musical experience may help in any case. After all, per-
haps singing back pop melodies is more like a general
ability and essential part of human life, rather than
a formally trained musical activity.

LIMITATIONS

We suggested that attempt length could be a driver of
opti3 scores. However, we note this is a logical assump-
tion, but not fully deductive. In other words, our data
cannot fully prove the causal chain that increase in
attempt length across attempts are causally responsible
for improvement in opti3 across attempts. For instance,
it could be that opti3 increases across attempt alongside
attempt length simply in an associative manner, whereby
opti3 increases despite the associated increases in
attempt length. However, beyond the strong associative
pattern, there are strong logical and inductive grounds
for supposing the causality. Most importantly, as noted,
the opti3 measure of similarity is dependent on the
length of the melodies to be compared in only a ‘‘soft
sense’’, which invokes a causal mechanism. However,
this does not imply that all the variance explained in
opti3 is attributable to attempt length. Hence, we high-
light to the reader that we are arguing for the plausibility
of causality, rather than inferring one.

That fact that we did not counterbalance the order of
MIDI/audio (i.e., all participants heard MIDI excerpts
then audio excerpts) could potentially be a confounding
factor and contributed to more notes being recalled in
the audio condition. Perhaps people became more con-
fident or simply better at singing back across the course
of experiment. However, we suspect this might have
been a small effect compared to the advantage of having
lyrics as well as expressive cues and musical information
form the backing track that helped participants to
remember more notes form the full audio.

Future Directions

Our study suggests several future directions for
research with the melodic recall paradigm. First, we
suggest that attempt length and opti3 should be even
more integratively modeled, using a much larger
database of items and more heterogeneity in melodic
features. We have recently implemented such

a framework (Silas, Müllensiefen, & Kopiez, 2023).
Second, a general working memory construct (mea-
sured by one or more variables) should be included
as a predictor, as this may have some explanatory
power aside from musical memory faculties (see Silas
et al., 2022, for a discussion of these issues). Third, new
research suggests other melodic features, such as sym-
metry or hierarchical structure, may be interesting to
explore as melodic feature predictors (Clemente et al.,
2020; Herborn, 2022). Fourth, as we have argued else-
where (Silas, Müllensiefen, et al., 2023), singing
accuracy and melodic recall abilities should be simul-
taneously measured to understand and represent both
domains properly. Lastly, since effects around item
length are modeled and described well in the ACT-R
framework, which has several models of serial recall
(e.g., Anderson, 1972) relevant to the attempt length,
and emphasizes modeling produced events, we intend
to more thoroughly explore modeling that integrates
the ACT-R framework (Ritter et al., 2019) alongside
melodic feature modeling. We note that integrations
of musicological considerations with ACT-R seem to
be scarce (Chikhaoui et al., 2009; Reiter-Haas et al.,
2021), yet such a modeling framework that is primarily
concerned with explaining musical production seems
highly relevant to investigate musical abilities in a com-
prehensive way and beyond perceptual paradigms in
the future (Okada & Slevc, 2021).
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TALAMINI, F., ALTOÈ, G., CARRETTI, B., & GRASSI, M. (2017).
Musicians have better memory than nonmusicians: A meta-
analysis. PLOS One, 12(10), e0186773. https://doi.org/10.1371/
journal.pone.0186773

TALAMINI, F., CARRETTI, B., & GRASSI, M. (2016). The working
memory of musicians and nonmusicians. Music Perception,
34(2), 183–191. https://doi.org/10.1525/mp.2016.34.2.183

TARR, B., LAUNAY, J., & DUNBAR, R. I. M. (2014). Music and
social bonding: ‘‘Self-other’’ merging and neurohormonal
mechanisms. Frontiers in Psychology, 5. https://doi.org/10.
3389/fpsyg.2014.01096

THALMANN, M., SOUZA, A. S., & OBERAUER, K. (2019). How does
chunking help working memory? Journal of Experimental
Psychology: Learning, Memory, and Cognition, 45(1), 37–55.
https://doi.org/10.1037/xlm0000578

TILLMANN, B., BHARUCHA, J. J., & BIGAND, E. (2000). Implicit
learning of tonality: A self-organizing approach. Psychological
Review, 107(4), 885–913. https://doi.org/10.1037/0033-295X.
107.4.885

TYPKE, R., WIERING, F., & VELTKAMP, R. C. (2007).
Transportation distances and human perception of melodic
similarity. Musicae Scientiae, 11(1), 153–181. https://doi.org/
10.1177/102986490701100107

UITDENBOGERD, A. (2002). Music information retrieval technology
[Doctoral dissertation, RMIT University]. Retrieved from http://
www.pampalk.at/mir-phds/abstract/Uitdenbogerd2002.html

VERGAUWE, E., BARROUILLET, P., & CAMOS, V. (2010). Do mental
processes share a domain-general resource? Psychological
Science, 21(3), 384–390. https://doi.org/10.1177/0956797610
361340

YUAN, Y., OISHI, S., CRONIN, C., MÜLLENSIEFEN, D., ATKINSON,
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Appendix

Online Supplement Sources

1. Foundations of accuracy assessment (derived in musical context)
Section 1:
https://sebsilas.github.io/musicassessr/articles/accuracy_vs_similarity_measures.html#foundations-of-accuracy-
style-measures

2. Descriptions comparing the similarity measures used in this study
https://sebsilas.github.io/musicassessr/articles/musicassessr_dependent_variables.html

3. Notated examples of development of sung recall performance over multiple attempts and a qualitative
description of their change in similarity
https://sebsilas.github.io/musicassessr/articles/intuitive_similarity.html

4. Example comparisons for scoring melodic recall data with accuracy-style vs. similarity measures
https://sebsilas.github.io/musicassessr/articles/accuracy_vs_similarity_measures.html#example-comparisons-of-
accuracy-vs—similarity-measures-on-the-same-data

5. A comparison of accuracy vs. similarity measures
Section 1: https://sebsilas.github.io/musicassessr/articles/accuracy_vs_similarity_measures.html

6. A sample of the stimulus set used in this study
Section 1:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#short-
melodic-excerpts-from-pop-songs-used-as-materials-in-the-study

7. Simulation results of Experiment 1 using basic accuracy and aligned accuracy measures
https://sebsilas.github.io/musicassessr/articles/profile_basic_accuracy_measures.html

8. List of pop songs used as materials in this study
Sections 1 and 2:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html

9. The musical experience questionnaire used in this study
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.
html#questionnaire-items

10. The single factor exploratory factor analysis solution of the musical experience questionnaire
Section 3.2:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#factor-
loadings-for-mixed-type-variables-based-on-questionnaire-items

11. Dependent variables used in this study
https://sebsilas.github.io/musicassessr/articles/musicassessr_dependent_variables.html

12. Melodic feature predictors used in this study
https://sebsilas.github.io/musicassessr/articles/melodic_features.html
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13. Linear model details for comparison with the nonlinear models taken forward
Section 6:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#linear-vs—
non-linear-models-attempt-length-and-opti3

14. Variance inflation factors and partial R2 value diagnostics for mixed effects models with all melodic features
as predictors
Section 7:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#diagnostic-
statistics-for-models-with-all-features-in-partial-r-squared-and-variance-inflation-factor-values

15. Information about melodic features used in this study
Section 2.2:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#description-
and-distribution-of-melodic-features

16. An alternative by-participant visualization of our data
Section 4:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#average-by-
participant-across-trials

17. Statistical models to support observations about changes in similarity as a function of melody section
and attempt
Section 9:
https://sebsilas.github.io/musicassessr/articles/silas_and_mullensiefen_2023_online_supplement.html#statistical-
models-to-support-changes-in-similarity-as-a-function-of-attempt-and-melody-section
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