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a b s t r a c t

Research indicates that creative cognition depends on both associative and controlled

processes, corresponding to the brain's default mode network (DMN) and executive control

network (ECN) networks. However, outstanding questions include how the DMN and ECN

operate over time during creative task performance, and whether creative cognition in-

volves distinct generative and evaluative stages. To address these questions, we used

multivariate pattern analysis (MVPA) to assess how the DMN and ECN contribute to cre-

ative cognition over three successive time phases during the production of a single creative

idea. Training classifiers to predict trial condition (creative vs non-creative), we used

classification accuracy as a measure of the extent of creative activity in each brain network

and time phase. Across both networks, classification accuracy was highest in early phases,

decreased in mid phases, and increased again in later phases, following a U-shaped curve.

Notably, classification accuracy was significantly greater in the ECN than the DMN during

early phases, while differences between networks at later time phases were non-

significant. We also computed correlations between classification accuracy and human-

rated creative performance, to assess how relevant the creative activity in each network

was to the creative quality of ideas. In line with expectations, classification accuracy in the

DMN was most related to creative quality in early phases, decreasing in later phases, while

classification accuracy in the ECN was least related to creative quality in early phases,

increasing in later phases. Given the theorized roles of the DMN in generation and the ECN

in evaluation, we interpret these results as tentative evidence for the existence of separate

generative and evaluative stages in creative cognition that depend on distinct neural

substrates.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. The time course of creativity: multivariate
classification of default and executive network
contributions to creative cognition over time

The ability to think creatively is one of humanity's most

defining features, enabling us to make remarkable progress in

diverse scientific and artistic domains, as well as to solve

simpler problemswe encounter every day. Although creativity

has traditionally been seen as a mysterious construct (Boden,

2007; Hennessey & Amabile, 2010), in recent decades consid-

erable progress has been made in uncovering the neural and

psychological bases of creative cognition. From this research,

a complex picture is emerging in which creative cognition

relies on a diverse range of cognitive and psychological fac-

tors, including memory (Benedek et al., 2014; Fugate, Zentall,

& Gentry, 2013; Kenett, Levy, et al., 2018; Madore, Addis, &

Schacter, 2016; Storm, Angello, & Bjork, 2011), attention

(Frith, Kane, et al., 2021; Zabelina, 2018), personality (Kaufman

et al., 2016; Oleynick et al., 2017), executive control (Beaty,

Silvia, Nusbaum, Jauk, & Benedek, 2014; Benedek, Jauk,

Sommer, Arendasy, & Neubauer, 2014; Krumm, Ar�an

Filippetti, & Gutierrez, 2018), and reward processing

(Beversdorf, 2019; Lin & Vartanian, 2018). Meanwhile, neuro-

imaging studies have revealed that creative cognition in

numerous domains involves cooperation between large-scale

brain networks, including the default and executive networks

(Beaty, Benedek, Silvia, & Schacter, 2016; Beaty, Cortes,

Zeitlen, Weinberger, & Green, 2021; Ellamil, Dobson,

Beeman, & Christoff, 2012; Mayseless, Eran, & Shamay-

Tsoory, 2015).

Despite this progress, however, cognitive science remains

far from a precise understanding of how creative cognition

arises from neurocognitive processes. A particularly striking

gap in knowledge is how exactly different brain regions

contribute to creative cognition, and how their contribution

varies over time and over different stages of the creative

process, such as idea generation and evaluation. Specific

outstanding questions include whether the DMN underlies

generation while the ECN underlies evaluation (Beaty et al.,

2016, 2018; Kleinmintz, Ivancovsky, & Shamay-Tsoory, 2019;

Mayseless et al., 2015); whether generation and evaluation

occur in cyclic phases (Kleinmintz et al., 2019) or simulta-

neously (Goldschmidt, 2016); and whether one network is

more related to creative performance than the other.

In the present study, we sought to address these questions

by applying multivariate pattern analysis (MVPA) to fMRI data

to examine how the DMN and ECN vary in their contributions

to creativity over successive phases of creative cognition.

MVPA can reveal how relevant the activity in a brain region or

network is to a particular task, making it an ideal tool for

examining the temporal dynamics of creative cognition. Here,

we use MVPA on a large sample of participants (N ¼ 168),

training machine-learning classifiers to distinguish between

two task conditions e a canonical task of divergent creative

thinking and a semantic control task e with greater classifi-

cation accuracy indicating a greater difference in brain activ-

ity between tasks, and indirectly, a greater amount of creative

activity. We applied MVPA separately to two networks (the

DMN and ECN) and three time phases within trials (early, mid,
and late), to assess how creative activity fluctuates over time

within these networks. We also computed correlations be-

tween classification accuracy and rated idea quality, to assess

the relevance of creative activity in each network and time

phase to creative quality specifically. By examining if the DMN

and ECN make distinct contributions to creative cognition

over time, we aimed to test dual-process theories of creative

cognition that posit separate stages of idea generation and

evaluation.

1.1. The cognitive basis of creativity

Most empirical research within cognitive psychology and

neuroscience defines creative cognition as the production of

ideas that are both novel (i.e., new, or original), and useful (i.e.,

context-appropriate, or helpful to a task or goal; Runco &

Jaeger, 2012; Stein, 1953). A range of measures have been

developed to assess creative cognition, perhaps the most

common of which are “divergent thinking” tasks, such as the

Alternate Uses Task (AUT; Guilford, 1967), and the Torrance

test of verbal creative thinking (Torrance, 1966). These are

open-ended problems which typically require participants to

generatemultiple ideas in response to a single stimulus. In the

AUT, for example, participants are given an object name (e.g.,

“brick”), and asked to think of novel, original, and creative

uses for the object (e.g., “use to grind up food”).

As cognitive creativity research has grown in recent years,

several theoretical frameworks have emerged to interpret its

findings, perhaps the most popular of which are dual-process

theories. These describe creative cognition as involving two

broad sets of processes: associative memory processes that

operate spontaneously, and deliberate control processes that

guide and direct thought (Barr, 2018; Beaty et al., 2014;

Benedek & Jauk, 2018; Mok, 2014; Volle, 2018). These frame-

works draw on wider dual-process theories within cognitive

science that distinguish between fast, automatic Type 1 pro-

cesses, and slow, deliberate Type 2 processes (Evans &

Stanovich, 2013; Sowden, Pringle, & Gabora, 2015). They also

relate to the broader idea that creativity involves distinct

generative and evaluative modes of thought (Ellamil et al.,

2012; Finke, Ward, & Smith, 1992; Ward, Smith, & Vaid,

1997), which may operate in iterative phases (Kleinmintz

et al., 2019), or simultaneously (Goldschmidt, 2016). Indeed,

researchers have suggested that the generativemodemay rely

predominantly on associative processes, while the evaluative

mode relies mainly on controlled processes (Bendetowicz et

al., 2018; Mayseless et al., 2015; Sowden et al., 2015), though

it is likely that both modes involve at least a small proportion

of both kinds of process (Benedek & Jauk, 2018; Frith et al.,

2021; Sowden et al., 2015; cf. Cortes, Weinberger, Daker, &

Green, 2019).

Considerable support for the role of associative processes

in creative cognition comes from verbal fluency (Beaty et al.,

2014) and free-association paradigms (Kenett, Anaki, &

Faust, 2014; Kenett, Levy, et al., 2018; Marron et al., 2018),

which suggest that creative cognition relates to memory

structure (Kenett, 2019; Mednick, 1962), and to associative

processes that spontaneously spread through memory (Volle,

2018). Support for the role of controlled processes in creative

cognition is less conclusive. Some evidence suggests that
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creativity benefits from reduced cognitive control, which may

allow associative processes to operate more flexibly, such as

during defocused idea incubation (Benedek& Jauk, 2018; Ritter

&Dijksterhuis, 2014), jazz improvisation (Limb& Braun, 2008),

and the reorganization of memory during sleep (Cai, Mednick,

Harrison, Kanady, & Mednick, 2009; Lewis, Knoblich, & Poe,

2018). In other cases, however, controlled processes appear

to play a key role in creative cognition, and performance in

divergent thinking tasks has now been linked to intelligence

(Beaty et al., 2014; Benedek, Jauk, Sommer, et al., 2014; Frith

et al., 2021; Karwowski et al., 2016), and the executive func-

tions of inhibition (Benedek, Jauk, Sommer, et al., 2014;

Benedek, Franz, Heene, & Neubauer, 2012; Camarda et al.,

2018), switching (Krumm et al., 2018; Pan & Yu, 2018;

Zabelina & Ganis, 2018), and updating (Benedek, Jauk,

Sommer, et al., 2014).

These findings suggest that creative cognition relies partly

on associative processes, which operate spontaneously to

reinterpret problems and connect distantly-related concepts

(Beaty et al., 2014; Kenett, Levy, et al., 2018; Volle, 2018), and

partly on controlled processes, which can guide thought in

strategic directions, and inhibit distracting and unoriginal

ideas (Beaty, Christensen, Benedek, Silvia, & Schacter, 2017;

Camarda et al., 2018; Lloyd-Cox, Christensen, Silvia, & Beaty,

2021). The relative contribution of these processes to crea-

tive cognition may depend on the specific task context

(Benedek & Jauk, 2018; Chrysikou, 2018; Sowden et al., 2015;

Volle, 2018), with divergent thinking tasks in particular

comprising a significant executive control component (Beaty

et al., 2014; Benedek, Jauk, Sommer, et al., 2014; Frith et al.,

2021; Krumm et al., 2018; Nusbaum & Silvia, 2011).

Several outstanding questions remain, however. For

example, it is unclear what precise cognitive operations are

enacted by associative and controlled processes, and by what

mechanisms they produce creative ideas. Moreover, although

generation and evaluation are often described as separate

stages of creative cognition (e.g., Basadur, 1995; Ellamil et al.,

2012; Finke et al., 1992; Kleinmintz et al., 2019), it is un-

known whether the processes underlying generation and

evaluation truly separate out into distinct stages (e.g.,

Kleinmintz et al., 2019), or instead operate simultaneously

(e.g., Goldschmidt, 2016). Indeed, it is unclear whether gen-

eration and evaluation map directly to associative and

controlled processes, or whether they are higher level opera-

tions that each involve some combination of associative and

controlled processes. Answering these questions is central to

understanding the cognitive basis of creativity.

1.2. The neural basis of creativity

Neuroimaging studies also point to the roles of distinct asso-

ciative and controlled processes in creative cognition.

Research has found increasing evidence that creative cogni-

tion involves cooperation between the DMN and ECN, groups

of regions that are strongly implicated in associative and

controlled cognition, respectively (Beaty et al., 2018; Chen

et al., 2018; Christensen, Benedek, Silvia, & Beaty, 2021;

Ellamil et al., 2012; Mayseless et al., 2015; Yeh, Hsu, & Rega,

2019; see Beaty, Seli, & Schacter, 2018, for a review).
The executive control network (ECN) is formed of lateral

prefrontal and anterior inferior parietal regions, and typically

activates during focused, goal-oriented cognition, such as

working memory and switching tasks (Niendam et al., 2012;

Seeley et al., 2007). The default mode network (DMN) is formed

of cortical midline, medial temporal, and posterior inferior

parietal regions, and it is thought to underpin the spontaneous

activation of memories, and internally-directed thought about

the past and future (Andrews-Hanna, Smallwood, & Spreng,

2014; Beaty and Lloyd-Cox, 2020). The two networks are typi-

cally anti-correlated, i.e., when one network activates, the

other tends to deactivate (cf., Beaty et al., 2021), and they may

compete for resources inmany contexts (Anticevic et al., 2012).

Interestingly, however, increased connectivity between

default and executive control regions has been found in a large

range of creative tasks, including verbal divergent thinking

(Beaty, Benedek, Barry Kaufman, & Silvia, 2015; Green, Cohen,

Raab, Yedibalian, & Gray, 2015; Kaufman, & Silvia, 2015;

Mayseless et al., 2015), musical improvisation (Pinho, de

Manzano, Fransson, Eriksson, & Ull�en, 2014), poetry (Liu et

al., 2015), and visual artistic design (Ellamil et al., 2012).

Indeed, research has found that participants who give more

distant semantic responses exhibit greater connectivity be-

tween DMN and ECN regions (Green et al., 2015), while those

with more efficient connections across these two networks

show greater divergent thinking performance (Beaty, Benedek,

Barry Kaufman, & Silvia, 2015). Recently, researchers have

even predicted the creative performance of participants based

on the strength of connectivity between ECN, DMN, and

salience network regions (Beaty et al., 2018).

Efforts have been made to interpret this pattern of activity

in cognitive terms, based on the processes that are typically

associated with these regions. Given the DMN's involvement

in memory and imagination (Andrews-Hanna et al., 2014;

Beaty et al., 2018) it is possible that the network underlies the

spontaneous activation of diverse ideas, accessed through

associative processes (Beaty et al., 2020; Beaty & Lloyd-Cox,

2020). The ECN, meanwhile, may act to monitor and guide

this spontaneous activity through top-down control, for

example to execute particular strategies in a creative task

(Benedek& Jauk, 2018; Frith et al., 2021). Indeed, given that the

networks also interact during mind-wandering (Christoff,

Gordon, Smallwood, Smith, & Schooler, 2009; Fox & Beaty,

2018), and the construction of future plans (Gerlach, Spreng,

Madore, & Schacter, 2014; Spreng, Stevens, Chamberlain,

Gilmore, & Schacter, 2010), they may cooperate whenever

there is a need for self-generated yet goal-directed thought, as

in creative cognition (Beaty et al., 2016). The networks have

also been discussed in the context of generative and evalua-

tive stages in creative cognition, with researchers suggesting

that idea generation is primarily performed by the DMN,while

the evaluation and refinement of ideas ismainly performed by

the ECN (Beaty et al., 2016; Ellamil et al., 2012; Jung, Mead,

Carrasco, & Flores, 2013; Kleinmintz et al., 2019).

In terms of more specific cognitive mechanisms by which

these regions support creative cognition, little is known. One

possibility with reasonable empirical support is that ECN re-

gions can suppress DMN activity to inhibit distracting and

poor-quality ideas, allowing access to better ones. Indeed,

https://doi.org/10.1016/j.cortex.2022.08.008
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greater DMN-ECN connectivity has been foundwhen there is a

need to overcome fixating, unoriginal ideas, in both verbal

(Beaty et al., 2017) and visual paradigms (Christensen et al.,

2021). Evidence of other mechanisms is sparse, but research

is beginning to indicate that sub-networks within the ECN and

DMNmay play different functional roles in creative cognition.

For example, different regions within the DMN may support

different aspects of memory (i.e., semantic vs episodic), and

correspondingly, different aspects of creative cognition (Beaty

et al., 2020). Meanwhile, sub-networks of the ECN seem to

have different relationships with the DMN (Beaty et al., 2021;

Dixon et al., 2018), and may underly different creative tasks

(Pe~na, Sampedro, Ibarretxe-Bilbao, Zubiaurre-Elorza, & Ojeda,

2019). Despite this progress, questions remain, particularly

concerning how these networks contribute to creative cogni-

tion over time. For example, it is unclear whether different

stages of creative cognition (e.g., generation and evaluation)

involve different proportions of associative and controlled

processes, corresponding to different contributions from the

DMN and ECN (Kleinmintz et al., 2019; Sowden et al., 2015).

1.3. The time course of creative cognition

Our understanding of creative cognition would benefit from a

closer examination of how cognitive processes, and the neural

regions that underly them, operate and interact over time

during creative tasks. Previous research into the temporal

dynamics of creative cognition has, for example, revealed the

“serial order effect”, whereby ideas increase in creative quality

over time (Johns, Morse, & Morse, 2001; Phillips & Torrance,

1977; Runco, 1986; Ward, 1969). While a traditional explana-

tion for this effect (e.g., Mednick, 1962) would attribute it to

activation spreading passively from the cue concept to

increasingly original concepts, more recent research suggests

it may be due to deliberate control processes operating to

inhibit previously considered ideas and strategically access

more novel ones (Bai, Leseman, Moerbeek, Kroesbergen, &

Mulder, 2021; Wang, Hao, Ku, Grabner, & Fink, 2017).

Studies using electroencephalogy (EEG) and brain stimu-

lationmethods are also helping to advance our understanding

of how creative processes operate over time. Considerable

evidence suggests that creative cognition relates to cortical

alpha synchronization (Benedek, Bergner, K€onen, Fink, &

Neubauer, 2011; Fink & Benedek, 2014; Stevens & Zabelina,

2020). Indeed, research has found that greater alpha power

is related to greater creative performance (Agnoli, Zanon,

Mastria, Avenanti, & Corazza, 2020; Camarda et al., 2018;

Fink et al., 2018; Rominger et al., 2019; Stevens & Zabelina,

2020), while increasing alpha power over frontal cortex

through stimulation appears to increase the creative quality of

ideas (Lustenberger, Boyle, Foulser, Mellin, & Fr€ohlich, 2015).

Focusing on the production of a single creative idea,

Schwab, Benedek, Papousek, Weiss, and Fink (2014) gave

participants 10 sec to generate a creative response in the AUT,

while recording EEG. During analysis, the authors divided this

generation period into three equal segments, finding a clear

pattern of activity over time: alpha power increased at the

beginning of generation, decreased during the middle, and

increased again at the end. This U-shape pattern of alpha

power during idea generation was also reported by Rominger
et al. (2019), who found that the pattern was stronger among

participants with more original ideas. What the pattern of

activity means in terms of cognitive processes is unclear, but

the authors of both studies suggest it may indicate associa-

tive, memory-related processes operating at the beginning of

idea generation (e.g., to retrieve ideas), and controlled, eval-

uative processes operating at the end (e.g., to suppress com-

mon ideas and generate more original ones).

In contrast to EEG studies, very few fMRI studies have

explored the time course of creative cognition. One exception

is a study by Beaty et al. (2015), which examined neural acti-

vation during the AUT compared to a control task focused on

object characteristics. The authors found that divergent

thinking involved a broad network of regions from the DMN,

ECN, and salience networks, and that the global efficiency of

this network was related to greater creative performance.

Importantly however, they also found that the connectivity

between these regions varied over time. Extracting a series of

2-sec time windows from the 12-sec AUT idea generation

period, and analyzing these separately, the authors found

increased coupling between DMN and salience network re-

gions at the start of creative trials, and between DMN and ECN

regions later on. This pattern of connectivity was interpreted

to reflect interactions between associative and controlled

thought, potentially corresponding to early generative and

later evaluative modes of thought.

1.4. The present research

Research into the neurocognitive basis of creative cognition

has highlighted the complementary roles of associative and

controlled processes, which may depend on distinct neural

regions (Beaty et al., 2015, 2018c; Benedek & Jauk, 2018;

Chrysikou et al., 2020; Zhu et al., 2017). Research also suggests

that these processes may interact differently in different

creative tasks, and at different time stages of creative per-

formance (Benedek & Fink, 2019; Chrysikou, 2019; Rominger

et al., 2019; Volle, 2018). However, it remains unknown how

exactly associative and controlled processes, and their un-

derlying neural regions, activate over time during creative

cognition. It is also unclear whether these processes

contribute differently to the creative quality of ideas, and

whether alternating stages of generation and evaluation do in

fact exist (Kleinmintz et al., 2019; Sowden et al., 2015). Indeed,

examining stages in creative cognition is far from simple,

since, if they exist, they are likely to be fluid and without clear

distinction, or switched between so rapidly that they are

practically indistinguishable (Goldschmidt, 2016). Separating

generation and evaluation can be done experimentally, for

example by asking participants to first generate an idea and

later evaluate it (e.g., Ellamil et al., 2012; cf. Rominger et al.,

2018), but this divides the creative process into artificial

chunks which could each involve generative and evaluative

thought.

An alternative approach is to keep the creative process

intact, and to examine how brain networks that have been

theoretically linked to associative and controlled processes

vary in their contributions to creative cognition over time.

Evidence suggests that generative thought may largely

depend on the associative activity of the DMN, while

https://doi.org/10.1016/j.cortex.2022.08.008
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evaluative thought may predominantly rely on the controlled

activity of the ECN (Beaty et al., 2016; Ellamil et al., 2012; Jung

et al., 2013; Kleinmintz et al., 2019). As such, examining how

these networks contribute to creative cognition over succes-

sive time phases could provide an indication of the proportion

of associative and controlled processes active in each phase,

potentially revealing distinct generative and evaluative

stages. To date however, very little research has investigated

the temporal dynamics of functional network contributions to

creative cognition.

Multivariate pattern analysis (MVPA) is a particularly use-

ful tool for this purpose. MVPA is a machine learning method

that takes neural activity as input, and through training,

constructs a model that can classify patterns of voxel activa-

tion as belonging to different experimental tasks. The ability

of the model to correctly classify new trials, that it has not

been trained on, is known as classification accuracy. Greater

classification accuracy indicates that there is more informa-

tion available to the classifier during training, and a greater

difference in neural activity between conditions. As such,

classification accuracy serves as an indirect measure of the

amount of activity in a region that is relevant to one condition,

but not to others.

In the present study, we used MVPA to assess the quantity

of creative processing within the DMN and ECN, over suc-

cessive time points during creative cognition. Participants

completed both the AUT and the object characteristics task

(OCT), a control task in which theymust recall a characteristic

of an object rather than generate a creative use for it.

Following a similar procedure to previous studies (e.g., Beaty

et al., 2015; Rominger et al., 2019; Schwab et al., 2014), we

divided the idea generation periods for both tasks into three

equal time windows. For each time window, MVPA classifiers

were trained on data fromboth AUT andOCT trials, and tested

to match unseen trials to the correct task. In theory, greater

classification accuracy should reflect a greater difference in

activity between creative and non-creative trials, and indi-

rectly, a greater amount of activity relevant to creativity (i.e.,

“creative activity”). Variance in classification accuracy over

time in a given network would then indicate varying amounts

of creative activity. This process was conducted separately on

data from both the DMN and ECN, allowing us to compare the

time-course of creative activity in these regions. As a further

analysis, we also computed correlations between classifica-

tion accuracy (in each network and time phase) and behav-

ioral measures of creative quality. The strength of this

correlation should indicate how relevant the creative activity

in a particular region and time phase is to the actual quality of

the idea being generated.

These analyses could do much to inform our understand-

ing of how neurocognitive processes operate over time during

creative cognition. The existence of distinct generative and

evaluative stages would be supported if the networks show

different time patterns of creative activity. Specifically, if at

certain times one network exhibits more creative activity (or

stronger correlations with creative quality) than the other

network, this would indicate stages in creative cognition, in

which some cognitive processes are more dominant than

others, and that these stages are long enough to be detected

over several seconds. By contrast, equivalent amounts of
creative activity (and relevance to creative quality) in both the

DMN and ECN across all three time phases would be consis-

tent with several explanations. It could be that distinct stages

do not exist, and that associative and controlled processes are

equally distributed over time with generation and evaluation

occurring simultaneously. Alternatively, it might be that

stages do exist, but are shifted between on a smaller timescale

than can be detected through fMRI. Finally, it could be that

generation and evaluation are equally dependent on both the

ECN and DMN, with no difference in their localization.

Our predictions followed from the hypothesis that gener-

ative and evaluative stages of thought do exist in creative

cognition, and involve different proportions of associative and

controlled processing, indicated by different contributions

from the DMN and ECN. Specifically, we predicted that early

phases of creative trials would involve more generative

thought and a higher proportion of associative processing,

reflected in greater creative activity in the DMN. By contrast,

we expected that mid and late phases of creative trials would

involve more evaluative thought and a higher proportion of

controlled processes, reflected in greater creative activity in

the ECN. This would also be consistent with prior work

tracking changes in connectivity between brain networks over

the course of creative cognition (Beaty et al., 2015). Similarly,

we expected that idea quality would be most strongly corre-

lated with the creative activity of the DMN in early time

phases, and with the creative activity of the ECN in later time

phases.
2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.1. Participants

Participants (N ¼ 186) were recruited from the University of

North Carolina at Greensboro (UNCG) and surrounding com-

munity (129 females, mean age ¼ 22.74, SD ¼ 6.37). Partici-

pants gave informed consent prior to data collection, and

participated as part of a larger study, completing several

additional measures that are not discussed here (for other

studies using this dataset, see Beaty et al., 2018; Frith et al.,

2021). Sample size was determined by a prior study (Beaty et

al., 2018). Participants were compensated up to $100 for their

time, and were all right-handed, with normal or corrected-to-

normal vision, and no reported history of neurological disor-

der, cognitive disability, or medication that affects the central

nervous system. Several participants were excluded prior to

analysis due to factors including excessive head movement

during neuroimaging (mean framewise displacement >
.5 mm, n ¼ 4; Power, Barnes, Snyder, Schlaggar, & Petersen,

2012), issues with software used during neuroimaging (e.g.,

E-prime crash), and missing behavioral data. Following ex-

clusions, the final sample was 168 (116 females, mean

age ¼ 22.59, SD ¼ 6.04). The study was approved by the UNCG

Institutional Review Board.
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2.2. Materials

To assess creativity, the AUT was used. This task involves

generating creative uses for common objects (e.g., using a

“sock” as a “filtration device”). To act as a non-creative control

task with a similar memory component, the OCT was used.

This task involves recalling characteristics of objects (e.g.,

“metallic” or “wooden”). The AUT and OCT are highly similar in

format, differing only in the nature of the response (most cre-

ative idea in the AUT and most prototypical characteristic in

the OCT). Stimuli for both tasks were 46 common object names

used in prior work (Beaty et al., 2015; Fink et al., 2009). These

stimuli are available via OSF (see Open Practises Statement).

In addition to the AUT and OCT, participants completed

three measures of fluid intelligence (Gf) outside the scanner:

the letter sets task (Ekstrom, Dermen,&Harman, 1976), which

requires selecting a set of letters that does not follow the rule

governing other sets (16 items), the number series task

(Thurstone, 1938), which requires selecting the next number

in a sequence (15 items), and the series completion task from

the Culture Fair Intelligence Test (CFIT; Cattell& Cattell, 1961),

which requires selecting an image that most appropriately

completes a series of images (13 items). These measures were

included to assess whether brain activity related to creativity

was also related to intelligence, and thus reflective of wider

cognitive abilities not limited to creative performance.

Participant scores on these three measures were combined

using confirmatory factor analysis to produce a single latent

factor (see Frith et al., 2021).

2.3. Procedure

Participants completed the AUT and OCT while in the fMRI

scanner, in an event-related design. Trials for both tasks were

inter-mixed and presented in one block of 46 trials. 23 trials

were AUT, and 23 were OCT. All 46 stimuli were presented,

with no repeats, in the same order for all participants (i.e., all

participants saw “brick” first and “CD” last). However, task

condition (AUT or OCT) followed a randomized order across

trials, with each participant completing a different sequence

of trial types. As such, the task condition for any given stim-

ulus varied across participants (e.g., the stimulus “brick” could

occur with equal likelihood as an AUT or OCT trial).

Trials proceeded as follows (see Fig. 1). Following a fixation

cross jittered between 4 and 6 sec, participants received an

instruction indicating the task condition for the present trial.

Specifically, “create” (for the AUT) or “object” (for the OCT) was

presented for 3 sec. A 12-sec thinking period then began, with
Fig. 1 e Trial procedure, from fixation (left) to response

(right). Duration in seconds is presented below each frame.
the object name stimulus (e.g., “brick”) presented for the entire

duration. Participants were instructed to use the thinking

period to either generate themost creative use they could think

of (“create”; creative condition), or the most prototypical

physical characteristic they could recall (“object”; non-creative

condition). The thinking period could not be ended early;

instead, participants were asked to use the full time to generate

the most creative/prototypical response they could. This was

followed by a 5-sec response period, signaled with a green

question mark (“?”), during which participants had been

instructed to speak their response out loud. Responses were

recorded using an MRI-compatible microphone. Participant

responses in AUT trials were later rated for creativity by four

independent raters, using a 1 (not at all creative) to 5 (very

creative) scale (Silvia, Martin, & Nusbaum, 2009). Raters pro-

vided a single rating for each trial, which reflected the novelty,

originality, and appropriateness of the idea. After the scanning

session, participants completed the three fluid intelligence

measures as part of a post scan behavioral assessment.

2.4. fMRI data acquisition and preprocessing

In-scanner tasks were completed in a single MRI run, and pro-

grammedusing E-Prime software. The E-Prime experiment files

are available via OSF (see Open Practises Statement). Stimuli

were viewed throughamirror attached to theheadcoil. Imaging

was performed with a 3 T Siemens Magnetom MRI system

(Siemens Medical Systems, Erlangen, Germany) equipped with

a 16-channel head coil. Functional imageswere acquiredwith a

T2*-weighted single shot gradient-echo echo-planar imaging

(EPI) pulse sequence (repetition time [TR] ¼ 2000 ms, echo

time¼ 30ms, flip angle¼ 78�, 32 axial slices, 3.5� 3.5� 4.0mm,

distance factor 0%, field of view ¼ 192 � 192 mm, interleaved

slice ordering) and corrected online for head motion. To allow

for anatomic normalization, a high resolution T1 scan was ac-

quiredfirst, and thefirst two functional volumeswerediscarded

to allow for T1 equilibration effects.

Functional volumes were preprocessed using fMRIPrep

1.4.1rc1 (Esteban et al., 2019). For each subject, a reference

volume and its skull-stripped version were generated and co-

registered to the T1 reference. Head-motion parameters with

respect to the BOLD reference (transformation matrices, and

six corresponding rotation and translation parameters) were

estimated. BOLD runs were slice-time corrected, before being

resampled onto their original, native space by applying a

single, composite transform to correct for head-motion and

susceptibility distortions. The BOLD time-series were then

resampled into standard space (Montreal Neurological Insti-

tute [MNI] template brain), and high-pass filtered using a

discrete cosine filter with 128 sec cut-off. Several confounding

time-series were then calculated, including framewise

displacement (FD), DVARS and its temporal derivative. These

were combined with motion estimates to form nine confound

time-series per participant. Frames that exceeded a threshold

of .5 mm FD or 1.5 standardized DVARS were annotated as

motion outliers. As is common in studies using MVPA, where

differences between individual voxels can hold important

information (Coutanche, Thompson-Schill, & Schultz, 2011;

Cox & Savoy, 2003; see also Weaverdyck, Lieberman, &

Parkinson, 2020), no spatial smoothing was conducted.
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2.5. Level 1 analysis

MVPA was conducted on parameter estimates (i.e., model

coefficients) extracted from a general linear model (GLM) in

line with previous research (e.g., Etzel, Gazzola, & Keysers,

2008; Kim et al., 2015) (see also Haynes, 2015). First level ana-

lyses were conducted using SPM12 (http://www.fil.ion.ucl.ac.

uk/spm/).

Analysis focused on the 12-sec thinking period (see Fig. 2).

Since there was only one run per participant (i.e., trials did

not fall into independent groups), and to increase the number

of exemplars for classifier training, we did not average across

trials. To compare brain activity during different phases of

ideation, thinking periods were split into three parts (early,

mid, late), each with a duration of 4 sec, and formed of two

volumes. For each participant, a GLM was fitted with 138 re-

gressors of interest, corresponding to three time periods � 46

trials. These were in addition to nine noise regressors and 46

regressors corresponding to the onsets and durations of ver-

bal response periods, to account for artifacts related to

vocalization. The GLM thus produced three sets of 46

parameter estimate images which were used in subsequent

analyses.

2.6. Networks of interest

Networks of interest were obtained in MNI standard space

using the “7 network liberal mask” from Yeo et al. (2011). We

extracted masks for three networks: the default mode

network (DMN), the executive control network (ECN), and a

combined network formed of both the default and control

networks (Both). We included the combined mask to assess

whether providing both networks together as input for clas-

sification would result in increased classifier performance,

over and above that when only a single networkwas provided.

2.7. Multivariate pattern analysis

Next, we conducted MVPA classification of trials as creative

(AUT) or non-creative (OCT), for all networks of interest.

Classifiers were trained on labelled creative and non-creative

trials, and then tested to classify unlabeled trials.We assumed
Fig. 2 e Analysis process (left to right). Thinking periods in eac

(early, mid, late). For each time period, 46 parameter-estimate i

Three different network masks were then applied to each of th

classifiers.
that greater classification accuracy would reflect a greater

difference in brain activity between conditions (i.e., more

task-relevant information available to the classifier).

MVPA was conducted in MATLAB using a custom script

and the CoSMoMVPA package (Oosterhof, Connolly, & Haxby,

2016). The custom script is available via OSF (see Open Prac-

tises Statement). Linear Discriminant Analysis (LDA) was used

for classification, which was conducted separately for each

network of interest (DMN, ECN, Both), and each time phase

(early, mid, late), leading to nine separate multivariate clas-

sification analyses per participant. Each analysis followed a

23-fold leave-one-out cross-validation procedure, corre-

sponding to the number of trials per condition. The data were

organized into 23 folds, where each fold contained two sam-

ples: one from a creative trial, and one from a non-creative

trial. During each of the 23 iterations, a classifier was trained

on 22 folds and tested on the remaining 23rd, with testing and

training sets alternating until each fold had been tested.

Classification accuracy was then defined as the percentage of

the 46 trials that were classified correctly. This produced nine

classification accuracies for each participant, one for each

network and time phase combination.

To assess whether classifier performance was greater than

expected by chance, we used permutation testing, as done

previously (Coutanche et al., 2011; Etzel et al., 2008; Golland &

Fischl, 2003). This tests the null hypothesis that there is no

relationship between the data class labels (AUT or OCT) and

the voxel activity patterns, by repeating all nine analyses 1000

times and randomly shuffling the class labels each time. For

each relabeled dataset, classification accuracy was calculated,

and the average across-participant accuracy was computed.

This simulates a null distribution, against which classifier

performance on correctly labelled data can be compared.

Classifier performance greater than 95% of the random per-

mutations indicates above-chance accuracy (given an alpha of

p < .05). Since 1000 relabellings were computed, themaximum

possible significance level is .001.

To examine whether classification accuracy varied signif-

icantly over networks and time phases, we conducted a two-

way ANOVA, followed by a series post-hoc paired-sample t-

tests to compare classification accuracy within and between

networks, across the three time phases.
h of the 46 trials were split into three equal time periods

mages were extracted from the GLM (one for each trial).

ese three sets of images, before they were fed into MVPA

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 3 e Bar chart depicting mean classification accuracy

across the three networks and three time phases. Note. A

50% accuracy would be expected by chance, and so is used
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2.8. Correlation analysis

As discussed, classification accuracy in our study reflects the

difference in brain activity between creative and non-creative

trials. Since greater accuracy implies that creative cognition is

more distinguishable from non-creative cognition, it should

indicate stronger or more widespread creative cognitive pro-

cesses (i.e., more “creative activity”). Moreover, it is possible

that participants who display more creative activity tend to

generate more creative ideas. It is also possible that creative

activity in some brain regions and time phases is more related

to the creative quality of ideas than in others (e.g., early cre-

ative activity might be more related to creative quality than

later creative activity). To examine these possibilities, we

computed Pearson correlations between participants’ classi-

fication accuracies (for all networks and time phases) and

their rated creativity scores (see Coutanche et al., 2011; Kim et

al., 2015).
as a baseline in this chart. DMN ¼ default mode network;

ECN¼ executive control network; Both¼ DMNþ ECN. Only

significant differences in accuracy between the DMN and

ECN masks are indicated. **p < .01.
3. Results

3.1. Descriptive statistics

Processed, participant-level data is available via OSF (see Open

Practises Statement). Regarding AUT creativity ratings, inter-

rater reliability was in the excellent range, with an intraclass

correlation coefficient of .92 (.90e.94). Descriptive statistics for

the behavioral measures of fluid intelligence (Gf), and rated

AUT creativity, together with the nine classification accu-

racies corresponding to the three network x three time phase

combinations, are shown in Table 1.

3.2. Classification accuracy and comparisons

Figure 3 depicts classification accuracies for each network and

time phase. In all nine network and time phase combinations,

classification accuracy was significantly above chance level,

as determined by permutation analysis (ps ¼ .001). Specif-

ically, all accuracies were greater than all 1000 randomly

relabeled permutations. Classification accuracy reached the
Table 1 e Means and standard deviations for Gf and AUT
creativity score, and classifier performance across the
three networks and three time phases.

M SD

Gf .00 .79

AUT creativity 1.85 .30

Early DMN .70 .10

Early ECN .73 .11

Early Both .72 .11

Mid DMN .60 .10

Mid ECN .61 .10

Mid Both .61 .10

Late DMN .64 .10

Late ECN .65 .10

Late Both .65 .10

Note. Gf ¼ fluid intelligence; AUT ¼ alternate uses task;

DMN ¼ default mode network; ECN ¼ executive control network;

Both ¼ DMN þ ECN.
highest point in the ECN during the early time phase, sug-

gesting that brain activity in this region and at this time shows

the greatest difference between creative (AUT) and non-

creative (OCT) trials. Across time phases, classification accu-

racywas highest in all networks in early phases, dropped to its

lowest point in mid phases, and increased moderately in late

phases of trials.

A two-way ANOVA was conducted to test the significance

of differences in accuracy across networks and time phases.

Significant main effects were found for network (F

[1,168] ¼ 7.06, p ¼ .008, hp
2 ¼ .01) and time phase (F

[2,168] ¼ 90.54, p < .001, hp
2 ¼ .15). The interaction between

network and time phase was non-significant (p ¼ .201). To

further investigate the differences in classification accuracies

within networks (between time phases) and between net-

works (for each time phase), post-hoc paired-sample t-tests

were conducted. For all t-tests, we report Cohen's dav as a

measure of effect size (Lakens, 2013). Results can be seen in

Table 2. Considering differences in classification accuracy

between the DMN and ECN, a significant difference was found

only during the early time phase (see Fig. 3), with accuracy in

the ECN (M ¼ .73, SD ¼ .11) significantly greater than in the

DMN (M ¼ .70, SD ¼ .10; t [167] ¼ 2.80, p ¼ .005, dav ¼ .31).

Considering differences in classification accuracy between

the three time phases (for each network separately), within

the DMN, classification accuracies in all time phases were

significantly different from one another (ps < .005). Likewise,

within the ECN, classification accuracies in all time phases

were significantly different from one another (ps < .001).

We also conducted t-tests to examine whether classifica-

tion accuracy using the combined mask was greater than

using the individual network masks. During early phases,

classification accuracy in the combined (Both) network

(M ¼ .72, SD ¼ .11) was significantly greater than in the DMN

(M ¼ .70, SD ¼ .10; t [167] ¼ 2.15, p ¼ .032, dav ¼ .23), but did not

differ significantly from accuracy in the ECN (p ¼ .485). No

https://doi.org/10.1016/j.cortex.2022.08.008
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Table 2 e Results of t-tests contrasting classification
accuracy between networks in each time phase, and
between time phases in each network.

(A) Across networks (DMN vs ECN)

DMN vs ECN t p Cohen's Dav

Early �2.80 .005 .31

Mid �.64 .524 .07

Late �1.04 .299 .11

(B) Across time (within DMN)

DMN t p Cohen's Dav

Early vs Mid 8.22 .000 .90

Early vs Late 5.27 .000 .57

Mid vs Late �3.03 .003 .33

(C) Across time (within ECN)

ECN t p Cohen's Dav

Early vs Mid 10.15 .000 1.11

Early vs Late 6.93 .000 .76

Mid vs Late �3.42 .001 .37

Note. DMN ¼ default mode network; ECN ¼ executive control

network.
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other significant differences were found (ps > .05), suggesting

that classification accuracy was not markedly improved sim-

ply by providingmore information to the classifier in the form

of both networks together.

3.3. Correlations

To assess how the creative brain activity within each network

and time phase related to behavioral measures, we computed

Pearson correlations between AUT creativity, fluid intelli-

gence (Gf), and the six classification accuracies corresponding

to the individual networks (i.e., DMN and ECN), and three time

phases. Table 3 displays the results of these correlations. Fluid

intelligence was not found to correlate with classification ac-

curacy in any of the six network and time phase combina-

tions. By contrast, AUT creativity correlated significantly with

classification accuracy in all networks and time phases. The

strongest correlation was found between AUT creativity and

classification accuracy in the DMN in early phases of trials

(r ¼ .25, p ¼ .001).
Table 3 e Pearson correlations between behavioral
measures and classification accuracy, across all time
phases and networks.

Gf AUT creativity

AUT creativity .24** -

Early DMN .01 .25**

Early ECN .00 .19*

Mid DMN .07 .17*

Mid ECN .06 .23**

Late DMN -.06 .16*

Late ECN -.07 .21**

Note. Gf ¼ fluid intelligence; AUT ¼ alternative uses task;

DMN ¼ default mode network; ECN ¼ executive control network. *

p < .05, ** p < .01.
Looking at correlations between AUT creativity and clas-

sification accuracy over time reveals a clear difference be-

tween the DMN and ECN. While the correlation between AUT

creativity and classification accuracy in the DMN was highest

during early phases of trials, dropping off in mid and late

phases, the same correlation in the ECN was lowest in early

phases, highest at mid phases, and dropped again in late

phases of trials. Fig. 4 displays a graphical comparison of the

strengths of correlations betweenAUT creativity and classifier

performance in the ECN and DMN, in each time phase.

These results suggest that the activity with the greatest

relevance to creative quality occurs in the DMN during early

phases of trials. Indeed, while classification accuracies alone

indicate that the ECN holds the greatest amount of creative

activity during early phases (see Fig. 3), correlations with

quality suggest that this activity may be less relevant to idea

quality than the creative activity of the DMN in early phases.

Instead, creative activity in the ECN appears to be most rele-

vant to idea quality during mid phases of trials. Taken

together, these findings suggest a distinction between brain

activity that differs between creative and non-creative trials,

and brain activity that both differs between trials and is

related to the actual creative quality of the generated idea.

Steiger's Z tests for differences between dependent, over-

lapping correlations were conducted for each time phase

separately (Steiger, 1980). No significant differences were

found between the DMN and ECN, in terms of correlations

between classification accuracy and creative quality, for early

phases (z ¼ 1.36, p ¼ .177), mid phases (z ¼ �1.07, p ¼ .288), or

late phases (z ¼ �.86, p ¼ .391). While differences between

correlations are non-significant in each time phase individu-

ally, results may suggest a modest difference between net-

works in terms of the time-pattern of how their activity relates

to creative quality.
4. Discussion

The present study examined how two brain networks, the

DMN and ECN, contribute to creative cognition over time
Fig. 4 e Strength of correlation between AUT creativity and

classification accuracy in the DMN and ECN, across all time

phases. Note. DMN ¼ default mode network;

ECN ¼ executive control network.
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during the production of a single creative idea. We aimed to

inform several outstanding questions regarding the roles of

these networks, and the cognitive processes they support, in

creative cognition. One key aim was to examine whether

creative cognition involves distinct stages of generation and

evaluation, supported by different proportions of DMN and

ECN activity. Dividing trials into three successive time phases,

we used MVPA to classify trials as creative or non-creative.

Classification accuracy was used to indicate the amount of

creative activity in each network and time phase. We also

computed correlations between classification accuracy and

rated creative performance, to assess how relevant the crea-

tive activity in each network and time phasewas to the quality

of generated ideas.

Our predictions assumed that generative and evaluative

stages involve different combinations of associative and

controlled processes, and so different proportions of DMN and

ECN activity. Specifically, we expected that early phases of

creative trials would involve greater creative activity in the

DMN, reflecting generation, while later phases would involve

greater creative activity in the ECN, reflecting evaluation.

Similarly, we expected that creative quality would be more

strongly correlated with DMN creative activity in early time

phases, and with ECN creative activity in later time phases.

Our findings suggest a distinction between neural activity that

is relevant to creative cognition overall (in the sense of

differing between creative and non-creative trials), and ac-

tivity that is both relevant to creative cognition and also

relevant to creative quality specifically. Overall, our findings

provide tentative evidence for distinct stages in creative

cognition, potentially corresponding to generation and

evaluation.

4.1. Neurocognitive mechanisms of creative cognition

These findings offer new insight into the dynamics of neuro-

cognitive processes during creative cognition. As discussed,

research suggests that the DMN, which typically activates

during tasks involving spontaneous cognition and memory

retrieval (Andrews-Hanna et al., 2014; Buckner, Andrews-

Hanna, & Schacter, 2008; Fox & Beaty, 2018), contributes to

creativity through spontaneous recall and association-making

processes (Bashwiner, Wertz, Flores, & Jung, 2016; Beaty &

Lloyd-Cox, 2020; Marron et al., 2018; Shi et al., 2018).

Research also indicates that the ECN,which typically activates

in executive tasks including WM and inhibitory control para-

digms (Niendam et al., 2012; Seeley et al., 2007; Shen et al.,

2020), may aid creative cognition by guiding thought in stra-

tegic directions and inhibiting unoriginal ideas (Beaty et al.,

2017; Benedek & Jauk, 2018; Christensen et al., 2021). Linking

these findings to the notion that creativity involves distinct

and cyclic phases of generation and evaluation (Basadur, 1995;

Finke et al., 1992), researchers have suggested that associative

DMN-based processes may underlie the generation of ideas,

while controlled ECN-based processes oversee the evaluation

of ideas (Beaty et al., 2016; Jung et al., 2013; Kleinmintz et al.,

2019; Mayseless et al., 2015). Indeed, while it is likely that

generative and evaluative stages each involve both DMN and

ECN activity, for example with the ECN aiding generation by

inhibiting unoriginal concepts (Beaty et al., 2017), it seems
likely that generation relies mostly on the DMN, while evalu-

ation relies mostly on the ECN (Beaty et al., 2016; Benedek &

Jauk, 2018; Mayseless et al., 2015).

However, these ideas are largely speculative. Even if idea

generation and evaluation are distinctly localized on the DMN

and ECN, respectively, it is far from clear that generative and

evaluative thought occur in cycles (Kleinmintz et al., 2019), as

opposed to simultaneously (Goldschmidt, 2016). Very few

studies have examined the temporal dynamics of neural

network activity during creative cognition. Indeed, previous

fMRI studies have examined generative and evaluative stages

(e.g., Ellamil et al., 2012), but only by asking participants to first

generate ideas and later evaluate them. By contrast, the pre-

sent research followed a small number of recent fMRI and EEG

studies (Beaty et al., 2015; Rominger et al., 2019; Schwab et al.,

2014), to keep the creative process intact during task perfor-

mance, only separating it into distinct phases during analysis.

4.2. The time-course of brain network contributions to
creative cognition

Overall, we found very similar time patterns of classification

accuracy in the DMN and ECN: accuracy was highest in early

phases, decreased to the lowest point in mid phases, and rose

again in late phases of trials. This suggests closely-matched

proportions of creative activity in both networks, consistent

with strong coupling between the networks during creative

cognition (see Beaty et al., 2016). In isolation, this finding

might suggest that generative and evaluative phases either do

not exist, do not last long enough to be detectable over 4-sec

time periods, or do not depend on different proportions of

DMN and ECN activity. Moreover, a significant difference in

classification accuracy between networks was found only

during early phases, in which accuracy was significantly

higher in the ECN than the DMN. This was contrary to our

expectations, suggesting that early stages of creative cogni-

tion involve a greater contribution from controlled processes

than associative processes. This finding could still be consis-

tent with an initial generative stage, but one that is not pri-

marily dependent on the DMN, and requires ECN-based

processes to initiate creative search, monitor for unoriginal

ideas, and drive association-making in the most fruitful di-

rections (Kenett et al., 2018; Madore, Thakral, Beaty, Addis, &

Schacter, 2017).

However, correlations between classification accuracy and

rated creative quality paint a more nuanced picture of the

contributions of these networks to creative cognition over

time. We found markedly different time-patterns of correla-

tions between the two networks. Accuracy within the DMN

was most correlated with creative quality in early phases of

trials, becoming less correlated in mid and late phases. By

contrast, accuracy within the ECN was least correlated with

creative quality in early phases, becoming most correlated in

mid phases, before dropping slightly in late phases. While

differences between each pair of correlations were found to be

non-significant, the varying patterns of correlations over time

could indicate that early periods of creative cognition are

characterized by more quality-relevant creative activity in the

DMN,whilemiddle and late periods are characterized bymore

quality-relevant creative activity in the ECN e a pattern
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consistent with a generationeevaluation cycle in creative

cognition (e.g., Finke et al., 1992; Kleinmintz et al., 2019).

Overall, our findings suggest a distinction between neural

activity that is relevant to creative cognition in general, and

neural activity that is relevant to creative quality specifically.

In particular, while classification accuracy alone indicates a

greater amount of creative activity in the ECN than the DMN

during early phases, correlations suggest that it is actually the

creative activity of the DMN that is most relevant to creative

quality during this time. One possible explanation for this

discrepancy could be that classification accuracy can also

result from activity that is relevant to non-creative (OCT) tri-

als. Specifically, rather than creative trials being distinguish-

able from non-creative trials due to more prevalent creative

activity, greater classification accuracy could also result from

creative trials simply not containing activity unique to non-

creative trials, such as particular kinds of memory recall

processes. However, the fact that classification accuracy did

not significantly correlate with fluid intelligence, in any

network or time phase, does provide some indication that

accuracy reflects creative activity, and not more general

cognitive processing. A more likely possibility is that activity

related to creative cognition is not always related to the actual

creative quality of the produced idea. For example, the initial

creative activity of the ECNmay include processes that help to

initiate creative cognition, or inhibit obvious and uncreative

ideas, rather than directly shaping original ideas. The early

creative activity of the DMN, by contrast, might be more

directly responsible for the specific idea that is generated, as

would be consistent with the DMN's role in spontaneous

memory and simulation processes (Andrews-Hanna et al.,

2014; Beaty et al., 2018; Beaty & Lloyd-Cox, 2020).

While the greater correlation between creative quality and

classification accuracy in the DMN during early phases of

trials is suggestive of an initial generative period, in mid and

late phases the pattern of correlations flips, with the activity

of the ECN becoming most relevant to creative quality. This

may be consistent with a later evaluative stage in creative

cognition, in which controlled processes based in the ECN

assess and refine ideas (Beaty et al., 2016; Jung et al., 2013;

Kleinmintz et al., 2019). With the initial generation of ideas

now being completed, DMN processes might become less

important to creative quality, while the ECN operates to select

a single best idea and shape it into a final state (Sowden et al.,

2015; Zhou et al., 2018). The fact that both networks remain at

least somewhat relevant to creative quality in all time phases

is consistent with the notion that generative and evaluative

stages each involve some combination of associative and

controlled processes, and indeed some combination of DMN

and ECN activity (Beaty et al., 2016; Benedek & Jauk, 2018;

Mayseless et al., 2015).

Taking a wider view, classification accuracy in both net-

works followed a U-shaped pattern over time. This was strik-

ingly similar to the pattern of alpha activity found by recent

EEG studies examining the temporal dynamics of creative

cognition (Rominger et al., 2019; Schwab et al., 2014). As noted,

stronger alpha activity is often correlated with greater creative

performance (Agnoli et al., 2020; Fink et al., 2018). Interpreting

classification accuracy as indicating the quantity of creative

activity, our results mirror these previous studies by
suggesting an initial peak in creative activity at the beginning

of trials, followed by a slump during the middle of trials and a

final rise at the end of trials prior to verbalization. Also in line

with prior research, we found a small correlation between

fluid intelligence and creative performance (r ¼ .24), as ex-

pected from previous findings regarding the relationship be-

tween intelligence and creativity (Benedek, Jauk, Sommer,

et al., 2014; Benedek, Jung, & Vartanian, 2018; Nusbaum &

Silvia, 2011).

4.3. Limitations and directions for future research

To our knowledge, the present study is the first to use MVPA

methods to assess the contributions of functional brain net-

works to creative cognition over successive time phases of a

creative task. MVPA can indicate the quantity of task-relevant

activity in a given region, enabling comparison of this activity

across regions and time phases. We believe our findings

highlight the considerable promise MVPA holds as a meth-

odological tool for examining the dynamics of neurocognitive

processes during creative cognition. Future studies could

expand on the present research in several important ways.

First, our sample of participants was 70% female. Given

differences in functional brain activity between males and

females, both during resting-state (e.g., Dhamala, Jamison,

Sabuncu, & Kuceyeski, 2020; Filippi et al., 2013) and creative

cognition (Abraham, Thybusch, Pieritz, & Hermann, 2014),

future studies should seek to confirm our findings in a more

evenly distributed sample of participants.

Second, the present study took a broad view, focusing on

the roles of the entire ECN and DMN in creative cognition.

However, these networks are comprised of numerous sub-

regions. Recent research indicates that different regions of

the DMN and ECN underlie different aspects of creative

cognition (Beaty et al., 2020, 2021; Pe~na et al., 2019). As such,

future studies might examine a larger number of more

restricted brain regions, to gain a richer understanding of how

these regions contribute to creative cognition at different

stages of the creative process.

Third, the present research focused on only one creative

task: the AUT. However, creative cognition is a broad and

high-level construct, and can be studied in musical and visual

as well as verbal domains. DMN-ECN coupling has been found

in a large variety of creative tasks (see Beaty et al., 2016), and

so future research could explore whether the time-pattern of

creative activity (and quality-relevant creative activity) found

in this study is unique to the AUT or also present in creative

tasks in different domains.

Moreover, the poor temporal resolution of fMRI is an

additional, and somewhat inevitable, limitation of this

research. Without more fine-grained temporal resolution, our

understanding of more detailed aspects of the neurocognitive

processing underlying creative cognition will remain highly

speculative. Future research could explore more time-

sensitive neuroimaging methods, for example combining

MRI and EEG techniques (e.g., Mele et al., 2019). An additional

point relating to the temporal aspect of our study concerns the

decision to divide the thinking period into three equal stages.

While this followed previous research (Rominger et al., 2019;

Schwab et al., 2014), subsequent studiesmight define the time
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stages in a more evidence-based way, for example by

considering estimates of the precise point at which an idea is

first generated. Indeed, the present study found modest but

non-significant differences between the correlations of each

network's classification accuracy with creative quality. More

precisely defined time phases with higher temporal resolution

might help future studies to better contrast the relevance of

activity in different networks to creative quality, leading to a

clearer understanding of the nuances of creative cognition.

Lastly, the fact that greater classification accuracy can also

reflect activity unique to a control task underlines that it

cannot, by itself, be used to measure creative activity. Instead,

relationships between classification accuracy and behavioral

measures should also be examined. However, MVPA need not

be restricted to distinguishing creative and non-creative trials.

For example, future research could divide creative trials into

groups based on the rated quality of the ideas (e.g., poor vs

good). Rather than classifying trials as creative or non-

creative, MVPA classifiers could instead be trained to match

neural activity to its correct creativity rating (cf. Stevens &

Zabelina, 2020). Poorer creative ideas would in effect consti-

tute a more appropriate control task, with classification ac-

curacy now reflecting differences in activity relevant to better

creative performance, rather than to creative performance in

general.

5. Conclusion

Creative cognition is increasingly understood as a product of

ordinary cognitive processes including memory, attention,

and cognitive control (Benedek & Fink, 2019; Chrysikou, 2019;

Volle, 2018; Zabelina, 2018). However, the field remains far

from possessing a complete, process-level understanding of

creativity. We believe that further progress toward this goal

will depend greatly on an increased focus on how neural ac-

tivity changes over time during creative cognition. Together

with modern analytic tools such as MVPA, connectivity anal-

ysis, EEG, and trans-cranial brain stimulation, research into

the time course of creative cognition could reveal much about

the details of cognitive operations during creativity, and how

these operations vary across tasks and individuals.
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