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Abstract
We consider a rational agent who at time 0 enters into a financial contract for
which the payout is determined by a quantummeasurement at some time T > 0.
The state of the quantum system is given in the Heisenberg representation by a
known density matrix p̂. How much will the agent be willing to pay at time 0
to enter into such a contract? In the case of a finite dimensional Hilbert space
H, each such claim is represented by an observable X̂T where the eigenvalues
of X̂T determine the amount paid if the corresponding outcome is obtained
in the measurement. We prove, under reasonable axioms, that there exists a
pricing state q̂ which is equivalent to the physical state p̂ such that the pricing
function Π0T takes the linear form Π0T(X̂T) = P0T tr(q̂X̂T) for any claim X̂T,
where P0T is the one-period discount factor. By ‘equivalent’ we mean that p̂
and q̂ share the same null space: that is, for any |ξ 〉 ∈ H one has p̂|ξ 〉= 0 if
and only if q̂|ξ 〉= 0. We introduce a class of optimization problems and solve
for the optimal contract payout structure for a claim based on a given measure-
ment. Then we consider the implications of the Kochen–Specker theorem in
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this setting and we look at the problem of forming portfolios of such contracts.
Finally, we consider multi-period contracts.

Keywords: quantum mechanics, quantum measurement, contingent claims,
absence of arbitrage, density matrices, Gleason’s theorem,
Kochen-Specker theorem

1. Introduction

By ‘quantum finance’ we mean the valuation, optimization and risk management of financial
contracts for which the outcomes (in the form of one or more payments made between the
various parties involved) are contingent on the results of one or more quantum measurements.
The financial contracts that we consider can be easily implemented in a suitable laboratory. Our
investigations fall within the scope of standard quantum mechanics and we are not concerned
here with modifications of the standard framework or with interpretive issues. The resulting
theory of quantum financial contracts is distinctly non-Kolmogorovian, inheriting as it does
the full generality of quantum probability.

The idea of forging connections between quantum theory and finance theory is not a new
one. Previous attempts have tended to fall into two broad categories. In the first category one
has theories that work with the suggestion that asset prices—and perhaps other economic vari-
ables as well—are somehow subject to the laws of quantummechanics. Examples can be found
in [3, 5, 17, 19, 25, 31, 32, 42, 49, 57], to mention but a few. The idea is not an unreasonable
thing to think about, given the rather general notions of ‘complementarity’ promoted by Bohr
and Heisenberg. Nonetheless, it is probably safe to say that little by way of real progress has
been made. The problem with this line of thinking is that there is no evidence to suggest that
asset prices are in any sense ‘quantum-like’ in nature, so work along these lines is speculative.
Even if one were to admit the idea that an asset price (say, the price of a barrel of oil) is akin
to a physical variable, such as position or energy, that can be quantized, it is not at all evid-
ent what form the associated complementary variable would take—and where would Planck’s
constant enter the discussion?

In the second category of connections between quantum theory and finance, less contro-
versially, one sees mathematical techniques originating in quantum theory being applied to
problems in finance. Recently, we have witnessed a flurry of activity in the use of such tech-
niques to improve on the traditional methods of computational finance, paving the way for the
use of quantum computers to perform large-scale financial calculations. There is an extensive
literature involving applications of quantum methods and quantum computation to the solu-
tion of ‘classical’ problems in finance; we mention [2–4, 26, 34, 39, 55, 58–60] as represent-
ative of the multiplicity of ideas being pursued. It should be emphasized, nonetheless, that no
quantum ideas per se are involved in the finance theory underlying such endeavours, so the
term ‘quantum finance’ may be a misnomer in that context.

Our theory represents a departure from these approaches. On the one hand, we are not
suggesting the existence of quantum properties in ordinary financial assets such as stocks
and bonds. Nor are we concerned here with the use of ideas derived from quantum theory
to speed up the risk management of conventional financial assets, or even new assets, such as
those based on blockchain technology. In particular, we are not concerned here with the use
of quantum computers to tackle the work currently being carried out by classical computers.

We are concerned, rather, with the pricing of financial instruments (equivalently, ‘securities’
or ‘financial products’) for which the payouts are directly linked, by design, to the outcomes
of quantum measurements. Needless to say, such financial products do not exist at present.
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But they may exist in the future, and that is why the theory is of interest from a scientific
perspective.

Let us recall a few basic ideas from the theory of finance. Here we proceed on an informal
basis, in anticipation of the more rigorous treatment given later in the paper in the context
of quantum theory. By a financial instrument, in classical finance theory, we mean a contract
whereby two or more agents agree to exchange cash flows over a period of time in accordance
with certain rules. The ‘agents’ might be individuals, small businesses, corporations, municip-
alities, sovereign states, and so on—any entity that has the capacity for entering into a financial
contract. By a ‘cash flow’ we mean an event where one agent transfers some money (‘cash’)
to another agent. The mechanism of transfer is not relevant to the present discussion, but we
assume that it is essentially instantaneous and that the cash will be transferred from an account
of one entity to an account of another.

In a financial contract both the amounts and the timings of the cash flows will in general
be ‘contingent’ – that is to say, not fixed in advance, but determined by one or more external
events. For example, if company A purchases a bond from company B, then there is an initial
cash flow when A pays B the price of the bond. This will be followed by several intermediate
cash flows, where B makes periodic ‘coupon payments’ to A—these interest payments are
usually a fixed percentage of the ‘principal’ of the bond—thus, we might refer, say, to a 4.5%
coupon paid semiannually at fixed dates. Then finally, B pays back the agreed ‘principal’ to
A on some pre-agreed date, and the contract is concluded. All bond issuers are credit risky to
some degree, and hence B may for some reason fail to pay a coupon on the date on which it
is due or B may fail to pay all or part of the principal when this becomes due. Further details
of the contract spell out how the various parties will proceed in such situations and how the
subsequent cash flows will be structured.

Another common situation is one where A decides to sell the bond to some third agent C
before the term of the bond has finished. In that case, there is a cash flow from the account of
C to the account of A. Agent B is not involved in that transaction, but the original agreement
between A and B is then transferred to an arrangement between C and B. Again, the details of
how this happens are set out in the original contract. Such arrangements are usually enforceable
in law and are governed by various regulations. The example of the ordinary coupon bond as
a financial instrument illustrates the fact that cash flows typically involve both deterministic
elements and uncertain elements—the latter including the timings of any defaults, and the
timings of any transfers of ownership of the bond before its term is concluded.

Similarly, if an individual A buys stock issued by company B, then the stock goes into A’s
securities account and A’s cash goes into the account of the broker from whom A bought the
stock, and thence to the account of the seller of the stock. Needless to say, the registers for stock
going into someone’s securities account or cash going into someone’s cash account are purely
electronic, even though as an aid to thinking we use the nostalgic language of stock certificates
or banknotes moving from one vault to another. While A holds the stock, he may receive
dividend payments, both the timing and the amounts of which will in general be uncertain.
Then when A chooses to sell the stock there will be a cash flow into his account for the amount
of the sale, and the stock will leave his securities account.

For each type of financial instrument, the contract and the associated system of cash flows
will vary. In the case of a cash-settled European-style call option, for example, agent A buys
the option from an options dealer B for an amount C0 (the ‘option premium’). The option
contract gives A the right (but not the obligation) to buy the stock at some pre-designated time
T for the so-called strike price K. Since the contract is cash-settled, this means that at T agent
A will receive a cash flow of HT =max(ST −K,0), where ST is the terminal stock price. This
assumes implicitly that A acts rationally, and only ‘exercises’ the option if ST > K. In this
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example, there are two cash flows—the deterministic amount C0 paid by A to B at time 0, and
the amount HT paid by B to A at the maturity of the option. We refer to HT as the ‘payout’
of the option. In more detail, we can assume (say) that initially A has an empty cash account,
so to purchase the option first he borrows the amount C0 from some third agent C, promising
to pay agent C back the amount C0 at T plus an agreed amount of interest. If the interest is
charged on a continuously compounded basis at the rate r over the period from time 0 to time
T then the total paid back to agent C for the loan of C0 is C0 erT. Then the total profitability
of the option transaction as measured at T would be max(ST −K,0)−C0 erT, where negative
profitability implies agent A is left in debt.

Rather than working with interest rates, finance theorists often prefer to work with so-called
discount bonds. By a T-maturity discount bond, one means a contract between two agents C
andDwhereC loansD a certain amount of money P0T at time 0 in exchange for a positive cash
flow of one unit of cash at time T. Thus the loan is made on a discounted basis and the principal
repaid at T is unity. For example, C might loan D $0.94 today in exchange for a repayment
of $1.00 a year from now. If the interest rate is r per annum continuously compounded, then
P0T = e−rT. The finance theorist will tend to regard the bond price P0T as the more fundamental
object, since bonds trade in bond markets, and the interest rate is a derived concept. Then given
the bond price we can define the interest rate by setting r=−T−1 lnP0T. So in principle one can
work entirely with prices, never mentioning interest rates. In practice, it is often convenient to
work with rates and one switches back and forth between rates and prices when bond markets
are being discussed.

This leads us to the rather general idea of a financial contract in accordance with which at
time 0 agent A pays an amount H0 to agent B and then agent B pays a random variable HT to
agent A at time T. Then we say that agent A is purchasing a ‘financial product’ from agent B.
The option contract mentioned above is an example of such a product, where H0 is the option
premium and HT is the option payout. In that case, we model the terminal stock price ST is
a random variable, and then define the payout as a function of this random variable. Another
example would be a binary (or digital) option contract, in accordance with which at time T
agent B pays agent A one unit of account (say, one dollar) if ST > K and zero otherwise. Many
other examples of such products can be structured where the ‘underlying’ asset prices might
be share prices, bond prices, foreign exchange rates, commodity prices, and so on.

The events determining the cash flows do not necessarily have to be market events as such.
Physical events are also possible as the basis for determining a cash flow. For example, in
insurance markets cash flows can be triggered by hazardous physicalities, such as fires, floods,
tornados, hurricanes, earthquakes, and so on. In exchange for this random payout, the holder
of the policy pays an ‘insurance premium’ at the beginning of the contract. The insurers then
limit their own potential exposures via reinsurance markets.

The mathematical theory of how one prices financial instruments has an interesting history,
with the first definitive results being obtained in [11], followed in subsequent decades by many
significant further developments, with numerous practical applications. The important point,
however, is that the terminal payout HT of such an instrument is modelled in the standard
theory as a random variable on a probability space (Ω,F ,P), where Ω is a set that represents
the possible outcomes of chance,F denotes the collection of subsets ofΩ that can be assigned
probabilities (so-called ‘events’), and P denotes the system of probabilities assigned to these
events. Let us write E[−] for expectation under P (the usual ‘objective’ probability measure).
The theory then shows that in order for the market to be arbitrage-free there must exist a
positive random variable πT on Ω satisfying 0< E[πT]<∞ such that for any contract with
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payout HT satisfying E[πTHT]<∞ the price takes the form

H0 = E [πTHT] . (1)

Thus, the absence of arbitrage ensures the existence of a universal ‘pricing kernel’ πT that can
be used to price all financial products with payouts that are known at T. An alternative way of
putting this is to set QT = πT/E[πT] and write

H0 = P0TEQ [HT] . (2)

Here we set P0T = E[πT] and for any positive random variable XT whose outcome is known
at T we define EQ[XT] = E[QTXT]. Then EQ[XT] is the expectation of XT with respect to a
probability measure Q that is ‘equivalent’ to P in the sense that for any event A ∈ F it holds
that P(A) = 0 if and only if Q(A) = 0. One says that QT is the Radon-Nikodym derivative of
Q with respect to P. Thus, we see that the price H0 is the discounted expectation of the payout
HT where the expectation is taken with respect to the measure Q.

In short, a market is arbitrage-free if and only there exists a probability measure Q which
is equivalent to P on events of probability zero such that for any time T and for any claim HT

the price of that claim is given by (2). Of course, we have skipped many details and we have
made no attempt to define ‘arbitrage’. Nonetheless, the key point that emerges here is that the
pricing formula involves a system of pricing probabilities, which we call Q, that is distinct
from the usual ‘objective’ or ‘real world’ probability system P. This ‘change of measure’ idea
in the determination of prices is one of the pillars of modern finance theory. We mention this
since many physicists will assume (perhaps through some well-intended but misguided notion
of ‘fairness’) that the price H0 of an investment with payout HT must surely be just the mean
value of HT over P—but this is not correct! It is not surprising then that a similar ‘change of
state’ idea arises when quantum theory is brought into play.

In the present paper we are concerned with the situation where agent A pays agent B a
premium H0 at time 0 in exchange for a cash flow of the amount HT at time T, but now where
HT is determined by the outcome of a quantum measurement. The problem is that the out-
comes of quantum measurements cannot be consistently modelled as random variables in a
Kolmogorovian framework of the type outlined above on a probability space (Ω,F ,P) in the
case of classical finance theory. So we need a more general framework for finance based on
quantum probability in order to model the situations that we have in mind.

We have mentioned the case of a single payout HT determined by the outcome of a single
measurement. More generally, one can envisage the existence of a rather general type of finan-
cial product that delivers a sequence of cash flows determined by the outcomes of a sequence
of experiments. In such contracts, the experiments themselves may be ‘adapted’, in the sense
that experiments performed at a later stage of the sequence may depend in their design and
implementation on the outcomes of experiments made at an earlier stage of the sequence. In
this paper, we consider the most basic of such financial products.

In section 2 we set out what we mean by a financial contract in a one-period market for
which the payout is determined by a quantum measurement. We show that such a contract can
be represented by a quantum observable (a Hermitian operator) for which the eigenvalues rep-
resent the possible cash flows. We begin with the example of a two-dimensional Hilbert space,
for which the underlying experiment triggering the outcome of the contract involves measuring
the spin of a spin 1

2 particle along a certain choice of axis. The state of the particle before the
measurement is given by a known density matrix. The contract specifies the payments made
for the two possible outcomes. The totality of these contracts constitute the ‘market’ associated
with such spin measurements.
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In section 3 we extend the discussion to the case of an n-dimensional Hilbert space H and
we introduce the notion of a one-period discount bond, which pays out one unit of account
at time T regardless of the outcome of the experiment. In that case the associated financial
observable is the identity operator on H.

We also introduce the notion of a so-called Arrow–Debreu security, as it arises in the present
context, for which the underlying experiment takes the form of a projection operator of rank
unity. Such a contract either pays one unit of account or nothing, depending on which eigen-
value of the projection operator is attained when the measurement is performed.

The physical state of the underlying quantum system on which the measurement is taken is
represented by a density matrix p̂, an n by n positive semidefinite matrix with trace unity. We
say that two density matrices p̂ and q̂ are equivalent if for all |ξ 〉 ∈ H it holds that p̂|ξ 〉= 0
if and only if q̂|ξ 〉= 0, i.e. they share the same ‘null space’. The significance of this equival-
ence relation among density matrices becomes apparent later when we consider the pricing
of contracts. We argue that if two contracts ÛT and V̂T depend on the outcome of the same
experiment, and differ from one another only in the amounts paid for the various outcomes of
the experiment, then the prices of these contracts should satisfy a linear relation

Π0T

[
aÛT + bV̂T

]
= aΠ0T

[
ÛT

]
+ bΠ0T

[
V̂T

]
, (3)

where Π0T denotes the pricing map. More precisely, if the operators ÛT and V̂T commute, then
the prices should be additive.

In section 4 we present our main result, which is to show that under a certain set of axioms
the pricing map necessarily takes the form

Π0T

[
X̂T

]
= P0T tr

(
q̂X̂T

)
, (4)

for some density matrix q̂, where tr denotes the trace, subject only to the condition that the
physical state p̂ and the pricing state q̂ are equivalent in the sense mentioned above. The axioms
are surprisingly simple. The first is that the price of a non-negative contract should vanish
if and only if the expectation value of the contract vanishes. The second is that the pricing
function should act linearly on any set of mutually commuting contracts. And the third is
that the price of the observable corresponding to the identity operator should be that of a unit
discount bond, which we regard as an input to the model. It should be emphasized that (a) we
do not assume that the pricing map is linear, and that (b) no portfolio arguments are involved.
The key ingredient in the proof is Gleason’s theorem, which turns out to be surprisingly well
adapted for applications in a financial context.

In sections 5 and 6 we look at a classical investment problem in a quantum context. The
problem is that faced by an investor with a fixed budget who wishes to invest optimally in
order to maximize the expected utility of the outcome of the investment. In the classical the-
ory, we define a von Neumann-Morgenstern utility function as a concave, strictly increasing
function of a strictly positive argument. The argument (in the present context) is the amount
of cash received at some designated time T by some agent. The utility represents the degree of
satisfaction received by the agent from that cash flow. The underlying concept of ‘utility’ (like
‘goodness’) is ultimately an undefinable that is characterized by its stated properties and its
behaviour in various examples. Nonetheless, the notion of utility is highly intuitive and abso-
lutely essential to many arguments in financial economics. The goal of an investment problem
is to determine, for a given budget, the optimal investment over various investment opportun-
ities, where the criterion for optimization is to maximize the expected utility of the payout
over some designated time frame. We show that the quantum optimization problem, like the
classical problem, can be solved exactly; and indeed, although the mathematical ideas run in
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many respects in parallel in the two theories, it is not a priori obvious what form the solution
of the quantum problem will take.

In particular, if the quantum investment problem is generalized in such a way as to involve
a choice between several incompatible experiments to determine the payout of the contract,
then the problem cannot even be formulated in the classical theory of finance, and yet admits
a neat formulation and solution in the case of quantum securities as we have defined them.
This is shown in section 7, where we discuss more generally the role of quantum probability
in finance. The example we consider is based on a construction of the Kochen–Specker type
due to Cabello et al [15, 16] involving a collection of nine incompatible observables. In this
way we can formulate a quantum optimization problem, with no classical analogue, in which
the investor faces a choice between nine different quantum financial contracts.

In section 8 we return to the problem of portfolios, which we treat as a class of financial
products for which the payouts depend on the results of two or more experiments. In the case
of a one-period market, we consider the situation where one carries out measurements simul-
taneously on a pair of particles. The particles are associated with distinct Hilbert spaces, so no
incompatibilities arise between the measurements and results are obtained for each. As a con-
sequence, financial contracts can be devised for which the payouts are made by totalling the
results of each of the experiments. The two contracts can then consistently be regarded as part
of the same portfolio in such a setup. The density matrix of the two-particle system as a whole
can be entangled, allowing for correlations between the outputs of the individual constituents.
A similar situation arises for portfolios involving any number of constituents. The surprising
feature here is the relation between the ideas of entanglement in quantum mechanics and coin-
tegration in portfolio theory. We conclude in section 9 with a brief discussion of multi-period
markets.

2. Quantum measurements and contingent cash flows

Let time 0 be the present and T a fixed time in the future. We consider the situation where
an agent A enters into a contract with another agent B in accordance with which A pays B an
amount H0 (‘the price’) at time 0 and then B pays A an amount HT (the ‘payout’) at time T,
where HT is contingent in some specified way on the outcome of a quantum measurement. We
refer to such a setup as a one-period market.

By a quantum measurement, we mean the measurement of an observable associated with a
microscopic system, such as a particle, or an atom or a molecule. More elaborate setups can
be considered, involving multiple measurements, multiple payments and multiple agents; but
for simplicity we look at a one-period market involving two agents. As an example, suppose
the payout is determined by a measurement of the spin of a spin one-half particle along the
z-axis. The outcome of such a measurement either gives + 1

2ℏ, corresponding to spin up along
that axis, or − 1

2ℏ, corresponding to spin down. Henceforth, we work with physical units such
that ℏ= 1. For the basics of quantum theory, see, for instance, [38]. We fix a two-dimensional
Hilbert space H2 and on it we introduce the usual observable for the spin along the z-axis,
given by the Hermitian operator

Ŝz = 1
2 |z1〉〈z1| −

1
2 |z2〉〈z2|, (5)

where |z1〉 is a unit Hilbert space vector representing the upward direction along the z-axis and
|z2〉 denotes a unit Hilbert space vector orthogonal to |z1〉 representing the downward direc-
tion along the z-axis. Thus, 〈z1|z1〉= 1, 〈z2|z2〉= 1, 〈z1|z2〉= 0, 〈z2|z1〉= 0, and the possible
outcomes of the measurement are the eigenvalues of Ŝz, which are + 1

2 and − 1
2 .
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The probabilities of these outcomes are determined by the state of the system, which is
represented by a density matrix p̂. The density matrix in quantum theory has a status that is
analogous in certain respects to that of the probability measure in classical probability theory.
The density matrix is assumed to be a positive-semidefinite Hermitian operator with trace
unity, which in the case of a two-dimensional Hilbert space takes the form

p̂= p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|, (6)

for some orthonormal basis {|ψ1〉, |ψ2〉} inH2, where p1 ⩾ 0, p2 ⩾ 0, and p1 + p2 = 1. In gen-
eral, such a matrix will have rank two, but if p1 = 0 or p2 = 0 then it will have rank one. A state
with rank one is called a ‘pure’ state.

The probability for a given outcome is the trace of the product of the density matrix p̂ with
the projection operator onto the Hilbert subspace associated to the eigenvalue corresponding
to that outcome (the ‘Born rule’). Thus we have

Prob
(
Sz = 1

2

)
= tr(p̂|z1〉〈z1|) = 〈z1|p̂|z1〉, (7)

Prob
(
Sz =− 1

2

)
= tr(p̂|z2〉〈z2|) = 〈z2|p̂|z2〉. (8)

In the case of a contingent claim where the payout is determined by the result of such a spin
measurement, it should be clear that the claim itself can also be represented by a Hermitian
operator on H2, in this case, an operator of the form

ẐT = z1|z1〉〈z1|+ z2|z2〉〈z2|, (9)

where z1 denotes the payment made to agent A in the case the measurement outcome is spin
+ 1

2 and z2 is the payment made to A when the measurement outcome is spin − 1
2 . One can

think of such a contract as being an example of a so-called real option [21, 37, 62]. Payments
are understood to be made in some fixed numeraire or unit of account. Thus, we conclude that
a contingent claim for which the payouts are determined by the result of a quantum meas-
urement can be represented by an observable, in the usual quantum mechanical sense, whose
eigenvalues correspond to the possible cash flows at time T.

Among the various observables that can be represented in the form (9) there is a special
observable that takes the form

P̂0T = 1|z1〉〈z1|+ 1|z2〉〈z2|, (10)

which pays one unit of account at time T, regardless of the outcome of the spin measurement.
This is evidently a ‘risk-free’ asset, since the payout is fixed and guaranteed, and we write

P̂0T = 1̂. (11)

Here 1̂ denotes the identity operator onH2. The risk-free asset P̂0T represents a discount bond
that pays one unit of account (e.g. one ‘dollar’) at maturity T. It has the property that it does
not depend on the choice of axis along which the spin measurement is taken.

In addition to contracts of the form (9), we can more generally consider contracts of the
same type, but where the measurement of the spin is taken along some other axis. Each such
contract is characterized by (a) the choice of a basis in Hilbert space along which the spin
measurement is made, together with (b) the payouts that take place as a consequence of the
results of the measurement. Indeed, it is a theorem that any positive Hermitian operator ẐT on
H2 other than multiples of the identity can expressed uniquely in the form (9) for some choice
of the orthonormal basis {|z1〉, |z2〉} in H2, modulo multiplicative phase factors.

To complete the discussion we need to determine the price paid by agent A to agent B in
exchange for the payout corresponding to X̂T. In short, we need a pricing function that maps
each financial observable X̂T to a price X0, which we develop in section 4.

8
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It should be emphasized that although we may question why an agent might wish to pur-
chase such a security, there is nothing mysterious or obscure about the construction of such a
market itself. As in all economic considerations, the issue of why there is supply and demand
for a certain product is a matter quite distinct from the issue of how the market for that product
will function, given that there is indeed supply and demand.

3. Financial observables

It will be useful going forward to generalize our considerations to the case of a Hilbert space
H of arbitrary finite dimension n. As usual, we can write |ξ 〉 for a typical element of H and
〈ξ | for its complex conjugate. The observable that determines the payout will in the generic
situation be a non-degenerate Hermitian operator X̂T on this space and hence admit n distinct
real eigenvalues, each corresponding to a distinct cash flow.

For example, if the quantum system admits n different energy levels, and the underlying
physical observable being measured is the energy of the system, then the contract will in gen-
eral result in a different cash flow {xj}j=1,2,. . . ,n for each of the possible energy outcomes. For
the financial observable representing such a contract we can write

X̂T =

n∑
j=1

xj|xj〉〈xj|, 〈xj|xk〉= δjk (12)

for some orthonormal basis {|xj〉}j=1,2,. . . ,n in Hilbert space. More generally, the set of all fin-
ancial observables associated with a given Hilbert space will include some that are degenerate
in the sense that the same payout will result for two or more distinct values of the outcome
j. Such a degeneracy can result either because there is a degeneracy in the spectrum of the
underlying physical observable, or because two or more distinct eigenvalues of the physical
observable are assigned the same cash flow. An example of the latter is a unit discount bond,
for which xj = 1 for all j = 1,2, . . . ,n even though the underlying energy levels may be distinct.
Then the identity operator on H represents such a bond.

Another example of a degenerate observable is the analogue of a so-called Arrow–Debreu
(A-D) security [1], which for each value of j has the payout xj = 1{j = k} for some fixed value
of k. Here 1{E} denotes the indicator function for the event E. Thus xj = 1 if j= k, and xj = 0 if
j 6= k. The A-D securities are represented by pure projection operators, each with payout unity
or zero, depending on the result of the underlying quantum measurement, whose outcome is
also unity or zero. Thus the set of all Arrow–Debreu contracts is precisely the set of all pure
projection operators on H.

The state of a quantum system in n dimensions is represented by a positive semidefinite
Hermitian matrix with trace unity. Such a matrix can be put in the form

p̂=
n∑

j=1

pj|ψj〉〈ψj|, (13)

for some orthonormal basis {|ψj〉}j=1,2,. . . ,n, with pj ⩾ 0 for j = 1,2, . . . ,n and
∑n

j=1 pj = 1.
In the case of a density matrix of maximal rank with distinct eigenvalues, this basis is

uniquely determined up to phase factors. If the density matrix is of maximal rank but with a
degenerate spectrum, the basis is determinedmodulo unitary transformations on the degenerate
subspaces. In the case of a density matrix of lower rank, the basis is determined at best only up
to an arbitrary unitary transformation of the basis vectors that span the null space of the density
matrix. Given two density matrices p̂ and q̂, we say that q̂ is absolutely continuouswith respect

9
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to p̂ if the null space of p̂ is a subspace of the null space of q̂. Thus, q̂ is absolutely continuous
with respect to p̂ if and only if for all |ψ 〉 ∈ H such that p̂|ψ 〉= 0 it holds that q̂|ψ 〉= 0. We
say that p̂ and q̂ are equivalent if each is absolutely continuous with respect to the other, that is
to say, if they share the same null space. It is easy to see that ‘equivalence’ in this sense is an
equivalence relation in the usual mathematical sense, and it follows that all density matrices
of maximal rank are equivalent.

We say that a claim X̂T is positive if 〈ψ |X̂T|ψ 〉⩾ 0 for all |ψ 〉 ∈ H and strictly positive if
〈ψ |X̂T|ψ 〉> 0 for all |ψ 〉 ∈ H. By (12), X̂T is positive if and only if xj ⩾ 0 for all j and strictly
positive if and only if xj > 0 for all j.

In fact, it should be evident that any claim X̂T can be split in a canonically minimal way into
positive part X̂+

T and a negative part X̂−
T such that X̂T = X̂+

T + X̂−
T , where the positive eigen-

values of X̂T are those of X̂+
T and the negative eigenvalues of X̂T are those of X̂−

T . It will thus
suffice for our purpose to look at financial contracts with positive cash flows.

Let us now consider a one-period market represented by the set of all positive claims on an
n-dimensional Hilbert space. The problem is to assign a value or price to each such claim X̂T

on the basis of as few assumptions as possible. One possible approach would be to consider
the so-called expectation value of X̂T in the state p̂, given by

〈X̂T〉p = tr
(
p̂X̂T

)
. (14)

The expectation value can be interpreted as the average value of the payoff when the average
is calculated by taking numerous independent copies of the experimental setup, performing
an identical measurement on each system, and averaging the results. One might think that this
expectation gives a fair price for entering into the contract; but that is merely a guess. In fact,
agents will typically pay less than the expectation value, in order to allow for a non-trivial
rate of return on the investment in compensation for the risks involved, and in principle, the
price could be any non-negative map Π0T : X̂T 7→Π0T(X̂T) ∈ R+, which need not necessarily
be linear. On the other hand, we can be confident that if 〈X̂T〉p = 0, then the price must be zero,
since no rational agent would pay a strictly positive premium for an investment that paid zero
with probability one. Thus we conclude that the price vanishes if and only if the expectation
value of the payoff vanishes.

But we are still some distance from determining the form that the price takes. Since the
expectation value is a linear function of the observable, this suggests that we look more closely
at linear functionals. If X̂T and ŶT are claims, then so is the linear combination

ẐT = aX̂T + bŶT (15)

for a,b⩾ 0. Hence the space of positive claims has a convex structure. It should be clear that
the experiments underlying the X̂T and ŶT are in general different and that the experiment
underlying ẐT is different yet again. If we write these claims in their diagonalized forms

X̂T =
n∑

j=1

xj|xj〉〈xj|, ŶT =
n∑

j=1

yj|yj〉〈yj|, (16)

with respect to the relevant basis vectors, one sees that the payouts and basis vectors associ-
ated with these claims are uniquely determined, up to the usual ambiguities associated with
degeneracies and null spaces, and at the same time the payouts and basis vectors of (15) are
represented by the decomposition

ẐT =
n∑

j=1

zj|zj〉〈zj|. (17)

10
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Thus, if we have two contracts, each with positive payouts, depending on separate measure-
ments, then any linear combination of the operators corresponding to the two contracts, with
positive coefficients, will give rise to the operator corresponding to yet another contract, with
a different set of payouts, depending on still another measurement.

Hence, a linear combination (15) is not, generally, to be understood as representing a ‘port-
folio’ of its constituents (see section 8). This is because the payout of a portfolio is given by
the totality of the payouts of its constituents. One is tempted, nonetheless, to conjecture that
the price of the contract represented by a linear combination of two contracts should equal the
corresponding linear combination of the prices of the constituents. But it is not obvious that
this will be the case, since the new contract involves a different payout structure and a different
experiment—so we do not wish to assume linearity in general.

Nevertheless, if ÛT and V̂T depend on the outcome of the same experiment, and differ only
in the amounts paid for the various possible outcomes, then the price of aÛT + bV̂T should be
equal to the corresponding linear combination of the prices of ÛT and V̂T. More precisely, if
the ÛT and V̂T commute, then the prices should be additive. For if ÛT and V̂T commute, we can
find a orthogonal basis {|wj〉}j=1,2, . . . ,n in which both are diagonalized:

ÛT =
n∑

j=1

uj|wj〉〈wj|, V̂T =
n∑

j=1

vj|wj〉〈wj|. (18)

Then if we form the linear combination ŴT = aÛT + bV̂T we obtain

ŴT =
n∑

j=1

(auj + bvj) |wj〉〈wj|, (19)

showing that the payouts for ŴT are given by linear combinations of the payouts of the con-
stituents. Thus, for commuting observables, the price of a linear combination of contracts
should be the corresponding linear combination of the prices of the individual contracts. But
it is not obvious that linearity extends to non-commuting contracts.

4. Existence of pricing operator

Let us codify our assumptions somewhat more explicitly. As usual, we write R+ = {x ∈ R :
x⩾ 0}. We fix a quantum system with state p̂ on an n-dimensional Hilbert space H and write
V+ for the cone for positive contracts on H. Thus our market is characterized by the triple
{H, p̂,V+}. Let us write P0T for the price of a unit discount bond. Our goal is to assign a price
to each contract X̂T ∈ V+. By a pricing function on the market {H, p̂,V+} in a one-period
setting we mean a mapping Π0T : V+ → R+ satisfying the following:

(i) For all X̂T ∈ V+ it holds that Π0T[X̂T] = 0 if and only if tr(p̂X̂T) = 0.
(ii) If the m contracts represented by the Hermitian matrices {X̂k

T}k=1,2, . . . ,m commute, then
for all {ak ⩾ 0}k=1,2, . . . ,m one has

Π0T

[
m∑

k=1

ak X̂
k
T

]
=

m∑
k=1

akΠ0T

[
X̂k
T

]
. (20)

(iii) Π0T[ 1̂ ] = P0T.

11
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The axioms can be interpreted as follows. Axiom (1) ensures the absence of arbitrage: the
price of a positive contract vanishes if and only if the expected payout vanishes. Axiom (2)
ensures that the pricing function is linear when it acts on a collection of contracts represented
by commuting observables. Axiom (3) fixes the price of the risk-free asset. Then we obtain
the following general characterization of the price of a contract:

Proposition 1. If n⩾ 3 then there exists a state q̂ on {H, p̂,V+} that is equivalent to p̂ such
that for any contract X̂T ∈ V+ the price of X̂T is given by

Π0T

[
X̂T

]
= P0T tr

(
q̂X̂T

)
. (21)

Proof. Consider the pricing of A-D securities. For each such contract, the measurement
involves a projection operator Λ̂ = |λ〉〈λ| for some normalized vector |λ〉 ∈ H. The pricing
function is a map from the space of pure projections on H to R+. It is well known that the
space of pure projections on an n-dimensional Hilbert space is isomorphic to the complex pro-
jective space CPn−1. Thus we obtain a functionΠ0T : CP

n−1 → R+ with the property that for
any n points {λj ∈ CPn−1}j=1,2,. . . ,n determining an orthogonal basis in H one has

n∑
j=1

Π0T (λj) = P0T. (22)

This is because the projection operators associated with an orthonormal basis commute and
hence by Axiom (2) the sum of the prices of the projection operators must equal the price of
the sum of the projection operators. But the latter sum gives the identity operator, which offers
a risk-free payout of unity. Thus we obtain a unit discount bond, for which the price is P0T by
Axiom (3). Gleason’s theorem [29] can now be applied to the problem and it follows that there
exists a state q̂ such that the price of any claim of the form Λ̂ is given by

Π0T

[
Λ̂
]
= P0T tr

(
q̂Λ̂
)
. (23)

Now, any contract X̂T can be constructed as a linear combination of orthogonal pure projection
operators with positive coefficients. Since these operators commute, Axiom (2) implies that
the price of such a contract will be given by the sum of the prices of its elements, and this gives
us (71). The fact that the ‘pricing’ operator q̂ must be equivalent to the ‘physical’ state p̂ then
follows as a consequence of Axiom (1), which taken with (71) ensures that for any positive
contract X̂T we have tr(p̂X̂T) = 0 if and only if tr(q̂X̂T) = 0.

The point here is that we do not assume a priori the existence of a pricing state. The idea
rather is to prove the existence of such a state under the prima faciemuch weaker assumptions
implicit in our axioms. The requirement that the pricing function is linear when it is applied to
any commuting family of A-D securities coupled with the assumption that the price of a one-
period discount bond is known allows us to deduce that the pricing function takes the form (71).
In the case of a finite-dimension Hilbert space, the associated projective Hilbert space takes
the form of a complex projective space CPn−1 equipped with the Fubini-Study metric [12].
Gleason’s theorem shows for n⩾ 3 that any map f : CPn−1 → [0,1] with the property that∑n

j=1 f(λj) = 1 for any set of n points {λj}j=1,2,. . .n ∈ CPn−1 that are maximally distant from
each other under the Fubini-Study metric necessarily takes the form f(λ) = 〈λ|q̂|λ〉/〈λ|λ〉 for
some positive operator q̂ with trace unity. The principle of no arbitrage (‘no free lunch’) then
implies that q̂ is equivalent to p̂.

It should be noted that the physical state p̂ refers to the state of the quantum system upon
which measurement of a given physical observable determines the payment made under the

12
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terms of the financial contract. Thus p̂ can be used to calculate the probability distribution of
the payout, but gives no information about the price, except that minimal statement which is
mandated by the absence of arbitrage—namely, that the price should be zero if and only if the
probability of a payout greater than zero is zero.

The operator P0T q̂ plays the role of a pricing kernel in our theory. In the case of an n-
dimensional Hilbert space the prices of any n2 − 1 linearly independent financial contracts,
alongside the price of the unit discount bond, will be sufficient to completely calibrate the
pricing kernel, which can then be used to price other contracts. It may seem surprising that
the knowledge of such a system of prices gives no information about the physical state p̂,
except to determine its null space, but the analogue of this phenomenon is well established
in the classical theory of finance [10, 22–24, 27]. At first glance, one might conclude that our
proposition 1 has little content, since the pricing operator q̂ is arbitrary apart from its having the
same null space as p̂; but such a conclusion would be incorrect—the point is that the existence
of a pricing operator is not assumed but rather is deduced from the minimal axioms we have
chosen to characterize a pricing function. Thus, beginning only with the assumed existence of
a pricing function, which might in principle be nonlinear, one can whittle the candidates for
such a map down to a linear function of the form (71).

5. Optimal investment

A well-known problem in classical finance theory is to determine, given a budget X0, the
investment that maximizes the expectation of the utility gained by the investor at T when the
proceeds of the investment are liquidated. It is reasonable to pose a similar problem in quantum
finance. We assume that (a) agent A’s attitudes towards risk are expressed by a standard von
Neumann-Morgenstern utility function {U(x)}x>0, (b) the physical state p̂ of the quantum
system is known, (c) the basis under which the physical measurement is being made is known,
and (d) the pricing state is known. The investment is thus characterized by an observable of
the form (12), where the basis {|xj〉}j=1,. . . ,n is fixed, and the cash flows {xj}j=1,. . . ,n must be
determined so that the budget is saturated and the expected utility is maximized. What makes
the problem interesting is that the expected utility of the payout is calculated by use of the
physical state p̂ whereas the budget constraint involves the pricing state q̂, and that neither p̂
nor q̂ necessarily has any relation to the measurement basis.

Definition 1. By a standard utility function we mean a map U : R+\{0}→ R that satisfies the
following conditions: (i) U ∈ C2(R+\{0}), (ii) U ′(x)> 0 for all x> 0, (iii) U ′ ′(x)< 0 for all
x> 0, (iv) limx→∞U ′(x) = 0, and (v) limx→0U ′(x) =∞.

These requirements can be relaxed in various contexts, but the ‘standard’ conditions often
lead to well-posed problems for which solutions can be shown to exist and hence prove to be
natural as a basis for modelling. We see that a standard utility function is a strictly convex,
strictly increasing map defined for all strictly positive values of its argument. We refer to the
mapU ′ : R+\{0}→ R+\{0} as themarginal utility. The final two conditions of the definition
ensure that there exists an inverse marginal utility function {I(y)}y>0 such that I(U ′(x)) = x
for all x> 0. The identity

U(I(y))− I(y)y= sup
x>0

(U(x)− xy) , (24)

which holds for all y> 0, can be used to establish the so-called fundamental inequality

U(I(y))− I(y)y⩾ U(z)− yz, (25)

which holds for all y> 0 and z> 0 in the case of a standard utility function.
13



J. Phys. A: Math. Theor. 57 (2024) 285302 L P Hughston and L Sánchez-Betancourt

Examples of standard utility functions are (a) logarithmic utility, for which U(x) = log(x)
for x> 0, and (b) power utility with index p ∈ (−∞,1)\{0}, for whichU(x) = p−1xp for x> 0.
For logarithmic utility one finds that I(y) = 1/y and for power utility I(y) = y1/(p−1).

The goal of agent A’s optimization problem is to determine the cash flows {xj}j=1,2,. . . ,n

that maximize the expected value of the utility, providing that these cash flows can be realized
with the specified budget. Thus, given a standard utility function {U(x)}x>0 we set{

x∗j
}
j=1,2, . . . ,n

= argmax
{xj}

tr
[
p̂ Û({xj})

]
(26)

where Û({xj}) =
∑n

j=1U(xj)|xj〉〈xj| and the argmax is subject to the budget constraint

X0 = P0T tr
(
q̂ X̂T

)
, X̂T =

n∑
j=1

xj|xj〉〈xj|. (27)

Proposition 2. Let the physical state of a quantum system on an n-dimensional Hilbert space
be p̂. Let the pricing state for a financial market based on measurements of the system be q̂,
with one-period discount factor P0T. Let the risk preferences of the investor be represented by
a standard utility function U : R+\{0}→ R and write I for the associated inverse marginal
utility function. Then the optimal cash flow structure {x∗j } for an investment with budget X0

paying out according to the measurement of a financial observable of the form

X̂=
n∑

j=1

xj|xj〉〈xj|, (28)

for some fixed orthonormal basis {|xj〉}j=1,. . . ,n, is given by

x∗j = I

[
λP0T

〈xj|q̂|xj〉
〈xj|p̂|xj〉

]
, (29)

where for any choice of X0 > 0 the parameter λ is uniquely determined by the relation

P0T

n∑
j=1

I

[
λP0T

〈xj|q̂|xj〉
〈xj|p̂|xj〉

]
〈xj|q̂|xj〉= X0. (30)

Proof. The method of Lagrange multipliers can be used to obtain a candidate for the argmax.
We introduce a Lagrange multiplier λ and seek a solution to the unconstrained problem{

x∗j
}
= argmax

{xj}

(
tr
[
p̂ Û({xj})

]
−λP0T tr

(
q̂ X̂T

))
, (31)

or equivalently

{
x∗j
}
= argmax

{xj}

 n∑
j=1

U(xj)〈xj|p̂|xj〉−λP0T

n∑
j=1

xj〈xj|q̂|xj〉

. (32)

Differentiating with respect to xj and setting the results to zero, we find that

U ′ (xj) = λP0T
〈xj|q̂|xj〉
〈xj|p̂|xj〉

(33)

for each value of j. Applying the inverse marginal utility function to each side of this equation,
we are then led to (29) and the budget constraint (27) gives (30). That (30) admits a unique
solution for λ for any X0 > 0 follows from the fact that the monotonic decreasing map
I : R+\{0}→ R+\{0} is surjective, which is a consequence of the conditions (iv) and (v)

14
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satisfied by a standard utility function. That the candidate solution is indeed a true solution
can be checked by use of the fundamental inequality (25). It follows then from (29) that for
any alternative choice of payout structure {xj} we have

U
(
x∗j
)
− x∗j λP0T

〈xj|q̂|xj〉
〈xj|p̂|xj〉

⩾ U(xj)− xjλP0T
〈xj|q̂|xj〉
〈xj|p̂|xj〉

, (34)

for each j = 1,2, . . . ,n.Multiplying by pj and summing we obtain

n∑
j=1

pjU
(
x∗j
)
−

n∑
j=1

pjU(xj)⩾
n∑

j=1

pjx
∗
j λP0T

〈xj|q̂|xj〉
〈xj|p̂|xj〉

−
n∑

j=1

pjxjλP0T
〈xj|q̂|xj〉
〈xj|p̂|xj〉

. (35)

Then since pj = 〈xj|p̂|xj〉 we have

n∑
j=1

pjU
(
x∗j
)
−

n∑
j=1

pjU(xj)⩾ λP0T

 n∑
j=1

x∗j 〈xj|q̂|xj〉−
n∑

j=1

xj〈xj|q̂|xj〉

. (36)

Now, we know by (30) that λ has been chosen to ensure that the candidate solution {x∗j }
satisfies the budget constraint

P0T

n∑
j=1

x∗j 〈xj|q̂|xj〉= X0. (37)

If we require that the alternative choice of payout structure should also satisfy the budget
constraint, or else operate under budget, so

P0T

n∑
j=1

xj〈xj|q̂|xj〉⩽ X0, (38)

then the two terms on the right-hand side of (36) cancel, or else leave a difference that is
positive (if the alternative choice is under budget), which gives

n∑
j=1

pjU
(
x∗j
)
⩾

n∑
j=1

pjU(xj) , (39)

showing that the candidate solution for the optimal payout gives an expected utility that is no
less than that of any alternative choice of payout structure with a budget no greater than that
of the candidate solution.

6. Rate of return

As an example, we can look in detail at the case of logarithmic utility. Suppose we set U(x) =
logx for x> 0. Then the inverse marginal utility function is given by I(y) = 1/y for y> 0. It
follows that for log utility the optimal payout structure takes the form

x∗j = (λP0T)
−1 〈xj|p̂|xj〉

〈xj|q̂|xj〉
. (40)

Inserting this expression into the budget constraint (37) we obtain

λ−1
n∑

j=1

〈xj|p̂|xj〉= X0. (41)
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But the sum appearing in the expression above is unity since
∑n

j=1 |xj〉〈xj|= 1̂ and the trace
of p̂ is one. Thus for log utility we deduce that λ−1 = X0 and hence

x∗j = (P0T)
−1X0

〈xj|p̂|xj〉
〈xj|q̂|xj〉

. (42)

We observe that when the physical state and the pricing state are one and the same, the
payouts of the optimal investment are identical for each outcome of chance, each giving
(P0T)

−1X0, the usual ‘future value’ of the initial investment. In that case, the optimal invest-
ment is to put the initial endowment into unit discount bonds, totalling X0 in value. Then we
have X̂T = (P0T)

−1X0 1̂. It follows that if the pricing state is the physical state, the market
assigns no premium to the return on a risky investment, ensuring that the optimal investment
is in a discount bond and the rate of return is the interest rate.

The same conclusion applies, more generally, for any choice of the utility. This follows
from (29) and (30), from which one concludes that if p̂= q̂ then x∗j = (P0T)

−1X0 for all j.
It is interesting therefore to enquire what happens when the pricing state is different from
the physical state. The expected return R0T on an investment X̂T is given by the ratio of the
expectation of X̂T under p̂ to the amount initially invested, namely X0. Thus, quite generally,
we have

R0T = (X0)
−1 tr

(
p̂X̂T

)
. (43)

But X0 = P0T tr(q̂X̂T) by (71), so we deduce that

R0T = (P0T)
−1

tr
(
p̂X̂T

)
tr
(
q̂X̂T

) , (44)

and it should be clear that if p̂= q̂, except possibly on the null space of X̂T, then the rate of
return on the investment is the one-period interest rate.

Specializing now to the case of an optimal investment for an agent with logarithmic utility,
let us calculate the rate of return. We have

X̂T =
n∑

j=1

x∗j |xj〉〈xj|, (45)

where the optimal payout structure {x∗j } is given by (42). It follows then that

R0T = (X0)
−1 tr

(
p̂X̂T

)
= (X0)

−1
n∑

j=1

x∗j 〈xj|p̂|xj〉

= (P0T)
−1

n∑
j=1

〈xj|p̂|xj〉2

〈xj|q̂|xj〉
. (46)

If we set R0T = eµT then the rate of return µ can be split into two parts, namely a risk-free one-
period interest rate and a so-called excess rate of return or risk premium, which is the part of
the rate of return that exceeds the interest rate. We can represent this by writing R0T = e(r+β)T

where r is the interest rate and β is the excess rate of return. The interest rate is fixed by the
relation erT = (P0T)

−1 and the excess rate of return is fixed by the relation

eβT =
n∑

j=1

〈xj|p̂|xj〉2

〈xj|q̂|xj〉
. (47)
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Proposition 3. The optimal investment in the case of an investor with logarithmic utility has
a positive excess rate of return. The utility gained from such an investment in a market where
the physical state and pricing state differ is greater than or equal to the utility gained from an
investment in a risk-free bond.

Proof. The expected utility gained from the payout of an optimal investment is

tr
[
p̂ Û
]
=

n∑
j=1

U
(
x∗j
)
〈xj|p̂|xj〉. (48)

Let us set U(x∗j ) = logx∗j for logarithmic utility and insert (42). The result is

n∑
j=1

U
(
x∗j
)
〈xj|p̂|xj〉= log

[
(P0T)

−1X0

]
+

n∑
j=1

[
〈xj|p̂|xj〉 log

〈xj|p̂|xj〉
〈xj|q̂|xj〉

]
. (49)

The first term on the right-hand side of this equation isolates the part of the utility gain due
to the interest rate. The second term can be interpreted as a relative entropy. In particular, if
we set pj = 〈xj|p̂|xj〉 and qj = 〈xj|q̂|xj〉 then it is evident that {pj}j=1,2,. . . ,n and {qj}j=1,2,. . . ,n

constitute a pair of absolutely continuous probability distributions. The second term on the
right then takes the form of a Kullback–Liebler divergence [46]:

DKL (p,q) =
n∑

j=1

pj log

(
pj
qj

)
. (50)

Thus, the utility thereby gained gives a measure of the divergence between the physical state
and the pricing state. Now, it is well known that the Kullback–Liebler divergence is non-
negative. It follows, then, that the utility gained from an optimal risky investment in a market
where p̂ and q̂ are distinct will be greater than or equal to the utility gained from a risk-free
bond investment, as claimed.

Moreover, we have the following. The standard logarithmic inequality logz⩽ z− 1, which
holds for z> 0, implies that

log

(
pj
qj

)
⩽
(
pj
qj

)
− 1 (51)

for each j. Hence, multiplying by pj and summing we obtain

n∑
j=1

pj log

(
pj
qj

)
⩽

n∑
j=1

(
p2j
qj

)
− 1. (52)

Thus, we have

eβT =
n∑

j=1

(
p2j
qj

)
⩾ 1+DKL (p,q) , (53)

and by the positivity of the Kullback–Liebler divergence we deduce that the excess rate of
return β is positive for an optimal investment under logarithmic utility, as claimed.
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7. Classical vs quantum probability

It is often maintained that quantum probability is more general than Kolmogorov’s well-
established ‘classical’ theory of probability [44] and that the latter is contained as a special
case of the former. There is no doubt that quantum probability, when laid out as a mathem-
atical theory, has a different look and feel when it is compared to Kolmogorov’s theory; but
despite the fact that numerous well-argued accounts of quantum probability can be found in
the literature [18, 20, 30, 35, 45, 48, 56, 61], some even taking an axiomatic approach (see
also [6, 20, 63]), it is not that easy to pinpoint the exact sense in which quantum theory is
essentially non-Kolmogorovian—rather than, say, a reworking of Kolmogorov’s theory in a
different form. This issue is compounded by the fact that, except in the most loose terms, it is
difficult to say what one means by ‘probability’ without embedding the concept in a mathem-
atical framework.

It is fortunate then that we have the results of Gleason [29], Bell [7–9], Kochen & Specker
[33, 43], and others following in their footsteps, which add clarity to the matter. The point is
that one has to work rather hard to come up with examples of situations in quantum probability
that cannot be reduced to a classical probability model. But a number of such examples have
been worked out involving finite-dimensional Hilbert spaces, so this creates the prospect of
constructing financial models for claims based on the results of quantum measurements, in
settings for which quantum probability is required in their analysis. Since most of what we
know of modern finance theory is based explicitly on Kolmogorov’s framework, it may be
worthwhile to take note of a few examples of situations where quantum probability comes
into play.

Among the numerous attempts that have been made to generalize or extend the Kochen–
Specker construction [40, 41, 50–52], perhaps the simplest yet put forward is that of Cabello
et al [15, 16], which entails the specification of a collection of nine different non-commuting
observables on a four-dimensional Hilbert space.

In a financial context, one can think of this setup as involving a single quantum system being
prepared in a state p̂ with nine different ‘draft financial contracts’ drawn up, each requiring
measurement of one of the nine observables. The contracts specify the payments that will be
made when one of the four possible outcomes occurs for the measurement associated with a
specific contract. It is of the nature of quantum probability that only one of the nine contracts
can be implemented, so we can envisage a rational agent being presented with the alternatives
and choosing one optimally in accordance with their needs.

In any specific setting, there will only be one contract in play, namely the one chosen by the
agent after careful consideration of their criteria for optimality. In each such specific setting
the usual rules for Kolmogorovian probability apply. But for the setup and description of the
problem as a whole—with the presentation and analysis of the nine contracts and the posing of
the optimization problem, we require quantum probability. This example can be used to refute
the claim of a skeptic who asks whether one is merely taking simple examples from classical
finance and dressing them up in the language of quantum probability and calling the result
quantum finance. The point is that completely tractable examples can be constructed within
the context of quantum finance for which no classical analogue exists.

The setup is an elaborate although feasible one, and we can use the methods discussed to
calculate the probabilities of the results for the nine different measurements and hence the
expected utility gained from each choice. Each observable has four possible outcomes, thus
determining an orthonormal tetrad in Hilbert space. These are the four eigenvectors of the
Hermitian matrix corresponding to a given observable. The result of the measurement is to
select one of these eigenvectors. Equivalently, each measurement measures four commuting
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Figure 1. Diagram illustrating a result of the Kochen–Specker type in a 4-dimensional
Hilbert space. Each of the 9 vertices are met by 4 lines and each of the 18 lines join 2
vertices. The 18 lines represent a set of normalized projection operators with the property
that the 4 projection operators meeting a given vertex are mutually orthogonal and sum
to the identity operator. It is easy to see that it is impossible to ‘colour’ the lines so that
one blue line meets each vertex and 3 red lines meet each vertex. This illustrates the fact
that in the standard Kolmogorov setup one cannot find a set of 18 random variables on a
probability space (Ω,F ,P), each taking values in the set {0,1}, such that when the 18
random variables are assigned to the 18 lines, the sum of the 4 random variables meeting
any given vertex will be one for all ω ∈ Ω.

projection operators, namely the projection operators associated with the four legs of the tetrad.
The outcome of one of these four measurements will be unity and the rest nil.

The clever idea behind results of the Kochen–Specker type is to choose the observables
so that some of the tetrads legs overlap when one moves from one observable to another. In
the present situation, involving nine observables, the overlap structure is shown in figure 1.
Alongside each vertex of the enneagon one sees the corresponding tetrad, where to ease the
typography we write 1̄ for −1. When two vertices are connected by a dotted line, this means
that the associated tetrads share a vector in common. The analysis is simplified somewhat by
the fact that the tetrads in this example can all be taken to be real.

If we label the nine observables {X̂r}r=1,2, . . .,9 and if for each value of r the four projec-
tion operators associated with X̂r are denoted {π̂rj}j=1,2,3,4 , then the probability that outcome
j will result, if contract r is chosen, is given by tr(π̂rj p̂). The construction of an analogous
setup within Kolmogorov’s system turns out to be impossible. Since this is a rather sweep-
ing statement, let us be a little more precise about what is being claimed. The point is that in
Kolmogorov’s theory, one would have to model the setup with 36 random variables on a single
probability space. The 36 random variables are grouped into nine sets of four. Let’s call these
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hypothetical random variables {Xrj}r=1,2, . . .,9, j=1,2,3,4 (with no hats). Each random variable
can take the value zero or one. Thus we have a total of 36 maps of the form

Xrj : Ω→{0,1} . (54)

There are two requirements that have to be satisfied to match the layout of the quantum setup.
First, the sum of the four random variables for a given value of r must be unity. This means
that one of them must be equal to one and the other three must be equal to zero for any given
outcome of chance ω ∈ Ω. Secondly (this is where the rabbit goes into the hat) the 36 random
variables have to be equal in pairs, in conformation with the structure of the diagram in figure 1.
Thus, the 36 random variables are cut down in effect to 18 by the requirement that they must
match in pairs.

Can one find such a set of 18 random variables? The answer, perhaps surprisingly, is no.
This can be checked by a colouring argument. Given figure 1, can one colour each line red or
blue in such a way that exactly one blue line meets each vertex? Suppose one finds a way of
colouring four of the lines blue, no vertex being hit by more than one blue line. That would
leave one vertex unmet by a blue line. Suppose then one tried to colour five lines blue. Well,
that would mean at least one vertex was hit by more than one blue line. This shows that it is
impossible to construct a set of 18 random variables on a probability space in such a way that
the required properties are satisfied.

In financial terms, this means that we cannot model the payouts of the nine contracts as
random variables on a probability space in such a way that the outcome of chance determines
the payouts of all nine. A sceptic might ask, ‘Isn’t it unlikely in practice that one will come up
against such a configuration of contracts?’ Well, that may be so, but the point is that quantum
finance can handle such configurations whereas classical finance cannot.

8. Portfolios

Let us return now to the matter of portfolios. There are two rather distinct notions of portfolio
that arise in quantum finance. The first notion involves a portfolio of contracts all depending in
their payouts on the same experiment. In that case, we can fix the n axes of the n-dimensional
Hilbert space determining the frame of the measurement and write {π̂j}j=1,2, . . . ,n for the asso-
ciated projection operators. Then, for a given outcome of the experiment one of these pro-
jection operators will give the result unity and the rest zero. The projection operators can be
regarded as the A-D securities for that experiment and it should be evident that any contingent
claim based on the outcome of the given experiment can be written as a portfolio of n such
A-D securities. Thus, for such claims we can write

X̂=
n∑

j=1

θj π̂j, (55)

where the {θj}j=1,2, . . . ,n represent the holdings in the various A-D securities. More generally,
if we allow short positions in the A-D securities, then the resulting overall position can be
expressed uniquely as the difference between two positive claims, with the understanding that
we net claims involving long and short positions in the same A-D security.

Clearly, a linear combination of two portfolios in this setting gives another portfolio.
Furthermore, it should be evident that the operator corresponding to the portfolio can be rep-
resented as the sum of a trace part, proportional to the identity operator, and a trace-free part.
The trace part represents a position (long or short) in the risk-free asset, and the remainder con-
sists of investments in risky assets. For example, in two dimensions, a portfolio of the form
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2|z1〉〈z̄1|+ |z2〉〈z̄2| consists of a long position of three-halves of one unit of the risk free asset,
a long position of one-half of a unit in the A-D security π̂1 and a short position of one-half
of a unit in the A-D security π̂2, since we have 2π̂1 + π̂2 =

3
2 (π̂1 + π̂2)+

1
2 (π̂1 − π̂2). In this

way, we can isolate the risk-free part of a portfolio. This first notion of a portfolio corresponds
rather closely to the notion of a portfolio in a one-period market that arises in classical fin-
ance theory [1, 10, 22–24, 27] and can be pursued further in that spirit. The point is that once
the measurement basis for the underlying experiment has been fixed, the various associated
operators arising for positions with different portfolio weightings commute.

As we pointed out in section 3, however, it does not make sense to form a portfolio of
several contracts each based on the same quantum system but with different measurement
frames, since suchmeasurements will in general be incompatible and cannot be simultaneously
realized. In our approach to the problem, we consider portfolios of assets for which the payouts
are based on separate measurements being made on two or more distinct quantum systems.
Imagine, for example, a financial institution where in one room an experiment is carried out
on Quantum System I, with certain results obtained, and another experiment is carried out in
another room on Quantum System II, with certain results obtained. In each case, there are
contracts leading to payouts depending on the results obtained.

Since the measurements do not interfere with one another (after all, they are carried out
in different rooms) they can be carried out simultaneously, each delivering a certain number
of units of account, so it makes sense to speak of holding a portfolio in the two assets, for
which the payout is simply the totality of the payouts of the constituents of the portfolio, with
appropriate weightings. Let us see how we model such a situation. To simplify the discussion,
we stick with the case where there are two quantum systems involved, with measurements
made on each of them.

The setup can then be easily generalized to the case where there are N such systems. The
key idea is that to model a portfolio of two such contracts, we need to consider the tensor
product of the Hilbert spaces of the individual systems. In fact, the two Hilbert spaces might
even be of different dimensions.

The usual Dirac notation does not hold up so well in such a setting, so we use an index
notation instead, which works quite smoothly [12, 28]. Thus, let H1 be a Hilbert space of
dimension n and let H2 be a Hilbert space of dimension n′, where n and n′ are not necessarily
the same. We write ξa and ξa

′
for typical elements of H1 and H2 respectively, where a=

1,2, . . . ,n and a ′ = 1,2, . . . ,n ′. Thus indices without dashes refer to the first Hilbert space
and indices with dashes refer to the second Hilbert space. We write ηa and ηa′ for typical
elements of the corresponding dual spaces H∗

1 and H∗
2 . The complex conjugates of ξa and ξa

′

are denoted ξ̄a and ξ̄a′ respectively. Then for the inner product between ξa and ηa we write
ξa ηa and for the inner product between ξa

′
and ηa′ we write ξa

′
ηa′ , with the usual summation

convention.
We are interested in the tensor product Hilbert space H12 =H1 ⊗H2, and we write ξaa

′ ∈
H12 for a typical element of this space. Then we write ηaa′ for a typical element ofH∗

12 and ξ̄aa′
for the complex conjugate of ξaa

′
, and for the inner product of ξaa

′
and ηaa′ we write ξaa

′
ηaa′ .

The state of a two-particle system takes the form of a density matrix paa
′

bb′ . Thus we require that
it should be Hermitian, of unit trace, and positive, so

paa
′

bb′ = p̄aa
′

bb′ , pcc
′

cc′ = 1, paa
′

bb′α
bᾱaβ

b′ β̄a′ ⩾ 0 (56)

for all αa,βa′ . A two-particle density matrix is pure if paa
′

bb′ = ξaa
′
ξ̄bb′ for some state vector

ξaa
′
. We say that the particles are independent if

paa
′

bb′ = pab p
a′
b′ (57)
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for some pair of one-particle states pab and pa
′

b′ . The state is said to be separable if it can be
written in the form

paa
′

bb′ =
k∑

r=1

pab (r) p
a′
b′ (r) , (58)

for some collection of 2k one-particle states {pab(r)}r=1,2, . . . ,k and {pa′b′(r)}r=1,2, . . . ,k. But if
the two-particle state is not separable then we say that the particles are entangled.

Now we are in a position to discuss the idea of measurements on a two-particle system
and the contracts one can associate with such measurements. A generic contract based on the
outcome of a measurement made on a two-particle system is described by a Hermitian operator
Xaa′
bb′ . We are interested in the case when the measurement splits into a measurement on System

I and a measurement on System II and one adds the results to give the payout of the contract.
Such a contract takes the form

Xaa′
bb′ = Ua

bδ
a′
b′ + δabV

a′
b′, (59)

where δab and δa
′

b′ denote the identity operators on H1 and H2 respectively. The eigenstates of
such an operator are of the form

paa
′

bb′ = αaᾱbβ
a′ β̄b′ , (60)

where αa is an eigenvector of Ua
b and βa′ is an eigenvector of Va′

b′ . Thus Ua
bα

b = uαa and
Va′
b′β

b′ = vβa′ for u,v ∈ R+ and the sum u+ v gives the overall payout of the contract. Such a
contract represents a portfolio consisting of one unit of a contract based on System I and one
unit of a contract based on System II. More generally, for a portfolio consisting of θ1 units of
the first contract and θ2 units of the second contract we have

Xaa′
bb′ (θ1,θ2) = θ1U

a
bδ

a′
b′ + θ2 δ

a
bV

a′
b′ (61)

and the payout will be of the form θ1u+ θ2v. The setup for a portfolio of arbitrary size can be
constructed analogously. In particular, one can check that the expected payout of a portfolio is
equal to the sum of the expectations of the constituents. This is because whenever the density
matrix of the two-particle state hits one of the identity operators in the portfolio operator, all
but one of the systems gets traced out and one is left with the trace of the product of a single
particle density operator and the observable associated with that system. For example, in the
case of a two-particle system one finds that

pbb
′

aa′X
aa′
bb′ (θ1,θ2) = pbb

′

aa′

(
θ1U

a
bδ

a′
b′ + θ2 δ

a
bV

a′
b′

)
= θ1 p

bb′
aa′ U

a
bδ

a′
b′ + θ2 p

bb′
aa′δ

a
bV

a′
b′

= θ1 p
b
aU

a
b + θ2 p

b′
a′V

a′
b′ , (62)

where pba = pbc
′

ac′ and pb
′

a′ = pcb
′

ca′ . Likewise one can check that the price of a portfolio is equal
to the weighted sum of the prices of its constituents. The point is that the two-particle system
is itself a quantum system with a financial observable based on it, of the form (59), so by
proposition 1 there exists a pricing operator qbb

′

aa′ such that

qbb
′

aa′X
aa′
bb′ (θ1,θ2) = θ1 q

b
aU

a
b + θ2 q

b′
a′V

a′
b′ , (63)

where the traced-out operators qba = qbc
′

ac′ and qb
′

a′ = qcb
′

ca′ are the pricing operators associated
with the respective individual systems.

There is one further aspect of the portfolio problem that can be analyzed and this concerns
the matter of correlations. If the state of the two-particle system is of the form (57), so the
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two particles are independent, then the outcomes of the experiments on the two systems will
be uncorrelated. But if the systems are entangled, then the correlation will in general be non-
vanishing, leading to relations such as

pbb
′

aa′
[
Ua

b − δab p
d
cU

c
d

][
Va′
b′ − δa

′

b′ p
d′
c′ V

c′
d′

]
6= 0. (64)

The point about entanglement is that even if the two systems are in separate rooms (or different
cities) the outcomes may be correlated, owing to the original construction of the state of the
two-particle system to which they belong. The same is true of the prices: if qaa

′

bb′ is entangled,
then there will be correlations in the prices, as shown in relations such as

qbb
′

aa′
[
Ua

b − δab q
d
cU

c
d

][
Va′
b′ − δa

′

b′ q
d′
c′ V

c′
d′

]
6= 0. (65)

Thus, in the general situation we see that when there is a market based on contracts associ-
ated with measurements being made on a number of different quantum systems, there will be
correlations between outcomes of measurements and correlations between prices, where the
former are determined by the structure of physical density operator for the market as a whole
and the latter by the structure of the pricing operator for the market as a whole.

Since our work overlaps with that of [5] in some respects, we comment briefly on where
we agree and where we differ. The differences are perhaps most apparent in the treatment
of portfolios. The authors of [5] consider a market described by a quantum density operator
rather than by classical probabilities, then introduce so-called quantum assets. A quantum
asset is defined to be a positive semidefinite Hermitian matrix. The assets are given a ‘financial
interpretation,’ namely that, ‘Each eigenstate can be considered a natural event for the quantum
asset. Each eigenvalue is the outcome or payoff of this asset when the corresponding event
happens.’ We are generally in agreement with this idea, though in our approach there is no
abstraction: a quantum asset is a financial contract with a well-defined structure involving a
payoff contingent on an experiment. In contrast, of their definition the authors of [5] say, ‘This
definition leaves questions about the existence/validity of such assets and their intrinsic value
for future work.’ A ‘toy example’ is given involving a market maker with access to a quantum
computer. The initial state is known to the market along with the current bid and offer prices
for a certain asset. Then a unitary transformation, also known to the market, is applied to the
state and ameasurement is made, the random outcome of which determines themarket maker’s
new bid and offer. Investors at the initial prices may or may not make a profit by trading again
at the new prices. In our view, this example is defective, since the algorithms used by quantum
computers are typically designed to give a definite or near-definite result, not a probabilistic
result; in short, the introduction of a quantum computer in the toy example is spurious. To
complicate matters, the authors fail to make a distinction between the price and the payout
of an asset, leading to the confused idea that a market maker quotes a random price based on
the outcome of a measurement. We also differ from [5] in our treatment of the no-arbitrage
condition. The authors of [5] introduce the idea of a portfolio of quantum assets as a linear
combination of the matrices associated with the various assets, each matrix being weighted
by the number of units held in that asset. The ‘expected value’ of the portfolio is then given
in [5] by the trace of the product of the market density operator and the weighted sum of the
matrices. The problem is that the weighted sum of the assets is indeed an asset itself, but its
payoffs are not given by weighted sums of the payoffs of the individual assets. In this respect,
our approach differs completely from that of paper [5]. In our view, the attempt set out in [5]
to propose an analogue of the fundamental theorem of asset pricing on this basis is ill-posed.

In contrast, in the approach of the present paper the assumption of no arbitrage is that of
Axiom 1; the relation to classical finance is embodied in Axiom 2; and the risk-free rate is
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specified in Axiom 3. The physical density operator p̂ arises in the specification of the experi-
ment that underlies the contract. The density operator q̂ is shown to exist in proposition 1 and
its equivalence to p̂ follows as a consequence of Axiom 1. Portfolios then arise naturally as
multi-particle systems.

9. Conclusion

The physical density operator is objective in nature, the only limitations in its determination
being in the usual practicalities of the laboratory settings where the states are manufactured.
The pricing operator, on the other hand, if classical finance theory is any guide in the matter
[1, 10, 22–24, 27], will be determined by the collective appetite for risk and reward among
market participants. Hence, as in all markets, prices will be subject to fluctuation and change
over time and may even be amenable to a Bayesian treatment. In the one-period setting that
we have developed here, all we can say a priori of a definite nature about the pricing operator
is that it exists and that the physical density operator and the pricing operator are ‘equivalent’,
as we have seen in proposition 1.

In the one-period version of the theory, one can be somewhat agnostic on the matter of
dynamics. This is because p̂, q̂ and P0T are specified at time 0 and no further data are needed
apart from the observable X̂T being measured at time T. From a dynamical perspective it is
convenient to work in the Heisenberg representation. Then p̂ and q̂ are fixed and {X̂t}t≥0 is
dynamical, given by

X̂T = e−iĤT X̂0 e
iĤT, (66)

where X̂0 denotes the initial value of the observable being measured and Ĥ is the Hamiltonian
of the underlying physical system. Since T is fixed, it suffices to specify X̂T, and we let X̂0 and
Ĥ drop out of the picture.

The Heisenberg representation is also convenient when interventions are taken into account
in a multi-period model. Suppose, for example, we consider a two-period model involving a
pair of systems defined on the product of two Hilbert spaces. We write 0< t< u and let Xa

b(t)
and Ya

′

b′(u) be a pair of observables, one for a measurement acting on the first particle at time
t and another for a measurement acting on the second particle at time u. If we assume that
the two particles are non-interacting, then the two observables evolve independently, each
according a law of the form (66), with distinct Hamiltonians. The physical state of the system
can be represented in line with the scheme outlined in the previous section by a tensor of the
form pbb

′

aa′(0) and for the pricing state we write qbb
′

aa′(0). Note that although the two particles are
non-interacting, we allow for the possibility that they may have been prepared in an entangled
state, so the two density matrices need not be separable.

Then for the valuation of the contract defined by the measurement of Xa
b(t) alone, one can

work with the reduced density matrices defined by pba(0) = pbc
′

ac′(0) and qba(0) = qbc
′

ac′(0). But
for a payout involving both a measurement of Xa

b(t) and a measurement of Ya
′

b′(u), matters are a
little more complicated. This is because once the result of the first measurement is known, the
market may change its assessment of the pricing state, in line with classical idea that the pricing
kernel is an adapted process, so that market participants will adjust their attitudes towards risk
following a movement in the market. We refer to such state changes in the Heisenberg repres-
entation as ‘interventions.’ Now, the change in the physical state is relatively straightforward:
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this is the usual Lüders state-reduction rule [47], which depends on the outcome of the meas-
urement of Xa

b(t). The transformation is thus given by

pbb
′

aa′ (0)→ pbb
′

aa′ (t) = LcaL
b
d p

db′
ca′ (0)/L

c
eL

e
d p

df ′

cf ′ (0) , (67)

where Lba denotes the projection operator onto the Hilbert subspace defined by the random
outcome of the measurement of Xa

b(t).
But the pricing state need not follow the Lüders rule: it is constrained only by the require-

ment that the new pricing state arising after the measurement should be equivalent to the new
physical state. Thus, in general, we have a transformation of the form

qbb
′

aa′ (0)→ qbb
′

aa′ (t) , (68)

where qbb
′

aa′(t) and p
bb′
aa′(t) share the same null space. One way of achieving this is by taking any

alternative state rbb
′

aa′(0) which is equivalent to pbb
′

aa′(0) and then passing it through the Lüders
projection sieve on the first Hilbert space to give

qbb
′

aa′ (t) = LcaL
b
d r

db′
ca′ (0)/L

c
eL

e
d r

df ′

cf ′ (0) . (69)

Then for each possible result of the first measurement we obtain a new pricing state, which
can be used to form a time-t conditional valuation of the payout triggered by the later time-u
measurement. This can be compared with the time-0 valuation of the second payout, which is
obtained by using the original pricing state but tracing out the first Hilbert space.

Thus, one can think of the financial product under consideration as a contract with two cash
flows, one at t and one at u. The value of the contract at time 0 is

S0 = P0t q
bb′
aa′ (0) X

a
b (t) δ

a′
b′ +P0u q

bb′
aa′ (0) δ

a
b Y

a′
b′ (u) . (70)

Then at time t the contract delivers its first cash flow and goes ex-dividend; and its new value,
conditional on the outcome of the first measurement, is

St = Ptu q
bb′
aa′ (t) δ

a
b Y

a′
b′ (u) , (71)

where Pst = P0t/P0s is the usual forward discount factor. Note that qbb
′

aa′(t) depends on the
random outcome of the first measurement. Finally, the second cash flow kicks in at time u
and the asset goes ex-dividend once more, so we have Su = 0. In this way we obtain stochastic
processes for the value of the asset and its dividend flow. The scheme can easily be generalized
to a market of any number of periods, each involving a new measurement.

That the non-Kolmogorovian character of quantum probability may have implications for
the development of quantum technologies is widely appreciated—see [36] and references cited
therein. And indeed, if quantum computers eventually replace the classical computers currently
used for algorithmic trading by financial institutions, as they no doubt will, then the role of
valuations of the type we have considered here may be important in that context. There is also
a widely held view that quantum probability may play a part in cognitive science and hence
behavioural finance as well—see [13, 14, 32, 42, 53, 54, 64] and references cited therein. The
suggestion is that the brain uses quantum probability in a crucial way in its decision-making
apparatus. In that respect, quantum cognition and quantum psychology can be viewed as a
possible basis through which asset prices might be subject to quantum-like laws. It would be
outside of the scope of the present discussion to look at such proposals in detail here, but if
judgements and decisions aremade on the basis of quantum probability, then in some situations
these assessments will involve valuations, rather than probability estimates, and it would be
the pricing operator, rather than the physical density operator, that would come into play in
these valuations. In such cases, external intervention in the form of Bayesian updating could
be modelled, e.g. as in [13]. This is consistent with the point we made earlier about the pricing
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operator being specific to the risk and reward profiles of market operatives and in a state of
flux as new information arrives. These and other further developments of the theory we hope
to explore elsewhere.
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