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ABSTRACT 

Motor improvements have been linked to reward magnitude in deterministic contexts. 

Nevertheless, it remains unclear whether individual inferences about reward probability dynamically 

influence motor vigour. Moreover, how factors such as age, Parkinson’s disease or anxiety affect 

the modulation of motor vigour by predictions of reward probability remains unexplored. 

This thesis, across four experiments, investigates how inferences about the volatile action-

reward contingencies modulate motor performance on a trial-by-trial basis. We employed a reward-

based motor decision-making task and modelled the behavioural data using the Hierarchical 

Gaussian Filter (HGF). In the final two studies, we also recorded the brain electrical activity through 

electroencephalography and used convolution models for oscillatory responses to delve into the 

neural underpinnings of motor decisions. 

The results revealed that stronger predictions about action-reward probabilities led to faster 

performance tempo on a trial-by-trial basis in healthy participants. This effect was preserved in older 

adults and medicated Parkinson’s disease patients. Furthermore, the invigoration of motor 

responses extended to explicit beliefs (confidence) about reward tendencies. 

Trait anxiety did not modulate the association between predictions and motor performance 

but affected practice effects over time. Analyses of the time-frequency representation of HGF 

computational quantities describing decision making unveiled increased alpha/beta correlates of 

different types of uncertainty among high trait anxiety individuals. 

Finally, we found that state anxiety dampened the invigoration effect previously discussed. 

This manifested as longer reaction time for actions that were highly anticipated to yield rewards. 

Moreover, state anxiety led to reduced theta oscillatory responses during processing win/lose 

outcomes. 

In conclusion, this thesis integrates computational modelling, Bayesian statistics, and 

electrophysiological approaches to explore motor decision-making behaviour under volatility. It 

provides novel evidence for an invigoration of motor performance by predictions about the action-

reward contingency and sheds light on the modulation of this effect by age, Parkinson’s disease, 

trait and state anxiety. 
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CHAPTER 1: INTRODUCTION 

 
This chapter establishes the theoretical framework for the studies included in the thesis, 

which primarily focuses on exploring the invigoration of motor responses by predictions about the 

action-reward contingencies under volatility. First, I synthesise existing evidence that underscores 

the role of rewards in invigorating motor behaviour. Importantly, this evidence is limited to 

manipulations of reward magnitude in deterministic contexts, leaving unexplored how beliefs about 

reward probabilities shape motor responses. Moving forward, I delve into the behavioural and neural 

mechanisms that underlie how individuals make decisions and learn under uncertainty. I specifically 

focus on the literature surrounding probabilistic learning paradigms, Reinforcement Learning 

models, Hierarchical Bayesian inference models and predictive coding. I extend this discussion to 

encompass older adults and Parkinson’s disease patients, aiming to highlight potential age- and 

pathology-driven changes in reward-based learning in uncertain environments. Lastly, as anxiety is 

one of the most prevalent neuropsychiatric features in both healthy and pathological ageing, I 

investigate its impact on probabilistic learning and motor behaviour.  

 

1.1 REWARDS AND MOTOR CONTROL 

1.1.1 A brief introduction about rewards 

Humans are inherently driven towards the obtainment of positive and pleasurable outcomes. 

Whether it is enjoying a slice of cake after a long hike, satisfying our thirst with a cold glass of water 

following a tiring tennis match, or achieving a high grade after months of dedicated study, any 

objective that we actively seek and work for is referred to as a reward (Schultz, 2016). Food and 

social interactions are intrinsically rewarding because of their role in supporting survival 

mechanisms, thereby referred to as primary rewards. Other factors, such as money, art and music, 

acquire incentive properties through association with primary incentives or pleasurable responses, 

and are thus labelled secondary rewards (Arias-Carrión et al., 2010; Diederen & Fletcher, 2021). In 

laboratory settings, reward processing is typically assessed by providing participants with feedback 

about their behavioural performance (additional information available in section 1.2.1). This feedback 



 15 

can be delivered through various sensory modalities, such as visual, auditory, and tactile (Luft, 

2014). Three main psychological components have been identified within the construct of reward: 

liking - any hedonic reaction that leads to pleasure, wanting – the subjective sensation of desiring 

something, and learning – the process of linking past experiences to future rewards through 

associations (Berridge & Kringelbach, 2008).  

In the 1900s, animal studies shed light on the involvement of dopaminergic (DA) systems in 

incentive processing, laying the groundwork for understanding the neuroanatomical basis of rewards 

(Olds & Milner, 1954). Today, it is well established that reward processing in humans is mostly linked 

to DA activity in the midbrain and ventral striatum (Bressan & Crippa, 2005; Schultz, 2000, 2016; 

see section 1.2.2 for further details). Overall, three main reward-related DA pathways have been 

identified: the mesolimbic, the mesocortical, and the nigrostriatal pathways (Arias-Carrión et al., 

2010; Diederen & Fletcher, 2021). The first two systems are often combined into the 

mesocorticolimbic pathway due to significant anatomical overlap, supporting reward anticipation, 

processing, and value estimation (Bressan & Crippa, 2005). On the other hand, the nigrostriatal 

circuit facilitates action selection and movement control (Arias-Carrión et al., 2010; Perry & Kramer, 

2015; Smith & Villalba, 2008).  

After having briefly touched upon some of the key mechanisms for reward processing, I now 

shift the focus toward a crucial aspect of reward that this thesis addresses, namely its influence on 

motor vigour. 

 

1.1.2 Rewards as tools to invigorate motor behaviour 

An increasing number of studies has started to address the usefulness of rewards in 

invigorating motor behaviour. While several definitions for motor vigour have been proposed, a 

universally accepted one remains elusive. In the context of motor control, however, motor vigour is 

often defined as the velocity of a movement for a given extent (Shadmehr et al., 2019; Herz & Brown, 

2023). In other words, it represents the inverse of the time taken to complete an action, relative to 

the distance covered. It is worth mentioning, however, that this term assumes different meanings 

depending on the field of investigation. For instance, in research focusing on motor decisions rather 
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than motor control itself, vigour often reflects the willingness to exert effort when selecting which 

action to perform or deciding whether or not to engage in a task (Herz & Brown, 2023). 

The beneficial effects of rewarding feedback on motor behaviour have been found for 

saccades (Manohar et al., 2019; Milstein & Dorris, 2011; Sedaghat-Nejad et al., 2019; Takikawa et 

al., 2002), sequential actions (Anderson, 2020) and reaching movements (Codol et al., 2020; 

Sackaloo et al., 2015; Sporn et al., 2022; Summerside et al., 2018). For instance, Summerside et al. 

(2018) showed that when reaching for a rewarded target, movements exhibited shorter reaction 

times (RT), higher peak velocities, greater amplitudes, and reduced variability. In general, studies 

on motor control consistently reported that rewards shift the speed-accuracy trade-off, concurrently 

speeding up the movement and increasing accuracy (Codol et al., 2020; Manohar et al., 2019). Other 

work expanded these findings demonstrating that the reward-driven positive bias in motor 

performance is not compromised by age. In fact, although older adults displaying overall longer 

movement times, rewards invigorate motor behaviour similarly in young and ageing participants 

(Aves et al., 2021; Hird et al., 2022; Huang et al., 2018). 

Despite compelling evidence highlighting the role of rewards in invigorating behaviour, there 

is still a need to gain a solid understanding of the functional mechanisms that support incentive-

driven improvements in motor performance. In the following section, I provide a summary of some 

of the theories that have been proposed to bridge this gap, which include the reward-driven 

strengthening of motor cortical representations, increased feedback control processes, augmented 

limb stiffness, enhanced reward prediction error (PE) signalling, and coarticulation. 

 

1.1.3 Theories of reward-driven motor invigoration 

Several non-mutually exclusive theories have been proposed to explain the motor 

invigoration effect by rewards.  

Firstly, it has been postulated that rewards enhance movements by strengthening the cortical 

representations of actions (Adkins & Lee, 2021; Galaro et al., 2019). Adkins and Lee (2021) 

conducted a motor sequencing task where they manipulated the magnitude of performance-related 

rewards. Consistent with previous research (see section 1.1.2), they found that task performance 
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improved with increasing reward size. The authors also observed that before movements occurred, 

rewards influenced distributed patterns of brain activity, not only in typical reward-related regions 

(e.g., striatum and ventromedial frontal cortex) but also in regions supporting motor planning, such 

as the lateral frontal cortex, the supplementary motor area (SMA), and pre-SMA. Moreover, they 

demonstrated that the capacity to decode future actions from the pre-SMA increased with higher 

reward values and that successful task performance was more likely when actions could be 

accurately decoded from the SMA prior to movement. These results indicate that reward-related 

motor improvements are associated with enhanced representations of actions during movement 

planning. 

Moreover, incentives have been shown to positively impact motor performance by enhancing 

feedback control processes. These are defined as a collection of adaptable mechanisms responsible 

for monitoring and adjusting behavioural responses in accordance with sensory feedback. In the 

realm of motor control, these mechanisms function by converting internal neural states and sensory 

inputs into motor outputs (Carroll et al., 2019). The reward-driven improvements translate in the 

ability to better maintain goal-related information during execution and efficiently correct movement 

errors (Botvinick & Braver, 2015; Carroll et al., 2019; Dhawale et al., 2017; Manohar et al., 2019). In 

a study by Manohar et al. (2019) using saccade trajectories, rewards led to greater velocity, 

amplitude, and precision of ocular movements. This was associated to strengthened internal 

negative feedback mechanisms facilitating more robust error correction during the saccades, 

ultimately leading to an overall enhancement in movement precision.  

Next, it has been suggested that rewards exert their effects through an increase in limb 

stiffness. This was demonstrated by Codol et al. (2020) in a reaching task, where they showed that 

anticipating a future reward led to improved performance by augmenting arm stability at the end of 

the reaching movement. This enhancement in stiffness provided individuals with a greater capacity 

to counteract perturbations and motor noise, eventually leading to improved motor performance.  

Recent research provided another elegant perspective for interpreting the reward-based 

invigoration effect, suggesting that it may be conveyed through reward PE signalling (Sedaghat-

Nejad et al., 2019). In simple terms, reward PEs show how predicted rewards differ from actual ones 
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and are encoded in midbrain DA cells. When there is an unexpected positive outcome, DA activity 

increases, while when expected rewards are not given or are smaller than anticipated, DA activity 

decreases (Schultz, 2016; more specific information about PE and the underlying neurobiological 

mechanisms is provided in section 1.2.2). In the study by Sedaghat-Nejad and colleagues (2019), 

participants were instructed to make saccades toward an image. While executing the first eye 

movement, the position and content of the image were altered, prompting a second saccade. At 

times, the second image carried a higher reward value than the first one, resulting in a positive 

reward PE event. Conversely, in other trials, the second image held less reward value, leading to a 

negative reward PE. The findings revealed that participants exhibited greater motor vigour following 

a positive PE and lower vigour after a negative PE. These findings highlight the crucial role of 

transient DA release in the milliseconds leading up to a movement as a mechanism to invigorate 

and energise motor behaviour.  

Lastly, reward-driven motor improvements have been attributed to coarticulation, a process 

wherein individual movements are gradually integrated into a single, seamless, faster, and more 

efficient action (Sporn et al., 2022). In a sequential reaching task, Sporn and colleagues (2022) 

unveiled that rewards expedited the otherwise slow learning process associated with coarticulation, 

leading to smoother movements. Remarkably, these motor enhancements through coarticulation 

persisted even after the incentives were no longer provided. According to the authors, this was due 

to coarticulation optimising overall action efficiency and reducing the metabolic costs associated to 

reaching movements.  

Taken together, these studies demonstrated the efficacy of incentives in energising motor 

behaviour. Nevertheless, these findings were restricted to manipulations of reward size (e.g., 

presence/absence; small/large) within deterministic contexts, thus offering no insight into how motor 

behaviour is modulated by predictions about reward probabilities. Importantly, our daily lives expose 

us to dynamic and uncertain environments, where goal-directed behaviour relies on the capacity to 

estimate the changing probabilistic relationships between actions and their outcomes. The studies 

presented in this thesis (Chapters 3-6) aim to bridge this gap by investigating how expectations of 

reward probabilities shape motor behaviour under uncertainty. To provide a comprehensive context 
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for understanding how individuals learn and make decisions in uncertain environments, the following 

section delves into elucidating how individuals navigate uncertainty. This discussion specifically 

focuses on the literature related to probabilistic reward-based learning tasks, Reinforcement 

Learning (RL) models, Hierarchical Bayesian inference models and their underlaying neurobiological 

mechanisms. 

  

1.2 REWARD-BASED LEARNING UNDER UNCERTAINTY 

1.2.1 Reward magnitude versus reward probability: tasks to investigate 

reward-based learning under uncertainty 

 As mentioned earlier, existing investigations into the invigoration of behavioural responses 

involved comparing motor performance under conditions with varying reward magnitudes (Aves et 

al., 2021; Codol et al., 2020; Sporn et al., 2022). For example, in Sporn et al. (2022), participants 

were assigned randomly to either a reward or no-reward group. In the reward condition, the amount 

of points participants could obtain was contingent on their movement times, with greater rewards 

offered for faster actions. This approach (and similar paradigms manipulating reward magnitude) 

provided the opportunity to explore how the anticipation of rewards enhanced motor performance on 

a trial-by-trial basis in deterministic contexts.  

Nevertheless, the environment we engage with on a daily basis is highly uncertain. To exhibit 

adaptive responses, we thus need to continuously estimate the changing action-reward 

contingencies. Consider a scenario with two alternative routes for the daily commute to work: one 

shorter but often congested, the other longer but less prone to traffic. To ensure punctual arrival at 

work, it is crucial to predict the success probability of each route. Sometimes, opting for the longer 

route becomes preferable due to high traffic, while on other days, the shorter route is favourable if it 

remains clear. Thus, under uncertainty, goal-directed behaviour relies on keeping on predicting the 

dynamic associations between our actions (which route to take) and their outcomes (timely arrival). 

Crucially, how beliefs about probabilistic action-reward mappings modulate the motor performance 

is still largely unknown.  
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Probabilistic reward-based learning paradigms have been extensively employed to evaluate 

how individuals make decisions and learn under uncertainty (Der-Avakian & Pizzagalli, 2018; 

Eppinger et al., 2011; Frank et al., 2004; Paulus et al., 2002; Ryterska et al., 2013; Topel et al., 

2023). In these tasks, participants are typically required to select between two stimuli or actions to 

obtain rewards (or avoid punishments). The likelihood of each option resulting in a reward depends 

on the underlying task structure, with the reward mapping being either complementary (e.g., choice 

A is rewarding in 10% of trials, while choice B is rewarding in 90% of trials) or independent (e.g., 

choice A is rewarding in 20% of trials, choice B is rewarding in 50% of trials). Consequently, even 

when holding strong predictions, anticipating rewards is not always possible due to the probabilistic 

nature of the task environment. This stands in contrast to deterministic reward-based learning 

paradigms, where one stimulus consistently maps to a reward, and the other stimulus always 

corresponds to a non-rewarding (or negative) outcome (Eppinger et al., 2008).  

 As highlighted in the traffic example above, we often encounter situations where something 

once rewarding loses its value (e.g., under high traffic conditions, the short route is no longer 

rewarding, favouring the long route). Learning from stimulus-outcome contingencies that reverse 

over time is captured by reversal learning paradigms (de Berker et al., 2016; Der-Avakian & 

Pizzagalli, 2018; Eppinger et al., 2011; Harris et al., 2022; Jara-Rizzo et al., 2020; Ryterska et al., 

2013; Topel et al., 2023; Weiss et al., 2021). In such tasks, the reward mappings flip after every few 

trials, causing the option that was previously more likely to be rewarding to become less valuable. 

In these scenarios, participants' adaptive behaviour relies on their ability to flexibly readapt to a new 

environment. 

 Hence, learning under uncertainty involves the ability to estimate associations between 

stimuli or actions and outcomes, and to adapt one's behaviour accordingly. How individuals use 

reward information to predict future outcomes and guide their decisions has been explored 

mathematically in the framework of RL, which is discussed in the next section. 
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1.2.2 Reinforcement Learning 

As highlighted in the previous section, adaptive behaviour relies on anticipating future 

rewards and on adjusting responses accordingly. The question of how we utilise rewarding (or 

punitive) information to guide our decision-making processes has been a pivotal inquiry within the 

fields of behavioural neuroscience and psychology for almost a century, with one of the earliest 

investigations associated with the pioneering work of Pavlov and Anrep (1927). They trained animals 

to anticipate forthcoming rewards (unconditioned stimuli), such as food, upon exposure to sounds 

(conditioned stimuli). Through repeated pairings, Pavlov and co-worker observed that the animals 

eventually began salivating when sounds were presented, demonstrating the acquisition of a learned 

association between the conditioned and unconditioned stimuli (classical conditioning). Thorndike 

(1989) and Skinner (1938) made a step forward illustrating how animals adapt their behaviour to 

maximise the probability of obtaining rewards (instrumental conditioning). This form of learning 

differs from classical conditioning, as reward acquisition is contingent on the behavioural response 

(i.e., in classical conditioning, the reward always follows the conditioned stimuli regardless of 

behaviour). For instance, in Skinner (1963), cats confined within a container quickly learned to press 

a lever to obtain food, and when placed back into the box, they repeated the same action. The time 

that elapsed between entering the container and pressing the lever to obtain the unconditioned 

stimulus shortened progressively, revealing that the association was learned and the appropriate 

action was reinforced. In summary, both classical and instrumental conditioning underscore the 

pivotal role of rewards in motivating behaviour and fostering learning, laying the foundation for the 

development of RL theories (Diederen & Fletcher, 2021). 

RL offers a computational framework for gaining a mechanistic understanding of decision 

making in response to rewards and punishments (Dayan & Daw, 2008; Niv, 2009). Within this 

context, the Rescorla-Wagner model (RW; 1972) stands out as one of the leading models of reward-

based learning. It posits that learning only occurs when events deviate from expectations, as 

captured by the following formula: 

 

yn = y(n−1) + α ∗	δn 
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At the heart of the learning process lies δ, which represents the size of the mismatch between the 

expected and actual outcomes, i.e., the PE. The formula outlines that during each trial (n), 

predictions regarding the reward value (y) get updated based on the magnitude of the reward PE (δ) 

and a fixed learning rate (α). The model implies that learning occurs when PEs is different from zero, 

a condition that is met unless rewards become highly predictable (Diederen & Fletcher, 2021; Niv, 

2009; Schultz, 2000).  

One of the main limitations of the RW model is that it fails to consider the temporal 

relationships between events within a trial. According to this model, the predicted reward value 

remains unaffected by whether the outcome immediately follows the cue or if there is a substantial 

time interval between these two. However, our everyday experiences suggest otherwise, as 

immediate rewards are generally more appealing than delayed ones. This aspect has been 

addressed by Sutton and Barto (1998), who developed the temporal difference learning rule. 

Accordingly, they introduced a discount factor when calculating the PE, with rewards delivered 

sooner being more valuable than those arriving later.  

Significant efforts have been devoted to unveiling the neural origins of PE signals in the brain. 

A large amount of evidence points to the involvement of phasic DA activity within the midbrain (i.e., 

ventral tegmental area and substantia nigra) and striatum in conveying reward PEs. This finding can 

be traced back to the pioneering work of Schultz and colleagues (1997), who observed systematic 

alterations in the firing patterns of DA neurons in these regions in response to rewards. Specifically, 

increased DA activity was reported for positive unexpected outcomes (positive reward PE), while a 

decrease occurred when an anticipated reward was either not delivered or was of a smaller 

magnitude (negative reward PE) (Schultz et al., 1997). Several subsequent pharmacological and 

neuroimaging evidence reinforced the notion of a DA involvement in reward PE (for reviews see 

Arias-Carrión et al., 2010; Diederen & Fletcher, 2021; Lerner et al., 2021; Schultz, 2016; Watabe-

Uchida et al., 2017). In one of these studies, for instance, Pessiglione et al. (2006) demonstrated 

that the magnitude of reward PE signals in the striatum was increased by the administration of 

levodopa (a DA precursor that enhances DA signalling) and attenuated by haloperidol (a DA 

antagonist that reduces DA neurotransmission). It is worth noting that the phasic DA activity 
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representing reward PE is modulated not only by reward magnitude (large vs small) but also by 

changes in reward probability (high vs low), timing proximity (immediate vs delayed), reward type 

(money vs food), and individual characteristics including satiation and risk aversion (Diederen & 

Fletcher, 2021). Finally, a compelling perspective arises from recent advances in artificial intelligence 

research, proposing the idea that instead of all DA neurons in the ventral tegmental area encoding 

a uniform average PE, each cell represents reward PEs using a distributional code. This means that 

each neuron expresses PEs slightly differently, embodying either a more optimistic or more 

pessimistic prediction about future rewards. Thus, contrary to the original accounts of RL suggesting 

that the brain represents potential future rewards as a single mean, this perspective posits that DA 

neurons carry a range of value predictions (Dabney et al., 2020).  

Overall, RL models provide a strong understanding of how we learn to predict future rewards 

through PEs and how these signals are encoded in the brain through phasic DA activity. More 

recently, the significance of PE in learning has also been underscored within the Bayesian Inference 

framework. These models describe how individuals learn under uncertainty, with beliefs about the 

probable causes of the observed data being updated through precision-weighted PE (pwPE: Friston 

et al., 2014; Heald et al., 2023; Mathys et al., 2014). In the next section (1.2.3) I delve into a more 

comprehensive discussion of (Hierarchical) Bayesian Inference models and predictive coding (PC).  

 

1.2.3 Hierarchical Bayesian Inference models and predictive coding 

Hierarchical Bayesian inference models describe how the brain infers the underlying causes 

of observed data by combining prior knowledge with new sensory information (den Ouden et al., 

2012; Feldman & Friston, 2010; Friston & Kiebel, 2009). These models were originally developed 

for perceptual tasks but have recently been applied to elucidate reward-based learning in 

probabilistic environments (e.g., Hein et al., 2021, 2023; Hein & Herrojo Ruiz, 2022). Bayesian 

inference is defined over probability distributions, with the prior distribution representing the prior 

beliefs about the true states generating the observed data, the likelihood distribution describing the 

probability of observed sensory inputs conditional on those true states, and the posterior distribution 

representing the inferred probable causes for sensory information. Within this framework, learning 



 24 

is influenced by the degree of uncertainty in our beliefs about these latent causes (Feldman & 

Friston, 2010). Uncertainty is quantified by the variance of probability distributions, with precision 

being its inverse. When our priors have lower uncertainty (greater precision), we rely more strongly 

on these prior beliefs when updating state estimates (Edwards et al., 2012). 

Hierarchical Bayesian Inference models have been successfully implemented to multi/one-

armed bandit tasks to describe how individuals learn about a hierarchy of inter-related states (de 

Berker et al., 2016; Sheffield et al., 2022). In this context, learning is proposed to be governed by 

lower-level beliefs on the probabilistic structure of the stimulus-outcome contingencies and higher-

level beliefs about their changes across time. In this context, the rate of change of the action-reward 

mappings is referred to as volatility, where a greater rate of contingency changes indicates a more 

volatile environment. Inversion of these models provides a set of update equations for the posterior 

expectation about hidden states, with update steps depending on pwPE (Friston et al., 2014; Mathys 

et al., 2014). The precision weights act by enhancing or suppressing the influence of PEs on beliefs 

updating and thus, the dynamic estimates of uncertainty allow to represent differences in belief 

updating at the subject-specific level. Section 2.2 contains detailed information about the 

Hierarchical Gaussian Filter (HGF), the Hierarchical Bayesian models we adopted in the studies 

included in this thesis. 

But what are the functional mechanisms through which our brain generates mental models 

of the environment we experience? A compelling framework addressing this question is Bayesian 

PC, which relies on the hierarchical structure of the cortex to provide a neurobiological account of 

Bayesian inference models (Friston, 2010; Rao & Ballard, 1999; Srinivasan et al., 1982). PC posits 

that the brain constructs explanations for the world by forming predictions and producing PEs 

weighted by their precision that are expressed through rhythmic interactions within specific cortical 

layers. This is supported by abundant electrophysiological studies (e.g., employing 

electroencephalography [EEG]; see section 2.5 for more details) revealing that encoding 

feedforward PEs is propagated through fast gamma activity (> 30 Hz) in superficial cortical layers. 

In contrast, processing top-down predictions about forthcoming sensory inputs is mediated by slower 

oscillatory activity in the alpha and beta range (8-30Hz) in deep cortical layers (Arnal & Giraud, 2012; 
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Auksztulewicz et al., 2017; Bastos et al., 2012, 2020; Sedley et al., 2016). When sensory inputs align 

with predictions, alpha/beta activity suppresses gamma power, thereby inhibiting PEs. 

Consequently, sensory information is not used to update the internal model. Conversely, when 

predictions do not align with perceived sensory stimuli, PEs are disinhibited, prompting a robust 

feedforward gamma response, which leads to model updating.  

Alpha and beta activity has also been found to express precision weights (Sedley et al., 

2016). As alpha/beta and gamma are anticorrelated, and PEs are scaled through precision during 

Bayesian learning, it has been proposed that precision weights are also encoded in gamma 

frequencies (Bastos et al., 2018, 2020). Empirical evidence supported these conclusions showing 

that encoding pwPE is manifested in attenuated alpha/beta oscillations along with increased gamma 

activity (Auksztulewicz et al., 2017).  

This interplay between alpha/beta and gamma activity in generating predictions and PEs has 

been observed across various sensory modalities, including auditory (Sedley et al., 2016; Todorovic 

et al., 2011, 2015), visual (Auksztulewicz et al., 2017; Bastos et al., 2020; Gould et al., 2011) and 

motor (Schoffelen et al., 2005). To date, only two studies within the PC framework have focused on 

the neural oscillatory correlates of probabilistic reward-based learning in humans (Hein et al., 2023; 

Hein & Herrojo Ruiz, 2023). This evidence is discussed in greater detail in section 1.3.2 due to its 

emphasis on anxiety. However, as of now, no studies have explored the spectral responses during 

motor decisions, a gap that this thesis aims to address.  

It is crucial to emphasise that the current section provides only a concise summary of the key 

findings concerning the neural oscillatory involvement of alpha, beta and gamma frequencies in 

Bayesian learning from a PC perspective. Nonetheless, several other 

EEG/magnetoencephalography (MEG) studies have emphasised the importance of slower brain 

rhythms in supporting reward-based learning, particularly within the theta frequency range (Andreou 

et al., 2017; Cavanagh et al., 2009; Cohen et al., 2007; Luft, 2014). For a more in-depth exploration 

of this literature refer to section 5.1.  

In summary, Hierarchical Bayesian models provide a robust framework for understanding 

how individuals learn in uncertain environments by generating and continuously updating inferences 
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about the hidden causes governing the environment. These models find a neurobiological 

counterpart in PC, where predictions are conveyed through alpha/beta activity and PEs are 

transmitted via high-frequency gamma frequencies. Most of this evidence, however, has focused on 

healthy young individuals. It is worth noting that some empirical results indicate that learning under 

uncertainty undergoes detrimental changes during later life stages and in neurodegenerative 

disorders, including Parkinson’s Disease (PD) (Cools, 2001; de Boer et al., 2017; Eppinger et al., 

2011; Nassar et al., 2016). In the following sections I expand upon this evidence to provide a better 

understanding of how healthy older adults and PD patients learn from probabilistic rewarding 

outcomes in volatile environments. 

 

1.2.4 Reward-based learning under uncertainty in healthy ageing 

Advances in the medical and health care sectors have inevitably led to a demographic shift 

in the global population, with an ever-increasing number of living older adults. It is estimated that by 

2030, the global population will include 2.1 billion people aged above 60 years old (WHO, 2023). 

The need therefore to address and investigate the mechanisms characterising later stages of life 

has never been more urgent.  

From a neurobiological perspective, some of the most typical structural hallmarks of ageing 

include volume loss, neurodegeneration in the grey matter, demyelination in the white matter, 

ventricular enlargement, sulci widening, and a decreased axon number. These changes are 

associated with alterations at the biochemical and metabolic levels, such as reduced receptor 

number and binding capabilities, dysfunction in the DA system, as well as in the cholinergic and 

serotoninergic pathways (see Lee & Kim, 2022 for a review). 

These neural changes have detrimental effects on a variety of psychological, motor and 

cognitive aspects, including probabilistic reward-based learning (Eppinger et al., 2011; Mell et al., 

2005; Samanez-Larkin & Knutson, 2014, 2015; Weiler et al., 2008). In one of the first studies 

examining how older adults learn in uncertain environments, Mell and colleagues (2005) employed 

a reversal learning task and revealed a decline in learning performance in ageing, characterised by 

the inability to establish new stimulus-outcome associations. More recent computational studies 
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have expanded these findings and unveiled that the deficits observed in healthy older adults when 

learning from rewards in probabilistic environments stem from a diminished capacity to represent 

uncertainty estimates and form representations of task-contingencies (Hämmerer et al., 2019; 

Nassar et al., 2016). 

Neuroimaging evidence highlighted age-driven differences in how distinct brain regions are 

engaged during reward processing and probabilistic learning (Dreher et al., 2008; Hämmerer et al., 

2011; Marschner et al., 2005; Mell, 2009; Pietschmann et al., 2011; Samanez-Larkin et al., 2007; 

Schott et al., 2007; Vink et al., 2015). For instance, Mell et al. (2009), demonstrated that young 

participants tended to exhibit greater activity in the dorsolateral PFC during the initial stages of 

learning stimulus-outcome contingencies and heightened ventral striatal modulation once the 

associations were learnt. In contrast, older adults demonstrated the opposite pattern, with enhanced 

dorsolateral PFC activity in trials where the reward contingencies were already learned successfully 

and greater ventral striatal activity when engaging in new stimulus-reward associations.  

Elegant research has also shed light on how changes in DA contribute to the adverse effects 

of ageing on reward-based learning under volatility (Chowdhury et al., 2013; de Boer et al., 2017). 

In an experiment by Chowdhury et al. (2013) using a reversal learning task, participants were 

required to choose between two fractal images by continuously updating the expected value for each 

choice, as the reward probabilities varied over time. Their work demonstrated that the typical age-

related decline in performance was alleviated by the administration of the DA precursor levodopa. 

Indeed, levodopa intake resulted in an increased learning rate and restoration of the standard reward 

PE in the nucleus accumbens (NAcc). Building upon these findings, de Boer et al. (2017) observed 

that the age-driven decline in performance was linked to a diminished anticipatory value signal in the 

ventromedial PFC. The strength of this signal was found to be modulated by DA receptor availability 

in the NAcc. These findings suggest that older participants exhibit deficient value anticipation 

signalling in the NAcc and PFC due to reduced DA levels, with exogenous DA restoring the canonical 

reward PE and task performance.  

 Despite the evidence mentioned so far pointing towards detrimental reward-based learning 

under uncertainty in ageing, it is worth mentioning that other evidence highlighted spared 
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probabilistic learning and sensitivity to rewards across the healthy lifespan. In fact, Fera and co-

authors demonstrated that young and older adults displayed equivalent learning in probabilistic 

environments, using similar strategies and activating analogous brain networks (Fera et al., 2005). 

Furthermore, given the previous discussion on impaired reward-based learning under uncertainty in 

ageing, one would predict that the response vigour in older adults would be less sensitive to reward 

manipulations. However, empirical evidence contradicted this assumption and instead revealed 

equivalent sensitivity to rewards across the lifespan, with young and older adults invigorating their 

motor performance through reward anticipation to a similar extent (Aves et al., 2021; Hird et al., 

2022; Huang et al., 2018). Additionally, this reward-based motor invigoration was only weakly 

correlated with DA receptor availability in the ventral striatum (Hird et al., 2022). Thus, these findings, 

while not specifically focusing on learning in probabilistic environments, suggest that older 

individuals are still capable of using reward-related information to guide their behaviour in an 

adaptive manner. 

In summary, while most evidence suggests that ageing affects reward-based learning under 

uncertainty, there are also indications that older adults maintain the ability to learn in probabilistic 

environments and use rewards to enhance behaviour. Advancing age sometimes coincides with the 

emergence of neurodegenerative conditions, such as PD. Given the DA-involvement in the 

neuropathology of this disorder, numerous studies have focused on reward-based learning within 

uncertain settings in PD, which is further discussed in the following section. 

 

1.2.5 Reward-based learning under uncertainty in Parkinson’s disease patients 

Advancing age is associated to a range of potential neurodegenerative disorders, including 

PD, which affects approximately 8.5 million individuals worldwide (WHO, 2023). 

PD is characterised by a loss of DA cells in the substantia nigra pars compacta in the basal 

ganglia, leading to a severe decline in motor functioning, with tremor, bradykinesia, postural 

instability, and rigidity among the most common symptoms (Lang & Lozano, 1998). Besides the 

prominent nigrostriatal DA depletion, neuronal loss has also been detected within the 

mesocorticolimbic tract, resulting in reduced neural activity within the pathway extending from the 
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ventral tegmental area, ventral striatum, amygdala to the prefrontal cortex (PFC) (Perry & Kramer, 

2015; Torta & Castelli, 2008). This alteration is thought to account for several of the cognitive 

symptoms observed in patients with PD, including impaired reward-based learning under uncertainty 

(Czernecki, 2002; Zgaljardic et al., 2003). 

To mitigate the impact of DA depletion, PD patients depend on medications that function as 

a precursor to DA (usually levodopa) or as DA agonists, aimed at restoring a balanced DA level in 

the brain. It is worth noting that while DA significantly improves motor symptoms, its effects on 

cognition are less clear (Ryterska et al., 2013). DA intake improves planning abilities, working 

memory, set shifting and sequencing skills, but decreases habit learning, probabilistic learning and 

reversal shifting (Ferrazzoli et al., 2016; Perry & Kramer, 2015; Ryterska et al., 2013). Studies 

employing reversal learning tasks demonstrated that PD patients ON medication failed in reversing 

the learnt stimulus-outcome associations to reflect changes in the task-structure. PD in the OFF 

state, instead, showed preserved learning, performing similarly to healthy controls (Cools, 2001; 

Cools et al., 2006; Peterson et al., 2009). These findings have been considered within the overdose 

hypothesis framework (Gotham et al., 1988; Cools, 2006), which relies on the observation that DA 

depletion in PD follows a specific spatio-temporal progression, with the dorsal pathway (extending 

from the substantia nigra to dorsal striatum and dorsolateral PFC) being affected at the earliest 

stages and the ventral loop (projecting from the ventral tegmental area to ventral striatum and 

orbitofrontal cortex [OFC]) being altered only later in the disease. Hence, while DA intake restores 

depleted DA in the dorsal striatum, it overdoses the relatively spared ventral portion. As a result, 

functions supported by the spared ventral striatal circuitry, such as learning under uncertainty, are 

impaired after medication intake (Ferrazzoli et al., 2016; Torta & Castelli, 2008).  

Further work has expanded these findings by demonstrating that learning from changing 

stimulus-outcome associations in PD patients ON medication depends on the feedback valence 

(reward/punishment). Specifically, medicated PD patients exhibit successful learning from incentives 

while display detrimental reversal learning exclusively for negative feedback (Bodi et al., 2009; 

Euteneuer et al., 2009; Frank et al., 2004; Levy-Gigi et al., 2019; Perry & Kramer, 2015; Van Wouwe 

et al., 2012). Consistent with this, Frank et al. (2004) tested PD patients both ON and OFF their 
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usual DA therapy and found that PD in the ON status exhibited improved learning rate from positive 

feedback (compared to unmedicated PD and age-matched controls), but detrimental performance 

for punishments. Surprisingly, patients in the PD-OFF displayed a better learning from negative 

feedback (relative to PD in the ON status and age-matched controls) and poor task performance for 

incentives. This has been explained by the authors assuming that learning from positive outcomes 

requires bursts of DA (facilitated in the ON state, when tonic DA concentration is high), while 

processing punishments relies on dips in DA (aided in the OFF state, when tonic DA concentration 

is low). 

Collectively, these findings underscore a significant deficit among PD patients ON medication 

in utilising probabilistic outcome information to learn. Studies investigating the interplay between 

medication status and feedback valence indicate that this impairment is specific to learning from 

punishment, with PD patients in the ON status exhibiting preserved reward-based learning under 

uncertainty.  

Notably, older adults and individuals with PD not only exhibit cognitive (and, in the case of 

PD patients, motor) symptoms but also encompass mood disorders. Anxiety stands as one of the 

most prevalent neuropsychiatric features in healthy and pathological ageing, exerting detrimental 

effects on both cognitive and motor domains. To understand the interaction between psychiatric 

comorbidities and ageing (both healthy and pathological) it is important to first assess how trait and 

state anxiety impact probabilistic learning and motor control.  

 

1.3 ANXIETY IN REWARD-BASED LEARNING UNDER UNCERTAINTY AND 

MOTOR CONTROL 

1.3.1 Trait and state anxiety 

Predicting the future is one of the most important characteristics of the human brain (Gilbert 

& Wilson, 2007). This capability is particularly relevant in the context of anxiety, which involves 

distorted and excessive anticipatory alterations in psychological and physiological reactions to 

uncertain and potentially threatening situations (Grupe & Nitschke, 2013).  
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Anxiety stands as one of the most common mental health conditions, affecting approximately 

one in four individuals at a clinical level during their lifetime (Bishop, 2008). Its incidence becomes 

even more pronounced in later stages of life, with studies indicating prevalence rates of up to 52% 

and 55% among healthy ageing and PD patients, respectively (Broen et al., 2016; Dissanayaka et 

al., 2014; Liu et al., 2023; Richardson et al., 2011; Upneja et al., 2021; Yamanishi et al., 2013).  

While anxiety serves as a natural and adaptive response to stress or perceived threats, 

excessive levels can profoundly impact daily life, giving rise to heightened states of apprehension, 

uneasiness, and distress even when the objective level of danger is minimal or absent (Endler & 

Kocovski, 2001). Within the construct of anxiety, a useful differentiation is made between trait and 

state anxiety (Endler & Kocovski, 2001). Individuals with high levels of trait anxiety manifest a 

pervasive tendency to interpret a wide range of situations as threatening or stressful, thus exhibiting 

a predisposition to excessive worry. Conversely, state anxiety encompasses transient and context-

dependent experiences of negative emotions, reflecting the impact of specific stressors or 

environmental circumstances on an individual's affective state. 

Heightened state and trait anxiety have been found to have detrimental effects on a wide 

range of aspects, including reward-based learning under uncertainty and motor control. In the 

following section, we explore the negative influence of anxiety on learning from rewarding 

information in probabilistic environments.  

 

1.3.2 Anxiety and reward-based learning under uncertainty 

Several empirical studies demonstrated that high trait anxiety individuals exhibit a higher 

likelihood of making suboptimal choices compared to controls, possibly due to their tendency to 

avoid options that carry potential risks or negative emotional consequences (Hartley & Phelps, 2012; 

Paulus & Yu, 2012). In the context of probabilistic learning, individuals with high levels of trait anxiety 

exhibit poorer performance compared to participants low in anxiety (Browning et al., 2015; Hein et 

al., 2023; Huang et al., 2018; Jiang et al., 2018). This deficit has been attributed to an intolerance of 

uncertainty, reflecting their difficulty in effectively responding to situations characterised by a lack of 

information about the structure of the environment (Carleton, 2016). In their study, Browning et al. 
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(2015) employed a learning task involving a stable and a volatile block. In the stable block, one 

option consistently resulted in a 75% probability of receiving an aversive outcome, while in the 

volatile block the probability of the punishment was changing every 20 trials. The findings 

demonstrated that individuals with low levels of trait anxiety effectively adapted their learning 

strategies between the two blocks, learning faster in the changing environment and adjusting at a 

slower rate in the stable block. Conversely, the high anxiety group showed a similar learning rate in 

the two blocks, failing to flexibly adapt their decision-making strategies. In a following study, Huang 

et al. (2017) revealed similar findings, demonstrating inflated lose-shift rate (shifting the behavioural 

responses after a lose trial) in individuals with high trait anxiety relative to the low anxiety group. The 

authors argued that this suboptimal strategy reflected the tendency of anxious individuals to 

emphasise recent environmental statistics (shifting after every lose trial), while neglecting the longer-

term reward structure (shifting only when contingencies reverse). In a recent study, Hein et al. (2023) 

used a combination of computational modelling and neuroimaging to understand the neural 

processes underlying the trait anxiety-driven detrimental effects on probabilistic learning. First, the 

authors expanded on previous behavioural findings by demonstrating that individuals with high trait 

anxiety exhibited poor task performance, displaying increased lose-shift tendencies and an 

overestimation of uncertainty about the reward contingencies and environmental volatility. At the 

neural level, they revealed that high trait anxiety individuals, when encoding pwPE, exhibited greater 

gamma oscillatory activity (32-100 Hz) in the anterior cingulate cortex (ACC), superior frontal gyrus 

(SFG), and OFC, along with a suppression of alpha/beta activity within the ACC. The representation 

of uncertainty was characterised by increased alpha/beta power in the SFG and OFC, along with a 

suppression of the same frequencies in the ACC. The increase in gamma power during processing 

pwPE, along with reduced alpha/beta activity, suggests that high trait anxiety enhances the role of 

PEs, thus expediting beliefs updating about the reward mappings (Arnal & Giraud, 2012; 

Auksztulewicz et al., 2017; Bastos et al., 2012, 2020; Sedley et al., 2016).  

Overall, this evidence links trait anxiety with difficulties in learning from rewards under 

uncertainty. Specifically, trait anxiety is associated to greater uncertainty about the stimulus-reward 

contingencies and the structure of the task environment, leading to impoverished decision-making 
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processes. Pioneering neuroimaging work highlights the role of increased gamma oscillations in 

contributing to the observed deficit. 

 

While numerous studies have shed light on the adverse effects of trait anxiety on probabilistic 

reward-based learning, limited research has explored the impact of temporary anxiety states. One 

of the challenges in evaluating how state anxiety affects cognition relies on inducing transient anxiety 

in laboratory settings. To achieve this goal, various paradigms have been developed, including 

delivering cutaneous electrical shocks at unpredictable timings (see sections 6.1 and 6.2.4 for further 

details), creating socially stressful situations such as public speaking, displaying aversive film clips 

or pictures, listening to anxiety-inducing sounds or music, engaging in mental imagery, using gaming 

and virtual reality to depict negative events, and recalling personal emotional experiences (Kreibig, 

2010).  

In a recent study, state anxiety was induced through the public speaking paradigm, in which 

participants were told to give an oral presentation in front of a panel of experts after finishing the 

experiment (Hein et al., 2021). The findings revealed that transient anxiety led to a reduced learning 

rate and more disadvantageous choices in a reward-based learning task under uncertainty. 

Participants exhibited overly precise beliefs about stimulus-reward associations, thus limiting the 

update of beliefs in response to new information. The authors explained that this may serve as a 

mechanism to restore control, as uncertainty in anxious individuals is perceived as aversive 

(Carleton, 2016). This stands in contrast to the findings among individuals with high trait anxiety 

described above, who, instead, were more uncertain about the reward tendencies (Hein et al., 2023). 

Additionally, in Hein et al. (2021), state anxiety was linked to greater uncertainty regarding the 

volatility, indicating an impaired estimation of the rate of contingency changes in the environment. In 

a follow-up study, Hein and Herrojo Ruiz (2022) showed that the adverse effects of state anxiety on 

learning were associated with altered cortical oscillations in the beta range (13-30 Hz). Specifically, 

they revealed that anxious individuals displayed amplified beta responses during the generation of 

predictions about the stimulus-outcome associations and encoding of pwPE, resulting in an 

attenuation of belief updating.  
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Collectively, these findings suggest that like trait anxiety, state anxiety impoverishes reward-

based learning in probabilistic environments by altering belief updating and uncertainty estimates. 

Crucially, these negative effects dissociate: trait anxiety impairs learning through faster updating of 

beliefs, while state anxiety causes an attenuation of belief updating in response to new information 

(Hein et al., 2023; Hein & Herrojo Ruiz, 2023). 

 

1.3.3 Anxiety and motor control 

The detrimental effects of anxiety are not confined to cognition but extend to motor control. 

This phenomenon becomes evident in everyday life scenarios, such as feeling paralysed when 

crossing the road and spotting a fast-approaching car, or experiencing balance disruptions when 

worrying about falling (Harris et al., 2023; Young & Mark Williams, 2015). Chocking under pressure 

is typical in the sport sector, where it is common to witness top-ranked athletes underperforming at 

very crucial moments (e.g., expert tennis players committing back-to-back double faults on the final 

point of a tiebreaker). In this context, chocking refers to a decline in performance during high-

pressure situations, representing distinct adverse motor reactions to perceived threat (Harris et al., 

2023; Nieuwenhuys & Oudejans, 2012). When choking, individuals retain the capacity to make 

decisions and formulate effective action plans. However, the execution of these plans is hindered by 

intervening psychological factors (Clark et al., 2005). Two main accounts have explained this 

phenomenon: distraction and explicit monitoring theories (Harris et al., 2023; Payne et al., 2019; 

Roberts et al., 2017; Wilson, 2012).  

Distraction models propose that anxiety diverts attention away from the task, facilitating the 

processing of irrelevant threatening stimuli. Evidence highlighting the association between choking 

under pressure and attentional changes has emerged in several domains: shotgun shooters, 

footballers, basketball players, and climbers have all exhibited reduced fixation numbers and 

durations towards task-relevant stimuli, prolonged movement times, and diminished accuracy when 

performing under anxiety, compared to safety (Behan & Wilson, 2008; Causer et al., 2011; 

Nieuwenhuys et al., 2008; Wilson, Vine, et al., 2009; Wilson, Wood, et al., 2009). Training attentional 

control through a working memory paradigm mitigated the detrimental effects of anxiety on the motor 
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performance, providing support for the fundamental role of attention-based mechanisms in choking 

under pressure (Ducrocq et al., 2017; Wilson, 2012).  

On the other hand, explicit monitoring models propose that anxiety prompts a heightened 

allocation of attentional resources towards internal processes to explicitly regulate and monitor one's 

motor responses, resulting in impaired performance (Nieuwenhuys & Oudejans, 2012). This account 

contradicts distraction theories, proposing that the negative effects of anxiety on motor execution 

cannot be solely attributed to restricted attentional resources, especially in expert performers where 

movements are highly automatised (Nieuwenhuys & Oudejans, 2012). Supporting explicit monitoring 

models, anxiety was observed to prompt elite performers to revert to conscious knowledge and 

control strategies, reminiscent of early learning stages, where movements were meticulously 

managed step-by-step in an effort to maintain performance standards (Yarrow et al., 2009). Along 

the same line, participants provided with explicit instructions on how to execute specific movements, 

exhibited deteriorated performance under anxiety (Gucciardi & Dimmock, 2008; Lam et al., 2009).  

Although several empirical studies have addressed the cognitive mechanisms driving poor 

performance under threat, evidence exploring the neurobiological processes underlying the choking 

phenomenon is still limited. In an elegant study by Smoulder et al. (2021), three Rhesus monkeys 

completed a challenging reaching task where the reward magnitude associated to movement 

completion was displayed at the start of each trial. They demonstrated that larger rewards 

corresponded to better performance. However, when unexpectedly large rewards (referred to as 

jackpots) were offered, the monkeys underperformed, indicative of choking in motor execution. 

Kinematic analyses unveiled that reaching movements were characterised by an initial acceleration 

(ballistic) phase, followed by a deceleration (homing) phase. In response to increasing rewards, the 

monkeys displayed longer RT, a shortened ballistic phase and a longer homing phase, reflecting a 

more cautious approach and heightened sensitivity to sensory feedback. Crucially, in jackpot trials, 

the delayed RT and shorter ballistic phase resulted in insufficient time for the monkeys to cover the 

distance during the slower homing phase, leading to undershooting the target. This observation 

aligns with explicit monitoring theories, suggesting that performing under high-stakes conditions 

increases conscious monitoring, thus impairing motor performance. However, it is worth noting that 
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these findings do not rule out distraction theories entirely, as the longer RT during jackpot trials could 

imply processing of task-irrelevant stimuli before initiating the movement (Smoulder et al., 2021). In 

a subsequent study, Smoulder et al. (2023) demonstrated that within the motor cortex, the neural 

activity patterns for distinct reaching actions became more distinguishable as rewards increased. 

However, when unusually large rewards were offered the neural signatures for different targets were 

less differentiated. The researchers linked this neural collapse to motor performance, showing that 

when the signals were less discernible, the animals were more prone to undershoot the target. This 

demonstrated that both behavioural responses and the neural patterns at the level of the motor 

cortex displayed an inverted U-shaped relationship with reward magnitude. Thus, the interplay 

between reward information and movement preparation signals in the motor cortex provides a 

potential explanation for the neurobiological mechanisms underlying choking under pressure 

(Smoulder et al., 2023). 

 

While most of the evidence has focused on investigating the influence of induced transient 

anxiety states on motor behaviour, insights into the detrimental effects of trait anxiety on motor 

performance are scarce. Neurological research involving neuropsychiatric and neurodegenerative 

patients has suggested an association between persistent feelings of anxiety and compromised 

motor skills. Accordingly, children and adults suffering from anxiety disorders often display motor 

impairments such as balance dysfunctions, poor coordination, and slower movement times (Balaban 

& Jacob, 2001; Ekornås et al., 2010; Erez et al., 2004; Kristensen & Torgersen, 2008). The 

occurrence of this phenomenon is relatively common, with 46% of children with clinical anxiety 

exhibiting impaired motor skills (Skirbekk et al., 2012). In PD patients, anxiety disorders have been 

found to predict the onset of motor symptoms (Ishihara & Brayne, 2006; Weisskopf et al., 2003). 

Moreover, trait anxiety correlated with the severity of parkinsonian motor signs and the presence of 

motor complications from treatment (Brown et al., 2020; Burn et al., 2012; Dias et al., 2022; 

Dissanayaka et al., 2014; Schapira et al., 2017; Vázquez et al., 1993). Specifically, an age of onset 

below 55 years was associated with clinically significant anxiety, and dyskinesia induced by 
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levodopa (excessive involuntary movements resulting from long-term levodopa use) was anticipated 

by high levels of trait anxiety (Burn et al., 2012; Dias et al., 2022). 

In conclusion, a wealth of evidence underscored the adverse impact of state anxiety on motor 

performance. This can be attributed to non-mutually exclusive theories that suggest a shift in 

attention, either towards task-irrelevant stimuli (distraction theories) or internal processes to 

consciously monitor movement execution (explicit monitoring theories). Recent neuroimaging 

findings emphasised the involvement of the motor cortex in the choking phenomenon, implying that 

a collapse of neural information could be the underlying cause. Furthermore, insights from studies 

involving neuropsychiatric and neurodegenerative patients highlighted the contribution of trait 

anxiety to diminished motor behaviour and, in PD, motor complications in response to medications. 

 

1.4 OUTLINE AND AIMS OF THE THESIS  

The overarching goal of this thesis is to investigate whether predictions about the action-

reward contingencies invigorate motor performance on a trial-by-trail basis, thereby expanding the 

existing literature on the invigoration of motor performance through changes in reward magnitude.  

The specific objectives are as follows: 

1. To evaluate which aspects of motor vigour are affected by the strength of expectations about 

the action-reward contingencies, including RT and performance tempo (Chapters 3-6), as 

well as keystroke velocity (Chapter 5). 

2. To examine whether the sensitivity of motor performance to the strength of predictions about 

the action-reward contingencies is modulated by age (Chapter 3), PD (Chapter 3), subjective 

inferences about credit assignment (Chapter 3), trait anxiety (Chapter 5), and state anxiety 

(Chapter 6). As elaborated upon later, subjective inferences about credit assignment reflect 

the participants’ ability to understand the reasons behind the absence of a reward (i.e., 

performance error or bad decision; McDougle et al., 2016). We are interested in determining 

whether participants who could not consistently discern the causes for not receiving the 

reward exhibit a diminished motor invigoration by predictions.  
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3. To assess whether motor vigour is modulated by explicit confidence about receiving the 

reward (Chapter 4). This aims to understand whether motor performance is sensitive to 

explicit beliefs related to reward acquisition, in addition to predictions expressed through 

computational modelling. 

4. To investigate anxiety-related changes in the neural oscillatory correlates of motor decision 

making. We are particularly interested in determining whether trait and state anxiety 

modulate the time-frequency representations of outcome processing, belief updating, 

uncertainty about the reward tendencies and environmental volatility (Chapters 5-6), and of 

the predictions about the action-reward contingencies (Chapter 6).   
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CHAPTER 2: METHODS 

 
In this chapter, we outline the principal methodological approaches employed throughout the 

thesis. These include an explanation of the behavioural task, the statistical methods applied to 

assess motor vigour effects, and the computational models used for decision making. Additionally, 

we introduce the analysis method for evaluating neural oscillatory activity in relation to various 

aspects of learning and decision-making behaviour. Here, we present a general overview of these 

approaches, while the comprehensive details on their specific applications in each study can be 

found in the corresponding chapters. 

 

2.1 REWARD-BASED MOTOR DECISION-MAKING TASK 

We used a novel reward-based motor decision-making task based on a one-armed bandit 

paradigm, with changing stimulus-outcome contingencies over time (de Berker et al., 2016). This 

task integrates a traditional reversal learning paradigm with a motor component, requiring 

participants to convey their decisions through sequences of finger movements. Contrary to existing 

decision-making tasks, which often limit participants to mere right or left button presses to indicate 

their choices (e.g., Hein et al., 2021) our new design embeds the motor element within the decision 

process to delve deeper into vigour effects and motor decision-making mechanisms.  

The task included a familiarisation and a main phase. In the familiarisation phase subjects 

learned to play short sequences (four finger presses each) and to associated them to unique fractal 

images. In the main task phase, at every trial, participants were asked to choose among the fractals 

and play the corresponding sequence of key presses to obtain a reward (i.e., five points). Participants 

received the reward only when playing the rewarded sequence without committing performance 

execution errors. On the other hand, participants were given zero points if they selected the 

unrewarded sequence, committed execution errors or exceeded the time limit to complete the 

movement.  

The probability of each sequence (fractal) leading to reward changed over time (de Berker et 

al., 2016), was always reciprocal between the two sequences and involved five stimulus-outcome 
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contingency blocks (i.e., 90/10, 70/30, 50/50, 30/70, 10/90). As an example, if one sequence had a 

reward probability of 0.7, the other sequence would have a reward probability of 0.3. Therefore, to 

maximise their points, participants had to continuously monitor changes in the environment and play 

the sequence with the greatest likelihood of being rewarded on each trial while avoiding any mistakes 

in execution. Prior to starting the task, we informed participants that the rule governing reward 

probabilities would change over time, but we did not disclose any information regarding the timing 

of these changes. It is worth noting that in our reward-based motor decision-making task, stimuli 

(i.e., the fractal images) were one-to-one associated with motor sequences. Thus, throughout the 

thesis we use the term action-reward contingency when indicating stimulus-outcome or stimulus-

reward mappings. 

In each of the studies included in the thesis, we modified some aspects of the task to address 

our specific research questions. Some of these adaptations are detailed below. 

In Chapter 3, participants completed the task online, performing the sequences using their 

own computer keyboard. Every key press led to a distinct auditory tone simulating a virtual piano.  

In Chapter 4, participants engaged in a lab-based version of the task. Crucially, before seeing 

the feedback, participants were asked to rate how certain they were to be rewarded on that trial. We 

sought to investigate whether the invigoration of motor responses was driven not just by predictions 

of reward probability as captured through computational modelling, but also by participants' explicit 

beliefs or confidence regarding reward acquisition. 

In Chapter 5, participants with high and low trait anxiety were instructed to execute the 

sequences using a Musical Instrument Digital Interface (MIDI) piano, while their brain activity was 

recorded with the EEG. We opted for a digital piano because it allowed us to investigate the 

invigoration effect by predictions in a more ecologically valid manner and to obtain measures of 

keystroke velocity, a metric associated with key press loudness, potentially expanding our 

understanding about the impact of reward on motor vigour. Additionally, we combined the task with 

EEG recording to investigate the relatively unknown influence of trait anxiety on the spectral 

correlates of motor decision making. 
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Finally, in Chapter 6, each participant completed two blocks of the task using the computer 

keyboard, with one of these blocks involving the application of electrical stimulation to their arm 

(Threat of Shock paradigm [TOS]; see sections 6.1 and 6.2.4). Their brain electrical activity was 

measured using the EEG throughout the experiment. Integrating the TOS and EEG with the reward-

based learning paradigm enabled us to explore the impact of state anxiety on motor invigoration 

effects, as well as the neural correlates of motor decisions under threat and safety.  

For each study, additional adaptations included modifying timings, the order of the reward 

contingency mappings, the number of trials and blocks, the sequences and fractals used, as well as 

the feedback provided. Detailed information about these aspects is reported for each study and can 

be found in the corresponding chapters.  

 

2.2 THE HIERARCHICAL GAUSSIAN FILTER  

In all our studies, we fitted the behavioural data using the HGF (Frässle et al., 2021; Mathys, 

2011; Mathys et al., 2014). The HGF is a Hierarchical Bayesian Inference model (refer to section 

1.2.2) that explains how individuals learn about hierarchical hidden states in the environment, 

including the causes of the observed inputs, the probabilistic stimulus-outcome mappings, as well 

as the environmental volatility (i.e., contingency changes over time). Beliefs at every level of the 

hierarchy are updated through PE weighted by a precision ratio representing the inverse variance 

or uncertainty. The precision works as a learning rate, determining the influence of belief uncertainty 

on the updating process (Mathys et al., 2011, 2014). We selected the HGF a priori due to its suitability 

for modelling learning about probabilistic outcomes that evolve over time, reflecting volatility in the 

environment. This feature renders it suitable for modelling belief updating in reversal learning tasks, 

often employed in PD and anxiety research to identify learning biases in these conditions. 

Additionally, the HGF has been extensively used in studying psychiatric conditions to test 

hypotheses concerning precision misestimation and its effects on perception and learning. Our 

objective here was to improve our understanding of anxiety and PD by examining the relationship 

between dynamic belief estimates during learning in conditions of uncertainty and volatility, and 

motor vigour. Given that the HGF yields trial-wise trajectories of belief estimates, including posterior 
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mean and variance, this model was especially well-suited for employing these trajectories as 

regressors in EEG analyses. Nonetheless, alternative models could have been chosen, such as 

Active Inference Models (Smith et al., 2022), Hidden Markov Models (Awad & Khanna, 2015; 

Rabiner & Juang, 1986), and Markov Decision Processes (Garcia & Rachelson, 2013; Van Otterlo 

& Wiering, 2012). 

In the studies discussed in this thesis, we used the HGF to obtain individual trial-wise 

trajectories of beliefs about the stimulus-outcome mappings (at the second level) and environmental 

volatility (at the third level). Belief distributions are Gaussian characterised by the posterior mean (𝜇i, 

i =1, 2) and the posterior variance (𝜎i =1, 2). On each level, the posterior variance describes the 

imperfect knowledge we have about the true hidden states. At the second level, 𝜎2 is labelled 

informational uncertainty, while at the third level, 𝜎3, is the uncertainty about the environmental 

volatility. In general, the inverse 1/𝜎 is referred to as precision (π).  

Importantly, the HGF gives the trajectories of updated beliefs on the current trial, k, after 

seeing the outcome (𝜇i(k), i = 2, 3). On the second level, the participants’ prediction about the action 

reward-contingencies (i.e., before observing the outcome) is captured by the hat operator 𝜇2
(k), which 

correspond to the value in the preceding trial (𝜇2(k-1)).  

As in prior work employing decision-making paradigms (Hein et al., 2021; Iglesias et al., 2013; 

Mathys et al., 2014), we modelled learning using the 3-level HGF for binary responses. In this model, 

the hidden state at the first level, x₁ reflects the categorical variable of the experimental stimuli. At 

the second level, x₂ represents the true tendency of the stimulus-outcome mappings and, higher in 

the hierarchy, x₃ the true environmental volatility. 

In the HGF model, updating beliefs is influenced by several parameters, that can either be 

estimated in every participant or fixed, depending on the research hypothesis. Across our studies, 

we estimated the tonic volatility on level 2 (ω₂)	and on level 3 (ω₃),	which allowed us to assess 

learning at the individual level. Bigger levels of ω₂ reflect faster learning about the stimulus-outcome 

contingencies, and therefore bigger update steps in 𝜇2. Along the same line, larger ω₃ values 

determine bigger update steps at the third level on 𝜇3. In each chapter we detail the priors for the 

chosen perceptual HGF model.  
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In the studies included in the thesis, we associated the perceptual HGF model to response 

models for binary outcomes, describing how beliefs about the stimulus-outcome mappings 

correspond to decisions (Mathys et al., 2014). Consistent with previous work (Iglesias et al., 2013; 

Hein et al., 2021; Hein & Herrojo Ruiz, 2022; Tecilla et al., 2023), we first combined the perceptual 

HGF with a sigmoid response model, where the mapping between beliefs and choices is governed 

by a constant parameter (ζ). Larger values of ζ reflect a greater likelihood that the individual chooses 

the option that has a bigger probability to lead to the rewarding outcome according to their beliefs. 

The combination of this perceptual and response model is denoted by HGF3. Second, we used a 

response model where the sigmoid function varies with the dynamic, trial-wise expectation of 

volatility (𝜇3
(k-1), where k-1 denotes the previous trial; Diaconescu et al., 2014). We refer to this 

combination by HGF𝜇3. See Figure 1 for a schematic representation of the 3-level HGF.  

These analyses were conducted with the HGF toolbox, a software that operates in MATLAB 

(MATLAB and Statistics Toolbox Release, The MathWorks) and is available through TAPAS 

(http://www.translationalneuromodeling.org/tapas; Frässle et al., 2021). 

 

Figure 1. The 3-level Hierarchical Gaussian Filter for binary outcomes. 
Depiction of the 3-level HGF model and the significant parameters influencing each level of the 
hierarchy (Tecilla et al., 2023). At the lowest level, x₁ reflects the categorical variable employed in 
the research study at every trial k; higher in the hierarchy, x₂ represents the true tendency of the 
stimulus-outcome mappings, and at the third level, x₃ reflects the true environmental volatility. 
Volatility on the second and third level is represented by 𝜔2 and 𝜔3. The decision noise is captured 
by 𝜁, while the strength of the association between the second and third level is reflected by 𝜅 (in all 
our studies, this was fixed to 1). 
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2.3 MODEL COMPARISON: HIERARCHICAL GAUSSIAN FILTER AND 

STANDARD REINFORCEMENT LEARNING MODELS 

In all our studies we compared the following models: HGF3, HGF𝜇3, and HGF2. We included 

the HGF2 to evaluate whether a model with fixed beliefs about volatility on the third level provided 

the best fit for our data. 

For the studies discussed in Chapters 3-4, two additional standard RL models, RW and 

Sutton K1 (SK1), were incorporated into the model comparison (see section 1.2.2 for more 

information about these models). RW utilises a fixed learning rate determined by PEs, while SK1 

employs a flexible learning rate driven by recent PEs. Priors for these RL models were set based on 

previous literature (Diaconescu et al., 2014; Hein et al., 2021). RW and SK1 have often been used 

to fit behaviour in reversal learning tasks (Eckstein et al., 2022; Gläscher et al., 2009; Hauser et al., 

2014; Metha et al., 2020). However, they exhibit limitations in volatile environments, with Bayesian 

Inference models explaining behavioural responses in uncertain environments better (Bartolo & 

Averbeck, 2020; Costa et al., 2015; Eckstein et al., 2022; Gershman & Uchida, 2019; Hauser et al., 

2015; Hein et al., 2021; Hein & Herrojo Ruiz, 2022; Schlagenhauf et al., 2014; Solway & Botvinick, 

2012). Based on these considerations, in Chapters 5-6, we excluded RL models from the model 

comparison and solely assessed HGF models. 

We fitted these models to the trial-by-trial inputs and responses in every individual through 

the HGF toolbox, which computes maximum-a-posteriori (MAP) parameter estimates for each 

participant. To determine the best-fitting model across all individuals, we employed random effects 

Bayesian model selection (BMS, available at https://github.com/JoramSoch/MACS; Soch & Allefeld, 

2018). 

 

2.4 BAYESIAN LINEAR MIXED MODELS USING BRMS 

One of the primary goals of this thesis is to investigate whether the strength of predictions 

about the action-reward contingencies enhances motor performance on a trial-by-trial basis. 

Moreover, it aims to understand whether this invigoration of motor responses by predictions is 
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modulated by age and PD (Chapter 3), subjective inferences about credit assignment (Chapter 3), 

trait anxiety (Chapter 5), and state anxiety (Chapter 6). 

To address these questions, we implemented Bayesian Linear Mixed Models (BLMM) in R 

(version 4.0.3). We employed the Bayesian Regression Models using Stan (brms; Bürkner, 2017, 

2018, 2020) package, available at https://cran.r-project.org/web/packages/brms/index.html. Brms 

operates using the probabilistic programming language Stan, which relies on Markov Chain Monte 

Carlo (MCMC) sampling methods to implement Bayesian inference. BLMM provides estimates of 

model parameters through the calculation of approximate posterior probability distributions. These 

distributions allow us to quantify the uncertainty associated with each parameter estimate. BLMMs 

are particularly valuable when analysing data characterised by hierarchical or nested structures, 

where observations are not independent of each other (e.g., repeated measurements within 

subjects). When performing BLMM analyses using brms, it is standard to identify one group (or 

condition) as reference for the estimation of the model parameters. Brms, in fact, estimates the 

posterior distribution of the parameters in the reference group (or condition), as well as calculates 

the posterior distribution of the parameter differences between the reference group (or condition) 

and each other group (or condition) included in the model. For all the studies included in the thesis, 

detailed information about the reference used and the comparisons tested is provided in the 

corresponding chapter.  

In line with previous work (Hein & Herrojo Ruiz, 2022; Stefanics et al., 2018), we selected the 

absolute values of �̂�₂	(|�̂�₂|) for our BLMM analysis when representing the strength of the predictions 

about the action-reward contingencies. In fact, �̂�₂	(and similarly 𝜇₂) reflects the tendency of an action-

reward contingency for an arbitrary action, e.g., sequence 1. However, similarly, we could define the 

model in reference to the other sequence 2. Thus, the sign of �̂�₂ is uninformative. Trials in which 

participants had stronger expectations about the reward mapping were therefore characterised by 

large |�̂�₂| values.  

In addition to using BLMM to understand the association between the strength of predictions 

about action-reward contingencies and motor performance, we employed this statistical approach to 

determine whether the invigoration of motor responses extends to explicit beliefs about the reward 
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tendency (Chapter 4). Trial-by-trial explicit beliefs about the reward probabilities were represented 

using confidence ratings about receiving the reward, after executing each sequence and before 

seeing the outcome (full details in the corresponding chapter).  

Finally, in Chapters 5-6 we implemented BLMM to assess practice effects, which represent 

changes in motor performance across trials.  

In each study, we ran increasingly complex models, where every model included a bigger 

number of explanatory variables. Each model was implemented by specifying four independent 

chains of 5000 iterations each, with the first 1000 being discarded as warmup (total of 1600 posterior 

samples). Each experimental chapter contains detailed information about the models tested and the 

chosen priors. 

Model comparison was performed employing the leave-one-out cross-validation of the 

posterior log-likelihood (LOO-CV) with Pareto-smoothed importance sampling (Vehtari et al., 2017). 

The best model was the one associated to the highest expected log point-wise predictive density 

(ELPD). Moreover, we verified that the absolute mean difference in ELPD (elpd_diff) between the 

two best fitting models was larger than twice the standard error of the differences (2*se_diff). If 

elpd_diff was smaller than 2*se_diff we selected the more parsimonious model.  

For each study we provide the posterior distributions of the model parameters (posterior point 

estimates and corresponding 95% credible intervals [CI]), as well as Gelman-Rubin statistics to 

demonstrate chain convergence (R-hat < 1.1; Gelman & Rubin, 1992). 

 

2.5 ELECTROENCEPHALOGRAM-BASED ANALYSES: TIME-FREQUENCY 

DECOMPOSITION AND THE CONVOLUTION GENERAL LINEAR MODEL 

In Chapters 5 and 6, we recorded participants' brain activity using the EEG. EEG is a non-

invasive neuroimaging technique used to record the electrical activity of the brain through electrodes 

positioned on the scalp (Ward, 2015). EEG detects dipoles at the level of cortical pyramidal neurons 

originating from the flow of ions across the neuronal membrane (Luck & Kappenman, 2011). The 

main strength of EEG lies in its high temporal resolution, with millisecond precision. However, its 
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spatial resolution is poor compared to other neuroimaging techniques (e.g., MEG and functional 

magnetic resonance imaging), which are therefore more useful for localisation purposes. 

In this thesis we aim at characterising the neural oscillatory differences associated with 

anxiety (both trait and state) when engaging in our reward-based motor decision-making task. As 

extensively detailed in the work of Cohen (2019), neural oscillations arise from variations in the 

excitability of populations of neurons and exhibit distinct spatiotemporal characteristics, 

encompassing features such as amplitude, timing, and frequency. These rhythmic patterns are 

classified into specific ranges: delta, theta, alpha, beta, and gamma, ordered by increasing 

frequency. Numerous decades of research have confirmed connections between specific oscillatory 

patterns and a wide array of cognitive, emotional, motor, and perceptual processes, establishing the 

oscillatory activity as a predominant component of EEG data (Cohen, 2019). Detailed information on 

how the data was collected and preprocessed in our studies can be found in sections 5.2.3 and 

6.2.5. 

To analyse how the spectral correlates of the signal evolved over time, we applied time-

frequency (TF) decomposition through complex Morlet wavelets (Cohen et al., 2019). This approach 

involves taking a complex Morlet wavelet function and convolving it with the time-domain signal. This 

convolution operation computes the similarity between the Morlet wavelet and the timeseries at 

different frequencies and at different time points, producing a TF representation of the signal (Cohen 

et al., 2019). A crucial parameter when decomposing the signal through complex Morlet wavelet is 

the number of cycles specified in the analyses, representing how many cycles of the oscillatory wave 

are contained within the wavelet. This parameter affects both the temporal and the frequency 

resolution of the decomposition. Using fewer cycles yields more precise information in the temporal 

domain but sacrifices frequency accuracy. Conversely, employing a wavelet with more cycles 

provides more information about the frequency content but diminishes the temporal resolution. In 

line with previous work (Hein et al., 2023; Hein & Herrojo Ruiz, 2023), in the following analyses we 

used 5 cycles wavelets to analyse the signal in the 4-30 Hz range.  

After having decomposed the signal, we employed a convolution General Linear Model 

(GLM) for neural oscillatory responses (Litvak et al., 2013). This method has been successfully used 
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in EEG research and allows to explain the spectral activity of concatenated epochs by combining 

regressors and residual noise (Litvak et al., 2013; Hein et al., 2023; Hein & Herrojo Ruiz, 2023). We 

used an adaptation of the code by Spitzer et al. (2016), available on https://github.com/bernspitz/ 

convolution–models–MEEG. To conform with the GLM error assumption, the timeseries were first 

transformed with SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/) by converting the TF representations to 

amplitude employing a square-root transformation (Kiebel et al., 2005; Litvak et al., 2013). In the 

convolution GLM, the pseudo-continuous TF representations are explained as follows:  

 

Y = Xβ + ε 

with Y resulting from the linear combination of the explanatory regressors in the matrix X influenced 

by the regression coefficients β and residual noise (Figure 2). The matrix X was constructed by 

convolving k input functions U defining the onsets and values of the relevant regressors with a 20th-

order Fourier family of m basis functions (B, 40 basis functions m, 20 sines and 20 cosines). Solving 

the convolution GLM gives TF response images (Ri) for a specific regressor type i, where Ri is the 

combination of a family of m functions (defined by B) and the regression coefficients βi: 

 

Ri = Bβi 

 

In Chapters 5 and 6, we explore whether trait and state anxiety modulate the neural 

oscillatory activity during motor decisions under volatility. We focus on the spectral correlates of 

feedback processing, belief updating, uncertainty about the reward tendency (informational 

uncertainty), uncertainty about the environmental volatility and predictions about the action-reward 

contingencies. In particular, the analyses on the latter regressor, aim at elucidating the 

neurobiological mechanisms underlying the motor invigoration by predictions of reward tendency. 

Full description of the convolution model and the regressors used can be found in sections 5.2.6 and 

6.2.8. 
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Figure 2. The convolution General Linear Model.  
This figure illustrates a schematic representation of the convolution general linear model (GLM) for 
oscillatory responses (Hein & Herrojo Ruiz, 2022). Y results from the combination of the matrix X 
modulated by the coefficients 𝛽 and noise (𝜀). X is obtained by convolving a group of functions k 
defining the latency and values of the regressors with a set of Fourier basis functions m. Solving the 
convolution GLM, allows us to extract response images Ri for each regressor type (in the picture 
referred to as TF estimate). 
  



 50 

CHAPTER 3: PREDICTIONS ABOUT REWARD PROBABILITIES 

INVIGORATE MOTOR BEHAVIOUR IN YOUNG, OLDER ADULTS 

AND PARKINSON’S DISEASE PATIENTS 

 

In this chapter, we describe two studies in which we explored whether predicting volatile 

action-reward mappings modulated motor behaviour on a trial-by-trial basis. In the first study, we 

tested young, older adults and PD patients on medication. We demonstrated that stronger 

predictions about the action-reward contingencies were associated to faster performance tempo, 

commensurate with movement time, without affecting RT. Using BLMM, we showed a similar 

invigoration of performance tempo across groups, despite ageing and PD being slower than young 

participants. In Study 2, we also revealed that subjective inferences about credit assignment did not 

influence the invigoration of motor responses by predictions. 

Collectively, these studies offer novel insights into the role of dynamic belief updating about 

reward mappings in positively modulating motor behaviour through faster execution. We also provide 

compelling evidence for a spared sensitivity of motor vigour to expectations about the reward 

contingencies in ageing and in PD patients in the ON medication status.  

 

3.1 INTRODUCTION 

The invigoration of motor performance through the anticipation of rewards is well-

documented in the literature (Codol et al., 2020; Sedaghat-Nejad et al., 2019; Summerside et al., 

2018). Researchers proposed various mechanisms to explain the positive impact of rewards on 

motor behaviour, including the strengthening of motor representations at the cortical level, improved 

feedback-control processes, heightened limb stiffness, and coarticulation (refer to section 1.1.3 for 

further details; Adkins & Lee, 2021; Aves et al., 2021; Carroll et al., 2019; Galaro et al., 2019; 

Manohar et al., 2019; Padmala & Pessoa, 2011). While numerous studies explored how incentives 

affect motor behaviour, most focused on simple reward manipulations, such as reward 

presence/absence and reward magnitude. However, our daily lives often involve navigating complex 
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and uncertain environments where success depends on accurately estimating the changing 

relationship between our actions and their outcomes. Crucially, how predictions about the action-

reward contingency influence motor performance is still largely unexplored. Furthermore, whether 

the sensitivity of motor performance to expectations about the reward tendencies is affected by age 

and neurological conditions remains unclear. The two studies included in this chapter address these 

gaps by employing the reward-based motor decision-making task described in section 2.1. 

In Study 1, we explored how dynamic expectations about volatile action-reward 

contingencies influenced motor sequence performance on a trial-by-trial basis. Moreover, we 

examined whether the sensitivity of motor performance to the strength of these expectations 

changed with age and among PD patients on medication. This is driven by the absence of work on 

how reversal probabilistic reward-based learning and reward sensitivity affect motor vigour in PD 

and older adults. Existing studies present a mixed picture, with some suggesting spared sensitivity 

to rewards and probabilistic incentivised learning in these populations (Aves et al., 2021; Euteneuer 

et al., 2009; Fera, 2005), while others propose poor reward-based learning and decision making 

under uncertainty (Cools, 2001; Eppinger et al., 2011; Nassar et al., 2016). Moreover, the effects of 

medication on probabilistic learning in PD remains a topic of debate (Kjær et al., 2018; Ryterska et 

al., 2013). See sections 1.2.4 and 1.2.5 for further details. Consequently, whether older adults and 

medicated PD patients can utilise their dynamic belief estimates to enhance motor performance on 

a trial-by-trial basis remains an open question. 

In our second study, we extended the investigation to explore the potential role of subjective 

inferences regarding credit assignment in explaining the observed effects on motor vigour. In daily 

life, the same feedback can stem from various sources. For instance, arriving late to an appointment 

can happen when choosing a slow route, but also when making a wrong turn while taking the fastest 

path. Similarly, in the field of reward-based motor control, we may misjudge which action is 

rewarding, or we may know what movement to perform to get the reward but make errors while 

executing it. In both scenarios, we fail to receive the reward, but the underlying reason differs: an 

external environmental factor in the first situation and an intrinsic motor execution error in the second 

(McDougle et al., 2016). Here, we examined whether individual inferences about the causes for the 



 52 

lack of reward influenced the invigoration of motor responses by predictions of reward probabilities. 

We hypothesised that participants who could not consistently discern the reasons for not receiving 

the reward would exhibit a reduced invigoration effect. 

Collectively, these two studies aim to explore whether motor vigour is not only modulated by 

reward magnitude, as prior evidence suggests, but also by the strength of predictions about the 

reward probabilities.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Participants 

3.2.1.1 Study 1 

This study received ethical approval from the review board at Goldsmiths, University of 

London and the Neurology Clinic at Padua University Hospital. All participants consented to take 

part in the study. We recruited healthy younger adults (HYA) and healthy older adults (HOA) using 

online advertisements and the Research Participation Scheme (RPS) at Goldsmiths University. PD 

patients were recruited at the Neurology Clinic, Padua University Hospital. 

The study involved a total of 37 HYA (13 males, aged 18-40, mean age 27.8, standard error 

of the mean [SEM] 0.67, in this chapter we followed the recommendation by Cousineau, 2020 for 

rounding descriptive and inferential statistics), 20 medicated PD patients (13 males, aged 40-75, 

mean age 58.9, SEM 1.32), and an age-matched group of 37 HOA (20 males, aged 40-75, mean 

age 61.5, SEM 1.25). The sample size for the healthy groups was determined based on prior studies 

exploring differences between HYA and HOA in decision-making behaviour when performing under 

uncertainty (de Boer et al., 2017; Hein et al., 2021; Hein & Herrojo Ruiz, 2022). We enhanced the 

sample size to account for potential variability driven by the online study. 

Participants had normal (or corrected) vision, were right-handed and demonstrated the ability 

to execute controlled finger movements. We excluded professional/amateur pianists and individuals 

with mental health disorders. Additionally, PD patients meeting any of the following criteria were 

excluded: having Deep Brain Stimulation (DBS) implants, taking antidepressant medications and 
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being diagnosed with dementia. One PD patient reported taking Laroxyl but was not diagnosed with 

depression. All PD patients were screened using the ITEL-Mini Mental State Examination (ITEL-

MMSE; Metitieri et al., 2001), Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 

1983), Unified Parkinson's Disease Rating Scale part III (UPDRS-III; Fahn & Elton, 1987), and State-

Trait Anxiety Inventory (STAI Y2; Spielberger, 1983). We also collected additional information related 

to the disease (Table 1). Patients performed the study while taking their regular DA-replacement 

treatment. We recorded the individual DA medication details and calculated the levodopa-equivalent 

daily dose (LEDD; Table 1). 

All participants, except for five PD patients, completed the experiment remotely (online). For 

some HOA (N=24) and all PD patients we provided an Italian translation of the original (English) 

experimental instructions (refer to section 3.3.2 for information about our control analyses on the 

potential effect of the language). We used Italian translations of the ITEL-MMSE, HADS, STAI Y2 

and UDPRS-III scales. Participants (HYA and HOA) received a monetary prize of £5 (€5 for those 

executing the Italian task), with the potential to earn up to £10 (€10) based on performance. The PD 

patients were not awarded with a monetary compensation, in accordance with clinical guidelines at 

the Neurology Clinic of Padua. 

 

3.2.1.2 Study 2 

In Study 2, a distinct group of 39 HYA participated, with the aim of assessing whether 

subjective inferences about the task-related reward (credit) assignment could explain our results 

(McDougle et al., 2016). For this control experiment, HYA participants were subdivided based on 

their responses (True/False) to a post-performance question (Q8; see Table 2). The Q8T group 

comprised 26 participants (8 males, aged 18-40, mean age 24.1, SEM 1.13), while the Q8F group 

consisted of 13 participants (2 males, aged 18-40, mean age 25, SEM 1.7). The study received 

ethical approval by Goldsmiths, University of London; we used the same eligibility criteria and 

compensation as those applied to HYA participants in Study 1. 
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Table 1. PD clinical information 

Patient # Age UPDRS 
III ON 

ITEL-
MMSE STAI Y2 HADS_A HADS_D 

Disease 
Duration 
(years) 

Main 
Symptom 

Most 
Impaired 
Side 

Last Drug 
Intake 
(minutes) 

LEDD Active Substance 

1 57 38 22 51 6 3 10 R/B SX 30 920 Benserazide, Levodopa, Rasagiline, Ropinirole 

2 46 17 22 40 10 16 7 R SX 75 1197 Carbidopa, Entacapone, Levodopa 

3 53 10 22 42 7 5 4 R/B DX 120 100 Rasagiline 

4 63 6 22 25 4 2 3 B DX 720 50 Selegiline 

5 57 6 22 33 7 7 2 R DX 120 300 Benserazide, Levodopa 

6 53 22 20 53 9 8 23 R/LE BOTH 130 420 Carbidopa, Levodopa, Rotigotine 

7 62 24 22 33 4 3 11 T DX 120 1105 Benserazide, Levodopa, Pramipexole 

8 62 6 22 28 3 5 8 R/B/D DX 75 450 Carbidopa, Levodopa, Opicapone, Selegiline 

9 62 17 22 25 4 3 8 T SX 100 652 Benserazide, Levodopa, Pramipexole, Selegiline 

10 69 7 21 45 5 6 3 B SX 120 300 Benserazide, Levodopa 

11 58 7 20 31 5 1 9 R DX 30 970 Amantadine, Carbidopa, Entacapone, Levodopa, Pramipexole 

12 54 25 19 32 2 5 7 R SX 40 1780 Benserazide, Levodopa, Rasagiline, Rotigotine 

13 66 16 19 34 4 10 12 R/B DX 150 1580 Amantadine, Carbidopa, Levodopa, Opicapone, Pramipexole, 
Safinamide 

14 53 21 22 44 5 5 8 R BOTH 5 320 Ropinirole 

15 55 4 22 37 4 1 2 R/T DX 30 452 Benserazide, Levodopa, Pramipexole, Rasagiline 

16 69 13 20 35 1 0 7 B SX 437 470 Benserazide, Levodopa, Ropinirole, Selegiline 

17 65 5 21 26 1 7 16 R/B SX 360 

100 + 3.9 
ml/h 
levodopa 
infusion 
gel 

Levodopa, Opicapone, Pramipexole, Trihexyphenidyl 

18 59 7 21 37 2 4 2 R/B SX 5 150 Carbidopa, Levodopa 

19 58 8 22 30 1 4 5 R/T DX 100 452 Benserazide, Levodopa, Pramipexole 

20 56 17 22 40 6 8 6 R DX 185 1110 Amantadine, Benserazide, Levodopa, Pramipexole 

MMSE predicted score = 1.01 x ITEL-MMSE score + 5.16; HADS_A = anxiety score; HADS_D = depression score; R = rigidity, B = bradykinesia, LE = lack of 
energy, T = tremor, D = dyskinesia.  
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3.2.2 Experimental design 

In both studies, the experiments were conducted entirely online using the Qualtrics platform 

(https://www.qualtrics.com) and were accessible through a designated study link. The behavioural 

task was implemented in JavaScript and integrated into the Qualtrics form. Further details about 

data acquisition can be found below (refer to the section 3.2.3). 

Participants engaged in a reward-based motor decision-making task, as described in section 

2.1. During the familiarisation phase, participants were instructed to place their right hand on the 

keyboard in the following manner: index finger on the "g" key, middle finger on the "h" key, ring finger 

on the "j" key, and little finger on the "k" key. Each keypress generated a distinct auditory tone. 

Participants were instructed to press "g-j-h-k" for seq1 (associated with the red fractal) and "k-g-j-h" 

for seq2 (associated with the blue fractal), as illustrated in Figure 3A. Online videos were provided 

to demonstrate the correct hand positioning on the keyboard to perform the two sequences, 

promoting consistency across participants. The familiarisation phase concluded when participants 

achieved an error-free performance for both sequences in five consecutive attempts.  

The reward-based learning phase included 180 trials. At every trial, participants were 

required to select one of two coloured fractals (red or blue) and correctly execute the corresponding 

sequence (seq1 or seq2) to earn five points (as depicted in Figure 3B). Trial-wise feedback about 

their choices was displayed on the screen, indicating either "You earned 5 points!" or "You earned 

0 points" in binary form. The reward probabilities for each sequence (or fractal) changed every 30-

42 trials, similar to de Berker et al. (2016). The order of the five contingency blocks (i.e., 10/90-30/70-

50/50-70/30-90/10) was randomised for each participant, as shown in Figure 3C. 

After the initial keypress, participants had 5000 milliseconds to perform the sequence, 

concluding with a Stop signal. Visual prompts indicating the first key to press for seq1 and seq2 were 

provided: "It starts with a g" for seq1 (red fractal) and "It starts with a k" for seq2 (blue fractal). 

Participants were informed that they could press the "q" key if they required a reminder of the finger 

press order for each sequence. No participant found it necessary. 

As discussed in section 2.1, correctly executing the rewarded sequence resulted in five points 

being added to the participant’s total score (winning trial). Consequently, receiving five points 
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signified that they chose the rewarded sequence for that trial and did not commit performance 

execution errors. However, receiving zero points could indicate that participants either selected an 

unrewarded sequence (bad choice) or chose the rewarded sequence but performed it incorrectly 

(performance execution error) (McDougle et al., 2016). No rewards were provided for sequences 

performed beyond the 5000 ms time limit (no response trials), and individuals were notified that they 

had played too slowly. 

 

In Study 2, after having completed the reward-based motor decision-making task, 

participants were also asked to respond to questions about their performance. In particular, we were 

interested in evaluating participants' ability to correctly interpret the meaning of zero points, i.e., 

whether they could differentiate between a performance execution error and the selection of an 

unrewarded sequence on that trial. Both scenarios resulted in zero points. Table 2 outlines the 

questions from the post-performance questionnaire that required True/False (binary) responses and 

was developed based on previous research (Herrojo Ruiz et al., 2017; McDougle et al., 2016). The 

binary response to Q8, "I could always distinguish whether 0 points reflected a performance error or 

a bad decision," was used to categorise the sample into two groups: Q8T (participants who were 

always sure about the underlying reasons for not receiving a reward) and Q8F (participants who were 

not always certain about the reasons for receiving zero points). Other questions asked participants 

to estimate whether the number of performance execution errors was fewer than 10, between 10 

and 30, or more than 30. The answers were utilised to assess potential differences between Q8T 

and Q8F participants in the rate of subjective execution errors. We reasoned that Q8F participants, 

relative to Q8T, might attribute more zero points to execution errors instead of inferring that their 

choice was unrewarded on that trial. On the other hand, they could misattribute zero points to 

unrewarded decisions. In either case, the biased credit assignment in Q8F could result in a more 

pronounced mismatch between estimated and actual error rates. Moreover, their belief updating 

would differ. In fact, in the first scenario, Q8F participants, compared to Q8T, would be less likely to 

update their beliefs after receiving zero points, as they might perceive that outcome to be 
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uninformative about the underlying probabilistic structure. Consequently, differences in reward 

assignment could explain potential disparities in motor vigour effects and decision making. 

 
Table 2. Post-performance questionnaire 

Please, indicate whether the following statements are True or False. 
Please note that performance errors mean pressing the wrong key(s) or key(s) in the wrong order, while bad 
choices mean playing a sequence that received no points on that attempt. 

1. I made fewer than 10 performance errors [True/False] 

2. I made between 10 and 30 performance errors [True/False] 

3.  I made more than 30 performance errors [True/False] 

4. I recognised a performance error, because the tone sounded different than expected [True/False] 

5. I recognised a performance error, because the finger movement felt different [True/False] 

6. I memorised the sequences focusing on the finger movements, without paying attention to the tones [True/False] 

7. I memorised the sequences focusing both on the finger movements and the tones [True/False] 

8. I could always distinguish whether 0 points reflected a performance error or a bad decision [True/False] 

9. I was often not sure whether 0 points reflected a performance error or a bad decision [True/False] 

In Study 2, participants completed the questionnaire after the reward-based motor decision-making task. 
Binary responses to Question 8 were utilised to divide the sample and assess subjective inferences regarding 
the reward assignment.  
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Figure 3. Motor sequences and task structure.  
A, During the task familiarisation phase, participants learnt how to perform two sequences, each associated 
with specific images: the red fractal corresponded to seq1 ("g-j-h-k"), while the blue fractal was linked to seq2 
("k-g-j-h"). B, In the subsequent reward-based learning phase, participants were presented with the red and 
blue icons displayed on the left and right side of the screen, respectively, on each trial. Their task was to decide 
which image to select by playing the corresponding sequence in order to receive a reward. The feedback could 
either reflect a win (+5 points) or no points (0 points). For example, in the figure is illustrated a participant 
playing seq1 and receiving five points, indicating a correct choice and successful execution. C, It illustrates 
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the probabilistic stimulus-outcome mappings over the 180 trials for a representative participant. In this 
example, the order of reward mappings for the blue icon (and corresponding seq2) is 10-50-30-90-70, with the 
reciprocal pattern applying to the red icon and seq1. To maximise their rewards, participants needed to adapt 
their choices by monitoring the changes in the task structure throughout the 180 trials. D, It depicts the trial-
by-trial variations in performance tempo, measured in milliseconds (mIKI; mean inter-keystroke intervals), 
across 180 trials in Study 1. The data is reported in light blue for healthy younger adults (HYA), in dark blue 
for healthy older adults (HOA) and in purple for Parkinson's Disease (PD) patients. The black dots represent 
within-group average of the trial-by-trial performance tempo, with bars indicating the corresponding 95% 
confidence intervals. Notably, participants tended to execute the sequences at a faster pace as the experiment 
progressed, possibly reflecting a practice effect. 
 

3.2.3 Acquisition of online data using JavaScript 

In both studies, the online nature of the task could have introduced potential cross-browser 

issues. This stemmed from the diverse range of computer hardware utilised by participants, running 

various web browsers, operating systems, and employing different keyboard types. To minimise the 

impact of hardware discrepancies on the collection of motor performance data, participants were 

explicitly instructed to carry out the task exclusively on desktop or laptop computers (i.e., no tablets).  

An examination of the browser user agent data indicated that the experiment encompassed 

a mix of desktops and laptops operating the Chrome and Safari browsers on both Windows and 

Macintosh systems. Timing information was gathered using the web browser's high-resolution timer, 

which possesses an upper limit of 2 milliseconds. Consequently, all analysis scripts truncated timing 

data to ensure a precision of 2 milliseconds. In this regard, when calculating the mean and SEM for 

time-related variables, we accounted for a systematic error of 1 millisecond. 

For each participant, various data points, including keypresses, outcomes, contingency 

mapping, timing data, and other relevant information, were extracted on trial-by-trial basis. 

Subsequently, this data was stored and uploaded in JSON format to the data repository within 

Pavlovia, accessible at https://gitlab.pavlovia.org/oshah001/reward-learning-experiment. 

 
3.2.4 Behavioural modelling 

As explained in section 2.2, we modelled the individual trial-by-trial performance using the 

HGF. Specifically, here we used the enhanced HGF (eHGF) version 6.1 implemented in MATLAB 

2020b. The eHGF is based on a different derivation of the update equations compared to the 

standard HGF, and allows for a greater range of parameter values and corresponding belief 

trajectories (Frässle et al., 2021). For simplicity, we consistently used the term HGF throughout the 
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thesis, even when referring to its enhanced version. However, in the “Behavioural modelling” section 

of each chapter we specify when the eHGF was used. 

At the lowest level (x1), we represented the binary categorical variable of the experimental 

stimuli as follows: for each trial k, x₁(k) = 1 if the red icon/seq1 was rewarded (or blue/seq2 lost) and 

x₁(k) = 0 when red fractal/seq1 was not rewarded (or blue/seq2 won). Additionally, for the response 

model, y(k) = 1 if the red icon was chosen (seq1 was played); y(k) = 0 when blue icon was selected 

(seq1 was played). See Figure 4 for a schematic representation of the HGF in a representative 

participant.  

We started our analysis by employing the HGF₃ (i.e., perceptual model coupled with a 

sigmoid response model). Within this model, level 3 reflects the environmental volatility, that is the 

rate at which action-reward contingencies change. In our studies, the true volatility remained 

consistent across all participants since the reward contingencies were changing every 30-42 trials. 

Crucially, in Study 1, when using relatively uninformative priors for parameters 𝜔2 and 𝜔₃ (with prior 

mean values of -4 and -7, respectively, and prior variance set at 16 for both; in line with de Berker 

et al., 2016; Hein et al., 2021; Iglesias et al., 2013), we encountered numerical instability issues for 

20% of our participants across all groups. These instabilities were particularly pronounced in 

individuals with high win rates, indicative of effective learning. The problem persisted even when 

using tight priors (small variance values of 4 or 1 in the prior distribution of 𝜔2 and 𝜔₃) and when we 

employed prior values estimated from our data through an ideal observer model. The ideal observer 

is described as the range of parameter values that minimise the total surprise that an individual agent 

faces when experiencing the series of inputs (see Weber et al., 2020 for an application of an ideal 

observer model). It is plausible that the divergence of the HGF3 model in 20% of our datasets was a 

consequence of our trial number being smaller than in prior studies employing the HGF3 (180 trials 

in contrast to 320 or 400). Consequently, we opted to utilise the 2-level HGF (HGF2) in both Study 1 

and 2, wherein beliefs regarding volatility at the third level were held constant. For the perceptual 

HGF, we selected the priors by simulating an ideal observer receiving the inputs that the participants 

experienced and then coupled it with the sigmoid response model (refer to Table 3 for the priors 
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used in HGF2). In addition to the HGF, we incorporated two conventional reinforcement learning 

models: RW and SK1 (see sections 1.2.2 and 2.3 for further details).  

Notably, in Study 1 we utilised identical priors for all participant groups (HYA, HOA, PD), in 

line with previous studies (Hein et al., 2021; Powers et al., 2017). Yet, recent computational 

modelling research has suggested that employing distinct prior values for each participant group 

may be more appropriate for capturing effects at the group level (e.g., Valton et al., 2020). 

Nonetheless, this alternative approach may not favour conventional statistical comparisons between 

groups, as any observed between-group effects could be attributed to differences in the construction 

of the underlying models. 

 

Table 3. Priors (means and variances) on perceptual parameters and starting values of the 
beliefs of the winning HGF2 model 

Prior Mean Variance 

𝜅 (all) log(1) 0 

𝜔₂ (Study 1) -2.17  16  

𝜔₂ (Study 2) -2.16  16 

𝜔₃ (all) -7 0 

μ₂⁽⁰⁾ (all) 0 0 

𝜎₂⁽⁰⁾ (all) log(0.1) 0 

μ₃⁽⁰⁾ (all) log(1) 0 

𝜎₃⁽⁰⁾ (all) log(1) 0 

ζ (all) log(48) 1 

For Study 1 and 2, the prior mean (variance) on the free parameter 𝜔₂ are -2.17 (16) and -2.16 (16), 
respectively. Parameters 𝜎2(0), 𝜎3(0), 𝜅 are estimated in the log-space. The response model parameter, ζ, is log-
transformed, to allow for its estimation in an unbounded space. Note that μ₃(0) represents the estimate of log-
volatility, which can therefore take negative values, although volatility as the rate of change can only be positive 
or zero. The remaining parameters in the table are estimated in the natural space. As in previous related work, 
the following parameters are fixed: 𝜅, 𝜎2(0), μ₂⁽⁰⁾, 𝜎3(0), μ3⁽⁰⁾ (Hein et al., 2023). The prior variances are reported 
in the space in which the parameters are estimated. 
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Figure 4. Belief trajectories in a representative participant.  
At the first level, black dots (u) reflect the binary outcomes (1 = seq1 wins [seq2 loses]; 0 = seq2 wins [seq1 
loses]). The orange dots (y) correspond to the participants decisions (1 = seq1 is played; 0 = seq2 is played). 
The orange crosses represent performance execution errors, while the black line represents the individual 
learning rate (𝛼; Mathys et al., 2014 for the equations). At the second level (x₂), the parameter 𝜇2 represents 
the trial-by-trial trajectory of beliefs (𝜎2, variance) about the tendency of the stimulus-outcome contingency. 
When the mean estimate of 𝜇2 shifts towards positive values on the y-axis, it suggests that the participant has 
stronger beliefs that seq1 is rewarding compared to seq2. At the third level, it is illustrated the trajectory of 
beliefs about (log)volatility (𝜇3 [𝜎3]). The true volatility in our experiment, denoted as x3, remains constant 
throughout the study, as the stimulus-outcome contingencies are changing every 30-42 trials. However, 
participants could exhibit individual differences in their log-volatility estimates, which would have been captured 
by the HGF3 (Powers et al., 2017). Here, in Studies 1 and 2, the winning model was the 2-level HGF (HGF2), 
where volatility remained constant across all participants. On the y-axis, the blue circles represent the upper 
and lower priors of the beliefs posterior distributions (𝜇i(0) ± 𝜎i(0), i = 2, 3).  
 

3.2.5 Behavioural and computational data analysis 

In Study 1, we first validated the paradigm by examining two variables: (a) the percentage of 

trials in which participants executed seq1 (percPlayed); and (b) the rate at which seq1 was played 

in each contingency segment (percPlayed by contingency phase). In the first measure, we used 

percPlayed to ensure that participants did not display a preference for one sequence over the other, 

which could have occurred if one sequence were perceived as easier in terms of motor skills. Our 

expectation was that, on average, percPlayed would be around 50%. Computing percPlayed by 

contingency phase allowed us to assess whether participants updated their behaviour to reflect 
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changes in the environment. To compute this variable, we determined the rate of selecting seq1 

within each contingency phase for each participant and then aggregated this data within each group. 

The data were categorised by phases, which corresponded to increasing probability values [0.1, 0.3, 

0.5, 0.7, 0.9], as defined for seq1. Additionally, we examined the percentage of trials in which each 

sequence type was played without any performance execution errors (percCorrectlyPlayed). We did 

not conduct these sanity checks in Study 2 since the task employed was identical to that used in the 

current study. Furthermore, sanity checks for the studies presented in the subsequent chapters are 

limited to percPlayed by contingency phase, as this variable provides the most informative task 

validation.  

We evaluated the overall task performance by assessing the percentage of errors (percError: 

rate of sequences containing performance execution errors due to one or several wrong key 

presses), win rate (percWin: rate of trials in which the rewarded sequence was played without 

execution errors), the mean of the trial-wise performance tempo (mIKI, in ms: trial-by-trial average 

of the three inter-keystroke-intervals [IKI] across the four key presses within the same trial; see 

Figure 3D for trial-wise mIKI in Study 1) and the average of the trial-by-trial RT (in ms: time between 

the fractal onset and the first key press). Crucially, mIKI was commensurate with movement time 

(MT), which indicated the time interval between the first and the last key press (MT = mIKI * 3). 

Additionally, we recorded the number of sequence renditions completed by participants during the 

familiarisation phase (rendFam: mean of renditions across seq1 and seq2). We excluded time out 

trials and trials containing performance execution errors from the analyses on performance tempo 

and RT, as these could have confounded the results (e.g., slow performance following errors; Herrojo 

Ruiz et al., 2009). 

Next, we examined decision making by assessing group differences in three HGF 

computational parameters that characterised learning in each participant. Among the models 

considered, the one that best explained the behavioural data across all individuals, based on BMS, 

was the HGF2 (refer to section 3.3.2 for results on model comparison). Our analyses focused on 

evaluating the subject-specific tonic volatility (𝜔2), modulating the speed of belief updating at the 

second level, the decision noise of the response model (ζ), and the trial-averaged posterior variance 
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of the belief distribution (𝜎2). Of particular interest is 𝜎2, which reflects the degree of informational 

uncertainty concerning the reward tendencies. Beliefs on the second level are updated through PEs 

about the stimulus-outcome contingency (the differences between the experienced outcomes u = 1 

or 0 and the individual’s beliefs about the likelihood of such an outcome) and weighted by 𝜎2 (the 

precision ratio on the second level). Thus, when participants are less certain about the mapping 

governing their environment, they rely more heavily on PEs to update their beliefs on that level. 

Finally, to explore our primary research hypothesis that the strength of predictions about the 

reward contingency influences motor performance trial-by-trial, as a function of the group, we 

assessed the trajectory of �̂�₂ (omitting trial index k for simplicity). See section 2.2 for more information 

about �̂�₂. 

 

3.2.6 Statistical analyses 

3.2.6.1 Study 1: General task performance and computational variables using Bayes 

Factor 

We computed summary statistics, including mean and SEM, for both the general task 

performance variables (RT, mIKI, percWin, percError, rendFam) and computational variables (𝜔₂, 

𝜎₂,	ζ). Next, we assessed differences between groups by computing Bayes Factors (BF) using the 

bayesFactor toolbox within MATLAB (https://github.com/klabhub/bayesFactor). This toolbox uses 

tests relying on multivariate generalisations of Cauchy priors on standardised effects (Rouder et al., 

2012). For every dependent variable, we calculated the BF for the following model: dependent 

variable ~ 1 + group, which explains the dependent variable through a fixed group effect (HOA, HYA, 

PD). We used the fitlme function in MATLAB Statistics toolbox to perform the model fitting. BF values 

were interpreted in accordance with the approach outlined by Andraszewicz et al. (2015). 

Specifically, BF represents the ratio between the likelihood of observing the data under the 

alternative hypothesis (full model, assessing the main group effect in our case) and the null 

hypothesis (intercept-only model, i.e., dependent variable ~ 1). For instance, a BF larger than 100 

would provide extreme evidence in favour of the alternative hypothesis, while a BF of 0.05 would 
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strongly support the null hypothesis (refer to Table 1 in Andraszewicz et al., 2015). In addition to 

presenting BF results, we also conducted standard one-way analysis of variance (ANOVA) for 

completion. When main effects in the group-level analysis were observed, we performed follow-up 

BF analyses on independent two-sample t-tests. 

For RT analysis, we excluded outliers (RT values exceeding three standard deviations from 

the mean) at the individual subject level. The BF analyses utilised the individual averages across 

180 trials for the mIKI, RT, and 𝜎₂ variables. As mIKI and RT data were not normally distributed, they 

underwent natural logarithm transformations (log_mIKI and log_RT). This preprocessing steps were 

applied to mIKI and RT values in Study 2.  

To ensure that participants' sequence choices were influenced by the inferred action-reward 

contingencies rather than individual sequence preferences, we conducted sanity checks. These 

checks involved calculating mean and SEM, as well as BF analyses on paired t-tests for the 

percentage of trials in which seq1 and seq2 were (correctly) played (percPlayed; 

percCorrectlyPlayed). Next, we also reported the group average of percPlayed by contingency 

phase to verify that participants' choices aligned with the contingency changes over time. 

 

3.2.6.2 Study 1: Assessing the association between the strength of predictions about 

the action-reward contingency and motor performance using Bayesian Linear Mixed 

Models 

Our primary objective was to explore whether the expectation about the action-reward 

contingency (�̂�₂) influenced motor performance on a trial-by-trial basis in our participant groups. 

Additionally, we sought to determine whether the group factor influenced the sensitivity of motor 

behaviour to �̂�₂, leading to varying slopes in their association. 

To address these questions, we employed a series of BLMM in R, using the brms package 

(version 4.0.3). Further information about BLMM in brms can be found in section 2.4. In one 

participant (HYA), we removed the last 27 |�̂�₂| values as the trajectories of the HGF model diverged, 

despite the participant displaying typical learning patterns. We then centred the |�̂�₂| values (|�̂�₂|_c) 
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to ensure that the intercept estimate for mIKI reflected the average |�̂�₂| value. As for BF analyses on 

ANOVAs (refer to section 3.2.6.1), mIKI and RT were log-transformed to approximate normality 

(log_mIKI, log_RT). In one HOA participant, two log_mIKI values were omitted from the analyses as 

they were not correctly recorded in the JSON file, representing impossible mIKI values of ~ 50 ms. 

Furthermore, for each participant, RT values exceeding three standard deviations from the subject-

specific mean were excluded from statistical analyses. For BLMM analyses, HOA was set as the 

reference group, allowing us to assess the posterior distributions of differences between groups on 

the response variables for HOA vs HYA and HOA vs PD. 

We ran six models, each incorporating an increasing number of explanatory variables (as 

outlined in Table 4). To test our research hypothesis, we mainly focused on: the fixed effect of |�̂�₂|_c 

(reflecting the sensitivity [slope] of motor performance to the strength of expectations about the 

action-reward mappings in the reference group [HOA]); and the interaction effect |�̂�₂|_c * group 

(highlighting between-group differences in the sensitivity [slope] of motor performance to the strength 

of predictions about the action-reward contingencies). 

For all the models, we employed default prior distributions for the intercept and utilised normal 

distributions for both fixed and random effects (fixed effects for |�̂�₂|_c and group, normal [0,2)]; 

interaction group * |�̂�₂|_c, normal [0,1]; random effects for intercept by trial and intercept by subject, 

normal [0,2]; random effect |�̂�₂|_c by subject, normal [0,1]). We set the prior on the LKJ-Correlation 

(which governs the correlation matrices in brms; Lewandowski, Kurowicka, & Joe, 2009) to 2, in 

accordance with Bürkner et al. (2017). 

For both mIKI and RT, LOO-CV selected the most complex model (model number 6 in Table 

4) as the winning one (refer to section 3.3.3 for the results). Models 6 explained motor performance 

as an interaction between group and the strength of expectation about the reward mappings, in 

addition to the main effects. It also fitted the random effect of trials on the intercept, and the effect of 

subjects on |�̂�₂|_c and the intercept as a random effect.  
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Table 4. Models of increasing complexity used for Bayesian Linear Mixed Models analyses 
on the invigoration effect by predictions of reward probabilities 

Model # Model 

1 y ~ 1 + (1|subject) 

2 y ~ 1 + group + (1|subject) 

3 y ~ 1 + group + |�̂�₂|_c + (1|subject) 

4 y ~ 1 + group * |�̂�₂|_c + (1|subject) 

5 y ~ 1 + group * |�̂�₂|_c + (1 + |�̂�₂|_c|subject) 

6 y ~ 1 + group * |�̂�₂|_c + (1 + |�̂�₂|_c |subject) + (1|trial) 

Increasingly complex models used in Study 1 and 2. The variable y reflects the log_mIKI or log_RT. In model 
1, y is explained by a fixed effect of the intercept and a random effect of intercept by subject (the latter 
accounting for repeated measurements); model 2 includes a fixed effect of group; model 3 adds the fixed effect 
of |�̂�₂|_c to evaluate the sensitivity (slope) of motor performance to |�̂�₂|_c (|�̂�₂|_c is the absolute centred value 
of the expectation about the action-reward mappings and, in other words, it reflects the strength of the 
prediction); model 4 fits the interaction term between group and |�̂�₂|_c to assess the differences between 
groups in the sensitivity (slope) of motor performance to the strength of predictions about the action-reward 
tendency; model 5 incorporates the random effect of |�̂�₂|_c by subject; finally, model 6 adds a random effect 
of intercept by trial.  
 

3.2.6.3 Study 2: General task performance using Bayes Factor 

As previously outlined, in Study 2 participants were categorised into two distinct analysis 

groups (Q8T and Q8F) based on their responses to a post-performance question. In Q8 they indicated 

whether they could consistently differentiate between zero points reflecting a performance error or 

a poor decision (binary response: True/False). This categorisation enabled us to investigate the 

potential impact of subjective inferences regarding task-related credit assignment on motor decision-

making behaviour. 

Similar to our approach in Study 1, we calculated the mean and SEM as summary statistics 

in every dependent variable. Subsequently, we employed the bayesFactor toolbox to quantify the 

evidence either supporting or refuting differences between groups in general task performance 

variables (mIKI, RT, percWin, percError) and computational variables (𝜔₂, 𝜎₂,	 ζ). Here we 

deliberately did not explore the rate of sequence repetitions in the familiarisation phase, as our focus 

was exclusively on evaluating the role of subjective inferences concerning credit assignment in motor 

performance and decision-making behaviour. We conducted BF analyses on independent two-

sample t-tests to examine differences between groups on the variables of interest. The results of 
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standard independent t-test are also reported for completion. RT and mIKI underwent logarithmic 

transformations and followed the same preprocessing steps detailed in Study 1. 

Furthermore, we assessed whether Q8T and Q8F showed differences in the rate of subjective 

number estimate of execution errors. Specifically, we wanted to evaluate differences between 

groups in the tendency of either underestimating or overestimating the number of execution errors. 

In each individual, we calculated the rate of subjective performance execution errors 

(subjective_percError) using the post-performance questionnaire (Questions 1-3; Table 2). We gave 

a value of 0.028 (= 5/180) if participants believed to have executed less than 10 performance errors; 

0.111 (= 20/180) for between 20 and 40 estimated performance errors; 0.222 (= 40/180) for more 

than 40 subjective performance errors. To evaluate whether this rough estimation of the rate of 

performance errors mirrored a general under or overestimation of the actual performance error rate 

in the total sample (N = 39), we first ran a BF analysis on the correlation between the empirical and 

the subjective error rates (for completion, we reported Pearson's r coefficient and p-value). 

Subsequently, we explored potential group-related systematic biases in the subjective estimate by 

performing BF analysis using independent two-sample t-tests on the normalised rate of subjective 

errors ([subjective_percError-percError]/percError). Standard independent t-test results are also 

provided.  

 

3.2.6.4 Study 2: Testing the role of subjective inference about credit assignment in 

the motor invigoration effect using Bayesian Linear Mixed Models 

To investigate the potential impact of subjective inferences about credit assignment on the 

association between |�̂�₂| and motor performance (mIKI and RT), we employed six BLMM of 

increasing complexity (Table 4, same as in Study1). Our motivation for conducting these analyses 

stemmed from the hypothesis that participants who could not consistently infer the significance of 

zero points might exhibit reduced sensitivity in their motor performance to the predictions about 

reward tendencies. We applied the same model specifications, prior distributions, and preprocessing 

procedures as those utilised in Study 1. The most complex model (model number 6 in Table 4) was 

identified as the best-fitting model through LOO-CV, as elaborated in section 3.3.5. 
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3.3 RESULTS 

3.3.1. Study1: Ageing and Parkinson’s disease patients show intact task 

performance, despite being slower 

Individuals executed on average seq1 and seq2 50% of the trials (seq1: mean 0.508, SEM 

0.008; seq2: mean 0.490, SEM 0.008). This indicates that they did not show a preference towards 

a sequence type (percPlayed, BF = 0.2295, moderate evidence in favour of the null hypothesis for 

the absence of differences in the percentage of performances by sequence type, t(93) = -1.204, p = 

0.232). Participants executed less performance errors in seq2 (mean 0.922, SEM 0.008) than seq1 

(mean 0.958, SEM 0.005; percCorrectlyPlayed, BF = 1126.7, suggesting extreme evidence for 

alternative hypothesis that the rate of correct performance was different in seq1 and seq2, t(93) = 

4.576, p < 0.001). Subsequently, we noticed that percPlayed in each group consistently followed the 

contingency changes across trials. For true contingencies sorted according to increasing values, 

[0.1, 0.3, 0.5, 0.7, 0.9], HYA participants executed the corresponding sequence at these rates: [0.18, 

0.33, 0.48, 0.67, 0.81]. Similar values were observed for HOA: [0.18, 0.34, 0.48, 0.62, 0.79]; and for 

PD: [0.16, 0.32, 0.47, 0.63, 0.79]. Hence, this task validation suggests that every group of 

participants learned to flexibly adapt their behaviour in line with the changing contingencies. 

The analyses on general task performance indicated differences between groups in 

performance tempo (mIKI in ms, HYA: 300, SEM:15.8; HOA: mean 424, SEM 19.6; PD: mean 537, 

SEM 26.9; Figure 5A), and RT (in ms, HYA: 634, SEM: 34.9; HOA: mean 838, SEM 49.4; PD: mean 

918, SEM 77.5; Figure 5B), with sequence movements progressively slowing down in HOA and PD 

patients. BF analyses on performance tempo indicates extreme evidence for between-group 

differences (log_mIKI: BF = 1.1253e+09, showing extreme evidence for the alternative hypothesis; 

F(2,91) = 35.332, p < 0.001). Post hoc pair-wise t-tests using BF revealed extreme evidence for 

differences between HYA vs HOA (BF = 1.2044e+04) and in HYA vs PD (BF = 3.3592e+07). 

Additionally, we revealed very strong evidence for the alternative hypothesis in HOA vs PD (BF = 

32.591). Hence, performance tempo, which was commensurate with movement time, differed 

between groups, with HYA being faster than HOA and PD, and HOA quicker than PD. Concerning 

RT, we found extreme evidence supporting differences between groups (log_RT: BF = 404.521; 
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F(2,91) = 11.383, p < 0.001). BF analysis on post hoc independent two-sample t-tests showed extreme 

evidence for between-group differences in HYA vs HOA (BF = 109.444) and HYA vs PD (BF = 

239.335). However, we only observed anecdotal evidence supporting the null hypothesis in HOA vs 

PD (BF = 0.403). Thus, despite HYA having shorter RTs relative to both HOA and PD, our results 

support similar RTs in ageing and PD.  

Moreover, we detected anecdotal evidence for between-group differences in the number of 

sequence renditions in the familiarisation phase (rendFam, HYA: mean 5.6, SEM 0.1; HOA: mean 

6.0, SEM 0.2; PD: mean 7.1, SEM 0.8; BF = 1.733; F(2,91) = 4.448, p = 0.014). Post-hoc BF analyses 

to evaluate the potential differences between pairs of groups showed anecdotal and moderate 

evidence for differences between HYA and HOA (BF = 1.900) and HYA and PD (BF = 3.030), 

respectively. Nonetheless, HOA and PD repeated the sequences to a similar extent (BF = 0.853, 

revealing anecdotal evidence for the null hypothesis). It is worth noting that practising the sequences 

more throughout the familiarisation phase did not correlate with better performance (i.e., higher win 

rates or faster average performance) during the main task phase. The correlation across all 

participants between the number of renditions in familiarisation and these variables yielded evidence 

for null effects (percWin: BF = 0.290, Pearson r = -0.134, p = 0.200; log_mIKI: BF = 0.397; Pearson 

r = 0.158, p = 0.131; excluding one PD patient who repeated the sequences 21 times in the 

familiarisation phase). 

These group effects were not accompanied by between-group differences in the rate of win 

or error trials (Figure 5C-D). BF analysis on the rate of win trials showed moderate evidence 

supporting the absence of a group effect (percWin, HYA: mean 0.590, SEM 0.012; HOA: mean 

0.561, SEM 0.014; PD: mean 0.553, SEM 0.021; BF = 0.210, yielding moderate evidence for the 

null hypothesis; F(2,91)= 1.848, p = 0.163). Similar results were obtained for the rate of performance 

error (percError, HYA: mean 0.061, SEM 0.009; HOA: mean 0.057, SEM 0.008; PD: mean 0.084, 

SEM 0.020; BF = 0.146, moderate evidence for the null hypothesis; F(2,91) = 1.456, p = 0.239). 

Overall, we observed moderate evidence that the three groups (HYA, HOA and PD) did not exhibit 

different rates of win or error trials. 
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3.3.2 Study1: Similar decision-making processes between young, ageing and 

Parkinson’s disease patients 

We assessed decision making in our participants by exploring the differences between 

groups in the computational variables 𝜔2, ζ and 𝜎2. Because of numerical instabilities, we rejected 

the HGF₃ from model comparison and performed BMS on the HGF₂ and the two reinforcement 

learning models, RW and SK1, through the individual log-model evidence (LME) values provided by 

the HGF toolbox. The best-fitting model was the HGF₂, showing an exceedance probability of 0.95 

and an expected frequency of 0.90. Importantly, despite the HGF₃ model being excluded from BMS, 

a qualitative comparison of LME values in the HGF₃ and HGF₂ models in the 80% of participants in 

which HGF₃ did not cause numerical instabilities showed extremely similar values (LME differences 

< 1). This finding suggests that both the HGF₃ and HGF₂ models explained behaviour in our task to 

a similar extent.  

We observed no between-group differences in the main markers of learning and decision 

making (Figure 5E-G). BF analysis on 𝜔2 revealed strong evidence for the lack of a main effect of 

group (HYA: mean -1.332, SEM 0.282; HOA: mean -1.686, SEM 0.438; PD: mean -1.843, SEM 

0.609; BF = 0.059; F(2,91) = 0.380, p = 0.685). Similarly, we demonstrated strong evidence for the 

absence of between-group differences on informational uncertainty at level 2, 𝜎2 (HYA: mean 1.610, 

SEM 0.177; HOA: mean 1.663, SEM 0.158; PD: mean 1.559, SEM 0.218; BF = 0.045; F(2,91) = 0.074, 

p = 0.928). Finally, analyses on the ζ parameter indicated that groups displayed a similar mapping 

between beliefs and behavioural responses (HYA: mean 1.735, SEM 0.191; HOA: mean 1.523, SEM 

0.176; PD: mean 2.095, SEM 0.469; BF = 0.114, demonstrating moderate evidence for the null 

hypothesis; F(2,91) = 1.1495, p = 0.321).  

Finally, we also checked whether the language of the instructions (English vs Italian) could 

have influenced our results. By comparing the Italian HOA subsample and (Italian) PD sample we 

demonstrated moderate or anecdotal evidence for the null hypothesis on decision making and 

general task performance variables (exception for log_mIKI). Thus, these results are consistent with 

the findings in the entire HOA sample analysis. However, the very strong evidence in favour of a 

group effect on the performance tempo in the entire sample was only anecdotal when testing the 
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Italian HOA subsample and PD on this variable (log_mIKI: BF = 2.556; t(42) = -2.348, p = 0.024). 

These results indicate that Italian HOA exhibited slower performance tempo compared to UK HOA 

participants (log_mIKI: BF = 6.637; t(35) = 2.871, p = 0.007; moderate evidence supporting differences 

in performance tempo). Thus, between-groups effects in decision making and general task 

performance cannot be explained by language differences. 

 

Figure 5. Markers of general task performance and decision making.  
Study 1: healthy younger adults (HYA) is represented in light blue; healthy older adults (HOA) in dark blue; 
medicated Parkinson’s Disease patients (PD) in purple. A, Performance tempo (mIKI values are log-
transformed); B, Reaction time (RT, in the log scale); C, Rate of win trials (percWin); D, Rate of performance 
errors (percError); E, Tonic volatility on level 2 (𝜔2); F, Informational uncertainty on level 2 (𝜎2); G, Response 
model parameter (ζ). The values of 𝜎2, mIKI and RT are averaged across trials (N=180) within every participant. 
For each subplot, the group mean is represented by the large dot and the standard error of the mean (SEM) 
is depicted as a vertical bar. Individual data points are also reported to visualise the population variability within 
each group. 
 

3.3.3 Study1: Performance tempo is invigorated by the strength of predictions 

about the reward probabilities 

The most complex model (model number 6) on performance tempo was identified as the best 

fit by LOO-CV. The absolute mean difference in ELPD between the winning model and the second-
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best fitting model (elpd_diff) was 665.8557 (standard error of the differences [se_diff] = 39.0404; 

[elpd_diff > 2*se_diff]). When the ELPD differences between two models exceed four, and 

additionally, when the number of observations exceeds 100, and the model is reasonably well-

defined, then the standard error serves as a reliable estimate for the uncertainty in the model 

difference (Sivula et al., 2022; Vehtari et al., 2017). Posterior predictive checks showed that model 

6 had strong predictive power for the range of the dependent variable (Figure 6A). Table 5 

summarises the posterior distributions for the best-fitting model. 

As expected, we observed between-group differences in performance tempo. This is 

consistent with our earlier BF analyses demonstrating slower tempo in HOA and PD. The posterior 

estimate for the intercept in the reference group, HOA, was 6.00, CI = [5.91, 6.09] (in ms, 404, CI = 

[368, 443]). The distribution of the differences between intercepts in HOA and HYA yielded a 

posterior estimated value of -0.34, CI = [-0.47, -0.21] (in ms, -116, CI = [-163, -70]), while the 

distribution of the differences between intercepts in HOA and PD had a posterior point estimate of 

0.25, CI = [0.09, 0.41] (in ms, 114, CI = [41, 192]). Since these two distributions did not overlap with 

zero, this highlights that HYA executed the sequences quicker than HOA, while PD were slower than 

HOA (Figure 6B).  

Next, we assessed whether the strength of expectations about the reward mappings 

modulated performance tempo. The BLMM analyses supported our research hypothesis, 

demonstrating that stronger predictions about the action-reward contingency invigorated motor 

performance trial-by-trial through faster execution tempo. We specifically focused on the distribution 

of the fixed effect of |�̂�₂|_c in the reference group, HOA. This distribution informed about the 

sensitivity of the performance tempo to the strength of predictions about the action-reward 

contingency in HOA. The posterior estimate of |�̂�₂|_c was equal to -0.04, CI = [-0.07, -0.01]. Since 

the distribution did not overlap with zero, this indicates a negative relationship between performance 

tempo and the strength of expectations about the reward mappings in the reference group (Figure 

6C).  

Also, one of our aims was to assess differences between groups in the sensitivity of 

performance tempo to the strength of expectations about the reward tendencies. This was explored 
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by evaluating the distribution of the interaction effect group * |�̂�₂|_c. Both the posterior distributions 

of slope differences between HOA and HYA and between HOA and PD included zero, indicating 

that the sensitivity was similar between groups (HOA vs HYA: posterior estimate = -0.00, CI = [-0.04, 

0.04]; HOA vs PD: posterior estimate = -0.00, CI = [-0.05, 0.04]; Figure 6D).  

Taken together, our BLMM analysis suggests that performance tempo is modulated by the 

strength of predictions about the tendency of the action-reward contingency on a trial-by-trial basis, 

with stronger predictions leading to faster performance tempo. Crucially, the sensitivity of 

performance tempo to the strength of the predictions is not differently modulated between groups, 

indicating that young, ageing and PD patients can successfully use the predictions about the reward 

probability to invigorate their motor behaviour to a similar extent. 

In a similar set of analyses, we sought to explore whether the invigoration of motor responses 

extended to the RT, that is the amount of time taken to start the sequence performance (i.e., from 

fractals onset to the first key press). Consistent with performance tempo, LOO-CV selected model 6 

as the winning model (elpd_diff = 378.2718, se_diff = 30.69148; elpd_diff > 2*se_diff) and posterior 

predictive checks demonstrated good predictive power for the values of the dependent variable 

(Figure 7A). Gelman-Rubin statistics (R-hat values) revealed an excellent chain convergence. In 

Table 5 we summarised the posterior distributions for the best-fitting model. 

The analyses on the intercepts showed faster RT in HYA compared to HOA, with no 

differences between HOA and PD. The posterior point estimate for the intercept in the reference 

group, HOA, was 6.65, CI = [6.54, 6.75] (in ms, 771, CI = [693, 856]). The distribution of the 

differences between intercepts in HOA and HYA was centred at -0.28, CI = [-0.42, -0.13] (in ms, -

188, CI = [-289, -88]), which did not include zero. Differently, the distribution of the differences 

between intercepts in HOA and PD yielded a posterior point estimate of 0.09, CI = [-0.08, 0.27] (in 

ms, 77, CI = [-65, 231]) and overlapped with zero (Figure 7B). These results suggest that HYA 

started to play the sequences faster than HOA, whereas PD and HOA displayed a similar RT 

intercept, which is in line with our group results (BF analyses). 

For what concerns the relationship between RT and the strength of predictions, BLMM 

analyses revealed no trial-by-trial modulation or group effects. In fact, the distribution of the fixed 
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effect of |�̂�₂|_c (slope of the association between RT and |�̂�₂|_c in the reference group, HOA) had a 

posterior point estimate of -0.02, CI [-0.04, 0.01]. Since the distribution overlapped with zero, this 

suggests that the strength of predictions about the action-reward contingency did not invigorate RT 

in the reference group (Figure 7C). We assessed potential differences between groups in the slopes 

by exploring the distribution of the interaction effect group * |�̂�₂|_c. Both the posterior distributions of 

slope differences (HOA vs HYA and HOA vs PD) overlapped with zero (HOA vs HYA: posterior 

estimate = -0.01, CI = [-0.05, 0.03]; HOA vs PD: posterior estimate = -0.03, CI = [-0.07, 0.02]; Figure 

7D). Hence, the sensitivity of RT to the strength of expectations about the reward probabilities was 

similar across groups. Taken together, these results indicate that the invigoration of motor responses 

by predictions was limited to performance tempo and did not extend to RT.  
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Figure 6. Invigoration of performance tempo by the strength of predictions about the reward tendency 
is preserved in healthy ageing and in Parkinson's disease.  
Results of the Bayesian Linear Mixed Model on mIKI (BLMM; model number 6, y ~ 1 + group * |�̂�₂|_c + [1 + 
|�̂�₂|_c|subject] + [1|trial]) in Study 1. Healthy older adults (HOA) are set as reference group. A, Posterior 
predictive checks, with y representing the distribution of the observed performance tempo values, and yrep 
reflecting the simulated dataset from the posterior predictive distribution (100 draws). B, Distributions of the 
difference (in ms) between intercepts in HOA vs healthy younger adults (HYA), and HOA vs medicated 
Parkinson’s Disease (PD) patients. The posterior point estimate is represented by the grey vertical bar, while 
the 95% credible interval (CI) is indicated by the grey area under the distribution. Here, the two distributions 
do not include zero (the null hypothesis), suggesting differences in performance tempo between the groups. 
C, Representation of the slopes. It displays the association between the strength of predictions about the 
action-reward contingencies and performance tempo (in the log scale) in HYA (in light blue), HOA (in dark 
blue) and PD (in purple). The strength of predictions is captured by the parameter |�̂�₂|_c (i.e., centred absolute 
values of �̂�₂). The negative trend indicates that stronger predictions about the reward probabilities correspond 
to faster performance tempo (in HOA, slope effect centred at -0.04, CI = [-0.07, -0.01]). D, Distributions of the 
difference between slopes in HOA vs HYA, and HOA vs PD. The two distributions overlap with zero, suggesting 
a similar sensitivity of performance tempo to predictions about the reward mappings in the three groups.  
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Figure 7. Reaction times are not invigorated by the strength of predictions about the reward tendency. 
Results of the Bayesian Linear Mixed Model on RT (BLMM; model number 6, y ~ 1 + group * |�̂�₂|_c + [1 + 
|�̂�₂|_c|subject] + [1|trial]) in Study 1, with healthy older adults (HOA) as reference. A, It illustrates the posterior 
predictive checks, where y reflects the distribution of the observed RT values, and yrep the simulated dataset 
from the posterior predictive distribution (100 draws). B, Distributions of the difference (in ms) between the 
intercepts in HOA vs healthy younger adults (HYA), and HOA vs medicated Parkinson’s Disease (PD) patients. 
We represent the posterior point estimate through the grey vertical bar, and the 95% credible interval (CI) as 
the grey area under the distribution. In this plot, the bottom distribution (HOA vs HYA) does not include zero, 
suggesting that HYA have faster RT than HOA. On the other hand, the top distribution (HOA vs PD) overlaps 
with zero and thus indicates similar RT between ageing and PD. C, Representation of the slopes. It depicts 
the association between the strength of predictions about the action-reward contingencies and RT (values log-
transformed) in HYA (in light blue), HOA (in dark blue) and PD (in purple). The strength of predictions is 
captured by the parameter |�̂�₂|_c (i.e., centred absolute values of �̂�₂). BLMM analyses demonstrate that RTs 
are not modulated by the strength of predictions about the reward mapping. D, Distributions of the difference 
between slopes in HOA vs HYA, and HOA vs PD. Both distributions overlap with zero, indicating no between-
group differences in the association between RT and the predictions about the reward mappings.  
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Table 5. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the invigoration effect by predictions of reward 
probabilities 

Study # Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

1       

 Performance tempo      

  y: HOA 6.00 5.91 6.09 1.00 

  y: HOA vs HYA -0.34 -0.47  -0.21 1.00 

  y: HOA vs PD  0.25 0.09  0.41 1.00 

  |�̂�₂|_c: HOA -0.04 -0.07 -0.01 1.00 

  group * |�̂�₂|_c: HOA vs HYA -0.00 -0.04 0.04 1.00 

  group * |�̂�₂|_c: HOA vs PD -0.00 -0.05 0.04 1.00 

 Reaction times      

  y: HOA 6.65 6.54 6.75 1.01 

  y: HOA vs HYA -0.28 -0.42  -0.13 1.00 

  y: HOA vs PD  0.09 -0.08  0.27 1.00 

  |�̂�₂|_c: HOA -0.02 -0.04 0.01 1.00 

  group * |�̂�₂|_c: HOA vs HYA -0.01 -0.05 0.03 1.00 

  group * |�̂�₂|_c: HOA vs PD -0.03 -0.07 0.02 1.00 

2       

 Performance tempo      

  y: Q8T 5.62 5.51 5.72 1.00 

  y: Q8T vs Q8F 0.07 -0.11  0.25 1.00 

  |�̂�₂|_c: Q8T -0.04 -0.06 -0.01 1.00 

  group * |�̂�₂|_c: Q8T vs Q8F -0.00 -0.04 0.04 1.00 

 Reaction times      

  y: Q8T 6.24 6.13 6.34 1.00 

  y: Q8T vs Q8F -0.01 -0.19 0.18 1.00 

  |�̂�₂|_c: Q8T -0.02 -0.04 0.002 1.00 

  group * |�̂�₂|_c: Q8T vs Q8F 0.01 -0.03 0.04 1.00 

Values for the estimates, credible intervals (CIs) and R-hat for the fixed effects of the winning models in Study 
1 and 2 (model number 6: y ~ 1 + group * |�̂�₂|_c + [1 + |�̂�₂|_c|subject] + [1|trial]). In Study 1, y: HOA reflects  
the posterior estimate for the intercept in the reference group (healthy older adults, HOA); y: HOA vs HYA and 
y: HOA vs PD correspond to the posterior distributions of the differences between intercepts (HOA vs healthy 
younger adults [HYA]; HOA vs Parkinson’s patients [PD], respectively); |�̂�₂|_c: HOA represents the posterior 
distribution of the association (slope) between motor performance and the strength of predictions about the 
reward mappings in the reference group; group * |�̂�₂|_c: HOA vs HYA and group * |�̂�₂|_c: HOA vs PD reflect 
the posterior distributions of slope differences between HOA and HYA and between HOA and PD, respectively. 
In Study 2, y: Q8T indicates the posterior estimate for the intercept in the reference group (participants that 
replied True to Question 8, Q8T); y: Q8T vs Q8F is the posterior distribution of the difference between intercepts 
(Q8T vs participants that replied False to Question 8 [Q8F]); |�̂�₂|_c: Q8T is the posterior distribution of the 
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association (slope) between motor performance and the strength of expectations about the reward mappings 
in the reference group. Here, the upper bound of the CI is reported with three decimal digits to show the effect 
(i.e., zero included in the distribution); group * (|�̂�₂|_c): Q8T vs Q8F reflects the posterior distribution of slope 
difference between Q8T and Q8F. In both studies, u-95% CI and l-95% CI reflect the upper and lower bound of 
the CI of the posterior distributions for the fixed effects. For each model parameter, we also provide the 
corresponding Gelman-Rubin statistics (R-hat values; Gelman and Rubin, 1992). 
 

3.3.4 Study 2: Subjective inference about credit assignment does not 

contribute to differences in general task performance and decision making 

First, to explore whether the subjective inferences about the credit assignment could 

influence motor decision making we performed BF analyses on the HYA sample of the Study 2. 

The results indicated anecdotal and moderate evidence for the lack of between-group 

differences in Q8T and Q8F for the markers of general task performance (log_mIKI: BF = 0.417; t(37) 

= -0.795, p = 0.432; log_RT: BF = 0.329; t(37) = 0.156, p = 0.877; percWin: BF = 0.408; t(37) = 0.758, 

p = 0.453; percError: BF = 0.596; t(37) = -1.252, p =0.219; see Figure 8A-D for summary statistics).  

BMS identified the HGF2 as the best model (exceedance probability 0.94 and expected 

frequency 0.68). BF analyses on the HGF variables informing about decision-making behaviour 

demonstrated anecdotal evidence for the absence of differences between the Q8T and Q8F samples. 

(𝜔2: BF = 0.560; t(37) = -1.183, p = 0.244; ζ: BF = 0.445; t(37) = 0.895, p = 0.377; 𝜎2: BF = 0.463; t(37) = 

-0.951, p = 0.348; see Figure 8E-G for summary statistics).  

Moreover, we assessed whether individual differences in the inferences about credit 

assignment influenced the subjective error rate. We first computed BF analyses on the correlation 

between empirical and subjective error rates to validate the subjective error rate estimation. The 

results yielded strong evidence for a positive correlation in the whole sample (N = 39; BF = 10.204; 

r = 0.448, p = 0.004). Next, the BF analysis did not support differences between groups in the 

subjective error rate (BF = 0.432, indicating anecdotal evidence for the null hypothesis; t(36) = -0.850, 

p = 0.401). Thus, decision making, general task performance and the rate of subjective number 

estimate of performance execution errors were all similar, whether individuals were always certain 

(Q8T) or not (Q8F) about the reasons for not receiving the points. 



 80 

 

Figure 8. Markers of general task performance and decision making.  
Study 2: markers decision making and general task performance in participants that replied True to Question 
8 (Q8T; in dark brown) and participants that replied False to Question 8 (Q8F; in light brown) in the post-
performance questionnaire (refer to Table 2). A, Performance tempo (mIKI; in ms, Q8T: mean 287, SEM 13.2; 
Q8F: mean 307, SEM 27.2); B, Reaction times (RT; in ms, Q8T: mean 564, SEM 30.5; Q8F: mean 555, SEM 
68.7); C, Rate of win trials (percWin; Q8T: mean 0.574, SEM 0.013; Q8F: mean 0.555, SEM 0.024); D, Rate of 
execution errors (percError; Q8T: mean 0.077, SEM 0.010; Q8F: mean 0.102, SEM 0.020); E, Tonic volatility 
on level 2 (𝜔2; Q8T: mean -1.624, SEM 0.510; Q8F: mean -0.715, SEM 0.357); F, Informational uncertainty on 
level 2 (𝜎2; Q8T: mean 1.740, SEM 0.203; Q8F: mean 2.057, SEM 0.237); G, Response model parameter (ζ; 
Q8T: mean 1.599, SEM 0.237; Q8F: mean 1.271, SEM 0.206). Values for mIKI, RT, and 𝜎2 are computed as 
averages from 180 trials within each participant. The mIKI and RT values are represented in the log scale. In 
each graph, to the right of the mean value (represented by a large dot) and the standard error of the mean 
(SEM; indicated by a vertical bar), individual data points from each group are included to illustrate the variability 
within each group. 
 

3.3.5 Study 2: Subjective inference about credit assignment does not 

contribute to differences in motor vigour effects 

Next, we wanted to evaluate whether not being always sure about the reasons for not 

obtaining the points could modulate the association between the strength of predictions about the 

reward probabilities and motor performance. The most complex model (model number 6) was 

selected as the winning one by LOO-CV (mIKI, elpd_diff = 144.9434, se_diff = 20.33661; elpd_diff 
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> 2*se_diff; RT, elpd_diff = 106.3677, se_diff = 17.4019; elpd_diff > 2*se_diff). Table 5 outlines the 

posterior distributions for the winning models. 

Regarding performance tempo, the posterior predictive checks revealed a strong predictive 

power for the range of the values of the dependent variable in the best model (Figure 9A). In line 

with our BF analyses on mIKI, the distribution of the differences between intercepts in Q8T and Q8F 

included zero, suggesting that subjective inferences about credit assignment did not affect 

performance tempo (Figure 9B). Additionally, BLMM analyses showed a negative association 

(slope) between performance tempo and the strength of predictions about the action-reward 

contingency (Figure 9C). This result replicates our findings in Study 1, demonstrating that stronger 

predictions about the action-reward contingencies are associated to faster execution tempo. 

Nonetheless, we did not find slope differences between groups. Hence, subjective inferences about 

the reasons for receiving zero points did not affect the sensitivity of performance tempo to the 

strength of predictions about the reward probabilities (Figure 9D). 

Regarding RT, Gelman-Rubin statistics revealed an excellent chain convergence, yet the 

predictive power for the RT values was poorer compared to performance tempo (Figure 10A). The 

analyses on the intercepts showed no differences between Q8T and Q8F on RT, consistent with our 

previous BF findings (Figure 10B). We did not find a robust association (slope) between RT and the 

strength of expectations about the reward mappings (Figure 10C). In fact, the 95% CI of the slope 

distribution included zero (CI = [-0.04 0.002]), suggesting that the strength of predictions did not 

robustly modulate the RT trial-by-trial.  

 Also, we did not observe differences between slopes. Hence, similarly to performance tempo,  

the subjective inferences about task-related reward assignment did not affect the association 

between RT and the strength of predictions about the reward contingency (Figure 10D).  

Overall, our analyses in Study 2 suggest that subjective inferences about the credit 

assignment do not affect motor performance, decision making and motor vigour effects by 

predictions of reward contingency. This demonstrates that, even if groups in Study 1 had displayed 

differences in inferences about reward assignment, such differences would not have resulted in a 

modulation of group effects. Furthermore, in this study, we replicated our primary findings, showing 
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a negative trial-by-trial association between predictions about the action-reward contingencies and 

performance tempo. 

 

Figure 9. Retrospective credit assignment does not modulate the motor invigoration effect on 
performance tempo.  
Results of Bayesian Linear Mixed Models (BLMM; model number 6, y ~ 1 + group * |�̂�₂|_c + [1 + |�̂�₂|_c |subject] 
+ [1|trial]) with individuals that replied True to Question 8 (Q8T) as reference group in Study 2. A, Illustration of 
the posterior predictive checks where the distribution of the performance tempo values (y) is compared to 
simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distribution of the difference 
between intercepts in Q8T vs participants that replied False to Question 8 (Q8F), in ms. The grey vertical bar 
reflects the posterior point estimate, while the grey area under the curve is the 95% credible interval (CI). Here, 
the distribution does include zero, indicating no between-group differences in performance tempo. C, 
Representation of the slopes (Q8T represented in dark brown and Q8F in light brown, mIKI in the log-scale). It 
illustrates a negative association between the strength of predictions (|�̂�₂|_c [centred absolute values of �̂�₂]) 
and performance tempo, replicating our findings in Study 1 (see Figure 6C). D, Distribution of the slope 
differences in Q8T vs Q8F. As CI includes zero, this indicates that groups have a similar sensitivity of motor 
performance to the strength of predictions.  
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Figure 10. Retrospective credit assignment does not modulate the invigoration of reaction times by 
predictions.  
Bayesian Linear Mixed Models (BLMM; model number 6, y ~ 1 + group * |�̂�₂|_c + [1 + |�̂�₂|_c|subject] + [1|trial]) 
with participants that replied True to Question 8 (Q8T; see Table 2) as reference group in Study 2. A, 
Representation of the posterior predictive checks with y illustrating the distribution of the observed RT values 
and yrep reflecting the simulated datasets from the posterior predictive distribution (100 draws). B, Illustration 
of the distribution of the difference between intercepts in RT (ms) between Q8T and participants that replied 
False to Question 8 (Q8F). The posterior point estimate is represented by the grey vertical bar, while the 95% 
credible interval (CI) is displayed as the grey area under the distribution. As the distribution includes zero, this 
indicates that there are no between-group differences in RT. C, Representation of the slopes, with RT values 
in the log-scale and the strength of predictions captured by the centred absolute values of �̂�₂	(i.e., |�̂�₂|_c). 
BLMM shows that, in the reference group, RT are not robustly modulated by the strength of expectations about 
the reward contingencies. D, Distribution of the difference between slopes in Q8T vs Q8F. The distribution 
includes zero, and therefore we can conclude that the two groups show a similar sensitivity of RT to the 
strength of predictions.  
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3.4 DISCUSSION 

The studies included in this chapter explored the association between the strength of 

predictions about the reward probabilities and motor behaviour trial-by-trial. We tested HYA, PD ON 

medication, and an age-matched HOA sample in a reward-based motor decision-making task (refer 

to section 2.1). We employed the HGF to model the behavioural data on a trial-by-trial basis and 

performed Bayesian analyses (i.e., BF and BLMM). 

In Study 1, we found that the strength of expectations about the reward mappings influenced 

performance tempo, commensurate with movement time, in a trial-wise manner. Notably, this 

invigoration effect was only observed for performance tempo and did not extend to RT. BLMM 

analysis also unveiled a similar sensitivity of performance tempo to reward expectations across HYA, 

HOA and PD, providing strong evidence for a spared invigoration of motor responses by predictions 

of the reward probability in ageing and medicated PD. These novel findings expand our 

understanding of how reversal learning and reward sensitivity interact to influence motor vigour in 

older adults and PD patients in the ON medication state.  

Previous research exploring the positive effects of rewards in enhancing motor performance, 

such as increased speed and accuracy (Sedaghat-Nejad et al., 2019), solely focused on 

manipulating reward size (e.g., absence/presence and large/small rewards) within deterministic 

environments (Aves et al., 2021; Codol et al., 2020; Sporn, et al., 2022). Our results build upon 

computational studies that revealed how belief updating in perceptual tasks expedite RT (Marshall 

et al., 2016). In their work, Marshall and colleagues (2016) observed that when participants acquired 

the ability to track changing probabilities between stimuli, various decision-making parameters 

influenced RT. The findings discussed in this chapter demonstrate that the trial-wise modulation of 

response vigour by updating of beliefs not only finds application in the perceptual domain, but also 

to learning about the reward mappings. 

Our analysis yielded extreme evidence for differences between groups in average 

performance tempo. Specifically, HYA demonstrated quicker performance compared to both PD and 

HOA, while HOA exhibited faster performance than PD. The observed slower motor sequence 

performance in HOA aligns with other evidence supporting a general slowness of limb movements 
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in ageing (Aves et al., 2021; Ketcham et al., 2002). In the case of PD, the slower motor performance 

is likely attributed to a sequence effect (SE), which is a typical bradykinetic symptom characterised 

by diminished speed and coordination when executing discrete sequential movements (Kang et al., 

2010). Notably, the administration of DA agonist does not alleviate symptoms related to SE, 

suggesting that factors other than DA may play a role in the pathophysiology of this phenomenon 

(Bologna et al., 2016). Similarly, when examining RT, we found that HYA participants displayed 

shorter RTs compared to both HOA and PD individuals. However, RT did not differ between HOA 

and PD in our study. 

We revealed similar win and error rates across HYA, HOA and PD. Also, there were no 

differences among our groups in the key indicators of decision making. Our analysis provided 

supporting evidence for the lack of a group effect on tonic volatility at the second level (𝜔2), 

informational uncertainty (𝜎2) and the decision noise parameter (ζ). Consequently, updating of 

reward beliefs in our task, where action-reward contingencies were changing over time, was similar 

across all three groups. So far, research on reward-based learning in ageing and PD on medication 

has yielded mixed results. Previous studies indicated reduced performance in probabilistic (reversal) 

learning tasks among older adults and individuals with PD in the ON state. These findings suggest 

difficulties in belief updating and establishing new associations between stimuli and their outcomes 

(Cools, 2001; Eppinger et al., 2011; Nassar et al., 2016). In line with this, de Boer et al. (2017) 

revealed poorer probabilistic reversal learning in older adults relative to young individuals, with the 

impoverished performance being attributed to the attenuation of anticipatory value signals in the 

PFC. However, other evidence has argued for the preservation of sensitivity to rewards and reward-

based learning abilities in ageing and medicated PD (Aves et al., 2021; Euteneuer et al., 2009; Fera, 

2005). Specifically, PD in the ON state have shown the capacity to effectively learn from incentives, 

only displaying impairments in reversal learning tasks employing punishments (Frank et al., 2004; 

Levy-Gigi et al., 2019). Additionally, Hird et al. (2022) demonstrated that age does not affect the 

invigoration of motor responses driven by rewards. This aligns with our own results, supporting the 

preservation of motor invigoration effects by predictions of reward probabilities in older adults and 

medicated PD.  
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Study 1 did not explore whether individuals accurately inferred the underlying reasons for the 

absence of rewards (McDougle et al., 2016). In Study 2 we revealed that subjective inferences about 

task-related credit (reward) assignment did not influence general task performance, motor vigour, 

decision making, or the subjective estimate of performance execution errors. As the feedback that 

the participants observed was always veridical (as opposed to McDougle et al., 2016), the 

misattribution of the latent causes of receiving zero points is unlikely to have affected performance 

in our task. 

Another limitation of Study 1 is that, given the online nature of the experiment, we exclusively 

assessed medicated PD. The recent investigation by Hird et al. (2022) yielded only a weak 

correlation between the availability of DA D1 receptors and the motor invigoration effect by rewards. 

This finding, combined with our results demonstrating preserved invigoration of motor responses in 

medicated PD, poses an important question: how strong is the role of DA neurotransmission in motor 

vigour and learning when navigating environments characterised by high uncertainty and volatility? 

Future research should aim to explore the impact of DA on the trial-wise association between motor 

vigour and the predictions about reward contingencies. Our results suggest that the use of DA-

replacement therapy might hold promise in addressing potential decision-making impairments during 

learning within changing environments in individuals with PD. 

In conclusion, this study provides novel evidence for an invigoration effect by predictions 

about reward probabilities in a volatile environment. Furthermore, our research is the first to 

demonstrate a preserved sensitivity of motor performance to predictions about the reward mappings 

in both HOA and medicated PD. Hence, healthy young, older adults and medicated PD bias their 

motor performance by updating beliefs about the action-reward mappings under volatility in a similar 

manner.  
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CHAPTER 4: EXPLICIT CONFIDENCE ABOUT REWARD DELIVERY 

INVIGORATES MOTOR PERFORMANCE 

 

In this follow-up study, our aim is to expand upon the findings discussed in Chapter 3 by 

assessing whether motor behaviour is also influenced by explicit beliefs about the reward tendency 

as measured through confidence ratings.  

Using our reward-based motor-decision task in a separate sample of HYA individuals, we 

found that greater confidence about obtaining a reward led to faster performance tempo on a trial-

by-trial basis. Consistent with our earlier findings, the invigoration effect by explicit beliefs did not 

extend to RT. Furthermore, we observed a robust correlation between explicit confidence ratings 

and the strength of predictions about the reward probabilities captured through computational 

modelling. This outcome supports the notion that implicit predictions can serve as a proxy for explicit 

confidence ratings regarding the reward delivery.  

Overall, this short follow-up study contributes to a more comprehensive understanding of the 

motor invigoration effect driven by predictions about volatile action-reward contingencies.  

 

4.1 INTRODUCTION 

The strength of predictions about the action-reward contingencies, as captured through 

computational modelling, enhances motor performance on a trial-by-trial basis (Chapter 3; Tecilla et 

al., 2023). However, whether motor vigour is also influenced by explicit confidence about the reward 

delivery remains unknown. In this study, we aim to bridge this gap by investigating whether explicit 

trial-by-trial confidence ratings about reward acquisition influence motor performance in a manner 

similar to implicit predictions. 

Explicit confidence is defined as the strength of belief that a decision or proposition is correct 

given the available information (Pouget et al., 2016). Every choice we make is accompanied by a 

level of confidence in its correctness, whether it's choosing the right stock for maximising returns, 

selecting a recipe to impress dinner guests, or even deciding on the best outfit for a special occasion. 
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In each of these instances, we continuously engage in confidence assessments that reflect the 

probability of our decisions being accurate (Boldt et al., 2019). Explicit beliefs have been assessed 

across various domains, including perception, memory, learning, decision making, and general 

knowledge (Grimaldi et al., 2015; Meyniel et al., 2015). This typically involves requesting participants 

to provide a numerical rating indicating the level of confidence in their response (Kepecs & Mainen, 

2012). Compelling evidence suggested that confidence plays a crucial role in facilitating feedback-

based learning under conditions of uncertainty (Frömer et al., 2021; Nassar et al., 2010; Pouget et 

al., 2016; Vaghi et al., 2017). In an elegant study, Frömer and colleagues (2021) demonstrated that 

higher confidence levels were associated with improved learning. Specifically, they found that 

confidence tracked the precision of predictions, with higher confidence being associated to a smaller 

discrepancy between predicted and actual outcomes. Moreover, individuals who exhibited a stronger 

coupling between their confidence and the precision of their predictions learned more quickly. 

Despite the observed role of confidence in enhancing learning through improved outcome 

processing, its potential influence on motor performance has not been elucidated yet. In the current 

study, we integrated our reward-based motor decision-making task (see section 2.1) with a 

confidence assessment to evaluate participants' certainty about reward acquisition after each 

sequence. This aims to offer a thorough insight into the influence of explicit beliefs about the volatile 

reward probabilities on the motor invigoration effect.  

An unexpected finding in the previous two studies (Chapter 3) was the lack of sensitivity of 

RT to the strength of predictions about the action-reward contingencies. This contrasts with existing 

literature, which showed that manipulations of reward magnitude affect the time taken to initiate a 

movement (Codol et al., 2020; Manohar et al., 2015; Summerside et al., 2018; Wächter et al., 2009). 

We hypothesised that this discrepancy could be attributed to the paradigm used in the prior studies, 

where RT included deliberation time. This was reflected in participants having no constraints on 

starting to play the sequence, which could have potentially introduced noise to the RT distribution 

and masked motor vigour effects. In this study, we employed a modified version of the task that 

mitigates deliberation time, with the aim of clarifying the sensitivity of RT to beliefs about the reward 

tendencies. 
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In conclusion, by coupling the reward-based motor decision-making task with a confidence 

assessment, we aimed to examine the impact of explicit confidence ratings on motor vigour. We also 

fitted the behavioural data using the HGF to investigate the potential correlation between the strength 

of implicit and explicit beliefs about the reward tendencies. This analysis sought to determine 

whether implicit beliefs could serve as a proxy for explicit confidence ratings regarding the reward 

delivery. Finally, using a version of the task that mitigated the influence of deliberation times on the 

RT distribution, we delved into a more thorough understanding of the motor invigoration effect. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Participants 

We tested 33 healthy young adults (HYA; 6 males, age 18-40, mean age 22.4, SEM 1.14). 

All participants had either normal or corrected vision, were right-handed, and exhibited proficient 

control over finger movements. We excluded individuals with mental health conditions and those 

with a background as amateur or professional pianists. Participants received compensation in the 

form of a monetary reward (base rate of £5, up to £10 depending on task performance) or university 

credits. The study was approved by the ethics review board at Goldsmiths, University of London.  

 

4.2.2. Experimental design 

We implemented an offline version of the reward-based motor decision-making task, as 

outlined in section 2.1. The experimental paradigm was coded using the Psychtoolbox library 

(http://psychtoolbox.org) and executed in MATLAB (version 2021b).  

We retained the same sequences, fractal images, and reward contingencies as detailed in 

Chapter 3 (see section 3.2.2 for a comprehensive task description). However, in this study, to better 

assess trial-wise RT, mitigating the effects of deliberation time, the 5000 ms time interval for 

executing the sequence initiated at the fractals onset (and not at the first key press, as in the two 

studies discussed in Chapter 3). Consequently, reward delivery became contingent on both RT and 

movement time. 
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A crucial aspect of this study involved collecting trial-by-trial explicit beliefs regarding the 

reward tendency, measured through confidence ratings. Thus, following the approach of Frömer et 

al. (2021), after each sequence performance, participants were prompted to indicate their level of 

certainty about receiving a reward. This was achieved by asking individuals to enter with their left 

hand a numerical value within the range of 0 to 99 using the computer keyboard, with 0 indicating 

having no clue about receiving points and 99 indicating being fully certain of being rewarded. 

Participants were encouraged to explore the full spectrum within this range. Additionally, participants 

were instructed to press the "z" key if they believed they had made an error during task execution. 

This aimed at estimating the percentage of correctly identified errors, providing real-time insights 

into subjective inference on credit assignment. 

 

4.2.3 Behavioural modelling 

As this study builds upon and extends the results described in Chapter 3, we chose to model 

the behavioural data using the same procedure outlined in Section 3.2.4 (eHGF version 6.1 

implemented in MATLAB 2020b). Thus, we combined the 2-level HGF perceptual model with a 

sigmoid response model (HGF2), where beliefs regarding volatility at the third level were held 

constant. The priors for the perceptual HGF model were selected simulating an ideal observed being 

exposed to the same inputs the participants received. See Table 6 for the priors used in this study. 
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Table 6. Priors (means and variances) on perceptual parameters and starting values of the 
beliefs of the winning HGF2 model 

Prior Mean Variance 

𝜅  log(1) 0 

𝜔₂ -2.22  16  

𝜔₃  -7 0 

μ₂⁽⁰⁾ 0 0 

𝜎₂⁽⁰⁾ log(0.1) 0 

μ₃⁽⁰⁾ log(1) 0 

𝜎₃⁽⁰⁾ log(1) 0 

ζ log(48) 1 

The prior mean (variance) on the free parameter 𝜔₂ is -2.22 (16). The parameters of the winning HGF2 model 
are estimated as described in Table 3 (refer to section 3.2.4).  
 

4.2.4 Behavioural and computational data analysis 

First, as a sanity check, we validated our task by calculating the rate at which seq1 was 

played across the different contingency phases (percPlayed by contingency phase). We assessed 

general task performance through the percentage of errors (percError), the rate of win trials 

(percWin), the average of the trial-wise performance tempo (mIKI) and the mean of the trial-wise RT. 

From the HGF trajectories, we extracted the absolute values of �̂�₂(k) (i.e., |�̂�₂|, with k dropped for 

simplicity), reflecting the strength of predictions about the action-reward contingencies on a trial-by-

trial basis. More information about these variables can be found in section 3.2.5. Finally, as this study 

aimed at understanding whether motor performance is modulated by explicit beliefs about the reward 

tendency, we also analysed the trial-wise confidence ratings (conf: number between 0 and 99).  

 

4.2.5 Statistical analyses 

4.2.5.1 General task performance 

First, we computed the mean and SEM as summary statistics for the variables reflecting 

general task performance (RT, mIKI, percWin, conf). The trial-by-trial confidence ratings were 

transformed using a 0-0.99 scale. RT values exceeding three standard deviations from the mean at 

the individual level were removed from the analyses. Next, we provided the mean of percPlayed by 
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contingency phase to validate the task. Finally, we calculated the summary statistics for the rate of 

error trials (percError) and the number of subjective performance errors (number of times the “z” key 

was pressed during the task). This aimed at exploring the participants’ ability to accurately detect 

performance execution errors and therefore understand the credit assignment. 

 

4.2.5.2 Assessing the association between explicit beliefs about the reward delivery 

and motor performance using Bayesian Linear Mixed Models 

To test the relationship between trial-by-trial explicit confidence ratings about reward 

acquisition and motor performance, we implemented a series of BLMM in R using brms (Bürkner, 

2017, 2018, 2020; see section 2.4 for detailed information on how brms works). This approach 

allowed us to understand whether being more certain about receiving the reward would expedite 

motor behaviour. We specified four models of increasing complexity, setting mIKI and RT (log-

transformed) as dependent variables and confidence ratings (conf) as predictor (Table 7). For RT, 

we rejected outliers (values exceeding three standard deviations from the subject-specific mean). 

The best-fitting model was identified using LOO-CV with Pareto-smoothed importance sampling 

(Vehtari et al., 2017). The posterior distributions of the model parameters were calculated in the 

entire HYA sample.  

To investigate our hypothesis, we assessed the fixed effect of conf (association [slope] 

between motor performance and the confidence ratings about the anticipated outcome). The models 

were run specifying the following priors: default prior distribution for the intercept; normal distribution 

(0,2) for the fixed effect of conf, the random effects for intercept by subject and intercept by trial; 

normal distribution (0,1) for the random effect of conf by subject. The prior on the LKJ-Correlation 

was set to 2 (Bürkner, 2017).  

Model number 4 (the most complex) and the model number 3 (Table 7) were identified as 

the winning models by LOO-CV for performance tempo and RT, respectively (see section 4.3.2 for 

further details).  
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Table 7. Models of increasing complexity used for Bayesian Linear Mixed Models analyses 
on the invigoration effect by confidence 

Model # Model 

1 y ~ 1 + (1|subject) 

2 y ~ 1 + conf + (1|subject) 

3 y ~ 1 + conf + (1 + conf|subject) 

4 y ~ 1 + conf + (1 + conf|subject) + (1|trial) 

The variable y reflects the motor performance (log_RT or log_mIKI); conf represents the confidence rating. In 
model 1, y is fitted by a fixed effect of the intercept and a random effect of intercept by subject, which accounts 
for repeated measurements; model 2 includes the fixed effect of conf to evaluate the association (slope) 
between motor performance and confidence ratings; model 3 adds the random effect of confidence ratings by 
subject; finally, model 4 fits a random effect of intercept by trial. 
 

4.2.5.3 Testing the association between confidence ratings and predictions about the 

reward probabilities using Bayesian Linear Mixed Models 

Finally, we tested the association between confidence ratings and the strength of 

expectations about the reward mapping trial-by-trial, as a sanity check. The investigation of motor 

vigour effects discussed in Chapter 3 relies on the assumption that the |�̂�₂| values estimated through 

computational modelling represent the strength of participants’ predictions about the reward 

probabilities. Yet, whether this parameter and explicit beliefs about reward delivery, assessed 

through confidence ratings, are associated is still unclear. We analysed the correlation between the 

unsigned |�̂�₂| values and the confidence ratings using the formula conf ~ 1 + |�̂�₂|_c + (1 + 

|�̂�₂|_c|subject) + (1|trial) in brms. Here, |�̂�₂| was centred (|�̂�₂|_c) to make sure that the intercept 

estimates of the BLMM reflected average |�̂�₂| values. No outliers for |�̂�₂| were detected (i.e., no |�̂�₂| 

values bigger than four standard deviations above the mean). Among the model outputs, we 

specifically focused on the fixed effect of |�̂�₂|_c, representing the relationship between confidence 

ratings and the strength of the predictions. 

For the intercept we used a default prior distribution, while for random and fixed effects 

normal distributions (fixed effect for |�̂�₂|_c, normal [0,2]; random effect |�̂�₂|_c by subject, normal [0,1]; 

random effects for intercept by subject and intercept by trial, normal [0,2]). Priors on LKJ-Correlation 

was set to 2 (Bürkner et al., 2017). 
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4.3 RESULTS 

4.3.1 General task performance 

Descriptive statistics of general task performance variables demonstrated values consistent 

with the HYA samples in Chapter 3, Study 1 and 2 (mIKI, in ms, mean 335, SEM 14.4; RT, in ms, 

mean 662, SEM 26.7; percWin, mean 0.542, SEM 0.011; percError, mean 0.038, SEM 0.007; conf, 

mean 0.527, SEM 0.028). Next, the variable percPlayed by contingency phase demonstrated that 

participants successfully tracked the changes in the contingencies across trials. In fact, for true 

probabilities sorted according to increasing values, [0.1, 0.3, 0.5, 0.7, 0.9], participants played the 

corresponding sequence at rates [0.28, 0.41, 0.48, 0.54, 0.70]. These rates faithfully followed the 

true contingencies, if we assume that participants needed ~5 trials to adapt to a contingency change. 

Finally, among the 180 trials, individuals committed a mean of 9.1 (SEM 1.6) performance execution 

errors, while they subjectively reported making 4.8 (SEM 0.7) errors on average (i.e., they only 

reported the 53% of the committed performance execution errors). 

 

4.3.2 Performance tempo is invigorated by explicit beliefs about the reward 

delivery 

We focused on the association between trial-by-trial confidence ratings and motor 

performance to explore whether explicit beliefs about the reward delivery modulated motor vigour. 

Table 8 summarises the posterior distributions for the best-fitting models. 

Regarding performance tempo, the model number 4 (most complex) was selected by LOO-

CV as the best-fitting one (mIKI, elpd_diff = 112.4178, se_diff = 15.74263; elpd_diff > 2*se_diff). The 

posterior predictive checks revealed that the observed mIKI values (in the log scale) overlapped with 

the simulated datasets yrep from the posterior predictive distribution (Figure 11A). The two peaks in 

the y distribution denote two modes of average performance tempo in our HYA sample. We found a 

negative association between performance tempo and the explicit confidence rating, where stronger 

beliefs about the reward delivery were associated to faster execution (Figure 11B). The slope 

estimate was centred at -0.04 (95% CI from -0.08 to -0.001, reporting three decimal digits to show 

the effect in the upper bound; Figure 11C).  
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In the case of RT, when comparing model 3 and 4 using LOO-CV, elpd_diff = 5.61833 and 

se_diff = 3.61462. As elpd_diff < 2*se_diff, we chose to analyse the more parsimonious model 

number 3, which did not include trial as random effect. The posterior predictive checks demonstrated 

an excellent overlap between the y and yrep
 distributions (Figure 11D). Contrary to performance 

tempo, the slope distribution included zero (CI = [-0.20 0.01]), suggesting that RT were not strongly 

modulated by explicit confidence ratings on a trial-by-trial basis (Figures 11E-F).  

In summary, these findings extend the results discussed in Chapter 3, where we utilised the 

computational parameter |�̂�₂|_c, by showing that motor vigour is also influenced by explicit 

confidence ratings about the reward mappings in volatile environments. 
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Figure 11. Explicit confidence ratings invigorate performance tempo.  
Illustration of the Bayesian Linear Mixed Models (BLMM) results in performance tempo (left; model number 4, 
y ~ 1 + conf + [1 + conf|subject] + [1|trial]) and reaction times (RT; right; model number 3, y ~ 1 + conf + [1 + 
conf|subject]). A, It depicts the posterior predictive checks comparing the distribution of the observed 
performance tempo values (y) and the simulated datasets (yrep) from the posterior predictive distribution (100 
draws). B, Representation of the slope between performance tempo (log-transformed) and the explicit beliefs 
about the reward tendency (i.e., confidence ratings). The negative trend suggests faster performance tempo 
for stronger confidence ratings. C, Distribution of the slope. The grey vertical bar illustrates the posterior point 
estimate of the slope. The grey area under the distribution indicates the 95% CI, with the vertical red line 
representing the zero. The posterior point estimate of the negative slope is -0.04 (95% credible interval [CI] 
from -0.08 to -0.001, including three decimal digits in the upper bound to show the effect). As the distribution 
does not overlap with zero, it confirms that performance tempo is modulated by explicit ratings, with stronger 
confidence about the reward acquisition speeding up performance tempo. D, Posterior predictive checks for 
RT. E, Representation of the slope. Association between RT (in the log-scale) and confidence ratings. F, 
Distribution of the slope. The distribution of the slope between RT and confidence overlaps with zero (CI [-0.20 
to 0.01]), indicating that confidence ratings do not strongly modulate RT.  
 

Table 8. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the invigoration effect by confidence 

Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

Performance tempo      

 y 5.82 5.73 5.91 1.00 

 conf -0.04 -0.08 -0.001 1.00 

Reaction times      

 y 6.47 6.37 6.58 1.00 

 conf -0.10 -0.20 0.01 1.00 

Values for the estimates, credible intervals (CIs) and R-hat for the fixed effects of the winning models on 
performance tempo (y ~ 1 + conf + [1 + conf|subject] + [1|trial]) and reaction times (y ~ 1 + conf + [1 + 
conf|subject]). The variable y indicates the posterior estimate for the intercept; conf is the posterior distribution 
of the association (slope) between confidence ratings and motor performance. The upper bound of the CI for 
the slope effect on performance tempo is displayed with three decimal digits to show the effect. l-95% CI and 
u-95% CI reflect the lower and upper bound of the CI of the posterior distributions of the fixed effects. Gelman-
Rubin statistics (R-hat values) are also provided to show chain convergence (Gelman and Rubin, 1992).  

 

4.3.3 Correlation between explicit beliefs and predictions about the reward 

tendency 

We concluded the analyses by testing the correlation between confidence ratings and the 

computational parameter |�̂�₂|. We revealed a strong positive association between these two 

variables, with a posterior point estimate for the intercept of 0.53, CI = [0.47, 0.59]. The posterior 

point estimate of the distribution of the fixed effect of the correlation between confidence ratings and 

|�̂�₂| was 0.09 (CI [0.04, 0.14]). This suggests that the strength of predictions about the action-reward 

contingencies—captured through the HGF—can serve as a proxy for explicit ratings about the 

confidence of reward delivery. 
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4.4. DISCUSSION 

The primary objective of this study was to deepen our understanding of how beliefs about 

volatile reward probabilities influence the motor invigoration effect obtained in Chapter 3. To this 

end, we integrated a reward-based decision-making task with a confidence assessment, enabling 

us to capture participants' certainty about receiving rewards on a trial-by-trial basis. 

We demonstrated that performance tempo was associated with confidence ratings in a trial-

wise manner. Specifically, greater certainty about reward acquisition corresponded to faster motor 

responses. This finding aligns with our prior research (Chapter 3) and demonstrates that both explicit 

beliefs and inferred belief trajectories derived from computational models can explain enhanced 

motor vigour effects through faster performance tempo. Earlier research employing reward-based 

learning tasks under volatile conditions, revealed that confidence levels correlated with prediction 

precision (the mismatch between predicted and actual outcome), and that greater confidence 

expedited the learning process (Frömer et al., 2021, Nassar et al., 2010). Our study extends these 

findings to the domain of motor control, offering insights into the role of confidence assessments in 

shaping motor performance.  

Furthermore, as a sanity check, we also investigated the association between explicit 

confidence ratings and predictions about the reward tendency, captured through computational 

modelling. As both these variables represent the strength of the participants' belief in receiving the 

reward upon completing the selected action, we anticipated a positive correlation between the two. 

BLMM analyses supported our hypothesis, suggesting that the strength of predictions serve as a 

proxy for explicit ratings regarding the confidence of reward delivery. 

Another key objective of the current study was to elucidate the influence of predictions about 

the reward tendencies on RT. In our previous investigations (Chapter 3), we demonstrated that RT 

did not exhibit the same dynamic trial-by-trial modulation as performance tempo. We reasoned that 

this difference could be attributed to the inclusion of deliberation time within RT measurements, 

potentially introducing noise and attenuating the motor vigour effects. To test this hypothesis, we 

refined our experimental paradigm to mitigate the effect of deliberation time on RT. However, even 

with this adjustment, we found that the invigoration of motor responses by explicit beliefs did not 
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extend to RT. Overall, our studies consistently demonstrate that expectations about action-reward 

contingencies influence performance tempo (commensurate with movement time) on a trial-by-trial 

basis, without having a clear effect on RT. This appears to be in contrast with the existing literature 

showing a sensitivity of RT to manipulations of reward magnitude (Codol et al., 2020; Manohar et 

al., 2015; Summerside et al., 2018; Wächter et al., 2009). One plausible explanation for the lack of 

a strong invigoration effect on RT could be the noise potentially introduced to the RT distribution by 

sequential planning effects. Recent work indicated that sequential planning skills are reflected in the 

preparatory state of discrete finger movements (Mantziara et al., 2021). Consequently, RT in our 

experiment likely included trial-by-trial variability in sequence preparation, potentially masking the 

underlying motor vigour effects. 

To conclude, this study expands our understanding of the motor invigoration effect by reward 

probabilities found in Chapter 3 by examining the association between confidence ratings and motor 

performance. Specifically, we demonstrate that higher certainty about obtaining a reward leads to 

faster performance tempo, without affecting RT. These findings closely align with our earlier results 

involving the strength of predictions captured through computational modelling, highlighting that the 

invigoration of motor responses appears to be confined to changes in performance tempo. 
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CHAPTER 5: TRAIT ANXIETY BIASES THE OSCILLATORY NEURAL 

CORRELATES OF INFORMATIONAL UNCERTAINTY AND 

UNCERTAINTY OF ENVIRONMENTAL VOLATILITY 

 

Trait anxiety hinders reward-based learning in volatile environments and negatively affects motor 

control. In this chapter, we address a previously unexplored question related to the effect of trait 

anxiety on behaviour when decisions about motor actions are influenced by reward probability.  

We examined this by comparing samples with low and high trait anxiety. Concurrently, using 

EEG, we explored if trait anxiety influenced the neural correlates of learning during motor-related 

decision making. Our results revealed that trait anxiety modulated how individuals improved their 

motor performance through practice. Trait anxiety, however, did not influence decision making or 

motor invigoration. Furthermore, individuals more prone to anxiety exhibited altered neural 

oscillatory responses to different forms of uncertainty, such as increased beta power in response to 

informational uncertainty and heightened alpha activity for uncertainty on environmental volatility. 

In summary, these findings provide valuable insights into the role of trait anxiety in modulating 

both behavioural and neural aspects of reward-based motor decision making. 

 

5.1 INTRODUCTION 

Trait anxiety, defined as the tendency to interpret a wide range of situations as 

threatening (Spielberger et al., 1983), negatively impacts motor control (see section 1.3.3). Children 

and adults more prone to anxiety often display concomitant motor deficits, including balance 

dysfunctions, poor coordination, and slower movement times (Balaban & Jacob, 2001; Ekornås et 

al., 2010; Erez et al., 2004; Kristensen & Torgersen, 2008). This is further supported by research 

involving PD patients, where anxiety disorders have been found to predict the onset of motor 

symptoms (Ishihara & Brayne, 2006; Weisskopf et al., 2003) and the emergence of motor 

complications in response to medications (Burn et al., 2012; Dias et al., 2022). In Chapter 3, we 

demonstrated that trial-by-trial predictions about reward probabilities enhance motor performance, 
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with stronger expectations about the action-reward contingencies leading to faster execution tempo 

(Tecilla et al., 2023). This invigoration effect was observed across different groups, including healthy 

young individuals, older adults, and medicated PD. The findings suggest that this form of motor 

vigour remains intact despite differences in basic motor functions or motor impairments. However, 

how anxiety modulates this effect remains unexplored. Here, we aim to fill this gap in the literature 

by delving into the potential role of trait anxiety in modulating the motor invigoration effect by 

expectations of reward tendencies. This is particularly relevant when considering that anxiety affects 

one in four individuals, with its incidence increasing up to 52% and 55% among older adults and PD 

patients, respectively (Bishop, 2007; Broen et al., 2016; Dissanayaka et al., 2014; Liu et al., 2023; 

Richardson et al., 2011; Upneja et al., 2021; Yamanishi et al., 2013).  

As discussed in section 1.3.2, the detrimental effects of trait anxiety are not limited to 

the field of motor control but also extend to probabilistic learning. Specifically, individuals with high 

levels of trait anxiety tend to underperform in reward-based learning tasks under volatility due to 

challenges in navigating uncertain environments (Browning et al., 2015; Hein et al., 2023; Huang et 

al., 2018; Jiang et al., 2018). They overestimate environmental uncertainty and show increased 

uncertainty regarding stimulus-outcome contingencies and their changes over time.  

Work employing PC showed that in the healthy population pwPEs are expressed 

through increased gamma activity along with attenuated alpha/beta responses (Auksztulewicz et al., 

2017; Bastos et al., 2018, 2020; Sedley et al., 2016; see section 1.2.3). The pwPEs represent the 

discrepancy between predictions and sensory data, weighted by a precision ratio (where precision 

represents uncertainty or inverse variance; Mathys et al., 2011, 2014). Thus, pwPEs reflect how 

participants learn about stimulus-outcome contingencies and their changes over time, with smaller 

values indicating reduced belief updating (Diaconescu et al., 2017; Mathys et al., 2014). In their 

recent MEG study, Hein et al. (2023) found that individuals with high trait anxiety, compared to the 

low anxiety group, exhibited oscillatory alterations when encoding unsigned pwPE. Specifically, 

participants more prone to anxiety displayed increased gamma power (> 30 Hz) in the ACC, OFC, 

and SFG at 1000 ms and 1600 ms post-outcome. They also exhibited reduced alpha/beta (14-30 

Hz) activity in the ACC (at 500 ms and 1300 ms), as well as increased alpha/beta power in the OFC 
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(at 1500 ms). Additionally, the authors identified a modulation of alpha and beta oscillations during 

the representation of informational uncertainty, with participants characterised by high trait anxiety 

displaying reduced alpha and beta activity in the ACC (at 1100 ms and 1600 ms), along with 

increased alpha and beta responses in the OFC (at 350 ms and 1450 ms). Finally, their uncertainty 

about volatility was associated with enhanced alpha and beta power in the SFG (at 1340 ms and 

1600 ms). These neural alterations were associated with corresponding changes in learning, 

assessed with computational modelling. Specifically, the heightened gamma responses 

(suppression of alpha/beta) to pwPEs converged with the faster yet suboptimal belief updating in the 

high-trait anxiety group. Hence, this evidence demonstrates that trait anxiety alters the oscillatory 

responses of specific brain regions to the computational markers of learning, providing an 

explanation for the observed behavioural deficits. Crucially, evidence assessing the potential role of 

trait anxiety in modulating the spectral correlates of learning in probabilistic environments has been 

confined to simple decision-making paradigms (Hein et al., 2023), thereby leaving unexplored the 

impact of trait anxiety on the neural oscillations of motor decisions.  

 In this chapter we tested individuals with high and low trait anxiety using our novel paradigm 

(section 2.1) while recording their EEG brain activity. This aimed at assessing the potential role of 

trait anxiety in modulating the invigoration of motor responses by predictions of the reward mappings, 

as well as the neural correlates of motor decision making. Our focus was on the alpha and beta 

oscillatory bands, aligning with prior research that underscored their modulation by anxiety during 

reward-based learning within volatile environments (Hein et al., 2021, 2023; Hein & Herrojo Ruiz, 

2022; Sporn, et al., 2020). We also included the theta frequency range (4-6 Hz) into our analysis 

due to substantial evidence highlighting its role in supporting feedback processing (Andreou et al., 

2017; Cavanagh et al., 2009; Christie & Tata, 2009; Cohen et al., 2007; Marco-Pallares et al., 2008). 

Theta modulation typically emerges 200 to 500 ms post-outcome over mid-frontal brain areas and 

is believed to originate in the ACC (Luft, 2014). This oscillatory effect is usually stronger following 

negative feedback or incorrect responses, suggesting its involvement in error detection (Andreou et 

al., 2017; Cavanagh et al., 2009, 2012, 2013; Cohen, 2011; Cohen et al., 2007; Luft, 2014; Luft et 

al., 2013). Notably, theta oscillations also increase following positive feedback, particularly in 
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situations where adaptive behaviour requires to continuously update behavioural responses 

(Cunillera et al., 2012; Luft, 2014). For instance, in the context of the Wisconsin Card Sorting Task, 

Cunillera and colleagues (2012) found increased theta activity after receiving the first positive 

feedback in a new series, implying a theta involvement in learning contingency rules and 

performance monitoring during uncertain conditions. Furthermore, theta responses have been 

associated with enhanced learning and adaptive behavioural adjustments, providing additional 

evidence for the crucial role of these frequencies in facilitating feedback processing (Luft, 2014; Luft 

et al., 2013; Van De Vijver et al., 2011). However, there exists limited evidence linking trait anxiety 

to alterations in theta oscillations during reward-based learning under volatility. Finally, it is worth 

noting that in this study we excluded gamma oscillations due to EEG limited sensitivity in identifying 

modulations in this range for pwPE (Hein et al., 2022), despite previous MEG research highlighting 

their relevance on impaired learning in high trait anxiety individuals (Hein et al., 2023). 

In summary, in this chapter we aim at providing novel insights into the potential role of trait 

anxiety in modulating the motor invigoration effect driven by predictions about reward tendencies 

discussed in Chapter 3. Furthermore, we seek to identify how trait anxiety modulates the neural 

oscillatory correlates of reward-based learning under conditions of uncertainty during motor 

decisions. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Participants 

This study was approved by the ethics review committee at Goldsmiths, University of 

London, and all participants provided their informed written consent prior participation. We pre-

screened the participants using the trait subscale of the STAI (STAI Y-2; Spielberger, 1983) and 

divided the sample in two groups: individuals with High Trait Anxiety (HTA; STAI Y-2 ≥ 45) and Low 

Trait Anxiety (LTA; STAI Y-2 ≤ 35). In line with Hein et al. (2023), the threshold value for HTA (≥45) 

was informed by previous mental health studies reporting that individuals with clinical anxiety 

typically have STAI trait scores above this range (Fisher & Durham, 1999; Shadli et al., 2021). On 

the other hand, the cut-off value for LTA (≤35) was chosen to encompass scores falling below the 
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mean anxiety level observed among adults (mean = 36 [standard deviation = 9]; Spielberger et al., 

1983). 

We tested a total of 55 individuals. Six of them were subsequently excluded from the 

analyses due to poor EEG signal quality and/or lack of engagement with the task. We identified 26 

LTA (16 females; mean age 26.8, SEM 1.03; mean STAI Y-2 30.4, SEM 0.82) and 23 HTA (13 

females; mean age 26.2, SEM 1.16; mean STAI Y-2 53.7, SEM 1.81). The study included only right-

handed individuals aged between 18 and 40 years with normal or corrected vision and with the ability 

to perform controlled finger movements with their right hand. The study excluded 

amateur/professional pianists, professional musicians, individuals diagnosed with mental health 

conditions and/or movement disorders, and subjects taking antidepressants. All participants 

received a base rate of £18 for their participation, which could be increased up to £23 depending on 

their task performance. 

 

5.2.2 Experimental design 

Participants completed the reward-based motor decision-making task (refer to section 2.1) 

by playing two sequences of finger movements on a digital piano. The paradigm was coded in Visual 

Basic (Balena & Fawcette, 1999). Performance on the digital piano was recorded as musical 

instruments digital interface format (MIDI). This provided information about the timings of the key 

presses and the keystroke velocity (Herrojo Ruiz et al., 2009). Participants were instructed to position 

their right index on the B piano note (piano number = 72), the middle finger on the C note (piano 

number = 73), the ring finger on the D note (piano number = 75) and the little finger on the E note 

(piano number = 77). The two sequences were: seq1 (B-D-C-E, i.e., [72-75-73-77]) and seq2 (E-B-

D-C, i.e., [77, 72, 75, 73]). 

In the familiarisation phase, participants learnt to play the two sequences and to 

associate them to unique fractal images (seq1 associated to the red image; seq2 associated to blue 

image). See Figure 12A for a representation of the two sequences and the corresponding fractals. 

The task consisted of 10 practice trials and two blocks of 140 experimental trials separated by a 

short break (approximately 5 minutes). At the beginning of each trial, the icon of a white left hand 
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was displayed on the screen. Participants were instructed to respond by pressing the piano note C 

(piano number = 49) of the keyboard with the index finger of their left hand, which resulted in the 

fixation dot being displayed. The rationale behind instructing participants to press the note C to 

initiate each trial was to allow them the option of taking breaks between trials. 

 At 0-1000 ms the two fractals were presented, and participants had to choose one of the 

images by playing the corresponding sequence. Participants had a fixed time interval of 4600 ms to 

complete the sequence, after which a feedback was displayed reflecting whether they chose the 

rewarded fractal image (win trial; “5”) or the unrewarded fractal image (lose trial; “0”). Participants 

also received the 0 points feedback if they committed execution errors (error trial) or exceeded the 

time limit to complete the sequence (time-out trial). See Figure 12B for a schematic representation 

of the trial structure. In this study, the order of the contingency blocks was fixed across participants 

so that all individuals experienced the same environmental changes. Specifically, in block 1 the order 

of the reward mapping for seq1(seq2) was 70(30)-90(10)-30(70)-50(50)-10(90), with contingencies 

changing at trials 34, 58, 80 and 108. In block 2, the order for seq1(seq2) was: 90(10)-30(70)-10(90)-

70(30)-50(50), with the mappings changing at trials 22, 50, 84, and 116. 
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Figure 12. Motor sequences and task structure.  
A, Depiction of the piano sequences and the corresponding fractal images. The red fractal image is associated 
to seq1: B-D-C-E (piano numbers, 72-75-73-77), while the blue image corresponds to seq2: E-B-D-C (piano 
numbers, 77-72-75-73). B, Representation of the task structure. Participants initiate the trial by pressing the 
piano note C (piano number, 49) with their left index finger. Then, a fixation dot is displayed for 0-1000 ms, 
followed by the presentation of the two fractal images. Participants select one of the two images playing the 
corresponding sequence of finger movements on the piano. After 4600 ms, they receive the feedback, which 
could indicate either the successful execution of the rewarded sequence ("5") or the selection of the 
unrewarded sequence/fractal, slow performance, or execution errors ("0"). The feedback is displayed for 2000 
ms. 
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5.2.3 EEG recording and preprocessing 

We recorded EEG data with a BioSemi ActiveTwo system, with 64 electrodes following the 

extended international 10-20 system, and sampled the signal at 1024 Hz. The EEG signals were 

referenced to the average of two external electrodes placed on the left and right mastoid bones. We 

also captured the cardiac activity (electrocardiogram, ECG) by employing a lead II configuration and 

calibrating it to align with the Einthoven triangle (Moody & Mark, 1982; Wilson, Macleod et al., 1931). 

To monitor horizontal and vertical eye movements, we used the electrooculogram (EOG) with one 

electrode attached to the left zygomatic bone and another to the glabella. Additionally, we measured 

the electromyographic (EMG) activity of the extensor digitorum muscle by placing two electrodes on 

the dorsal right forearm. Signal gel from Parker Laboratories, Inc. was applied to all electrodes to 

enhance signal conductivity. To store task-related events, such as stimuli presentation, the presses 

on the piano and outcomes, we used triggers and saved them in the EEG file.  

In the preprocessing stage, the EEG data were imported into the EEGLAB toolbox (Delorme 

& Makeig, 2004; https://eeglab.org) in MATLAB (version 2022a). We merged the two blocks together 

in order to obtain a single dataset for each participant. Next, the data underwent high-pass filtering 

at 0.1 Hz, low-pass filtering at 100 Hz, and notch filtering between 48-52 Hz to remove power line 

noise (pop_eegfiltnew function using Hamming windowed sinc Finite Impulse Response filter). All 

signals were epoched around the outcome event from -5000 to 2000 ms. This interval included the 

sequence performance in the -5000 to 0 ms window. To eliminate noisy epochs, we manually 

inspected the data and removed an average of 43.6 epochs (SEM 3.91). We then converted the 

data using the FieldTrip toolbox (Oostenveld et al., 2011; http://fieldtriptoolbox.org) and down 

sampled it to 256 Hz. We used ICA with the fastICA algorithm to separate the eye artifacts (blinks 

and saccades) from the signal. To enhance signal decomposition, a 1 Hz high-pass filter was applied 

prior to ICA. The ICA weights were then applied to the original 0.1 Hz high-pass filtered dataset, and 

artifacts components were removed from the data, resulting in an average removal of 2.9 

components (SEM 0.13). Across all datasets, a total of 12 noisy channels (11 participants) were 

replaced with the weighted average of neighbouring channels (interpolate function in FieldTrip).  
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5.2.4 Behavioural modelling 

We modelled intrasubject trial-by-trial performance in our task, using the HGF version 

6.1. Full description of the HGF can be found in section 2.2. We fitted the behavioural data with the 

following models: HGF3, HGF𝜇3, and HGF2.  

The model inputs (u) reflected the outcomes that participants observed throughout the task. 

Specifically, for each trial k, u(k) was set to 0 if the red image (seq1) won and the blue icon (seq2) 

lost, and u(k) was 1 if the blue image (seq2) won and the red fractal (seq1) lost. We also used the 

participants' responses (y) as inputs to the model, with y(k) being 0 if they chose the red image (seq1) 

and 1 if they selected the blue fractal (seq2; Figure 13). Section 5.2.5 provides a detailed account 

of the computational variables analysed in this study. 

Model comparison through BMS revealed that the HGF𝜇3 model was the most suitable 

and provided the best fit to the data (refer to section 5.3.1 for BMS results). In the winning HGF𝜇3 

model, the sigmoid function of the response model varied dynamically according to the trial-by-trial 

prediction of volatility (Diaconescu et al., 2014). A summary of the prior values used in this study is 

provided in Table 9. 

 

Table 9. Priors (means and variances) on perceptual parameters and starting values of the 
beliefs of the winning HGF𝜇3 model. 

Prior Mean Variance 

𝜅  log(1) 0 

𝜔₂  -3  16  

𝜔₃  -6 16 

μ₂⁽⁰⁾  0 0 

𝜎₂⁽⁰⁾  log(0.1) 0 

μ₃⁽⁰⁾  log(1) 1 

𝜎₃⁽⁰⁾  log(1) 1 

 

Parameters 𝜎2(0), 𝜎3(0), 𝜅	and	𝜇₃(0) are estimated in the log-space. The remaining parameters in the table are 
estimated in the natural space. In the winning HGF𝜇3 model, free parameters are 𝜔2, 𝜔3, 𝜇3(0), and 𝜎3(0). The 
other parameters are fixed: 𝜅, 𝜎2(0), 𝜇₂⁽⁰⁾ (Hein et al., 2023). The prior variances are reported in the space in 
which the parameters are estimated. 
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Figure 13. Belief trajectories in a representative participant.  
Trajectory of beliefs in the HGF𝜇3 in a representative participant playing sequence 1 (seq1) and sequence 2 
(seq2) across the entire experiment when merging the two blocks. At the first level, outcomes are represented 
as black dots (u), indicating which sequence was rewarding on each trial (0 = seq1 wins [seq2 loses]; 1 = seq2 
wins [seq1 loses]). Pink dots (y) represent the participant's choices (0 = seq1 played; 1 = seq2 played). The 
black line represents the subject-specific learning rate about stimulus-outcomes contingencies (𝛼). The second 
level depicts the trial-by-trial trajectory of beliefs (mean [𝜇2] and variance [𝜎2]) about the tendency of stimulus-
outcome contingencies. A positive shift in 𝜇2 values on the y-axis indicates stronger beliefs of seq2 being 
rewarding (i.e., a negative shift in 𝜇2 values on the y-axis indicates stronger beliefs of seq1 being rewarding). 
The third level illustrates the belief trajectory (mean [𝜇3] and variance [𝜎3]) about phasic (log)volatility. In the 
current task, the true volatility (x3) changed at trials 34, 58, 80, 108, 140, 162, 190, 224, and 256. The 
contingency mappings for seq1 were 70-90-30-50-10-90-30-10-70-50 (reciprocal for seq2). Blue circles on the 
y-axis represent the upper and lower priors of the posterior distribution of beliefs, 𝜇i(0) ± 𝜎i(0) at the second and 
third level (i = 2 and 3).  
 

5.2.5 Behavioural and computational data analysis 

As in the previous studies, we validated the task by calculating the rate at which the red 

image was chosen (and thus seq1 was played) in each contingency segment (percPlayed by 

contingency phase). Next, we assessed the general task performance in each participant by 

analysing the rate of win and error trials (percWin and percError). Motor performance was evaluated 

through trial-wise mIKI, RT and MIDI keystroke velocity (Kvel, adimensional; related to the loudness 

of the key press). These variables have been described in greater detail in section 3.2.5.  



 110 

In two subjects, RTs were not accurately acquired due to an error in the paradigm and were 

therefore excluded from the subsequent analyses. Due to the non-normal distribution of mIKI and 

RT values, we applied a log transformation using the natural logarithm (log_mIKI and log_RT). 

Consistent with previous research (Herrojo Ruiz et al., 2009; Tecilla et al., 2023), we excluded error 

and time-out trials from the analysis on the motor performance variables. Additionally, we removed 

outliers by identifying values with an absolute z-score greater than 3.29 (Tabachnick & Fidell, 2013; 

log_mIKI = 0.06%, log_RT = 0.96%; Kvel = 0.28%). It is important to note that this method for 

cleaning outliers differs from that used in the other studies included in this thesis. Our rationale for 

adopting the more robust z-scores approach stems from the design of this paradigm, in which the 

timing of outcome delivery was fixed at 4600 ms following the presentation of fractals, regardless of 

movement times. This outlier detection approach ensured that our findings were not influenced by 

unusually large IKIs. To maintain consistency, we applied the same data cleaning procedure to both 

RT and Kvel. Finally, six trials that were incorrectly stored in the datafile were also excluded from 

the analysis on motor performance. 

Information about decision-making processes in the two groups was obtained by analysing 

the computational variables of the winning HGF𝜇3 model. As in the previous studies, here we focused 

on 𝜔2 (tonic volatility on level 2) and the mean of the trial-wise 𝜎2 (informational uncertainty) (see 

section 3.2.5 for further details). The HGF𝜇3 also allowed to investigate the parameter 𝜔3, which 

denotes the tonic volatility on the third level; the mean of the trial-by-trial 𝜎3, representing the 

uncertainty about the environmental volatility; and the trial-wise mean of 𝜇3, reflecting the posterior 

mean of the log-volatility. Finally, we extracted trial-by-trial 𝜇₂(k) (from now onwards referred to as 𝜇₂, 

dropping the k index for simplicity), representing predictions about the action-reward contingency, to 

use for BLMM analyses (see section 2.2 for more information about this variable).  

 

5.2.6 Convolution modelling 

In FieldTrip, we created shorter epochs from -500 to 1800 ms relative to the outcome event 

and then re-referenced to the common average reference to ensure a more focal distribution of 

neural modulations (Ahmadi et al., 2021; Tsuchimoto et al., 2021). The chosen time window is 
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motivated by prior work showing that anxiety modulated the neural correlates of reward-based 

learning under volatility in the post-outcome interval (specifically between 200 and 1800 ms) (Hein 

et al., 2023). The pseudo-continuous data was then TF transformed using Morlet wavelets. We 

focused on the theta (4-6 Hz), alpha (8-12 Hz) and beta (14-30 Hz) ranges by sampling the 4-30 Hz 

window in bins of 2 Hz and using 5-cycle wavelets. Next, we analysed the signal using the 

convolution GLM for oscillatory responses (see section 2.5 for detailed information about TF 

transformation through Morlet wavelets and the convolution GLM). 

In this study, we used as trial-by-trial explanatory variables three discrete regressors for the 

outcome type (win, lose and errors [performance error and time out]). In addition, we chose three 

HGF variables as parametric regressors: unsigned pwPE on level 2 (|𝜀2|), representing belief 

updating about the action-reward contingency, informational uncertainty (𝜎2) and uncertainty on the 

volatility (𝜎3). As in Hein et al. (2023), pwPE on level 3 (𝜀3) was discarded from the analysis due to 

multicollinearity with |𝜀2|. The values of the parametric regressors were inserted at the latency of the 

outcome regressors. Statistical analyses were performed on the response images Ri (i = regressor 

type), which allowed us to assess the effect of each regressor on the amplitude of the neural 

oscillatory responses (4-30 Hz range) in the time interval following the outcome event (see section 

5.2.7.4 for further details about the statistical analyses).  

 
5.2.7 Statistical analyses 

5.2.7.1 General task performance and decision making using the Bayes Factor 

First, we computed the summary statistics (mean and SEM) in LTA and HTA for our 

dependent variables: general task performance (percWin, percError, log_mIKI, log_RT, Kvel) and 

decision making (𝜔₂, 𝜎₂, 𝜔3, 𝜎3, 𝜇3).  

We evaluated differences between LTA and HTA groups calculating BF on independent 

samples t-tests, along with standard t-statistics and p values, using the Jamovi software 

(https://www.jamovi.org). Through BF analyses we were able to measure the strength of evidence 

supporting the group effect as opposed to the evidence favouring the absence of between-group 

differences in the dependent variable. BF outputs were interpreted as in Andraszewicz (2015). For 
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log_mIKI, log_RT, Kvel, 𝜎2, 𝜎3 and 𝜇3 we ran BF analyses on the individual averages across the 280 

trials. Finally, to validate the task, we calculated the mean rate of percPlayed by contingency phase 

in reference to seq1.  

 

5.2.7.2 Assessing the modulation by trait anxiety of the practice effect using Bayesian 

Linear Mixed Models 

One of our aims was to investigate whether trait anxiety influenced practice effects, that are 

changes in RT, performance tempo and keystroke velocity across trials. To achieve this goal, we 

employed brms (Bürkner, 2017, 2018, 2020) in R (see Section 2.4 for detailed information on BLMM 

in brms). We tested five models of increasing complexity, setting log_mIKI, log_RT or Kvel as 

dependent variables (Table 10) and identified the best fit using LOO-CV with Pareto-smoothed 

importance sampling (Vehtari et al., 2017). In these models, we calculated the posterior distribution 

of parameters in LTA (the reference group) and the posterior distribution of parameter differences 

between LTA and HTA. It is worth noting that our approach to building these increasingly complex 

models differs from the one described in Chapters 3 and 4. Specifically, here we incorporated the 

random effect of the trial by subject into the second model. This choice was driven by the superior 

performance of the model that included the random effect of trial, as demonstrated in our previous 

studies assessing the invigoration effect by predictions of reward probabilities. We therefore adopted 

this approach for the other brms models discussed in this chapter, as well as those presented in 

Chapter 6. 

For all our motor variables, LOO-CV identified the most complex model (model number 5, 

Table 10) as the best fit. Results are provided in section 5.3.2. This model informed about changes 

in motor performance across trials in the reference LTA group (fixed effect of trial). The modulation 

of the practice effects by trait anxiety was captured by the interaction effect group * trial, reflecting 

slope differences between LTA and HTA in the association between motor performance and trial 

number.  
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We specified a default prior distribution for the intercept; a normal distribution (0,2) for the 

fixed effect of group, trial, and for the random effects of intercept by trial and subjects; normal 

distribution (0,1) for the interaction term group * trial.  

 

5.2.7.3 Assessing the modulation by trait anxiety of the association between motor 

performance and the strength of predictions about the reward probabilities using 

Bayesian Linear Mixed Models 

With this study, we also aimed to explore the potential effect of trait anxiety on the invigoration 

of motor responses by predictions about reward probabilities. This expands on our previous findings, 

which demonstrate that stronger expectations about action-reward contingencies invigorate motor 

behaviour through faster performance tempo (Chapter 3; Tecilla et al., 2023).  

To achieve this goal, we tested six models of increasing complexity for each of our motor 

variables (log_mIKI, log_RT, Kvel) in brms (Table 10). We performed model comparison through 

LOO-CV (Vehtari et al., 2017). As explained is Section 2.4, we used the HGF parameter |𝜇₂| to 

represent the strength of predictions about the action-reward contingencies. To ensure that the 

intercept estimates reflected average |𝜇₂| values, we centered |𝜇₂| (|𝜇₂|_c). Trial with |𝜇₂| values 

larger than four standard deviations above the mean were excluded from the analyses. As for the 

models on the practice effects, we selected LTA as reference group.  

In the most complex model number 6 (Table 10), the association between motor performance 

and the strength of expectations about the reward probabilities in the reference LTA group was 

captured by the fixed effect of |𝜇₂|_c. Instead, the interaction term |𝜇₂|_c * group denoted the slope 

differences between LTA and HTA and thus informed about the potential contribution of trait anxiety 

in modulating the invigoration of motor responses by predictions. Importantly, LOO-CV identified as 

best fit the model number 5, which excluded the interaction between group and |𝜇₂|_c (see section 

5.3.3). This model estimated the posterior distribution of the association between motor performance 

and the strength of predictions across the two groups (fixed effect of |𝜇₂|_c), without informing about 

potential slope differences between LTA and HTA.  
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We specified the following priors: default prior distribution for the intercept; normal distribution 

(0,2) for the fixed effects of group and |𝜇₂|_c, as well as for the random effects of intercept by trial 

and subjects; normal distribution (0,1) for the interaction term group * trial and for the random effect 

of |𝜇₂|_c by subject. The posterior distributions of model parameters and Gelman-Rubin statistics 

are reported in the section 5.3.3.  

 

Table 10. Models of increasing complexity used for Bayesian Linear Mixed Models analyses 
on the practice effect and on the invigoration effect by predictions of reward probabilities 

Effect Model # Model 

Practice   

 1 y ~ 1 + (1|subj) 

 2 y ~ 1 + (1|subj) + (1|trial) 

 3 y ~ 1 + group + (1|subj) + (1|trial) 

 4 y ~ 1 + group + trial + (1|subj) + (1|trial) 

 5 y ~ 1 + group * trial + (1|subj) + (1|trial) 

Invigoration by predictions about the reward probabilities   

 1 y ~ 1 + (1|subj) 

 2 y ~ 1 + (1|subj) + (1|trial) 

 3 y ~ 1 + group + (1|subj) + (1|trial) 

 4 y ~ 1 + group + |𝜇₂|_c + (1|subj) + (1|trial) 

 5 y ~ 1 + group + |𝜇₂|_c + (1 + |𝜇₂|_c|subj) + (1|trial) 

 6 y ~ 1 + group * |𝜇₂|_c + (1 + |𝜇₂|_c|subj) + (1|trial) 

Models of increasing complexity used to assess the practice effects (top) and the invigoration of motor 
responses by the strength of predictions about reward probabilities (bottom). Variable y corresponds to 
log_mIKI, log_RT or Kvel. Models on the practice effect: model 1 explains y by the fixed effects of the intercept 
and the random effect of the intercept by subject, which accounts for repeated measurements. Model 2 adds 
the random effect of trial by the intercept. Model 3 fits the fixed effect of group (LTA, HTA). Model 4 adds the 
fixed effect of trial, allowing for the estimation of the practice effect. Model 5 fits the interaction effect between 
trial and group, which allows to assess slope differences between LTA and HTA in the practice effect. Models 
on the invigoration effect by predictions: the first three models are identical to those described for the practice 
effects. Model 4 adds the fixed effect of |𝜇₂|_c to estimate the association between motor performance and 
the strength of predictions. Model 5 includes the random effect of |𝜇₂|_c by the subject. Finally, model 6 
includes the interaction effect between |𝜇₂|_c and group to evaluate between-group differences in the 
sensitivity of motor performance to the strength of predictions.  
 

5.2.7.4 Statistical analyses on the EEG data 

We converted the TF response images from SPM to Fieldtrip and performed a baseline 

correction by subtracting the mean baseline activity (-300 to -50 ms) from the TF response images 
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and then dividing by the baseline standard deviation (Hein et al., 2023). Next, we assessed the 

differences between LTA and HTA in the spectral neural correlates (4-30 Hz) of the win, lose, |𝜀2|, 

𝜎2, and 𝜎3 regressors. To this end, we averaged the TF responses within each frequency band (theta 

[4-6 Hz], alpha [8-12 Hz] and beta [14-30 Hz] ranges) and run independent-samples cluster-based 

permutation tests on the spatio-spectral-temporal data using the Fieldtrip Toolbox. We specified a 

two-sided t-test, 1000 iterations and a family-wise error rate (FWER) of 0.025 (Hein et al., 2023; 

Maris & Oostenveld, 2007; Oostenveld et al., 2011). The clusters were created using the default 

FieldTrip settings.  

For the statistical analyses on the win and lose regressors we focused on the theta range in 

the post-outcome time interval between 200 and 1000 ms. This is in line with robust evidence 

suggesting an early theta modulation when processing feedback information during reward-based 

learning under uncertainty (Cavanagh et al., 2009; Cohen et al., 2007; Hein et al., 2023). Statistical 

analyses on the HGF parametric regressors (|𝜀2|, 𝜎₂, 𝜎3) were conducted on alpha and beta 

frequencies, focusing on the time window between 1000 to 1800 ms after outcome onset. This 

temporal interval is informed by recent evidence highlighting an anxiety-driven modulation of 

alpha/beta responses to the computational markers of reward-based learning under volatility (Hein 

et al., 2023; Hein & Herrojo Ruiz, 2022; Sporn, et al., 2020).  

 

5.3 RESULTS 

5.3.1 Trait anxiety does not affect general task performance or decision making 

Participants monitored the contingency changes in the environment and adjusted their 

behavioural responses accordingly. Specifically, for the true contingencies [0.10, 0.30, 0.50, 0.70, 

0.90], participants played the corresponding sequence at the rates [block1: 0.22, 0.37, 0.46, 0.57, 

0.78; block 2: 0.15, 0.38, 0.50, 0.58, 0.78] (percPlayed by contingency phase). This validated our 

task showing that the true reward contingencies aligned consistently with the participants' choices. 

BF analyses on independent samples t-test for the rate of win and error trials yielded 

anecdotal evidence for no differences between LTA and HTA (percWin, LTA: mean 0.572, SEM 

0.012; HTA: mean 0.592, SEM 0.011; BF = 0.516; t(47) = -1.206, p = 0.234; percError, LTA: mean 
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0.049, SEM 0.008; HTA: mean 0.040, SEM 0.007; BF = 0.387; t(47) = 0.863, p = 0.392; Figure 14A-

B). This suggests that trait anxiety did not affect general task performance in our task. 

Similarly, BF analyses on performance tempo, RT and keystroke velocity demonstrated 

anecdotal and moderate evidence for the lack of between-group differences (log_mIKI, LTA: mean 

5.742, SEM 0.058; HTA: mean 5.781, SEM 0.065; BF = 0.3095; t(47) = -0.444, p = 0.659; log_RT, 

LTA: mean 6.265, SEM 0.057; HTA: mean 6.299, SEM 0.050; BF = 0.3147; t(45) = -0.445, p = 0.658; 

Kvel, LTA: mean 59, SEM 1.7; HTA: mean 61, SEM 1.8; BF = 0.315; t(47) =-0.4945, p = 0.623; Figure 

14C-E). These results indicate that motor performance in our reward-based motor decision-making 

task was not modulated by trait anxiety. 

Finally, we evaluated the effect of trait anxiety on decision making by conducting statistical 

analyses on the computational parameters 𝜔₂, 𝜎₂, 𝜔3, 𝜎3 and 𝜇3. BMS using the individual LME 

values provided by the HGF toolbox revealed that HGF𝜇3 explained our data best. The exceedance 

probability was 1 and the expected frequency 0.88, suggesting strong evidence for HGF𝜇3 

representing the best fit. As for general task and motor performance variables, BF analyses on 

independent samples t-test for decision-making parameters revealed anecdotal and moderate 

evidence for the absence of between group differences (𝜔₂, LTA: mean -1.312, SEM 0.398; HTA: 

mean -0.903, SEM 0.300; BF = 0.372; t(47) = -0.804, p = 0.425; 𝜔3, LTA: mean -6.469, SEM 0.231; 

HTA: mean -6.378, SEM 0.296; BF = 0.292; t(47) = -0.245, p = 0.808; 𝜎₂, LTA: mean 1.687, SEM 

0.196; HTA: mean 1.842, SEM 0.183; BF = 0.327; t(47) = -0.575, p = 0.568; 𝜎3, LTA: mean 0.475, 

SEM 0.062; HTA: mean 0.454, SEM 0.065 BF = 0.292; t(47) = 0.236, p = 0.814; 𝜇3, LTA: mean -0.011, 

SEM 0.177; HTA: mean 0.033, SEM 0.208; BF = 0.289; t(47) = -0.163, p = 0.871; Figure 14F-L).  

Collectively, these findings demonstrate that LTA and HTA individuals performed our task 

similarly, with evidence supporting the lack of between-group differences in general task 

performance and motor behaviour. Additionally, groups displayed similar tonic volatility estimates, 

informational uncertainty, uncertainty on environmental volatility, as well as comparable estimates 

of the environmental log-volatility. 
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Figure 14. Markers of general task performance and decision making.  
Data are displayed for participant with Low Trait Anxiety (LTA; in orange) and with High Trait Anxiety (HTA; in 
blue). A, Rate of win trials (percWin). B, Rate of performance execution errors (percError). C, Performance 
tempo (mIKI, mean inter-keystroke-interval [log scale]). D, Reaction times (RT [log scale]). E, Keystroke 
velocity (Kvel). F, Tonic volatility on level 2 (𝜔₂). G, Informational uncertainty (𝜎₂). H, Tonic volatility on level 3 
(𝜔3). I, Uncertainty on environmental volatility (𝜎3). L, Estimate of the environmental log-volatility (𝜇3). Values 
for log_mIKI, log_RT, Kvel, 𝜎₂, 𝜎3 and 𝜇3 are averaged across 280 trials within each participant. In every plot, 
to the right of the mean (large dot) and standard error of the mean (SEM; indicated as a vertical bar), we 
represent the individual data points for LTA and HTA to visualise variability within each group.  
 

5.3.2 Trait anxiety modulates practice effects on performance tempo, reaction 

time and MIDI keystroke velocity. 

Here we present the outputs of BLMM analyses on the practice effects (see Table 11 for a 

summary of the posterior distributions for the model parameters).  

For performance tempo, LOO_CV identified model number 5 (Table 10), the most complex 

model, as the best fit (elpd_diff between the model number 4 and 5 = 40.74763, se_diff = 9.381786; 

elpd_diff > 2*se_diff). A high level of predictive accuracy for the range of values of the dependent 

variable was demonstrated by the posterior predictive checks (Figure 15A). In line with BF analyses 
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on performance tempo, BLMM outcomes revealed that groups did not differ in performance tempo 

initially (posterior estimate of the intercept difference = 0.0862, CI = [-0.0962, 0.2655]; in ms 30.30, 

CI [-33.48, 93.77]; Figure 15B). Next, we examined the practice effect in the control reference LTA 

group. The fixed effect of trial revealed a negative association between trial number and performance 

tempo, suggesting that LTA participants speeded up their performance across trials (posterior 

estimate of the slope = -0.0005, CI = [-0.0006, -0.0004]; Figure 15C). We assessed whether trait 

anxiety modulated this practice effect by evaluating the interaction effect between trial and group 

(group * trial). We demonstrated that HTA speeded up their performance more across trials (posterior 

distribution of the slope difference in LTA and HTA = -0.0003, CI = [-0.0004, -0.0003]; Figure 15D). 

Overall, these results demonstrate that despite a lack of initial between-group differences in 

performance tempo, HTA participants, relative to LTA, expedited their performance tempo more 

throughout the task.  

Regarding RT, the most complex model (model number 5) was also identified as the best fit 

by LOO-CV. The elpd_diff between the winning model and the second-best fitting model was 

11.69051 and se_diff was 5.278569 (elpd_diff > 2*se_diff). Posterior predictive checks revealed a 

good level of predictive accuracy for the range of log_RT values (Figure 16A). Consistent with our 

BF analyses on independent samples t-test, this model demonstrated that LTA and HTA did not 

differ in initial RT (posterior estimate of the intercept difference = 0.0968, CI = [-0.0583, 0.2554]; in 

ms 56.71, CI = [-34.05, 150.40] Figure 16B). The analysis additionally revealed a practice effect in 

the reference group (LTA), with the time taken to initiate the sequence shortening across trials 

(posterior estimate of the slope = -0.0004, CI = [-0.0005, -0.0003]; Figure 16C). Interestingly, HTA 

speeded up their RT more compared to LTA, as indicated by the distribution of the interaction effect 

between trial and group (posterior distribution of the slope difference in LTA and HTA = -0.0004, CI 

= [-0.0006, -0.0003]; Figure 16D). These findings align with those discussed for performance tempo; 

they demonstrate that, despite LTA and HTA not differing in the initial time to start the sequences, 

HTA participants accelerated their RT more throughout the task.  

Finally, we investigated whether trait anxiety altered practice effects for MIDI keystroke 

velocity. Once again, the most complex model (model number 5) was classified by LOO-CV as 
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explaining our data best. The elpd_diff between model number 5 and 4 was 38.14888, while se_diff 

was 9.639167 (elpd_diff > 2 * se_diff). Good predictive accuracy was observed for the range of Kvel 

values, as demonstrated by the posterior predictive checks (Figure 17A). LTA and HTA showed 

similar keystroke velocity initially, in line with our previous BF analyses (posterior estimate of the 

intercept difference = 0.0320, CI = [-2.8878, 2.9627]; Figure 17B). Keystroke velocity decreased 

throughout the task, as indicated by the distribution of the trial effect in the reference group, LTA 

(posterior estimate of the slope = -0.0071, CI = [-0.0085, -0.0057]; Figure 17C). HTA, instead, 

displayed the opposite pattern, increasing their keystroke velocity across trials, revealing that trait 

anxiety modulated the practice effects on MIDI keystroke velocity (group * trial effect; posterior 

distribution of the slope difference in LTA and HTA = 0.0087, CI = [0.0068, 0.0106]; Figure 17D).  

In summary, our BLMM findings indicate that while there are no initial differences in motor 

performance between LTA and HTA (i.e., for log_mIKI, log_RT and Kvel, the distribution of the 

difference between intercepts overlaps with zero), trait anxiety modulates how individuals adjust their 

motor performance through practice. Specifically, trait anxiety speeds up motor execution through 

faster performance tempo and RT across trials, as well as increases keystroke velocity over time.  
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Figure 15.Trait anxiety modulates the practice effect on performance tempo.  
Bayesian Linear Mixed Model (BLMM; y ~ 1 + group * trial + [1|subject] + [1|trial]) with the Low Trait Anxiety 
group (LTA) as reference. A, It illustrates the distribution of the observed performance tempo values (y) and 
of the simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distribution of the 
difference between intercepts in LTA and the High Trait Anxiety group (HTA) for performance tempo. The blue 
vertical bar represents the posterior point estimate, while the blue area under the curve is the 95% credible 
interval (CI). Here, CI overlaps with zero (the null hypothesis), suggesting that there is 95% probability of no 
differences in initial performance tempo between LTA and HTA. C, Representation of the slopes. This depicts 
the association between trial number and performance tempo separately for LTA (in orange) and HTA (in 
blue). Performance tempo values are represented in the log-scale. BLMM analysis reveals that participants in 
the reference group (LTA) speed up their performance across trials. D, Distribution of the difference between 
slopes in LTA and HTA. Here, as CIs does not include zero, we can conclude with 95% probability that there 
is a different modulation of the practice effect on performance tempo between the two groups, with 
performance speeding up more throughout the task in HTA. 
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Figure 16. Trait anxiety modulates the practice effect on reaction times.  
Bayesian Linear Mixed Model (BLMM; y ~ 1 + group * trial + [1|subject] + [1|trial]) with the Low Trait Anxiety 
group (LTA) as reference. A, Representation of the posterior predictive checks where the distribution of the 
observed RT values (y) is compared to the stimulated datasets (yrep) from the posterior predictive distribution 
(100 draws). B, Distribution of the difference between RT intercepts in LTA and the High Trait Anxiety group 
(HTA). The posterior point estimate and the 95% credible interval (CI) are represented by the blue vertical line 
and the blue area under the curve, respectively. In the current plot, the distribution overlaps with zero, 
suggesting that there is 95% probability of the two groups not differing in initial RT. C, Representation of the 
slopes between RT and trial in LTA (orange) and HTA (blue). Here, RT values are represented in the log-
scale. RTs are negatively associated to trial number in LTA, indicating that low trait anxiety individuals expedite 
their RT over time. D, Distribution of the difference between slopes in LTA and HTA. As CI does not include 
zero, we conclude with 95% probability that trait anxiety modulates the practice effect on RT. Specifically, HTA 
participants expedite their RT more, compared to LTA, through practice.  
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Figure 17. Trait anxiety modulates the practice effect on keystroke velocity.  
Bayesian Linear Mixed Models (BLMM; y ~ 1 + group * trial + [1|subject] + [1|trial]) with the Low Trait Anxiety 
group (LTA) as reference. A, Depiction of the posterior predictive checks where the distribution of the observed 
outcome variable (y, in our case keystroke velocity) is compared to simulated datasets (yrep) from the posterior 
predictive distribution (100 draws). B, Distribution of the difference between keystroke velocity (intercept) in 
LTA and the High Trait Anxiety group (HTA). The posterior point estimate and the 95% credible interval (CI) 
are represented by the blue vertical line and the blue area under the curve, respectively. In the current plot, CI 
includes zero. This indicates that there is 95% probability of no differences in initial keystroke velocity between 
LTA and HTA. C, Representation of the slopes in LTA (orange) and HTA (blue). BLMM analyses support a 
negative association between keystroke velocity and trial in LTA, with keystroke velocity diminishing over time. 
D, Distribution of the difference between slopes in LTA and HTA. Here, the distribution does not include zero, 
suggesting that trait anxiety modulates the practice effects on keystroke velocity, with HTA participants 
increasing their keystroke velocity throughout the task.  
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Table 11. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the practice effect 

Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

Performance tempo      

 y: LTA 5.8148 5.6895 5.9383 1.00 

 y: LTA vs HTA 0.0862 -0.0962 0.2655 1.00 

 trial: LTA  -0.0005 -0.0006 -0.0004 1.00 

 group * trial: LTA vs HTA -0.0003 -0.0004 -0.0003 1.00 

Reaction times      

 y: LTA 6.3211 6.2135 6.4284 1.00 

 y: LTA vs HTA 0.0968 -0.0583 0.2554 1.00 

 trial: LTA  -0.0004 -0.0005 -0.0003 1.00 

 group * trial: LTA vs HTA -0.0004 -0.0006 -0.0003 1.00 

Keystroke velocity      

 y: LTA 60.3009 57.6823 62.9199 1.00 

 y: LTA vs HTA 0.0320 -2.8878 2.9627 1.00 

 trial: LTA  -0.0071 -0.0085 -0.0057 1.00 

 group * trial: LTA vs HTA 0.0087 0.0068 0.0106 1.00 

Values for the estimates, credible intervals (CIs) and R-hat for the fixed effects of model number 5 (y ~ 1 + 
group * trial+ [1 | subject] + [1 | trial]) in performance tempo, reaction times and keystroke velocity. The 
parameter y: LTA represents the posterior estimate for the intercept in the reference group (Low Trait Anxiety; 
LTA); y: LTA vs HTA indicates the posterior distribution of intercepts difference in LTA vs High Trait Anxiety 
(HTA); trial: LTA is the posterior distribution of the association (slope) between motor performance and trial in 
the reference group (LTA); group * trial: LTA vs HTA is the posterior distribution of the difference between 
slopes in LTA vs HTA. The l-95% CI and u-95% CI indicate the lower and upper bound of the CIs of the 
posterior distributions for the fixed effects. All R-hat values are all smaller that 1.1, suggesting chain 
convergence (Gelman and Rubin, 1992).  
 

5.3.3 Trait anxiety does not modulate the association between the strength of 

predictions about the reward probabilities and motor performance 

Here we provide the results of BLMM analysis on the potential role of trait anxiety in 

modulating the association between motor performance and the strength of expectations about the 

action-reward contingency (see Table 12 for a summary of the posterior distributions for the model 

parameters). 

For performance tempo, elpd_diff between model number 5 and 6 was 0.799171 and se_diff 

0.5232486. The elpd_diff was smaller than 2 * se_diff, thus we analysed the more parsimonious 
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model number 5. As model 5, which excludes the interaction effect group * |𝜇₂|_c, demonstrated a 

superior fit for our data when compared to the more complex model number 6, it implies that trait 

anxiety did not modulate the invigoration of performance tempo by the strength of predictions about 

the reward probabilities. The posterior predictive checks revealed a high level of predictive accuracy 

for the range of log_mIKI values (Figure 18A). In line with the previous analyses, we found no 

differences in performance tempo between LTA and HTA (posterior estimate of the intercept 

difference = 0.0821, CI = [-0.0853, 0.2481]; in ms 26.31, CI = [-27.09, 80.44]; Figure 18B). Next, we 

evaluated the association between performance tempo and the strength of predictions about the 

reward contingency. It is worth noting that the winning model number 5, excluding the group * |𝜇₂|_c 

interaction, only informed about the posterior estimate of the slope when averaging across the two 

groups (fixed effect of |𝜇₂|_c). We found that the strength of predictions about the action-reward 

contingency did not modulate performance tempo on a trial-by-trial-basis when averaging across 

LTA and HTA (posterior estimate of the slope = -0.0090, CI = [-0.0179, 0.0001]; Figure 18C).  

LOO-CV on RT models showed that model 5 was the best fit (model 5 vs 6: elpd_diff = 

0.4108801, se_diff 1.184602; elpd_diff < 2 * se_diff). Again, this implied that the invigoration of RT 

by the strength of predictions about the reward contingencies was not modulated by trait anxiety 

(i.e., model 5, which excluded group * |𝜇₂|_c interaction, provided a better fit when compared to the 

most complex model number 6). Model 5 had a strong predictive power for the range of the log_RT 

values (Figure 19A). Groups did not differ in RT, as demonstrated by the posterior estimate of the 

intercept difference (0.0151, CI = [-0.1466, 0.1718]; in ms 8.17, CI = [-78.78, 92.45] Figure 19B). 

Next, we explored the distribution of the fixed effect of |𝜇₂|_c (calculated by averaging between LTA 

and HTA) to assess whether RT was modulated by the strength of predictions. In line with our 

previous studies (Chapter 3; Tecilla et al., 2023), the analysis revealed that RT was not sensitive to 

the strength of predictions about the action-reward contingencies (the posterior estimate of the slope 

was -0.0012, CI = [-0.0145, 0.0116]; Figure 19C).  

Finally, BLMM results on keystroke velocity are consistent with those reported for 

performance tempo and RT. Model number 5 was identified as the best fit (elpd_diff and se_diff 

between model number 5 and 6 were 0.2761139 and 0.1524475, respectively), suggesting no 



 125 

modulation of the invigoration effect by trait anxiety. In the winning model, the posterior predictive 

checks revealed a robust predictive power for the range of Kvel values (Figure 20A). In line with the 

BF analyses, LTA and HTA displayed similar keystroke velocity (posterior estimate of the intercept 

difference = 0.6001, CI = [-2.3210, 3.5353]; Figure 20B). No association was found between 

keystroke velocity and the strength of predictions about the action-reward contingencies when 

averaging across LTA and HTA (fixed effect of |𝜇₂|_c; posterior estimate of the slope = -0.0203, CI 

= [-0.2720, 0.2293]; Figure 20C).  

Taken together, these results suggest that the strength of predictions about the action-reward 

contingencies does not robustly affect the vigour of motor responses, with trait anxiety not 

modulating this association. 
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Figure 18. Trait anxiety does not modulate the association between the strength of predictions and 
performance tempo. 
Bayesian Linear Mixed Models (BLMM; y ~ 1 + group + |𝜇₂|_c + [1 + |𝜇₂|_c|subject] + [1|trial]) with the Low 
Trait Anxiety group (LTA) as reference. A, Depiction of the distribution of the observed performance tempo 
values (y) and the simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Illustration 
of the difference between intercepts on performance tempo in LTA and the High Trait Anxiety group (HTA). 
The blue vertical bar corresponds to the posterior point estimate, and the blue area under the distribution to 
the 95% credible interval (CI). In the current plot, CI overlaps with zero, indicating no differences in 
performance tempo between LTA and HTA. C, Representation of the slope. This depicts the association 
between performance tempo and the strength of predictions (centred absolute values of 𝜇₂, |𝜇₂|_c) when 
averaging across LTA and HTA. The analyses reveal that performance tempo is not modulated by the strength 
of the predictions. 
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Figure 19. Trait anxiety does not modulate the association between the strength of predictions and 
reaction times. 
Bayesian Linear Mixed Models (BLMM; y ~ 1 + group + |𝜇₂|_c + [1 + |𝜇₂|_c|subject] + [1|trial]) with the Low 
Trait Anxiety group (LTA) as reference. A, Posterior predictive checks, with y representing the distribution of 
the observed reaction times values (RT) and yrep the simulated datasets from the posterior predictive 
distribution (100 draws). B, Distribution of the difference between RT (intercept) in LTA and the High Trait 
Anxiety group (HTA). The blue vertical bar and the blue area under the curve correspond to the posterior point 
estimate and the 95% credible interval (CI), respectively. Here, CI overlaps with zero, suggesting that there is 
95% probability of no between-group differences in RT. C, Representation of the slope when averaging across 
LTA and HTA. We demonstrated that RT is not sensitive to the strength of predictions about the reward 
tendency. Predictions are captured by the computational HGF parameter |𝜇₂|_c (centred and unsigned 𝜇₂).  
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Figure 20. Trait anxiety does not modulate the association between the strength of predictions and the 
MIDI keystroke velocity. 
Bayesian Linear Mixed Models (BLMM; y ~ 1 + group + |𝜇₂|_c + [1 + |𝜇₂|_c|subject] + [1|trial]) setting the Low 
Trait Anxiety group (LTA) as reference. A, Posterior predictive checks, with y representing the distribution of 
the observed MIDI keystroke velocity values and yrep the simulated datasets from the posterior predictive 
distribution (100 draws). B, Distribution of the difference between intercepts on keystroke velocity in LTA and 
the High Trait Anxiety group (HTA). The blue vertical bar and the blue area under the curve correspond to the 
posterior point estimate and the 95% credible interval (CI), respectively. In the current plot, as CI overlaps with 
zero, we can conclude with 95% probability that there are no between-group differences in keystroke velocity. 
C, Representation of the slope between keystroke velocity and |𝜇₂|_c when averaging across LTA and HTA. 
The analyses reveal no sensitivity of keystroke velocity to the strength of predictions. 
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Table 12. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the invigoration effect by predictions of reward 
probabilities 

Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

Performance tempo      

 y: LTA 5.7241 5.6072 5.8429 1.00 

 y: LTA vs HTA 0.0821 -0.0853 0.2481 1.00 

 |𝜇₂|_c  -0.0090 -0.0179 0.0001 1.00 

Reaction times      

 y: LTA 6.2727 6.1634 6.3826 1.00 

 y: LTA vs HTA 0.0151 -0.1466 0.1718 1.00 

 |𝜇₂|_c -0.0012 -0.0145 0.0116 1.00 

Keystroke velocity      

 y: LTA 59.7518 57.1827 62.2856 1.00 

 y: LTA vs HTA 0.6001 -2.3210 3.5353 1.00 

 |𝜇₂|_c -0.0203 -0.2720 0.2293 1.00 

Values for the estimates, credible intervals (CIs) and R-hat for the fixed effects of the model number 5 (y ~ 1 
+ group + |𝜇₂|_c + (1 + |𝜇₂|_c|subj) + (1|trial)) in performance tempo, reaction times and keystroke velocity. 
The parameter y: LTA illustrates the posterior estimate for the intercept in the Low Trait Anxiety group (LTA); 
y: LTA vs HTA reflects the posterior distribution of the intercepts difference between LTA and High Trait Anxiety 
group (HTA); |𝜇₂|_c is the posterior distribution of the association (slope) between motor performance and the 
strength of predictions when averaging across LTA and HTA. The lower (l-95%) and upper (u-95%) bound of 
the CI of the posterior distributions are also inserted in the table. Chain convergence is demonstrated through 
R-hat values (i.e., < 1.1; Gelman and Rubin, 1992). 
 

5.3.4 Trait anxiety alters the neural oscillatory responses to informational 

uncertainty and uncertainty on environmental volatility 

First, we assessed potential between-group differences in the spectral correlates of 

processing the win and lose outcome. Independent sample cluster-based permutation test in the 

theta range did not reveal significant clusters for either the win or lose outcome (all p values > 0.025; 

two-sided tests, FWER-controlled).  

Next, we investigated whether the neural oscillatory responses to |𝜀2| were differently 

modulated in LTA and HTA. Permutation tests on the TF response images to |𝜀2| did not reveal 

significant clusters in the alpha and beta ranges (all p values > 0.025; two-sided tests, FWER-

controlled). Figure 21A depicts the TF representations to |𝜀2| across the 8-30 Hz range for LTA (left 
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panel), HTA (middle panel), and for the difference between HTA and LTA (HTA-LTA; right panel). 

Figure 21B illustrates the time course of the alpha (left panel) and beta (right panel) modulation by 

|𝜀2| separately for LTA and HTA.  

Through the analysis of the TF response images to 𝜎2, we demonstrated greater beta activity 

for HTA, compared to LTA (Figures 22A-B). This was confirmed by independent samples cluster-

based permutation tests, revealing a significant positive cluster in the beta range between 1000 and 

1350 ms (p = 0.017; two-sided test, FWER-controlled). The beta effect was distributed across 

parietal regions bilaterally (Figure 22C). Note that here we only discuss cluster effects that spanned 

at least one cycle at the highest frequency in the band (for beta 33 ms [= 1000 ms / 30 Hz]). No 

significant clusters were observed in the alpha range for 𝜎2 (all p values > 0.025; two-sided test, 

FWER-controlled). 

Finally, we examined differences between LTA and HTA in the TF representations to 𝜎3. We 

found increased alpha power in the post-outcome interval for HTA, compared to LTA (Figures 23A-

B). Permutation tests highlighted a significant positive cluster in the alpha range with a latency of 

1000–1700 ms (p = 0.005; two-sided test, FWER-controlled). For the alpha effect, we only reported 

clusters spanning for at least 83 ms (= 1000 ms / 12 Hz; one cycle at the highest frequency in the 

range). The significant cluster had a widespread topography over centro-parietal regions across both 

hemispheres (Figure 23C). No significant cluster effects were observed in the beta range (all p 

values > 0.025; two-sided test, FWER-controlled). 

Overall, these results suggest that high trait anxiety interferes with the neural oscillatory 

responses to different forms of uncertainty. Specifically, individuals more prone to anxiety enhance 

beta power to informational uncertainty and increase alpha activity for uncertainty about the rate of 

contingency changes over time (uncertainty about the environmental volatility). 
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Figure 21.Trait anxiety does not modulate the alpha and beta oscillatory responses to precision-
weighted prediction errors.  
A, It illustrates the time-frequency representations in the 10-30 Hz range to unsigned precision-weighted 
prediction errors (pwPE; |𝜀2|) in the Low Trait Anxiety group (LTA; left panel), High Trait Anxiety group (HTA; 
middle panel) and for the difference between the two groups (HTA-LTA; right panel). The outcome onset is 
displayed by the dashed vertical bar. B, The left and right panels depict the time course of the neural 
modulation by |𝜀2| in LTA (in orange) and HTA (in blue) for the alpha (8–12 Hz) and beta (14–30 Hz) ranges, 
respectively. Independent samples cluster-based permutation tests did not reveal any significant cluster in the 
alpha and beta ranges (two-sided tests, FWER-controlled). 
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Figure 22. Trait anxiety modulates the beta oscillatory response to informational uncertainty.  
A, Time-frequency (TF) representations (8-30 Hz) to informational uncertainty (𝜎2) in the Low Trait Anxiety 
group (LTA; left panel), High Trait Anxiety group (HTA; middle panel) and in HTA minus LTA (HTA-LTA; right 
panel). The black rectangle indicates the TF range of the significant cluster effect in the beta band (between 
1000 and 1350 ms; p = 0.017, two-sided test, FWER-controlled). Outcome onset is represented by the dashed 
vertical bar. B, Depicts the time course of the oscillatory responses to 𝜎2 in LTA (in orange) and HTA (in blue) 
for the beta range (14–30 Hz). The time window for the significant cluster of the permutation test (1000–1350 
ms) is indicated by the horizontal black bar. C, It reflects the topographic distribution of the cluster effects for 
𝜎2 in the beta range, across the entire scalp (1000–1350 ms). The reported cluster effect spans for at least one 
cycle at the highest frequency in the range (for beta 33 ms [= 1000 ms / 30 Hz]).  
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Figure 23. Trait anxiety modulates the alpha oscillatory response to uncertainty on volatility.  
A, Time-frequency (TF) representations (8-30 Hz) to uncertainty about the volatility (𝜎3) in the Low Trait Anxiety 
group (LTA; left panel), High Trait Anxiety group (HTA; middle panel) and for the difference between HTA and 
LTA (HTA-LTA; right panel). The black rectangle indicates the TF range of the significant cluster effect in the 
alpha range (1000–1700 ms; p = 0.005, two-sided test, FWER-controlled). The onset of the outcome is 
displayed as a dashed vertical bar. B, Time course of the modulation by 𝜎3 in LTA (orange) and HTA (blue) 
alpha (8–12 Hz). The time interval for the significant cluster of the permutation test (1000–1700 ms) is 
highlighted by the horizontal black bar. C, Topographic distribution of the cluster effect for 𝜎3 in alpha. We 
report the effect across the entire scalp in the significant time window (between 1000 and 1700 ms) spanning 
at least one cycle at the highest alpha frequency (for 83 ms [= 1000 ms / 12 Hz]).  
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5.4 DISCUSSION 

With this study we aim to examine the influence of trait anxiety on motor decision making 

and motor vigour within volatile environments. Specifically, we seek to determine whether high trait 

anxiety affects the sensitivity of motor performance to predictions about the action-reward 

contingencies, building upon the findings discussed in Chapter 3. We also aim to investigate how 

trait anxiety influences the neural oscillatory correlates of reward-based learning for motor decisions, 

expanding previous work employing simple decision-making paradigms (e.g., Hein et al., 2023; 

Rouault et al., 2019). Our results demonstrate that trait anxiety alters the spectral responses to 

informational uncertainty and to uncertainty on volatility, as well as modulates how individuals adjust 

their motor performance through practice. However, anxiety does not interfere with overall task 

performance and the invigoration of motor responses by expectations of reward mappings.  

 It is well established that a propensity to experience anxiety impairs the capacity to tolerate 

uncertainty and, as a result, hinders the ability to adapt behaviour in the face of situational changes 

(Carleton, 2016; Hein et al., 2023; Pulcu & Browning, 2019). In line with this, previous evidence has 

consistently shown that participants with high trait anxiety underperform when learning in volatile 

environments (Browning et al., 2015; Hein et al., 2023; Huang et al., 2018; Jiang et al., 2018). This 

has been explained by high trait anxiety individuals exhibiting faster belief updating about reward 

mappings, reflecting an overestimation of uncertainty about the reward contingencies and 

environmental uncertainty (Hein et al., 2023). Surprisingly, in our experiment we did not replicate 

these findings, demonstrating similar win (and error) tendencies between HTA and LTA. 

Furthermore, we found anecdotal and moderate evidence for no anxiety-driven differences in 

decision making. Participants exhibited similar tonic volatility estimates (𝜔₂, 𝜔3), indicating that trait 

anxiety did not impact the speed of learning regarding action-reward mappings and their rate of 

changes over time. Participants also displayed similar estimates of environmental log-volatility (𝜇3), 

informational uncertainty (𝜎₂) and uncertainty about the environmental volatility (𝜎3). It is worth noting 

that while prior work focused on assessing simple decision-making processes (e.g., pressing either 

left or right to make a choice), we asked participants to complete sequences at every trial to express 
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their decisions. It is therefore possible, that differences in the task could have accounted for the lack 

of similar results. 

Research in the field of motor control has brought attention to movement challenges 

experienced by individuals with clinical anxiety (Balaban & Jacob, 2001; Ekornås et al., 2010; Erez 

et al., 2004; Kristensen & Torgersen, 2008; Skirbekk et al., 2012). Furthermore, it has been observed 

that anxiety can predict the onset of motor symptoms in PD patients and drive motor complications 

(e.g., dyskinesia) in response to DA-based therapy (Brown et al., 2020; Burn et al., 2012; Dias et al., 

2022; Dissanayaka et al., 2014; Ishihara & Brayne, 2006; Schapira et al., 2017; Vázquez et al., 1993; 

Weisskopf et al., 2003). In our study, BF analyses on the motor variables yielded anecdotal and 

moderate evidence for no between-group differences, suggesting similar performance tempo, RT 

and keystroke velocity in high and low anxiety individuals. Interestingly, the more robust BLMM 

approach demonstrated that trait anxiety had a role in shaping practice effects, that are changes in 

motor performance across trials. Specifically, LTA displayed progressively faster performance 

tempo, shorter RT and reduced keystroke velocity over time, indicating that practice made their 

performance more efficient and less effortful. However, HTA accelerated their performance tempo 

and RT even more with practice and, as opposed to the low anxiety group, increased their keystroke 

velocity over time. Notably, anxiety is characterised by heightened arousal and alertness, both of 

which have been found to drive faster motor responses (Jedon et al., 2022; Kamiński et al., 2012). 

Thus, a speculative interpretation could be that the progressively faster performance tempo and RT 

observed in the high trait anxiety group may reflect increased arousal aimed at maintaining task 

effectiveness across trials. Additionally, our findings on keystroke velocity imply that individuals with 

high anxiety, unlike LTA, failed in making their performance more effortless through practice. Overall, 

these results highlight a role of trait anxiety in influencing how individuals adapt to a motor task over 

time.  

The investigation on the potential role of trait anxiety in modulating the invigoration of 

motor responses by predictions about the reward probabilities was prompted by our earlier findings. 

In Chapter 3 we demonstrated that healthy young individuals, older adults, and PD patients taking 

DA medications all invigorated their behaviour through predictions about the reward tendency by 
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speeding up motor execution. Based on previous research that emphasised altered belief updating 

about reward mappings in individuals with a propensity to experience anxiety (Hein et al., 2023), our 

expectation was a diminished sensitivity of motor performance to the strength of predictions about 

the action-reward contingencies within the high trait anxiety group. However, our findings did not 

align with this hypothesis. In fact, for all the motor variables (performance tempo, RT and keystroke 

velocity), the BLMMs that best explained our data were not accounting for an interaction between 

groups (high versus low trait anxiety) and the strength of expectations about the reward probabilities. 

This implies that the association between motor performance and the strength of predictions was 

not modulated by trait anxiety. Moreover, BLMM analyses on performance tempo failed to replicate 

our findings in Chapter 3. In fact, here, we did not observe an invigoration of motor behaviour by the 

strength of predictions about the action-reward contingencies. However, this can be explained by 

considering differences in the two paradigms: unlike our previous study, where the timing of reward 

delivery was contingent on the time taken to perform the action, here, feedback was consistently 

provided 4600 milliseconds after the fractals’ onset, regardless of movement time. Consequently, 

completing the action more rapidly did not result in obtaining rewards sooner, potentially dampening 

participants' motivation to expedite the sequence when having strong predictions. Overall, these 

findings support that trait anxiety does not affect the sensitivity of motor performance to the strength 

of expectations about the reward contingencies. 

So far, the literature exploring how trait anxiety influences the neural oscillatory 

correlates of learning in dynamic environments has primarily focused on simple decision-making 

paradigms (Hein et al., 2023). In this study, we extended this investigation into the domain of motor 

decisions, revealing a modulation of the spectral responses to informational uncertainty (σ₂) and to 

uncertainty on volatility (σ3) by trait anxiety. In their recent research, Hein et al. (2023) observed that 

individuals with high trait anxiety exhibited altered alpha/beta power in responses to both σ₂ and σ₃ 

compared to the low anxiety group. Specifically, an increased response in the alpha/beta bands was 

detected in the OFC and SFG and emerged in the post-outcome interval (σ₂:	350 and 1450 ms;	σ₃:	

1340 and 1600 ms). The findings discussed in the present chapter align with these results. In fact, 

in our study, individuals with high trait anxiety were characterised by increased beta power in 
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response to σ₂ between 1000-1350 ms post-outcome, over bilateral parietal regions. Furthermore, 

they displayed greater alpha responses to σ₃, spanning between 1000-1700 ms post-outcome, over 

centro-parietal regions in both hemispheres. The parameters 𝜎₂ and 𝜎3 represent the precision 

weights scaling the influence of PEs on updating beliefs about the mappings governing the 

environment and their volatility (Mathys et al., 2011, 2014). Accordingly, when individuals are more 

uncertain about the reward contingencies and their changes over time, they rely more strongly on 

PEs to update their beliefs on the corresponding level. Thus, our EEG findings contribute to the 

extensive body of literature supporting altered neural representations of uncertainty in individuals 

with high trait anxiety (Al-Ezzi et al., 2020; Hein et al., 2021, 2023; Hein & Herrojo Ruiz, 2022; 

Knyazev et al., 2005; Shadli et al., 2021; Sporn et al., 2020). 

However, it is worth noting that in our study, the anxiety-induced modulation of neural 

responses to different forms of uncertainty was not accompanied by dissociations in general task 

performance or decision making. Furthermore, we found that trait anxiety did not bias the neural 

oscillatory activity for encoding unsigned pwPE. This contrasts with prior PC work that showed trait 

anxiety to speed up belief updating at level 2, corresponding to a suppression of alpha/beta activity 

and an enhancement in the amplitude of gamma responses (Hein et al. 2023). The authors explained 

this phenomenon as trait anxiety promoting feedback-driven processing, thereby increasing the role 

played by PEs in updating predictions. However, we did not find support for these results, as 

individuals with high and low trait anxiety did not differ in the neural oscillatory correlates of unsigned 

pwPE. The absence of between-group effects in the neural representation of pwPE is consistent 

with the lack of behavioural differences in decision making observed in this study. 

In conclusion, our work, by examining motor decisions, contributes to the growing body 

of literature on the role of trait anxiety during reward-based learning in volatile environments. We 

demonstrate that trait anxiety influences the neural oscillatory activity within the alpha and beta range 

in response to various forms of uncertainty, even though this effect is not reflected in altered general 

task performance, decision making or motor vigour. In addition, we show that anxious participants 

adjust their motor performance differently than the low anxiety group, with trait anxiety modulating 

the practice effects on performance tempo, RT and keystroke velocity.  
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CHAPTER 6: STATE ANXIETY REVERSES MOTOR VIGOUR 

EFFECTS AND BIASES THE OSCILLATORY CORRELATES OF 

FEEDBACK PROCESSING 

 

State anxiety has detrimental effects on motor performance and on the ability to learn from 

rewards in dynamic environments.  

In this study, we induced state anxiety in our participants using the validated Threat of Shock 

paradigm and recorded their brain electrical activity via EEG during a reward-based motor decision-

making task. Our results revealed that shock-induced state anxiety led to delayed initiation of actions, 

particularly for movements highly predicted to be rewarding. Furthermore, state anxiety was 

associated to altered neural oscillatory correlates of feedback processing, as participants under 

threat displayed an attenuated theta increase in response to outcomes. 

This study offers novel insights into state anxiety dampening the invigoration of RT by 

predictions of reward probabilities and highlights anxiety-related differences in the theta oscillatory 

activity for processing outcome information. 

 

6.1 INTRODUCTION 

In Chapter 5, the primary aims were to assess whether trait anxiety modulated the 

invigoration of motor responses by predictions and the neural oscillatory correlates of motor decision 

making. Our results revealed that high levels of trait anxiety interfered with how individuals adjusted 

their motor performance over time. High trait anxiety also altered the spectral responses to 

informational uncertainty and uncertainty on environmental volatility. However, trait anxiety did not 

affect the sensitivity of motor performance to predictions of reward probabilities, nor did it impact 

general task performance or decision-making behaviour. 

Here, we built upon these findings to expand the investigation to transient anxiety states. 

State anxiety differs from trait anxiety, as it reflects temporary and situation-dependent experiences 

of negative emotions rather than a predisposition to excessive worry (Endler & Kocovski, 2001). 
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Various paradigms have been employed to induce state anxiety in laboratory settings, involving 

singing, public speaking, and arithmetic (see Table A1 in Kreibig, 2010 for a review). One of the 

most robust protocols to induce sustained state anxiety is the Threat of Shock (TOS; Engelmann et 

al., 2019; Engelmann et al., 2015; Ganesh et al., 2019; Lee & Grafton, 2015; Robinson et al., 2013; 

Schmitz & Grillon, 2012). TOS involves explicitly informing participants regarding impending aversive 

events consisting of electric shocks administered to the skin at unpredictable intervals. This threat 

condition is usually alternated in blocks with a safe condition, in which participants receive no shocks 

or receive shocks of very mild intensity. One advantage of exposing participants to both safe and 

threat blocks in the same session is that it allows for within-subject designs, which increases 

statistical power (Engelmann et al., 2015). The TOS paradigm has been consistently validated in 

previous research and demonstrated to reliably induce anxiety, modulating physiological (e.g., startle 

reflex and elevated skin conductance level) and self-report psychological (e.g., increased subjective 

anxiety ratings) responses (Bradley et al., 2018; Grillon et al., 2016; Hubbard et al., 2011; Torrisi et 

al., 2016). The most compelling evidence arises from the close overlap between the network of brain 

regions modulated by the TOS paradigm and the neural circuitry implicated in anxiety disorders 

(Robinson et al., 2019). These areas include the ventromedial PFC, the ACC, the insula, and the 

amygdala. These findings support that TOS can elicit modulation in brain areas involved in the 

anticipation of future threats and the processing of uncertainty as aversive, which are central features 

in influential models of anxiety, such as the Uncertainty and Anticipation Model of Anxiety (Grupe & 

Nitschke, 2013). It is important to note that the paradigm used to induce state anxiety through TOS 

varies from study to study. For instance, in Ganesh et al. (2019), shocks were delivered based on 

participants' performance, such as when they were too slow or made errors. In contrast, other 

research employed TOS independently of the behavioural responses, administering shocks at 

unpredictable intervals throughout the task (Engelmann et al., 2019; Engelmann et al., 2015; Zhang 

et al., 2020). In our study, we adopted the latter approach.  

As outlined in section 1.3.3, individuals often exhibit poor motor performance in high-pressure 

situations, a phenomenon commonly referred to as “choking under pressure” (Harris et al., 2023; 

Lee & Grafton, 2015; Nieuwenhuys & Oudejans, 2012). A substantial body of literature has linked 
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this phenomenon to shifts in attention, either towards task-irrelevant stimuli (distraction theories; 

Behan & Wilson, 2008; Causer et al., 2011; Nieuwenhuys & Oudejans, 2012; Wilson, Vine, et al., 

2009; Wilson, Wood, et al., 2009), or towards internal processes to consciously monitor movement 

execution (explicit monitoring theories; Gucciardi & Dimmock, 2008; Lam et al., 2009; Yarrow et al., 

2009). More recently, Smoulder et al. (2023) identified a potential neural basis for the choking 

phenomenon in the motor cortex of Rhesus monkeys. They demonstrated that in high-incentive 

situations, planning signals for different actions become less distinguishable, leading to a collapse 

in neural information and poorer performance. The authors concluded that high incentives can 

therefore have a similar role as stressors when performing actions, in line with earlier work (Lee & 

Grafton, 2015). 

The detrimental effects of state anxiety extend beyond the motor domain to impact decision 

making and learning under uncertainty (refer to section 1.3.2 for details). Those experiencing state 

anxiety tend to underperform in reward-based learning tasks within volatile environments due to their 

propensity to form overly precise beliefs about probabilistic stimulus-outcome associations, which, 

in turn, inhibit belief updating (Hein et al., 2022). Furthermore, state anxiety is associated with 

increased uncertainty about environmental volatility, suggesting difficulties in estimating the rate of 

contingency changes within the task environment (Hein et al., 2022; Sporn et al., 2020). At the neural 

level, individuals experiencing state anxiety during a probabilistic learning task are characterised by 

heightened alpha and beta activity in frontoparietal regions during the generation of reward 

predictions, and in sensorimotor and frontal areas while encoding precision-weighted prediction 

errors (Hein et al., 2022; Sporn et al., 2020). The beta and alpha modulations by pwPE are observed 

between 1200 and 1600 ms post-outcome (beta = 1200-1570 ms; alpha = 1170-1600 ms). The beta 

modulation by predictions, instead, occurs from 200 and 640 ms after the presentation of the stimuli 

that prompt participants to make their choice (thus before seeing the outcome). Crucially, this 

evidence is limited to standard decision-making paradigms (Engelmann et al., 2015; Hein et al., 

2021; Hein & Herrojo Ruiz, 2022; Zhang et al., 2020), leaving the exploration of how state anxiety 

influences neural oscillations in the context of motor decisions largely uncharted. 
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In this study, we induced state anxiety in our participants using the TOS paradigm and 

registered the brain electrical activity via EEG during the reward-based motor decision-making task 

(section 2.1). Our primary aim was to examine whether state anxiety modulated the invigoration of 

motor behaviour by predictions of reward probabilities. Furthermore, we sought to estimate the 

potential influence of state anxiety on the neural oscillatory correlates of motor decisions. Our 

investigation was guided by our prior work discussed in Chapter 5 and informed by EEG findings 

concerning state anxiety in reward-based learning under volatility (Hein et al., 2022). Specifically, 

we focused on the theta (4-6 Hz) band due to its involvement in facilitating feedback processing, as 

well as on the alpha (8-12 Hz) and beta (14-30 Hz) responses as evidence suggested anxiety to be 

accompanied by changes in these frequencies during probabilistic learning (refer to Section 5.1 for 

additional details regarding the rationale for investigating the theta, alpha, and beta ranges).  

 

6.2 MATERIALS AND METHODS 

6.2.1 Participants 

27 healthy young adults (20 females, age 18-40, mean 26.2, SEM 1.2) were recruited for the 

present research through flyers and online adverts. The study was approved by the ethics review 

committee at Goldsmiths, University of London and all participants provided their informed written 

consent prior participation. All participants were right-handed, aged between 18 and 40 years old, 

had normal or corrected vision, were able to perform controlled finger movements with their right 

hand and had normal sense of hearing. Amateur/professional pianists, professional musicians, 

participants diagnosed with neurological/psychiatric conditions and subjects taking antidepressants 

were excluded from the study. Additional exclusion criteria for the tactile stimulation included having 

any metallic object fitted to the body (e.g., hearth pacemaker, medication pump, cochlear implant, 

surgical clips), having a dermatological condition, being (possibly) pregnant and having a personal 

or family history of epileptic fits or seizure.  

All participants were evaluated using the STAI (STAI Y-1, Y-2; Spielberger, 1983) to obtain 

measures of trait and state anxiety before participating in the experiment (state anxiety [Y-1], mean 
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30.6, SEM 1.6; trait anxiety [Y-2], mean 37.3, SEM 1.7). Participants received a monetary 

compensation of £20 which could be increased up to £25 as a function of their task performance. 

 

6.2.3 Experimental design 

We used a within-subjects experimental design, where each participant completed two 

blocks of our reward-based motor decision-making task (see section 2.1 for further details about the 

task). The paradigm was coded in psychtoolbox (http://psychtoolbox.org) and implemented in 

MATLAB (version 2021b).  

Each participant completed one block of the task under safety and another block under threat 

(see section 6.2.4 for further details about the TOS paradigm). Throughout the experiment, every 

participant played a total of four different sequences, two in each block (seq1-seq2, seq3-seq4). The 

sequences were designed in pairs, such that each pair of sequences started with the same finger 

press. The rationale for this design choice was to control for differences in neural activity during 

preparation due to the dominant modulation of the first press (Yokoi et al., 2018). We 

pseudorandomised the order of blocks and sequence pairs by creating four conditions, which were 

counterbalanced across subjects: a) threat block (seq1 and seq2) - safe block (seq3 and seq4); b) 

safe block (seq1 and seq2) - threat block (seq3 and seq4); c) safe block (seq3 and seq4) - threat 

block (seq1 and seq2); d) threat block (seq3 and seq4) - safe block (seq1 and seq2).  

Each experimental block was preceded by a practice phase consisting of 10 trials where 

participants received computerised instructions and learnt the sequences of finger movements. They 

were instructed to position their right index on the keyboard letter “g”, the middle finger on the “h”, 

the ring finger on the “j” and the little finger on the “k”. In each of the two practice phases they learnt 

to play the two sequences relevant for the forthcoming block and to associate them to the 

corresponding fractal images (seq1: “g-j-h-k”, red fractal - seq2: “g-h-k-j”, blue fractal; seq3: “k-g-j-

h”, yellow fractal - seq4: “k-j-g-h”, pink fractal; Figure 24A).  

The two experimental blocks consisted of 140 trials each, in which participants had to choose 

between two displayed fractal images by playing the corresponding sequence on the keyboard to 

get a reward. After completing the selected sequence, feedback was provided to reflect whether 
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participants: a) chose the rewarded fractal image (win trial; “Win +5p!”); b) chose the unrewarded 

fractal image (lose trial; “Lose 0p”); c) pressed the wrong key(s) or key(s) in the wrong order (error 

trial; “You did an error! 0p”); d) exceeded the time limit of 5000 ms to complete the sequence (time-

out trial; “Too slow! 0p”) (Figure 24B).  

The probability of each image (and thus sequence) leading to reward changed every 22-34 

trials and the order of the contingency mappings was either a) 30/70, 90/10, 50/50, 10/90, 70/30 or 

b) 70/30, 50/50, 90/10, 30/70, 10/90. Each experimental block was associated to either the reward 

mapping combination a or b, so that all participants were exposed to both combinations.  

To monitor the intensity of anxiety states throughout the experiment, participants rated how 

calm and worried they were feeling three times in each block. Specifically, after having completed 

trial 45, 90 and 140, the following two statements were successively displayed on the computer 

screen: “At this moment, I feel calm” (item 1, STAI Y-1; Spielberger, 1983); “At this moment, I feel 

worried” (item 17, STAI Y-1; Spielberger, 1983). Participants were instructed to reply by pressing 

numerical keyboard buttons using their left hand (1=not at all; 2=somewhat; 3=moderately so; 4=very 

much so).  
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Figure 24. Motor sequences and task structure.  
A, It illustrates the motor sequences and the corresponding fractal images. In each experimental 
block participants played two sequences (either seq1 and seq2, or seq3 and seq4), for a total of four 
sequences across the two blocks. In the familiarisation phase, they learnt to play the sequences and 
to associate each sequence to the corresponding fractal image (seq1: “g-j-h-k”, red fractal - seq2: 
“g-h-k-j”; seq3: “k-g-j-h”, yellow fractal - seq4: “k-j-g-h”, pink fractal). B, Representation of the task 
structure. On each trial, participants chose one of the two fractal images by playing the 
corresponding sequence of finger movements on the computer keyboard. After completing the 
sequence, they received feedback that could either indicate whether they chose the rewarded image 
and played the sequence correctly (“Win 5p!”), they selected the unrewarded image (“Lose 0p”), they 
made a performance error when playing the sequence (“You did an error! 0p”) or they took more 
than 5000 ms to execute the sequence (“Too slow! 0p”). The outcome was presented 800–1200 ms 
after the last key press or after the allowed time to complete the sequence had passed (not shown 
in the picture). Each participant completed two blocks (safe and threat block, order randomised 
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across subjects). In the safe block, no electrical stimulation was delivered. In the threat block, we 
administered 10 electrical shocks to the participants’ left volar forearm at unpredictable times. To 
limit the impact of the electrical stimulation on task completion, stimuli were always delivered during 
the interstimulus interval (ISI), specifically 500 ms after fixation cross onset. In the example depicted 
here, the participant goes through the safe block first (top panel), playing seq1 (red image) and seq2 
(blue image) and then complete the threat block playing seq3 (yellow image) and seq4 (pink image) 
while receiving unpredictable electrical stimulations (here represented by the electric shock symbol).  
 

6.2.4 Threat of shock paradigm 

In our study, the stimulation was administered through an isolated, constant current 

stimulator (Digitimer, model DS7A, Hertfordshire, England) via a square-wave pulse current. This 

device has been previously used in anxiety and pain research (Robinson et al., 2015; Zenses et al., 

2020). The intensity of the electrical pulse was tailored for each participant to reflect the 80% of the 

individual pain threshold. To achieve this, we first administered ten electrical stimulation pulses of 

increasing magnitude (from 5 mA up to 99 mA, pulses width of 2ms) and asked participants to 

verbally rate the intensity of the pulses using any number from 0 (hardly perceptible) to 100 

(unbearable pain). The intensity rated as 80 (or the average of the intensities rated as 80) was then 

used as prior in a Bayesian adaptive psychometric method (QUEST; Watson & Pelli, 1983). This 

Bayesian approach was adapted from the implementation of Ella Abken for her MSc thesis at 

Goldsmiths, University of London. It aimed at providing a better estimate for the stimulation intensity 

to use during the experimental threat block. This approach involved asking participants to rate 

additional 12 electrical stimuli on a computerised 0-100 scale (0=hardly perceptible, 100=unbearable 

pain, as before). The QUEST method relied on Bayes’ rule where trial-wise individual ratings were 

used to update the stimulation intensity of the following trial according to the maximum likelihood 

criterion (Shen, 2013). The value used as prior defined the spectrum of possible stimulation 

intensities and determined the first stimulus. The impact of this prior value on the stimulation 

intensities decreased over time, with trial-by-trail individual ratings gradually influencing the updating 

function. Through the course of the 12 trials, the estimation of the 80% threshold got more stable 

and precise, with the final updated stimulation intensity reflecting a pain rating of 80. This estimated 

value was used as stimulation intensity for the TOS in the threat block.  
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During the threat block, ten electrical shocks corresponding to the 80% of the individual pain 

threshold were delivered to the midpoint between the wrist and the elbow of the participants’ left 

volar forearm through a surface electrode (WASP Electrode, Speciality Developments). The duration 

of the pulse was constant and set to 2 ms for all participants (maximum pulse width in our device; 

other TOS implementations with different devices used smaller magnitude [up to 5mA] yet longer 

duration [100 ms]; Schmitz & Grillon, 2012). To limit the negative impact of the electrical stimulation 

on sequence execution (e.g., muscular twitching), pulses were only delivered during the inter-trial-

interval (500 ms after the fixation cross onset). Before starting each block, the following statements 

were displayed on the computer screen to explicitly inform participants whether they were about to 

complete a safe block (“In this block you will never receive electrical shocks. No electrodes are 

attached to your arm.”) or a threat block (“Attention! In this block you will receive electrical shocks to 

your arm. The shocks can be delivered at any time.”).  

 

6.2.5 EEG recording and preprocessing 

We used the BioSemi ActiveTwo system with 64 electrodes (extended international 10–20) 

to record EEG and ECG signals at a sampling rate of 1024 Hz. The average between the two 

electrodes located to the left and right mastoid bones was used to re-reference the EEG signal. The 

ECG was obtained by positioning electrodes in a lead II configuration, aligning with the Einthoven 

triangle (Moody & Mark, 1982; Wilson, Macleod et al., 1931). We also captured horizontal and 

vertical eye movements through the electrooculogram (EOG) where two electrodes were affixed to 

the left zygomatic bone and to the glabella. Finally, we applied two electrodes on the dorsal right 

forearm in correspondence to the extensor digitorum muscle to measure its electromyographic 

(EMG) activity. Throughout the experiment, we used triggers to store task events, including stimuli 

presentation, key presses and outcomes. 

EEG data was first imported and preprocessed in EEGLAB toolbox in MATLAB (Delorme 

and Makeig, 2004; https://eeglab.org) by high-pass filtering at 0.1 Hz, low-pass filtering at 100 Hz 

and then notchfiltering between 48–52 Hz to remove power line noise (pop_eegfiltnew function; 

Hamming windowed sinc Finite Impulse Response filter). For outcome-locked analyses (see 
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sections 6.2.8.1 and 6.2.9.4 for more details), we epoched the signal from -2000 to 2000 ms around 

the outcome event (win, lose, error, time-out). Noisy epochs were manually removed through visual 

inspection (in block 1, 16.3 epochs were removed on average [SEM 2.7]; in block 2, 15.4 [SEM 2.5]). 

On the other hand, for analyses locked to the stimulus (see sections 6.2.8.2 and 6.2.9.4), we created 

epochs ranging from -1000 to 1000 ms around the fractals presentation (in block 1, 12.8 epochs 

were removed on average [SEM 2.1]; in block 2, 13.5 [SEM 2.1]). Next, we employed the FieldTrip 

toolbox to convert the data (Oostenveld et al., 2011; http://fieldtriptoolbox.org) and to downsample it 

to 256 Hz. To obtain a better signal decomposition for independent component analysis (ICA; fastICA 

algorithm), we filtered the data with an additional 1 Hz high-pass filter before running ICA analysis. 

ICA weights were then injected to the original 0.1 Hz high-pass filtered dataset and eye components 

were removed from the data (outcome-locked analysis; in block 1, average of 2.7 components 

removed [SEM 0.15]; in block 2, 2.7 [SEM 0.15]; stimulus-locked analysis: in block 1, 2.5 

components were removed on average [SEM 0.16]; in block 2, 2.6 [SEM 0.14]). One participant was 

excluded from the EEG analyses because of poor signal.  

The ECG data was analysed in FieldTrip following their recommended procedure 

(http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_e

cg_artifacts). Specifically, the ECG signal was referenced to the mastoids and high-pass filtered at 

0.5 Hz. In line with previous literature (Hein et al., 2021; Hein & Herrojo Ruiz, 2022; Sporn et al., 

2020), for each participant we detected the R peak and the QRS-complex to extract the heart rate 

(HR) and hearth rate variability (HRV). HR reflected the number of R-peaks in 60 seconds of time, 

while HRV represented the coefficient of variation (obtained by dividing the standard deviation by 

the mean) of the interbeat intervals (IBI).  

We decided to primarily focus on HRV as it has been demonstrated that this measure drops 

when experiencing state anxiety (Chalmers et al., 2014; Quintana et al., 2016). Different measures 

of HRV have been related to anxiety, including high-frequency HRV (0.15-0.40 Hz; Friedman, 2007; 

Gorman & Sloan, 2000; Hein & Herrojo Ruiz, 2022). We excluded one participant from the ECG 

analyses because of poor detection of the QRS complex. 
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6.2.6 Behavioural modelling 

In this study we used the 7.1 version of eHGF in MATLAB (see sections 2.2 and 3.2.4 for 

further details about the HGF and its extended version). We fitted the behavioural data separately 

for the threat and safe block using the HGF3, HGF𝜇3, and HGF2 models.  

For each experimental block, we specified as inputs for the model the 140 outcomes that the 

participants observed (u; for each trial k, u(k) = 0 if the red icon/seq1 [or yellow icon/seq3] wins and 

thus blue icon/seq2 [or pink icon/seq4] loses; u(k) = 1 if the blue icon/seq2 [or pink icon/seq4] wins 

and thus red icon/seq1 [or yellow icon/seq3] loses) and their responses (y; y(k) = 0 for choosing the 

red icon/seq1 [or yellow icon/seq3]; y(k) = 1 if the blue icon/seq2 [or pink icon/seq4]; Figure 25). The 

computational variables utilised for the analyses are detailed in the following section 6.2.7.  

Model comparison through BMS demonstrated that the best-fitting model was the HGF𝜇3 for 

both blocks (see section 2.3 for more details about the methodological approach used for comparing 

models). BMS outputs are reported in the section 6.3.1.  

For the HGF perceptual model, we explored different combinations varying prior values of ω2 

and ω₃, as well as using ω prior values estimated by simulating an ideal observer receiving the 

series of outcomes the participants observed (Weber et al., 2020). We excluded combinations of 

prior values for ω2 and ω3 in which the belief trajectories showed divergence. The priors resulting in 

less divergent trajectories were chosen for the HGF𝜇3 and are reported in Table 13.  
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Table 13. Priors (means and variances) on perceptual parameters and starting values of the 
beliefs of the winning HGF𝜇3 model 

Prior Mean Variance 

𝜅  log(1) 0 

𝜔₂  -4  4  

𝜔₃  1.4 4 

μ₂⁽⁰⁾  0 0 

𝜎₂⁽⁰⁾  log(0.1) 0 

μ₃⁽⁰⁾  log(1) 1 

𝜎₃⁽⁰⁾  log(1) 1 
 

Parameters 𝜎2(0), 𝜎3(0) 𝜅,	μ₃(0) are in the log-space. The remaining parameters are estimated in the natural 
space. In the winning HGF𝜇3 model, 𝜔2, 𝜔3, 𝜇3(0), and 𝜎3(0) were free parameters (𝜅, 𝜎2(0), μ₂(0) were fixed, Hein 
et al., 2023). The prior variances are in the space in which the corresponding parameter is estimated.  
 
 

 

Figure 25. Belief trajectory in a representative participant.  
Illustration of the HGF𝜇3 in a representative participant playing sequence 1 (seq1) and sequence 2 (seq2) 
across the 140 trials of the threat block. At the lowest level, the black dots (u) represent the outcomes (0 = 
seq1 wins [seq2 loses]; 1 = seq2 wins [seq1 loses]). The participant’s choices (y) are displayed as light blue 
dots (0 = seq1 played; 1 = seq2 played). Trials in which the participant commits performance errors are 
represented as crosses. The black line reflects the subject-specific learning rate about stimulus-outcomes 
contingencies (𝛼). At the second level we represent the trajectory of beliefs about the tendency of reward 
probabilities (mean [𝜇2] and variance [𝜎2]; e.g., a shift in 𝜇2 values towards the positive y-axis indicates stronger 
beliefs of seq2 being rewarding). Beliefs (mean [𝜇3] and variance [𝜎3]) about phasic log-volatility is illustrated 
at the highest level. In this study, the true volatility changes every 22-34 trials. The contingency mappings for 
seq2 in this example are as follows: 30, 90, 50, 10, 70 (reciprocal mappings for seq1). On level 2 and 3, the 
upper and lower priors of the posterior distribution of beliefs are displayed as blue circles (𝜇i(0) ± 𝜎i(0), i = 2 ,3).  
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6.2.7 Behavioural and computational data analysis 

First, to verify the effectiveness of TOS manipulations in inducing anxiety states, we 

assessed the average levels of calmness and worry experienced by participants during the safe and 

threat blocks by analysing explicit ratings of item 1 (anx_calm) and item 17 (anx_worry) of the STAI 

Y-1 (Spielberger, 1983). In two participants, anx_worry scores were not correctly acquired and 

therefore were discarded in the following analyses. In one participant, the highest stimulation 

intensity (99mA) failed to evoke a pain rating of 80 or higher, indicating that the 80% pain threshold 

was not reached. Nevertheless, their anxiety scores suggest that the stimulation did induce anxiety 

(safe block: anx_calm = 3.67, anx_worry = 1; threat block: anx_calm = 2.67, anx_worry = 1.67). We 

therefore included this participant in the statistical analyses.  

General task performance was evaluated in each participant by analysing the percentage of 

win and error trials (percWin and percError). In addition, as a sanity check, we verified that 

participants’ choices tracked the contingency changes over time (percPlayed by contingency phase; 

details in section 3.2.5).  

Motor performance was assessed through trial-wise RT and mIKI. In line with our previous 

studies (Chapters 3-5) we discarded error trials and time-out trials from the analysis on RT and 

performance tempo. In addition, for RT, we discarded outliers at the individual level identifying values 

bigger than three standard deviations above the subject-specific mean.  

Potential anxiety-driven differences in decision making were investigated by analysing 

relevant computational variables from the HGF𝜇3. In this study, we focused on the same parameters 

as in Chapter 5: tonic volatility (ω₂, on the second level; ω3, on the third level), the mean of the trial-

wise informational uncertainty (𝜎2), the average of the trial-wise uncertainty on volatility (𝜎3), and the 

average of the trial-by-trial estimates of the log-volatility (𝜇3). Consistent with the previous studies, 

predictions about the reward tendency were captured by the trial-by-trial values of 𝜇₂ (dropping the 

index k for ease). For more information about these computational variables see sections 2.2, 3.2.5 

and 5.2.5 
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6.2.8 Convolution modelling 

6.2.8.1 Outcome-locked analyses 

Regarding the EEG outcome-locked analyses, we first extracted shorter epochs between -

500 and 1800 ms around the feedback event and re-referenced to the common average reference 

(Tsuchimoto et al., 2021; Ahmandi et al., 2021). This time window was informed by our previous 

study (Chapter 5) and existing anxiety-related EEG work on reward-based learning under uncertainty 

(Hein et al., 2023). We then computed TF transformations on the pseudo-continuous data using 

Morlet wavelets. We sampled the 4-30 Hz window in bins of 2 Hz using 5-cycle wavelets, which 

allowed us to focus on the theta (4-6 Hz), alpha (8-12 Hz) and beta (14-30 Hz) ranges. Then, we 

employed the convolution GLM for oscillatory neural responses on the TF representation (Litvak et 

al., 2013). Detailed description of the TF decomposition through complex Morlet wavelets and the 

convolution GLM can be found in section 2.5. 

As for the analyses discussed in Chapter 5, we specified three discrete regressors coding 

for the outcome type: win, lose and errors (performance error and time out). We also added three 

HGF parametric regressors: the unsigned pwPE on level 2 (|𝜀2|; belief updates about the action-

reward mapping), informational uncertainty (𝜎2) and uncertainty on the volatility (𝜎3). We inserted the 

values for the HGF parametric regressors at the latency of the regressors coding for the outcome. 

In addition, we did not include pwPE on level 3 (𝜀3) as regressor because of multicollinearity with |𝜀2| 

(Hein et al., 2023; Hein & Herrojo Ruiz, 2022). The statistical analyses on the TF response images 

are discussed in section 6.2.9.4. 

 

6.2.8.2 Stimulus-locked analyses 

In addition to investigating the neural responses underlying belief updating following the 

outcome, we were interested in identifying the neural oscillatory correlates of predictions. The 

rationale for this analysis is to understand the neural counterpart of potential anxiety effects on the 

invigoration of motor responses by predictions about the action-reward contingencies. We reasoned 

that if state anxiety modulates the motor vigour by expectations, it is possible that this would be 
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associated with changes in the spectral activity to predictions during the stimulus (fractal) 

presentation, and before participants executed the chosen sequence on a trial (Hein et al., 2023; 

Hein & Herrojo Ruiz, 2022). 

We first re-referenced the EEG signal to the common average reference (Tsuchimoto et al., 

2021; Ahmandi et al., 2021). We then performed TF transformations on the epoched data using 5-

cycle Morlet wavelets (4-30 Hz frequency range sampled in bins of 2 Hz; see section 2.5 for further 

details). For the convolution GLM, we specified as discrete regressor the stimulus. We also included 

four discrete regressors that encoded the first, second, third, and fourth key press (ordinal position) 

at the corresponding latencies, regardless of the specific key pressed. Finally, we specified the 

parametric regressor |𝜇₂|, denoting the strength of predictions about the action-reward 

contingencies, with values being added at the latency of the stimulus regressor.  

The convolution GLM ran in the time interval from −1000 to 1000 ms around the stimulus 

event. It is worth considering that capturing the neural oscillatory responses to predictions presents 

a considerable challenge. In fact, neural representations of predictions are likely to evolve from the 

outcome in the preceding trial to the current trial's outcome, without being tied to any particular event 

(Diaconescu et al., 2017; Hein & Herrojo Ruiz 2022). That means, predictions could be considered 

to drift over time (e.g., Weber et al., 2023). However, for simplicity, work with the HGF typically 

considers predictions to remain stable from the previous to the current trial, prior to observing the 

new outcome (Mathys et al., 2014). In this study, we adopted the approach employed by 

Auksztulewicz et al. (2017) and Hein and Herrojo Ruiz (2022) by locking the analysis of TF 

responses to the stimulus and thus focusing on the time interval following the fractals presentation. 

The statistical analyses on the TF response images are reported in section 6.2.9.4. 

 

6.2.9 Statistical analyses  

6.2.9.1 Anxiety scores, general task performance and decision making using Bayes 

Factor 

We computed the mean and SEM as summary statistics for the rate of win and error trials 

(percWin, percError), for the relevant HGF computational variables (ω₂,	ω3, 𝜎2, 𝜎3, 𝜇3) and anxiety 
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ratings (anx_calm; anx_worry) separately for the threat and safe block. Next, we evaluated anxiety-

induced differences on these variables by computing BF on paired samples t-test using the Jamovi 

software (https://www.jamovi.org). BF results were interpreted as in Andraszewicz (2015). Together 

with the BF results, we provide the outcomes of standard paired sample t-tests. BF analyses were 

computed on the constant parameters 𝜔₂ and 𝜔3, as well as on the mean average across 140 trials 

for 𝜎2, 𝜎3, 𝜇3 in each block. For the anxiety scores, we used the subject-specific average of the three 

explicit ratings on item 1 (anx_calm) and item 17 (anx_worry), separately for the threat and safe 

block. As for the other studies (Chapters 3-5), we assessed whether participants tracked the 

contingency changes over time and updated their responses accordingly by computing the average 

mean rate of percPlayed by contingency phase. 

 

6.2.9.2 Assessing the modulation by state anxiety of the practice effects using 

Bayesian Linear Mixed Models 

First, we evaluated the modulation of practice effects over trials by state anxiety. We 

implemented and compared six BLMM of increasing complexity in R using the brms package (Table 

14; Bürkner, 2017, 2018, 2020). See section 2.4 for further details on BLMM in brms. In these 

models, y represented a motor performance variable (mIKI and RT), with values being log-

transformed to approach normality (natural logarithm, log_mIKI and log_RT).  

The following priors were specified: default prior distribution for the intercept; normal 

distribution (0,2) for the fixed effect of trial, block and order, and for the random effects of intercept 

by trial and subjects; normal distribution (0,1) for the interaction terms block * trial, block * order, trial 

* order and block * trial * order.  

For performance tempo, LOO-CV classified the model number 6 (the most complex model; 

Table 14) as the best fit (see section 6.3.2 for further details). This model explains motor 

performance as modulated by the main effects of block (threat or safe), trial (1-140), and order 

(whether the block is completed first or second in the session), as well as their interactions. Also, it 

models the random effects of subject and trial on the intercept. As this model included both the block 

and order factors, brms chose as reference sample the order = first and the block = safe. In other 
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words, the reference condition was the first safe block, that is the safe block only when appearing 

before the threat block. This provided an estimate of the posterior distribution of parameters in the 

first safe block and the posterior distribution of the parameter differences between the reference and 

the first threat block. To assess the modulation by state anxiety of the practice effect, i.e., changes 

in motor performance over trials, we specifically focused on the interaction effect block * trial. The 

posterior distribution of this effect reflected the potential differences between the first safe block and 

the first threat block in the sensitivity (slope) of performance tempo to trial number.  

Next, to evaluate the marginal effect (resembling the classical main effects of factorial 

analyses) of anxiety on practice in the whole sample independently of the order factor, we used the 

emtrends function (emmeans package) in R. This function allows to estimate the marginal means of 

linear trends and is helpful when a model specifies two predictors interacting with each other, with 

one predictor displaying a distinct trend depending on the value of the other predictor. In our study, 

this method provided us with the posterior distribution of the slope in the safe and threat block, as 

well as the posterior distribution of the slope difference between the two, by averaging over the two 

levels of the order factor.  

For RT, the winning model was the model number 5 (Table 14; see section 6.3.2 for further 

details). This model excluded the order factor, and thus we used as reference the safe block 

independently of the order in which it was completed. Brms outputs informed about the posterior 

distribution of model parameters in the safe block and about the posterior distribution of parameter 

differences between the safe and threat block across the two levels of the order factor. Once again, 

we concentrated on the interaction effect block * trial to assess a potential slope difference between 

the safe and the threat blocks in the modulation of RT over trials. 

 

6.2.9.3 Assessing the modulation by state anxiety of the association between motor 

performance and the strength of predictions about the reward probabilities using 

Bayesian Linear Mixed Models 

In Chapter 5, we demonstrated that trait anxiety did not influence the sensitivity of motor 

performance to the strength of predictions about the reward tendency. Here, we expanded these 
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findings by investigating the potential role of state anxiety in modulating this effect. We used the 

computational parameter |𝜇₂| to describe the strength of predictions about the reward tendency (see 

section 2.4). We excluded |𝜇₂| values larger than four standard deviations above the mean and 

cantered |𝜇₂| (|𝜇₂|_c).  

We implemented seven models of increasing complexity (Table 14; y representing either 

log_mIKI or log_RT) and performed model comparison using LOO-CV (Vehtari et al., 2017). We 

used a default prior distribution for the intercept, and normal distributions for each fixed and random 

effect (fixed effects for block, |𝜇₂|_c and order, normal [0,2]; interaction effects for block * |𝜇₂|_c, 

block * order, |𝜇₂|_c * order, and block * |𝜇₂|_c * order, normal [0,1]; random effects for intercept by 

subject and intercept by trial, normal [0,2]; random effect for |𝜇₂|_c by subject, normal [0,1]). As 

recommended by Bürkner et al. (2017), we set the prior on the correlation matrices in brms (LKJ-

Correlation; Lewandowski et al., 2009) to 2.  

The winning model on performance tempo was model number 7 (Table 14; see 6.3.3 for 

further details), which included the order factor. In this model, the dependent variable is explained 

by the main effects of block, |𝜇₂|_c, order, their interactions, as well as random effects of subject and 

trial on the intercept and the effect of subject on |𝜇₂|_c. The first safe block was selected as reference. 

As for the model number 6 on the practice effect, the anxiety effect was assessed by estimating the 

posterior distributions of model parameters in the first safe block and by computing the posterior 

distribution of parameter differences between the first safe block and the first threat block. To 

evaluate the effect of state anxiety on modulating the association between motor performance and 

the strength of predictions about the reward mappings, we concentrated on the block * |𝜇₂|_c term. 

In fact, this interaction effect denoted the anxiety-induced difference in the sensitivity (slope) of motor 

performance to the strength of expectations about the action-reward contingency. Next, we used the 

emtrends function to assess the posterior distribution of the slope in the safe and threat block, and 

the posterior distribution of the slope difference between the two, independently from the order factor. 

This allowed us to obtain the marginal effects, informing about the parameter estimates in the whole 

sample. 
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On the other hand, for RT, LOO-CV identified model 6 as the winning model, which excludes 

the order factor (Table 14; see section 6.3.3 for further details). Accordingly, we selected as 

reference the safe block independently of the order. This model already averaged between the two 

levels of the order factor and estimated the posterior distribution of parameters in the safe block, as 

well as the posterior distribution of parameter differences between the safe and the threat block. We 

focused on the block * |𝜇₂|_c interaction term to assess whether state anxiety modulated the 

sensitivity of RT to the strength of predictions about the reward contingencies. 
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Table 14. Models of increasing complexity used for Bayesian Linear Mixed Models analyses 
on the practice effect and on the invigoration effect by predictions of reward probabilities 

Effect Model # Model 

Practice   

 1 y ~ 1 + (1|subject) 

 2 y ~ 1 + (1|subject) + (1|trial) 

 3 y ~ 1 + block + (1|subject) + (1|trial) 

 4 y ~ 1 + block + trial + (1|subject) + (1|trial) 

 5 y ~ 1 + block * trial + (1|subject) + (1|trial) 

 6 y ~ 1 + block * trial * order + (1|subject) + (1|trial) 

Invigoration by predictions about the reward probabilities   

 1 y ~ 1 + (1|subject) 

 2 y ~ 1 + (1|subject) + (1|trial) 

 3 y ~ 1 + block + (1|subject) + (1|trial) 

 4 y ~ 1 + block + |𝜇₂|_c + (1|subject) + (1|trial) 

 5 y ~ 1 + block + |𝜇₂|_c +(1 + |𝜇₂|_c|subject) + (1|trial) 

 6 y ~ 1 + block * |𝜇₂|_c +(1 + |𝜇₂|_c|subject) + (1|trial) 

 7 y ~ 1 + block * |𝜇₂|_c * order +(1 + |𝜇₂|_c|subject) + (1|trial) 

Increasingly complex models used to assess the role of state anxiety in modulating practice (top) and motor 
invigoration effects (bottom). The variable y reflects the motor performance (log_mIKI or log_RT). For the 
practice effect, model 1 explains the dependent variable y by a fixed effect of the intercept and a random effect 
of the intercept by subject, accounting for repeated measurements. Model 2 adds the random effect of the trial 
by intercept and model 3 fits the fixed effect of block (safe/threat). Model 4 adds the fixed effect of trial, allowing 
for the estimation of the practice effect. Model 5 fits the interaction effect between trial and block, which allows 
to assess slope differences between the safe and threat block in the association between trial number and 
motor performance. Model 6 includes the fixed effect of order (first/second) and the interactions block*order, 
trial*order and block*trial*order. This latter model allows to assess the slope of the association between trial 
and y in the first safe block (main effect of trial) as well as slope differences in this association between the 
first safe block and the first threat block (block*trial term). The first three models assessing the invigoration 
effect by the strength of predictions about the reward probabilities are identical to those investigating practice 
effects. Model 4 adds the fixed effect of |𝜇₂|_c, allowing for the estimation of the sensitivity of motor 
performance to the strength of predictions about the reward tendency. Model 5 also includes the random effect 
of |𝜇₂|_c by the intercept. Model 6 fits the interaction effect between |𝜇₂|_c and block, which allows to assess 
slope differences between the safe and threat block in the association between the strength of expectations 
about the reward probabilities and motor performance. Model 7 includes the fixed effect of order (first/second) 
and the interactions block*order, |𝜇₂|_c*order and block*|𝜇₂|_c*order. Model 7 assesses the slope of the 
association between |𝜇₂|_c and y in the first safe block (main effect of |𝜇₂|_c) as well as slope differences in 
this association between the first safe block and the first threat block (block*|𝜇₂|_c term). 
 

6.2.9.4 Statistical analyses on the EEG and ECG data 

The TF response images obtained through the convolution GLM were converted from SPM 

to FieldTrip structures and analysed through the FieldTrip Toolbox. As in Hein et al. (2023), for 

outcome-locked analyses, we subtracted the mean baseline activity (between -300 and -50 ms) from 
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the TF response images and divided by the standard deviation. The normalised TF response images 

represent therefore changes from the baseline in standard deviation units. For stimulus-locked 

analyses, we used as average baseline level the interval between -1000 and -750 ms before the 

fractals onset. To assess whether state anxiety played a role in modulating the effect of each 

regressor on the TF representations, we used dependent-samples cluster-based permutation tests 

on discrete and parametric HGF regressors (two-sided t-test, 1000 iterations; Maris and Oostenveld, 

2007; Oostenveld et al., 2011; Hein et al., 2023). We controlled the family-wise error rate (FWER) 

at level 0.025 and used the default FieldTrip settings to specify the clusters. We averaged the TF 

representations within every frequency range (theta [4-6 Hz], alpha [8-12 Hz] and beta [14-30 Hz]) 

and performed the analyses on spatio (64 channels)-spectral (3 frequency bands)-temporal data. 

For outcome-locked analyses, we computed dependent-samples cluster-based permutation 

tests on the regressors coding for the win and lose outcome, as well as for |𝜀2|, 𝜎2, and 𝜎3. 

Specifically, analyses on the outcome type (win and lose) were performed in the theta range in the 

time interval between 200 and 1000 ms after the outcome event, in line with our EEG study 

discussed in Chapter 5 and previous related research (Cavanagh et al., 2009; Cohen et al., 2007; 

Hein et al., 2023). On the other hand, for the HGF parametric regressors, we focused on the alpha 

and beta frequency bands in the time window between 1000 to 1800 ms post-outcome. This is 

consistent with our earlier analysis in Chapter 5 and with prior work showing that state anxiety altered 

the alpha and beta correlates of learning between 1170 and 1600 ms post-outcome (Hein et al., 

2022).  

Analyses locked to the fractal onset were restricted to the stimulus regressor and |𝜇₂|. 

Dependent-samples cluster-based permutation tests on the parametric regressor |𝜇₂| were 

performed in the time interval between 200 and 700 ms after fractal presentation and limited to beta 

frequencies. This is motivated by previous literature showing an effect of anxiety in modulating beta 

responses to predictions about the reward contingencies 200–640 ms and 600–680 ms after 

stimulus onset (Hein et al., 2023; Hein & Herrojo Ruiz, 2022). Statistical analyses on the stimulus 

regressor, instead, were run between 500 and 700 ms after displaying the fractals in the beta range, 

in line with Hein et al. (2023). 
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Regarding the ECG data, we calculated the mean and SEM as summary statistics for HR 

and HRV in each subject across the safe and threat blocks. Between-block differences were 

assessed by calculating BF on paired samples t-test in Jamovi.  

 

6.3 RESULTS 

6.3.1 State anxiety does not modulate general task performance or decision 

making 

In our study, anxiety was effectively induced by the TOS paradigm in threat blocks (Figure 

26A-B). BF analyses on anx_calm highlighted extremely strong evidence for differences between 

the safe and threat blocks (anx_calm, safe: mean 3.469, SEM 0.135; threat: mean 2.790, SEM 

0.153; BF = 156.003; t(26) = 4.3633, p < 0.001). It is worth noting that in both blocks the average 

anx_calm score was around 3. Therefore, participants under threat, although experiencing 

significantly less calmness compared to the safe block, generally reported feeling moderately calm. 

Nonetheless, anx_worry scores did not differ between the safe and the threat block (anx_worry, safe: 

mean 1.626, SEM 0.158; threat: mean 1.774, SEM 0.157; BF = 0.290, revealing moderate evidence 

for the null hypothesis; t(24) = -0.839, p = 0.410). An unexpected result was that we found no 

modulation of HRV by anxiety (safe: mean 0.097, SEM 0.039; threat: mean 0.097, SEM 0.038; BF 

= 0.207, revealing moderate evidence for the null hypothesis; t(25) = -0.011, p = 0.991). By contrast, 

we observed increased heart-beats per minute in the safe block compared to the threat block (safe: 

mean 72.833 bpm, SEM 2.453; threat: mean 71.539 bpm, SEM 0.038; BF = 4.014, revealing 

moderate evidence for the alternative hypothesis; t(25) = 2.705, p = 0.012). Thus, when exposed to 

unpredictable electric shocks, participants consistently rated feeling less calm, with no changes in 

worry and HRV. Given abundant evidence highlighting the reliability of unpredictable electric shocks 

in inducing state anxiety (see section 6.1), we interpreted the significant findings on anx_calm as 

sufficient evidence of the TOS paradigm effectively inducing anxiety in the threat block. 

Before analysing general task performance and decision-making variables, we validated our 

task through percPlayed by contingency phase, informing on whether participants successfully 

tracked the contingency changes over time in both the first and second block by flexibly adapting 
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their behavioural responses to the volatile environment. For the true contingencies [0.1, 0.3, 0.5, 0.7, 

0.9], participants performed the corresponding sequence at the following rates: block1 [0.29, 0.39, 

0.47, 0.58, 0.72]; block2 [0.24, 0.40, 0.46, 0.62, 0.77]). Accordingly, participants choices were 

consistent with the true contingencies in the experimental task. 

BF analyses on general task performance variables yielded anecdotal and moderate 

evidence against differences between the threat and the safe block (percWin, safe: mean 0.561, 

SEM 0.013; threat: mean 0.560, SEM 0.012; BF = 0.204; t(26) = 0.090, p = 0.929; percError, safe: 

mean 0.027, SEM 0.005; threat: mean 0.0320, SEM 0.005; BF = 0.381; t(26) = -1.180, p = 0.249; 

Figure 26C-D). This demonstrates that participants obtained the same number of reward points and 

made a similar number of errors under threat and during safety. 

Next, we evaluated the effect of state anxiety on decision making by conducting statistical 

analyses on the computational variables 𝜔2, 𝜎2, 𝜔3, 𝜎3 and 𝜇3. BMS was performed on HGF𝜇3, HGF3 

and HGF2 separately for the threat and safe blocks, using the individual log-model evidence (LME) 

of the HGF. For both blocks, HGF𝜇3 was identified as the best-fitting model (safe block: exceedance 

probability = 0.99 and expected frequency = 0.82; threat block: exceedance probability = 1 and 

expected frequency = 0.89). As for the general task performance, BF analyses on paired samples t-

test suggested anecdotal and moderate evidence for the absence of a block effect in decision making 

(𝜔₂, safe: mean -1.679, SEM 0.332; threat: mean -1.634, SEM 0.308; BF = 0.205; t(26) = 0.117, p = 

0.908; 𝜔3, safe: mean -0.192, SEM 0.226; threat: mean -0.268, SEM 0.231; BF = 0.211; t(26) = -0.272, 

p = 0.788; 𝜎₂, safe: mean 1.485, SEM 0.142; threat: mean 1.988, SEM 0.411; BF = 0.362; t(26) = 

1.130, p = 0.289; 𝜎3, safe: mean 10.227, SEM 2.529; threat: mean 10.656, SEM 3.436; BF = 0.115; 

t(26) = 0.115, p = 0.909; 𝜇3, safe: mean 0.494, SEM 0.148; threat: mean 0.694, SEM 0.110; BF = 

0.506; t(26) = 1.431, p = 0.164; Figure 26E-I). These results show that participants in the two blocks 

had similar estimates of environmental (log) volatility, as well as similar informational uncertainty and 

uncertainty on volatility. Their tonic volatility estimates, 𝜔2	and	𝜔3, were also equivalent. Thus, in line 

with the comparable win rates, the computational mechanisms underlying decision making were 

similar under threat and under safety.  
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Figure 26. Markers of state anxiety, general task performance and decision making.  
Data are represented for the safe (S; in pink) and the threat (T; in brown) block. A, Scores to the item number 
1 of the STAI Y-1 questionnaire (anx_calm). The extremely strong evidence for differences between S and T 
is highlighted by a black horizontal bar (BF = 156.003; t(26) = 4.3633, p < 0.001). B, Scores to the item number 
17 of the STAI Y-1 questionnaire (anx_worry). C, Rate of win trials (percWin). D, Rate of performance 
execution errors (percError). E, Tonic volatility on level 2 (𝜔₂). F, Informational uncertainty (𝜎₂). G, Tonic 
volatility on level 3 (𝜔3). H, Uncertainty about environmental volatility (𝜎3). I, Estimate of the environmental log-
volatility (𝜇3). For every block, calm and worry scores are averaged across the three ratings within each 
participant. The variables 𝜎2, 𝜎3 and 𝜇3 are averaged across 140 trials within each participant in each block. In 
every plot, we provide the block mean (large dot), the standard error of the mean (SEM; vertical bar), and the 
individual data points to visualise variability.  
 

6.3.2 State anxiety hinders initial RT and modulates practice effects on 

performance tempo 

Next, we investigated whether state anxiety modulated practice effects. Concerning 

performance tempo, the most complex model (model number 6; Table 14) was classified by LOO-

CV as the best fit. The absolute mean difference in ELPD between model number 5 and 6 (elpd_diff) 

was 25.06557 and the standard error of the differences (se_diff) equals to 7.81712 (elpd_diff > 

2*se_diff). As described in section 6.2.9.2, this model included the order factor and therefore the 
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posterior distributions of model parameters were only estimated in the first safe block (reference) 

and first threat block.  

The posterior predictive checks revealed that model number 6 had a high predictive power 

for the observed performance tempo values (Figure 27A). We did not find initial differences in 

performance tempo between the first safe block and the first threat block (posterior estimate of the 

intercept difference = 0.0688, CI = [-0.0922, 0.2295] (in ms, 25.77, CI = [-34.83 85.83]; Figure 27B). 

Next, we demonstrated that performance tempo changed over trials due to practice. This is informed 

by the distribution of the fixed effect of trial, denoting the sensitivity (slope) of performance tempo to 

trial in the reference condition (first safe block; posterior estimate of the slope = -0.0013, CI = [-

0.0015 -0.0010]). This negative slope estimate indicates that participants speeded up with practice 

(Figure 27C).  

To evaluate potential anxiety-driven changes in the practice effects on performance tempo, 

we focused on the posterior distribution of the slope difference between the reference condition and 

the first threat block (block * trial). This distribution did not overlap with zero, suggesting that the 

sensitivity of performance tempo to trial was differently modulated by state anxiety (posterior 

estimate of the difference between slopes = -0.0003, CI = [-0.0006, -0.00001]; the value on the upper 

CI bound is reported with five digits to show the effect). Specifically, in the first threat block, 

participants speeded up their motor performance more throughout the task, compared to the first 

safe block (Figure 27D). Table 15 includes a summary of the posterior distributions for the model 

parameters. 

Finally, we used the emtrends function in R to assess marginal effects, reflecting the model 

parameters as a function of the block (threat, safe) factor, after averaging across the two levels of 

the order factor. The results are consistent with the outputs of brms in the first block only, showing 

a stronger practice effect under threat (posterior estimate of the slope in the safe block = -0.0009, 

CI = [-0.0011 -0.0007]; posterior estimate of the slope in the threat block = -0.0013, CI = [-0.0015 -

0.0012]; posterior estimate of the difference between slopes = -0.0004, CI = [-0.0007 -0.0002]).  

Complementing the analyses on performance tempo, we next evaluated the modulation by 

state anxiety of the practice effects on RT. The simpler model number 5 was selected as the best fit 
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(Table 14). In fact, the absolute mean difference in ELPD between model number 6 and 5 was 

smaller than twice the standard error of the difference (elpd_diff = 3.2060; se_diff = 3.6632). This 

model did not include the order factor, hence the posterior distributions of model parameters were 

estimated in the whole sample by averaging across the first and second block (safe block as 

reference).  

The model had strong predictive power for the range of the dependent variable, as 

demonstrated by the posterior predictive checks (Figure 28A). The results showed that RT was 

initially slower in the threat than is the safe block (posterior estimate of the intercept difference = 

0.0419, CI = [0.0051, 0.079]; in ms, 29.11, CI = [3.55, 55.56]; Figure 28B). In the safe block, RT got 

faster across trials, showing a practice effect (posterior estimate of the slope = -0.0010, CI = [-0.0014, 

-0.0006]; Figure 28C). The sensitivity of RT to trial was similar between the safe and the threat block 

(posterior estimate of the difference between slopes = 0.0004, CI = [-0.00001, 0.0009]; the value for 

the lower CI bound is reported with five digits; Figure 28D). See Table 15 for a summary of the 

posterior distributions of the parameter estimates. 

Overall, these analyses demonstrate that state anxiety induces slower RT initially, but not 

performance tempo. Moreover, our findings replicate previous results, showing that motor 

performance gets faster through practice, as expected. Interestingly, participants speeded up their 

performance tempo throughout the task more under anxiety, with no differences in RT. 
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Figure 27. State anxiety modulates the practice effect on performance tempo.  
Bayesian Linear Mixed Models (BLMM; y ~ 1 + block * trial * order + [1|subject] + [1|trial]) with first safe block 
(S1) as reference. A, It shows the posterior predictive checks, with the distribution of the observed performance 
tempo values (y) and the simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, 
Distribution of the intercepts difference in ms between performance tempo in S1 and in the first threat block 
(T1). The vertical bar and the area under the curve represent the posterior point estimate and the 95% credible 
interval (CI), respectively. The plot shows that CI overlaps with zero, the null hypothesis. This indicates no 
differences in initial performance tempo between S1 and T1. C, Representation of the slopes between 
performance tempo and trial in S1 (pink) and T1 (brown). Performance tempo values are represented in the 
log-scale. Participants in S1 show a practice effect, expediting their motor performance over time. D, 
Distribution of the difference between slopes in S1 and T1. Here, as CI does not include zero, we can conclude 
that there is a different modulation of performance tempo by trial between the two blocks, with performance 
tempo speeding up more across trials under threat compared to safety.  
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Figure 28. State anxiety slows down RT initially, but does not modulate the practice effect on RT.  
Bayesian Linear Mixed Models (BLMM; y ~ 1 + block * trial + [1|subject] + [1|trial]) with the safe block (S) as 
reference. A, Posterior predictive checks, with the distribution of the observed reaction time values (y) and the 
simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distribution of the difference 
in ms between RT (intercept) in S and threat block (T). The vertical bar and the area under the curve indicate 
the posterior point estimate and the 95% credible interval (CI), respectively. In the current plot, CI does not 
overlap with zero (the null hypothesis), suggesting differences in initial RT between S and T. C, Representation 
of the slopes, with RT represented in the log scale. We show the association between trial and RT for S (in 
pink) and T (in brown) and demonstrate a modulation of RT by trial in S, with RT getting faster through practice. 
D, Distribution of the difference between slopes in S and T. Here, as CI includes zero, there is 95% probability 
of a similar modulation of RT by trial between the two blocks.  
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Table 15. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the practice effect 

Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

Performance tempo      

 y: S1 5.8911 5.7729 6.0088 1.00 

 y: S1 vs T1 0.0688 -0.0922 0.2295 1.00 

 trial: S1  -0.0013 -0.0015 -0.0010 1.00 

 block * trial: S1 vs T1 -0.0003 -0.0006 -0.00001 1.00 

Reaction times      

 y: S 6.5218 6.3920 6.6538 1.00 

 y: S vs T 0.0419 0.0051 0.0790 1.00 

 trial: S -0.0010 -0.0014 -0.0006 1.00 

 block * trial: S vs T 0.0004 -0.00001 0.0009 1.00 

Estimates, credible intervals (CIs) and R-hat values for the fixed effects of the model number 6 (y ~ 1 + block 
* trial * order + [1|subject] + [1|trial]) in performance tempo and model number 5 (y ~ 1 + block * trial + [1|subject] 
+ [1|trial]) in reaction times (RT). For performance tempo, y: S1 indicates the posterior estimate for the intercept 
in the reference condition (first safe block); y: S1 vs T1 refers the posterior distribution of the difference 
between intercepts in the first safe block and first threat block; trial: S1 is the posterior distribution of the 
association (slope) between performance tempo and trial in the first safe block; block*trial: S1 vs T1 is the 
posterior distribution of the slope difference between the first safe block and the first threat block. The upper 
bound of the posterior distribution is reported with five digits to show the effect. For RT, y: S refers to the 
posterior estimate for the intercept in the reference condition (safe block); y: S vs T reflects the posterior 
distribution of the difference between intercepts in the safe block and threat block; trial: S is the posterior 
distribution of the association (slope) between RT and trial in the safe block; block*trial: S vs T is the posterior 
distribution of the slope difference between the safe block and the threat block. The lower bound of the 
posterior distribution is displayed with five digits. The lower and upper bound of the CI of the posterior 
distributions for the model parameters are l-95% CI and u-95% CI, respectively (chain convergence 
demonstrated by R-hat values < 1.1; Gelman and Rubin, 1992).  
 

6.3.3 State anxiety inhibits the trial-by-trial invigoration of RT by the strength 

of predictions about the reward probabilities 

Here we report the results for the anxiety-induced modulation of the association between 

motor performance (log_mIKI and log_RT) and the strength of predictions about the reward 

contingencies (see Table 16 for a summary of the posterior distributions for the model parameters). 

The most complex model on performance tempo (model number 7, which includes the order factor 

[first safe block as reference]; Table 14) was classified as the best fit by LOO-CV (elpd_diff between 

the winning model and model number 6 = 13.5504; se_diff = 5.7616; [elpd_diff > 2*SE_diff]).  

The posterior predictive checks demonstrated a strong predictive power for the range of the 

performance tempo values, in the log-scale (Figure 29A). We found no differences in performance 
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tempo between the first safe block and the first threat block (posterior estimate of the intercept 

difference = 0.0446, CI = [-0.1162, 0.2109]; in ms, 15.07, CI = [-39.61 71.71]; Figure 29B). Then, 

we evaluated the association between performance tempo and the strength of predictions about the 

reward contingency in the first safe block by looking at the distribution of the fixed effect of |𝜇₂|_c.  

The strength of predictions about the action-reward contingency and performance tempo were 

negatively associated (posterior estimate of the slope = -0.0222, CI = [-0.0417, -0.0028]; Figure 

29C). This demonstrates an invigoration effect through faster performance tempo by the strength of 

expectations about reward probabilities, replicating our previous findings (Chapter 3; Tecilla et al., 

2023). State anxiety did not modulate the association between performance tempo and the strength 

of predictions about the reward contingency (block * |𝜇₂|_c effect; posterior distribution of the slope 

difference in the first safe block and first threat block = 0.0122, CI = [-0.0153, 0.0397]; Figure 29D).  

Next, the analysis of marginal effects revealed no slope effect in either the safe or threat 

block when averaging across the two levels of the order factor (posterior estimate of the slope in the 

safe block = -0.001135, CI = [-0.0247 0.00301]; posterior estimate of the slope in the threat block = 

-0.0010, CI = [-0.0239 0.0040]). The lack of the invigoration effect when averaging across the first 

and second safe blocks suggests a weaker association between performance tempo and the 

strength of predictions about the reward probabilities in the second safe block. Also, in line with our 

brms outputs, we did not observe a slope difference between the safe and threat blocks in the whole 

sample when averaging across the order factor (posterior estimate of the difference between slopes 

= -0.00132, CI = [-0.0108, 0.0087]). Hence, our results suggest that state anxiety does not modulate 

the invigoration effect by the strength of predictions about the reward contingencies.   

Similar analyses were carried out on RT. The elpd_diff between model number 7 and model 

number 6 was 8.4583 and se_diff was 4.9149. Thus, the least complex model (model number 6, 

which did not include the order factor [safe block as reference]; Table 14) was identified as the best 

fit. See Table 16 for a summary of the posterior distributions of the parameter estimates. 

A high predictive power was revealed by the posterior predictive checks for the observed RT 

values (Figure 30A). We observed that state anxiety slowed down RT (posterior estimate of the 

intercept difference = 0.0749, CI = [0.0561, 0.0937]; in ms, 49.17, CI = [35.87, 63.81]; Figure 30B). 
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In the safe block, we found a lack of modulation of RT by the strength of predictions about the reward 

mappings (posterior estimate of the slope = -0.0024, CI = [-0.0303, 0.0258]; Figure 30C), which 

replicated our recent findings discussed in Chapter 3 (Tecilla et al., 2023). Interestingly, we 

demonstrated a different trial-by-trial sensitivity of RT to the strength of predictions about the reward 

contingency between the safe block and the threat block (posterior distribution of the slope difference 

= 0.0397, CI = [0.0198, 0.0592]; Figure 30D). Specifically, when participants were under threat of 

shock, stronger expectations regarding the action-reward mapping were associated with slower RT. 

Therefore, state anxiety resulted in the inhibition of RT by stronger expectations of reward 

contingencies. 
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Figure 29. State anxiety does not modulate the invigoration effect on performance tempo by the 
strength of predictions.  
Bayesian Linear Mixed Models (BLMM; y ~ 1 + block * |𝜇₂|_c * order + [1 + |𝜇₂|_c|subject] + [1|trial]) with first 
safe block (S1) as reference. A, Predictive checks showing the distribution of the observed performance tempo 
values (y) and the simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distribution 
of the intercepts difference between performance tempo (ms) in S1 and first threat block (T1). The blue vertical 
bar and the area under the curve represent the posterior point estimate and the 95% credible interval (CI), 
respectively. The 95% probability distribution overlaps with zero, suggesting no differences in performance 
tempo between the two blocks. C, Representation of the slopes between performance tempo and the strength 
of predictions about the reward probabilities in S1 (pink) and T1 (brown). Performance tempo is in the log-
scale and the strength of predictions is captured by the centred absolute values of 𝜇₂, i.e., |𝜇₂|_c. In S1, 
stronger predictions about the action-reward contingencies are associated to faster performance tempo 
(negative association). D, Distribution of the difference between slopes in S1 and T1. The 95% distribution 
includes zero, suggesting no differences in the sensitivity of performance tempo to the strength of predictions 
between S1 and T1.  
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Figure 30. State anxiety delays RT for actions that are strongly predicted to be rewarding.  
Bayesian Linear Mixed Models (BLMM; y ~ 1 + block * |𝜇₂|_c + [1 + |𝜇₂|_c|subject] + [1|trial]) on reaction times 
(RT) with safe block (S) as reference. A, Predictive checks comparing the distribution of the observed reaction 
time values (y) and the simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, 
Distribution of the intercept difference in ms between RT in S and threat block (T). The blue vertical bar and 
the area under the curve represent the posterior point estimate and the 95% credible interval (CI), respectively. 
The probability distribution does not overlap with zero, indicating that there is 95% probability of differences in 
RT between S and T. C, Representation of the slopes. The plot shows the modulation of RT by the strength 
of predictions (centred) about the reward mappings separately for S (in pink) and T (in brown). RT values are 
represented in the log-scale. We found no evidence for a modulation of RT by the strength of predictions about 
the reward contingencies in S. D, Distribution of the difference between slopes in the S and T. Since CI does 
not include zero, this demonstrates that there is a 95% probability of between-block differences in the 
sensitivity of RT to the strength of predictions. Specifically, state anxiety causes an inhibition of RT by the 
strength of predictions about the reward contingencies.   
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Table 16. Summary of the posterior distributions for the fixed effects of the best fitting 
Bayesian Linear Mixed Models on the invigoration effect by predictions of reward 
probabilities 

Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat 

Performance tempo      

 y: S1 5.8017 5.6834 5.9253 1.00 

 y: S1 vs T1 0.0446 -0.1162 0.2109 1.00 

 |𝜇₂|_c: S1  -0.0222 -0.0417 -0.0028 1.00 

 block * |𝜇₂|_c: S1 vs T1 0.0122 -0.0153 0.0397 1.00 

Reaction times      

 y: S 6.4471 6.3176 6.5755 1.00 

 y: S vs T 0.0749 0.0561 0.0937 1.00 

 |𝜇₂|_c: S -0.0024 -0.0303 0.0258 1.00 

 block * |𝜇₂|_c: S vs T 0.0397 0.0198 0.0592 1.00 

Values for the estimates, credible intervals (CIs) and R-hat for the fixed effects of the model number 7 (y ~ 1 
+ block * |𝜇₂|_c * order + [1 + |𝜇₂|_c|subject] + [1 | trial]) in performance tempo and model number 6 (y ~ 1 + 
block * |𝜇₂|_c + [1 + |𝜇₂|_c|subject] + [1|trial]) for reaction times (RT). For performance tempo, y: S1 refers to 
the posterior estimate for the intercept in the reference condition (first safe block); y: S1 vs T1 reflects the 
posterior distribution of the difference between intercepts in the first safe block and first threat block; |𝜇₂|_c: 
S1 is the posterior distribution of the association (slope) between performance tempo and |𝜇₂|_c in the first 
safe block; block * |𝜇₂|_c: S1 vs T1 is the posterior distribution of slope difference between the first safe block 
and the first threat block. For RT, y: S refers to the posterior estimate for the intercept in the reference condition 
(safe block); y: safe vs threat reflects the posterior distribution of the difference between intercepts in the safe 
and threat block; |𝜇₂|_c: S is the posterior distribution of the association (slope) between RT and |𝜇₂|_c in the 
safe block; block * |𝜇₂|_c: S vs T is the posterior distributions of the slope difference between the safe block 
and the threat block. The lower and upper bound of the CI of the posterior distributions for the model 
parameters are l-95% CI and u-95% CI, respectively (chain convergence demonstrated by R-hat values < 1.1; 
Gelman and Rubin, 1992).  
 
 

6.3.4 State anxiety modulates the neural oscillatory representations of 

feedback processing 

Here we discuss the results of the GLM for oscillatory responses to unveil the potential 

association between induced state anxiety and changes in the neural correlates of motor decision 

making.  

Processing the win outcome was associated with an early increase in the theta-band under 

safety, but not when experiencing anxiety. This is illustrated in Figure 31A (TF representations for 

the win outcome across the 4-6 Hz range for the safe block [left panel], threat block [middle panel], 

and for the difference between the threat and safe block [threat minus safe; right panel] and Figure 
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31B (time course of the theta modulation by the win outcome separately for the threat and safe 

block). Dependent-samples cluster-based permutation tests on the win regressor, revealed one 

significant negative cluster in the theta range (between 200 and 550 ms; p = 0.022, two-sided test; 

FWER-controlled), characterised by a distributed topography over central and parietal regions 

(Figure 31C, left panel). When reporting the cluster effects, we focused on effects spanning at least 

one cycle at the highest frequency in the theta range (166 ms [= 1000 ms / 6 Hz]).  

Similar findings were observed for the neural oscillatory correlates of processing the lose 

outcome. Participants under safety, displayed an early theta increase following the lose feedback. 

Yet, this pattern was not reported in individuals experiencing anxiety (Figure 32A-B). Specifically, 

we found a significant negative cluster in the theta range (between 200 and 550 ms; p = 0.020 two-

sided test; FWER-controlled) over central and parietal regions (Figure 32C, left panel).  

Taken together, these results demonstrate that state anxiety modulated the neural spectral 

responses to feedback processing, for both win and lose outcomes. Specifically, processing 

outcomes under safety, compared to threat, was accompanied by a stronger early increase in theta 

activity.  

Next, we examined the neural oscillatory representations of the HGF parametric regressors 

(|𝜀2|, 𝜎2, 𝜎3). In line with previous research, we predicted an increased beta modulation by |𝜀2| under 

threat, compared to safety (Hein et al., 2022). On the other hand, however, because our participants 

exhibited similar decision-making behaviour in both blocks, an alternative hypothesis was that the 

TF representations underlying the computational variables would not differ. 

Analysis with dependent-samples cluster-based permutation tests did not deliver any 

significant cluster in the 8-30Hz range for any of the parametric regressors considered (for |𝜀2| 

[Figures 33A-B], 𝜎2 and 𝜎3, p values of the clusters in the alpha and beta frequency bands were all 

> 0.025). Thus, in our study, state anxiety did not significantly modulate the alpha and beta oscillatory 

responses to the unsigned pwPE updating beliefs about the action-reward mapping, informational 

uncertainty or uncertainty on environmental volatility.  
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6.3.5 State anxiety does not significantly modulate neural oscillatory 

representations of predictions 

Analyses in the post-stimulus interval (i.e., after fractal onset) were performed to evaluate 

whether state anxiety modulated the beta oscillatory responses to predictions about the action-

reward contingencies. Dependent-samples cluster-based permutation tests on the predictions 

regressor (|𝜇₂|) did not highlight any significant clusters within the beta range (all p values > 0.025; 

two-sided test; FWER-controlled; Figure 34A-B). We complemented these findings by analysing the 

beta neural responses to the stimulus regressor. Permutation tests did not reveal any cluster effects 

(all p values > 0.025; two-sided test; FWER-controlled; Figure 35A-B). Overall, these findings 

suggest that state anxiety did not alter the spectral correlates of predictions about reward 

probabilities in our reward-based motor decision-making task.  
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Figure 31. State anxiety affects the theta oscillatory response to the win outcome.  
A, It illustrates the time-frequency representations in the 4-6 Hz range of processing the win outcome in the 
safe block (S; left panel), threat block (T; middle panel) and for the difference between the two blocks (T-S; 
right panel). The white square indicates the time-frequency range of the significant cluster in the theta band 
(between 200 and 550 ms; p = 0.022, two-sided test; FWER-controlled). Outcome onset is displayed by the 
dashed vertical bar. B, It depicts the time course of the theta modulation (4–6 Hz) by the win outcome in S (in 
pink) and T (in brown). The time window for the significant cluster of the dependent-samples permutation test 
(200–550 ms) is indicated by the black horizontal bar. C, It reflects the topographic distribution of the cluster 
effect for the win outcome in the theta band. The effect is illustrated across the entire scalp in the significant 
time interval (200–550 ms). We only report the cluster effects spanning at least one cycle at the highest 
frequency in the theta range (166 ms [= 1000 ms / 6 Hz]). 
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Figure 32. State anxiety affects the theta oscillatory response to the lose outcome.  
A, Illustration of the theta oscillatory activity (4-6 Hz) in response to the lose outcome in the safe block (S; left 
panel), threat block (T; middle panel) and to the difference between the two blocks (T-S; right panel). The white 
square indicates the time-frequency range of the significant cluster in the theta band (between 200 and 550 
ms; p = 0.020 two-sided test; FWER-controlled). Outcome onset is displayed by the dashed vertical bar. B, 
Time course of the theta modulation (4–6 Hz) by the lose outcome in S (in pink) and T (in brown). The time 
window for the significant cluster of the permutation tests (200–550 ms) is highlighted by the black horizontal 
bar. C, Topographic distribution of the cluster effects for the lose outcome in the theta range across the entire 
scalp in the significant time interval (200–550 ms). The reported effects span at least one cycle at the highest 
frequency in the theta range (166 ms [= 1000 ms / 6 Hz]). 
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Figure 33. State anxiety does not affect the alpha and beta oscillatory responses to the precision-
weighted prediction errors.  
A, It illustrates the time-frequency representations in the 8-30 Hz range of unsigned precision-weighted 
prediction errors (pwPE) in the safe block (S; left panel), threat block (T; middle panel) and for the difference 
between the two blocks (T-S; right panel). Outcome onset is displayed by the dashed vertical bar. B, The left 
and right panels depict the time course of the neural modulation by pwPE in S (in pink) and T (in brown) for 
the alpha (8–12 Hz) and beta (14–30 Hz) ranges, respectively. No significant clusters were found in any of the 
frequency bands (two-sided dependent samples cluster-based permutations tests; FWER-controlled).  
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Figure 34. State anxiety does not affect the beta oscillatory response to the strength of predictions 
about the action-reward contingencies.  
A, Time-frequency representations in the 8-30 Hz range of predictions in the safe block (S; left panel), threat 
block (T; middle panel) and for the difference between the two blocks (T-S; right panel), with stimulus onset 
displayed as a dashed vertical bar. B, The left and right panels depict the time course of the neural modulation 
by predictions in S (in pink) and T (in brown) for the alpha (8–12 Hz) and beta (14–30 Hz) ranges, respectively. 
No significant clusters were found in the beta frequency range (two-sided dependent samples cluster-based 
permutations tests; FWER-controlled). Statistical analyses were not performed in the alpha range; the plots in 
this frequency band are only provided for completeness.  
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Figure 35. State anxiety does not affect the beta oscillatory response to the stimulus.  
A, It illustrates the neural correlates of processing the stimulus in the 8-30 Hz range for the safe block (S; left 
panel), threat block (T; middle panel) and for the difference between the two blocks (T-S; right panel). Stimulus 
onset is displayed by the dashed vertical bar. B, The left and right panels depict the time course of the neural 
modulation by the stimulus in S (in pink) and T (in brown) for the alpha (8–12 Hz) and beta (14–30 Hz) ranges, 
respectively. No significant clusters were found in the beta frequency range (two-sided dependent samples 
cluster-based permutations tests; FWER-controlled). For completeness, we also include the plot in the alpha 
range. However, no statistical analyses were conducted within this frequency band. 
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6.4 DISCUSSION 

We recorded the brain electrical activity of 27 participants completing our reward-based 

motor decision-making task while receiving unpredictable shocks to their skin (threat block) and 

under safety (safe block). We fitted the behavioural data using the HGF (Frässle et al., 2021; Mathys, 

2011; Mathys et al., 2014) and analysed the EEG data through the convolution GLM for oscillatory 

responses (Litvak, 2013). We found evidence for shock-induced state anxiety delaying the initiation 

of actions, particularly for those action sequences that were strongly predicted to be rewarding on 

the current trial. Additionally, TOS modulated the neural oscillatory correlates of feedback 

processing, with participants under threat exhibiting an attenuated theta increase in response to 

win/lose outcomes.  

We successfully induced state anxiety through TOS, as participants in the threat block 

consistently reported feeling less calm compared to the safe condition. This finding aligns with a 

substantial body of evidence indicating that administering unpredictable electric shocks to 

participants robustly induced temporary states of anxiety (Engelmann et al., 2019; Engelmann et al., 

2015; Robinson et al., 2013, 2019; Schmitz & Grillon, 2012). The items we used to monitor state 

anxiety throughout the task derived from the state subscale of the STAI (Spielberger et al., 1983) 

and were selected to reflect the somatic (calm) and cognitive (worry) aspects of anxiety. Anxiety 

exhibits a multifaceted nature, encompassing somatic, cognitive, and potentially self-confidence 

aspects (Ree et al., 2008; Yamamory & Robinson, 2023; Cox et al., 2003). The somatic component 

includes physical symptoms like jitteriness and sweating, whereas the cognitive dimension involves 

fears such as the fear of the worst happening. Thus, two individuals could display identical general 

anxiety scores but different profiles of somatic and cognitive symptoms. Self-confidence is used as 

an additional construct in studies on performance or competitive anxiety (Cox et al., 2003). TOS has 

been shown to potentiate the startle reflex (Robinson et al., 2019; Schmitz & Grillon, 2012), which 

suggests a stronger influence on the physiological aspects of anxiety rather than the cognitive/worry 

components. The startle reflex is a rapid, automatic response to sudden or threatening stimuli and 

is commonly used as an objective measure of emotional and stress reactivity, particularly in the 

context of fear and anxiety (Schmitz & Grillon, 2012). The physiological response, including the 
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startle reflex potentiation, is mediated by the amygdala and closely linked to the body's fight-or-flight 

response (fear) but also to hypervigilance and temporally uncertain danger (anxiety), and is therefore 

typically more somatic or physical in nature (e.g., Grillon, 2008; Poli & Angrilli, 2015; see also 

amygdala lesion studies: Hitchcock & Davis, 1986; Angrilli et al., 1996). Our results, indicating 

reduced calmness under threat without changes in worry scores, suggest that TOS modulated 

somatic rather than cognitive anxiety in our participants. However, this conclusion is constrained by 

the STAI scale's lack of explicit dissociation between somatic and cognitive anxiety aspects. While 

calmness ratings likely relate to physiological anxiety components, they may overlap with cognitive 

aspects or self-confidence. Recent scales like the State-Trait Inventory for Cognitive and Somatic 

Anxiety (STICSA; Ree et al., 2008) have been developed to address this issue. A more precise 

approach might involve using a tailored scale such as STICSA to better distinguish the effects of 

TOS on somatic and cognitive anxiety. 

Prior work demonstrated that state anxiety can modulate ECG activity (Chalmers et al., 2014; 

Hein et al., 2021; Quintana et al., 2016; Sporn et al., 2020). In our study, we observed a slower HR 

under conditions of threat, and no significant differences in HRV between the two blocks. Although 

anxiety-related HR changes have shown inconsistency in the literature (Trotman et al., 2019), the 

absence of between-block differences in HRV was unexpected. A more informative approach might 

involve analysing high-frequency HRV, considered a better indicator (Friedman, 2007; Gorman & 

Sloan, 2000; Hein & Herrojo Ruiz, 2022). Furthermore, future research should incorporate alternative 

cardiac measures, such as cardiac output or total peripheral resistance, which more definitively 

distinguish between expressions of anxiety and their behavioural impacts (Seery et al., 2010). 

TOS-induced state anxiety did not significantly affect general task performance or decision 

making. BF analyses on win and error rates, as well as on the HGF computational variables, provided 

anecdotal and moderate evidence for the absence of differences between blocks. This suggests that 

even under anxiety, participants were able to adapt their behavioural responses successfully to the 

changing environment, exhibiting similar levels of tonic volatility (𝜔2, 𝜔3), estimates of environmental 

volatility (𝜇3), as well as comparable levels of informational uncertainty (𝜎2) and uncertainty about 

the volatility (𝜎3). These results are at odds with prior research indicating that individuals 
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experiencing state anxiety tend to perform poorly in probabilistic environments (Carleton, 2016; Hein 

et al., 2021; Hein & Herrojo Ruiz, 2022; Sporn et al., 2020). One the other hand, Engelmann et al. 

(2015) using the TOS paradigm, also found no anxiety-induced differences in decision-making 

behaviour. In our study, one possible reason for the absence of differences between the two blocks 

is that introducing a motor component may have interfered with the typical negative impact of anxiety 

observed in decision-making tasks that have no additional complex motor component. This 

interpretation aligns with the findings discussed in Chapter 5, where we also failed to detect an effect 

of trait anxiety on motor decisions. Thus, collectively, our findings are consistent in showing that 

anxiety (both trait and state) does not negatively affect motor decision making under volatility.  

One of the key findings from this study underscores the effect of state anxiety on RT. First, 

BLMM on the practice effect revealed that participants exhibited slower initial RT under threat 

compared to safety conditions. These analyses also demonstrated that under safety individuals 

displayed the typical practice effect, expediting their RT across trials. State anxiety did not modulate 

this trend, with participants in the two blocks speeding up their RT to a similar extent.  

Additionally, our BLMM analysis on the invigoration effect supported the notion of delayed 

RT under threat, as indicated by the distribution of the difference between intercepts. Consistent with 

our previous research (Chapters 3-5), we found that RT was not influenced by the strength of 

predictions about the reward contingencies under safety. Crucially, when inducing anxiety through 

TOS we observed a positive association between the strength of expectations about the action-

reward mapping and RT. In simpler terms, when participants experienced threat, having stronger 

beliefs about receiving a reward led to a delayed initiation of the action. This highlights that not only 

are RT generally slower under threat, but they are especially delayed when participants have strong 

expectations of being rewarded. This pattern aligns with existing research demonstrating that state 

anxiety affects motor performance (as discussed in section 1.3.3). According to distraction theories, 

participants under threat might have experienced slower RT due to their attention being diverted 

away from the task to process irrelevant stimuli (Behan & Wilson, 2008; Causer et al., 2011; 

Nieuwenhuys & Oudejans, 2012; Wilson, Vine, et al., 2009; Wilson, Wood, et al., 2009). Conversely, 

in line with explicit monitoring models, participants experiencing anxiety may have spent more time 
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preparing their motor responses by allocating attentional resources to internal processes (Gucciardi 

& Dimmock, 2008; Lam et al., 2009; Nieuwenhuys & Oudejans, 2012; Yarrow et al., 2009). In our 

study, it is therefore plausible that having stronger expectations about the reward tendency could 

have exacerbated distracting thoughts or explicit monitoring processes, leading to delayed RT. 

Alternatively, participants under threat may have perceived the higher expectation on the probability 

that an action is rewarded as a stressor, and high incentives (based on their predictions) may have 

delayed RT. This interpretation is supported by recent research in non-human primates on the 

chocking-under pressure phenomenon, where increased RT were observed for unusually large 

rewards (Smoulder et al., 2021). Last, anxiety has been found to lead participants to display risk-

averse behaviours (Hartley & Phelps, 2012; Maner et al., 2007; Maner & Gerend, 2007; Västfjäll et 

al., 2008). Thus, especially when holding strong predictions about reward mappings, participants 

may have taken more time to ensure the correct implementation of the sequence, reflecting their 

desire to minimise the possibility of errors while maximising the potential for reward attainment. 

State anxiety appears to have distinct effects on performance tempo. The BLMM analysis on 

the practice effects showed no initial differences in performance tempo between blocks. Also, 

participants under safety showed the traditional practice effect, speeding up their performance tempo 

across trials. State anxiety modulated this association, with participants under threat accelerating 

their performance tempo even more over time. This aligns with our previous findings (Chapter 5), 

possibly reflecting increased arousal under threat to maintain task accuracy across trials.  

Analyses on the invigoration effect supported the absence of between-block differences in 

performance tempo (posterior distribution of the difference between intercepts). In line with our 

earlier findings from Chapter 3 we showed that stronger expectations about the action-reward 

contingencies were associated with faster performance in the first safe block. However, when 

averaging across the first and second safe blocks, the invigoration of motor responses disappeared, 

suggesting reduced sensitivity of performance tempo to predictions in the second safe block. 

Notably, we did not observe any anxiety-induced differences in the relationship between 

performance tempo and the strength of predictions. These results, together with those discussed in 
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Chapter 5, emphasise that both trait and state anxiety have no impact on the invigoration of 

performance tempo through predictions about reward tendencies. 

Overall, our behavioural findings suggest that state anxiety specifically impairs RT while 

leaving the actual execution of movements and overall task performance unaffected. Previous 

research has suggested that state anxiety reduces task efficiency without impacting effectiveness, 

with the latter referring to the quality of task performance measured by standard behavioural 

measures (typically, accuracy). In contrast, efficiency pertains to the resources invested in achieving 

a given performance level (Derakshan & Eysenck, 2009; Eysenck et al., 2007; Eysenck & Calvo, 

1992; Hadwin et al., 2005). Our results are consistent with this framework, as state anxiety did not 

appear to impact general task effectiveness (i.e., rate of wins and errors, decision making, as well 

as performance tempo) but negatively affected efficiency through slower RT, particularly for 

movements that were strongly anticipated to be rewarding.  

At the neural level, the convolution GLM revealed that state anxiety was associated with an 

attenuation of the theta activity to feedback processing. Specifically, under safety, we observed the 

typical increase in theta activity following the presentation of outcomes (for both wins and losses, 

Luft et al., 2014). However, the theta modulation was absent in participants experiencing threat. Prior 

work demonstrated that individuals exhibiting enhanced theta power in the post-outcome interval 

displayed increased performance monitoring and better capacity to update behaviour under 

uncertainty, ultimately leading to enhanced feedback-based learning (Cunillera et al., 2012; Luft, 

2014; Luft et al., 2013; Van De Vijver et al., 2011). The attenuation of theta responses to win/lose 

outcomes in the threat block, might suggests reduced feedback processing when experiencing 

anxiety. Surprisingly, we did not detect any between-block differences in the neural oscillatory 

responses to the parametric regressors |𝜀2|, 𝜎2, 𝜎3, and |𝜇₂|. These results contrast with recent 

evidence that implicates beta oscillations in the pathophysiology of state anxiety (Hein et al., 2023; 

Sporn et al., 2020). Specifically, Hein and colleagues (2023) observed amplified beta oscillations 

during the formation of predictions about stimulus-outcome associations and the encoding of pwPE 

(precision-weighted), resulting in a dampening of belief updating. It is worth noting that in our study, 

we did not observe differences in general task performance and decision making between the safe 
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and threat conditions. In fact, participants under threat were able to adapt their behaviour effectively 

in response to changes in the environment, possibly accounting for the absence of between-block 

differences in the spectral correlates of |𝜀2|, 𝜎2 and 𝜎3. It is therefore possible that the evidence 

supporting similar values in computational variables between blocks could account for the lack of 

differences in the TF responses to the computational regressors. 

Our investigation into the neural responses to predictions (|𝜇₂|) was particularly interesting 

because it could have shed light on the neural basis underlying the inhibition of RT by the strength 

of expectations about the reward tendency under threat. The rationale here is that when participants 

are presented with the stimuli, they are prompted to decide which sequence to play on the current 

trial based on their predictions. Because individuals under threat slowed down their RT as a function 

of their predictions (BLMM results), we expected to observe a neural counterpart of this effect. To 

understand why we did not observe significant differences in the TF responses we plan to 

complement this analysis in follow-up work with an assessment of the response regressors.  

In conclusion, in this study we demonstrate that state anxiety delays RT during reward-based 

motor decisions under volatility without affecting general task performance and decision making. RT 

are strongly inhibited for movements highly predicted to be rewarding, indicating that state anxiety 

especially influences performance in high-stakes conditions. Moreover, TOS modulates the theta 

responses during feedback processing without altering the correlates of pwPE and predictions.  

Overall, our findings are the first to reveal that state anxiety significantly hampers task efficiency 

through slower RT, without affecting the participants' ability to effectively compute motor decisions 

in a continuously changing environment. 

  



 185 

CHAPTER 7: CONCLUSIONS 

 

In this final chapter, we provide a comprehensive summary of the primary findings discussed 

throughout the thesis, while also acknowledging limitations and proposing potential directions for 

future studies. 

 

7.1 OVERVIEW 

The primary objective of this thesis was to investigate whether predictions about the reward 

contingencies influence motor vigour under volatility. This builds upon a well-established body of 

evidence demonstrating that motor performance is consistently modulated by reward magnitude, 

with larger rewards resulting in both faster movement times and improved accuracy (Anderson, 

2020; Codol et al., 2020; Manohar et al., 2019; Milstein & Dorris, 2011; Sackaloo et al., 2015; 

Sedaghat-Nejad et al., 2019; Sporn et al., 2022; Summerside et al., 2018; Takikawa et al., 2002). 

However, up to date, no studies have investigated how motor vigour is modulated by predictions of 

reward probabilities. This appears to be crucial if we consider that our world is rich with uncertainty, 

and adaptive behaviour hinges on our ability to continuously estimate the changing relationship 

between our actions and their outcomes. 

Throughout this thesis, we employed a novel paradigm (see section 2.1) that integrated a 

conventional decision-making task with a motor component. This approach allowed us to assess 

motor decision-making behaviour and the invigoration of motor responses by predictions about the 

action-reward contingencies. We fitted the behavioural data using the HGF (see section 2.2) and 

consistently performed robust BLMM analyses (see section 2.4) to assess motor performance under 

volatility. 

The examination of the association between motor performance and predictions about the 

reward contingencies encompassed various perspectives. In Chapter 3, we evaluated whether the 

enhancement of motor responses through predictions varied across both normal and pathological 

ageing, placing specific emphasis on medicated PD patients. Chapter 4 explored whether this effect 

extended to explicit confidence ratings concerning the delivery of rewards. Chapters 5 and 6 delved 
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into the potential modulation by trait and experimentally-induced state anxiety on the motor 

invigoration effects demonstrated in the first chapters. 

The investigation of motor vigour effects in our participants were complemented by analyses 

of decision-making behaviour and practice effects, the latter reflecting changes in motor performance 

across trials. 

To assess the influence of trait and state anxiety on the oscillatory neural correlates of motor 

decision making under uncertainty, in Chapters 5 and 6, we additionally recorded participants' brain 

electrical activity through the EEG. We analysed the data using the convolution GLM (see section 

2.5), expanding upon previous work on probabilistic learning in anxiety (Hein et al., 2021, 2023; Hein 

& Herrojo Ruiz, 2022; Jiang et al., 2018; Sporn et al., 2020; Zhang et al., 2020).  

Overall, by combining computational modelling, Bayesian statistics and EEG-based 

approaches, our studies offer novel insights into reward-based motor behaviour under volatility.  

 

7.2 PREDICTIONS OF REWARD PROBABILITIES INVIGORATE 

PERFORMANCE TEMPO, BUT NOT REACTION TIME 

In this thesis we have consistently demonstrated that the strength of predictions about the 

reward tendencies speeds up motor performance trial-by-trial. Specifically, stronger predictions 

about the action-reward contingency were associated to faster performance tempo. To the best of 

our knowledge, this study provides the first evidence of motor vigour being influenced by 

expectations of reward probabilities within volatile environments, contributing to the existing body of 

research on the modulation of motor behaviour through reward manipulations. 

As discussed in section 1.1.3, multiple mechanisms contribute to the motor invigoration 

induced by rewards. These include the reward-driven reinforcement of motor cortical 

representations, enhanced feedback control processes, increased limb stiffness, heightened reward 

PE signalling, and coarticulation (Anderson, 2020; Codol et al., 2020; Manohar et al., 2019; Milstein 

& Dorris, 2011; Sackaloo et al., 2015; Sedaghat-Nejad et al., 2019; Sporn et al., 2022; Summerside 

et al., 2018; Takikawa et al., 2002). It is therefore possible that these mechanisms synergistically 

contributed to the motor invigoration effect discussed in this thesis. For instance, strong predictions 
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of a specific sequence leading to reward might have enhanced the cortical representation of the 

corresponding motor plan at the level of the SMA and pre-SMA, resulting in faster execution (Adkins 

& Lee, 2021; Galaro et al., 2019). Similarly, having strong expectations about the reward contingency 

may have increased arm stability and enhanced the ability to uphold goal-related information during 

execution, ultimately expediting performance (Botvinick & Braver, 2015; Carroll et al., 2019; Codol 

et al., 2020; Manohar et al., 2019). However, it is important to acknowledge that this discussion 

remains speculative at this stage. Further studies are necessary to delve into the precise contribution 

of the mechanisms underpinning the motor invigoration by reward probabilities under volatility. 

This invigoration effect was not modulated by subjective inferences about credit assignment 

(i.e., whether participants could accurately infer the reasons for the absence of rewards; Chapter 3) 

and extended to explicit beliefs about reward acquisition (Chapter 4). In fact, motor performance was 

not only influenced by the strength of predictions, as captured through computational modelling, but 

also by confidence ratings. Specifically, higher confidence about the chosen action leading to reward 

was associated with faster motor performance. Our findings align with prior research showing that 

confidence supports learning under uncertainty and provide new insights into the role of explicit 

beliefs in enhancing motor behaviour (Frömer et al., 2021; Nassar et al., 2010; Pouget et al., 2016; 

Vaghi et al., 2017). Overall, these results suggest that both confidence ratings and inferred belief 

trajectories from computational models contribute to motor vigour by expediting motor performance. 

Interestingly, across our studies, the observed enhancement of motor vigour by predictions 

was limited to performance tempo (commensurate with movement times) and did not affect RT. The 

absence of a RT modulation by the expectation of reward probability contrasts with studies 

demonstrating that reward magnitude influences the time taken to initiate movements (Codol et al., 

2020; Manohar et al., 2015; Summerside et al., 2018; Wächter et al., 2009). The lack of this effect 

persisted even when we adjusted the task timings to mitigate the effects of deliberation times on the 

RT distribution (Chapter 4). We interpret this finding as related to sequential planning effects 

introducing variability into the RT distribution (Mantziara et al., 2021). Future research should 

investigate trial-by-trial RT invigoration effects by reward probabilities in motor tasks that do not 
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necessitate planning discrete movements. We hypothesise that by excluding the influence of 

sequential planning from RT, the modulation of RT by predictions would emerge. 

 

7.3 THE INVIGORATION OF MOTOR PERFORMANCE BY PREDICTIONS IS 

PRESERVED IN OLDER ADULTS AND PARKINSON’S DISEASE PATIENTS 

We investigated whether the enhancement of motor performance through predictions about 

the action-reward contingencies was influenced by age and PD (Chapter 3). This was motivated by 

the lack of evidence on how reversal learning and reward sensitivity interact to affect motor vigour 

in older adults and medicated PD patients. Some evidence suggests compromised decision making 

and learning under uncertainty in these two groups (Cools, 2001; de Boer et al., 2017; Eppinger et 

al., 2011; Nassar et al., 2016), while other evidence indicates the opposite (Aves et al., 2021; 

Euteneuer et al., 2009; Fera, 2005). Our study provides evidence for older adults and medicated PD 

patients effectively learning under conditions of uncertainty and utilising their predictions about 

reward probabilities to enhance the motor performance on a trial-by-trial basis, similarly to healthy 

young. This suggests that DA replacement therapy in PD may have the potential to mitigate deficits 

in decision making when navigating volatile environments. 

One significant limitation of this study is its exclusive focus on PD patients on medication. 

Future research should include assessments of PD patients in both the ON and OFF states to 

expand our understanding of how DA influences the trial-by-trial association between motor vigour 

and predictions of reward probabilities. Additionally, it is possible that decision making in volatile 

environments and motor vigour effects depend on other neurotransmitters, which are associated 

with pwPE during belief updates. These may include acetylcholine (Moran et al., 2013) and 

noradrenaline (Dayan & Yu, 2006), in addition to DA (Haarsma et al., 2021; Iglesias et al., 2013). 

Moreover, different brain regions have been implicated in learning about changing stimulus-action 

contingencies, such as the ACC, OFC and medial PFC (Behrens et al., 2007; Hayden et al., 2011; 

Rouault et al., 2019). Future research, incorporating pharmacological and neuroimaging 

approaches, should delve into the contribution of these neurotransmitters and brain areas to the 
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motor vigour effects reported in our study by focusing on the preserved sensitivity of motor 

performance to predictions about reward probabilities in older adults and PD.  

Finally, in our work, we exclusively employed rewards and did not include punishment as a 

feedback type. Previous evidence has shown that learning from changing stimulus-outcome 

associations in PD patients on medication depends on the feedback valence (Bodi et al., 2009; 

Euteneuer et al., 2009; Frank et al., 2004; Levy-Gigi et al., 2019; Perry & Kramer, 2015; Van Wouwe 

et al., 2012). Medicated PD patients tend to succeed in learning from rewards and struggle when 

learning from negative feedback, whereas patients in the OFF state exhibit the opposite pattern 

(Frank et al., 2004). Thus, interesting insights could be gained by assessing the influence of 

feedback valence in modulating the association between motor performance and predictions of 

action-outcome contingencies under uncertainty. 

 

7.4 TRAIT AND STATE ANXIETY MODULATE SPECIFIC ASPECTS OF MOTOR 

BEHAVIOUR IN VOLATILE ENVIRONMENTS 

One of the main objectives of this thesis was to investigate the potential role of anxiety in 

modulating motor decision-making behaviour and the invigoration of motor responses by predictions 

of reward tendencies. This was driven by previous evidence suggesting that both trait and state 

anxiety have detrimental effects on probabilistic learning (Browning et al., 2015; Hein et al., 2021, 

2023; Hein & Herrojo Ruiz, 2022; Huang et al., 2018; Jiang et al., 2018; Sporn et al., 2020). Trait 

anxiety hinders reward-based learning by expediting belief updating, whereas state anxiety 

attenuates the updating of beliefs in response to new information, both resulting in suboptimal 

performance (Hein et al., 2023; Hein & Herrojo Ruiz, 2022). Moreover, high levels of anxiety have 

been found to impair motor behaviour (Balaban & Jacob, 2001; Brown et al., 2020; Burn et al., 2012, 

2012; Dias et al., 2022; Dissanayaka et al., 2014; Ekornås et al., 2010; Erez et al., 2004; Harris et 

al., 2023; Ishihara & Brayne, 2006; Kristensen & Torgersen, 2008; Schapira et al., 2017; Vázquez 

et al., 1993; Weisskopf et al., 2003). On these bases, we hypothesised that anxiety might attenuate 

the motor invigoration effect by predictions.  
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In the study on trait anxiety (Chapter 5), participants were asked to perform sequences using 

a digital piano, which allowed us to capture motor performance in a more ecologically valid manner 

compared to using a computer keyboard. Also, it provided us with an additional measure of motor 

performance: keystroke velocity, a metric associated with key press loudness. We observed that 

individuals with high and low trait anxiety differed in how they adjusted their motor performance over 

trials. Specifically, participants with low trait anxiety displayed practice effects by progressively 

initiating and executing the sequences faster across trials, while reducing their keystroke velocity. 

However, participants with high anxiety further expedited their RT and performance tempo over time 

and increased their keystroke velocity. This may reflect heightened arousal mechanisms in 

individuals with anxiety and the inability to make performance less effortful through practice (Jedon 

et al., 2022; Kamiński et al., 2012). Despite these differences in motor behaviour, trait anxiety did 

not modulate decision making or the motor invigoration effect by predictions in our task. 

One limitation of this study is that trait anxiety was measured using self-reported 

questionnaires, which may not be fully representative of actual anxiety levels. Several biases, 

including social desirability bias (e.g., Van de Mortel, 2005) and response set bias (e.g., Peer & 

Gamliel et al., 2011), have been in fact identified in self-reported questionnaires. Future studies 

should aim to use more accurate methods to assess levels of trait anxiety in research participants, 

including physiological measures such as cortisol levels (Pluess et al., 2010; Taylor et al., 2008) or 

more validated clinical assessments, including the Ecological Momentary Assessment (Shiffman et 

al., 2008). Another limitation is related to the timing used in this study, which could have masked 

potential anxiety-driven differences in the invigoration effect by predictions of reward probabilities. 

In fact, here rewards were delivered after a fixed amount of time, regardless of the time taken to 

complete the sequence. Follow-up research delivering rewards contingent on movement times may 

help clarify whether our findings have been confounded by participants dampening their motivation 

to expedite the sequence fast, even when holding strong predictions of being rewarded. 

 

In the last experiment (Chapter 6) we extended this investigation to state anxiety. We induced 

state anxiety in our participants utilising the validated TOS paradigm and observed that individuals 
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under threat displayed overall slower RT compared to safety. Importantly, RT were particularly 

delayed for actions strongly predicted to be rewarding. These findings align with existing evidence 

suggesting that transient state anxiety negatively affects motor performance by either diverting 

attention away from the task (distraction theories; Behan & Wilson, 2008; Causer et al., 2011; 

Nieuwenhuys & Oudejans, 2012; Wilson, Vine, et al., 2009; Wilson, Wood, et al., 2009) or by 

excessively increasing the allocation of attention to monitor internal processes (explicit monitoring 

models; Gucciardi & Dimmock, 2008; Lam et al., 2009; Nieuwenhuys & Oudejans, 2012; Yarrow et 

al., 2009). To the best of our knowledge, these findings represent the first evidence for state anxiety 

dampening motor vigour effects by predictions of reward probabilities under conditions of volatility. 

Moreover, similar to the findings discussed for trait anxiety, state anxiety led participants to expedite 

their performance tempo over time, possibly reflecting heightened arousal mechanisms, without 

influencing motor decision-making behaviour.  

A compelling avenue for investigating the impact of state anxiety on motor decision making 

involves the utilisation of virtual reality and augmented reality technologies. Virtual reality immerses 

users in a wholly digital environment, isolating them from the physical world, as their real 

surroundings are entirely substituted by the virtual simulation (Burdea & Coiffet, 1994). Conversely, 

augmented reality enriches the user's real-world view by overlaying digital information and objects. 

Devices such as smartphones or glasses employ cameras and sensors to capture the real 

environment and then superimpose computer-generated elements onto it (Azuma, 1997; Milgram & 

Kishino, 1994). These innovative technologies have proven effective in inducing state anxiety by 

simulating adverse environments (e.g., Tsai et al., 2018). As a result, upcoming research employing 

these techniques has the potential to significantly advance our comprehension of the interaction 

between induced anxiety states and motor behaviour through the simulation of ecological 

environments. 
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7.5 TRAIT AND STATE ANXIETY BIAS THE NEURAL OSCILLATORY 

CORRELATES OF MOTOR DECISIONS 

In this thesis, we delved into the effect of both trait and state anxiety on the neural processes 

underlying motor decision making. We employed convolution GLM to analyse the oscillatory 

correlates of motor decisions, thus expanding upon existing research on anxiety within the context 

of simple decision-making paradigms. The work by Hein and colleagues (2023) uncovered anxiety-

related alterations in the brain oscillatory activity during probabilistic learning. They showed that 

individuals with high trait anxiety speeded up belief updating through heightened gamma activity in 

the ACC, dorsomedial PFC and OFC during the encoding of pwPE, accompanied by reduced 

alpha/beta activity in the ACC. Conversely, state anxiety attenuated the updating of beliefs in 

response to new information through enhanced beta responses in sensorimotor and frontal areas 

for processing pwPE (Hein & Herrojo Ruiz, 2022). Despite shedding light on the potential 

neurobiological mechanisms underlying the deficits often observed in individuals with anxiety when 

engaging in probabilistic learning tasks, this work did not explore the neural correlates of motor 

decisions. 

In this thesis, we found that trait anxiety was associated with changes in the neural oscillatory 

responses to informational uncertainty and uncertainty on the environmental volatility, manifesting 

as an increase in alpha and beta power (Chapter 5). Notably, these findings on 𝜎2 and 𝜎3 

(representing precision weights scaling the influence of PEs on updating beliefs about the reward 

contingencies and environmental volatility), contribute to the existing body of evidence underscoring 

anxiety-related differences in the neural representation of uncertainty (Al-Ezzi et al., 2020; Hein et 

al., 2021, 2023; Hein & Herrojo Ruiz, 2022; Knyazev et al., 2005; Shadli et al., 2021; Sporn et al., 

2020). 	

On the other hand, state anxiety expressed through an attenuation of neural responses in 

the theta frequency range to outcome events (Chapter 6). Numerous prior findings have emphasised 

the involvement of slow theta oscillations in feedback learning (Cunillera et al., 2012; Luft, 2014; Luft 

et al., 2013), suggesting that our results might reflect compromised feedback processing under 

threat.  
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Crucially, neither trait nor state anxiety appeared to significantly alter the neural correlates of 

unsigned pwPE. For the trait anxiety study, this implies that individuals with a high vs low 

predisposition to experience anxiety updated their beliefs about action-reward associations in a 

comparable manner. Along the same line, regarding the state anxiety study, the absence of 

discernible neural differences in processing pwPE suggests that beliefs were similarly updated under 

threat and safe conditions. These findings are consistent with the observed absence of anxiety-

induced differences in success rates and decision-making behaviour among our participants. 

Therefore, despite trait anxiety influencing the neural oscillatory responses to the representation of 

uncertainty, and state anxiety affecting the TF representations of feedback processing, participants 

encoded pwPE in a similar manner, leading to comparable decision-making behaviour. We 

speculate that the inclusion of a motor component in our studies may have contributed to the 

differences in our results compared to previous work.  

In Chapter 6, we additionally revealed that state anxiety impeded motor vigour effects on RT 

by delaying the initiation of sequences that were highly anticipated to be rewarding. We aimed to 

uncover the neural oscillatory correlates of this effect by incorporating the computational parameter 

reflecting the strength of predictions about reward contingencies as a regressor in our convolution 

GLM analysis. Our rationale was that the delayed RT might be underpinned by anxiety-related 

oscillatory alterations in the beta frequency band following the presentation of the two fractals. In 

fact, Hein and colleagues (2023) demonstrated that anxiety biased the beta activity encoding 

predictions about the reward probability in the pre-outcome interval. However, our investigation did 

not reveal any state-induced differences in spectral responses to predictions. This leaves 

unanswered the question of the neural mechanisms underlying the attenuated motor vigour effects 

on RT by predictions under threat. It is important to acknowledge that capturing the neural oscillatory 

activity of predictions poses a significant challenge, as predictions are not tied to any particular task 

event (Diaconescu et al., 2017; Hein et al., 2022). Previous research has suggested that the deficits 

caused by state anxiety during motor behaviour may be attributed to a collapse of neural information 

at the level of the motor cortex, where the representations of different actions become less 

discernible under high-incentive conditions (Smoulder et al., 2023). Future neuroimaging studies are 
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required to provide a more comprehensive understanding of the interplay between the neural 

representation of predictions about the reward probability and motor behaviour in environments 

characterised by uncertainty. 

 

7.6 FINAL CONCLUSIONS 

In this thesis, we provided novel insights into the role of predictions about action-reward 

contingencies in modulating motor vigour. This effect was observed in young participants and was 

preserved in both healthy ageing and medicated PD patients. Individuals in these two groups utilised 

their predictions to expedite performance tempo similarly to healthy young adults. Furthermore, the 

invigoration effect extended to explicit beliefs, demonstrating that the strength of predictions about 

the reward contingencies, as captured through computational modelling, can serve as a proxy for 

explicit beliefs. 

Additionally, we demonstrated that trait anxiety did not modulate the association between 

motor performance and the strength of predictions. Conversely, state anxiety delayed RT for actions 

that were strongly predicted to be rewarding, dampening motor vigour effects. Furthermore, both 

trait and state anxiety affected practice effects, influencing how individuals adjusted their motor 

performance over time. 

Complementing these findings with analyses of neural oscillatory activity, we showed that 

trait anxiety was associated with heightened alpha/beta activity in response to informational 

uncertainty and uncertainty about volatility, while state anxiety modulated theta responses to 

feedback processing. 

In conclusion, our research, which incorporates computational modelling, EEG analysis, and 

Bayesian statistics, yields novel insights into the behavioural and neural aspects of motor decision 

making under volatility in young, ageing, PD patients, and individuals with high trait/state anxiety. 
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